[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / X86 / X86RetpolineThunks.cpp
blobf8464c7e82981007eddec67d29adeb064ecff57f
1 //======- X86RetpolineThunks.cpp - Construct retpoline thunks for x86 --=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Pass that injects an MI thunk implementing a "retpoline". This is
11 /// a RET-implemented trampoline that is used to lower indirect calls in a way
12 /// that prevents speculation on some x86 processors and can be used to mitigate
13 /// security vulnerabilities due to targeted speculative execution and side
14 /// channels such as CVE-2017-5715.
15 ///
16 /// TODO(chandlerc): All of this code could use better comments and
17 /// documentation.
18 ///
19 //===----------------------------------------------------------------------===//
21 #include "X86.h"
22 #include "X86InstrBuilder.h"
23 #include "X86Subtarget.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetPassConfig.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
38 #define DEBUG_TYPE "x86-retpoline-thunks"
40 static const char ThunkNamePrefix[] = "__llvm_retpoline_";
41 static const char R11ThunkName[] = "__llvm_retpoline_r11";
42 static const char EAXThunkName[] = "__llvm_retpoline_eax";
43 static const char ECXThunkName[] = "__llvm_retpoline_ecx";
44 static const char EDXThunkName[] = "__llvm_retpoline_edx";
45 static const char EDIThunkName[] = "__llvm_retpoline_edi";
47 namespace {
48 class X86RetpolineThunks : public MachineFunctionPass {
49 public:
50 static char ID;
52 X86RetpolineThunks() : MachineFunctionPass(ID) {}
54 StringRef getPassName() const override { return "X86 Retpoline Thunks"; }
56 bool doInitialization(Module &M) override;
57 bool runOnMachineFunction(MachineFunction &F) override;
59 void getAnalysisUsage(AnalysisUsage &AU) const override {
60 MachineFunctionPass::getAnalysisUsage(AU);
61 AU.addRequired<MachineModuleInfoWrapperPass>();
62 AU.addPreserved<MachineModuleInfoWrapperPass>();
65 private:
66 MachineModuleInfo *MMI;
67 const TargetMachine *TM;
68 bool Is64Bit;
69 const X86Subtarget *STI;
70 const X86InstrInfo *TII;
72 bool InsertedThunks;
74 void createThunkFunction(Module &M, StringRef Name);
75 void insertRegReturnAddrClobber(MachineBasicBlock &MBB, unsigned Reg);
76 void populateThunk(MachineFunction &MF, unsigned Reg);
79 } // end anonymous namespace
81 FunctionPass *llvm::createX86RetpolineThunksPass() {
82 return new X86RetpolineThunks();
85 char X86RetpolineThunks::ID = 0;
87 bool X86RetpolineThunks::doInitialization(Module &M) {
88 InsertedThunks = false;
89 return false;
92 bool X86RetpolineThunks::runOnMachineFunction(MachineFunction &MF) {
93 LLVM_DEBUG(dbgs() << getPassName() << '\n');
95 TM = &MF.getTarget();;
96 STI = &MF.getSubtarget<X86Subtarget>();
97 TII = STI->getInstrInfo();
98 Is64Bit = TM->getTargetTriple().getArch() == Triple::x86_64;
100 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
101 Module &M = const_cast<Module &>(*MMI->getModule());
103 // If this function is not a thunk, check to see if we need to insert
104 // a thunk.
105 if (!MF.getName().startswith(ThunkNamePrefix)) {
106 // If we've already inserted a thunk, nothing else to do.
107 if (InsertedThunks)
108 return false;
110 // Only add a thunk if one of the functions has the retpoline feature
111 // enabled in its subtarget, and doesn't enable external thunks.
112 // FIXME: Conditionalize on indirect calls so we don't emit a thunk when
113 // nothing will end up calling it.
114 // FIXME: It's a little silly to look at every function just to enumerate
115 // the subtargets, but eventually we'll want to look at them for indirect
116 // calls, so maybe this is OK.
117 if ((!STI->useRetpolineIndirectCalls() &&
118 !STI->useRetpolineIndirectBranches()) ||
119 STI->useRetpolineExternalThunk())
120 return false;
122 // Otherwise, we need to insert the thunk.
123 // WARNING: This is not really a well behaving thing to do in a function
124 // pass. We extract the module and insert a new function (and machine
125 // function) directly into the module.
126 if (Is64Bit)
127 createThunkFunction(M, R11ThunkName);
128 else
129 for (StringRef Name :
130 {EAXThunkName, ECXThunkName, EDXThunkName, EDIThunkName})
131 createThunkFunction(M, Name);
132 InsertedThunks = true;
133 return true;
136 // If this *is* a thunk function, we need to populate it with the correct MI.
137 if (Is64Bit) {
138 assert(MF.getName() == "__llvm_retpoline_r11" &&
139 "Should only have an r11 thunk on 64-bit targets");
141 // __llvm_retpoline_r11:
142 // callq .Lr11_call_target
143 // .Lr11_capture_spec:
144 // pause
145 // lfence
146 // jmp .Lr11_capture_spec
147 // .align 16
148 // .Lr11_call_target:
149 // movq %r11, (%rsp)
150 // retq
151 populateThunk(MF, X86::R11);
152 } else {
153 // For 32-bit targets we need to emit a collection of thunks for various
154 // possible scratch registers as well as a fallback that uses EDI, which is
155 // normally callee saved.
