1 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass that finds instructions that can be
10 // re-written as LEA instructions in order to reduce pipeline delays.
11 // It replaces LEAs with ADD/INC/DEC when that is better for size/speed.
13 //===----------------------------------------------------------------------===//
16 #include "X86InstrInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
27 #define FIXUPLEA_DESC "X86 LEA Fixup"
28 #define FIXUPLEA_NAME "x86-fixup-LEAs"
30 #define DEBUG_TYPE FIXUPLEA_NAME
32 STATISTIC(NumLEAs
, "Number of LEA instructions created");
35 class FixupLEAPass
: public MachineFunctionPass
{
36 enum RegUsageState
{ RU_NotUsed
, RU_Write
, RU_Read
};
38 /// Given a machine register, look for the instruction
39 /// which writes it in the current basic block. If found,
40 /// try to replace it with an equivalent LEA instruction.
41 /// If replacement succeeds, then also process the newly created
43 void seekLEAFixup(MachineOperand
&p
, MachineBasicBlock::iterator
&I
,
44 MachineBasicBlock
&MBB
);
46 /// Given a memory access or LEA instruction
47 /// whose address mode uses a base and/or index register, look for
48 /// an opportunity to replace the instruction which sets the base or index
49 /// register with an equivalent LEA instruction.
50 void processInstruction(MachineBasicBlock::iterator
&I
,
51 MachineBasicBlock
&MBB
);
53 /// Given a LEA instruction which is unprofitable
54 /// on SlowLEA targets try to replace it with an equivalent ADD instruction.
55 void processInstructionForSlowLEA(MachineBasicBlock::iterator
&I
,
56 MachineBasicBlock
&MBB
);
58 /// Given a LEA instruction which is unprofitable
59 /// on SNB+ try to replace it with other instructions.
60 /// According to Intel's Optimization Reference Manual:
61 /// " For LEA instructions with three source operands and some specific
62 /// situations, instruction latency has increased to 3 cycles, and must
63 /// dispatch via port 1:
64 /// - LEA that has all three source operands: base, index, and offset
65 /// - LEA that uses base and index registers where the base is EBP, RBP,
67 /// - LEA that uses RIP relative addressing mode
68 /// - LEA that uses 16-bit addressing mode "
69 /// This function currently handles the first 2 cases only.
70 void processInstrForSlow3OpLEA(MachineBasicBlock::iterator
&I
,
71 MachineBasicBlock
&MBB
, bool OptIncDec
);
73 /// Look for LEAs that are really two address LEAs that we might be able to
74 /// turn into regular ADD instructions.
75 bool optTwoAddrLEA(MachineBasicBlock::iterator
&I
,
76 MachineBasicBlock
&MBB
, bool OptIncDec
,
77 bool UseLEAForSP
) const;
79 /// Determine if an instruction references a machine register
80 /// and, if so, whether it reads or writes the register.
81 RegUsageState
usesRegister(MachineOperand
&p
, MachineBasicBlock::iterator I
);
83 /// Step backwards through a basic block, looking
84 /// for an instruction which writes a register within
85 /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
86 MachineBasicBlock::iterator
searchBackwards(MachineOperand
&p
,
87 MachineBasicBlock::iterator
&I
,
88 MachineBasicBlock
&MBB
);
90 /// if an instruction can be converted to an
91 /// equivalent LEA, insert the new instruction into the basic block
92 /// and return a pointer to it. Otherwise, return zero.
93 MachineInstr
*postRAConvertToLEA(MachineBasicBlock
&MBB
,
94 MachineBasicBlock::iterator
&MBBI
) const;
99 StringRef
getPassName() const override
{ return FIXUPLEA_DESC
; }
101 FixupLEAPass() : MachineFunctionPass(ID
) { }
103 /// Loop over all of the basic blocks,
104 /// replacing instructions by equivalent LEA instructions
105 /// if needed and when possible.
106 bool runOnMachineFunction(MachineFunction
&MF
) override
;
108 // This pass runs after regalloc and doesn't support VReg operands.
