[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / X86 / X86MCInstLower.cpp
blob78098fd6262f7a222157bc39e6cd00196dd065b2
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86InstComments.h"
17 #include "MCTargetDesc/X86TargetStreamer.h"
18 #include "Utils/X86ShuffleDecode.h"
19 #include "X86AsmPrinter.h"
20 #include "X86RegisterInfo.h"
21 #include "X86ShuffleDecodeConstantPool.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/StackMaps.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCCodeEmitter.h"
35 #include "llvm/MC/MCContext.h"
36 #include "llvm/MC/MCExpr.h"
37 #include "llvm/MC/MCFixup.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCInstBuilder.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCSectionELF.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/MCSymbolELF.h"
45 #include "llvm/Target/TargetLoweringObjectFile.h"
47 using namespace llvm;
49 namespace {
51 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
52 class X86MCInstLower {
53 MCContext &Ctx;
54 const MachineFunction &MF;
55 const TargetMachine &TM;
56 const MCAsmInfo &MAI;
57 X86AsmPrinter &AsmPrinter;
59 public:
60 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
62 Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
63 const MachineOperand &MO) const;
64 void Lower(const MachineInstr *MI, MCInst &OutMI) const;
66 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
67 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
69 private:
70 MachineModuleInfoMachO &getMachOMMI() const;
73 } // end anonymous namespace
75 // Emit a minimal sequence of nops spanning NumBytes bytes.
76 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
77 const MCSubtargetInfo &STI);
79 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
80 const MCSubtargetInfo &STI,
81 MCCodeEmitter *CodeEmitter) {
82 if (InShadow) {
83 SmallString<256> Code;
84 SmallVector<MCFixup, 4> Fixups;
85 raw_svector_ostream VecOS(Code);
86 CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
87 CurrentShadowSize += Code.size();
88 if (CurrentShadowSize >= RequiredShadowSize)
89 InShadow = false; // The shadow is big enough. Stop counting.
93 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
94 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
95 if (InShadow && CurrentShadowSize < RequiredShadowSize) {
96 InShadow = false;
97 EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
98 MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
102 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
103 OutStreamer->EmitInstruction(Inst, getSubtargetInfo());
104 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
107 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
108 X86AsmPrinter &asmprinter)
109 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
110 AsmPrinter(asmprinter) {}
112 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
113 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
116 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
117 /// operand to an MCSymbol.
118 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
119 const DataLayout &DL = MF.getDataLayout();
120 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
121 "Isn't a symbol reference");
123 MCSymbol *Sym = nullptr;
124 SmallString<128> Name;
125 StringRef Suffix;
127 switch (MO.getTargetFlags()) {
128 case X86II::MO_DLLIMPORT:
129 // Handle dllimport linkage.
130 Name += "__imp_";
131 break;
132 case X86II::MO_COFFSTUB:
133 Name += ".refptr.";
134 break;
135 case X86II::MO_DARWIN_NONLAZY:
136 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
137 Suffix = "$non_lazy_ptr";
138 break;
141 if (!Suffix.empty())
142 Name += DL.getPrivateGlobalPrefix();
144 if (MO.isGlobal()) {
145 const GlobalValue *GV = MO.getGlobal();
146 AsmPrinter.getNameWithPrefix(Name, GV);
147 } else if (MO.isSymbol()) {
148 Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
149 } else if (MO.isMBB()) {
150 assert(Suffix.empty());
151 Sym = MO.getMBB()->getSymbol();
154 Name += Suffix;
155 if (!Sym)
156 Sym = Ctx.getOrCreateSymbol(Name);
158 // If the target flags on the operand changes the name of the symbol, do that
159 // before we return the symbol.
160 switch (MO.getTargetFlags()) {
161 default:
162 break;
163 case X86II::MO_COFFSTUB: {
164 MachineModuleInfoCOFF &MMICOFF =
165 MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
166 MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
167 if (!StubSym.getPointer()) {
168 assert(MO.isGlobal() && "Extern symbol not handled yet");
169 StubSym = MachineModuleInfoImpl::StubValueTy(
170 AsmPrinter.getSymbol(MO.getGlobal()), true);
172 break;
174 case X86II::MO_DARWIN_NONLAZY:
175 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
176 MachineModuleInfoImpl::StubValueTy &StubSym =
177 getMachOMMI().getGVStubEntry(Sym);
178 if (!StubSym.getPointer()) {
179 assert(MO.isGlobal() && "Extern symbol not handled yet");
180 StubSym = MachineModuleInfoImpl::StubValueTy(
181 AsmPrinter.getSymbol(MO.getGlobal()),
182 !MO.getGlobal()->hasInternalLinkage());
184 break;
188 return Sym;
191 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
192 MCSymbol *Sym) const {
193 // FIXME: We would like an efficient form for this, so we don't have to do a
194 // lot of extra uniquing.
195 const MCExpr *Expr = nullptr;
196 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
198 switch (MO.getTargetFlags()) {
199 default:
200 llvm_unreachable("Unknown target flag on GV operand");
201 case X86II::MO_NO_FLAG: // No flag.
202 // These affect the name of the symbol, not any suffix.
203 case X86II::MO_DARWIN_NONLAZY:
204 case X86II::MO_DLLIMPORT:
205 case X86II::MO_COFFSTUB:
206 break;
208 case X86II::MO_TLVP:
209 RefKind = MCSymbolRefExpr::VK_TLVP;
210 break;
211 case X86II::MO_TLVP_PIC_BASE:
212 Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
213 // Subtract the pic base.
214 Expr = MCBinaryExpr::createSub(
215 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
216 break;
217 case X86II::MO_SECREL:
218 RefKind = MCSymbolRefExpr::VK_SECREL;
219 break;
220 case X86II::MO_TLSGD:
221 RefKind = MCSymbolRefExpr::VK_TLSGD;
222 break;
223 case X86II::MO_TLSLD:
224 RefKind = MCSymbolRefExpr::VK_TLSLD;
225 break;
226 case X86II::MO_TLSLDM:
227 RefKind = MCSymbolRefExpr::VK_TLSLDM;
228 break;
229 case X86II::MO_GOTTPOFF:
230 RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
231 break;
232 case X86II::MO_INDNTPOFF:
233 RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
234 break;
235 case X86II::MO_TPOFF:
236 RefKind = MCSymbolRefExpr::VK_TPOFF;
237 break;
238 case X86II::MO_DTPOFF:
239 RefKind = MCSymbolRefExpr::VK_DTPOFF;
240 break;
241 case X86II::MO_NTPOFF:
242 RefKind = MCSymbolRefExpr::VK_NTPOFF;
243 break;
244 case X86II::MO_GOTNTPOFF:
245 RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
246 break;
247 case X86II::MO_GOTPCREL:
248 RefKind = MCSymbolRefExpr::VK_GOTPCREL;
249 break;
250 case X86II::MO_GOT:
251 RefKind = MCSymbolRefExpr::VK_GOT;
252 break;
253 case X86II::MO_GOTOFF:
254 RefKind = MCSymbolRefExpr::VK_GOTOFF;
255 break;
256 case X86II::MO_PLT:
257 RefKind = MCSymbolRefExpr::VK_PLT;
258 break;
259 case X86II::MO_ABS8:
260 RefKind = MCSymbolRefExpr::VK_X86_ABS8;
261 break;
262 case X86II::MO_PIC_BASE_OFFSET:
263 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
264 Expr = MCSymbolRefExpr::create(Sym, Ctx);
265 // Subtract the pic base.
266 Expr = MCBinaryExpr::createSub(
267 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
268 if (MO.isJTI()) {
269 assert(MAI.doesSetDirectiveSuppressReloc());
270 // If .set directive is supported, use it to reduce the number of
271 // relocations the assembler will generate for differences between
272 // local labels. This is only safe when the symbols are in the same
273 // section so we are restricting it to jumptable references.
274 MCSymbol *Label = Ctx.createTempSymbol();
275 AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
276 Expr = MCSymbolRefExpr::create(Label, Ctx);
278 break;
281 if (!Expr)
282 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
284 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
285 Expr = MCBinaryExpr::createAdd(
286 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
287 return MCOperand::createExpr(Expr);
290 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
291 /// a short fixed-register form.
292 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
293 unsigned ImmOp = Inst.getNumOperands() - 1;
294 assert(Inst.getOperand(0).isReg() &&
295 (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
296 ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
297 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
298 Inst.getNumOperands() == 2) &&
299 "Unexpected instruction!");
301 // Check whether the destination register can be fixed.
302 unsigned Reg = Inst.getOperand(0).getReg();
303 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
304 return;
306 // If so, rewrite the instruction.
307 MCOperand Saved = Inst.getOperand(ImmOp);
308 Inst = MCInst();
309 Inst.setOpcode(Opcode);
310 Inst.addOperand(Saved);
313 /// If a movsx instruction has a shorter encoding for the used register
314 /// simplify the instruction to use it instead.
315 static void SimplifyMOVSX(MCInst &Inst) {
316 unsigned NewOpcode = 0;
317 unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
318 switch (Inst.getOpcode()) {
319 default:
320 llvm_unreachable("Unexpected instruction!");
321 case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
322 if (Op0 == X86::AX && Op1 == X86::AL)
323 NewOpcode = X86::CBW;
324 break;
325 case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
326 if (Op0 == X86::EAX && Op1 == X86::AX)
327 NewOpcode = X86::CWDE;
328 break;
329 case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
330 if (Op0 == X86::RAX && Op1 == X86::EAX)
331 NewOpcode = X86::CDQE;
332 break;
335 if (NewOpcode != 0) {
336 Inst = MCInst();
337 Inst.setOpcode(NewOpcode);
341 /// Simplify things like MOV32rm to MOV32o32a.
342 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
343 unsigned Opcode) {
344 // Don't make these simplifications in 64-bit mode; other assemblers don't
345 // perform them because they make the code larger.
346 if (Printer.getSubtarget().is64Bit())
347 return;
349 bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
350 unsigned AddrBase = IsStore;
351 unsigned RegOp = IsStore ? 0 : 5;
352 unsigned AddrOp = AddrBase + 3;
353 assert(
354 Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
355 Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
356 Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
357 Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
358 Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
359 (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
360 "Unexpected instruction!");
362 // Check whether the destination register can be fixed.
363 unsigned Reg = Inst.getOperand(RegOp).getReg();
364 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
365 return;
367 // Check whether this is an absolute address.
368 // FIXME: We know TLVP symbol refs aren't, but there should be a better way
369 // to do this here.
