[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / Hexagon / HexagonMachineScheduler.cpp
blob0e6555024303c872ece514fbfb9df65fca54c182
1 //===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // MachineScheduler schedules machine instructions after phi elimination. It
10 // preserves LiveIntervals so it can be invoked before register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "HexagonMachineScheduler.h"
15 #include "HexagonInstrInfo.h"
16 #include "HexagonSubtarget.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/DFAPacketizer.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/RegisterPressure.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSchedule.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <iomanip>
39 #include <limits>
40 #include <memory>
41 #include <sstream>
43 using namespace llvm;
45 #define DEBUG_TYPE "machine-scheduler"
47 static cl::opt<bool> IgnoreBBRegPressure("ignore-bb-reg-pressure",
48 cl::Hidden, cl::ZeroOrMore, cl::init(false));
50 static cl::opt<bool> UseNewerCandidate("use-newer-candidate",
51 cl::Hidden, cl::ZeroOrMore, cl::init(true));
53 static cl::opt<unsigned> SchedDebugVerboseLevel("misched-verbose-level",
54 cl::Hidden, cl::ZeroOrMore, cl::init(1));
56 // Check if the scheduler should penalize instructions that are available to
57 // early due to a zero-latency dependence.
58 static cl::opt<bool> CheckEarlyAvail("check-early-avail", cl::Hidden,
59 cl::ZeroOrMore, cl::init(true));
61 // This value is used to determine if a register class is a high pressure set.
62 // We compute the maximum number of registers needed and divided by the total
63 // available. Then, we compare the result to this value.
64 static cl::opt<float> RPThreshold("hexagon-reg-pressure", cl::Hidden,
65 cl::init(0.75f), cl::desc("High register pressure threhold."));
67 /// Return true if there is a dependence between SUd and SUu.
68 static bool hasDependence(const SUnit *SUd, const SUnit *SUu,
69 const HexagonInstrInfo &QII) {
70 if (SUd->Succs.size() == 0)
71 return false;
73 // Enable .cur formation.
74 if (QII.mayBeCurLoad(*SUd->getInstr()))
75 return false;
77 if (QII.canExecuteInBundle(*SUd->getInstr(), *SUu->getInstr()))
78 return false;
80 for (const auto &S : SUd->Succs) {
81 // Since we do not add pseudos to packets, might as well
82 // ignore order dependencies.
83 if (S.isCtrl())
84 continue;
86 if (S.getSUnit() == SUu && S.getLatency() > 0)
87 return true;
89 return false;
92 /// Check if scheduling of this SU is possible
93 /// in the current packet.
94 /// It is _not_ precise (statefull), it is more like
95 /// another heuristic. Many corner cases are figured
96 /// empirically.
97 bool VLIWResourceModel::isResourceAvailable(SUnit *SU, bool IsTop) {
98 if (!SU || !SU->getInstr())
99 return false;
101 // First see if the pipeline could receive this instruction
102 // in the current cycle.
103 switch (SU->getInstr()->getOpcode()) {
104 default:
105 if (!ResourcesModel->canReserveResources(*SU->getInstr()))
106 return false;
107 break;
108 case TargetOpcode::EXTRACT_SUBREG:
109 case TargetOpcode::INSERT_SUBREG:
110 case TargetOpcode::SUBREG_TO_REG:
111 case TargetOpcode::REG_SEQUENCE:
112 case TargetOpcode::IMPLICIT_DEF:
113 case TargetOpcode::COPY:
114 case TargetOpcode::INLINEASM:
115 case TargetOpcode::INLINEASM_BR:
116 break;
119 MachineBasicBlock *MBB = SU->getInstr()->getParent();
120 auto &QST = MBB->getParent()->getSubtarget<HexagonSubtarget>();
121 const auto &QII = *QST.getInstrInfo();
123 // Now see if there are no other dependencies to instructions already
124 // in the packet.
125 if (IsTop) {
126 for (unsigned i = 0, e = Packet.size(); i != e; ++i)
127 if (hasDependence(Packet[i], SU, QII))
128 return false;
129 } else {
130 for (unsigned i = 0, e = Packet.size(); i != e; ++i)
131 if (hasDependence(SU, Packet[i], QII))
132 return false;
134 return true;
137 /// Keep track of available resources.
138 bool VLIWResourceModel::reserveResources(SUnit *SU, bool IsTop) {
139 bool startNewCycle = false;
140 // Artificially reset state.
141 if (!SU) {
142 ResourcesModel->clearResources();
143 Packet.clear();
144 TotalPackets++;
145 return false;
147 // If this SU does not fit in the packet or the packet is now full
148 // start a new one.
