[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / X86 / X86InstrExtension.td
blob7a4eb138ec346f271ce9362855e4728a789010c9
1 //===-- X86InstrExtension.td - Sign and Zero Extensions ----*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the sign and zero extension operations.
11 //===----------------------------------------------------------------------===//
13 let hasSideEffects = 0 in {
14   let Defs = [AX], Uses = [AL] in // AX = signext(AL)
15   def CBW : I<0x98, RawFrm, (outs), (ins),
16               "{cbtw|cbw}", []>, OpSize16, Sched<[WriteALU]>;
17   let Defs = [EAX], Uses = [AX] in // EAX = signext(AX)
18   def CWDE : I<0x98, RawFrm, (outs), (ins),
19               "{cwtl|cwde}", []>, OpSize32, Sched<[WriteALU]>;
20   let Defs = [RAX], Uses = [EAX] in // RAX = signext(EAX)
21   def CDQE : RI<0x98, RawFrm, (outs), (ins),
22                "{cltq|cdqe}", []>, Sched<[WriteALU]>, Requires<[In64BitMode]>;
24   // FIXME: CWD/CDQ/CQO shouldn't Def the A register, but the fast register
25   // allocator crashes if you remove it.
26   let Defs = [AX,DX], Uses = [AX] in // DX:AX = signext(AX)
27   def CWD : I<0x99, RawFrm, (outs), (ins),
28               "{cwtd|cwd}", []>, OpSize16, Sched<[WriteALU]>;
29   let Defs = [EAX,EDX], Uses = [EAX] in // EDX:EAX = signext(EAX)
30   def CDQ : I<0x99, RawFrm, (outs), (ins),
31               "{cltd|cdq}", []>, OpSize32, Sched<[WriteALU]>;
32   let Defs = [RAX,RDX], Uses = [RAX] in // RDX:RAX = signext(RAX)
33   def CQO  : RI<0x99, RawFrm, (outs), (ins),
34                 "{cqto|cqo}", []>, Sched<[WriteALU]>, Requires<[In64BitMode]>;
37 // Sign/Zero extenders
38 let hasSideEffects = 0 in {
39 def MOVSX16rr8 : I<0xBE, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
40                    "movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
41                    TB, OpSize16, Sched<[WriteALU]>;
42 let mayLoad = 1 in
43 def MOVSX16rm8 : I<0xBE, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
44                    "movs{bw|x}\t{$src, $dst|$dst, $src}", []>,
45                    TB, OpSize16, Sched<[WriteALULd]>;
46 } // hasSideEffects = 0
47 def MOVSX32rr8 : I<0xBE, MRMSrcReg, (outs GR32:$dst), (ins GR8:$src),
48                    "movs{bl|x}\t{$src, $dst|$dst, $src}",
49                    [(set GR32:$dst, (sext GR8:$src))]>, TB,
50                    OpSize32, Sched<[WriteALU]>;
51 def MOVSX32rm8 : I<0xBE, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
52                    "movs{bl|x}\t{$src, $dst|$dst, $src}",
53                    [(set GR32:$dst, (sextloadi32i8 addr:$src))]>, TB,
54                    OpSize32, Sched<[WriteALULd]>;
55 def MOVSX32rr16: I<0xBF, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
56                    "movs{wl|x}\t{$src, $dst|$dst, $src}",
57                    [(set GR32:$dst, (sext GR16:$src))]>, TB,
58                    OpSize32, Sched<[WriteALU]>;
59 def MOVSX32rm16: I<0xBF, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
60                    "movs{wl|x}\t{$src, $dst|$dst, $src}",
61                    [(set GR32:$dst, (sextloadi32i16 addr:$src))]>,
62                    OpSize32, TB, Sched<[WriteALULd]>;
64 let hasSideEffects = 0 in {
65 def MOVZX16rr8 : I<0xB6, MRMSrcReg, (outs GR16:$dst), (ins GR8:$src),
66                    "movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
67                    TB, OpSize16, Sched<[WriteALU]>;
68 let mayLoad = 1 in
69 def MOVZX16rm8 : I<0xB6, MRMSrcMem, (outs GR16:$dst), (ins i8mem:$src),
70                    "movz{bw|x}\t{$src, $dst|$dst, $src}", []>,
71                    TB, OpSize16, Sched<[WriteALULd]>;
72 } // hasSideEffects = 0
73 def MOVZX32rr8 : I<0xB6, MRMSrcReg, (outs GR32:$dst), (ins GR8 :$src),
74                    "movz{bl|x}\t{$src, $dst|$dst, $src}",