370 bool Absolute = true;
371 if (Inst.getOperand(AddrOp).isExpr()) {
372 const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
373 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
374 if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
375 Absolute = false;
378 if (Absolute &&
379 (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
380 Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
381 Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
382 return;
384 // If so, rewrite the instruction.
385 MCOperand Saved = Inst.getOperand(AddrOp);
386 MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
387 Inst = MCInst();
388 Inst.setOpcode(Opcode);
389 Inst.addOperand(Saved);
390 Inst.addOperand(Seg);
393 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
394 return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
397 Optional<MCOperand>
398 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
399 const MachineOperand &MO) const {
400 switch (MO.getType()) {
401 default:
402 MI->print(errs());
403 llvm_unreachable("unknown operand type");
404 case MachineOperand::MO_Register:
405 // Ignore all implicit register operands.
406 if (MO.isImplicit())
407 return None;
408 return MCOperand::createReg(MO.getReg());
409 case MachineOperand::MO_Immediate:
410 return MCOperand::createImm(MO.getImm());
411 case MachineOperand::MO_MachineBasicBlock:
412 case MachineOperand::MO_GlobalAddress:
413 case MachineOperand::MO_ExternalSymbol:
414 return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
415 case MachineOperand::MO_MCSymbol:
416 return LowerSymbolOperand(MO, MO.getMCSymbol());
417 case MachineOperand::MO_JumpTableIndex:
418 return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
419 case MachineOperand::MO_ConstantPoolIndex:
420 return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
421 case MachineOperand::MO_BlockAddress:
422 return LowerSymbolOperand(
423 MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
424 case MachineOperand::MO_RegisterMask:
425 // Ignore call clobbers.
426 return None;
430 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
431 // information.
432 static unsigned convertTailJumpOpcode(unsigned Opcode) {
433 switch (Opcode) {
434 case X86::TAILJMPr:
435 Opcode = X86::JMP32r;
436 break;
437 case X86::TAILJMPm:
438 Opcode = X86::JMP32m;
439 break;
440 case X86::TAILJMPr64:
441 Opcode = X86::JMP64r;
442 break;
443 case X86::TAILJMPm64:
444 Opcode = X86::JMP64m;
445 break;
446 case X86::TAILJMPr64_REX:
447 Opcode = X86::JMP64r_REX;
448 break;
449 case X86::TAILJMPm64_REX:
450 Opcode = X86::JMP64m_REX;
451 break;
452 case X86::TAILJMPd:
453 case X86::TAILJMPd64:
454 Opcode = X86::JMP_1;
455 break;
456 case X86::TAILJMPd_CC:
457 case X86::TAILJMPd64_CC:
458 Opcode = X86::JCC_1;
459 break;
462 return Opcode;
465 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
466 OutMI.setOpcode(MI->getOpcode());
468 for (const MachineOperand &MO : MI->operands())
469 if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
470 OutMI.addOperand(MaybeMCOp.getValue());
472 // Handle a few special cases to eliminate operand modifiers.
473 switch (OutMI.getOpcode()) {
474 case X86::LEA64_32r:
475 case X86::LEA64r:
476 case X86::LEA16r:
477 case X86::LEA32r:
478 // LEA should have a segment register, but it must be empty.
479 assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
480 "Unexpected # of LEA operands");
481 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
482 "LEA has segment specified!");
483 break;
485 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
486 // if one of the registers is extended, but other isn't.
487 case X86::VMOVZPQILo2PQIrr:
488 case X86::VMOVAPDrr:
489 case X86::VMOVAPDYrr:
490 case X86::VMOVAPSrr:
491 case X86::VMOVAPSYrr:
492 case X86::VMOVDQArr:
493 case X86::VMOVDQAYrr:
494 case X86::VMOVDQUrr:
495 case X86::VMOVDQUYrr:
496 case X86::VMOVUPDrr:
497 case X86::VMOVUPDYrr:
498 case X86::VMOVUPSrr:
499 case X86::VMOVUPSYrr: {
500 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
501 X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
502 unsigned NewOpc;
503 switch (OutMI.getOpcode()) {
504 default: llvm_unreachable("Invalid opcode");
505 case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
506 case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
507 case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
508 case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
509 case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
510 case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
511 case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
512 case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
513 case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
514 case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
515 case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
516 case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
517 case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
519 OutMI.setOpcode(NewOpc);
521 break;
523 case X86::VMOVSDrr:
524 case X86::VMOVSSrr: {
525 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
526 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
527 unsigned NewOpc;
528 switch (OutMI.getOpcode()) {
529 default: llvm_unreachable("Invalid opcode");
530 case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
531 case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
533 OutMI.setOpcode(NewOpc);
535 break;
538 case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rmik:
539 case X86::VPCMPBZ128rri: case X86::VPCMPBZ128rrik:
540 case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rmik:
541 case X86::VPCMPBZ256rri: case X86::VPCMPBZ256rrik:
542 case X86::VPCMPBZrmi: case X86::VPCMPBZrmik:
543 case X86::VPCMPBZrri: case X86::VPCMPBZrrik:
544 case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rmik:
545 case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
546 case X86::VPCMPDZ128rri: case X86::VPCMPDZ128rrik:
547 case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rmik:
548 case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
549 case X86::VPCMPDZ256rri: case X86::VPCMPDZ256rrik:
550 case X86::VPCMPDZrmi: case X86::VPCMPDZrmik:
551 case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
552 case X86::VPCMPDZrri: case X86::VPCMPDZrrik:
553 case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rmik:
554 case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
555 case X86::VPCMPQZ128rri: case X86::VPCMPQZ128rrik:
556 case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rmik:
557 case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
558 case X86::VPCMPQZ256rri: case X86::VPCMPQZ256rrik:
559 case X86::VPCMPQZrmi: case X86::VPCMPQZrmik:
560 case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
561 case X86::VPCMPQZrri: case X86::VPCMPQZrrik:
562 case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rmik:
563 case X86::VPCMPWZ128rri: case X86::VPCMPWZ128rrik:
564 case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rmik:
565 case X86::VPCMPWZ256rri: case X86::VPCMPWZ256rrik:
566 case X86::VPCMPWZrmi: case X86::VPCMPWZrmik:
567 case X86::VPCMPWZrri: case X86::VPCMPWZrrik: {
568 // Turn immediate 0 into the VPCMPEQ instruction.
569 if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) {
570 unsigned NewOpc;
571 switch (OutMI.getOpcode()) {
572 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPEQBZ128rm; break;
573 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPEQBZ128rmk; break;
574 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPEQBZ128rr; break;
575 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPEQBZ128rrk; break;
576 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPEQBZ256rm; break;
577 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPEQBZ256rmk; break;
578 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPEQBZ256rr; break;
579 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPEQBZ256rrk; break;
580 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPEQBZrm; break;
581 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPEQBZrmk; break;
582 case X86::VPCMPBZrri: NewOpc = X86::VPCMPEQBZrr; break;
583 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPEQBZrrk; break;
584 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPEQDZ128rm; break;
585 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPEQDZ128rmb; break;
586 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break;
587 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPEQDZ128rmk; break;
588 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPEQDZ128rr; break;
589 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPEQDZ128rrk; break;
590 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPEQDZ256rm; break;
591 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPEQDZ256rmb; break;
592 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break;
593 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPEQDZ256rmk; break;
594 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPEQDZ256rr; break;
595 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPEQDZ256rrk; break;
596 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPEQDZrm; break;
597 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPEQDZrmb; break;
598 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPEQDZrmbk; break;
599 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPEQDZrmk; break;
600 case X86::VPCMPDZrri: NewOpc = X86::VPCMPEQDZrr; break;
601 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPEQDZrrk; break;
602 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPEQQZ128rm; break;
603 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPEQQZ128rmb; break;
604 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break;
605 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPEQQZ128rmk; break;
606 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPEQQZ128rr; break;
607 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPEQQZ128rrk; break;
608 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPEQQZ256rm; break;
609 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPEQQZ256rmb; break;
610 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break;
611 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPEQQZ256rmk; break;
612 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPEQQZ256rr; break;
613 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPEQQZ256rrk; break;
614 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPEQQZrm; break;
615 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPEQQZrmb; break;
616 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPEQQZrmbk; break;
617 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPEQQZrmk; break;
618 case X86::VPCMPQZrri: NewOpc = X86::VPCMPEQQZrr; break;
619 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPEQQZrrk; break;
620 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPEQWZ128rm; break;
621 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPEQWZ128rmk; break;
622 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPEQWZ128rr; break;
623 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPEQWZ128rrk; break;
624 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPEQWZ256rm; break;
625 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPEQWZ256rmk; break;
626 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPEQWZ256rr; break;
627 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPEQWZ256rrk; break;
628 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPEQWZrm; break;
629 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPEQWZrmk; break;
630 case X86::VPCMPWZrri: NewOpc = X86::VPCMPEQWZrr; break;
631 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPEQWZrrk; break;
634 OutMI.setOpcode(NewOpc);
635 OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
636 break;
639 // Turn immediate 6 into the VPCMPGT instruction.
640 if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) {
641 unsigned NewOpc;
642 switch (OutMI.getOpcode()) {
643 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPGTBZ128rm; break;
644 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPGTBZ128rmk; break;
645 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPGTBZ128rr; break;
646 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPGTBZ128rrk; break;
647 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPGTBZ256rm; break;
648 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPGTBZ256rmk; break;
649 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPGTBZ256rr; break;
650 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPGTBZ256rrk; break;
651 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPGTBZrm; break;
652 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPGTBZrmk; break;
653 case X86::VPCMPBZrri: NewOpc = X86::VPCMPGTBZrr; break;
654 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPGTBZrrk; break;
655 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPGTDZ128rm; break;
656 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPGTDZ128rmb; break;
657 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break;
658 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPGTDZ128rmk; break;
659 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPGTDZ128rr; break;
660 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPGTDZ128rrk; break;
661 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPGTDZ256rm; break;
662 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPGTDZ256rmb; break;
663 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break;
664 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPGTDZ256rmk; break;
665 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPGTDZ256rr; break;
666 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPGTDZ256rrk; break;
667 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPGTDZrm; break;
668 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPGTDZrmb; break;
669 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPGTDZrmbk; break;
670 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPGTDZrmk; break;
671 case X86::VPCMPDZrri: NewOpc = X86::VPCMPGTDZrr; break;
672 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPGTDZrrk; break;
673 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPGTQZ128rm; break;
674 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPGTQZ128rmb; break;
675 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break;
676 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPGTQZ128rmk; break;
677 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPGTQZ128rr; break;
678 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPGTQZ128rrk; break;
679 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPGTQZ256rm; break;
680 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPGTQZ256rmb; break;
681 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break;
682 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPGTQZ256rmk; break;
683 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPGTQZ256rr; break;
684 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPGTQZ256rrk; break;
685 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPGTQZrm; break;
686 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPGTQZrmb; break;
687 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPGTQZrmbk; break;
688 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPGTQZrmk; break;
689 case X86::VPCMPQZrri: NewOpc = X86::VPCMPGTQZrr; break;
690 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPGTQZrrk; break;
691 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPGTWZ128rm; break;
692 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPGTWZ128rmk; break;
693 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPGTWZ128rr; break;
694 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPGTWZ128rrk; break;
695 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPGTWZ256rm; break;
696 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPGTWZ256rmk; break;
697 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPGTWZ256rr; break;
698 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPGTWZ256rrk; break;
699 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPGTWZrm; break;
700 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPGTWZrmk; break;
701 case X86::VPCMPWZrri: NewOpc = X86::VPCMPGTWZrr; break;
702 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPGTWZrrk; break;
705 OutMI.setOpcode(NewOpc);
706 OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
707 break;
710 break;
713 // CALL64r, CALL64pcrel32 - These instructions used to have
714 // register inputs modeled as normal uses instead of implicit uses. As such,
715 // they we used to truncate off all but the first operand (the callee). This
716 // issue seems to have been fixed at some point. This assert verifies that.