156 // __llvm_retpoline_eax:
157 // calll .Leax_call_target
158 // .Leax_capture_spec:
159 // pause
160 // jmp .Leax_capture_spec
161 // .align 16
162 // .Leax_call_target:
163 // movl %eax, (%esp) # Clobber return addr
164 // retl
166 // __llvm_retpoline_ecx:
167 // ... # Same setup
168 // movl %ecx, (%esp)
169 // retl
171 // __llvm_retpoline_edx:
172 // ... # Same setup
173 // movl %edx, (%esp)
174 // retl
176 // __llvm_retpoline_edi:
177 // ... # Same setup
178 // movl %edi, (%esp)
179 // retl
180 if (MF.getName() == EAXThunkName)
181 populateThunk(MF, X86::EAX);
182 else if (MF.getName() == ECXThunkName)
183 populateThunk(MF, X86::ECX);
184 else if (MF.getName() == EDXThunkName)
185 populateThunk(MF, X86::EDX);
186 else if (MF.getName() == EDIThunkName)
187 populateThunk(MF, X86::EDI);
188 else
189 llvm_unreachable("Invalid thunk name on x86-32!");
192 return true;
195 void X86RetpolineThunks::createThunkFunction(Module &M, StringRef Name) {
196 assert(Name.startswith(ThunkNamePrefix) &&
197 "Created a thunk with an unexpected prefix!");
199 LLVMContext &Ctx = M.getContext();
200 auto Type = FunctionType::get(Type::getVoidTy(Ctx), false);
201 Function *F =
202 Function::Create(Type, GlobalValue::LinkOnceODRLinkage, Name, &M);
203 F->setVisibility(GlobalValue::HiddenVisibility);
204 F->setComdat(M.getOrInsertComdat(Name));
206 // Add Attributes so that we don't create a frame, unwind information, or
207 // inline.
208 AttrBuilder B;
209 B.addAttribute(llvm::Attribute::NoUnwind);
210 B.addAttribute(llvm::Attribute::Naked);
211 F->addAttributes(llvm::AttributeList::FunctionIndex, B);
213 // Populate our function a bit so that we can verify.
214 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
215 IRBuilder<> Builder(Entry);
217 Builder.CreateRetVoid();
219 // MachineFunctions/MachineBasicBlocks aren't created automatically for the
220 // IR-level constructs we already made. Create them and insert them into the
221 // module.
222 MachineFunction &MF = MMI->getOrCreateMachineFunction(*F);
223 MachineBasicBlock *EntryMBB = MF.CreateMachineBasicBlock(Entry);
225 // Insert EntryMBB into MF. It's not in the module until we do this.
226 MF.insert(MF.end(), EntryMBB);
229 void X86RetpolineThunks::insertRegReturnAddrClobber(MachineBasicBlock &MBB,
230 unsigned Reg) {
231 const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
232 const unsigned SPReg = Is64Bit ? X86::RSP : X86::ESP;
233 addRegOffset(BuildMI(&MBB, DebugLoc(), TII->get(MovOpc)), SPReg, false, 0)
234 .addReg(Reg);
237 void X86RetpolineThunks::populateThunk(MachineFunction &MF,
238 unsigned Reg) {
239 // Set MF properties. We never use vregs...
240 MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
242 // Grab the entry MBB and erase any other blocks. O0 codegen appears to
243 // generate two bbs for the entry block.
244 MachineBasicBlock *Entry = &MF.front();
245 Entry->clear();
246 while (MF.size() > 1)
247 MF.erase(std::next(MF.begin()));
249 MachineBasicBlock *CaptureSpec = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
250 MachineBasicBlock *CallTarget = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
251 MCSymbol *TargetSym = MF.getContext().createTempSymbol();
252 MF.push_back(CaptureSpec);
253 MF.push_back(CallTarget);
255 const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
256 const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;
258 Entry->addLiveIn(Reg);
259 BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
261 // The MIR verifier thinks that the CALL in the entry block will fall through
262 // to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
263 // the successor, but the MIR verifier doesn't know how to cope with that.
264 Entry->addSuccessor(CaptureSpec);
266 // In the capture loop for speculation, we want to stop the processor from
267 // speculating as fast as possible. On Intel processors, the PAUSE instruction
268 // will block speculation without consuming any execution resources. On AMD
269 // processors, the PAUSE instruction is (essentially) a nop, so we also use an
270 // LFENCE instruction which they have advised will stop speculation as well
271 // with minimal resource utilization. We still end the capture with a jump to
272 // form an infinite loop to fully guarantee that no matter what implementation
273 // of the x86 ISA, speculating this code path never escapes.
274 BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
275 BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
276 BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
277 CaptureSpec->setHasAddressTaken();
278 CaptureSpec->addSuccessor(CaptureSpec);
280 CallTarget->addLiveIn(Reg);
281 CallTarget->setHasAddressTaken();
282 CallTarget->setAlignment(Align(16));
283 insertRegReturnAddrClobber(*CallTarget, Reg);
284 CallTarget->back().setPreInstrSymbol(MF, TargetSym);
285 BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));