109 MachineFunctionProperties
getRequiredProperties() const override
{
110 return MachineFunctionProperties().set(
111 MachineFunctionProperties::Property::NoVRegs
);
115 TargetSchedModel TSM
;
116 const X86InstrInfo
*TII
;
117 const X86RegisterInfo
*TRI
;
121 char FixupLEAPass::ID
= 0;
123 INITIALIZE_PASS(FixupLEAPass
, FIXUPLEA_NAME
, FIXUPLEA_DESC
, false, false)
126 FixupLEAPass::postRAConvertToLEA(MachineBasicBlock
&MBB
,
127 MachineBasicBlock::iterator
&MBBI
) const {
128 MachineInstr
&MI
= *MBBI
;
129 switch (MI
.getOpcode()) {
132 const MachineOperand
&Src
= MI
.getOperand(1);
133 const MachineOperand
&Dest
= MI
.getOperand(0);
134 MachineInstr
*NewMI
=
135 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(),
136 TII
->get(MI
.getOpcode() == X86::MOV32rr
? X86::LEA32r
148 if (!MI
.isConvertibleTo3Addr())
151 switch (MI
.getOpcode()) {
153 // Only convert instructions that we've verified are safe.
157 case X86::ADD64ri32_DB
:
158 case X86::ADD64ri8_DB
:
161 case X86::ADD32ri_DB
:
162 case X86::ADD32ri8_DB
:
163 if (!MI
.getOperand(2).isImm()) {
164 // convertToThreeAddress will call getImm()
165 // which requires isImm() to be true
176 case X86::ADD64rr_DB
:
178 case X86::ADD32rr_DB
:
179 // These instructions are all fine to convert.
182 MachineFunction::iterator MFI
= MBB
.getIterator();
183 return TII
->convertToThreeAddress(MFI
, MI
, nullptr);
186 FunctionPass
*llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
188 static bool isLEA(unsigned Opcode
) {
189 return Opcode
== X86::LEA32r
|| Opcode
== X86::LEA64r
||
190 Opcode
== X86::LEA64_32r
;
193 bool FixupLEAPass::runOnMachineFunction(MachineFunction
&MF
) {
194 if (skipFunction(MF
.getFunction()))
197 const X86Subtarget
&ST
= MF
.getSubtarget
<X86Subtarget
>();
198 bool IsSlowLEA
= ST
.slowLEA();
199 bool IsSlow3OpsLEA
= ST
.slow3OpsLEA();
200 bool LEAUsesAG
= ST
.LEAusesAG();
202 bool OptIncDec
= !ST
.slowIncDec() || MF
.getFunction().hasOptSize();
203 bool UseLEAForSP
= ST
.useLeaForSP();
206 TII
= ST
.getInstrInfo();
207 TRI
= ST
.getRegisterInfo();
209 LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
210 for (MachineBasicBlock
&MBB
: MF
) {
211 // First pass. Try to remove or optimize existing LEAs.
212 for (MachineBasicBlock::iterator I
= MBB
.begin(); I
!= MBB
.end(); ++I
) {
213 if (!isLEA(I
->getOpcode()))
216 if (optTwoAddrLEA(I
, MBB
, OptIncDec
, UseLEAForSP
))
220 processInstructionForSlowLEA(I
, MBB
);
221 else if (IsSlow3OpsLEA
)
222 processInstrForSlow3OpLEA(I
, MBB
, OptIncDec
);
225 // Second pass for creating LEAs. This may reverse some of the
226 // transformations above.
228 for (MachineBasicBlock::iterator I
= MBB
.begin(); I
!= MBB
.end(); ++I
)
229 processInstruction(I
, MBB
);
233 LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
238 FixupLEAPass::RegUsageState
239 FixupLEAPass::usesRegister(MachineOperand
&p
, MachineBasicBlock::iterator I
) {
240 RegUsageState RegUsage
= RU_NotUsed
;
241 MachineInstr
&MI
= *I
;
243 for (unsigned i
= 0; i
< MI
.getNumOperands(); ++i
) {
244 MachineOperand
&opnd
= MI
.getOperand(i
);
245 if (opnd
.isReg() && opnd
.getReg() == p
.getReg()) {
254 /// getPreviousInstr - Given a reference to an instruction in a basic
255 /// block, return a reference to the previous instruction in the block,
256 /// wrapping around to the last instruction of the block if the block
257 /// branches to itself.
