[InstCombine] Signed saturation patterns
[llvm-core.git] / lib / Target / X86 / X86TargetTransformInfo.cpp
blob70fd857fcf0179f6fbc909df1261a20bbfdc64d9
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of
17 /// concrete CPU model. Usually the numbers correspond to CPU where the feature
18 /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost.
21 /// Some examples of other technologies/CPUs:
22 /// SSE 3 - Pentium4 / Athlon64
23 /// SSE 4.1 - Penryn
24 /// SSE 4.2 - Nehalem
25 /// AVX - Sandy Bridge
26 /// AVX2 - Haswell
27 /// AVX-512 - Xeon Phi / Skylake
28 /// And some examples of instruction target dependent costs (latency)
29 /// divss sqrtss rsqrtss
30 /// AMD K7 11-16 19 3
31 /// Piledriver 9-24 13-15 5
32 /// Jaguar 14 16 2
33 /// Pentium II,III 18 30 2
34 /// Nehalem 7-14 7-18 3
35 /// Haswell 10-13 11 5
36 /// TODO: Develop and implement the target dependent cost model and
37 /// specialize cost numbers for different Cost Model Targets such as throughput,
38 /// code size, latency and uop count.
39 //===----------------------------------------------------------------------===//
41 #include "X86TargetTransformInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/CodeGen/BasicTTIImpl.h"
44 #include "llvm/CodeGen/CostTable.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/Support/Debug.h"
49 using namespace llvm;
51 #define DEBUG_TYPE "x86tti"
53 //===----------------------------------------------------------------------===//
55 // X86 cost model.
57 //===----------------------------------------------------------------------===//
59 TargetTransformInfo::PopcntSupportKind
60 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
61 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
62 // TODO: Currently the __builtin_popcount() implementation using SSE3
63 // instructions is inefficient. Once the problem is fixed, we should
64 // call ST->hasSSE3() instead of ST->hasPOPCNT().
65 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
68 llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
69 TargetTransformInfo::CacheLevel Level) const {
70 switch (Level) {
71 case TargetTransformInfo::CacheLevel::L1D:
72 // - Penryn
73 // - Nehalem
74 // - Westmere
75 // - Sandy Bridge
76 // - Ivy Bridge
77 // - Haswell
78 // - Broadwell
79 // - Skylake
80 // - Kabylake
81 return 32 * 1024; // 32 KByte
82 case TargetTransformInfo::CacheLevel::L2D:
83 // - Penryn
84 // - Nehalem
85 // - Westmere
86 // - Sandy Bridge
87 // - Ivy Bridge
88 // - Haswell
89 // - Broadwell
90 // - Skylake
91 // - Kabylake
92 return 256 * 1024; // 256 KByte
95 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
98 llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
99 TargetTransformInfo::CacheLevel Level) const {
100 // - Penryn
101 // - Nehalem
102 // - Westmere
103 // - Sandy Bridge
104 // - Ivy Bridge
105 // - Haswell
106 // - Broadwell
107 // - Skylake
108 // - Kabylake
109 switch (Level) {
110 case TargetTransformInfo::CacheLevel::L1D:
111 LLVM_FALLTHROUGH;
112 case TargetTransformInfo::CacheLevel::L2D:
113 return 8;
116 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
119 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
120 bool Vector = (ClassID == 1);
121 if (Vector && !ST->hasSSE1())
122 return 0;
124 if (ST->is64Bit()) {
125 if (Vector && ST->hasAVX512())
126 return 32;
127 return 16;
129 return 8;
132 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
133 unsigned PreferVectorWidth = ST->getPreferVectorWidth();
134 if (Vector) {
135 if (ST->hasAVX512() && PreferVectorWidth >= 512)
136 return 512;
137 if (ST->hasAVX() && PreferVectorWidth >= 256)
138 return 256;
139 if (ST->hasSSE1() && PreferVectorWidth >= 128)
140 return 128;
141 return 0;
144 if (ST->is64Bit())
145 return 64;
147 return 32;
150 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
151 return getRegisterBitWidth(true);
154 unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
155 // If the loop will not be vectorized, don't interleave the loop.
156 // Let regular unroll to unroll the loop, which saves the overflow
157 // check and memory check cost.
158 if (VF == 1)
159 return 1;
161 if (ST->isAtom())
162 return 1;
164 // Sandybridge and Haswell have multiple execution ports and pipelined
165 // vector units.
166 if (ST->hasAVX())
167 return 4;
169 return 2;
172 int X86TTIImpl::getArithmeticInstrCost(
173 unsigned Opcode, Type *Ty,
174 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
175 TTI::OperandValueProperties Opd1PropInfo,
176 TTI::OperandValueProperties Opd2PropInfo,
177 ArrayRef<const Value *> Args) {
178 // Legalize the type.
179 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
181 int ISD = TLI->InstructionOpcodeToISD(Opcode);
182 assert(ISD && "Invalid opcode");
184 static const CostTblEntry GLMCostTable[] = {
185 { ISD::FDIV, MVT::f32, 18 }, // divss
186 { ISD::FDIV, MVT::v4f32, 35 }, // divps
187 { ISD::FDIV, MVT::f64, 33 }, // divsd
188 { ISD::FDIV, MVT::v2f64, 65 }, // divpd
191 if (ST->isGLM())
192 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
193 LT.second))
194 return LT.first * Entry->Cost;
196 static const CostTblEntry SLMCostTable[] = {
197 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
198 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
199 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
200 { ISD::FMUL, MVT::f64, 2 }, // mulsd
201 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
202 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
203 { ISD::FDIV, MVT::f32, 17 }, // divss
204 { ISD::FDIV, MVT::v4f32, 39 }, // divps
205 { ISD::FDIV, MVT::f64, 32 }, // divsd
206 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
207 { ISD::FADD, MVT::v2f64, 2 }, // addpd
208 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
209 // v2i64/v4i64 mul is custom lowered as a series of long:
210 // multiplies(3), shifts(3) and adds(2)
211 // slm muldq version throughput is 2 and addq throughput 4
212 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
213 // 3X4 (addq throughput) = 17
214 { ISD::MUL, MVT::v2i64, 17 },
215 // slm addq\subq throughput is 4
216 { ISD::ADD, MVT::v2i64, 4 },
217 { ISD::SUB, MVT::v2i64, 4 },
220 if (ST->isSLM()) {
221 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
222 // Check if the operands can be shrinked into a smaller datatype.
223 bool Op1Signed = false;
224 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
225 bool Op2Signed = false;
226 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
228 bool signedMode = Op1Signed | Op2Signed;
229 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
231 if (OpMinSize <= 7)
232 return LT.first * 3; // pmullw/sext
233 if (!signedMode && OpMinSize <= 8)
234 return LT.first * 3; // pmullw/zext
235 if (OpMinSize <= 15)
236 return LT.first * 5; // pmullw/pmulhw/pshuf
237 if (!signedMode && OpMinSize <= 16)
238 return LT.first * 5; // pmullw/pmulhw/pshuf
241 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
242 LT.second)) {
243 return LT.first * Entry->Cost;
247 if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
248 ISD == ISD::UREM) &&
249 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
250 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
251 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
252 if (ISD == ISD::SDIV || ISD == ISD::SREM) {
253 // On X86, vector signed division by constants power-of-two are
254 // normally expanded to the sequence SRA + SRL + ADD + SRA.
255 // The OperandValue properties may not be the same as that of the previous
256 // operation; conservatively assume OP_None.
257 int Cost =
258 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
259 TargetTransformInfo::OP_None,
260 TargetTransformInfo::OP_None);
261 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
262 TargetTransformInfo::OP_None,
263 TargetTransformInfo::OP_None);
264 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
265 TargetTransformInfo::OP_None,
266 TargetTransformInfo::OP_None);
268 if (ISD == ISD::SREM) {
269 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
270 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info);
271 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Op1Info, Op2Info);
274 return Cost;
277 // Vector unsigned division/remainder will be simplified to shifts/masks.
278 if (ISD == ISD::UDIV)
279 return getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
280 TargetTransformInfo::OP_None,
281 TargetTransformInfo::OP_None);
283 if (ISD == ISD::UREM)
284 return getArithmeticInstrCost(Instruction::And, Ty, Op1Info, Op2Info,
285 TargetTransformInfo::OP_None,
286 TargetTransformInfo::OP_None);
289 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
290 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
291 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
292 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
295 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
296 ST->hasBWI()) {
297 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
298 LT.second))
299 return LT.first * Entry->Cost;
302 static const CostTblEntry AVX512UniformConstCostTable[] = {
303 { ISD::SRA, MVT::v2i64, 1 },
304 { ISD::SRA, MVT::v4i64, 1 },
305 { ISD::SRA, MVT::v8i64, 1 },
308 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
309 ST->hasAVX512()) {
310 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
311 LT.second))
312 return LT.first * Entry->Cost;
315 static const CostTblEntry AVX2UniformConstCostTable[] = {
316 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
317 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
318 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
320 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
323 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
324 ST->hasAVX2()) {
325 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
326 LT.second))
327 return LT.first * Entry->Cost;
330 static const CostTblEntry SSE2UniformConstCostTable[] = {
331 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
332 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
333 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
335 { ISD::SHL, MVT::v32i8, 4+2 }, // 2*(psllw + pand) + split.
336 { ISD::SRL, MVT::v32i8, 4+2 }, // 2*(psrlw + pand) + split.
337 { ISD::SRA, MVT::v32i8, 8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
340 // XOP has faster vXi8 shifts.
341 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
342 ST->hasSSE2() && !ST->hasXOP()) {
343 if (const auto *Entry =
344 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
345 return LT.first * Entry->Cost;
348 static const CostTblEntry AVX512BWConstCostTable[] = {
349 { ISD::SDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
350 { ISD::SREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
351 { ISD::UDIV, MVT::v64i8, 14 }, // 2*ext+2*pmulhw sequence
352 { ISD::UREM, MVT::v64i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
353 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
354 { ISD::SREM, MVT::v32i16, 8 }, // vpmulhw+mul+sub sequence
355 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
356 { ISD::UREM, MVT::v32i16, 8 }, // vpmulhuw+mul+sub sequence
359 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
360 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
361 ST->hasBWI()) {
362 if (const auto *Entry =
363 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
364 return LT.first * Entry->Cost;
367 static const CostTblEntry AVX512ConstCostTable[] = {
368 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
369 { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
370 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
371 { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
374 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
375 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
376 ST->hasAVX512()) {
377 if (const auto *Entry =
378 CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
379 return LT.first * Entry->Cost;
382 static const CostTblEntry AVX2ConstCostTable[] = {
383 { ISD::SDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
384 { ISD::SREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
385 { ISD::UDIV, MVT::v32i8, 14 }, // 2*ext+2*pmulhw sequence
386 { ISD::UREM, MVT::v32i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
387 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
388 { ISD::SREM, MVT::v16i16, 8 }, // vpmulhw+mul+sub sequence
389 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
390 { ISD::UREM, MVT::v16i16, 8 }, // vpmulhuw+mul+sub sequence
391 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
392 { ISD::SREM, MVT::v8i32, 19 }, // vpmuldq+mul+sub sequence
393 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
394 { ISD::UREM, MVT::v8i32, 19 }, // vpmuludq+mul+sub sequence
397 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
398 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
399 ST->hasAVX2()) {
400 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
401 return LT.first * Entry->Cost;
404 static const CostTblEntry SSE2ConstCostTable[] = {
405 { ISD::SDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
406 { ISD::SREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
407 { ISD::SDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
408 { ISD::SREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
409 { ISD::UDIV, MVT::v32i8, 28+2 }, // 4*ext+4*pmulhw sequence + split.
