[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / X86 / X86ISelLowering.h
blob6f7e90008de4e5e73c39e5d3f1d607a970dee80f
1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that X86 uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
21 namespace llvm {
22 class X86Subtarget;
23 class X86TargetMachine;
25 namespace X86ISD {
26 // X86 Specific DAG Nodes
27 enum NodeType : unsigned {
28 // Start the numbering where the builtin ops leave off.
29 FIRST_NUMBER = ISD::BUILTIN_OP_END,
31 /// Bit scan forward.
32 BSF,
33 /// Bit scan reverse.
34 BSR,
36 /// Double shift instructions. These correspond to
37 /// X86::SHLDxx and X86::SHRDxx instructions.
38 SHLD,
39 SHRD,
41 /// Bitwise logical AND of floating point values. This corresponds
42 /// to X86::ANDPS or X86::ANDPD.
43 FAND,
45 /// Bitwise logical OR of floating point values. This corresponds
46 /// to X86::ORPS or X86::ORPD.
47 FOR,
49 /// Bitwise logical XOR of floating point values. This corresponds
50 /// to X86::XORPS or X86::XORPD.
51 FXOR,
53 /// Bitwise logical ANDNOT of floating point values. This
54 /// corresponds to X86::ANDNPS or X86::ANDNPD.
55 FANDN,
57 /// These operations represent an abstract X86 call
58 /// instruction, which includes a bunch of information. In particular the
59 /// operands of these node are:
60 ///
61 /// #0 - The incoming token chain
62 /// #1 - The callee
63 /// #2 - The number of arg bytes the caller pushes on the stack.
64 /// #3 - The number of arg bytes the callee pops off the stack.
65 /// #4 - The value to pass in AL/AX/EAX (optional)
66 /// #5 - The value to pass in DL/DX/EDX (optional)
67 ///
68 /// The result values of these nodes are:
69 ///
70 /// #0 - The outgoing token chain
71 /// #1 - The first register result value (optional)
72 /// #2 - The second register result value (optional)
73 ///
74 CALL,
76 /// Same as call except it adds the NoTrack prefix.
77 NT_CALL,
79 /// X86 compare and logical compare instructions.
80 CMP, COMI, UCOMI,
82 /// X86 bit-test instructions.
83 BT,
85 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
86 /// operand, usually produced by a CMP instruction.
87 SETCC,
89 /// X86 Select
90 SELECTS,
92 // Same as SETCC except it's materialized with a sbb and the value is all
93 // one's or all zero's.
94 SETCC_CARRY, // R = carry_bit ? ~0 : 0
96 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
97 /// Operands are two FP values to compare; result is a mask of
98 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
99 FSETCC,
101 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
102 /// and a version with SAE.
103 FSETCCM, FSETCCM_SAE,
105 /// X86 conditional moves. Operand 0 and operand 1 are the two values
106 /// to select from. Operand 2 is the condition code, and operand 3 is the
107 /// flag operand produced by a CMP or TEST instruction.
108 CMOV,
110 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
111 /// is the block to branch if condition is true, operand 2 is the
112 /// condition code, and operand 3 is the flag operand produced by a CMP
113 /// or TEST instruction.
114 BRCOND,
116 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
117 /// operand 1 is the target address.
118 NT_BRIND,
120 /// Return with a flag operand. Operand 0 is the chain operand, operand
121 /// 1 is the number of bytes of stack to pop.
122 RET_FLAG,
124 /// Return from interrupt. Operand 0 is the number of bytes to pop.
125 IRET,
127 /// Repeat fill, corresponds to X86::REP_STOSx.
128 REP_STOS,
130 /// Repeat move, corresponds to X86::REP_MOVSx.
131 REP_MOVS,
133 /// On Darwin, this node represents the result of the popl
134 /// at function entry, used for PIC code.
135 GlobalBaseReg,
137 /// A wrapper node for TargetConstantPool, TargetJumpTable,
138 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
139 /// MCSymbol and TargetBlockAddress.
140 Wrapper,
142 /// Special wrapper used under X86-64 PIC mode for RIP
143 /// relative displacements.
144 WrapperRIP,
146 /// Copies a 64-bit value from an MMX vector to the low word
147 /// of an XMM vector, with the high word zero filled.
148 MOVQ2DQ,
150 /// Copies a 64-bit value from the low word of an XMM vector
151 /// to an MMX vector.
152 MOVDQ2Q,
154 /// Copies a 32-bit value from the low word of a MMX
155 /// vector to a GPR.
156 MMX_MOVD2W,
158 /// Copies a GPR into the low 32-bit word of a MMX vector
159 /// and zero out the high word.
160 MMX_MOVW2D,
162 /// Extract an 8-bit value from a vector and zero extend it to
163 /// i32, corresponds to X86::PEXTRB.
164 PEXTRB,
166 /// Extract a 16-bit value from a vector and zero extend it to
167 /// i32, corresponds to X86::PEXTRW.
168 PEXTRW,
170 /// Insert any element of a 4 x float vector into any element
171 /// of a destination 4 x floatvector.
172 INSERTPS,
174 /// Insert the lower 8-bits of a 32-bit value to a vector,
175 /// corresponds to X86::PINSRB.
176 PINSRB,
178 /// Insert the lower 16-bits of a 32-bit value to a vector,
179 /// corresponds to X86::PINSRW.
180 PINSRW,
182 /// Shuffle 16 8-bit values within a vector.
183 PSHUFB,
185 /// Compute Sum of Absolute Differences.
186 PSADBW,
187 /// Compute Double Block Packed Sum-Absolute-Differences
188 DBPSADBW,
190 /// Bitwise Logical AND NOT of Packed FP values.
191 ANDNP,
193 /// Blend where the selector is an immediate.
194 BLENDI,
196 /// Dynamic (non-constant condition) vector blend where only the sign bits
197 /// of the condition elements are used. This is used to enforce that the
198 /// condition mask is not valid for generic VSELECT optimizations. This
199 /// is also used to implement the intrinsics.
200 /// Operands are in VSELECT order: MASK, TRUE, FALSE
201 BLENDV,
203 /// Combined add and sub on an FP vector.
204 ADDSUB,
206 // FP vector ops with rounding mode.
207 FADD_RND, FADDS, FADDS_RND,
208 FSUB_RND, FSUBS, FSUBS_RND,
209 FMUL_RND, FMULS, FMULS_RND,
210 FDIV_RND, FDIVS, FDIVS_RND,
211 FMAX_SAE, FMAXS_SAE,
212 FMIN_SAE, FMINS_SAE,
213 FSQRT_RND, FSQRTS, FSQRTS_RND,
215 // FP vector get exponent.
216 FGETEXP, FGETEXP_SAE, FGETEXPS, FGETEXPS_SAE,
217 // Extract Normalized Mantissas.
218 VGETMANT, VGETMANT_SAE, VGETMANTS, VGETMANTS_SAE,
219 // FP Scale.
220 SCALEF, SCALEF_RND,
221 SCALEFS, SCALEFS_RND,
223 // Unsigned Integer average.