258 static inline bool getPreviousInstr(MachineBasicBlock::iterator
&I
,
259 MachineBasicBlock
&MBB
) {
260 if (I
== MBB
.begin()) {
261 if (MBB
.isPredecessor(&MBB
)) {
271 MachineBasicBlock::iterator
272 FixupLEAPass::searchBackwards(MachineOperand
&p
, MachineBasicBlock::iterator
&I
,
273 MachineBasicBlock
&MBB
) {
274 int InstrDistance
= 1;
275 MachineBasicBlock::iterator CurInst
;
276 static const int INSTR_DISTANCE_THRESHOLD
= 5;
280 Found
= getPreviousInstr(CurInst
, MBB
);
281 while (Found
&& I
!= CurInst
) {
282 if (CurInst
->isCall() || CurInst
->isInlineAsm())
284 if (InstrDistance
> INSTR_DISTANCE_THRESHOLD
)
285 break; // too far back to make a difference
286 if (usesRegister(p
, CurInst
) == RU_Write
) {
289 InstrDistance
+= TSM
.computeInstrLatency(&*CurInst
);
290 Found
= getPreviousInstr(CurInst
, MBB
);
292 return MachineBasicBlock::iterator();
295 static inline bool isInefficientLEAReg(unsigned Reg
) {
296 return Reg
== X86::EBP
|| Reg
== X86::RBP
||
297 Reg
== X86::R13D
|| Reg
== X86::R13
;
300 /// Returns true if this LEA uses base an index registers, and the base register
301 /// is known to be inefficient for the subtarget.
302 // TODO: use a variant scheduling class to model the latency profile
303 // of LEA instructions, and implement this logic as a scheduling predicate.
304 static inline bool hasInefficientLEABaseReg(const MachineOperand
&Base
,
305 const MachineOperand
&Index
) {
306 return Base
.isReg() && isInefficientLEAReg(Base
.getReg()) && Index
.isReg() &&
307 Index
.getReg() != X86::NoRegister
;
310 static inline bool hasLEAOffset(const MachineOperand
&Offset
) {
311 return (Offset
.isImm() && Offset
.getImm() != 0) || Offset
.isGlobal();
314 static inline unsigned getADDrrFromLEA(unsigned LEAOpcode
) {
317 llvm_unreachable("Unexpected LEA instruction");
326 static inline unsigned getADDriFromLEA(unsigned LEAOpcode
,
327 const MachineOperand
&Offset
) {
328 bool IsInt8
= Offset
.isImm() && isInt
<8>(Offset
.getImm());
331 llvm_unreachable("Unexpected LEA instruction");
334 return IsInt8
? X86::ADD32ri8
: X86::ADD32ri
;
336 return IsInt8
? X86::ADD64ri8
: X86::ADD64ri32
;
340 static inline unsigned getINCDECFromLEA(unsigned LEAOpcode
, bool IsINC
) {
343 llvm_unreachable("Unexpected LEA instruction");
346 return IsINC
? X86::INC32r
: X86::DEC32r
;
348 return IsINC
? X86::INC64r
: X86::DEC64r
;
352 bool FixupLEAPass::optTwoAddrLEA(MachineBasicBlock::iterator
&I
,
353 MachineBasicBlock
&MBB
, bool OptIncDec
,
354 bool UseLEAForSP
) const {
355 MachineInstr
&MI
= *I
;
357 const MachineOperand
&Base
= MI
.getOperand(1 + X86::AddrBaseReg
);
358 const MachineOperand
&Scale
= MI
.getOperand(1 + X86::AddrScaleAmt
);
359 const MachineOperand
&Index
= MI
.getOperand(1 + X86::AddrIndexReg
);
360 const MachineOperand
&Disp
= MI
.getOperand(1 + X86::AddrDisp
);
361 const MachineOperand
&Segment
= MI
.getOperand(1 + X86::AddrSegmentReg
);
363 if (Segment
.getReg() != 0 || !Disp
.isImm() || Scale
.getImm() > 1 ||
364 !TII
->isSafeToClobberEFLAGS(MBB
, I
))
367 Register DestReg
= MI
.getOperand(0).getReg();
368 Register BaseReg
= Base
.getReg();
369 Register IndexReg
= Index
.getReg();
371 // Don't change stack adjustment LEAs.