410 { ISD::UREM, MVT::v32i8, 32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
411 { ISD::UDIV, MVT::v16i8, 14 }, // 2*ext+2*pmulhw sequence
412 { ISD::UREM, MVT::v16i8, 16 }, // 2*ext+2*pmulhw+mul+sub sequence
413 { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
414 { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
415 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
416 { ISD::SREM, MVT::v8i16, 8 }, // pmulhw+mul+sub sequence
417 { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
418 { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
419 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
420 { ISD::UREM, MVT::v8i16, 8 }, // pmulhuw+mul+sub sequence
421 { ISD::SDIV, MVT::v8i32, 38+2 }, // 2*pmuludq sequence + split.
422 { ISD::SREM, MVT::v8i32, 48+2 }, // 2*pmuludq+mul+sub sequence + split.
423 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
424 { ISD::SREM, MVT::v4i32, 24 }, // pmuludq+mul+sub sequence
425 { ISD::UDIV, MVT::v8i32, 30+2 }, // 2*pmuludq sequence + split.
426 { ISD::UREM, MVT::v8i32, 40+2 }, // 2*pmuludq+mul+sub sequence + split.
427 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
428 { ISD::UREM, MVT::v4i32, 20 }, // pmuludq+mul+sub sequence
431 if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
432 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
433 ST->hasSSE2()) {
434 // pmuldq sequence.
435 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
436 return LT.first * 32;
437 if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
438 return LT.first * 38;
439 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
440 return LT.first * 15;
441 if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
442 return LT.first * 20;
444 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
445 return LT.first * Entry->Cost;
448 static const CostTblEntry AVX2UniformCostTable[] = {
449 // Uniform splats are cheaper for the following instructions.
450 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
451 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
452 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
455 if (ST->hasAVX2() &&
456 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
457 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
458 if (const auto *Entry =
459 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
460 return LT.first * Entry->Cost;
463 static const CostTblEntry SSE2UniformCostTable[] = {
464 // Uniform splats are cheaper for the following instructions.
465 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
466 { ISD::SHL, MVT::v4i32, 1 }, // pslld
467 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
469 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
470 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
471 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
473 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
474 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
477 if (ST->hasSSE2() &&
478 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
479 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
480 if (const auto *Entry =
481 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
482 return LT.first * Entry->Cost;
485 static const CostTblEntry AVX512DQCostTable[] = {
486 { ISD::MUL, MVT::v2i64, 1 },
487 { ISD::MUL, MVT::v4i64, 1 },
488 { ISD::MUL, MVT::v8i64, 1 }
491 // Look for AVX512DQ lowering tricks for custom cases.
492 if (ST->hasDQI())
493 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
494 return LT.first * Entry->Cost;
496 static const CostTblEntry AVX512BWCostTable[] = {
497 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
498 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
499 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
501 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
502 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
503 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
505 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
506 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
507 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
509 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
510 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
511 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
513 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
514 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
515 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
518 // Look for AVX512BW lowering tricks for custom cases.
519 if (ST->hasBWI())
520 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
521 return LT.first * Entry->Cost;
523 static const CostTblEntry AVX512CostTable[] = {
524 { ISD::SHL, MVT::v16i32, 1 },
525 { ISD::SRL, MVT::v16i32, 1 },
526 { ISD::SRA, MVT::v16i32, 1 },
528 { ISD::SHL, MVT::v8i64, 1 },
529 { ISD::SRL, MVT::v8i64, 1 },
531 { ISD::SRA, MVT::v2i64, 1 },
532 { ISD::SRA, MVT::v4i64, 1 },
533 { ISD::SRA, MVT::v8i64, 1 },
535 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
536 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
537 { ISD::MUL, MVT::v16i32, 1 }, // pmulld (Skylake from agner.org)
538 { ISD::MUL, MVT::v8i32, 1 }, // pmulld (Skylake from agner.org)
539 { ISD::MUL, MVT::v4i32, 1 }, // pmulld (Skylake from agner.org)
540 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
542 { ISD::FADD, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
543 { ISD::FSUB, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
544 { ISD::FMUL, MVT::v8f64, 1 }, // Skylake from http://www.agner.org/
546 { ISD::FADD, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
547 { ISD::FSUB, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
548 { ISD::FMUL, MVT::v16f32, 1 }, // Skylake from http://www.agner.org/
551 if (ST->hasAVX512())
552 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
553 return LT.first * Entry->Cost;
555 static const CostTblEntry AVX2ShiftCostTable[] = {
556 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
557 // customize them to detect the cases where shift amount is a scalar one.
558 { ISD::SHL, MVT::v4i32, 1 },
559 { ISD::SRL, MVT::v4i32, 1 },
560 { ISD::SRA, MVT::v4i32, 1 },
561 { ISD::SHL, MVT::v8i32, 1 },
562 { ISD::SRL, MVT::v8i32, 1 },
563 { ISD::SRA, MVT::v8i32, 1 },
564 { ISD::SHL, MVT::v2i64, 1 },
565 { ISD::SRL, MVT::v2i64, 1 },
566 { ISD::SHL, MVT::v4i64, 1 },
567 { ISD::SRL, MVT::v4i64, 1 },
570 // Look for AVX2 lowering tricks.
571 if (ST->hasAVX2()) {
572 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
573 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
574 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
575 // On AVX2, a packed v16i16 shift left by a constant build_vector
576 // is lowered into a vector multiply (vpmullw).
577 return getArithmeticInstrCost(Instruction::Mul, Ty, Op1Info, Op2Info,
578 TargetTransformInfo::OP_None,
579 TargetTransformInfo::OP_None);
581 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
582 return LT.first * Entry->Cost;
585 static const CostTblEntry XOPShiftCostTable[] = {
586 // 128bit shifts take 1cy, but right shifts require negation beforehand.
587 { ISD::SHL, MVT::v16i8, 1 },
588 { ISD::SRL, MVT::v16i8, 2 },
589 { ISD::SRA, MVT::v16i8, 2 },
590 { ISD::SHL, MVT::v8i16, 1 },
591 { ISD::SRL, MVT::v8i16, 2 },
592 { ISD::SRA, MVT::v8i16, 2 },
593 { ISD::SHL, MVT::v4i32, 1 },
594 { ISD::SRL, MVT::v4i32, 2 },
595 { ISD::SRA, MVT::v4i32, 2 },
596 { ISD::SHL, MVT::v2i64, 1 },
597 { ISD::SRL, MVT::v2i64, 2 },
598 { ISD::SRA, MVT::v2i64, 2 },
599 // 256bit shifts require splitting if AVX2 didn't catch them above.
600 { ISD::SHL, MVT::v32i8, 2+2 },
601 { ISD::SRL, MVT::v32i8, 4+2 },
602 { ISD::SRA, MVT::v32i8, 4+2 },
603 { ISD::SHL, MVT::v16i16, 2+2 },
604 { ISD::SRL, MVT::v16i16, 4+2 },
605 { ISD::SRA, MVT::v16i16, 4+2 },
606 { ISD::SHL, MVT::v8i32, 2+2 },
607 { ISD::SRL, MVT::v8i32, 4+2 },
608 { ISD::SRA, MVT::v8i32, 4+2 },
609 { ISD::SHL, MVT::v4i64, 2+2 },
610 { ISD::SRL, MVT::v4i64, 4+2 },
611 { ISD::SRA, MVT::v4i64, 4+2 },
614 // Look for XOP lowering tricks.
615 if (ST->hasXOP()) {
616 // If the right shift is constant then we'll fold the negation so
617 // it's as cheap as a left shift.
618 int ShiftISD = ISD;
619 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
620 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
621 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
622 ShiftISD = ISD::SHL;
623 if (const auto *Entry =
624 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
625 return LT.first * Entry->Cost;
628 static const CostTblEntry SSE2UniformShiftCostTable[] = {
629 // Uniform splats are cheaper for the following instructions.
630 { ISD::SHL, MVT::v16i16, 2+2 }, // 2*psllw + split.
631 { ISD::SHL, MVT::v8i32, 2+2 }, // 2*pslld + split.
632 { ISD::SHL, MVT::v4i64, 2+2 }, // 2*psllq + split.
634 { ISD::SRL, MVT::v16i16, 2+2 }, // 2*psrlw + split.
635 { ISD::SRL, MVT::v8i32, 2+2 }, // 2*psrld + split.
636 { ISD::SRL, MVT::v4i64, 2+2 }, // 2*psrlq + split.
638 { ISD::SRA, MVT::v16i16, 2+2 }, // 2*psraw + split.
639 { ISD::SRA, MVT::v8i32, 2+2 }, // 2*psrad + split.
640 { ISD::SRA, MVT::v2i64, 4 }, // 2*psrad + shuffle.
641 { ISD::SRA, MVT::v4i64, 8+2 }, // 2*(2*psrad + shuffle) + split.
644 if (ST->hasSSE2() &&
645 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
646 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
648 // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
649 if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
650 return LT.first * 4; // 2*psrad + shuffle.
652 if (const auto *Entry =
653 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
654 return LT.first * Entry->Cost;
657 if (ISD == ISD::SHL &&
658 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
659 MVT VT = LT.second;
660 // Vector shift left by non uniform constant can be lowered
661 // into vector multiply.
662 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
663 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
664 ISD = ISD::MUL;
667 static const CostTblEntry AVX2CostTable[] = {
668 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
669 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
671 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
672 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
674 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
675 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
676 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
677 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
679 { ISD::SUB, MVT::v32i8, 1 }, // psubb
680 { ISD::ADD, MVT::v32i8, 1 }, // paddb
681 { ISD::SUB, MVT::v16i16, 1 }, // psubw
682 { ISD::ADD, MVT::v16i16, 1 }, // paddw
683 { ISD::SUB, MVT::v8i32, 1 }, // psubd
684 { ISD::ADD, MVT::v8i32, 1 }, // paddd
685 { ISD::SUB, MVT::v4i64, 1 }, // psubq
686 { ISD::ADD, MVT::v4i64, 1 }, // paddq
688 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
689 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
690 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
691 { ISD::MUL, MVT::v8i32, 2 }, // pmulld (Haswell from agner.org)
692 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
694 { ISD::FADD, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
695 { ISD::FADD, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
696 { ISD::FSUB, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
697 { ISD::FSUB, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
698 { ISD::FMUL, MVT::v4f64, 1 }, // Haswell from http://www.agner.org/
699 { ISD::FMUL, MVT::v8f32, 1 }, // Haswell from http://www.agner.org/
701 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
702 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
703 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
704 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
705 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
706 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
709 // Look for AVX2 lowering tricks for custom cases.
710 if (ST->hasAVX2())
711 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
712 return LT.first * Entry->Cost;
714 static const CostTblEntry AVX1CostTable[] = {
715 // We don't have to scalarize unsupported ops. We can issue two half-sized
716 // operations and we only need to extract the upper YMM half.
717 // Two ops + 1 extract + 1 insert = 4.
718 { ISD::MUL, MVT::v16i16, 4 },
719 { ISD::MUL, MVT::v8i32, 4 },
720 { ISD::SUB, MVT::v32i8, 4 },
721 { ISD::ADD, MVT::v32i8, 4 },
722 { ISD::SUB, MVT::v16i16, 4 },
723 { ISD::ADD, MVT::v16i16, 4 },
724 { ISD::SUB, MVT::v8i32, 4 },
725 { ISD::ADD, MVT::v8i32, 4 },
726 { ISD::SUB, MVT::v4i64, 4 },
727 { ISD::ADD, MVT::v4i64, 4 },
729 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
730 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
731 // Because we believe v4i64 to be a legal type, we must also include the
732 // extract+insert in the cost table. Therefore, the cost here is 18
733 // instead of 8.