717 case X86::CALL64r:
718 case X86::CALL64pcrel32:
719 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
720 break;
722 case X86::EH_RETURN:
723 case X86::EH_RETURN64: {
724 OutMI = MCInst();
725 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
726 break;
729 case X86::CLEANUPRET: {
730 // Replace CLEANUPRET with the appropriate RET.
731 OutMI = MCInst();
732 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
733 break;
736 case X86::CATCHRET: {
737 // Replace CATCHRET with the appropriate RET.
738 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
739 unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
740 OutMI = MCInst();
741 OutMI.setOpcode(getRetOpcode(Subtarget));
742 OutMI.addOperand(MCOperand::createReg(ReturnReg));
743 break;
746 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
747 // instruction.
748 case X86::TAILJMPr:
749 case X86::TAILJMPr64:
750 case X86::TAILJMPr64_REX:
751 case X86::TAILJMPd:
752 case X86::TAILJMPd64:
753 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
754 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
755 break;
757 case X86::TAILJMPd_CC:
758 case X86::TAILJMPd64_CC:
759 assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
760 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
761 break;
763 case X86::TAILJMPm:
764 case X86::TAILJMPm64:
765 case X86::TAILJMPm64_REX:
766 assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
767 "Unexpected number of operands!");
768 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
769 break;
771 case X86::DEC16r:
772 case X86::DEC32r:
773 case X86::INC16r:
774 case X86::INC32r:
775 // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
776 if (!AsmPrinter.getSubtarget().is64Bit()) {
777 unsigned Opcode;
778 switch (OutMI.getOpcode()) {
779 default: llvm_unreachable("Invalid opcode");
780 case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
781 case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
782 case X86::INC16r: Opcode = X86::INC16r_alt; break;
783 case X86::INC32r: Opcode = X86::INC32r_alt; break;
785 OutMI.setOpcode(Opcode);
787 break;
789 // We don't currently select the correct instruction form for instructions
790 // which have a short %eax, etc. form. Handle this by custom lowering, for
791 // now.
793 // Note, we are currently not handling the following instructions:
794 // MOV64ao8, MOV64o8a
795 // XCHG16ar, XCHG32ar, XCHG64ar
796 case X86::MOV8mr_NOREX:
797 case X86::MOV8mr:
798 case X86::MOV8rm_NOREX:
799 case X86::MOV8rm:
800 case X86::MOV16mr:
801 case X86::MOV16rm:
802 case X86::MOV32mr:
803 case X86::MOV32rm: {
804 unsigned NewOpc;
805 switch (OutMI.getOpcode()) {
806 default: llvm_unreachable("Invalid opcode");
807 case X86::MOV8mr_NOREX:
808 case X86::MOV8mr: NewOpc = X86::MOV8o32a; break;
809 case X86::MOV8rm_NOREX:
810 case X86::MOV8rm: NewOpc = X86::MOV8ao32; break;
811 case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
812 case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
813 case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
814 case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
816 SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
817 break;
820 case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
821 case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
822 case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
823 case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
824 case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32:
825 case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
826 case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
827 case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
828 case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
829 unsigned NewOpc;
830 switch (OutMI.getOpcode()) {
831 default: llvm_unreachable("Invalid opcode");
832 case X86::ADC8ri: NewOpc = X86::ADC8i8; break;
833 case X86::ADC16ri: NewOpc = X86::ADC16i16; break;
834 case X86::ADC32ri: NewOpc = X86::ADC32i32; break;
835 case X86::ADC64ri32: NewOpc = X86::ADC64i32; break;
836 case X86::ADD8ri: NewOpc = X86::ADD8i8; break;
837 case X86::ADD16ri: NewOpc = X86::ADD16i16; break;
838 case X86::ADD32ri: NewOpc = X86::ADD32i32; break;
839 case X86::ADD64ri32: NewOpc = X86::ADD64i32; break;
840 case X86::AND8ri: NewOpc = X86::AND8i8; break;
841 case X86::AND16ri: NewOpc = X86::AND16i16; break;
842 case X86::AND32ri: NewOpc = X86::AND32i32; break;
843 case X86::AND64ri32: NewOpc = X86::AND64i32; break;
844 case X86::CMP8ri: NewOpc = X86::CMP8i8; break;
845 case X86::CMP16ri: NewOpc = X86::CMP16i16; break;
846 case X86::CMP32ri: NewOpc = X86::CMP32i32; break;
847 case X86::CMP64ri32: NewOpc = X86::CMP64i32; break;
848 case X86::OR8ri: NewOpc = X86::OR8i8; break;
849 case X86::OR16ri: NewOpc = X86::OR16i16; break;
850 case X86::OR32ri: NewOpc = X86::OR32i32; break;
851 case X86::OR64ri32: NewOpc = X86::OR64i32; break;
852 case X86::SBB8ri: NewOpc = X86::SBB8i8; break;
853 case X86::SBB16ri: NewOpc = X86::SBB16i16; break;
854 case X86::SBB32ri: NewOpc = X86::SBB32i32; break;
855 case X86::SBB64ri32: NewOpc = X86::SBB64i32; break;
856 case X86::SUB8ri: NewOpc = X86::SUB8i8; break;
857 case X86::SUB16ri: NewOpc = X86::SUB16i16; break;
858 case X86::SUB32ri: NewOpc = X86::SUB32i32; break;
859 case X86::SUB64ri32: NewOpc = X86::SUB64i32; break;
860 case X86::TEST8ri: NewOpc = X86::TEST8i8; break;
861 case X86::TEST16ri: NewOpc = X86::TEST16i16; break;
862 case X86::TEST32ri: NewOpc = X86::TEST32i32; break;
863 case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
864 case X86::XOR8ri: NewOpc = X86::XOR8i8; break;
865 case X86::XOR16ri: NewOpc = X86::XOR16i16; break;
866 case X86::XOR32ri: NewOpc = X86::XOR32i32; break;
867 case X86::XOR64ri32: NewOpc = X86::XOR64i32; break;
869 SimplifyShortImmForm(OutMI, NewOpc);
870 break;
873 // Try to shrink some forms of movsx.
874 case X86::MOVSX16rr8:
875 case X86::MOVSX32rr16:
876 case X86::MOVSX64rr32:
877 SimplifyMOVSX(OutMI);
878 break;
882 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
883 const MachineInstr &MI) {
884 bool Is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
885 MI.getOpcode() == X86::TLS_base_addr64;
886 MCContext &Ctx = OutStreamer->getContext();
888 MCSymbolRefExpr::VariantKind SRVK;
889 switch (MI.getOpcode()) {
890 case X86::TLS_addr32:
891 case X86::TLS_addr64:
892 SRVK = MCSymbolRefExpr::VK_TLSGD;
893 break;
894 case X86::TLS_base_addr32:
895 SRVK = MCSymbolRefExpr::VK_TLSLDM;
896 break;
897 case X86::TLS_base_addr64:
898 SRVK = MCSymbolRefExpr::VK_TLSLD;
899 break;
900 default:
901 llvm_unreachable("unexpected opcode");
904 const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
905 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
907 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
908 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
909 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
910 // only using GOT when GOTPCRELX is enabled.
911 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
912 bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
913 Ctx.getAsmInfo()->canRelaxRelocations();
915 if (Is64Bits) {
916 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
917 if (NeedsPadding)
918 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
919 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
920 .addReg(X86::RDI)
921 .addReg(X86::RIP)
922 .addImm(1)
923 .addReg(0)
924 .addExpr(Sym)
925 .addReg(0));
926 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
927 if (NeedsPadding) {
928 if (!UseGot)
929 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
930 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
931 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
933 if (UseGot) {
934 const MCExpr *Expr = MCSymbolRefExpr::create(
935 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
936 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
937 .addReg(X86::RIP)
938 .addImm(1)
939 .addReg(0)
940 .addExpr(Expr)
941 .addReg(0));
942 } else {
943 EmitAndCountInstruction(
944 MCInstBuilder(X86::CALL64pcrel32)
945 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
946 MCSymbolRefExpr::VK_PLT, Ctx)));
948 } else {
949 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
950 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
951 .addReg(X86::EAX)
952 .addReg(0)
953 .addImm(1)
954 .addReg(X86::EBX)
955 .addExpr(Sym)
956 .addReg(0));
957 } else {
958 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
959 .addReg(X86::EAX)
960 .addReg(X86::EBX)
961 .addImm(1)
962 .addReg(0)
963 .addExpr(Sym)
964 .addReg(0));
967 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
968 if (UseGot) {
969 const MCExpr *Expr =
970 MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
971 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
972 .addReg(X86::EBX)
973 .addImm(1)
974 .addReg(0)
975 .addExpr(Expr)
976 .addReg(0));
977 } else {
978 EmitAndCountInstruction(
979 MCInstBuilder(X86::CALLpcrel32)
980 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
981 MCSymbolRefExpr::VK_PLT, Ctx)));
986 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
987 /// bytes. Return the size of nop emitted.
988 static unsigned EmitNop(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
989 const MCSubtargetInfo &STI) {
990 // This works only for 64bit. For 32bit we have to do additional checking if
991 // the CPU supports multi-byte nops.