224 AVG,
226 /// Integer horizontal add/sub.
227 HADD,
228 HSUB,
230 /// Floating point horizontal add/sub.
231 FHADD,
232 FHSUB,
234 // Detect Conflicts Within a Vector
235 CONFLICT,
237 /// Floating point max and min.
238 FMAX, FMIN,
240 /// Commutative FMIN and FMAX.
241 FMAXC, FMINC,
243 /// Scalar intrinsic floating point max and min.
244 FMAXS, FMINS,
246 /// Floating point reciprocal-sqrt and reciprocal approximation.
247 /// Note that these typically require refinement
248 /// in order to obtain suitable precision.
249 FRSQRT, FRCP,
251 // AVX-512 reciprocal approximations with a little more precision.
252 RSQRT14, RSQRT14S, RCP14, RCP14S,
254 // Thread Local Storage.
255 TLSADDR,
257 // Thread Local Storage. A call to get the start address
258 // of the TLS block for the current module.
259 TLSBASEADDR,
261 // Thread Local Storage. When calling to an OS provided
262 // thunk at the address from an earlier relocation.
263 TLSCALL,
265 // Exception Handling helpers.
266 EH_RETURN,
268 // SjLj exception handling setjmp.
269 EH_SJLJ_SETJMP,
271 // SjLj exception handling longjmp.
272 EH_SJLJ_LONGJMP,
274 // SjLj exception handling dispatch.
275 EH_SJLJ_SETUP_DISPATCH,
277 /// Tail call return. See X86TargetLowering::LowerCall for
278 /// the list of operands.
279 TC_RETURN,
281 // Vector move to low scalar and zero higher vector elements.
282 VZEXT_MOVL,
284 // Vector integer truncate.
285 VTRUNC,
286 // Vector integer truncate with unsigned/signed saturation.
287 VTRUNCUS, VTRUNCS,
289 // Masked version of the above. Used when less than a 128-bit result is
290 // produced since the mask only applies to the lower elements and can't
291 // be represented by a select.
292 // SRC, PASSTHRU, MASK
293 VMTRUNC, VMTRUNCUS, VMTRUNCS,
295 // Vector FP extend.
296 VFPEXT, VFPEXT_SAE, VFPEXTS, VFPEXTS_SAE,
298 // Vector FP round.
299 VFPROUND, VFPROUND_RND, VFPROUNDS, VFPROUNDS_RND,
301 // Masked version of above. Used for v2f64->v4f32.
302 // SRC, PASSTHRU, MASK
303 VMFPROUND,
305 // 128-bit vector logical left / right shift
306 VSHLDQ, VSRLDQ,
308 // Vector shift elements
309 VSHL, VSRL, VSRA,
311 // Vector variable shift
312 VSHLV, VSRLV, VSRAV,
314 // Vector shift elements by immediate
315 VSHLI, VSRLI, VSRAI,
317 // Shifts of mask registers.
318 KSHIFTL, KSHIFTR,
320 // Bit rotate by immediate
321 VROTLI, VROTRI,
323 // Vector packed double/float comparison.
324 CMPP,
326 // Vector integer comparisons.
327 PCMPEQ, PCMPGT,
329 // v8i16 Horizontal minimum and position.
330 PHMINPOS,
332 MULTISHIFT,
334 /// Vector comparison generating mask bits for fp and
335 /// integer signed and unsigned data types.
336 CMPM,
337 // Vector comparison with SAE for FP values
338 CMPM_SAE,
340 // Arithmetic operations with FLAGS results.
341 ADD, SUB, ADC, SBB, SMUL, UMUL,
342 OR, XOR, AND,
344 // Bit field extract.
345 BEXTR,
347 // Zero High Bits Starting with Specified Bit Position.
348 BZHI,
350 // X86-specific multiply by immediate.
351 MUL_IMM,
353 // Vector sign bit extraction.
354 MOVMSK,
356 // Vector bitwise comparisons.
357 PTEST,
359 // Vector packed fp sign bitwise comparisons.
360 TESTP,
362 // OR/AND test for masks.
363 KORTEST,
364 KTEST,
366 // ADD for masks.
367 KADD,
369 // Several flavors of instructions with vector shuffle behaviors.
370 // Saturated signed/unnsigned packing.
371 PACKSS,
372 PACKUS,
373 // Intra-lane alignr.
374 PALIGNR,
375 // AVX512 inter-lane alignr.
376 VALIGN,
377 PSHUFD,
378 PSHUFHW,
379 PSHUFLW,
380 SHUFP,
381 // VBMI2 Concat & Shift.
382 VSHLD,
383 VSHRD,
384 VSHLDV,
385 VSHRDV,
386 //Shuffle Packed Values at 128-bit granularity.
387 SHUF128,
388 MOVDDUP,
389 MOVSHDUP,
390 MOVSLDUP,
391 MOVLHPS,
392 MOVHLPS,
393 MOVSD,
394 MOVSS,
395 UNPCKL,
396 UNPCKH,
397 VPERMILPV,
398 VPERMILPI,
399 VPERMI,
400 VPERM2X128,
402 // Variable Permute (VPERM).
403 // Res = VPERMV MaskV, V0
404 VPERMV,
406 // 3-op Variable Permute (VPERMT2).
407 // Res = VPERMV3 V0, MaskV, V1
408 VPERMV3,
410 // Bitwise ternary logic.
411 VPTERNLOG,
412 // Fix Up Special Packed Float32/64 values.
413 VFIXUPIMM, VFIXUPIMM_SAE,
414 VFIXUPIMMS, VFIXUPIMMS_SAE,
415 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
416 VRANGE, VRANGE_SAE, VRANGES, VRANGES_SAE,
417 // Reduce - Perform Reduction Transformation on scalar\packed FP.
418 VREDUCE, VREDUCE_SAE, VREDUCES, VREDUCES_SAE,
419 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
420 // Also used by the legacy (V)ROUND intrinsics where we mask out the
421 // scaling part of the immediate.
422 VRNDSCALE, VRNDSCALE_SAE, VRNDSCALES, VRNDSCALES_SAE,
423 // Tests Types Of a FP Values for packed types.
424 VFPCLASS,
425 // Tests Types Of a FP Values for scalar types.
426 VFPCLASSS,
428 // Broadcast (splat) scalar or element 0 of a vector. If the operand is
429 // a vector, this node may change the vector length as part of the splat.
430 VBROADCAST,
431 // Broadcast mask to vector.
432 VBROADCASTM,
433 // Broadcast subvector to vector.
434 SUBV_BROADCAST,
436 /// SSE4A Extraction and Insertion.
437 EXTRQI, INSERTQI,
439 // XOP arithmetic/logical shifts.
440 VPSHA, VPSHL,
441 // XOP signed/unsigned integer comparisons.
442 VPCOM, VPCOMU,
443 // XOP packed permute bytes.
444 VPPERM,
445 // XOP two source permutation.