734 { ISD::MUL, MVT::v4i64, 18 },
736 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
738 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
739 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
740 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
741 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
742 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
743 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
746 if (ST->hasAVX())
747 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
748 return LT.first * Entry->Cost;
750 static const CostTblEntry SSE42CostTable[] = {
751 { ISD::FADD, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
752 { ISD::FADD, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
753 { ISD::FADD, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
754 { ISD::FADD, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
756 { ISD::FSUB, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
757 { ISD::FSUB, MVT::f32 , 1 }, // Nehalem from http://www.agner.org/
758 { ISD::FSUB, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
759 { ISD::FSUB, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
761 { ISD::FMUL, MVT::f64, 1 }, // Nehalem from http://www.agner.org/
762 { ISD::FMUL, MVT::f32, 1 }, // Nehalem from http://www.agner.org/
763 { ISD::FMUL, MVT::v2f64, 1 }, // Nehalem from http://www.agner.org/
764 { ISD::FMUL, MVT::v4f32, 1 }, // Nehalem from http://www.agner.org/
766 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
767 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
768 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
769 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
772 if (ST->hasSSE42())
773 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
774 return LT.first * Entry->Cost;
776 static const CostTblEntry SSE41CostTable[] = {
777 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
778 { ISD::SHL, MVT::v32i8, 2*11+2 }, // pblendvb sequence + split.
779 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
780 { ISD::SHL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
781 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
782 { ISD::SHL, MVT::v8i32, 2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
784 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
785 { ISD::SRL, MVT::v32i8, 2*12+2 }, // pblendvb sequence + split.
786 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
787 { ISD::SRL, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
788 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
789 { ISD::SRL, MVT::v8i32, 2*11+2 }, // Shift each lane + blend + split.
791 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
792 { ISD::SRA, MVT::v32i8, 2*24+2 }, // pblendvb sequence + split.
793 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
794 { ISD::SRA, MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
795 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
796 { ISD::SRA, MVT::v8i32, 2*12+2 }, // Shift each lane + blend + split.
798 { ISD::MUL, MVT::v4i32, 2 } // pmulld (Nehalem from agner.org)
801 if (ST->hasSSE41())
802 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
803 return LT.first * Entry->Cost;
805 static const CostTblEntry SSE2CostTable[] = {
806 // We don't correctly identify costs of casts because they are marked as
807 // custom.
808 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
809 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
810 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
811 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
812 { ISD::SHL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
814 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
815 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
816 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
817 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
818 { ISD::SRL, MVT::v4i64, 2*4+2 }, // splat+shuffle sequence + split.
820 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
821 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
822 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
823 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
824 { ISD::SRA, MVT::v4i64, 2*12+2 }, // srl/xor/sub sequence+split.
826 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
827 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
828 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
829 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
831 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
832 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
833 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
834 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
836 { ISD::FADD, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
837 { ISD::FADD, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
839 { ISD::FSUB, MVT::f32, 2 }, // Pentium IV from http://www.agner.org/
840 { ISD::FSUB, MVT::f64, 2 }, // Pentium IV from http://www.agner.org/
843 if (ST->hasSSE2())
844 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
845 return LT.first * Entry->Cost;
847 static const CostTblEntry SSE1CostTable[] = {
848 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
849 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
851 { ISD::FADD, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
852 { ISD::FADD, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
854 { ISD::FSUB, MVT::f32, 1 }, // Pentium III from http://www.agner.org/
855 { ISD::FSUB, MVT::v4f32, 2 }, // Pentium III from http://www.agner.org/
857 { ISD::ADD, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
858 { ISD::ADD, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
859 { ISD::ADD, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
861 { ISD::SUB, MVT::i8, 1 }, // Pentium III from http://www.agner.org/
862 { ISD::SUB, MVT::i16, 1 }, // Pentium III from http://www.agner.org/
863 { ISD::SUB, MVT::i32, 1 }, // Pentium III from http://www.agner.org/
866 if (ST->hasSSE1())
867 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
868 return LT.first * Entry->Cost;
870 // It is not a good idea to vectorize division. We have to scalarize it and
871 // in the process we will often end up having to spilling regular
872 // registers. The overhead of division is going to dominate most kernels
873 // anyways so try hard to prevent vectorization of division - it is
874 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
875 // to hide "20 cycles" for each lane.
876 if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
877 ISD == ISD::UDIV || ISD == ISD::UREM)) {
878 int ScalarCost = getArithmeticInstrCost(
879 Opcode, Ty->getScalarType(), Op1Info, Op2Info,
880 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
881 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
884 // Fallback to the default implementation.
885 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
888 int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
889 Type *SubTp) {
890 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
891 // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
892 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
894 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
895 if (Kind == TTI::SK_Transpose)
896 Kind = TTI::SK_PermuteTwoSrc;
898 // For Broadcasts we are splatting the first element from the first input
899 // register, so only need to reference that input and all the output
900 // registers are the same.
901 if (Kind == TTI::SK_Broadcast)
902 LT.first = 1;
904 // Subvector extractions are free if they start at the beginning of a
905 // vector and cheap if the subvectors are aligned.
906 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
907 int NumElts = LT.second.getVectorNumElements();
908 if ((Index % NumElts) == 0)
909 return 0;
910 std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
911 if (SubLT.second.isVector()) {
912 int NumSubElts = SubLT.second.getVectorNumElements();
913 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
914 return SubLT.first;
915 // Handle some cases for widening legalization. For now we only handle
916 // cases where the original subvector was naturally aligned and evenly
917 // fit in its legalized subvector type.
918 // FIXME: Remove some of the alignment restrictions.
919 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
920 // vectors.
921 int OrigSubElts = SubTp->getVectorNumElements();
922 if (NumSubElts > OrigSubElts &&
923 (Index % OrigSubElts) == 0 && (NumSubElts % OrigSubElts) == 0 &&
924 LT.second.getVectorElementType() ==
925 SubLT.second.getVectorElementType() &&
926 LT.second.getVectorElementType().getSizeInBits() ==
927 Tp->getVectorElementType()->getPrimitiveSizeInBits()) {
928 assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
929 "Unexpected number of elements!");
930 Type *VecTy = VectorType::get(Tp->getVectorElementType(),
931 LT.second.getVectorNumElements());
932 Type *SubTy = VectorType::get(Tp->getVectorElementType(),
933 SubLT.second.getVectorNumElements());
934 int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
935 int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
936 ExtractIndex, SubTy);
938 // If the original size is 32-bits or more, we can use pshufd. Otherwise
939 // if we have SSSE3 we can use pshufb.
940 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
941 return ExtractCost + 1; // pshufd or pshufb
943 assert(SubTp->getPrimitiveSizeInBits() == 16 &&
944 "Unexpected vector size");
946 return ExtractCost + 2; // worst case pshufhw + pshufd
951 // We are going to permute multiple sources and the result will be in multiple
952 // destinations. Providing an accurate cost only for splits where the element
953 // type remains the same.
954 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
955 MVT LegalVT = LT.second;
956 if (LegalVT.isVector() &&
957 LegalVT.getVectorElementType().getSizeInBits() ==
958 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
959 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
961 unsigned VecTySize = DL.getTypeStoreSize(Tp);
962 unsigned LegalVTSize = LegalVT.getStoreSize();
963 // Number of source vectors after legalization:
964 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
965 // Number of destination vectors after legalization:
966 unsigned NumOfDests = LT.first;
968 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
969 LegalVT.getVectorNumElements());
971 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
972 return NumOfShuffles *
973 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
976 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
979 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
980 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
981 // We assume that source and destination have the same vector type.
982 int NumOfDests = LT.first;
983 int NumOfShufflesPerDest = LT.first * 2 - 1;
984 LT.first = NumOfDests * NumOfShufflesPerDest;
987 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
988 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
989 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
991 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
992 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
994 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 1}, // vpermt2b
995 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 1}, // vpermt2b
996 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1} // vpermt2b
999 if (ST->hasVBMI())
1000 if (const auto *Entry =
1001 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1002 return LT.first * Entry->Cost;
1004 static const CostTblEntry AVX512BWShuffleTbl[] = {
1005 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1006 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1008 {TTI::SK_Reverse, MVT::v32i16, 1}, // vpermw
1009 {TTI::SK_Reverse, MVT::v16i16, 1}, // vpermw
1010 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
1012 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 1}, // vpermw
1013 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpermw
1014 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // vpermw
1015 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
1016 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 3}, // vpermw + zext/trunc
1018 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 1}, // vpermt2w
1019 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 1}, // vpermt2w
1020 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpermt2w
1021 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 3}, // zext + vpermt2w + trunc
1022 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1023 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3} // zext + vpermt2w + trunc
1026 if (ST->hasBWI())
1027 if (const auto *Entry =
1028 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1029 return LT.first * Entry->Cost;
1031 static const CostTblEntry AVX512ShuffleTbl[] = {
1032 {TTI::SK_Broadcast, MVT::v8f64, 1}, // vbroadcastpd
1033 {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
1034 {TTI::SK_Broadcast, MVT::v8i64, 1}, // vpbroadcastq
1035 {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
1037 {TTI::SK_Reverse, MVT::v8f64, 1}, // vpermpd
1038 {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
1039 {TTI::SK_Reverse, MVT::v8i64, 1}, // vpermq
1040 {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
1042 {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1}, // vpermpd
1043 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1044 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // vpermpd
1045 {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
1046 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1047 {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1}, // vpermps
1048 {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1}, // vpermq
1049 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1050 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // vpermq
1051 {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
1052 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1053 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // vpermd
1054 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1056 {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1}, // vpermt2pd
1057 {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
1058 {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1}, // vpermt2q
1059 {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
1060 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1}, // vpermt2pd
1061 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1}, // vpermt2ps
1062 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1}, // vpermt2q
1063 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1}, // vpermt2d
1064 {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1}, // vpermt2pd
1065 {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1}, // vpermt2ps
1066 {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1}, // vpermt2q
1067 {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1} // vpermt2d
1070 if (ST->hasAVX512())
1071 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1072 return LT.first * Entry->Cost;
1074 static const CostTblEntry AVX2ShuffleTbl[] = {
1075 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
1076 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
1077 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
1078 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
1079 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1080 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
1082 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
1083 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
1084 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
1085 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
1086 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1087 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
1089 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1090 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
1092 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1093 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1094 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1095 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1096 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1097 // + vpblendvb
1098 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
1099 // + vpblendvb
1101 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
1102 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
1103 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
1104 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
1105 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1106 // + vpblendvb
1107 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
1108 // + vpblendvb
1111 if (ST->hasAVX2())
1112 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1113 return LT.first * Entry->Cost;
1115 static const CostTblEntry XOPShuffleTbl[] = {
1116 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
1117 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
1118 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
1119 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
1120 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1121 // + vinsertf128
1122 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
1123 // + vinsertf128
1125 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
1126 // + vinsertf128
1127 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
1128 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
1129 // + vinsertf128
1130 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
1133 if (ST->hasXOP())
1134 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
1135 return LT.first * Entry->Cost;
1137 static const CostTblEntry AVX1ShuffleTbl[] = {
1138 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1139 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1140 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1141 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1142 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
1143 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
1145 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
1146 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
1147 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
1148 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
1149 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
1150 // + vinsertf128
1151 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
1152 // + vinsertf128
1154 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
1155 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
1156 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
1157 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
1158 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
1159 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
1161 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
1162 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
1163 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1164 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1165 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
1166 // + 2*por + vinsertf128
1167 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
1168 // + 2*por + vinsertf128
1170 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
1171 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
1172 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
1173 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
1174 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
1175 // + 4*por + vinsertf128
1176 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
1177 // + 4*por + vinsertf128
1180 if (ST->hasAVX())
1181 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
1182 return LT.first * Entry->Cost;
1184 static const CostTblEntry SSE41ShuffleTbl[] = {
1185 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
1186 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1187 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
1188 {TTI::SK_Select, MVT::v4f32, 1}, // blendps
1189 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
1190 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
1193 if (ST->hasSSE41())
1194 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
1195 return LT.first * Entry->Cost;
1197 static const CostTblEntry SSSE3ShuffleTbl[] = {
1198 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
1199 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
1201 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
1202 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
1204 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
1205 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
1207 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
1208 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
1210 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
1211 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
1214 if (ST->hasSSSE3())
1215 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
1216 return LT.first * Entry->Cost;
1218 static const CostTblEntry SSE2ShuffleTbl[] = {
1219 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
1220 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
1221 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
1222 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
1223 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
1225 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
1226 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
1227 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
1228 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
1229 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
1230 // + 2*pshufd + 2*unpck + packus
1232 {TTI::SK_Select, MVT::v2i64, 1}, // movsd
1233 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
1234 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
1235 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
1236 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
1238 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
1239 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
1240 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
1241 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
1242 // + pshufd/unpck
1243 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
1244 // + 2*pshufd + 2*unpck + 2*packus
1246 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
1247 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
1248 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
1249 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
1250 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
1253 if (ST->hasSSE2())
1254 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
1255 return LT.first * Entry->Cost;
1257 static const CostTblEntry SSE1ShuffleTbl[] = {
1258 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
1259 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
1260 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
1261 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
1262 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
1265 if (ST->hasSSE1())
1266 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
1267 return LT.first * Entry->Cost;
1269 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1272 int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1273 const Instruction *I) {
1274 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1275 assert(ISD && "Invalid opcode");
1277 // FIXME: Need a better design of the cost table to handle non-simple types of
1278 // potential massive combinations (elem_num x src_type x dst_type).