992 assert(Is64Bit && "EmitNops only supports X86-64");
994 unsigned NopSize;
995 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
996 IndexReg = Displacement = SegmentReg = 0;
997 BaseReg = X86::RAX;
998 ScaleVal = 1;
999 switch (NumBytes) {
1000 case 0:
1001 llvm_unreachable("Zero nops?");
1002 break;
1003 case 1:
1004 NopSize = 1;
1005 Opc = X86::NOOP;
1006 break;
1007 case 2:
1008 NopSize = 2;
1009 Opc = X86::XCHG16ar;
1010 break;
1011 case 3:
1012 NopSize = 3;
1013 Opc = X86::NOOPL;
1014 break;
1015 case 4:
1016 NopSize = 4;
1017 Opc = X86::NOOPL;
1018 Displacement = 8;
1019 break;
1020 case 5:
1021 NopSize = 5;
1022 Opc = X86::NOOPL;
1023 Displacement = 8;
1024 IndexReg = X86::RAX;
1025 break;
1026 case 6:
1027 NopSize = 6;
1028 Opc = X86::NOOPW;
1029 Displacement = 8;
1030 IndexReg = X86::RAX;
1031 break;
1032 case 7:
1033 NopSize = 7;
1034 Opc = X86::NOOPL;
1035 Displacement = 512;
1036 break;
1037 case 8:
1038 NopSize = 8;
1039 Opc = X86::NOOPL;
1040 Displacement = 512;
1041 IndexReg = X86::RAX;
1042 break;
1043 case 9:
1044 NopSize = 9;
1045 Opc = X86::NOOPW;
1046 Displacement = 512;
1047 IndexReg = X86::RAX;
1048 break;
1049 default:
1050 NopSize = 10;
1051 Opc = X86::NOOPW;
1052 Displacement = 512;
1053 IndexReg = X86::RAX;
1054 SegmentReg = X86::CS;
1055 break;
1058 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
1059 NopSize += NumPrefixes;
1060 for (unsigned i = 0; i != NumPrefixes; ++i)
1061 OS.EmitBytes("\x66");
1063 switch (Opc) {
1064 default: llvm_unreachable("Unexpected opcode");
1065 case X86::NOOP:
1066 OS.EmitInstruction(MCInstBuilder(Opc), STI);
1067 break;
1068 case X86::XCHG16ar:
1069 OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX), STI);
1070 break;
1071 case X86::NOOPL:
1072 case X86::NOOPW:
1073 OS.EmitInstruction(MCInstBuilder(Opc)
1074 .addReg(BaseReg)
1075 .addImm(ScaleVal)
1076 .addReg(IndexReg)
1077 .addImm(Displacement)
1078 .addReg(SegmentReg),
1079 STI);
1080 break;
1082 assert(NopSize <= NumBytes && "We overemitted?");
1083 return NopSize;
1086 /// Emit the optimal amount of multi-byte nops on X86.
1087 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
1088 const MCSubtargetInfo &STI) {
1089 unsigned NopsToEmit = NumBytes;
1090 (void)NopsToEmit;
1091 while (NumBytes) {
1092 NumBytes -= EmitNop(OS, NumBytes, Is64Bit, STI);
1093 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
1097 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
1098 X86MCInstLower &MCIL) {
1099 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
1101 StatepointOpers SOpers(&MI);
1102 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
1103 EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
1104 getSubtargetInfo());
1105 } else {
1106 // Lower call target and choose correct opcode
1107 const MachineOperand &CallTarget = SOpers.getCallTarget();
1108 MCOperand CallTargetMCOp;
1109 unsigned CallOpcode;
1110 switch (CallTarget.getType()) {
1111 case MachineOperand::MO_GlobalAddress:
1112 case MachineOperand::MO_ExternalSymbol:
1113 CallTargetMCOp = MCIL.LowerSymbolOperand(
1114 CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
1115 CallOpcode = X86::CALL64pcrel32;
1116 // Currently, we only support relative addressing with statepoints.
1117 // Otherwise, we'll need a scratch register to hold the target
1118 // address. You'll fail asserts during load & relocation if this
1119 // symbol is to far away. (TODO: support non-relative addressing)
1120 break;
1121 case MachineOperand::MO_Immediate:
1122 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
1123 CallOpcode = X86::CALL64pcrel32;
1124 // Currently, we only support relative addressing with statepoints.
1125 // Otherwise, we'll need a scratch register to hold the target
1126 // immediate. You'll fail asserts during load & relocation if this
1127 // address is to far away. (TODO: support non-relative addressing)
1128 break;
1129 case MachineOperand::MO_Register:
1130 // FIXME: Add retpoline support and remove this.
1131 if (Subtarget->useRetpolineIndirectCalls())
1132 report_fatal_error("Lowering register statepoints with retpoline not "
1133 "yet implemented.");
1134 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
1135 CallOpcode = X86::CALL64r;
1136 break;
1137 default:
1138 llvm_unreachable("Unsupported operand type in statepoint call target");
1139 break;
1142 // Emit call
1143 MCInst CallInst;
1144 CallInst.setOpcode(CallOpcode);
1145 CallInst.addOperand(CallTargetMCOp);
1146 OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
1149 // Record our statepoint node in the same section used by STACKMAP
1150 // and PATCHPOINT
1151 SM.recordStatepoint(MI);
1154 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
1155 X86MCInstLower &MCIL) {
1156 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
1157 // <opcode>, <operands>
1159 Register DefRegister = FaultingMI.getOperand(0).getReg();
1160 FaultMaps::FaultKind FK =
1161 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
1162 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
1163 unsigned Opcode = FaultingMI.getOperand(3).getImm();
1164 unsigned OperandsBeginIdx = 4;
1166 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
1167 FM.recordFaultingOp(FK, HandlerLabel);
1169 MCInst MI;
1170 MI.setOpcode(Opcode);
1172 if (DefRegister != X86::NoRegister)
1173 MI.addOperand(MCOperand::createReg(DefRegister));
1175 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
1176 E = FaultingMI.operands_end();
1177 I != E; ++I)
1178 if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
1179 MI.addOperand(MaybeOperand.getValue());
1181 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
1182 OutStreamer->EmitInstruction(MI, getSubtargetInfo());
1185 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
1186 X86MCInstLower &MCIL) {
1187 bool Is64Bits = Subtarget->is64Bit();
1188 MCContext &Ctx = OutStreamer->getContext();
1189 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
1190 const MCSymbolRefExpr *Op =
1191 MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
1193 EmitAndCountInstruction(
1194 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
1195 .addExpr(Op));
1198 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
1199 X86MCInstLower &MCIL) {
1200 // PATCHABLE_OP minsize, opcode, operands
1202 unsigned MinSize = MI.getOperand(0).getImm();
1203 unsigned Opcode = MI.getOperand(1).getImm();
1205 MCInst MCI;
1206 MCI.setOpcode(Opcode);
1207 for (auto &MO : make_range(MI.operands_begin() + 2, MI.operands_end()))
1208 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1209 MCI.addOperand(MaybeOperand.getValue());
1211 SmallString<256> Code;
1212 SmallVector<MCFixup, 4> Fixups;
1213 raw_svector_ostream VecOS(Code);
1214 CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
1216 if (Code.size() < MinSize) {
1217 if (MinSize == 2 && Opcode == X86::PUSH64r) {
1218 // This is an optimization that lets us get away without emitting a nop in
1219 // many cases.
1221 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1222 // bytes too, so the check on MinSize is important.
1223 MCI.setOpcode(X86::PUSH64rmr);
1224 } else {
1225 unsigned NopSize = EmitNop(*OutStreamer, MinSize, Subtarget->is64Bit(),
1226 getSubtargetInfo());
1227 assert(NopSize == MinSize && "Could not implement MinSize!");
1228 (void)NopSize;
1232 OutStreamer->EmitInstruction(MCI, getSubtargetInfo());
1235 // Lower a stackmap of the form:
1236 // <id>, <shadowBytes>, ...
1237 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1238 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1239 SM.recordStackMap(MI);
1240 unsigned NumShadowBytes = MI.getOperand(1).getImm();
1241 SMShadowTracker.reset(NumShadowBytes);
1244 // Lower a patchpoint of the form:
1245 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1246 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1247 X86MCInstLower &MCIL) {
1248 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1250 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1252 SM.recordPatchPoint(MI);
1254 PatchPointOpers opers(&MI);
1255 unsigned ScratchIdx = opers.getNextScratchIdx();
1256 unsigned EncodedBytes = 0;
1257 const MachineOperand &CalleeMO = opers.getCallTarget();
1259 // Check for null target. If target is non-null (i.e. is non-zero or is
1260 // symbolic) then emit a call.
1261 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1262 MCOperand CalleeMCOp;
1263 switch (CalleeMO.getType()) {
1264 default:
1265 /// FIXME: Add a verifier check for bad callee types.
1266 llvm_unreachable("Unrecognized callee operand type.");
1267 case MachineOperand::MO_Immediate:
1268 if (CalleeMO.getImm())
1269 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1270 break;
1271 case MachineOperand::MO_ExternalSymbol:
1272 case MachineOperand::MO_GlobalAddress:
1273 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1274 MCIL.GetSymbolFromOperand(CalleeMO));
1275 break;
1278 // Emit MOV to materialize the target address and the CALL to target.
1279 // This is encoded with 12-13 bytes, depending on which register is used.
1280 Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1281 if (X86II::isX86_64ExtendedReg(ScratchReg))
1282 EncodedBytes = 13;
1283 else
1284 EncodedBytes = 12;
1286 EmitAndCountInstruction(
1287 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1288 // FIXME: Add retpoline support and remove this.
1289 if (Subtarget->useRetpolineIndirectCalls())
1290 report_fatal_error(
1291 "Lowering patchpoint with retpoline not yet implemented.");
1292 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1295 // Emit padding.
1296 unsigned NumBytes = opers.getNumPatchBytes();
1297 assert(NumBytes >= EncodedBytes &&
1298 "Patchpoint can't request size less than the length of a call.");
1300 EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
1301 getSubtargetInfo());
1304 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1305 X86MCInstLower &MCIL) {
1306 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1308 // We want to emit the following pattern, which follows the x86 calling
1309 // convention to prepare for the trampoline call to be patched in.
1311 // .p2align 1, ...
1312 // .Lxray_event_sled_N:
1313 // jmp +N // jump across the instrumentation sled
1314 // ... // set up arguments in register
1315 // callq __xray_CustomEvent@plt // force dependency to symbol
1316 // ...
1317 // <jump here>
1319 // After patching, it would look something like:
1321 // nopw (2-byte nop)
1322 // ...
1323 // callq __xrayCustomEvent // already lowered
1324 // ...
1326 // ---
1327 // First we emit the label and the jump.