446 VPERMIL2,
448 // Vector multiply packed unsigned doubleword integers.
449 PMULUDQ,
450 // Vector multiply packed signed doubleword integers.
451 PMULDQ,
452 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
453 MULHRS,
455 // Multiply and Add Packed Integers.
456 VPMADDUBSW, VPMADDWD,
458 // AVX512IFMA multiply and add.
459 // NOTE: These are different than the instruction and perform
460 // op0 x op1 + op2.
461 VPMADD52L, VPMADD52H,
463 // VNNI
464 VPDPBUSD,
465 VPDPBUSDS,
466 VPDPWSSD,
467 VPDPWSSDS,
469 // FMA nodes.
470 // We use the target independent ISD::FMA for the non-inverted case.
471 FNMADD,
472 FMSUB,
473 FNMSUB,
474 FMADDSUB,
475 FMSUBADD,
477 // FMA with rounding mode.
478 FMADD_RND,
479 FNMADD_RND,
480 FMSUB_RND,
481 FNMSUB_RND,
482 FMADDSUB_RND,
483 FMSUBADD_RND,
485 // Compress and expand.
486 COMPRESS,
487 EXPAND,
489 // Bits shuffle
490 VPSHUFBITQMB,
492 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
493 SINT_TO_FP_RND, UINT_TO_FP_RND,
494 SCALAR_SINT_TO_FP, SCALAR_UINT_TO_FP,
495 SCALAR_SINT_TO_FP_RND, SCALAR_UINT_TO_FP_RND,
497 // Vector float/double to signed/unsigned integer.
498 CVTP2SI, CVTP2UI, CVTP2SI_RND, CVTP2UI_RND,
499 // Scalar float/double to signed/unsigned integer.
500 CVTS2SI, CVTS2UI, CVTS2SI_RND, CVTS2UI_RND,
502 // Vector float/double to signed/unsigned integer with truncation.
503 CVTTP2SI, CVTTP2UI, CVTTP2SI_SAE, CVTTP2UI_SAE,
504 // Scalar float/double to signed/unsigned integer with truncation.
505 CVTTS2SI, CVTTS2UI, CVTTS2SI_SAE, CVTTS2UI_SAE,
507 // Vector signed/unsigned integer to float/double.
508 CVTSI2P, CVTUI2P,
510 // Masked versions of above. Used for v2f64->v4f32.
511 // SRC, PASSTHRU, MASK
512 MCVTP2SI, MCVTP2UI, MCVTTP2SI, MCVTTP2UI,
513 MCVTSI2P, MCVTUI2P,
515 // Vector float to bfloat16.
516 // Convert TWO packed single data to one packed BF16 data
517 CVTNE2PS2BF16,
518 // Convert packed single data to packed BF16 data
519 CVTNEPS2BF16,
520 // Masked version of above.
521 // SRC, PASSTHRU, MASK
522 MCVTNEPS2BF16,
524 // Dot product of BF16 pairs to accumulated into
525 // packed single precision.
526 DPBF16PS,
528 // Save xmm argument registers to the stack, according to %al. An operator
529 // is needed so that this can be expanded with control flow.
530 VASTART_SAVE_XMM_REGS,
532 // Windows's _chkstk call to do stack probing.
533 WIN_ALLOCA,
535 // For allocating variable amounts of stack space when using
536 // segmented stacks. Check if the current stacklet has enough space, and
537 // falls back to heap allocation if not.
538 SEG_ALLOCA,
540 // Memory barriers.
541 MEMBARRIER,
542 MFENCE,
544 // Store FP status word into i16 register.
545 FNSTSW16r,
547 // Store contents of %ah into %eflags.
548 SAHF,
550 // Get a random integer and indicate whether it is valid in CF.
551 RDRAND,
553 // Get a NIST SP800-90B & C compliant random integer and
554 // indicate whether it is valid in CF.
555 RDSEED,
557 // Protection keys
558 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
559 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
560 // value for ECX.
561 RDPKRU, WRPKRU,
563 // SSE42 string comparisons.
564 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
565 // will emit one or two instructions based on which results are used. If
566 // flags and index/mask this allows us to use a single instruction since
567 // we won't have to pick and opcode for flags. Instead we can rely on the
568 // DAG to CSE everything and decide at isel.
569 PCMPISTR,
570 PCMPESTR,
572 // Test if in transactional execution.
573 XTEST,
575 // ERI instructions.
576 RSQRT28, RSQRT28_SAE, RSQRT28S, RSQRT28S_SAE,
577 RCP28, RCP28_SAE, RCP28S, RCP28S_SAE, EXP2, EXP2_SAE,
579 // Conversions between float and half-float.
580 CVTPS2PH, CVTPH2PS, CVTPH2PS_SAE,
582 // Masked version of above.
583 // SRC, RND, PASSTHRU, MASK
584 MCVTPS2PH,
586 // Galois Field Arithmetic Instructions
587 GF2P8AFFINEINVQB, GF2P8AFFINEQB, GF2P8MULB,
589 // LWP insert record.
590 LWPINS,
592 // User level wait
593 UMWAIT, TPAUSE,
595 // Enqueue Stores Instructions
596 ENQCMD, ENQCMDS,
598 // For avx512-vp2intersect
599 VP2INTERSECT,
601 // Compare and swap.
602 LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
603 LCMPXCHG8_DAG,
604 LCMPXCHG16_DAG,
605 LCMPXCHG8_SAVE_EBX_DAG,
606 LCMPXCHG16_SAVE_RBX_DAG,
608 /// LOCK-prefixed arithmetic read-modify-write instructions.
609 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
610 LADD, LSUB, LOR, LXOR, LAND,
612 // Load, scalar_to_vector, and zero extend.
613 VZEXT_LOAD,
615 // extract_vector_elt, store.
616 VEXTRACT_STORE,
618 // scalar broadcast from memory
619 VBROADCAST_LOAD,
621 // Store FP control world into i16 memory.
622 FNSTCW16m,
624 /// This instruction implements FP_TO_SINT with the
625 /// integer destination in memory and a FP reg source. This corresponds
626 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
627 /// has two inputs (token chain and address) and two outputs (int value
628 /// and token chain). Memory VT specifies the type to store to.
629 FP_TO_INT_IN_MEM,
631 /// This instruction implements SINT_TO_FP with the
632 /// integer source in memory and FP reg result. This corresponds to the
633 /// X86::FILD*m instructions. It has two inputs (token chain and address)
634 /// and two outputs (FP value and token chain). FILD_FLAG also produces a
635 /// flag). The integer source type is specified by the memory VT.
636 FILD,
637 FILD_FLAG,
639 /// This instruction implements a fp->int store from FP stack
640 /// slots. This corresponds to the fist instruction. It takes a
641 /// chain operand, value to store, address, and glue. The memory VT
642 /// specifies the type to store as.
643 FIST,
645 /// This instruction implements an extending load to FP stack slots.
646 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
647 /// operand, and ptr to load from. The memory VT specifies the type to
648 /// load from.