1280 static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
1281 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1282 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
1284 // Mask sign extend has an instruction.
1285 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
1286 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
1287 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
1288 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
1289 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
1290 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
1292 // Mask zero extend is a load + broadcast.
1293 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
1294 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
1295 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
1296 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
1297 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
1298 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
1301 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
1302 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1303 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1304 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1305 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
1306 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1307 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1309 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
1310 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1311 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
1312 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
1313 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
1314 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
1316 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
1317 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
1318 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
1319 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1320 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
1321 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
1323 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
1324 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
1325 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
1326 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1327 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
1328 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
1331 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
1332 // 256-bit wide vectors.
1334 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
1335 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
1336 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
1337 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
1339 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
1340 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
1341 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
1342 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
1344 // v16i1 -> v16i32 - load + broadcast
1345 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1346 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
1347 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1348 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
1349 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1350 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
1351 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
1352 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
1353 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1354 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1355 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1356 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1358 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
1359 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
1360 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1361 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
1362 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1363 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1364 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
1365 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1367 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
1368 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
1369 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
1370 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1371 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1372 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1373 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
1374 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
1375 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1376 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1377 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1378 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1379 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
1380 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
1381 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1382 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1383 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1384 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1385 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
1386 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
1387 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1388 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1389 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
1390 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
1392 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
1393 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
1394 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
1396 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1397 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1398 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
1399 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1400 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 2 },
1401 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 2 },
1402 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
1403 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 2 },
1404 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 2 },
1407 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
1408 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1409 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1410 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1411 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1412 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 1 },
1413 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 1 },
1414 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 1 },
1415 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 1 },
1416 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1417 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1418 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 1 },
1419 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 1 },
1420 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1421 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1422 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1423 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1425 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1426 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1427 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1428 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1429 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1430 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
1432 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1433 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
1435 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
1438 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
1439 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1440 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
1441 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1442 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
1443 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1444 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1445 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1446 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1447 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1448 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1449 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 4 },
1450 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1451 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1452 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1453 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1454 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1456 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1457 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1458 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1459 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1460 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1461 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
1462 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 11 },
1463 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 9 },
1464 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
1465 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 11 },
1467 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
1468 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
1469 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1470 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
1471 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
1472 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1473 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
1474 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
1475 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1476 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1477 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1478 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1480 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
1481 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
1482 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1483 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
1484 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1485 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1486 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1487 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1488 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1489 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
1490 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
1491 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
1492 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
1493 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1494 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 6 },
1495 // The generic code to compute the scalar overhead is currently broken.
1496 // Workaround this limitation by estimating the scalarization overhead
1497 // here. We have roughly 10 instructions per scalar element.
1498 // Multiply that by the vector width.
1499 // FIXME: remove that when PR19268 is fixed.
1500 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1501 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1503 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
1504 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
1505 // This node is expanded into scalarized operations but BasicTTI is overly
1506 // optimistic estimating its cost. It computes 3 per element (one
1507 // vector-extract, one scalar conversion and one vector-insert). The
1508 // problem is that the inserts form a read-modify-write chain so latency
1509 // should be factored in too. Inflating the cost per element by 1.
1510 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
1511 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
1513 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1514 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
1517 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
1518 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1519 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1520 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1521 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1522 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1523 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1525 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1526 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
1527 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1528 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1529 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1530 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1531 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1532 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1533 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1534 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1535 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1536 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1537 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1538 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1539 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1540 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1541 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1542 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1544 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1545 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1546 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
1547 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
1548 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
1549 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
1550 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1551 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1 }, // PSHUFB
1553 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
1556 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
1557 // These are somewhat magic numbers justified by looking at the output of
1558 // Intel's IACA, running some kernels and making sure when we take
1559 // legalization into account the throughput will be overestimated.
1560 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1561 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1562 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1563 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1564 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
1565 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
1566 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
1567 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1568 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1570 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1571 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1572 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1573 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1574 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1575 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1576 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
1577 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1579 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1581 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 6 },
1582 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
1583 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
1585 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1586 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
1587 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1588 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1589 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1590 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1591 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1592 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1593 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1594 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1595 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1596 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1597 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1598 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1599 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1600 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1601 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1602 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1603 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1604 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1605 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
1606 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
1607 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1608 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
1610 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // PAND+PACKUSWB
1611 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
1612 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1613 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1614 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 3 }, // PAND+3*PACKUSWB
1615 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
1616 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1617 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1618 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1619 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1620 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1621 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
1622 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
1623 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
1624 { ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1 }, // PSHUFD
1627 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1628 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
1630 if (ST->hasSSE2() && !ST->hasAVX()) {
1631 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1632 LTDest.second, LTSrc.second))
1633 return LTSrc.first * Entry->Cost;
1636 EVT SrcTy = TLI->getValueType(DL, Src);
1637 EVT DstTy = TLI->getValueType(DL, Dst);
1639 // The function getSimpleVT only handles simple value types.
1640 if (!SrcTy.isSimple() || !DstTy.isSimple())
1641 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1643 MVT SimpleSrcTy = SrcTy.getSimpleVT();
1644 MVT SimpleDstTy = DstTy.getSimpleVT();
1646 // Make sure that neither type is going to be split before using the
1647 // AVX512 tables. This handles -mprefer-vector-width=256
1648 // with -min-legal-vector-width<=256
1649 if (TLI->getTypeAction(SimpleSrcTy) != TargetLowering::TypeSplitVector &&
1650 TLI->getTypeAction(SimpleDstTy) != TargetLowering::TypeSplitVector) {
1651 if (ST->hasBWI())
1652 if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
1653 SimpleDstTy, SimpleSrcTy))
1654 return Entry->Cost;
1656 if (ST->hasDQI())
1657 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1658 SimpleDstTy, SimpleSrcTy))
1659 return Entry->Cost;
1661 if (ST->hasAVX512())
1662 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1663 SimpleDstTy, SimpleSrcTy))
1664 return Entry->Cost;
1667 if (ST->hasAVX2()) {
1668 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1669 SimpleDstTy, SimpleSrcTy))
1670 return Entry->Cost;
1673 if (ST->hasAVX()) {
1674 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1675 SimpleDstTy, SimpleSrcTy))
1676 return Entry->Cost;
1679 if (ST->hasSSE41()) {
1680 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1681 SimpleDstTy, SimpleSrcTy))
1682 return Entry->Cost;
1685 if (ST->hasSSE2()) {
1686 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1687 SimpleDstTy, SimpleSrcTy))
1688 return Entry->Cost;
1691 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
1694 int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1695 const Instruction *I) {
1696 // Legalize the type.
1697 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1699 MVT MTy = LT.second;
1701 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1702 assert(ISD && "Invalid opcode");
1704 unsigned ExtraCost = 0;
1705 if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
1706 // Some vector comparison predicates cost extra instructions.
1707 if (MTy.isVector() &&
1708 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
1709 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
1710 ST->hasBWI())) {
1711 switch (cast<CmpInst>(I)->getPredicate()) {
1712 case CmpInst::Predicate::ICMP_NE:
1713 // xor(cmpeq(x,y),-1)
1714 ExtraCost = 1;
1715 break;
1716 case CmpInst::Predicate::ICMP_SGE:
1717 case CmpInst::Predicate::ICMP_SLE:
1718 // xor(cmpgt(x,y),-1)
1719 ExtraCost = 1;
1720 break;
1721 case CmpInst::Predicate::ICMP_ULT:
1722 case CmpInst::Predicate::ICMP_UGT:
1723 // cmpgt(xor(x,signbit),xor(y,signbit))
1724 // xor(cmpeq(pmaxu(x,y),x),-1)
1725 ExtraCost = 2;
1726 break;
1727 case CmpInst::Predicate::ICMP_ULE:
1728 case CmpInst::Predicate::ICMP_UGE:
1729 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
1730 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
1731 // cmpeq(psubus(x,y),0)
1732 // cmpeq(pminu(x,y),x)
1733 ExtraCost = 1;
1734 } else {
1735 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
1736 ExtraCost = 3;
1738 break;
1739 default:
1740 break;
1745 static const CostTblEntry SLMCostTbl[] = {
1746 // slm pcmpeq/pcmpgt throughput is 2
1747 { ISD::SETCC, MVT::v2i64, 2 },
1750 static const CostTblEntry AVX512BWCostTbl[] = {
1751 { ISD::SETCC, MVT::v32i16, 1 },
1752 { ISD::SETCC, MVT::v64i8, 1 },
1754 { ISD::SELECT, MVT::v32i16, 1 },
1755 { ISD::SELECT, MVT::v64i8, 1 },
1758 static const CostTblEntry AVX512CostTbl[] = {
1759 { ISD::SETCC, MVT::v8i64, 1 },
1760 { ISD::SETCC, MVT::v16i32, 1 },
1761 { ISD::SETCC, MVT::v8f64, 1 },
1762 { ISD::SETCC, MVT::v16f32, 1 },
1764 { ISD::SELECT, MVT::v8i64, 1 },
1765 { ISD::SELECT, MVT::v16i32, 1 },
1766 { ISD::SELECT, MVT::v8f64, 1 },
1767 { ISD::SELECT, MVT::v16f32, 1 },
1770 static const CostTblEntry AVX2CostTbl[] = {
1771 { ISD::SETCC, MVT::v4i64, 1 },
1772 { ISD::SETCC, MVT::v8i32, 1 },
1773 { ISD::SETCC, MVT::v16i16, 1 },
1774 { ISD::SETCC, MVT::v32i8, 1 },
1776 { ISD::SELECT, MVT::v4i64, 1 }, // pblendvb
1777 { ISD::SELECT, MVT::v8i32, 1 }, // pblendvb
1778 { ISD::SELECT, MVT::v16i16, 1 }, // pblendvb
1779 { ISD::SELECT, MVT::v32i8, 1 }, // pblendvb
1782 static const CostTblEntry AVX1CostTbl[] = {
1783 { ISD::SETCC, MVT::v4f64, 1 },
1784 { ISD::SETCC, MVT::v8f32, 1 },
1785 // AVX1 does not support 8-wide integer compare.