149 if (!isResourceAvailable(SU, IsTop) ||
150 Packet.size() >= SchedModel->getIssueWidth()) {
151 ResourcesModel->clearResources();
152 Packet.clear();
153 TotalPackets++;
154 startNewCycle = true;
157 switch (SU->getInstr()->getOpcode()) {
158 default:
159 ResourcesModel->reserveResources(*SU->getInstr());
160 break;
161 case TargetOpcode::EXTRACT_SUBREG:
162 case TargetOpcode::INSERT_SUBREG:
163 case TargetOpcode::SUBREG_TO_REG:
164 case TargetOpcode::REG_SEQUENCE:
165 case TargetOpcode::IMPLICIT_DEF:
166 case TargetOpcode::KILL:
167 case TargetOpcode::CFI_INSTRUCTION:
168 case TargetOpcode::EH_LABEL:
169 case TargetOpcode::COPY:
170 case TargetOpcode::INLINEASM:
171 case TargetOpcode::INLINEASM_BR:
172 break;
174 Packet.push_back(SU);
176 #ifndef NDEBUG
177 LLVM_DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n");
178 for (unsigned i = 0, e = Packet.size(); i != e; ++i) {
179 LLVM_DEBUG(dbgs() << "\t[" << i << "] SU(");
180 LLVM_DEBUG(dbgs() << Packet[i]->NodeNum << ")\t");
181 LLVM_DEBUG(Packet[i]->getInstr()->dump());
183 #endif
185 return startNewCycle;
188 /// schedule - Called back from MachineScheduler::runOnMachineFunction
189 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
190 /// only includes instructions that have DAG nodes, not scheduling boundaries.
191 void VLIWMachineScheduler::schedule() {
192 LLVM_DEBUG(dbgs() << "********** MI Converging Scheduling VLIW "
193 << printMBBReference(*BB) << " " << BB->getName()
194 << " in_func " << BB->getParent()->getName()
195 << " at loop depth " << MLI->getLoopDepth(BB) << " \n");
197 buildDAGWithRegPressure();
199 Topo.InitDAGTopologicalSorting();
201 // Postprocess the DAG to add platform-specific artificial dependencies.
202 postprocessDAG();
204 SmallVector<SUnit*, 8> TopRoots, BotRoots;
205 findRootsAndBiasEdges(TopRoots, BotRoots);
207 // Initialize the strategy before modifying the DAG.
208 SchedImpl->initialize(this);
210 LLVM_DEBUG(unsigned maxH = 0;
211 for (unsigned su = 0, e = SUnits.size(); su != e;
212 ++su) if (SUnits[su].getHeight() > maxH) maxH =
213 SUnits[su].getHeight();
214 dbgs() << "Max Height " << maxH << "\n";);
215 LLVM_DEBUG(unsigned maxD = 0;
216 for (unsigned su = 0, e = SUnits.size(); su != e;
217 ++su) if (SUnits[su].getDepth() > maxD) maxD =
218 SUnits[su].getDepth();
219 dbgs() << "Max Depth " << maxD << "\n";);
220 LLVM_DEBUG(dump());
222 initQueues(TopRoots, BotRoots);
224 bool IsTopNode = false;
225 while (true) {
226 LLVM_DEBUG(
227 dbgs() << "** VLIWMachineScheduler::schedule picking next node\n");
228 SUnit *SU = SchedImpl->pickNode(IsTopNode);
229 if (!SU) break;
231 if (!checkSchedLimit())
232 break;
234 scheduleMI(SU, IsTopNode);
236 // Notify the scheduling strategy after updating the DAG.
237 SchedImpl->schedNode(SU, IsTopNode);
239 updateQueues(SU, IsTopNode);
241 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
243 placeDebugValues();
245 LLVM_DEBUG({
246 dbgs() << "*** Final schedule for "
247 << printMBBReference(*begin()->getParent()) << " ***\n";
248 dumpSchedule();
249 dbgs() << '\n';
253 void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) {
254 DAG = static_cast<VLIWMachineScheduler*>(dag);
255 SchedModel = DAG->getSchedModel();
257 Top.init(DAG, SchedModel);
258 Bot.init(DAG, SchedModel);
260 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
261 // are disabled, then these HazardRecs will be disabled.