1328 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1329 OutStreamer->AddComment("# XRay Custom Event Log");
1330 OutStreamer->EmitCodeAlignment(2);
1331 OutStreamer->EmitLabel(CurSled);
1333 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1334 // an operand (computed as an offset from the jmp instruction).
1335 // FIXME: Find another less hacky way do force the relative jump.
1336 OutStreamer->EmitBinaryData("\xeb\x0f");
1338 // The default C calling convention will place two arguments into %rcx and
1339 // %rdx -- so we only work with those.
1340 unsigned DestRegs[] = {X86::RDI, X86::RSI};
1341 bool UsedMask[] = {false, false};
1342 // Filled out in loop.
1343 unsigned SrcRegs[] = {0, 0};
1345 // Then we put the operands in the %rdi and %rsi registers. We spill the
1346 // values in the register before we clobber them, and mark them as used in
1347 // UsedMask. In case the arguments are already in the correct register, we use
1348 // emit nops appropriately sized to keep the sled the same size in every
1349 // situation.
1350 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1351 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1352 assert(Op->isReg() && "Only support arguments in registers");
1353 SrcRegs[I] = Op->getReg();
1354 if (SrcRegs[I] != DestRegs[I]) {
1355 UsedMask[I] = true;
1356 EmitAndCountInstruction(
1357 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1358 } else {
1359 EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1363 // Now that the register values are stashed, mov arguments into place.
1364 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1365 if (SrcRegs[I] != DestRegs[I])
1366 EmitAndCountInstruction(
1367 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1369 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1370 // name of the trampoline to be implemented by the XRay runtime.
1371 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1372 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1373 if (isPositionIndependent())
1374 TOp.setTargetFlags(X86II::MO_PLT);
1376 // Emit the call instruction.
1377 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1378 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1380 // Restore caller-saved and used registers.
1381 for (unsigned I = sizeof UsedMask; I-- > 0;)
1382 if (UsedMask[I])
1383 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1384 else
1385 EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1387 OutStreamer->AddComment("xray custom event end.");
1389 // Record the sled version. Older versions of this sled were spelled
1390 // differently, so we let the runtime handle the different offsets we're
1391 // using.
1392 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 1);
1395 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1396 X86MCInstLower &MCIL) {
1397 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1399 // We want to emit the following pattern, which follows the x86 calling
1400 // convention to prepare for the trampoline call to be patched in.
1402 // .p2align 1, ...
1403 // .Lxray_event_sled_N:
1404 // jmp +N // jump across the instrumentation sled
1405 // ... // set up arguments in register
1406 // callq __xray_TypedEvent@plt // force dependency to symbol
1407 // ...
1408 // <jump here>
1410 // After patching, it would look something like:
1412 // nopw (2-byte nop)
1413 // ...
1414 // callq __xrayTypedEvent // already lowered
1415 // ...
1417 // ---
1418 // First we emit the label and the jump.
1419 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1420 OutStreamer->AddComment("# XRay Typed Event Log");
1421 OutStreamer->EmitCodeAlignment(2);
1422 OutStreamer->EmitLabel(CurSled);
1424 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1425 // an operand (computed as an offset from the jmp instruction).
1426 // FIXME: Find another less hacky way do force the relative jump.
1427 OutStreamer->EmitBinaryData("\xeb\x14");
1429 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1430 // so we'll work with those. Or we may be called via SystemV, in which case
1431 // we don't have to do any translation.
1432 unsigned DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1433 bool UsedMask[] = {false, false, false};
1435 // Will fill out src regs in the loop.
1436 unsigned SrcRegs[] = {0, 0, 0};
1438 // Then we put the operands in the SystemV registers. We spill the values in
1439 // the registers before we clobber them, and mark them as used in UsedMask.
1440 // In case the arguments are already in the correct register, we emit nops
1441 // appropriately sized to keep the sled the same size in every situation.
1442 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1443 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1444 // TODO: Is register only support adequate?
1445 assert(Op->isReg() && "Only supports arguments in registers");
1446 SrcRegs[I] = Op->getReg();
1447 if (SrcRegs[I] != DestRegs[I]) {
1448 UsedMask[I] = true;
1449 EmitAndCountInstruction(
1450 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1451 } else {
1452 EmitNops(*OutStreamer, 4, Subtarget->is64Bit(), getSubtargetInfo());
1456 // In the above loop we only stash all of the destination registers or emit
1457 // nops if the arguments are already in the right place. Doing the actually
1458 // moving is postponed until after all the registers are stashed so nothing
1459 // is clobbers. We've already added nops to account for the size of mov and
1460 // push if the register is in the right place, so we only have to worry about
1461 // emitting movs.
1462 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1463 if (UsedMask[I])
1464 EmitAndCountInstruction(
1465 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1467 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1468 // name of the trampoline to be implemented by the XRay runtime.
1469 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1470 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1471 if (isPositionIndependent())
1472 TOp.setTargetFlags(X86II::MO_PLT);
1474 // Emit the call instruction.
1475 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1476 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1478 // Restore caller-saved and used registers.
1479 for (unsigned I = sizeof UsedMask; I-- > 0;)
1480 if (UsedMask[I])
1481 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1482 else
1483 EmitNops(*OutStreamer, 1, Subtarget->is64Bit(), getSubtargetInfo());
1485 OutStreamer->AddComment("xray typed event end.");
1487 // Record the sled version.
1488 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 0);
1491 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1492 X86MCInstLower &MCIL) {
1493 // We want to emit the following pattern:
1495 // .p2align 1, ...
1496 // .Lxray_sled_N:
1497 // jmp .tmpN
1498 // # 9 bytes worth of noops
1500 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1501 // bytes with the following pattern:
1503 // mov %r10, <function id, 32-bit> // 6 bytes
1504 // call <relative offset, 32-bits> // 5 bytes
1506 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1507 OutStreamer->EmitCodeAlignment(2);
1508 OutStreamer->EmitLabel(CurSled);
1510 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1511 // an operand (computed as an offset from the jmp instruction).
1512 // FIXME: Find another less hacky way do force the relative jump.
1513 OutStreamer->EmitBytes("\xeb\x09");
1514 EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1515 recordSled(CurSled, MI, SledKind::FUNCTION_ENTER);
1518 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1519 X86MCInstLower &MCIL) {
1520 // Since PATCHABLE_RET takes the opcode of the return statement as an
1521 // argument, we use that to emit the correct form of the RET that we want.
1522 // i.e. when we see this:
1524 // PATCHABLE_RET X86::RET ...
1526 // We should emit the RET followed by sleds.
1528 // .p2align 1, ...
1529 // .Lxray_sled_N:
1530 // ret # or equivalent instruction
1531 // # 10 bytes worth of noops
1533 // This just makes sure that the alignment for the next instruction is 2.
1534 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1535 OutStreamer->EmitCodeAlignment(2);
1536 OutStreamer->EmitLabel(CurSled);
1537 unsigned OpCode = MI.getOperand(0).getImm();
1538 MCInst Ret;
1539 Ret.setOpcode(OpCode);
1540 for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1541 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1542 Ret.addOperand(MaybeOperand.getValue());
1543 OutStreamer->EmitInstruction(Ret, getSubtargetInfo());
1544 EmitNops(*OutStreamer, 10, Subtarget->is64Bit(), getSubtargetInfo());
1545 recordSled(CurSled, MI, SledKind::FUNCTION_EXIT);
1548 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1549 X86MCInstLower &MCIL) {
1550 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1551 // instruction so we lower that particular instruction and its operands.
1552 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1553 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1554 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1555 // tail call much like how we have it in PATCHABLE_RET.
1556 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1557 OutStreamer->EmitCodeAlignment(2);
1558 OutStreamer->EmitLabel(CurSled);
1559 auto Target = OutContext.createTempSymbol();
1561 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1562 // an operand (computed as an offset from the jmp instruction).
1563 // FIXME: Find another less hacky way do force the relative jump.
1564 OutStreamer->EmitBytes("\xeb\x09");
1565 EmitNops(*OutStreamer, 9, Subtarget->is64Bit(), getSubtargetInfo());
1566 OutStreamer->EmitLabel(Target);
1567 recordSled(CurSled, MI, SledKind::TAIL_CALL);
1569 unsigned OpCode = MI.getOperand(0).getImm();
1570 OpCode = convertTailJumpOpcode(OpCode);
1571 MCInst TC;
1572 TC.setOpcode(OpCode);
1574 // Before emitting the instruction, add a comment to indicate that this is
1575 // indeed a tail call.
1576 OutStreamer->AddComment("TAILCALL");
1577 for (auto &MO : make_range(MI.operands_begin() + 1, MI.operands_end()))
1578 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1579 TC.addOperand(MaybeOperand.getValue());
1580 OutStreamer->EmitInstruction(TC, getSubtargetInfo());
1583 // Returns instruction preceding MBBI in MachineFunction.
1584 // If MBBI is the first instruction of the first basic block, returns null.
1585 static MachineBasicBlock::const_iterator
1586 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1587 const MachineBasicBlock *MBB = MBBI->getParent();
1588 while (MBBI == MBB->begin()) {
1589 if (MBB == &MBB->getParent()->front())
1590 return MachineBasicBlock::const_iterator();
1591 MBB = MBB->getPrevNode();
1592 MBBI = MBB->end();
1594 --MBBI;
1595 return MBBI;
1598 static const Constant *getConstantFromPool(const MachineInstr &MI,
1599 const MachineOperand &Op) {
1600 if (!Op.isCPI() || Op.getOffset() != 0)
1601 return nullptr;
1603 ArrayRef<MachineConstantPoolEntry> Constants =
1604 MI.getParent()->getParent()->getConstantPool()->getConstants();
1605 const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
1607 // Bail if this is a machine constant pool entry, we won't be able to dig out
1608 // anything useful.
1609 if (ConstantEntry.isMachineConstantPoolEntry())
1610 return nullptr;
1612 const Constant *C = ConstantEntry.Val.ConstVal;
1613 assert((!C || ConstantEntry.getType() == C->getType()) &&
1614 "Expected a constant of the same type!");
1615 return C;
1618 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1619 unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1620 std::string Comment;
1622 // Compute the name for a register. This is really goofy because we have
1623 // multiple instruction printers that could (in theory) use different
1624 // names. Fortunately most people use the ATT style (outside of Windows)
1625 // and they actually agree on register naming here. Ultimately, this is
1626 // a comment, and so its OK if it isn't perfect.
1627 auto GetRegisterName = [](unsigned RegNum) -> StringRef {
1628 return X86ATTInstPrinter::getRegisterName(RegNum);
1631 const MachineOperand &DstOp = MI->getOperand(0);
1632 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1633 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1635 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1636 StringRef Src1Name =
1637 SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1638 StringRef Src2Name =
1639 SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1641 // One source operand, fix the mask to print all elements in one span.