649 FLD,
651 /// This instruction implements a truncating store from FP stack
652 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
653 /// chain operand, value to store, address, and glue. The memory VT
654 /// specifies the type to store as.
655 FST,
657 /// This instruction grabs the address of the next argument
658 /// from a va_list. (reads and modifies the va_list in memory)
659 VAARG_64,
661 // Vector truncating store with unsigned/signed saturation
662 VTRUNCSTOREUS, VTRUNCSTORES,
663 // Vector truncating masked store with unsigned/signed saturation
664 VMTRUNCSTOREUS, VMTRUNCSTORES,
666 // X86 specific gather and scatter
667 MGATHER, MSCATTER,
669 // WARNING: Do not add anything in the end unless you want the node to
670 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
671 // opcodes will be thought as target memory ops!
673 } // end namespace X86ISD
675 /// Define some predicates that are used for node matching.
676 namespace X86 {
677 /// Returns true if Elt is a constant zero or floating point constant +0.0.
678 bool isZeroNode(SDValue Elt);
680 /// Returns true of the given offset can be
681 /// fit into displacement field of the instruction.
682 bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
683 bool hasSymbolicDisplacement = true);
685 /// Determines whether the callee is required to pop its
686 /// own arguments. Callee pop is necessary to support tail calls.
687 bool isCalleePop(CallingConv::ID CallingConv,
688 bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
690 /// If Op is a constant whose elements are all the same constant or
691 /// undefined, return true and return the constant value in \p SplatVal.
692 bool isConstantSplat(SDValue Op, APInt &SplatVal);
693 } // end namespace X86
695 //===--------------------------------------------------------------------===//
696 // X86 Implementation of the TargetLowering interface
697 class X86TargetLowering final : public TargetLowering {
698 public:
699 explicit X86TargetLowering(const X86TargetMachine &TM,
700 const X86Subtarget &STI);
702 unsigned getJumpTableEncoding() const override;
703 bool useSoftFloat() const override;
705 void markLibCallAttributes(MachineFunction *MF, unsigned CC,
706 ArgListTy &Args) const override;
708 MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
709 return MVT::i8;
712 const MCExpr *
713 LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
714 const MachineBasicBlock *MBB, unsigned uid,
715 MCContext &Ctx) const override;
717 /// Returns relocation base for the given PIC jumptable.
718 SDValue getPICJumpTableRelocBase(SDValue Table,
719 SelectionDAG &DAG) const override;
720 const MCExpr *
721 getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
722 unsigned JTI, MCContext &Ctx) const override;
724 /// Return the desired alignment for ByVal aggregate
725 /// function arguments in the caller parameter area. For X86, aggregates
726 /// that contains are placed at 16-byte boundaries while the rest are at
727 /// 4-byte boundaries.
728 unsigned getByValTypeAlignment(Type *Ty,
729 const DataLayout &DL) const override;
731 /// Returns the target specific optimal type for load
732 /// and store operations as a result of memset, memcpy, and memmove
733 /// lowering. If DstAlign is zero that means it's safe to destination
734 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
735 /// means there isn't a need to check it against alignment requirement,
736 /// probably because the source does not need to be loaded. If 'IsMemset' is
737 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
738 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
739 /// source is constant so it does not need to be loaded.
740 /// It returns EVT::Other if the type should be determined using generic
741 /// target-independent logic.
742 EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
743 bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
744 const AttributeList &FuncAttributes) const override;
746 /// Returns true if it's safe to use load / store of the
747 /// specified type to expand memcpy / memset inline. This is mostly true
748 /// for all types except for some special cases. For example, on X86
749 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
750 /// also does type conversion. Note the specified type doesn't have to be
751 /// legal as the hook is used before type legalization.
752 bool isSafeMemOpType(MVT VT) const override;
754 /// Returns true if the target allows unaligned memory accesses of the
755 /// specified type. Returns whether it is "fast" in the last argument.
756 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
757 MachineMemOperand::Flags Flags,
758 bool *Fast) const override;
760 /// Provide custom lowering hooks for some operations.
762 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
764 /// Places new result values for the node in Results (their number
765 /// and types must exactly match those of the original return values of
766 /// the node), or leaves Results empty, which indicates that the node is not
767 /// to be custom lowered after all.
768 void LowerOperationWrapper(SDNode *N,
769 SmallVectorImpl<SDValue> &Results,
770 SelectionDAG &DAG) const override;
772 /// Replace the results of node with an illegal result
773 /// type with new values built out of custom code.
775 void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
776 SelectionDAG &DAG) const override;
778 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
780 // Return true if it is profitable to combine a BUILD_VECTOR with a
781 // stride-pattern to a shuffle and a truncate.
782 // Example of such a combine:
783 // v4i32 build_vector((extract_elt V, 1),
784 // (extract_elt V, 3),
785 // (extract_elt V, 5),
786 // (extract_elt V, 7))
787 // -->
788 // v4i32 truncate (bitcast (shuffle<1,u,3,u,4,u,5,u,6,u,7,u> V, u) to
789 // v4i64)
790 bool isDesirableToCombineBuildVectorToShuffleTruncate(
791 ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const override;
793 /// Return true if the target has native support for
794 /// the specified value type and it is 'desirable' to use the type for the
795 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
796 /// instruction encodings are longer and some i16 instructions are slow.
797 bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
799 /// Return true if the target has native support for the
800 /// specified value type and it is 'desirable' to use the type. e.g. On x86
801 /// i16 is legal, but undesirable since i16 instruction encodings are longer
802 /// and some i16 instructions are slow.
803 bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
805 /// Return 1 if we can compute the negated form of the specified expression
806 /// for the same cost as the expression itself, or 2 if we can compute the
807 /// negated form more cheaply than the expression itself. Else return 0.
808 char isNegatibleForFree(SDValue Op, SelectionDAG &DAG, bool LegalOperations,
809 bool ForCodeSize, unsigned Depth) const override;
811 /// If isNegatibleForFree returns true, return the newly negated expression.
812 SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
813 bool LegalOperations, bool ForCodeSize,
814 unsigned Depth) const override;
816 MachineBasicBlock *
817 EmitInstrWithCustomInserter(MachineInstr &MI,
818 MachineBasicBlock *MBB) const override;
820 /// This method returns the name of a target specific DAG node.
821 const char *getTargetNodeName(unsigned Opcode) const override;
823 /// Do not merge vector stores after legalization because that may conflict
824 /// with x86-specific store splitting optimizations.
825 bool mergeStoresAfterLegalization(EVT MemVT) const override {
826 return !MemVT.isVector();
829 bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
830 const SelectionDAG &DAG) const override;
832 bool isCheapToSpeculateCttz() const override;
834 bool isCheapToSpeculateCtlz() const override;
836 bool isCtlzFast() const override;
838 bool hasBitPreservingFPLogic(EVT VT) const override {
839 return VT == MVT::f32 || VT == MVT::f64 || VT.isVector();
842 bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
843 // If the pair to store is a mixture of float and int values, we will
844 // save two bitwise instructions and one float-to-int instruction and
845 // increase one store instruction. There is potentially a more
846 // significant benefit because it avoids the float->int domain switch
847 // for input value. So It is more likely a win.