262 const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries();
263 const TargetSubtargetInfo &STI = DAG->MF.getSubtarget();
264 const TargetInstrInfo *TII = STI.getInstrInfo();
265 delete Top.HazardRec;
266 delete Bot.HazardRec;
267 Top.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
268 Bot.HazardRec = TII->CreateTargetMIHazardRecognizer(Itin, DAG);
270 delete Top.ResourceModel;
271 delete Bot.ResourceModel;
272 Top.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
273 Bot.ResourceModel = new VLIWResourceModel(STI, DAG->getSchedModel());
275 const std::vector<unsigned> &MaxPressure =
276 DAG->getRegPressure().MaxSetPressure;
277 HighPressureSets.assign(MaxPressure.size(), 0);
278 for (unsigned i = 0, e = MaxPressure.size(); i < e; ++i) {
279 unsigned Limit = DAG->getRegClassInfo()->getRegPressureSetLimit(i);
280 HighPressureSets[i] =
281 ((float) MaxPressure[i] > ((float) Limit * RPThreshold));
284 assert((!ForceTopDown || !ForceBottomUp) &&
285 "-misched-topdown incompatible with -misched-bottomup");
288 void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) {
289 if (SU->isScheduled)
290 return;
292 for (const SDep &PI : SU->Preds) {
293 unsigned PredReadyCycle = PI.getSUnit()->TopReadyCycle;
294 unsigned MinLatency = PI.getLatency();
295 #ifndef NDEBUG
296 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
297 #endif
298 if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
299 SU->TopReadyCycle = PredReadyCycle + MinLatency;
301 Top.releaseNode(SU, SU->TopReadyCycle);
304 void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) {
305 if (SU->isScheduled)
306 return;
308 assert(SU->getInstr() && "Scheduled SUnit must have instr");
310 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
311 I != E; ++I) {
312 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
313 unsigned MinLatency = I->getLatency();
314 #ifndef NDEBUG
315 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
316 #endif
317 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
318 SU->BotReadyCycle = SuccReadyCycle + MinLatency;
320 Bot.releaseNode(SU, SU->BotReadyCycle);
323 /// Does this SU have a hazard within the current instruction group.
325 /// The scheduler supports two modes of hazard recognition. The first is the
326 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
327 /// supports highly complicated in-order reservation tables
328 /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic.
330 /// The second is a streamlined mechanism that checks for hazards based on
331 /// simple counters that the scheduler itself maintains. It explicitly checks
332 /// for instruction dispatch limitations, including the number of micro-ops that
333 /// can dispatch per cycle.
335 /// TODO: Also check whether the SU must start a new group.
336 bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) {
337 if (HazardRec->isEnabled())
338 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
340 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
341 if (IssueCount + uops > SchedModel->getIssueWidth())
342 return true;
344 return false;
347 void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU,
348 unsigned ReadyCycle) {
349 if (ReadyCycle < MinReadyCycle)
350 MinReadyCycle = ReadyCycle;
352 // Check for interlocks first. For the purpose of other heuristics, an
353 // instruction that cannot issue appears as if it's not in the ReadyQueue.
354 if (ReadyCycle > CurrCycle || checkHazard(SU))
356 Pending.push(SU);
357 else
358 Available.push(SU);
361 /// Move the boundary of scheduled code by one cycle.
362 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() {
363 unsigned Width = SchedModel->getIssueWidth();
364 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
366 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
367 "MinReadyCycle uninitialized");
368 unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
370 if (!HazardRec->isEnabled()) {
371 // Bypass HazardRec virtual calls.
372 CurrCycle = NextCycle;
373 } else {
374 // Bypass getHazardType calls in case of long latency.
375 for (; CurrCycle != NextCycle; ++CurrCycle) {
376 if (isTop())
377 HazardRec->AdvanceCycle();
378 else
379 HazardRec->RecedeCycle();
382 CheckPending = true;
384 LLVM_DEBUG(dbgs() << "*** Next cycle " << Available.getName() << " cycle "
385 << CurrCycle << '\n');
388 /// Move the boundary of scheduled code by one SUnit.
389 void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) {
390 bool startNewCycle = false;
392 // Update the reservation table.
393 if (HazardRec->isEnabled()) {
394 if (!isTop() && SU->isCall) {
395 // Calls are scheduled with their preceding instructions. For bottom-up
396 // scheduling, clear the pipeline state before emitting.
397 HazardRec->Reset();
399 HazardRec->EmitInstruction(SU);
402 // Update DFA model.
403 startNewCycle = ResourceModel->reserveResources(SU, isTop());
405 // Check the instruction group dispatch limit.
406 // TODO: Check if this SU must end a dispatch group.