1786 { ISD::SETCC, MVT::v4i64, 4 },
1787 { ISD::SETCC, MVT::v8i32, 4 },
1788 { ISD::SETCC, MVT::v16i16, 4 },
1789 { ISD::SETCC, MVT::v32i8, 4 },
1791 { ISD::SELECT, MVT::v4f64, 1 }, // vblendvpd
1792 { ISD::SELECT, MVT::v8f32, 1 }, // vblendvps
1793 { ISD::SELECT, MVT::v4i64, 1 }, // vblendvpd
1794 { ISD::SELECT, MVT::v8i32, 1 }, // vblendvps
1795 { ISD::SELECT, MVT::v16i16, 3 }, // vandps + vandnps + vorps
1796 { ISD::SELECT, MVT::v32i8, 3 }, // vandps + vandnps + vorps
1799 static const CostTblEntry SSE42CostTbl[] = {
1800 { ISD::SETCC, MVT::v2f64, 1 },
1801 { ISD::SETCC, MVT::v4f32, 1 },
1802 { ISD::SETCC, MVT::v2i64, 1 },
1805 static const CostTblEntry SSE41CostTbl[] = {
1806 { ISD::SELECT, MVT::v2f64, 1 }, // blendvpd
1807 { ISD::SELECT, MVT::v4f32, 1 }, // blendvps
1808 { ISD::SELECT, MVT::v2i64, 1 }, // pblendvb
1809 { ISD::SELECT, MVT::v4i32, 1 }, // pblendvb
1810 { ISD::SELECT, MVT::v8i16, 1 }, // pblendvb
1811 { ISD::SELECT, MVT::v16i8, 1 }, // pblendvb
1814 static const CostTblEntry SSE2CostTbl[] = {
1815 { ISD::SETCC, MVT::v2f64, 2 },
1816 { ISD::SETCC, MVT::f64, 1 },
1817 { ISD::SETCC, MVT::v2i64, 8 },
1818 { ISD::SETCC, MVT::v4i32, 1 },
1819 { ISD::SETCC, MVT::v8i16, 1 },
1820 { ISD::SETCC, MVT::v16i8, 1 },
1822 { ISD::SELECT, MVT::v2f64, 3 }, // andpd + andnpd + orpd
1823 { ISD::SELECT, MVT::v2i64, 3 }, // pand + pandn + por
1824 { ISD::SELECT, MVT::v4i32, 3 }, // pand + pandn + por
1825 { ISD::SELECT, MVT::v8i16, 3 }, // pand + pandn + por
1826 { ISD::SELECT, MVT::v16i8, 3 }, // pand + pandn + por
1829 static const CostTblEntry SSE1CostTbl[] = {
1830 { ISD::SETCC, MVT::v4f32, 2 },
1831 { ISD::SETCC, MVT::f32, 1 },
1833 { ISD::SELECT, MVT::v4f32, 3 }, // andps + andnps + orps
1836 if (ST->isSLM())
1837 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
1838 return LT.first * (ExtraCost + Entry->Cost);
1840 if (ST->hasBWI())
1841 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
1842 return LT.first * (ExtraCost + Entry->Cost);
1844 if (ST->hasAVX512())
1845 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1846 return LT.first * (ExtraCost + Entry->Cost);
1848 if (ST->hasAVX2())
1849 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1850 return LT.first * (ExtraCost + Entry->Cost);
1852 if (ST->hasAVX())
1853 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1854 return LT.first * (ExtraCost + Entry->Cost);
1856 if (ST->hasSSE42())
1857 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1858 return LT.first * (ExtraCost + Entry->Cost);
1860 if (ST->hasSSE41())
1861 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
1862 return LT.first * (ExtraCost + Entry->Cost);
1864 if (ST->hasSSE2())
1865 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1866 return LT.first * (ExtraCost + Entry->Cost);
1868 if (ST->hasSSE1())
1869 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1870 return LT.first * (ExtraCost + Entry->Cost);
1872 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1875 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
1877 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1878 ArrayRef<Type *> Tys, FastMathFlags FMF,
1879 unsigned ScalarizationCostPassed) {
1880 // Costs should match the codegen from:
1881 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1882 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
1883 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
1884 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
1885 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
1886 static const CostTblEntry AVX512CDCostTbl[] = {
1887 { ISD::CTLZ, MVT::v8i64, 1 },
1888 { ISD::CTLZ, MVT::v16i32, 1 },
1889 { ISD::CTLZ, MVT::v32i16, 8 },
1890 { ISD::CTLZ, MVT::v64i8, 20 },
1891 { ISD::CTLZ, MVT::v4i64, 1 },
1892 { ISD::CTLZ, MVT::v8i32, 1 },
1893 { ISD::CTLZ, MVT::v16i16, 4 },
1894 { ISD::CTLZ, MVT::v32i8, 10 },
1895 { ISD::CTLZ, MVT::v2i64, 1 },
1896 { ISD::CTLZ, MVT::v4i32, 1 },
1897 { ISD::CTLZ, MVT::v8i16, 4 },
1898 { ISD::CTLZ, MVT::v16i8, 4 },
1900 static const CostTblEntry AVX512BWCostTbl[] = {
1901 { ISD::BITREVERSE, MVT::v8i64, 5 },
1902 { ISD::BITREVERSE, MVT::v16i32, 5 },
1903 { ISD::BITREVERSE, MVT::v32i16, 5 },
1904 { ISD::BITREVERSE, MVT::v64i8, 5 },
1905 { ISD::CTLZ, MVT::v8i64, 23 },
1906 { ISD::CTLZ, MVT::v16i32, 22 },
1907 { ISD::CTLZ, MVT::v32i16, 18 },
1908 { ISD::CTLZ, MVT::v64i8, 17 },
1909 { ISD::CTPOP, MVT::v8i64, 7 },
1910 { ISD::CTPOP, MVT::v16i32, 11 },
1911 { ISD::CTPOP, MVT::v32i16, 9 },
1912 { ISD::CTPOP, MVT::v64i8, 6 },
1913 { ISD::CTTZ, MVT::v8i64, 10 },
1914 { ISD::CTTZ, MVT::v16i32, 14 },
1915 { ISD::CTTZ, MVT::v32i16, 12 },
1916 { ISD::CTTZ, MVT::v64i8, 9 },
1917 { ISD::SADDSAT, MVT::v32i16, 1 },
1918 { ISD::SADDSAT, MVT::v64i8, 1 },
1919 { ISD::SSUBSAT, MVT::v32i16, 1 },
1920 { ISD::SSUBSAT, MVT::v64i8, 1 },
1921 { ISD::UADDSAT, MVT::v32i16, 1 },
1922 { ISD::UADDSAT, MVT::v64i8, 1 },
1923 { ISD::USUBSAT, MVT::v32i16, 1 },
1924 { ISD::USUBSAT, MVT::v64i8, 1 },
1926 static const CostTblEntry AVX512CostTbl[] = {
1927 { ISD::BITREVERSE, MVT::v8i64, 36 },
1928 { ISD::BITREVERSE, MVT::v16i32, 24 },
1929 { ISD::CTLZ, MVT::v8i64, 29 },
1930 { ISD::CTLZ, MVT::v16i32, 35 },
1931 { ISD::CTPOP, MVT::v8i64, 16 },
1932 { ISD::CTPOP, MVT::v16i32, 24 },
1933 { ISD::CTTZ, MVT::v8i64, 20 },
1934 { ISD::CTTZ, MVT::v16i32, 28 },
1935 { ISD::USUBSAT, MVT::v16i32, 2 }, // pmaxud + psubd
1936 { ISD::USUBSAT, MVT::v2i64, 2 }, // pmaxuq + psubq
1937 { ISD::USUBSAT, MVT::v4i64, 2 }, // pmaxuq + psubq
1938 { ISD::USUBSAT, MVT::v8i64, 2 }, // pmaxuq + psubq
1939 { ISD::UADDSAT, MVT::v16i32, 3 }, // not + pminud + paddd
1940 { ISD::UADDSAT, MVT::v2i64, 3 }, // not + pminuq + paddq
1941 { ISD::UADDSAT, MVT::v4i64, 3 }, // not + pminuq + paddq
1942 { ISD::UADDSAT, MVT::v8i64, 3 }, // not + pminuq + paddq
1944 static const CostTblEntry XOPCostTbl[] = {
1945 { ISD::BITREVERSE, MVT::v4i64, 4 },
1946 { ISD::BITREVERSE, MVT::v8i32, 4 },
1947 { ISD::BITREVERSE, MVT::v16i16, 4 },
1948 { ISD::BITREVERSE, MVT::v32i8, 4 },
1949 { ISD::BITREVERSE, MVT::v2i64, 1 },
1950 { ISD::BITREVERSE, MVT::v4i32, 1 },
1951 { ISD::BITREVERSE, MVT::v8i16, 1 },
1952 { ISD::BITREVERSE, MVT::v16i8, 1 },
1953 { ISD::BITREVERSE, MVT::i64, 3 },
1954 { ISD::BITREVERSE, MVT::i32, 3 },
1955 { ISD::BITREVERSE, MVT::i16, 3 },
1956 { ISD::BITREVERSE, MVT::i8, 3 }
1958 static const CostTblEntry AVX2CostTbl[] = {
1959 { ISD::BITREVERSE, MVT::v4i64, 5 },
1960 { ISD::BITREVERSE, MVT::v8i32, 5 },
1961 { ISD::BITREVERSE, MVT::v16i16, 5 },
1962 { ISD::BITREVERSE, MVT::v32i8, 5 },
1963 { ISD::BSWAP, MVT::v4i64, 1 },
1964 { ISD::BSWAP, MVT::v8i32, 1 },
1965 { ISD::BSWAP, MVT::v16i16, 1 },
1966 { ISD::CTLZ, MVT::v4i64, 23 },
1967 { ISD::CTLZ, MVT::v8i32, 18 },
1968 { ISD::CTLZ, MVT::v16i16, 14 },
1969 { ISD::CTLZ, MVT::v32i8, 9 },
1970 { ISD::CTPOP, MVT::v4i64, 7 },
1971 { ISD::CTPOP, MVT::v8i32, 11 },
1972 { ISD::CTPOP, MVT::v16i16, 9 },
1973 { ISD::CTPOP, MVT::v32i8, 6 },
1974 { ISD::CTTZ, MVT::v4i64, 10 },
1975 { ISD::CTTZ, MVT::v8i32, 14 },
1976 { ISD::CTTZ, MVT::v16i16, 12 },
1977 { ISD::CTTZ, MVT::v32i8, 9 },
1978 { ISD::SADDSAT, MVT::v16i16, 1 },
1979 { ISD::SADDSAT, MVT::v32i8, 1 },
1980 { ISD::SSUBSAT, MVT::v16i16, 1 },
1981 { ISD::SSUBSAT, MVT::v32i8, 1 },
1982 { ISD::UADDSAT, MVT::v16i16, 1 },
1983 { ISD::UADDSAT, MVT::v32i8, 1 },
1984 { ISD::UADDSAT, MVT::v8i32, 3 }, // not + pminud + paddd
1985 { ISD::USUBSAT, MVT::v16i16, 1 },
1986 { ISD::USUBSAT, MVT::v32i8, 1 },
1987 { ISD::USUBSAT, MVT::v8i32, 2 }, // pmaxud + psubd
1988 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1989 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1990 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1991 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1992 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1993 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
1995 static const CostTblEntry AVX1CostTbl[] = {
1996 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1997 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1998 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1999 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
2000 { ISD::BSWAP, MVT::v4i64, 4 },
2001 { ISD::BSWAP, MVT::v8i32, 4 },
2002 { ISD::BSWAP, MVT::v16i16, 4 },
2003 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
2004 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
2005 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
2006 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
2007 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
2008 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
2009 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
2010 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
2011 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
2012 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
2013 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
2014 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
2015 { ISD::SADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2016 { ISD::SADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2017 { ISD::SSUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2018 { ISD::SSUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2019 { ISD::UADDSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2020 { ISD::UADDSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2021 { ISD::UADDSAT, MVT::v8i32, 8 }, // 2 x 128-bit Op + extract/insert
2022 { ISD::USUBSAT, MVT::v16i16, 4 }, // 2 x 128-bit Op + extract/insert
2023 { ISD::USUBSAT, MVT::v32i8, 4 }, // 2 x 128-bit Op + extract/insert
2024 { ISD::USUBSAT, MVT::v8i32, 6 }, // 2 x 128-bit Op + extract/insert
2025 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
2026 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
2027 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
2028 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
2029 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
2030 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