848 if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
849 (LTy.isInteger() && HTy.isFloatingPoint()))
850 return true;
851 // If the pair only contains int values, we will save two bitwise
852 // instructions and increase one store instruction (costing one more
853 // store buffer). Since the benefit is more blurred so we leave
854 // such pair out until we get testcase to prove it is a win.
855 return false;
858 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
860 bool hasAndNotCompare(SDValue Y) const override;
862 bool hasAndNot(SDValue Y) const override;
864 bool hasBitTest(SDValue X, SDValue Y) const override;
866 bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
867 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
868 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
869 SelectionDAG &DAG) const override;
871 bool shouldFoldConstantShiftPairToMask(const SDNode *N,
872 CombineLevel Level) const override;
874 bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
876 bool
877 shouldTransformSignedTruncationCheck(EVT XVT,
878 unsigned KeptBits) const override {
879 // For vectors, we don't have a preference..
880 if (XVT.isVector())
881 return false;
883 auto VTIsOk = [](EVT VT) -> bool {
884 return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
885 VT == MVT::i64;
888 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
889 // XVT will be larger than KeptBitsVT.
890 MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
891 return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
894 bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;
896 bool shouldSplatInsEltVarIndex(EVT VT) const override;
898 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
899 return VT.isScalarInteger();
902 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
903 MVT hasFastEqualityCompare(unsigned NumBits) const override;
905 /// Return the value type to use for ISD::SETCC.
906 EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
907 EVT VT) const override;
909 bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
910 TargetLoweringOpt &TLO) const override;
912 /// Determine which of the bits specified in Mask are known to be either
913 /// zero or one and return them in the KnownZero/KnownOne bitsets.
914 void computeKnownBitsForTargetNode(const SDValue Op,
915 KnownBits &Known,
916 const APInt &DemandedElts,
917 const SelectionDAG &DAG,
918 unsigned Depth = 0) const override;
920 /// Determine the number of bits in the operation that are sign bits.
921 unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
922 const APInt &DemandedElts,
923 const SelectionDAG &DAG,
924 unsigned Depth) const override;
926 bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
927 const APInt &DemandedElts,
928 APInt &KnownUndef,
929 APInt &KnownZero,
930 TargetLoweringOpt &TLO,
931 unsigned Depth) const override;
933 bool SimplifyDemandedBitsForTargetNode(SDValue Op,
934 const APInt &DemandedBits,
935 const APInt &DemandedElts,
936 KnownBits &Known,
937 TargetLoweringOpt &TLO,
938 unsigned Depth) const override;
940 SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
941 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
942 SelectionDAG &DAG, unsigned Depth) const override;
944 const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
946 SDValue unwrapAddress(SDValue N) const override;
948 SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
950 bool ExpandInlineAsm(CallInst *CI) const override;
952 ConstraintType getConstraintType(StringRef Constraint) const override;
954 /// Examine constraint string and operand type and determine a weight value.
955 /// The operand object must already have been set up with the operand type.
956 ConstraintWeight
957 getSingleConstraintMatchWeight(AsmOperandInfo &info,
958 const char *constraint) const override;
960 const char *LowerXConstraint(EVT ConstraintVT) const override;
962 /// Lower the specified operand into the Ops vector. If it is invalid, don't
963 /// add anything to Ops. If hasMemory is true it means one of the asm
964 /// constraint of the inline asm instruction being processed is 'm'.
965 void LowerAsmOperandForConstraint(SDValue Op,
966 std::string &Constraint,
967 std::vector<SDValue> &Ops,
968 SelectionDAG &DAG) const override;
970 unsigned
971 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
972 if (ConstraintCode == "i")
973 return InlineAsm::Constraint_i;
974 else if (ConstraintCode == "o")
975 return InlineAsm::Constraint_o;
976 else if (ConstraintCode == "v")
977 return InlineAsm::Constraint_v;
978 else if (ConstraintCode == "X")
979 return InlineAsm::Constraint_X;
980 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
983 /// Handle Lowering flag assembly outputs.
984 SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, SDLoc DL,
985 const AsmOperandInfo &Constraint,
986 SelectionDAG &DAG) const override;
988 /// Given a physical register constraint
989 /// (e.g. {edx}), return the register number and the register class for the
990 /// register. This should only be used for C_Register constraints. On
991 /// error, this returns a register number of 0.
992 std::pair<unsigned, const TargetRegisterClass *>
993 getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
994 StringRef Constraint, MVT VT) const override;
996 /// Return true if the addressing mode represented
997 /// by AM is legal for this target, for a load/store of the specified type.
998 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
999 Type *Ty, unsigned AS,
1000 Instruction *I = nullptr) const override;
1002 /// Return true if the specified immediate is legal
1003 /// icmp immediate, that is the target has icmp instructions which can
1004 /// compare a register against the immediate without having to materialize
1005 /// the immediate into a register.
1006 bool isLegalICmpImmediate(int64_t Imm) const override;
1008 /// Return true if the specified immediate is legal
1009 /// add immediate, that is the target has add instructions which can
1010 /// add a register and the immediate without having to materialize
1011 /// the immediate into a register.
1012 bool isLegalAddImmediate(int64_t Imm) const override;
1014 bool isLegalStoreImmediate(int64_t Imm) const override;
1016 /// Return the cost of the scaling factor used in the addressing
1017 /// mode represented by AM for this target, for a load/store
1018 /// of the specified type.
1019 /// If the AM is supported, the return value must be >= 0.
1020 /// If the AM is not supported, it returns a negative value.
1021 int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
1022 unsigned AS) const override;
1024 bool isVectorShiftByScalarCheap(Type *Ty) const override;
1026 /// Add x86-specific opcodes to the default list.
1027 bool isBinOp(unsigned Opcode) const override;
1029 /// Returns true if the opcode is a commutative binary operation.
1030 bool isCommutativeBinOp(unsigned Opcode) const override;
1032 /// Return true if it's free to truncate a value of
1033 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1034 /// register EAX to i16 by referencing its sub-register AX.
1035 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1036 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1038 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
1040 /// Return true if any actual instruction that defines a
1041 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1042 /// register. This does not necessarily include registers defined in
1043 /// unknown ways, such as incoming arguments, or copies from unknown
1044 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1045 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1046 /// all instructions that define 32-bit values implicit zero-extend the
1047 /// result out to 64 bits.
1048 bool isZExtFree(Type *Ty1, Type *Ty2) const override;
1049 bool isZExtFree(EVT VT1, EVT VT2) const override;
1050 bool isZExtFree(SDValue Val, EVT VT2) const override;
1052 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1053 /// extend node) is profitable.
1054 bool isVectorLoadExtDesirable(SDValue) const override;
1056 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1057 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1058 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1059 bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
1061 /// Return true if it's profitable to narrow
1062 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1063 /// from i32 to i8 but not from i32 to i16.