407 IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
408 if (startNewCycle) {
409 LLVM_DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
410 bumpCycle();
412 else
413 LLVM_DEBUG(dbgs() << "*** IssueCount " << IssueCount << " at cycle "
414 << CurrCycle << '\n');
417 /// Release pending ready nodes in to the available queue. This makes them
418 /// visible to heuristics.
419 void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() {
420 // If the available queue is empty, it is safe to reset MinReadyCycle.
421 if (Available.empty())
422 MinReadyCycle = std::numeric_limits<unsigned>::max();
424 // Check to see if any of the pending instructions are ready to issue. If
425 // so, add them to the available queue.
426 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
427 SUnit *SU = *(Pending.begin()+i);
428 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
430 if (ReadyCycle < MinReadyCycle)
431 MinReadyCycle = ReadyCycle;
433 if (ReadyCycle > CurrCycle)
434 continue;
436 if (checkHazard(SU))
437 continue;
439 Available.push(SU);
440 Pending.remove(Pending.begin()+i);
441 --i; --e;
443 CheckPending = false;
446 /// Remove SU from the ready set for this boundary.
447 void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) {
448 if (Available.isInQueue(SU))
449 Available.remove(Available.find(SU));
450 else {
451 assert(Pending.isInQueue(SU) && "bad ready count");
452 Pending.remove(Pending.find(SU));
456 /// If this queue only has one ready candidate, return it. As a side effect,
457 /// advance the cycle until at least one node is ready. If multiple instructions
458 /// are ready, return NULL.
459 SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() {
460 if (CheckPending)
461 releasePending();
463 auto AdvanceCycle = [this]() {
464 if (Available.empty())
465 return true;
466 if (Available.size() == 1 && Pending.size() > 0)
467 return !ResourceModel->isResourceAvailable(*Available.begin(), isTop()) ||
468 getWeakLeft(*Available.begin(), isTop()) != 0;
469 return false;
471 for (unsigned i = 0; AdvanceCycle(); ++i) {
472 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
473 "permanent hazard"); (void)i;
474 ResourceModel->reserveResources(nullptr, isTop());
475 bumpCycle();
476 releasePending();
478 if (Available.size() == 1)
479 return *Available.begin();
480 return nullptr;
483 #ifndef NDEBUG
484 void ConvergingVLIWScheduler::traceCandidate(const char *Label,
485 const ReadyQueue &Q, SUnit *SU, int Cost, PressureChange P) {
486 dbgs() << Label << " " << Q.getName() << " ";
487 if (P.isValid())
488 dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":"
489 << P.getUnitInc() << " ";
490 else
491 dbgs() << " ";
492 dbgs() << "cost(" << Cost << ")\t";
493 DAG->dumpNode(*SU);
496 // Very detailed queue dump, to be used with higher verbosity levels.
497 void ConvergingVLIWScheduler::readyQueueVerboseDump(
498 const RegPressureTracker &RPTracker, SchedCandidate &Candidate,
499 ReadyQueue &Q) {
500 RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);
502 dbgs() << ">>> " << Q.getName() << "\n";
503 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
504 RegPressureDelta RPDelta;
505 TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
506 DAG->getRegionCriticalPSets(),
507 DAG->getRegPressure().MaxSetPressure);
508 std::stringstream dbgstr;
509 dbgstr << "SU(" << std::setw(3) << (*I)->NodeNum << ")";
510 dbgs() << dbgstr.str();
511 SchedulingCost(Q, *I, Candidate, RPDelta, true);
512 dbgs() << "\t";
513 (*I)->getInstr()->dump();
515 dbgs() << "\n";
517 #endif
519 /// isSingleUnscheduledPred - If SU2 is the only unscheduled predecessor
520 /// of SU, return true (we may have duplicates)
521 static inline bool isSingleUnscheduledPred(SUnit *SU, SUnit *SU2) {
522 if (SU->NumPredsLeft == 0)
523 return false;
525 for (auto &Pred : SU->Preds) {
526 // We found an available, but not scheduled, predecessor.
527 if (!Pred.getSUnit()->isScheduled && (Pred.getSUnit() != SU2))
528 return false;
531 return true;
534 /// isSingleUnscheduledSucc - If SU2 is the only unscheduled successor
535 /// of SU, return true (we may have duplicates)
536 static inline bool isSingleUnscheduledSucc(SUnit *SU, SUnit *SU2) {
537 if (SU->NumSuccsLeft == 0)
538 return false;
540 for (auto &Succ : SU->Succs) {
541 // We found an available, but not scheduled, successor.