372 if (UseLEAForSP
&& (DestReg
== X86::ESP
|| DestReg
== X86::RSP
))
375 // LEA64_32 has 64-bit operands but 32-bit result.
376 if (MI
.getOpcode() == X86::LEA64_32r
) {
378 BaseReg
= TRI
->getSubReg(BaseReg
, X86::sub_32bit
);
380 IndexReg
= TRI
->getSubReg(IndexReg
, X86::sub_32bit
);
383 MachineInstr
*NewMI
= nullptr;
385 // Look for lea(%reg1, %reg2), %reg1 or lea(%reg2, %reg1), %reg1
386 // which can be turned into add %reg2, %reg1
387 if (BaseReg
!= 0 && IndexReg
!= 0 && Disp
.getImm() == 0 &&
388 (DestReg
== BaseReg
|| DestReg
== IndexReg
)) {
389 unsigned NewOpcode
= getADDrrFromLEA(MI
.getOpcode());
390 if (DestReg
!= BaseReg
)
391 std::swap(BaseReg
, IndexReg
);
393 if (MI
.getOpcode() == X86::LEA64_32r
) {
394 // TODO: Do we need the super register implicit use?
395 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
396 .addReg(BaseReg
).addReg(IndexReg
)
397 .addReg(Base
.getReg(), RegState::Implicit
)
398 .addReg(Index
.getReg(), RegState::Implicit
);
400 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
401 .addReg(BaseReg
).addReg(IndexReg
);
403 } else if (DestReg
== BaseReg
&& IndexReg
== 0) {
404 // This is an LEA with only a base register and a displacement,
405 // We can use ADDri or INC/DEC.
407 // Does this LEA have one these forms:
409 // lea %reg, -1(%reg)
410 if (OptIncDec
&& (Disp
.getImm() == 1 || Disp
.getImm() == -1)) {
411 bool IsINC
= Disp
.getImm() == 1;
412 unsigned NewOpcode
= getINCDECFromLEA(MI
.getOpcode(), IsINC
);
414 if (MI
.getOpcode() == X86::LEA64_32r
) {
415 // TODO: Do we need the super register implicit use?
416 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
417 .addReg(BaseReg
).addReg(Base
.getReg(), RegState::Implicit
);
419 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
423 unsigned NewOpcode
= getADDriFromLEA(MI
.getOpcode(), Disp
);
424 if (MI
.getOpcode() == X86::LEA64_32r
) {
425 // TODO: Do we need the super register implicit use?
426 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
427 .addReg(BaseReg
).addImm(Disp
.getImm())
428 .addReg(Base
.getReg(), RegState::Implicit
);
430 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpcode
), DestReg
)
431 .addReg(BaseReg
).addImm(Disp
.getImm());
442 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator
&I
,
443 MachineBasicBlock
&MBB
) {
444 // Process a load, store, or LEA instruction.
445 MachineInstr
&MI
= *I
;
446 const MCInstrDesc
&Desc
= MI
.getDesc();
447 int AddrOffset
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
448 if (AddrOffset
>= 0) {
449 AddrOffset
+= X86II::getOperandBias(Desc
);
450 MachineOperand
&p
= MI
.getOperand(AddrOffset
+ X86::AddrBaseReg
);
451 if (p
.isReg() && p
.getReg() != X86::ESP
) {
452 seekLEAFixup(p
, I
, MBB
);
454 MachineOperand
&q
= MI
.getOperand(AddrOffset
+ X86::AddrIndexReg
);
455 if (q
.isReg() && q
.getReg() != X86::ESP
) {
456 seekLEAFixup(q
, I
, MBB
);
461 void FixupLEAPass::seekLEAFixup(MachineOperand
&p
,
462 MachineBasicBlock::iterator
&I
,
463 MachineBasicBlock
&MBB
) {
464 MachineBasicBlock::iterator MBI
= searchBackwards(p
, I
, MBB
);
465 if (MBI
!= MachineBasicBlock::iterator()) {
466 MachineInstr
*NewMI
= postRAConvertToLEA(MBB
, MBI
);
469 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI
->dump(););
470 // now to replace with an equivalent LEA...