2032 static const CostTblEntry GLMCostTbl[] = {
2033 { ISD::FSQRT, MVT::f32, 19 }, // sqrtss
2034 { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
2035 { ISD::FSQRT, MVT::f64, 34 }, // sqrtsd
2036 { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
2038 static const CostTblEntry SLMCostTbl[] = {
2039 { ISD::FSQRT, MVT::f32, 20 }, // sqrtss
2040 { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
2041 { ISD::FSQRT, MVT::f64, 35 }, // sqrtsd
2042 { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
2044 static const CostTblEntry SSE42CostTbl[] = {
2045 { ISD::USUBSAT, MVT::v4i32, 2 }, // pmaxud + psubd
2046 { ISD::UADDSAT, MVT::v4i32, 3 }, // not + pminud + paddd
2047 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
2048 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
2050 static const CostTblEntry SSSE3CostTbl[] = {
2051 { ISD::BITREVERSE, MVT::v2i64, 5 },
2052 { ISD::BITREVERSE, MVT::v4i32, 5 },
2053 { ISD::BITREVERSE, MVT::v8i16, 5 },
2054 { ISD::BITREVERSE, MVT::v16i8, 5 },
2055 { ISD::BSWAP, MVT::v2i64, 1 },
2056 { ISD::BSWAP, MVT::v4i32, 1 },
2057 { ISD::BSWAP, MVT::v8i16, 1 },
2058 { ISD::CTLZ, MVT::v2i64, 23 },
2059 { ISD::CTLZ, MVT::v4i32, 18 },
2060 { ISD::CTLZ, MVT::v8i16, 14 },
2061 { ISD::CTLZ, MVT::v16i8, 9 },
2062 { ISD::CTPOP, MVT::v2i64, 7 },
2063 { ISD::CTPOP, MVT::v4i32, 11 },
2064 { ISD::CTPOP, MVT::v8i16, 9 },
2065 { ISD::CTPOP, MVT::v16i8, 6 },
2066 { ISD::CTTZ, MVT::v2i64, 10 },
2067 { ISD::CTTZ, MVT::v4i32, 14 },
2068 { ISD::CTTZ, MVT::v8i16, 12 },
2069 { ISD::CTTZ, MVT::v16i8, 9 }
2071 static const CostTblEntry SSE2CostTbl[] = {
2072 { ISD::BITREVERSE, MVT::v2i64, 29 },
2073 { ISD::BITREVERSE, MVT::v4i32, 27 },
2074 { ISD::BITREVERSE, MVT::v8i16, 27 },
2075 { ISD::BITREVERSE, MVT::v16i8, 20 },
2076 { ISD::BSWAP, MVT::v2i64, 7 },
2077 { ISD::BSWAP, MVT::v4i32, 7 },
2078 { ISD::BSWAP, MVT::v8i16, 7 },
2079 { ISD::CTLZ, MVT::v2i64, 25 },
2080 { ISD::CTLZ, MVT::v4i32, 26 },
2081 { ISD::CTLZ, MVT::v8i16, 20 },
2082 { ISD::CTLZ, MVT::v16i8, 17 },
2083 { ISD::CTPOP, MVT::v2i64, 12 },
2084 { ISD::CTPOP, MVT::v4i32, 15 },
2085 { ISD::CTPOP, MVT::v8i16, 13 },
2086 { ISD::CTPOP, MVT::v16i8, 10 },
2087 { ISD::CTTZ, MVT::v2i64, 14 },
2088 { ISD::CTTZ, MVT::v4i32, 18 },
2089 { ISD::CTTZ, MVT::v8i16, 16 },
2090 { ISD::CTTZ, MVT::v16i8, 13 },
2091 { ISD::SADDSAT, MVT::v8i16, 1 },
2092 { ISD::SADDSAT, MVT::v16i8, 1 },
2093 { ISD::SSUBSAT, MVT::v8i16, 1 },
2094 { ISD::SSUBSAT, MVT::v16i8, 1 },
2095 { ISD::UADDSAT, MVT::v8i16, 1 },
2096 { ISD::UADDSAT, MVT::v16i8, 1 },
2097 { ISD::USUBSAT, MVT::v8i16, 1 },
2098 { ISD::USUBSAT, MVT::v16i8, 1 },
2099 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
2100 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
2102 static const CostTblEntry SSE1CostTbl[] = {
2103 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
2104 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
2106 static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
2107 { ISD::CTLZ, MVT::i64, 1 },
2109 static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
2110 { ISD::CTLZ, MVT::i32, 1 },
2111 { ISD::CTLZ, MVT::i16, 1 },
2112 { ISD::CTLZ, MVT::i8, 1 },
2114 static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
2115 { ISD::CTPOP, MVT::i64, 1 },
2117 static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
2118 { ISD::CTPOP, MVT::i32, 1 },
2119 { ISD::CTPOP, MVT::i16, 1 },
2120 { ISD::CTPOP, MVT::i8, 1 },
2122 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2123 { ISD::BITREVERSE, MVT::i64, 14 },
2124 { ISD::CTLZ, MVT::i64, 4 }, // BSR+XOR or BSR+XOR+CMOV
2125 { ISD::CTPOP, MVT::i64, 10 },
2126 { ISD::SADDO, MVT::i64, 1 },
2127 { ISD::UADDO, MVT::i64, 1 },
2129 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2130 { ISD::BITREVERSE, MVT::i32, 14 },
2131 { ISD::BITREVERSE, MVT::i16, 14 },
2132 { ISD::BITREVERSE, MVT::i8, 11 },
2133 { ISD::CTLZ, MVT::i32, 4 }, // BSR+XOR or BSR+XOR+CMOV
2134 { ISD::CTLZ, MVT::i16, 4 }, // BSR+XOR or BSR+XOR+CMOV
2135 { ISD::CTLZ, MVT::i8, 4 }, // BSR+XOR or BSR+XOR+CMOV
2136 { ISD::CTPOP, MVT::i32, 8 },
2137 { ISD::CTPOP, MVT::i16, 9 },
2138 { ISD::CTPOP, MVT::i8, 7 },
2139 { ISD::SADDO, MVT::i32, 1 },
2140 { ISD::SADDO, MVT::i16, 1 },
2141 { ISD::SADDO, MVT::i8, 1 },
2142 { ISD::UADDO, MVT::i32, 1 },
2143 { ISD::UADDO, MVT::i16, 1 },
2144 { ISD::UADDO, MVT::i8, 1 },
2147 Type *OpTy = RetTy;
2148 unsigned ISD = ISD::DELETED_NODE;
2149 switch (IID) {
2150 default:
2151 break;
2152 case Intrinsic::bitreverse:
2153 ISD = ISD::BITREVERSE;
2154 break;
2155 case Intrinsic::bswap:
2156 ISD = ISD::BSWAP;
2157 break;
2158 case Intrinsic::ctlz:
2159 ISD = ISD::CTLZ;
2160 break;
2161 case Intrinsic::ctpop:
2162 ISD = ISD::CTPOP;
2163 break;
2164 case Intrinsic::cttz:
2165 ISD = ISD::CTTZ;
2166 break;
2167 case Intrinsic::sadd_sat:
2168 ISD = ISD::SADDSAT;
2169 break;
2170 case Intrinsic::ssub_sat:
2171 ISD = ISD::SSUBSAT;
2172 break;
2173 case Intrinsic::uadd_sat:
2174 ISD = ISD::UADDSAT;
2175 break;
2176 case Intrinsic::usub_sat:
2177 ISD = ISD::USUBSAT;
2178 break;
2179 case Intrinsic::sqrt:
2180 ISD = ISD::FSQRT;
2181 break;
2182 case Intrinsic::sadd_with_overflow:
2183 case Intrinsic::ssub_with_overflow:
2184 // SSUBO has same costs so don't duplicate.
2185 ISD = ISD::SADDO;
2186 OpTy = RetTy->getContainedType(0);
2187 break;
2188 case Intrinsic::uadd_with_overflow:
2189 case Intrinsic::usub_with_overflow:
2190 // USUBO has same costs so don't duplicate.
2191 ISD = ISD::UADDO;
2192 OpTy = RetTy->getContainedType(0);
2193 break;
2196 if (ISD != ISD::DELETED_NODE) {
2197 // Legalize the type.
2198 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
2199 MVT MTy = LT.second;
2201 // Attempt to lookup cost.
2202 if (ST->isGLM())
2203 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
2204 return LT.first * Entry->Cost;
2206 if (ST->isSLM())
2207 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
2208 return LT.first * Entry->Cost;
2210 if (ST->hasCDI())
2211 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
2212 return LT.first * Entry->Cost;
2214 if (ST->hasBWI())
2215 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
2216 return LT.first * Entry->Cost;
2218 if (ST->hasAVX512())
2219 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2220 return LT.first * Entry->Cost;
2222 if (ST->hasXOP())
2223 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2224 return LT.first * Entry->Cost;
2226 if (ST->hasAVX2())
2227 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
2228 return LT.first * Entry->Cost;
2230 if (ST->hasAVX())
2231 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
2232 return LT.first * Entry->Cost;
2234 if (ST->hasSSE42())
2235 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
2236 return LT.first * Entry->Cost;
2238 if (ST->hasSSSE3())
2239 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
2240 return LT.first * Entry->Cost;
2242 if (ST->hasSSE2())
2243 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
2244 return LT.first * Entry->Cost;
2246 if (ST->hasSSE1())
2247 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
2248 return LT.first * Entry->Cost;
2250 if (ST->hasLZCNT()) {
2251 if (ST->is64Bit())
2252 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
2253 return LT.first * Entry->Cost;
2255 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
2256 return LT.first * Entry->Cost;
2259 if (ST->hasPOPCNT()) {
2260 if (ST->is64Bit())
2261 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
2262 return LT.first * Entry->Cost;
2264 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
2265 return LT.first * Entry->Cost;
2268 // TODO - add BMI (TZCNT) scalar handling
2270 if (ST->is64Bit())
2271 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2272 return LT.first * Entry->Cost;
2274 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2275 return LT.first * Entry->Cost;
2278 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
2281 int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
2282 ArrayRef<Value *> Args, FastMathFlags FMF,
2283 unsigned VF) {
2284 static const CostTblEntry AVX512CostTbl[] = {
2285 { ISD::ROTL, MVT::v8i64, 1 },
2286 { ISD::ROTL, MVT::v4i64, 1 },
2287 { ISD::ROTL, MVT::v2i64, 1 },
2288 { ISD::ROTL, MVT::v16i32, 1 },
2289 { ISD::ROTL, MVT::v8i32, 1 },
2290 { ISD::ROTL, MVT::v4i32, 1 },
2291 { ISD::ROTR, MVT::v8i64, 1 },
2292 { ISD::ROTR, MVT::v4i64, 1 },
2293 { ISD::ROTR, MVT::v2i64, 1 },
2294 { ISD::ROTR, MVT::v16i32, 1 },
2295 { ISD::ROTR, MVT::v8i32, 1 },
2296 { ISD::ROTR, MVT::v4i32, 1 }
2298 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
2299 static const CostTblEntry XOPCostTbl[] = {
2300 { ISD::ROTL, MVT::v4i64, 4 },
2301 { ISD::ROTL, MVT::v8i32, 4 },
2302 { ISD::ROTL, MVT::v16i16, 4 },
2303 { ISD::ROTL, MVT::v32i8, 4 },
2304 { ISD::ROTL, MVT::v2i64, 1 },
2305 { ISD::ROTL, MVT::v4i32, 1 },
2306 { ISD::ROTL, MVT::v8i16, 1 },
2307 { ISD::ROTL, MVT::v16i8, 1 },
2308 { ISD::ROTR, MVT::v4i64, 6 },
2309 { ISD::ROTR, MVT::v8i32, 6 },
2310 { ISD::ROTR, MVT::v16i16, 6 },
2311 { ISD::ROTR, MVT::v32i8, 6 },
2312 { ISD::ROTR, MVT::v2i64, 2 },
2313 { ISD::ROTR, MVT::v4i32, 2 },
2314 { ISD::ROTR, MVT::v8i16, 2 },
2315 { ISD::ROTR, MVT::v16i8, 2 }
2317 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
2318 { ISD::ROTL, MVT::i64, 1 },
2319 { ISD::ROTR, MVT::i64, 1 },
2320 { ISD::FSHL, MVT::i64, 4 }
2322 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
2323 { ISD::ROTL, MVT::i32, 1 },
2324 { ISD::ROTL, MVT::i16, 1 },
2325 { ISD::ROTL, MVT::i8, 1 },
2326 { ISD::ROTR, MVT::i32, 1 },
2327 { ISD::ROTR, MVT::i16, 1 },
2328 { ISD::ROTR, MVT::i8, 1 },
2329 { ISD::FSHL, MVT::i32, 4 },
2330 { ISD::FSHL, MVT::i16, 4 },
2331 { ISD::FSHL, MVT::i8, 4 }
2334 unsigned ISD = ISD::DELETED_NODE;
2335 switch (IID) {
2336 default:
2337 break;
2338 case Intrinsic::fshl:
2339 ISD = ISD::FSHL;
2340 if (Args[0] == Args[1])
2341 ISD = ISD::ROTL;
2342 break;
2343 case Intrinsic::fshr:
2344 // FSHR has same costs so don't duplicate.