542 if (!Succ.getSUnit()->isScheduled && (Succ.getSUnit() != SU2))
543 return false;
545 return true;
548 /// Check if the instruction changes the register pressure of a register in the
549 /// high pressure set. The function returns a negative value if the pressure
550 /// decreases and a positive value is the pressure increases. If the instruction
551 /// doesn't use a high pressure register or doesn't change the register
552 /// pressure, then return 0.
553 int ConvergingVLIWScheduler::pressureChange(const SUnit *SU, bool isBotUp) {
554 PressureDiff &PD = DAG->getPressureDiff(SU);
555 for (auto &P : PD) {
556 if (!P.isValid())
557 continue;
558 // The pressure differences are computed bottom-up, so the comparision for
559 // an increase is positive in the bottom direction, but negative in the
560 // top-down direction.
561 if (HighPressureSets[P.getPSet()])
562 return (isBotUp ? P.getUnitInc() : -P.getUnitInc());
564 return 0;
567 // Constants used to denote relative importance of
568 // heuristic components for cost computation.
569 static const unsigned PriorityOne = 200;
570 static const unsigned PriorityTwo = 50;
571 static const unsigned PriorityThree = 75;
572 static const unsigned ScaleTwo = 10;
574 /// Single point to compute overall scheduling cost.
575 /// TODO: More heuristics will be used soon.
576 int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU,
577 SchedCandidate &Candidate,
578 RegPressureDelta &Delta,
579 bool verbose) {
580 // Initial trivial priority.
581 int ResCount = 1;
583 // Do not waste time on a node that is already scheduled.
584 if (!SU || SU->isScheduled)
585 return ResCount;
587 LLVM_DEBUG(if (verbose) dbgs()
588 << ((Q.getID() == TopQID) ? "(top|" : "(bot|"));
589 // Forced priority is high.
590 if (SU->isScheduleHigh) {
591 ResCount += PriorityOne;
592 LLVM_DEBUG(dbgs() << "H|");
595 unsigned IsAvailableAmt = 0;
596 // Critical path first.
597 if (Q.getID() == TopQID) {
598 if (Top.isLatencyBound(SU)) {
599 LLVM_DEBUG(if (verbose) dbgs() << "LB|");
600 ResCount += (SU->getHeight() * ScaleTwo);
603 LLVM_DEBUG(if (verbose) {
604 std::stringstream dbgstr;
605 dbgstr << "h" << std::setw(3) << SU->getHeight() << "|";
606 dbgs() << dbgstr.str();
609 // If resources are available for it, multiply the
610 // chance of scheduling.
611 if (Top.ResourceModel->isResourceAvailable(SU, true)) {
612 IsAvailableAmt = (PriorityTwo + PriorityThree);
613 ResCount += IsAvailableAmt;
614 LLVM_DEBUG(if (verbose) dbgs() << "A|");
615 } else
616 LLVM_DEBUG(if (verbose) dbgs() << " |");
617 } else {
618 if (Bot.isLatencyBound(SU)) {
619 LLVM_DEBUG(if (verbose) dbgs() << "LB|");
620 ResCount += (SU->getDepth() * ScaleTwo);
623 LLVM_DEBUG(if (verbose) {
624 std::stringstream dbgstr;
625 dbgstr << "d" << std::setw(3) << SU->getDepth() << "|";
626 dbgs() << dbgstr.str();
629 // If resources are available for it, multiply the
630 // chance of scheduling.
631 if (Bot.ResourceModel->isResourceAvailable(SU, false)) {
632 IsAvailableAmt = (PriorityTwo + PriorityThree);
633 ResCount += IsAvailableAmt;
634 LLVM_DEBUG(if (verbose) dbgs() << "A|");
635 } else
636 LLVM_DEBUG(if (verbose) dbgs() << " |");
639 unsigned NumNodesBlocking = 0;
640 if (Q.getID() == TopQID) {
641 // How many SUs does it block from scheduling?
642 // Look at all of the successors of this node.
643 // Count the number of nodes that
644 // this node is the sole unscheduled node for.
645 if (Top.isLatencyBound(SU))
646 for (const SDep &SI : SU->Succs)
647 if (isSingleUnscheduledPred(SI.getSUnit(), SU))
648 ++NumNodesBlocking;
649 } else {
650 // How many unscheduled predecessors block this node?
651 if (Bot.isLatencyBound(SU))
652 for (const SDep &PI : SU->Preds)
653 if (isSingleUnscheduledSucc(PI.getSUnit(), SU))
654 ++NumNodesBlocking;
656 ResCount += (NumNodesBlocking * ScaleTwo);
658 LLVM_DEBUG(if (verbose) {
659 std::stringstream dbgstr;
660 dbgstr << "blk " << std::setw(2) << NumNodesBlocking << ")|";
661 dbgs() << dbgstr.str();
664 // Factor in reg pressure as a heuristic.