1642 SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
1643 if (Src1Name == Src2Name)
1644 for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1645 if (ShuffleMask[i] >= e)
1646 ShuffleMask[i] -= e;
1648 raw_string_ostream CS(Comment);
1649 CS << DstName;
1651 // Handle AVX512 MASK/MASXZ write mask comments.
1652 // MASK: zmmX {%kY}
1653 // MASKZ: zmmX {%kY} {z}
1654 if (SrcOp1Idx > 1) {
1655 assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1657 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1658 if (WriteMaskOp.isReg()) {
1659 CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1661 if (SrcOp1Idx == 2) {
1662 CS << " {z}";
1667 CS << " = ";
1669 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1670 if (i != 0)
1671 CS << ",";
1672 if (ShuffleMask[i] == SM_SentinelZero) {
1673 CS << "zero";
1674 continue;
1677 // Otherwise, it must come from src1 or src2. Print the span of elements
1678 // that comes from this src.
1679 bool isSrc1 = ShuffleMask[i] < (int)e;
1680 CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1682 bool IsFirst = true;
1683 while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1684 (ShuffleMask[i] < (int)e) == isSrc1) {
1685 if (!IsFirst)
1686 CS << ',';
1687 else
1688 IsFirst = false;
1689 if (ShuffleMask[i] == SM_SentinelUndef)
1690 CS << "u";
1691 else
1692 CS << ShuffleMask[i] % (int)e;
1693 ++i;
1695 CS << ']';
1696 --i; // For loop increments element #.
1698 CS.flush();
1700 return Comment;
1703 static void printConstant(const APInt &Val, raw_ostream &CS) {
1704 if (Val.getBitWidth() <= 64) {
1705 CS << Val.getZExtValue();
1706 } else {
1707 // print multi-word constant as (w0,w1)
1708 CS << "(";
1709 for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1710 if (i > 0)
1711 CS << ",";
1712 CS << Val.getRawData()[i];
1714 CS << ")";
1718 static void printConstant(const APFloat &Flt, raw_ostream &CS) {
1719 SmallString<32> Str;
1720 // Force scientific notation to distinquish from integers.
1721 Flt.toString(Str, 0, 0);
1722 CS << Str;
1725 static void printConstant(const Constant *COp, raw_ostream &CS) {
1726 if (isa<UndefValue>(COp)) {
1727 CS << "u";
1728 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1729 printConstant(CI->getValue(), CS);
1730 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1731 printConstant(CF->getValueAPF(), CS);
1732 } else {
1733 CS << "?";
1737 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1738 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1739 assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1741 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1742 if (EmitFPOData) {
1743 X86TargetStreamer *XTS =
1744 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1745 switch (MI->getOpcode()) {
1746 case X86::SEH_PushReg:
1747 XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1748 break;
1749 case X86::SEH_StackAlloc:
1750 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1751 break;
1752 case X86::SEH_StackAlign:
1753 XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1754 break;
1755 case X86::SEH_SetFrame:
1756 assert(MI->getOperand(1).getImm() == 0 &&
1757 ".cv_fpo_setframe takes no offset");
1758 XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1759 break;
1760 case X86::SEH_EndPrologue:
1761 XTS->emitFPOEndPrologue();
1762 break;
1763 case X86::SEH_SaveReg:
1764 case X86::SEH_SaveXMM:
1765 case X86::SEH_PushFrame:
1766 llvm_unreachable("SEH_ directive incompatible with FPO");
1767 break;
1768 default:
1769 llvm_unreachable("expected SEH_ instruction");
1771 return;
1774 // Otherwise, use the .seh_ directives for all other Windows platforms.
1775 switch (MI->getOpcode()) {
1776 case X86::SEH_PushReg:
1777 OutStreamer->EmitWinCFIPushReg(MI->getOperand(0).getImm());
1778 break;
1780 case X86::SEH_SaveReg:
1781 OutStreamer->EmitWinCFISaveReg(MI->getOperand(0).getImm(),
1782 MI->getOperand(1).getImm());
1783 break;
1785 case X86::SEH_SaveXMM:
1786 OutStreamer->EmitWinCFISaveXMM(MI->getOperand(0).getImm(),
1787 MI->getOperand(1).getImm());
1788 break;
1790 case X86::SEH_StackAlloc:
1791 OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
1792 break;
1794 case X86::SEH_SetFrame:
1795 OutStreamer->EmitWinCFISetFrame(MI->getOperand(0).getImm(),
1796 MI->getOperand(1).getImm());
1797 break;
1799 case X86::SEH_PushFrame:
1800 OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
1801 break;
1803 case X86::SEH_EndPrologue:
1804 OutStreamer->EmitWinCFIEndProlog();
1805 break;
1807 default:
1808 llvm_unreachable("expected SEH_ instruction");
1812 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1813 if (Info.RegClass == X86::VR128RegClassID ||
1814 Info.RegClass == X86::VR128XRegClassID)
1815 return 128;
1816 if (Info.RegClass == X86::VR256RegClassID ||
1817 Info.RegClass == X86::VR256XRegClassID)
1818 return 256;
1819 if (Info.RegClass == X86::VR512RegClassID)
1820 return 512;
1821 llvm_unreachable("Unknown register class!");
1824 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
1825 X86MCInstLower MCInstLowering(*MF, *this);
1826 const X86RegisterInfo *RI =
1827 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
1829 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
1830 // are compressed from EVEX encoding to VEX encoding.
1831 if (TM.Options.MCOptions.ShowMCEncoding) {
1832 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
1833 OutStreamer->AddComment("EVEX TO VEX Compression ", false);
1836 switch (MI->getOpcode()) {
1837 case TargetOpcode::DBG_VALUE:
1838 llvm_unreachable("Should be handled target independently");
1840 // Emit nothing here but a comment if we can.
1841 case X86::Int_MemBarrier:
1842 OutStreamer->emitRawComment("MEMBARRIER");
1843 return;
1845 case X86::EH_RETURN:
1846 case X86::EH_RETURN64: {
1847 // Lower these as normal, but add some comments.
1848 Register Reg = MI->getOperand(0).getReg();
1849 OutStreamer->AddComment(StringRef("eh_return, addr: %") +
1850 X86ATTInstPrinter::getRegisterName(Reg));
1851 break;
1853 case X86::CLEANUPRET: {
1854 // Lower these as normal, but add some comments.
1855 OutStreamer->AddComment("CLEANUPRET");
1856 break;
1859 case X86::CATCHRET: {
1860 // Lower these as normal, but add some comments.
1861 OutStreamer->AddComment("CATCHRET");
1862 break;
1865 case X86::TAILJMPr:
1866 case X86::TAILJMPm:
1867 case X86::TAILJMPd:
1868 case X86::TAILJMPd_CC:
1869 case X86::TAILJMPr64:
1870 case X86::TAILJMPm64:
1871 case X86::TAILJMPd64:
1872 case X86::TAILJMPd64_CC:
1873 case X86::TAILJMPr64_REX:
1874 case X86::TAILJMPm64_REX:
1875 // Lower these as normal, but add some comments.
1876 OutStreamer->AddComment("TAILCALL");
1877 break;
1879 case X86::TLS_addr32:
1880 case X86::TLS_addr64:
1881 case X86::TLS_base_addr32:
1882 case X86::TLS_base_addr64:
1883 return LowerTlsAddr(MCInstLowering, *MI);
1885 // Loading/storing mask pairs requires two kmov operations. The second one of these
1886 // needs a 2 byte displacement relative to the specified address (with 32 bit spill
1887 // size). The pairs of 1bit masks up to 16 bit masks all use the same spill size,
1888 // they all are stored using MASKPAIR16STORE, loaded using MASKPAIR16LOAD.
1890 // The displacement value might wrap around in theory, thus the asserts in both
1891 // cases.
1892 case X86::MASKPAIR16LOAD: {
1893 int64_t Disp = MI->getOperand(1 + X86::AddrDisp).getImm();
1894 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
1895 Register Reg = MI->getOperand(0).getReg();
1896 Register Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
1897 Register Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
1899 // Load the first mask register
1900 MCInstBuilder MIB = MCInstBuilder(X86::KMOVWkm);
1901 MIB.addReg(Reg0);
1902 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1903 auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
1904 MIB.addOperand(Op.getValue());
1906 EmitAndCountInstruction(MIB);
1908 // Load the second mask register of the pair
1909 MIB = MCInstBuilder(X86::KMOVWkm);
1910 MIB.addReg(Reg1);
1911 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1912 if (i == X86::AddrDisp) {
1913 MIB.addImm(Disp + 2);
1914 } else {
1915 auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(1 + i));
1916 MIB.addOperand(Op.getValue());
1919 EmitAndCountInstruction(MIB);
1920 return;
1923 case X86::MASKPAIR16STORE: {
1924 int64_t Disp = MI->getOperand(X86::AddrDisp).getImm();
1925 assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
1926 Register Reg = MI->getOperand(X86::AddrNumOperands).getReg();
1927 Register Reg0 = RI->getSubReg(Reg, X86::sub_mask_0);
1928 Register Reg1 = RI->getSubReg(Reg, X86::sub_mask_1);
1930 // Store the first mask register
1931 MCInstBuilder MIB = MCInstBuilder(X86::KMOVWmk);
1932 for (int i = 0; i < X86::AddrNumOperands; ++i)
1933 MIB.addOperand(MCInstLowering.LowerMachineOperand(MI, MI->getOperand(i)).getValue());
1934 MIB.addReg(Reg0);
1935 EmitAndCountInstruction(MIB);
1937 // Store the second mask register of the pair
1938 MIB = MCInstBuilder(X86::KMOVWmk);
1939 for (int i = 0; i < X86::AddrNumOperands; ++i) {
1940 if (i == X86::AddrDisp) {
1941 MIB.addImm(Disp + 2);
1942 } else {
1943 auto Op = MCInstLowering.LowerMachineOperand(MI, MI->getOperand(0 + i));
1944 MIB.addOperand(Op.getValue());
1947 MIB.addReg(Reg1);
1948 EmitAndCountInstruction(MIB);
1949 return;
1952 case X86::MOVPC32r: {
1953 // This is a pseudo op for a two instruction sequence with a label, which
1954 // looks like:
1955 // call "L1$pb"
1956 // "L1$pb":
1957 // popl %esi
1959 // Emit the call.
1960 MCSymbol *PICBase = MF->getPICBaseSymbol();
1961 // FIXME: We would like an efficient form for this, so we don't have to do a
1962 // lot of extra uniquing.