1064 bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
1066 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1067 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1068 /// true and stores the intrinsic information into the IntrinsicInfo that was
1069 /// passed to the function.
1070 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
1071 MachineFunction &MF,
1072 unsigned Intrinsic) const override;
1074 /// Returns true if the target can instruction select the
1075 /// specified FP immediate natively. If false, the legalizer will
1076 /// materialize the FP immediate as a load from a constant pool.
1077 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1078 bool ForCodeSize) const override;
1080 /// Targets can use this to indicate that they only support *some*
1081 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1082 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1083 /// be legal.
1084 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1086 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1087 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1088 /// constant pool entry.
1089 bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1091 /// Returns true if lowering to a jump table is allowed.
1092 bool areJTsAllowed(const Function *Fn) const override;
1094 /// If true, then instruction selection should
1095 /// seek to shrink the FP constant of the specified type to a smaller type
1096 /// in order to save space and / or reduce runtime.
1097 bool ShouldShrinkFPConstant(EVT VT) const override {
1098 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
1099 // expensive than a straight movsd. On the other hand, it's important to
1100 // shrink long double fp constant since fldt is very slow.
1101 return !X86ScalarSSEf64 || VT == MVT::f80;
1104 /// Return true if we believe it is correct and profitable to reduce the
1105 /// load node to a smaller type.
1106 bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
1107 EVT NewVT) const override;
1109 /// Return true if the specified scalar FP type is computed in an SSE
1110 /// register, not on the X87 floating point stack.
1111 bool isScalarFPTypeInSSEReg(EVT VT) const {
1112 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
1113 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
1116 /// Returns true if it is beneficial to convert a load of a constant
1117 /// to just the constant itself.
1118 bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1119 Type *Ty) const override;
1121 bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;
1123 bool convertSelectOfConstantsToMath(EVT VT) const override;
1125 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1126 SDValue C) const override;
1128 bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
1129 bool IsSigned) const override;
1131 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1132 /// with this index.
1133 bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1134 unsigned Index) const override;
1136 /// Scalar ops always have equal or better analysis/performance/power than
1137 /// the vector equivalent, so this always makes sense if the scalar op is
1138 /// supported.
1139 bool shouldScalarizeBinop(SDValue) const override;
1141 /// Extract of a scalar FP value from index 0 of a vector is free.
1142 bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
1143 EVT EltVT = VT.getScalarType();
1144 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
1147 /// Overflow nodes should get combined/lowered to optimal instructions
1148 /// (they should allow eliminating explicit compares by getting flags from
1149 /// math ops).
1150 bool shouldFormOverflowOp(unsigned Opcode, EVT VT) const override;
1152 bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem,
1153 unsigned AddrSpace) const override {
1154 // If we can replace more than 2 scalar stores, there will be a reduction
1155 // in instructions even after we add a vector constant load.
1156 return NumElem > 2;
1159 bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
1160 const SelectionDAG &DAG,
1161 const MachineMemOperand &MMO) const override;
1163 /// Intel processors have a unified instruction and data cache
1164 const char * getClearCacheBuiltinName() const override {
1165 return nullptr; // nothing to do, move along.
1168 Register getRegisterByName(const char* RegName, EVT VT,
1169 const MachineFunction &MF) const override;
1171 /// If a physical register, this returns the register that receives the
1172 /// exception address on entry to an EH pad.
1173 unsigned
1174 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1176 /// If a physical register, this returns the register that receives the
1177 /// exception typeid on entry to a landing pad.
1178 unsigned
1179 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1181 virtual bool needsFixedCatchObjects() const override;
1183 /// This method returns a target specific FastISel object,
1184 /// or null if the target does not support "fast" ISel.
1185 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1186 const TargetLibraryInfo *libInfo) const override;
1188 /// If the target has a standard location for the stack protector cookie,
1189 /// returns the address of that location. Otherwise, returns nullptr.
1190 Value *getIRStackGuard(IRBuilder<> &IRB) const override;
1192 bool useLoadStackGuardNode() const override;
1193 bool useStackGuardXorFP() const override;
1194 void insertSSPDeclarations(Module &M) const override;
1195 Value *getSDagStackGuard(const Module &M) const override;
1196 Function *getSSPStackGuardCheck(const Module &M) const override;
1197 SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
1198 const SDLoc &DL) const override;
1201 /// Return true if the target stores SafeStack pointer at a fixed offset in
1202 /// some non-standard address space, and populates the address space and
1203 /// offset as appropriate.
1204 Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;
1206 SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
1207 SelectionDAG &DAG) const;
1209 bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
1211 /// Customize the preferred legalization strategy for certain types.
1212 LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
1214 MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
1215 EVT VT) const override;
1217 unsigned getNumRegistersForCallingConv(LLVMContext &Context,
1218 CallingConv::ID CC,
1219 EVT VT) const override;
1221 unsigned getVectorTypeBreakdownForCallingConv(
1222 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1223 unsigned &NumIntermediates, MVT &RegisterVT) const override;
1225 bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
1227 bool supportSwiftError() const override;
1229 StringRef getStackProbeSymbolName(MachineFunction &MF) const override;
1231 unsigned getStackProbeSize(MachineFunction &MF) const;
1233 bool hasVectorBlend() const override { return true; }
1235 unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
1237 /// Lower interleaved load(s) into target specific
1238 /// instructions/intrinsics.
1239 bool lowerInterleavedLoad(LoadInst *LI,
1240 ArrayRef<ShuffleVectorInst *> Shuffles,
1241 ArrayRef<unsigned> Indices,
1242 unsigned Factor) const override;
1244 /// Lower interleaved store(s) into target specific
1245 /// instructions/intrinsics.
1246 bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
1247 unsigned Factor) const override;
1249 SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value,
1250 SDValue Addr, SelectionDAG &DAG)
1251 const override;
1253 protected:
1254 std::pair<const TargetRegisterClass *, uint8_t>
1255 findRepresentativeClass(const TargetRegisterInfo *TRI,
1256 MVT VT) const override;
1258 private:
1259 /// Keep a reference to the X86Subtarget around so that we can
1260 /// make the right decision when generating code for different targets.
1261 const X86Subtarget &Subtarget;
1263 /// Select between SSE or x87 floating point ops.
1264 /// When SSE is available, use it for f32 operations.
1265 /// When SSE2 is available, use it for f64 operations.
1266 bool X86ScalarSSEf32;
1267 bool X86ScalarSSEf64;
1269 /// A list of legal FP immediates.
1270 std::vector<APFloat> LegalFPImmediates;
1272 /// Indicate that this x86 target can instruction
1273 /// select the specified FP immediate natively.