665 if (!IgnoreBBRegPressure) {
666 // Decrease priority by the amount that register pressure exceeds the limit.
667 ResCount -= (Delta.Excess.getUnitInc()*PriorityOne);
668 // Decrease priority if register pressure exceeds the limit.
669 ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityOne);
670 // Decrease priority slightly if register pressure would increase over the
671 // current maximum.
672 ResCount -= (Delta.CurrentMax.getUnitInc()*PriorityTwo);
673 // If there are register pressure issues, then we remove the value added for
674 // the instruction being available. The rationale is that we really don't
675 // want to schedule an instruction that causes a spill.
676 if (IsAvailableAmt && pressureChange(SU, Q.getID() != TopQID) > 0 &&
677 (Delta.Excess.getUnitInc() || Delta.CriticalMax.getUnitInc() ||
678 Delta.CurrentMax.getUnitInc()))
679 ResCount -= IsAvailableAmt;
680 LLVM_DEBUG(if (verbose) {
681 dbgs() << "RP " << Delta.Excess.getUnitInc() << "/"
682 << Delta.CriticalMax.getUnitInc() << "/"
683 << Delta.CurrentMax.getUnitInc() << ")|";
687 // Give a little extra priority to a .cur instruction if there is a resource
688 // available for it.
689 auto &QST = DAG->MF.getSubtarget<HexagonSubtarget>();
690 auto &QII = *QST.getInstrInfo();
691 if (SU->isInstr() && QII.mayBeCurLoad(*SU->getInstr())) {
692 if (Q.getID() == TopQID &&
693 Top.ResourceModel->isResourceAvailable(SU, true)) {
694 ResCount += PriorityTwo;
695 LLVM_DEBUG(if (verbose) dbgs() << "C|");
696 } else if (Q.getID() == BotQID &&
697 Bot.ResourceModel->isResourceAvailable(SU, false)) {
698 ResCount += PriorityTwo;
699 LLVM_DEBUG(if (verbose) dbgs() << "C|");
703 // Give preference to a zero latency instruction if the dependent
704 // instruction is in the current packet.
705 if (Q.getID() == TopQID && getWeakLeft(SU, true) == 0) {
706 for (const SDep &PI : SU->Preds) {
707 if (!PI.getSUnit()->getInstr()->isPseudo() && PI.isAssignedRegDep() &&
708 PI.getLatency() == 0 &&
709 Top.ResourceModel->isInPacket(PI.getSUnit())) {
710 ResCount += PriorityThree;
711 LLVM_DEBUG(if (verbose) dbgs() << "Z|");
714 } else if (Q.getID() == BotQID && getWeakLeft(SU, false) == 0) {
715 for (const SDep &SI : SU->Succs) {
716 if (!SI.getSUnit()->getInstr()->isPseudo() && SI.isAssignedRegDep() &&
717 SI.getLatency() == 0 &&
718 Bot.ResourceModel->isInPacket(SI.getSUnit())) {
719 ResCount += PriorityThree;
720 LLVM_DEBUG(if (verbose) dbgs() << "Z|");
725 // If the instruction has a non-zero latency dependence with an instruction in
726 // the current packet, then it should not be scheduled yet. The case occurs
727 // when the dependent instruction is scheduled in a new packet, so the
728 // scheduler updates the current cycle and pending instructions become
729 // available.
730 if (CheckEarlyAvail) {
731 if (Q.getID() == TopQID) {
732 for (const auto &PI : SU->Preds) {
733 if (PI.getLatency() > 0 &&
734 Top.ResourceModel->isInPacket(PI.getSUnit())) {
735 ResCount -= PriorityOne;
736 LLVM_DEBUG(if (verbose) dbgs() << "D|");
739 } else {
740 for (const auto &SI : SU->Succs) {
741 if (SI.getLatency() > 0 &&
742 Bot.ResourceModel->isInPacket(SI.getSUnit())) {
743 ResCount -= PriorityOne;
744 LLVM_DEBUG(if (verbose) dbgs() << "D|");
750 LLVM_DEBUG(if (verbose) {
751 std::stringstream dbgstr;
752 dbgstr << "Total " << std::setw(4) << ResCount << ")";
753 dbgs() << dbgstr.str();
756 return ResCount;
759 /// Pick the best candidate from the top queue.