1963 EmitAndCountInstruction(
1964 MCInstBuilder(X86::CALLpcrel32)
1965 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
1967 const X86FrameLowering *FrameLowering =
1968 MF->getSubtarget<X86Subtarget>().getFrameLowering();
1969 bool hasFP = FrameLowering->hasFP(*MF);
1971 // TODO: This is needed only if we require precise CFA.
1972 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
1973 !OutStreamer->getDwarfFrameInfos().back().End;
1975 int stackGrowth = -RI->getSlotSize();
1977 if (HasActiveDwarfFrame && !hasFP) {
1978 OutStreamer->EmitCFIAdjustCfaOffset(-stackGrowth);
1981 // Emit the label.
1982 OutStreamer->EmitLabel(PICBase);
1984 // popl $reg
1985 EmitAndCountInstruction(
1986 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
1988 if (HasActiveDwarfFrame && !hasFP) {
1989 OutStreamer->EmitCFIAdjustCfaOffset(stackGrowth);
1991 return;
1994 case X86::ADD32ri: {
1995 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
1996 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
1997 break;
1999 // Okay, we have something like:
2000 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2002 // For this, we want to print something like:
2003 // MYGLOBAL + (. - PICBASE)
2004 // However, we can't generate a ".", so just emit a new label here and refer
2005 // to it.
2006 MCSymbol *DotSym = OutContext.createTempSymbol();
2007 OutStreamer->EmitLabel(DotSym);
2009 // Now that we have emitted the label, lower the complex operand expression.
2010 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2012 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2013 const MCExpr *PICBase =
2014 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
2015 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2017 DotExpr = MCBinaryExpr::createAdd(
2018 MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
2020 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2021 .addReg(MI->getOperand(0).getReg())
2022 .addReg(MI->getOperand(1).getReg())
2023 .addExpr(DotExpr));
2024 return;
2026 case TargetOpcode::STATEPOINT:
2027 return LowerSTATEPOINT(*MI, MCInstLowering);
2029 case TargetOpcode::FAULTING_OP:
2030 return LowerFAULTING_OP(*MI, MCInstLowering);
2032 case TargetOpcode::FENTRY_CALL:
2033 return LowerFENTRY_CALL(*MI, MCInstLowering);
2035 case TargetOpcode::PATCHABLE_OP:
2036 return LowerPATCHABLE_OP(*MI, MCInstLowering);
2038 case TargetOpcode::STACKMAP:
2039 return LowerSTACKMAP(*MI);
2041 case TargetOpcode::PATCHPOINT:
2042 return LowerPATCHPOINT(*MI, MCInstLowering);
2044 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2045 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2047 case TargetOpcode::PATCHABLE_RET:
2048 return LowerPATCHABLE_RET(*MI, MCInstLowering);
2050 case TargetOpcode::PATCHABLE_TAIL_CALL:
2051 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2053 case TargetOpcode::PATCHABLE_EVENT_CALL:
2054 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2056 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2057 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2059 case X86::MORESTACK_RET:
2060 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2061 return;
2063 case X86::MORESTACK_RET_RESTORE_R10:
2064 // Return, then restore R10.
2065 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2066 EmitAndCountInstruction(
2067 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2068 return;
2070 case X86::SEH_PushReg:
2071 case X86::SEH_SaveReg:
2072 case X86::SEH_SaveXMM:
2073 case X86::SEH_StackAlloc:
2074 case X86::SEH_StackAlign:
2075 case X86::SEH_SetFrame:
2076 case X86::SEH_PushFrame:
2077 case X86::SEH_EndPrologue:
2078 EmitSEHInstruction(MI);
2079 return;
2081 case X86::SEH_Epilogue: {
2082 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2083 MachineBasicBlock::const_iterator MBBI(MI);
2084 // Check if preceded by a call and emit nop if so.
2085 for (MBBI = PrevCrossBBInst(MBBI);
2086 MBBI != MachineBasicBlock::const_iterator();
2087 MBBI = PrevCrossBBInst(MBBI)) {
2088 // Conservatively assume that pseudo instructions don't emit code and keep
2089 // looking for a call. We may emit an unnecessary nop in some cases.
2090 if (!MBBI->isPseudo()) {
2091 if (MBBI->isCall())
2092 EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2093 break;
2096 return;
2099 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
2100 // a constant shuffle mask. We won't be able to do this at the MC layer
2101 // because the mask isn't an immediate.
2102 case X86::PSHUFBrm:
2103 case X86::VPSHUFBrm:
2104 case X86::VPSHUFBYrm:
2105 case X86::VPSHUFBZ128rm:
2106 case X86::VPSHUFBZ128rmk:
2107 case X86::VPSHUFBZ128rmkz:
2108 case X86::VPSHUFBZ256rm:
2109 case X86::VPSHUFBZ256rmk:
2110 case X86::VPSHUFBZ256rmkz:
2111 case X86::VPSHUFBZrm:
2112 case X86::VPSHUFBZrmk:
2113 case X86::VPSHUFBZrmkz: {
2114 if (!OutStreamer->isVerboseAsm())
2115 break;
2116 unsigned SrcIdx, MaskIdx;
2117 switch (MI->getOpcode()) {
2118 default: llvm_unreachable("Invalid opcode");
2119 case X86::PSHUFBrm:
2120 case X86::VPSHUFBrm:
2121 case X86::VPSHUFBYrm:
2122 case X86::VPSHUFBZ128rm:
2123 case X86::VPSHUFBZ256rm:
2124 case X86::VPSHUFBZrm:
2125 SrcIdx = 1; MaskIdx = 5; break;
2126 case X86::VPSHUFBZ128rmkz:
2127 case X86::VPSHUFBZ256rmkz:
2128 case X86::VPSHUFBZrmkz:
2129 SrcIdx = 2; MaskIdx = 6; break;
2130 case X86::VPSHUFBZ128rmk:
2131 case X86::VPSHUFBZ256rmk:
2132 case X86::VPSHUFBZrmk:
2133 SrcIdx = 3; MaskIdx = 7; break;
2136 assert(MI->getNumOperands() >= 6 &&
2137 "We should always have at least 6 operands!");
2139 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2140 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2141 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2142 SmallVector<int, 64> Mask;
2143 DecodePSHUFBMask(C, Width, Mask);
2144 if (!Mask.empty())
2145 OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2147 break;
2150 case X86::VPERMILPSrm:
2151 case X86::VPERMILPSYrm:
2152 case X86::VPERMILPSZ128rm:
2153 case X86::VPERMILPSZ128rmk:
2154 case X86::VPERMILPSZ128rmkz:
2155 case X86::VPERMILPSZ256rm:
2156 case X86::VPERMILPSZ256rmk:
2157 case X86::VPERMILPSZ256rmkz:
2158 case X86::VPERMILPSZrm:
2159 case X86::VPERMILPSZrmk:
2160 case X86::VPERMILPSZrmkz:
2161 case X86::VPERMILPDrm:
2162 case X86::VPERMILPDYrm:
2163 case X86::VPERMILPDZ128rm:
2164 case X86::VPERMILPDZ128rmk:
2165 case X86::VPERMILPDZ128rmkz:
2166 case X86::VPERMILPDZ256rm:
2167 case X86::VPERMILPDZ256rmk:
2168 case X86::VPERMILPDZ256rmkz:
2169 case X86::VPERMILPDZrm:
2170 case X86::VPERMILPDZrmk:
2171 case X86::VPERMILPDZrmkz: {
2172 if (!OutStreamer->isVerboseAsm())
2173 break;
2174 unsigned SrcIdx, MaskIdx;
2175 unsigned ElSize;
2176 switch (MI->getOpcode()) {
2177 default: llvm_unreachable("Invalid opcode");
2178 case X86::VPERMILPSrm:
2179 case X86::VPERMILPSYrm:
2180 case X86::VPERMILPSZ128rm:
2181 case X86::VPERMILPSZ256rm:
2182 case X86::VPERMILPSZrm:
2183 SrcIdx = 1; MaskIdx = 5; ElSize = 32; break;
2184 case X86::VPERMILPSZ128rmkz:
2185 case X86::VPERMILPSZ256rmkz:
2186 case X86::VPERMILPSZrmkz:
2187 SrcIdx = 2; MaskIdx = 6; ElSize = 32; break;
2188 case X86::VPERMILPSZ128rmk:
2189 case X86::VPERMILPSZ256rmk:
2190 case X86::VPERMILPSZrmk:
2191 SrcIdx = 3; MaskIdx = 7; ElSize = 32; break;
2192 case X86::VPERMILPDrm:
2193 case X86::VPERMILPDYrm:
2194 case X86::VPERMILPDZ128rm:
2195 case X86::VPERMILPDZ256rm:
2196 case X86::VPERMILPDZrm:
2197 SrcIdx = 1; MaskIdx = 5; ElSize = 64; break;
2198 case X86::VPERMILPDZ128rmkz:
2199 case X86::VPERMILPDZ256rmkz:
2200 case X86::VPERMILPDZrmkz:
2201 SrcIdx = 2; MaskIdx = 6; ElSize = 64; break;
2202 case X86::VPERMILPDZ128rmk:
2203 case X86::VPERMILPDZ256rmk:
2204 case X86::VPERMILPDZrmk:
2205 SrcIdx = 3; MaskIdx = 7; ElSize = 64; break;
2208 assert(MI->getNumOperands() >= 6 &&
2209 "We should always have at least 6 operands!");
2211 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2212 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2213 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2214 SmallVector<int, 16> Mask;
2215 DecodeVPERMILPMask(C, ElSize, Width, Mask);
2216 if (!Mask.empty())
2217 OutStreamer->AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2219 break;
2222 case X86::VPERMIL2PDrm:
2223 case X86::VPERMIL2PSrm:
2224 case X86::VPERMIL2PDYrm:
2225 case X86::VPERMIL2PSYrm: {
2226 if (!OutStreamer->isVerboseAsm())
2227 break;
2228 assert(MI->getNumOperands() >= 8 &&
2229 "We should always have at least 8 operands!");
2231 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
2232 if (!CtrlOp.isImm())
2233 break;
2235 unsigned ElSize;
2236 switch (MI->getOpcode()) {
2237 default: llvm_unreachable("Invalid opcode");
2238 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
2239 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
2242 const MachineOperand &MaskOp = MI->getOperand(6);
2243 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2244 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2245 SmallVector<int, 16> Mask;
2246 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
2247 if (!Mask.empty())
2248 OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
2250 break;
2253 case X86::VPPERMrrm: {
2254 if (!OutStreamer->isVerboseAsm())
2255 break;
2256 assert(MI->getNumOperands() >= 7 &&
2257 "We should always have at least 7 operands!");
2259 const MachineOperand &MaskOp = MI->getOperand(6);
2260 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2261 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2262 SmallVector<int, 16> Mask;
2263 DecodeVPPERMMask(C, Width, Mask);
2264 if (!Mask.empty())
2265 OutStreamer->AddComment(getShuffleComment(MI, 1, 2, Mask));
2267 break;
2270 case X86::MMX_MOVQ64rm: {
2271 if (!OutStreamer->isVerboseAsm())
2272 break;
2273 if (MI->getNumOperands() <= 4)
2274 break;
2275 if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2276 std::string Comment;
2277 raw_string_ostream CS(Comment);
2278 const MachineOperand &DstOp = MI->getOperand(0);
2279 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2280 if (auto *CF = dyn_cast<ConstantFP>(C)) {
2281 CS << "0x" << CF->getValueAPF().bitcastToAPInt().toString(16, false);
2282 OutStreamer->AddComment(CS.str());
2285 break;
2288 #define MOV_CASE(Prefix, Suffix) \
2289 case X86::Prefix##MOVAPD##Suffix##rm: \
2290 case X86::Prefix##MOVAPS##Suffix##rm: \
2291 case X86::Prefix##MOVUPD##Suffix##rm: \
2292 case X86::Prefix##MOVUPS##Suffix##rm: \
2293 case X86::Prefix##MOVDQA##Suffix##rm: \
2294 case X86::Prefix##MOVDQU##Suffix##rm:
2296 #define MOV_AVX512_CASE(Suffix) \
2297 case X86::VMOVDQA64##Suffix##rm: \
2298 case X86::VMOVDQA32##Suffix##rm: \
2299 case X86::VMOVDQU64##Suffix##rm: \
2300 case X86::VMOVDQU32##Suffix##rm: \
2301 case X86::VMOVDQU16##Suffix##rm: \
2302 case X86::VMOVDQU8##Suffix##rm: \
2303 case X86::VMOVAPS##Suffix##rm: \
2304 case X86::VMOVAPD##Suffix##rm: \
2305 case X86::VMOVUPS##Suffix##rm: \
2306 case X86::VMOVUPD##Suffix##rm:
2308 #define CASE_ALL_MOV_RM() \
2309 MOV_CASE(, ) /* SSE */ \
2310 MOV_CASE(V, ) /* AVX-128 */ \
2311 MOV_CASE(V, Y) /* AVX-256 */ \
2312 MOV_AVX512_CASE(Z) \
2313 MOV_AVX512_CASE(Z256) \
2314 MOV_AVX512_CASE(Z128)
2316 // For loads from a constant pool to a vector register, print the constant
2317 // loaded.