2345 ISD = ISD::FSHL;
2346 if (Args[0] == Args[1])
2347 ISD = ISD::ROTR;
2348 break;
2351 if (ISD != ISD::DELETED_NODE) {
2352 // Legalize the type.
2353 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
2354 MVT MTy = LT.second;
2356 // Attempt to lookup cost.
2357 if (ST->hasAVX512())
2358 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
2359 return LT.first * Entry->Cost;
2361 if (ST->hasXOP())
2362 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
2363 return LT.first * Entry->Cost;
2365 if (ST->is64Bit())
2366 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
2367 return LT.first * Entry->Cost;
2369 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
2370 return LT.first * Entry->Cost;
2373 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
2376 int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
2377 assert(Val->isVectorTy() && "This must be a vector type");
2379 Type *ScalarType = Val->getScalarType();
2381 if (Index != -1U) {
2382 // Legalize the type.
2383 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
2385 // This type is legalized to a scalar type.
2386 if (!LT.second.isVector())
2387 return 0;
2389 // The type may be split. Normalize the index to the new type.
2390 unsigned Width = LT.second.getVectorNumElements();
2391 Index = Index % Width;
2393 // Floating point scalars are already located in index #0.
2394 if (ScalarType->isFloatingPointTy() && Index == 0)
2395 return 0;
2398 // Add to the base cost if we know that the extracted element of a vector is
2399 // destined to be moved to and used in the integer register file.
2400 int RegisterFileMoveCost = 0;
2401 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
2402 RegisterFileMoveCost = 1;
2404 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
2407 int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
2408 unsigned AddressSpace, const Instruction *I) {
2409 // Handle non-power-of-two vectors such as <3 x float>
2410 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
2411 unsigned NumElem = VTy->getVectorNumElements();
2413 // Handle a few common cases:
2414 // <3 x float>
2415 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
2416 // Cost = 64 bit store + extract + 32 bit store.
2417 return 3;
2419 // <3 x double>
2420 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
2421 // Cost = 128 bit store + unpack + 64 bit store.
2422 return 3;
2424 // Assume that all other non-power-of-two numbers are scalarized.
2425 if (!isPowerOf2_32(NumElem)) {
2426 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
2427 AddressSpace);
2428 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
2429 Opcode == Instruction::Store);
2430 return NumElem * Cost + SplitCost;
2434 // Legalize the type.
2435 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
2436 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
2437 "Invalid Opcode");
2439 // Each load/store unit costs 1.
2440 int Cost = LT.first * 1;
2442 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
2443 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
2444 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
2445 Cost *= 2;
2447 return Cost;
2450 int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
2451 unsigned Alignment,
2452 unsigned AddressSpace) {
2453 bool IsLoad = (Instruction::Load == Opcode);
2454 bool IsStore = (Instruction::Store == Opcode);
2456 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
2457 if (!SrcVTy)
2458 // To calculate scalar take the regular cost, without mask
2459 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
2461 unsigned NumElem = SrcVTy->getVectorNumElements();
2462 VectorType *MaskTy =
2463 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
2464 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, MaybeAlign(Alignment))) ||
2465 (IsStore && !isLegalMaskedStore(SrcVTy, MaybeAlign(Alignment))) ||
2466 !isPowerOf2_32(NumElem)) {
2467 // Scalarization
2468 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
2469 int ScalarCompareCost = getCmpSelInstrCost(
2470 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
2471 int BranchCost = getCFInstrCost(Instruction::Br);
2472 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
2474 int ValueSplitCost = getScalarizationOverhead(SrcVTy, IsLoad, IsStore);
2475 int MemopCost =
2476 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2477 Alignment, AddressSpace);
2478 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
2481 // Legalize the type.
2482 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2483 auto VT = TLI->getValueType(DL, SrcVTy);
2484 int Cost = 0;
2485 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
2486 LT.second.getVectorNumElements() == NumElem)
2487 // Promotion requires expand/truncate for data and a shuffle for mask.
2488 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
2489 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
2491 else if (LT.second.getVectorNumElements() > NumElem) {
2492 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
2493 LT.second.getVectorNumElements());
2494 // Expanding requires fill mask with zeroes
2495 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
2498 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
2499 if (!ST->hasAVX512())
2500 return Cost + LT.first * (IsLoad ? 2 : 8);
2502 // AVX-512 masked load/store is cheapper
2503 return Cost + LT.first;
2506 int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2507 const SCEV *Ptr) {
2508 // Address computations in vectorized code with non-consecutive addresses will
2509 // likely result in more instructions compared to scalar code where the
2510 // computation can more often be merged into the index mode. The resulting
2511 // extra micro-ops can significantly decrease throughput.
2512 const unsigned NumVectorInstToHideOverhead = 10;
2514 // Cost modeling of Strided Access Computation is hidden by the indexing
2515 // modes of X86 regardless of the stride value. We dont believe that there
2516 // is a difference between constant strided access in gerenal and constant
2517 // strided value which is less than or equal to 64.
2518 // Even in the case of (loop invariant) stride whose value is not known at
2519 // compile time, the address computation will not incur more than one extra
2520 // ADD instruction.
2521 if (Ty->isVectorTy() && SE) {
2522 if (!BaseT::isStridedAccess(Ptr))
2523 return NumVectorInstToHideOverhead;
2524 if (!BaseT::getConstantStrideStep(SE, Ptr))
2525 return 1;
2528 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
2531 int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
2532 bool IsPairwise) {
2533 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2534 // and make it as the cost.
2536 static const CostTblEntry SSE2CostTblPairWise[] = {
2537 { ISD::FADD, MVT::v2f64, 2 },
2538 { ISD::FADD, MVT::v4f32, 4 },
2539 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
2540 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32.
2541 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
2542 { ISD::ADD, MVT::v2i16, 3 }, // FIXME: chosen to be less than v4i16
2543 { ISD::ADD, MVT::v4i16, 4 }, // FIXME: chosen to be less than v8i16
2544 { ISD::ADD, MVT::v8i16, 5 },
2545 { ISD::ADD, MVT::v2i8, 2 },
2546 { ISD::ADD, MVT::v4i8, 2 },
2547 { ISD::ADD, MVT::v8i8, 2 },
2548 { ISD::ADD, MVT::v16i8, 3 },
2551 static const CostTblEntry AVX1CostTblPairWise[] = {
2552 { ISD::FADD, MVT::v4f64, 5 },
2553 { ISD::FADD, MVT::v8f32, 7 },
2554 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
2555 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
2556 { ISD::ADD, MVT::v8i32, 5 },
2557 { ISD::ADD, MVT::v16i16, 6 },
2558 { ISD::ADD, MVT::v32i8, 4 },
2561 static const CostTblEntry SSE2CostTblNoPairWise[] = {
2562 { ISD::FADD, MVT::v2f64, 2 },
2563 { ISD::FADD, MVT::v4f32, 4 },
2564 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
2565 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
2566 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
2567 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
2568 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
2569 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
2570 { ISD::ADD, MVT::v2i8, 2 },
2571 { ISD::ADD, MVT::v4i8, 2 },
2572 { ISD::ADD, MVT::v8i8, 2 },
2573 { ISD::ADD, MVT::v16i8, 3 },
2576 static const CostTblEntry AVX1CostTblNoPairWise[] = {
2577 { ISD::FADD, MVT::v4f64, 3 },
2578 { ISD::FADD, MVT::v4f32, 3 },
2579 { ISD::FADD, MVT::v8f32, 4 },
2580 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
2581 { ISD::ADD, MVT::v4i64, 3 },
2582 { ISD::ADD, MVT::v8i32, 5 },
2583 { ISD::ADD, MVT::v16i16, 5 },
2584 { ISD::ADD, MVT::v32i8, 4 },
2587 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2588 assert(ISD && "Invalid opcode");
2590 // Before legalizing the type, give a chance to look up illegal narrow types
2591 // in the table.
2592 // FIXME: Is there a better way to do this?
2593 EVT VT = TLI->getValueType(DL, ValTy);
2594 if (VT.isSimple()) {
2595 MVT MTy = VT.getSimpleVT();
2596 if (IsPairwise) {
2597 if (ST->hasAVX())
2598 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2599 return Entry->Cost;
2601 if (ST->hasSSE2())
2602 if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2603 return Entry->Cost;
2604 } else {
2605 if (ST->hasAVX())
2606 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2607 return Entry->Cost;
2609 if (ST->hasSSE2())
2610 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2611 return Entry->Cost;
2615 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2617 MVT MTy = LT.second;
2619 if (IsPairwise) {
2620 if (ST->hasAVX())
2621 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2622 return LT.first * Entry->Cost;
2624 if (ST->hasSSE2())
2625 if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2626 return LT.first * Entry->Cost;
2627 } else {
2628 if (ST->hasAVX())
2629 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2630 return LT.first * Entry->Cost;
2632 if (ST->hasSSE2())
2633 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2634 return LT.first * Entry->Cost;
2637 static const CostTblEntry AVX2BoolReduction[] = {
2638 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
2639 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
2640 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
2641 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
2644 static const CostTblEntry AVX1BoolReduction[] = {
2645 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
2646 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
2647 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
2648 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
2649 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
2650 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
2651 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
2652 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
2655 static const CostTblEntry SSE2BoolReduction[] = {
2656 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
2657 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
2658 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
2659 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
2660 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
2661 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
2662 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
2663 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
2666 // Handle bool allof/anyof patterns.
2667 if (ValTy->getVectorElementType()->isIntegerTy(1)) {
2668 if (ST->hasAVX2())
2669 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
2670 return LT.first * Entry->Cost;
2671 if (ST->hasAVX())
2672 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
2673 return LT.first * Entry->Cost;
2674 if (ST->hasSSE2())
2675 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
2676 return LT.first * Entry->Cost;
2679 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise);
2682 int X86TTIImpl::getMinMaxReductionCost(Type *ValTy, Type *CondTy,
2683 bool IsPairwise, bool IsUnsigned) {
2684 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2686 MVT MTy = LT.second;
2688 int ISD;
2689 if (ValTy->isIntOrIntVectorTy()) {
2690 ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
2691 } else {
2692 assert(ValTy->isFPOrFPVectorTy() &&
2693 "Expected float point or integer vector type.");
2694 ISD = ISD::FMINNUM;
2697 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
2698 // and make it as the cost.