761 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
762 /// DAG building. To adjust for the current scheduling location we need to
763 /// maintain the number of vreg uses remaining to be top-scheduled.
764 ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler::
765 pickNodeFromQueue(VLIWSchedBoundary &Zone, const RegPressureTracker &RPTracker,
766 SchedCandidate &Candidate) {
767 ReadyQueue &Q = Zone.Available;
768 LLVM_DEBUG(if (SchedDebugVerboseLevel > 1)
769 readyQueueVerboseDump(RPTracker, Candidate, Q);
770 else Q.dump(););
772 // getMaxPressureDelta temporarily modifies the tracker.
773 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
775 // BestSU remains NULL if no top candidates beat the best existing candidate.
776 CandResult FoundCandidate = NoCand;
777 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
778 RegPressureDelta RPDelta;
779 TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
780 DAG->getRegionCriticalPSets(),
781 DAG->getRegPressure().MaxSetPressure);
783 int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false);
785 // Initialize the candidate if needed.
786 if (!Candidate.SU) {
787 LLVM_DEBUG(traceCandidate("DCAND", Q, *I, CurrentCost));
788 Candidate.SU = *I;
789 Candidate.RPDelta = RPDelta;
790 Candidate.SCost = CurrentCost;
791 FoundCandidate = NodeOrder;
792 continue;
795 // Choose node order for negative cost candidates. There is no good
796 // candidate in this case.
797 if (CurrentCost < 0 && Candidate.SCost < 0) {
798 if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
799 || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
800 LLVM_DEBUG(traceCandidate("NCAND", Q, *I, CurrentCost));
801 Candidate.SU = *I;
802 Candidate.RPDelta = RPDelta;
803 Candidate.SCost = CurrentCost;
804 FoundCandidate = NodeOrder;
806 continue;
809 // Best cost.
810 if (CurrentCost > Candidate.SCost) {
811 LLVM_DEBUG(traceCandidate("CCAND", Q, *I, CurrentCost));
812 Candidate.SU = *I;
813 Candidate.RPDelta = RPDelta;
814 Candidate.SCost = CurrentCost;
815 FoundCandidate = BestCost;
816 continue;
819 // Choose an instruction that does not depend on an artificial edge.
820 unsigned CurrWeak = getWeakLeft(*I, (Q.getID() == TopQID));
821 unsigned CandWeak = getWeakLeft(Candidate.SU, (Q.getID() == TopQID));
822 if (CurrWeak != CandWeak) {
823 if (CurrWeak < CandWeak) {
824 LLVM_DEBUG(traceCandidate("WCAND", Q, *I, CurrentCost));
825 Candidate.SU = *I;
826 Candidate.RPDelta = RPDelta;
827 Candidate.SCost = CurrentCost;
828 FoundCandidate = Weak;
830 continue;
833 if (CurrentCost == Candidate.SCost && Zone.isLatencyBound(*I)) {
834 unsigned CurrSize, CandSize;
835 if (Q.getID() == TopQID) {
836 CurrSize = (*I)->Succs.size();
837 CandSize = Candidate.SU->Succs.size();
838 } else {
839 CurrSize = (*I)->Preds.size();
840 CandSize = Candidate.SU->Preds.size();
842 if (CurrSize > CandSize) {
843 LLVM_DEBUG(traceCandidate("SPCAND", Q, *I, CurrentCost));
844 Candidate.SU = *I;
845 Candidate.RPDelta = RPDelta;
846 Candidate.SCost = CurrentCost;
847 FoundCandidate = BestCost;
849 // Keep the old candidate if it's a better candidate. That is, don't use
850 // the subsequent tie breaker.
851 if (CurrSize != CandSize)
852 continue;
855 // Tie breaker.
856 // To avoid scheduling indeterminism, we need a tie breaker
857 // for the case when cost is identical for two nodes.
858 if (UseNewerCandidate && CurrentCost == Candidate.SCost) {
859 if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
860 || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
861 LLVM_DEBUG(traceCandidate("TCAND", Q, *I, CurrentCost));
862 Candidate.SU = *I;
863 Candidate.RPDelta = RPDelta;
864 Candidate.SCost = CurrentCost;
865 FoundCandidate = NodeOrder;
866 continue;
870 // Fall through to original instruction order.
871 // Only consider node order if Candidate was chosen from this Q.
872 if (FoundCandidate == NoCand)
873 continue;
875 return FoundCandidate;
878 /// Pick the best candidate node from either the top or bottom queue.
879 SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) {
880 // Schedule as far as possible in the direction of no choice. This is most
881 // efficient, but also provides the best heuristics for CriticalPSets.