471 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI
->dump(););
473 MachineBasicBlock::iterator J
=
474 static_cast<MachineBasicBlock::iterator
>(NewMI
);
475 processInstruction(J
, MBB
);
480 void FixupLEAPass::processInstructionForSlowLEA(MachineBasicBlock::iterator
&I
,
481 MachineBasicBlock
&MBB
) {
482 MachineInstr
&MI
= *I
;
483 const unsigned Opcode
= MI
.getOpcode();
485 const MachineOperand
&Dst
= MI
.getOperand(0);
486 const MachineOperand
&Base
= MI
.getOperand(1 + X86::AddrBaseReg
);
487 const MachineOperand
&Scale
= MI
.getOperand(1 + X86::AddrScaleAmt
);
488 const MachineOperand
&Index
= MI
.getOperand(1 + X86::AddrIndexReg
);
489 const MachineOperand
&Offset
= MI
.getOperand(1 + X86::AddrDisp
);
490 const MachineOperand
&Segment
= MI
.getOperand(1 + X86::AddrSegmentReg
);
492 if (Segment
.getReg() != 0 || !Offset
.isImm() ||
493 !TII
->isSafeToClobberEFLAGS(MBB
, I
))
495 const Register DstR
= Dst
.getReg();
496 const Register SrcR1
= Base
.getReg();
497 const Register SrcR2
= Index
.getReg();
498 if ((SrcR1
== 0 || SrcR1
!= DstR
) && (SrcR2
== 0 || SrcR2
!= DstR
))
500 if (Scale
.getImm() > 1)
502 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I
->dump(););
503 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
504 MachineInstr
*NewMI
= nullptr;
505 // Make ADD instruction for two registers writing to LEA's destination
506 if (SrcR1
!= 0 && SrcR2
!= 0) {
507 const MCInstrDesc
&ADDrr
= TII
->get(getADDrrFromLEA(Opcode
));
508 const MachineOperand
&Src
= SrcR1
== DstR
? Index
: Base
;
510 BuildMI(MBB
, I
, MI
.getDebugLoc(), ADDrr
, DstR
).addReg(DstR
).add(Src
);
511 LLVM_DEBUG(NewMI
->dump(););
513 // Make ADD instruction for immediate
514 if (Offset
.getImm() != 0) {
515 const MCInstrDesc
&ADDri
=
516 TII
->get(getADDriFromLEA(Opcode
, Offset
));
517 const MachineOperand
&SrcR
= SrcR1
== DstR
? Base
: Index
;
518 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), ADDri
, DstR
)
520 .addImm(Offset
.getImm());
521 LLVM_DEBUG(NewMI
->dump(););
529 void FixupLEAPass::processInstrForSlow3OpLEA(MachineBasicBlock::iterator
&I
,
530 MachineBasicBlock
&MBB
,
532 MachineInstr
&MI
= *I
;
533 const unsigned LEAOpcode
= MI
.getOpcode();
535 const MachineOperand
&Dest
= MI
.getOperand(0);
536 const MachineOperand
&Base
= MI
.getOperand(1 + X86::AddrBaseReg
);
537 const MachineOperand
&Scale
= MI
.getOperand(1 + X86::AddrScaleAmt
);
538 const MachineOperand
&Index
= MI
.getOperand(1 + X86::AddrIndexReg
);
539 const MachineOperand
&Offset
= MI
.getOperand(1 + X86::AddrDisp
);
540 const MachineOperand
&Segment
= MI
.getOperand(1 + X86::AddrSegmentReg
);
542 if (!(TII
->isThreeOperandsLEA(MI
) || hasInefficientLEABaseReg(Base
, Index
)) ||
543 !TII
->isSafeToClobberEFLAGS(MBB
, MI
) ||
544 Segment
.getReg() != X86::NoRegister
)
547 Register DestReg
= Dest
.getReg();
548 Register BaseReg
= Base
.getReg();
549 Register IndexReg
= Index
.getReg();
551 if (MI
.getOpcode() == X86::LEA64_32r
) {
553 BaseReg
= TRI
->getSubReg(BaseReg
, X86::sub_32bit
);
555 IndexReg
= TRI
->getSubReg(IndexReg
, X86::sub_32bit
);
558 bool IsScale1
= Scale
.getImm() == 1;
559 bool IsInefficientBase
= isInefficientLEAReg(BaseReg
);
560 bool IsInefficientIndex
= isInefficientLEAReg(IndexReg
);
562 // Skip these cases since it takes more than 2 instructions
563 // to replace the LEA instruction.