2318 CASE_ALL_MOV_RM()
2319 case X86::VBROADCASTF128:
2320 case X86::VBROADCASTI128:
2321 case X86::VBROADCASTF32X4Z256rm:
2322 case X86::VBROADCASTF32X4rm:
2323 case X86::VBROADCASTF32X8rm:
2324 case X86::VBROADCASTF64X2Z128rm:
2325 case X86::VBROADCASTF64X2rm:
2326 case X86::VBROADCASTF64X4rm:
2327 case X86::VBROADCASTI32X4Z256rm:
2328 case X86::VBROADCASTI32X4rm:
2329 case X86::VBROADCASTI32X8rm:
2330 case X86::VBROADCASTI64X2Z128rm:
2331 case X86::VBROADCASTI64X2rm:
2332 case X86::VBROADCASTI64X4rm:
2333 if (!OutStreamer->isVerboseAsm())
2334 break;
2335 if (MI->getNumOperands() <= 4)
2336 break;
2337 if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2338 int NumLanes = 1;
2339 // Override NumLanes for the broadcast instructions.
2340 switch (MI->getOpcode()) {
2341 case X86::VBROADCASTF128: NumLanes = 2; break;
2342 case X86::VBROADCASTI128: NumLanes = 2; break;
2343 case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
2344 case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
2345 case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
2346 case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
2347 case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
2348 case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
2349 case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
2350 case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
2351 case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
2352 case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
2353 case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
2354 case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
2357 std::string Comment;
2358 raw_string_ostream CS(Comment);
2359 const MachineOperand &DstOp = MI->getOperand(0);
2360 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2361 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
2362 CS << "[";
2363 for (int l = 0; l != NumLanes; ++l) {
2364 for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
2365 ++i) {
2366 if (i != 0 || l != 0)
2367 CS << ",";
2368 if (CDS->getElementType()->isIntegerTy())
2369 printConstant(CDS->getElementAsAPInt(i), CS);
2370 else if (CDS->getElementType()->isHalfTy() ||
2371 CDS->getElementType()->isFloatTy() ||
2372 CDS->getElementType()->isDoubleTy())
2373 printConstant(CDS->getElementAsAPFloat(i), CS);
2374 else
2375 CS << "?";
2378 CS << "]";
2379 OutStreamer->AddComment(CS.str());
2380 } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
2381 CS << "<";
2382 for (int l = 0; l != NumLanes; ++l) {
2383 for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
2384 ++i) {
2385 if (i != 0 || l != 0)
2386 CS << ",";
2387 printConstant(CV->getOperand(i), CS);
2390 CS << ">";
2391 OutStreamer->AddComment(CS.str());
2394 break;
2395 case X86::MOVDDUPrm:
2396 case X86::VMOVDDUPrm:
2397 case X86::VMOVDDUPZ128rm:
2398 case X86::VBROADCASTSSrm:
2399 case X86::VBROADCASTSSYrm:
2400 case X86::VBROADCASTSSZ128m:
2401 case X86::VBROADCASTSSZ256m:
2402 case X86::VBROADCASTSSZm:
2403 case X86::VBROADCASTSDYrm:
2404 case X86::VBROADCASTSDZ256m:
2405 case X86::VBROADCASTSDZm:
2406 case X86::VPBROADCASTBrm:
2407 case X86::VPBROADCASTBYrm:
2408 case X86::VPBROADCASTBZ128m:
2409 case X86::VPBROADCASTBZ256m:
2410 case X86::VPBROADCASTBZm:
2411 case X86::VPBROADCASTDrm:
2412 case X86::VPBROADCASTDYrm:
2413 case X86::VPBROADCASTDZ128m:
2414 case X86::VPBROADCASTDZ256m:
2415 case X86::VPBROADCASTDZm:
2416 case X86::VPBROADCASTQrm:
2417 case X86::VPBROADCASTQYrm:
2418 case X86::VPBROADCASTQZ128m:
2419 case X86::VPBROADCASTQZ256m:
2420 case X86::VPBROADCASTQZm:
2421 case X86::VPBROADCASTWrm:
2422 case X86::VPBROADCASTWYrm:
2423 case X86::VPBROADCASTWZ128m:
2424 case X86::VPBROADCASTWZ256m:
2425 case X86::VPBROADCASTWZm:
2426 if (!OutStreamer->isVerboseAsm())
2427 break;
2428 if (MI->getNumOperands() <= 4)
2429 break;
2430 if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
2431 int NumElts;
2432 switch (MI->getOpcode()) {
2433 default: llvm_unreachable("Invalid opcode");
2434 case X86::MOVDDUPrm: NumElts = 2; break;
2435 case X86::VMOVDDUPrm: NumElts = 2; break;
2436 case X86::VMOVDDUPZ128rm: NumElts = 2; break;
2437 case X86::VBROADCASTSSrm: NumElts = 4; break;
2438 case X86::VBROADCASTSSYrm: NumElts = 8; break;
2439 case X86::VBROADCASTSSZ128m: NumElts = 4; break;
2440 case X86::VBROADCASTSSZ256m: NumElts = 8; break;
2441 case X86::VBROADCASTSSZm: NumElts = 16; break;
2442 case X86::VBROADCASTSDYrm: NumElts = 4; break;
2443 case X86::VBROADCASTSDZ256m: NumElts = 4; break;
2444 case X86::VBROADCASTSDZm: NumElts = 8; break;
2445 case X86::VPBROADCASTBrm: NumElts = 16; break;
2446 case X86::VPBROADCASTBYrm: NumElts = 32; break;
2447 case X86::VPBROADCASTBZ128m: NumElts = 16; break;
2448 case X86::VPBROADCASTBZ256m: NumElts = 32; break;
2449 case X86::VPBROADCASTBZm: NumElts = 64; break;
2450 case X86::VPBROADCASTDrm: NumElts = 4; break;
2451 case X86::VPBROADCASTDYrm: NumElts = 8; break;
2452 case X86::VPBROADCASTDZ128m: NumElts = 4; break;
2453 case X86::VPBROADCASTDZ256m: NumElts = 8; break;
2454 case X86::VPBROADCASTDZm: NumElts = 16; break;
2455 case X86::VPBROADCASTQrm: NumElts = 2; break;
2456 case X86::VPBROADCASTQYrm: NumElts = 4; break;
2457 case X86::VPBROADCASTQZ128m: NumElts = 2; break;
2458 case X86::VPBROADCASTQZ256m: NumElts = 4; break;
2459 case X86::VPBROADCASTQZm: NumElts = 8; break;
2460 case X86::VPBROADCASTWrm: NumElts = 8; break;
2461 case X86::VPBROADCASTWYrm: NumElts = 16; break;
2462 case X86::VPBROADCASTWZ128m: NumElts = 8; break;
2463 case X86::VPBROADCASTWZ256m: NumElts = 16; break;
2464 case X86::VPBROADCASTWZm: NumElts = 32; break;
2467 std::string Comment;
2468 raw_string_ostream CS(Comment);
2469 const MachineOperand &DstOp = MI->getOperand(0);
2470 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2471 CS << "[";
2472 for (int i = 0; i != NumElts; ++i) {
2473 if (i != 0)
2474 CS << ",";
2475 printConstant(C, CS);
2477 CS << "]";
2478 OutStreamer->AddComment(CS.str());
2482 MCInst TmpInst;
2483 MCInstLowering.Lower(MI, TmpInst);
2485 // Stackmap shadows cannot include branch targets, so we can count the bytes
2486 // in a call towards the shadow, but must ensure that the no thread returns
2487 // in to the stackmap shadow. The only way to achieve this is if the call
2488 // is at the end of the shadow.
2489 if (MI->isCall()) {
2490 // Count then size of the call towards the shadow
2491 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2492 // Then flush the shadow so that we fill with nops before the call, not
2493 // after it.
2494 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2495 // Then emit the call
2496 OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
2497 return;
2500 EmitAndCountInstruction(TmpInst);