882 if (SUnit *SU = Bot.pickOnlyChoice()) {
883 LLVM_DEBUG(dbgs() << "Picked only Bottom\n");
884 IsTopNode = false;
885 return SU;
887 if (SUnit *SU = Top.pickOnlyChoice()) {
888 LLVM_DEBUG(dbgs() << "Picked only Top\n");
889 IsTopNode = true;
890 return SU;
892 SchedCandidate BotCand;
893 // Prefer bottom scheduling when heuristics are silent.
894 CandResult BotResult = pickNodeFromQueue(Bot,
895 DAG->getBotRPTracker(), BotCand);
896 assert(BotResult != NoCand && "failed to find the first candidate");
898 // If either Q has a single candidate that provides the least increase in
899 // Excess pressure, we can immediately schedule from that Q.
901 // RegionCriticalPSets summarizes the pressure within the scheduled region and
902 // affects picking from either Q. If scheduling in one direction must
903 // increase pressure for one of the excess PSets, then schedule in that
904 // direction first to provide more freedom in the other direction.
905 if (BotResult == SingleExcess || BotResult == SingleCritical) {
906 LLVM_DEBUG(dbgs() << "Prefered Bottom Node\n");
907 IsTopNode = false;
908 return BotCand.SU;
910 // Check if the top Q has a better candidate.
911 SchedCandidate TopCand;
912 CandResult TopResult = pickNodeFromQueue(Top,
913 DAG->getTopRPTracker(), TopCand);
914 assert(TopResult != NoCand && "failed to find the first candidate");
916 if (TopResult == SingleExcess || TopResult == SingleCritical) {
917 LLVM_DEBUG(dbgs() << "Prefered Top Node\n");
918 IsTopNode = true;
919 return TopCand.SU;
921 // If either Q has a single candidate that minimizes pressure above the
922 // original region's pressure pick it.
923 if (BotResult == SingleMax) {
924 LLVM_DEBUG(dbgs() << "Prefered Bottom Node SingleMax\n");
925 IsTopNode = false;
926 return BotCand.SU;
928 if (TopResult == SingleMax) {
929 LLVM_DEBUG(dbgs() << "Prefered Top Node SingleMax\n");
930 IsTopNode = true;
931 return TopCand.SU;
933 if (TopCand.SCost > BotCand.SCost) {
934 LLVM_DEBUG(dbgs() << "Prefered Top Node Cost\n");
935 IsTopNode = true;
936 return TopCand.SU;
938 // Otherwise prefer the bottom candidate in node order.
939 LLVM_DEBUG(dbgs() << "Prefered Bottom in Node order\n");
940 IsTopNode = false;
941 return BotCand.SU;
944 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
945 SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) {
946 if (DAG->top() == DAG->bottom()) {
947 assert(Top.Available.empty() && Top.Pending.empty() &&
948 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
949 return nullptr;
951 SUnit *SU;
952 if (ForceTopDown) {
953 SU = Top.pickOnlyChoice();
954 if (!SU) {
955 SchedCandidate TopCand;
956 CandResult TopResult =
957 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
958 assert(TopResult != NoCand && "failed to find the first candidate");
959 (void)TopResult;
960 SU = TopCand.SU;
962 IsTopNode = true;
963 } else if (ForceBottomUp) {
964 SU = Bot.pickOnlyChoice();
965 if (!SU) {
966 SchedCandidate BotCand;
967 CandResult BotResult =
968 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
969 assert(BotResult != NoCand && "failed to find the first candidate");
970 (void)BotResult;
971 SU = BotCand.SU;
973 IsTopNode = false;
974 } else {
975 SU = pickNodeBidrectional(IsTopNode);
977 if (SU->isTopReady())
978 Top.removeReady(SU);
979 if (SU->isBottomReady())
980 Bot.removeReady(SU);
982 LLVM_DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
983 << " Scheduling instruction in cycle "
984 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << " ("
985 << reportPackets() << ")\n";
986 DAG->dumpNode(*SU));
987 return SU;
990 /// Update the scheduler's state after scheduling a node. This is the same node
991 /// that was just returned by pickNode(). However, VLIWMachineScheduler needs
992 /// to update it's state based on the current cycle before MachineSchedStrategy
993 /// does.
994 void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) {
995 if (IsTopNode) {
996 Top.bumpNode(SU);
997 SU->TopReadyCycle = Top.CurrCycle;
998 } else {
999 Bot.bumpNode(SU);
1000 SU->BotReadyCycle = Bot.CurrCycle;