564 if (IsInefficientBase
&& DestReg
== BaseReg
&& !IsScale1
)
567 LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI
.dump(););
568 LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
570 MachineInstr
*NewMI
= nullptr;
572 // First try to replace LEA with one or two (for the 3-op LEA case)
574 // 1.lea (%base,%index,1), %base => add %index,%base
575 // 2.lea (%base,%index,1), %index => add %base,%index
576 if (IsScale1
&& (DestReg
== BaseReg
|| DestReg
== IndexReg
)) {
577 unsigned NewOpc
= getADDrrFromLEA(MI
.getOpcode());
578 if (DestReg
!= BaseReg
)
579 std::swap(BaseReg
, IndexReg
);
581 if (MI
.getOpcode() == X86::LEA64_32r
) {
582 // TODO: Do we need the super register implicit use?
583 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpc
), DestReg
)
586 .addReg(Base
.getReg(), RegState::Implicit
)
587 .addReg(Index
.getReg(), RegState::Implicit
);
589 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpc
), DestReg
)
593 } else if (!IsInefficientBase
|| (!IsInefficientIndex
&& IsScale1
)) {
594 // If the base is inefficient try switching the index and base operands,
595 // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
596 // lea offset(%base,%index,scale),%dst =>
597 // lea (%base,%index,scale); add offset,%dst
598 NewMI
= BuildMI(MBB
, MI
, MI
.getDebugLoc(), TII
->get(LEAOpcode
))
600 .add(IsInefficientBase
? Index
: Base
)
602 .add(IsInefficientBase
? Base
: Index
)
605 LLVM_DEBUG(NewMI
->dump(););
608 // If either replacement succeeded above, add the offset if needed, then
609 // replace the instruction.
611 // Create ADD instruction for the Offset in case of 3-Ops LEA.
612 if (hasLEAOffset(Offset
)) {
613 if (OptIncDec
&& Offset
.isImm() &&
614 (Offset
.getImm() == 1 || Offset
.getImm() == -1)) {
616 getINCDECFromLEA(MI
.getOpcode(), Offset
.getImm() == 1);
617 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpc
), DestReg
)
619 LLVM_DEBUG(NewMI
->dump(););
621 unsigned NewOpc
= getADDriFromLEA(MI
.getOpcode(), Offset
);
622 NewMI
= BuildMI(MBB
, I
, MI
.getDebugLoc(), TII
->get(NewOpc
), DestReg
)
625 LLVM_DEBUG(NewMI
->dump(););
634 // Handle the rest of the cases with inefficient base register:
635 assert(DestReg
!= BaseReg
&& "DestReg == BaseReg should be handled already!");
636 assert(IsInefficientBase
&& "efficient base should be handled already!");
638 // FIXME: Handle LEA64_32r.
639 if (LEAOpcode
== X86::LEA64_32r
)
642 // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
643 if (IsScale1
&& !hasLEAOffset(Offset
)) {
644 bool BIK
= Base
.isKill() && BaseReg
!= IndexReg
;
645 TII
->copyPhysReg(MBB
, MI
, MI
.getDebugLoc(), DestReg
, BaseReg
, BIK
);
646 LLVM_DEBUG(MI
.getPrevNode()->dump(););
648 unsigned NewOpc
= getADDrrFromLEA(MI
.getOpcode());
649 NewMI
= BuildMI(MBB
, MI
, MI
.getDebugLoc(), TII
->get(NewOpc
), DestReg
)
652 LLVM_DEBUG(NewMI
->dump(););
656 // lea offset(%base,%index,scale), %dst =>
657 // lea offset( ,%index,scale), %dst; add %base,%dst
658 NewMI
= BuildMI(MBB
, MI
, MI
.getDebugLoc(), TII
->get(LEAOpcode
))
665 LLVM_DEBUG(NewMI
->dump(););
667 unsigned NewOpc
= getADDrrFromLEA(MI
.getOpcode());
668 NewMI
= BuildMI(MBB
, MI
, MI
.getDebugLoc(), TII
->get(NewOpc
), DestReg
)
671 LLVM_DEBUG(NewMI
->dump(););