75                    [(set GR32:$dst, (zext GR8:$src))]>, TB,
76                    OpSize32, Sched<[WriteALU]>;
77 def MOVZX32rm8 : I<0xB6, MRMSrcMem, (outs GR32:$dst), (ins i8mem :$src),
78                    "movz{bl|x}\t{$src, $dst|$dst, $src}",
79                    [(set GR32:$dst, (zextloadi32i8 addr:$src))]>, TB,
80                    OpSize32, Sched<[WriteALULd]>;
81 def MOVZX32rr16: I<0xB7, MRMSrcReg, (outs GR32:$dst), (ins GR16:$src),
82                    "movz{wl|x}\t{$src, $dst|$dst, $src}",
83                    [(set GR32:$dst, (zext GR16:$src))]>, TB,
84                    OpSize32, Sched<[WriteALU]>;
85 def MOVZX32rm16: I<0xB7, MRMSrcMem, (outs GR32:$dst), (ins i16mem:$src),
86                    "movz{wl|x}\t{$src, $dst|$dst, $src}",
87                    [(set GR32:$dst, (zextloadi32i16 addr:$src))]>,
88                    TB, OpSize32, Sched<[WriteALULd]>;
90 // These instructions exist as a consequence of operand size prefix having
91 // control of the destination size, but not the input size. Only support them
92 // for the disassembler.
93 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
94 def MOVSX16rr16: I<0xBF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
95                    "movs{ww|x}\t{$src, $dst|$dst, $src}",
96                    []>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
97 def MOVZX16rr16: I<0xB7, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src),
98                    "movz{ww|x}\t{$src, $dst|$dst, $src}",
99                    []>, TB, OpSize16, Sched<[WriteALU]>, NotMemoryFoldable;
100 let mayLoad = 1 in {
101 def MOVSX16rm16: I<0xBF, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
102                    "movs{ww|x}\t{$src, $dst|$dst, $src}",
103                    []>, OpSize16, TB, Sched<[WriteALULd]>, NotMemoryFoldable;
104 def MOVZX16rm16: I<0xB7, MRMSrcMem, (outs GR16:$dst), (ins i16mem:$src),
105                    "movz{ww|x}\t{$src, $dst|$dst, $src}",
106                    []>, TB, OpSize16, Sched<[WriteALULd]>, NotMemoryFoldable;
107 } // mayLoad = 1
108 } // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
110 // These are the same as the regular MOVZX32rr8 and MOVZX32rm8
111 // except that they use GR32_NOREX for the output operand register class
112 // instead of GR32. This allows them to operate on h registers on x86-64.
113 let hasSideEffects = 0, isCodeGenOnly = 1 in {
114 def MOVZX32rr8_NOREX : I<0xB6, MRMSrcReg,
115                          (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
116                          "movz{bl|x}\t{$src, $dst|$dst, $src}",
117                          []>, TB, OpSize32, Sched<[WriteALU]>;
118 let mayLoad = 1 in
119 def MOVZX32rm8_NOREX : I<0xB6, MRMSrcMem,
120                          (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
121                          "movz{bl|x}\t{$src, $dst|$dst, $src}",
122                          []>, TB, OpSize32, Sched<[WriteALULd]>;
124 def MOVSX32rr8_NOREX : I<0xBE, MRMSrcReg,
125                          (outs GR32_NOREX:$dst), (ins GR8_NOREX:$src),
126                          "movs{bl|x}\t{$src, $dst|$dst, $src}",
127                          []>, TB, OpSize32, Sched<[WriteALU]>;
128 let mayLoad = 1 in
129 def MOVSX32rm8_NOREX : I<0xBE, MRMSrcMem,
130                          (outs GR32_NOREX:$dst), (ins i8mem_NOREX:$src),
131                          "movs{bl|x}\t{$src, $dst|$dst, $src}",
132                          []>, TB, OpSize32, Sched<[WriteALULd]>;
135 // MOVSX64rr8 always has a REX prefix and it has an 8-bit register
136 // operand, which makes it a rare instruction with an 8-bit register
137 // operand that can never access an h register. If support for h registers
138 // were generalized, this would require a special register class.