1274 void addLegalFPImmediate(const APFloat& Imm) {
1275 LegalFPImmediates.push_back(Imm);
1278 SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1279 CallingConv::ID CallConv, bool isVarArg,
1280 const SmallVectorImpl<ISD::InputArg> &Ins,
1281 const SDLoc &dl, SelectionDAG &DAG,
1282 SmallVectorImpl<SDValue> &InVals,
1283 uint32_t *RegMask) const;
1284 SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
1285 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
1286 const SDLoc &dl, SelectionDAG &DAG,
1287 const CCValAssign &VA, MachineFrameInfo &MFI,
1288 unsigned i) const;
1289 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
1290 const SDLoc &dl, SelectionDAG &DAG,
1291 const CCValAssign &VA,
1292 ISD::ArgFlagsTy Flags) const;
1294 // Call lowering helpers.
1296 /// Check whether the call is eligible for tail call optimization. Targets
1297 /// that want to do tail call optimization should implement this function.
1298 bool IsEligibleForTailCallOptimization(SDValue Callee,
1299 CallingConv::ID CalleeCC,
1300 bool isVarArg,
1301 bool isCalleeStructRet,
1302 bool isCallerStructRet,
1303 Type *RetTy,
1304 const SmallVectorImpl<ISD::OutputArg> &Outs,
1305 const SmallVectorImpl<SDValue> &OutVals,
1306 const SmallVectorImpl<ISD::InputArg> &Ins,
1307 SelectionDAG& DAG) const;
1308 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
1309 SDValue Chain, bool IsTailCall,
1310 bool Is64Bit, int FPDiff,
1311 const SDLoc &dl) const;
1313 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
1314 SelectionDAG &DAG) const;
1316 unsigned getAddressSpace(void) const;
1318 SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool isSigned) const;
1320 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1321 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
1322 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1323 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1325 unsigned getGlobalWrapperKind(const GlobalValue *GV = nullptr,
1326 const unsigned char OpFlags = 0) const;
1327 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1328 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1329 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1330 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1331 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
1333 /// Creates target global address or external symbol nodes for calls or
1334 /// other uses.
1335 SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
1336 bool ForCall) const;
1338 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1339 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1340 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1341 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
1342 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1343 SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
1344 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
1345 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
1346 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1347 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1348 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1349 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1350 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1351 SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1352 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1353 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1354 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
1355 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1356 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1357 SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
1358 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1359 SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1360 SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
1361 SDValue LowerGC_TRANSITION_START(SDValue Op, SelectionDAG &DAG) const;
1362 SDValue LowerGC_TRANSITION_END(SDValue Op, SelectionDAG &DAG) const;
1363 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1364 SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
1365 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1366 SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1368 SDValue LowerF128Call(SDValue Op, SelectionDAG &DAG,
1369 RTLIB::Libcall Call) const;
1371 SDValue
1372 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1373 const SmallVectorImpl<ISD::InputArg> &Ins,
1374 const SDLoc &dl, SelectionDAG &DAG,
1375 SmallVectorImpl<SDValue> &InVals) const override;
1376 SDValue LowerCall(CallLoweringInfo &CLI,
1377 SmallVectorImpl<SDValue> &InVals) const override;
1379 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1380 const SmallVectorImpl<ISD::OutputArg> &Outs,
1381 const SmallVectorImpl<SDValue> &OutVals,
1382 const SDLoc &dl, SelectionDAG &DAG) const override;
1384 bool supportSplitCSR(MachineFunction *MF) const override {
1385 return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
1386 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
1388 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
1389 void insertCopiesSplitCSR(
1390 MachineBasicBlock *Entry,
1391 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
1393 bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
1395 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1397 EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
1398 ISD::NodeType ExtendKind) const override;
1400 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1401 bool isVarArg,
1402 const SmallVectorImpl<ISD::OutputArg> &Outs,
1403 LLVMContext &Context) const override;
1405 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1407 TargetLoweringBase::AtomicExpansionKind
1408 shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
1409 bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
1410 TargetLoweringBase::AtomicExpansionKind
1411 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
1413 LoadInst *
1414 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
1416 bool lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const override;
1417 bool lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const override;
1419 bool needsCmpXchgNb(Type *MemType) const;
1421 void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
1422 MachineBasicBlock *DispatchBB, int FI) const;
1424 // Utility function to emit the low-level va_arg code for X86-64.
1425 MachineBasicBlock *
1426 EmitVAARG64WithCustomInserter(MachineInstr &MI,
1427 MachineBasicBlock *MBB) const;
1429 /// Utility function to emit the xmm reg save portion of va_start.
1430 MachineBasicBlock *
1431 EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr &BInstr,
1432 MachineBasicBlock *BB) const;
1434 MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
1435 MachineInstr &MI2,
1436 MachineBasicBlock *BB) const;
1438 MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
1439 MachineBasicBlock *BB) const;
1441 MachineBasicBlock *EmitLoweredAtomicFP(MachineInstr &I,
1442 MachineBasicBlock *BB) const;
1444 MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
1445 MachineBasicBlock *BB) const;
1447 MachineBasicBlock *EmitLoweredCatchPad(MachineInstr &MI,
1448 MachineBasicBlock *BB) const;
1450 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
1451 MachineBasicBlock *BB) const;
1453 MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
1454 MachineBasicBlock *BB) const;
1456 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
1457 MachineBasicBlock *BB) const;
1459 MachineBasicBlock *EmitLoweredRetpoline(MachineInstr &MI,
1460 MachineBasicBlock *BB) const;
1462 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
1463 MachineBasicBlock *MBB) const;
1465 void emitSetJmpShadowStackFix(MachineInstr &MI,
1466 MachineBasicBlock *MBB) const;
1468 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
1469 MachineBasicBlock *MBB) const;
1471 MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
1472 MachineBasicBlock *MBB) const;
1474 MachineBasicBlock *emitFMA3Instr(MachineInstr &MI,
1475 MachineBasicBlock *MBB) const;
1477 MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
1478 MachineBasicBlock *MBB) const;
1480 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1481 /// equivalent, for use with the given x86 condition code.
1482 SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, const SDLoc &dl,
1483 SelectionDAG &DAG) const;
1485 /// Convert a comparison if required by the subtarget.
1486 SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
1488 /// Emit flags for the given setcc condition and operands. Also returns the
1489 /// corresponding X86 condition code constant in X86CC.
1490 SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1,
1491 ISD::CondCode CC, const SDLoc &dl,
1492 SelectionDAG &DAG,
1493 SDValue &X86CC) const;
1495 /// Check if replacement of SQRT with RSQRT should be disabled.
1496 bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override;
1498 /// Use rsqrt* to speed up sqrt calculations.
1499 SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1500 int &RefinementSteps, bool &UseOneConstNR,
1501 bool Reciprocal) const override;
1503 /// Use rcp* to speed up fdiv calculations.
1504 SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1505 int &RefinementSteps) const override;
1507 /// Reassociate floating point divisions into multiply by reciprocal.
1508 unsigned combineRepeatedFPDivisors() const override;
1510 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
1511 SmallVectorImpl<SDNode *> &Created) const override;
1514 namespace X86 {
1515 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1516 const TargetLibraryInfo *libInfo);
1517 } // end namespace X86
1519 // Base class for all X86 non-masked store operations.
1520 class X86StoreSDNode : public MemSDNode {
1521 public:
1522 X86StoreSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1523 SDVTList VTs, EVT MemVT,
1524 MachineMemOperand *MMO)
1525 :MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
1526 const SDValue &getValue() const { return getOperand(1); }
1527 const SDValue &getBasePtr() const { return getOperand(2); }
1529 static bool classof(const SDNode *N) {
1530 return N->getOpcode() == X86ISD::VTRUNCSTORES ||
1531 N->getOpcode() == X86ISD::VTRUNCSTOREUS;
1535 // Base class for all X86 masked store operations.
1536 // The class has the same order of operands as MaskedStoreSDNode for
1537 // convenience.
1538 class X86MaskedStoreSDNode : public MemSDNode {
1539 public:
1540 X86MaskedStoreSDNode(unsigned Opcode, unsigned Order,
1541 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1542 MachineMemOperand *MMO)
1543 : MemSDNode(Opcode, Order, dl, VTs, MemVT, MMO) {}
1545 const SDValue &getValue() const { return getOperand(1); }
1546 const SDValue &getBasePtr() const { return getOperand(2); }
1547 const SDValue &getMask() const { return getOperand(3); }
1549 static bool classof(const SDNode *N) {
1550 return N->getOpcode() == X86ISD::VMTRUNCSTORES ||
1551 N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
1555 // X86 Truncating Store with Signed saturation.
1556 class TruncSStoreSDNode : public X86StoreSDNode {
1557 public:
1558 TruncSStoreSDNode(unsigned Order, const DebugLoc &dl,
1559 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1560 : X86StoreSDNode(X86ISD::VTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
1562 static bool classof(const SDNode *N) {
1563 return N->getOpcode() == X86ISD::VTRUNCSTORES;
1567 // X86 Truncating Store with Unsigned saturation.
1568 class TruncUSStoreSDNode : public X86StoreSDNode {
1569 public:
1570 TruncUSStoreSDNode(unsigned Order, const DebugLoc &dl,
1571 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
1572 : X86StoreSDNode(X86ISD::VTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
1574 static bool classof(const SDNode *N) {
1575 return N->getOpcode() == X86ISD::VTRUNCSTOREUS;
1579 // X86 Truncating Masked Store with Signed saturation.
1580 class MaskedTruncSStoreSDNode : public X86MaskedStoreSDNode {
1581 public:
1582 MaskedTruncSStoreSDNode(unsigned Order,
1583 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1584 MachineMemOperand *MMO)
1585 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTORES, Order, dl, VTs, MemVT, MMO) {}
1587 static bool classof(const SDNode *N) {
1588 return N->getOpcode() == X86ISD::VMTRUNCSTORES;
1592 // X86 Truncating Masked Store with Unsigned saturation.
1593 class MaskedTruncUSStoreSDNode : public X86MaskedStoreSDNode {
1594 public:
1595 MaskedTruncUSStoreSDNode(unsigned Order,
1596 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1597 MachineMemOperand *MMO)
1598 : X86MaskedStoreSDNode(X86ISD::VMTRUNCSTOREUS, Order, dl, VTs, MemVT, MMO) {}
1600 static bool classof(const SDNode *N) {
1601 return N->getOpcode() == X86ISD::VMTRUNCSTOREUS;
1605 // X86 specific Gather/Scatter nodes.
1606 // The class has the same order of operands as MaskedGatherScatterSDNode for
1607 // convenience.
1608 class X86MaskedGatherScatterSDNode : public MemSDNode {
1609 public:
1610 X86MaskedGatherScatterSDNode(unsigned Opc, unsigned Order,
1611 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
1612 MachineMemOperand *MMO)
1613 : MemSDNode(Opc, Order, dl, VTs, MemVT, MMO) {}
1615 const SDValue &getBasePtr() const { return getOperand(3); }
1616 const SDValue &getIndex() const { return getOperand(4); }
1617 const SDValue &getMask() const { return getOperand(2); }
1618 const SDValue &getScale() const { return getOperand(5); }
1620 static bool classof(const SDNode *N) {
1621 return N->getOpcode() == X86ISD::MGATHER ||
1622 N->getOpcode() == X86ISD::MSCATTER;
1626 class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
1627 public:
1628 X86MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1629 EVT MemVT, MachineMemOperand *MMO)
1630 : X86MaskedGatherScatterSDNode(X86ISD::MGATHER, Order, dl, VTs, MemVT,
1631 MMO) {}
1633 const SDValue &getPassThru() const { return getOperand(1); }
1635 static bool classof(const SDNode *N) {
1636 return N->getOpcode() == X86ISD::MGATHER;
1640 class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
1641 public:
1642 X86MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1643 EVT MemVT, MachineMemOperand *MMO)
1644 : X86MaskedGatherScatterSDNode(X86ISD::MSCATTER, Order, dl, VTs, MemVT,
1645 MMO) {}
1647 const SDValue &getValue() const { return getOperand(1); }
1649 static bool classof(const SDNode *N) {
1650 return N->getOpcode() == X86ISD::MSCATTER;
1654 /// Generate unpacklo/unpackhi shuffle mask.
1655 template <typename T = int>
1656 void createUnpackShuffleMask(MVT VT, SmallVectorImpl<T> &Mask, bool Lo,
1657 bool Unary) {
1658 assert(Mask.empty() && "Expected an empty shuffle mask vector");
1659 int NumElts = VT.getVectorNumElements();
1660 int NumEltsInLane = 128 / VT.getScalarSizeInBits();
1661 for (int i = 0; i < NumElts; ++i) {
1662 unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
1663 int Pos = (i % NumEltsInLane) / 2 + LaneStart;
1664 Pos += (Unary ? 0 : NumElts * (i % 2));
1665 Pos += (Lo ? 0 : NumEltsInLane / 2);
1666 Mask.push_back(Pos);
1670 /// Helper function to scale a shuffle or target shuffle mask, replacing each
1671 /// mask index with the scaled sequential indices for an equivalent narrowed
1672 /// mask. This is the reverse process to canWidenShuffleElements, but can
1673 /// always succeed.
1674 template <typename T>
1675 void scaleShuffleMask(size_t Scale, ArrayRef<T> Mask,
1676 SmallVectorImpl<T> &ScaledMask) {
1677 assert(0 < Scale && "Unexpected scaling factor");
1678 size_t NumElts = Mask.size();
1679 ScaledMask.assign(NumElts * Scale, -1);
1681 for (size_t i = 0; i != NumElts; ++i) {
1682 int M = Mask[i];
1684 // Repeat sentinel values in every mask element.
1685 if (M < 0) {
1686 for (size_t s = 0; s != Scale; ++s)
1687 ScaledMask[(Scale * i) + s] = M;
1688 continue;
1691 // Scale mask element and increment across each mask element.
1692 for (size_t s = 0; s != Scale; ++s)
1693 ScaledMask[(Scale * i) + s] = (Scale * M) + s;
1696 } // end namespace llvm
1698 #endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H