139 def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
140                     "movs{bq|x}\t{$src, $dst|$dst, $src}",
141                     [(set GR64:$dst, (sext GR8:$src))]>, TB,
142                     Sched<[WriteALU]>;
143 def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
144                     "movs{bq|x}\t{$src, $dst|$dst, $src}",
145                     [(set GR64:$dst, (sextloadi64i8 addr:$src))]>,
146                     TB, Sched<[WriteALULd]>;
147 def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
148                     "movs{wq|x}\t{$src, $dst|$dst, $src}",
149                     [(set GR64:$dst, (sext GR16:$src))]>, TB,
150                     Sched<[WriteALU]>;
151 def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
152                     "movs{wq|x}\t{$src, $dst|$dst, $src}",
153                     [(set GR64:$dst, (sextloadi64i16 addr:$src))]>,
154                     TB, Sched<[WriteALULd]>;
155 def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
156                     "movs{lq|xd}\t{$src, $dst|$dst, $src}",
157                     [(set GR64:$dst, (sext GR32:$src))]>,
158                     Sched<[WriteALU]>, Requires<[In64BitMode]>;
159 def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
160                     "movs{lq|xd}\t{$src, $dst|$dst, $src}",
161                     [(set GR64:$dst, (sextloadi64i32 addr:$src))]>,
162                     Sched<[WriteALULd]>, Requires<[In64BitMode]>;
164 // These instructions exist as a consequence of operand size prefix having
165 // control of the destination size, but not the input size. Only support them
166 // for the disassembler.
167 let isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0 in {
168 def MOVSX16rr32: I<0x63, MRMSrcReg, (outs GR16:$dst), (ins GR32:$src),
169                    "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
170                    Sched<[WriteALU]>, OpSize16, Requires<[In64BitMode]>;
171 def MOVSX32rr32: I<0x63, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src),
172                    "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
173                    Sched<[WriteALU]>, OpSize32, Requires<[In64BitMode]>;
174 let mayLoad = 1 in {
175 def MOVSX16rm32: I<0x63, MRMSrcMem, (outs GR16:$dst), (ins i32mem:$src),
176                    "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
177                    Sched<[WriteALULd]>, OpSize16, Requires<[In64BitMode]>;
178 def MOVSX32rm32: I<0x63, MRMSrcMem, (outs GR32:$dst), (ins i32mem:$src),
179                    "movs{lq|xd}\t{$src, $dst|$dst, $src}", []>,
180                    Sched<[WriteALULd]>, OpSize32, Requires<[In64BitMode]>;
181 } // mayLoad = 1
182 } // isCodeGenOnly = 1, ForceDisassemble = 1, hasSideEffects = 0
184 // movzbq and movzwq encodings for the disassembler
185 let hasSideEffects = 0 in {
186 def MOVZX64rr8 : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src),
187                      "movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
188                      TB, Sched<[WriteALU]>;
189 let mayLoad = 1 in
190 def MOVZX64rm8 : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src),
191                      "movz{bq|x}\t{$src, $dst|$dst, $src}", []>,
192                      TB, Sched<[WriteALULd]>;
193 def MOVZX64rr16 : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
194                      "movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
195                      TB, Sched<[WriteALU]>;
196 let mayLoad = 1 in
197 def MOVZX64rm16 : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
198                      "movz{wq|x}\t{$src, $dst|$dst, $src}", []>,
199                      TB, Sched<[WriteALULd]>;
202 // 64-bit zero-extension patterns use SUBREG_TO_REG and an operation writing a
203 // 32-bit register.
204 def : Pat<(i64 (zext GR8:$src)),
205           (SUBREG_TO_REG (i64 0), (MOVZX32rr8 GR8:$src), sub_32bit)>;
206 def : Pat<(zextloadi64i8 addr:$src),
207           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
209 def : Pat<(i64 (zext GR16:$src)),
210           (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16:$src), sub_32bit)>;
211 def : Pat<(zextloadi64i16 addr:$src),
212           (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
214 // The preferred way to do 32-bit-to-64-bit zero extension on x86-64 is to use a
215 // SUBREG_TO_REG to utilize implicit zero-extension, however this isn't possible
216 // when the 32-bit value is defined by a truncate or is copied from something
217 // where the high bits aren't necessarily all zero. In such cases, we fall back
218 // to these explicit zext instructions.
219 def : Pat<(i64 (zext GR32:$src)),
220           (SUBREG_TO_REG (i64 0), (MOV32rr GR32:$src), sub_32bit)>;
221 def : Pat<(i64 (zextloadi64i32 addr:$src)),
222           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;