2700 static const CostTblEntry SSE1CostTblPairWise[] = {
2701 {ISD::FMINNUM, MVT::v4f32, 4},
2704 static const CostTblEntry SSE2CostTblPairWise[] = {
2705 {ISD::FMINNUM, MVT::v2f64, 3},
2706 {ISD::SMIN, MVT::v2i64, 6},
2707 {ISD::UMIN, MVT::v2i64, 8},
2708 {ISD::SMIN, MVT::v4i32, 6},
2709 {ISD::UMIN, MVT::v4i32, 8},
2710 {ISD::SMIN, MVT::v8i16, 4},
2711 {ISD::UMIN, MVT::v8i16, 6},
2712 {ISD::SMIN, MVT::v16i8, 8},
2713 {ISD::UMIN, MVT::v16i8, 6},
2716 static const CostTblEntry SSE41CostTblPairWise[] = {
2717 {ISD::FMINNUM, MVT::v4f32, 2},
2718 {ISD::SMIN, MVT::v2i64, 9},
2719 {ISD::UMIN, MVT::v2i64,10},
2720 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2721 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2722 {ISD::SMIN, MVT::v8i16, 2},
2723 {ISD::UMIN, MVT::v8i16, 2},
2724 {ISD::SMIN, MVT::v16i8, 3},
2725 {ISD::UMIN, MVT::v16i8, 3},
2728 static const CostTblEntry SSE42CostTblPairWise[] = {
2729 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2730 {ISD::UMIN, MVT::v2i64, 8}, // The data reported by the IACA is "8.6"
2733 static const CostTblEntry AVX1CostTblPairWise[] = {
2734 {ISD::FMINNUM, MVT::v4f32, 1},
2735 {ISD::FMINNUM, MVT::v4f64, 1},
2736 {ISD::FMINNUM, MVT::v8f32, 2},
2737 {ISD::SMIN, MVT::v2i64, 3},
2738 {ISD::UMIN, MVT::v2i64, 3},
2739 {ISD::SMIN, MVT::v4i32, 1},
2740 {ISD::UMIN, MVT::v4i32, 1},
2741 {ISD::SMIN, MVT::v8i16, 1},
2742 {ISD::UMIN, MVT::v8i16, 1},
2743 {ISD::SMIN, MVT::v16i8, 2},
2744 {ISD::UMIN, MVT::v16i8, 2},
2745 {ISD::SMIN, MVT::v4i64, 7},
2746 {ISD::UMIN, MVT::v4i64, 7},
2747 {ISD::SMIN, MVT::v8i32, 3},
2748 {ISD::UMIN, MVT::v8i32, 3},
2749 {ISD::SMIN, MVT::v16i16, 3},
2750 {ISD::UMIN, MVT::v16i16, 3},
2751 {ISD::SMIN, MVT::v32i8, 3},
2752 {ISD::UMIN, MVT::v32i8, 3},
2755 static const CostTblEntry AVX2CostTblPairWise[] = {
2756 {ISD::SMIN, MVT::v4i64, 2},
2757 {ISD::UMIN, MVT::v4i64, 2},
2758 {ISD::SMIN, MVT::v8i32, 1},
2759 {ISD::UMIN, MVT::v8i32, 1},
2760 {ISD::SMIN, MVT::v16i16, 1},
2761 {ISD::UMIN, MVT::v16i16, 1},
2762 {ISD::SMIN, MVT::v32i8, 2},
2763 {ISD::UMIN, MVT::v32i8, 2},
2766 static const CostTblEntry AVX512CostTblPairWise[] = {
2767 {ISD::FMINNUM, MVT::v8f64, 1},
2768 {ISD::FMINNUM, MVT::v16f32, 2},
2769 {ISD::SMIN, MVT::v8i64, 2},
2770 {ISD::UMIN, MVT::v8i64, 2},
2771 {ISD::SMIN, MVT::v16i32, 1},
2772 {ISD::UMIN, MVT::v16i32, 1},
2775 static const CostTblEntry SSE1CostTblNoPairWise[] = {
2776 {ISD::FMINNUM, MVT::v4f32, 4},
2779 static const CostTblEntry SSE2CostTblNoPairWise[] = {
2780 {ISD::FMINNUM, MVT::v2f64, 3},
2781 {ISD::SMIN, MVT::v2i64, 6},
2782 {ISD::UMIN, MVT::v2i64, 8},
2783 {ISD::SMIN, MVT::v4i32, 6},
2784 {ISD::UMIN, MVT::v4i32, 8},
2785 {ISD::SMIN, MVT::v8i16, 4},
2786 {ISD::UMIN, MVT::v8i16, 6},
2787 {ISD::SMIN, MVT::v16i8, 8},
2788 {ISD::UMIN, MVT::v16i8, 6},
2791 static const CostTblEntry SSE41CostTblNoPairWise[] = {
2792 {ISD::FMINNUM, MVT::v4f32, 3},
2793 {ISD::SMIN, MVT::v2i64, 9},
2794 {ISD::UMIN, MVT::v2i64,11},
2795 {ISD::SMIN, MVT::v4i32, 1}, // The data reported by the IACA is "1.5"
2796 {ISD::UMIN, MVT::v4i32, 2}, // The data reported by the IACA is "1.8"
2797 {ISD::SMIN, MVT::v8i16, 1}, // The data reported by the IACA is "1.5"
2798 {ISD::UMIN, MVT::v8i16, 2}, // The data reported by the IACA is "1.8"
2799 {ISD::SMIN, MVT::v16i8, 3},
2800 {ISD::UMIN, MVT::v16i8, 3},
2803 static const CostTblEntry SSE42CostTblNoPairWise[] = {
2804 {ISD::SMIN, MVT::v2i64, 7}, // The data reported by the IACA is "6.8"
2805 {ISD::UMIN, MVT::v2i64, 9}, // The data reported by the IACA is "8.6"
2808 static const CostTblEntry AVX1CostTblNoPairWise[] = {
2809 {ISD::FMINNUM, MVT::v4f32, 1},
2810 {ISD::FMINNUM, MVT::v4f64, 1},
2811 {ISD::FMINNUM, MVT::v8f32, 1},
2812 {ISD::SMIN, MVT::v2i64, 3},
2813 {ISD::UMIN, MVT::v2i64, 3},
2814 {ISD::SMIN, MVT::v4i32, 1},
2815 {ISD::UMIN, MVT::v4i32, 1},
2816 {ISD::SMIN, MVT::v8i16, 1},
2817 {ISD::UMIN, MVT::v8i16, 1},
2818 {ISD::SMIN, MVT::v16i8, 2},
2819 {ISD::UMIN, MVT::v16i8, 2},
2820 {ISD::SMIN, MVT::v4i64, 7},
2821 {ISD::UMIN, MVT::v4i64, 7},
2822 {ISD::SMIN, MVT::v8i32, 2},
2823 {ISD::UMIN, MVT::v8i32, 2},
2824 {ISD::SMIN, MVT::v16i16, 2},
2825 {ISD::UMIN, MVT::v16i16, 2},
2826 {ISD::SMIN, MVT::v32i8, 2},
2827 {ISD::UMIN, MVT::v32i8, 2},
2830 static const CostTblEntry AVX2CostTblNoPairWise[] = {
2831 {ISD::SMIN, MVT::v4i64, 1},
2832 {ISD::UMIN, MVT::v4i64, 1},
2833 {ISD::SMIN, MVT::v8i32, 1},
2834 {ISD::UMIN, MVT::v8i32, 1},
2835 {ISD::SMIN, MVT::v16i16, 1},
2836 {ISD::UMIN, MVT::v16i16, 1},
2837 {ISD::SMIN, MVT::v32i8, 1},
2838 {ISD::UMIN, MVT::v32i8, 1},
2841 static const CostTblEntry AVX512CostTblNoPairWise[] = {
2842 {ISD::FMINNUM, MVT::v8f64, 1},
2843 {ISD::FMINNUM, MVT::v16f32, 2},
2844 {ISD::SMIN, MVT::v8i64, 1},
2845 {ISD::UMIN, MVT::v8i64, 1},
2846 {ISD::SMIN, MVT::v16i32, 1},
2847 {ISD::UMIN, MVT::v16i32, 1},
2850 if (IsPairwise) {
2851 if (ST->hasAVX512())
2852 if (const auto *Entry = CostTableLookup(AVX512CostTblPairWise, ISD, MTy))
2853 return LT.first * Entry->Cost;
2855 if (ST->hasAVX2())
2856 if (const auto *Entry = CostTableLookup(AVX2CostTblPairWise, ISD, MTy))
2857 return LT.first * Entry->Cost;
2859 if (ST->hasAVX())
2860 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
2861 return LT.first * Entry->Cost;
2863 if (ST->hasSSE42())
2864 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
2865 return LT.first * Entry->Cost;
2867 if (ST->hasSSE41())
2868 if (const auto *Entry = CostTableLookup(SSE41CostTblPairWise, ISD, MTy))
2869 return LT.first * Entry->Cost;
2871 if (ST->hasSSE2())
2872 if (const auto *Entry = CostTableLookup(SSE2CostTblPairWise, ISD, MTy))
2873 return LT.first * Entry->Cost;
2875 if (ST->hasSSE1())
2876 if (const auto *Entry = CostTableLookup(SSE1CostTblPairWise, ISD, MTy))
2877 return LT.first * Entry->Cost;
2878 } else {
2879 if (ST->hasAVX512())
2880 if (const auto *Entry =
2881 CostTableLookup(AVX512CostTblNoPairWise, ISD, MTy))
2882 return LT.first * Entry->Cost;
2884 if (ST->hasAVX2())
2885 if (const auto *Entry = CostTableLookup(AVX2CostTblNoPairWise, ISD, MTy))
2886 return LT.first * Entry->Cost;
2888 if (ST->hasAVX())
2889 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
2890 return LT.first * Entry->Cost;
2892 if (ST->hasSSE42())
2893 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
2894 return LT.first * Entry->Cost;
2896 if (ST->hasSSE41())
2897 if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
2898 return LT.first * Entry->Cost;
2900 if (ST->hasSSE2())
2901 if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
2902 return LT.first * Entry->Cost;
2904 if (ST->hasSSE1())
2905 if (const auto *Entry = CostTableLookup(SSE1CostTblNoPairWise, ISD, MTy))
2906 return LT.first * Entry->Cost;
2909 return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned);
2912 /// Calculate the cost of materializing a 64-bit value. This helper
2913 /// method might only calculate a fraction of a larger immediate. Therefore it
2914 /// is valid to return a cost of ZERO.
2915 int X86TTIImpl::getIntImmCost(int64_t Val) {
2916 if (Val == 0)
2917 return TTI::TCC_Free;
2919 if (isInt<32>(Val))
2920 return TTI::TCC_Basic;
2922 return 2 * TTI::TCC_Basic;
2925 int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
2926 assert(Ty->isIntegerTy());
2928 unsigned BitSize = Ty->getPrimitiveSizeInBits();
2929 if (BitSize == 0)
2930 return ~0U;
2932 // Never hoist constants larger than 128bit, because this might lead to
2933 // incorrect code generation or assertions in codegen.
2934 // Fixme: Create a cost model for types larger than i128 once the codegen
2935 // issues have been fixed.
2936 if (BitSize > 128)
2937 return TTI::TCC_Free;
2939 if (Imm == 0)
2940 return TTI::TCC_Free;
2942 // Sign-extend all constants to a multiple of 64-bit.
2943 APInt ImmVal = Imm;
2944 if (BitSize % 64 != 0)
2945 ImmVal = Imm.sext(alignTo(BitSize, 64));
2947 // Split the constant into 64-bit chunks and calculate the cost for each
2948 // chunk.
2949 int Cost = 0;
2950 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
2951 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
2952 int64_t Val = Tmp.getSExtValue();
2953 Cost += getIntImmCost(Val);
2955 // We need at least one instruction to materialize the constant.
2956 return std::max(1, Cost);
2959 int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
2960 Type *Ty) {
2961 assert(Ty->isIntegerTy());
2963 unsigned BitSize = Ty->getPrimitiveSizeInBits();
2964 // There is no cost model for constants with a bit size of 0. Return TCC_Free
2965 // here, so that constant hoisting will ignore this constant.
2966 if (BitSize == 0)
2967 return TTI::TCC_Free;
2969 unsigned ImmIdx = ~0U;
2970 switch (Opcode) {
2971 default:
2972 return TTI::TCC_Free;
2973 case Instruction::GetElementPtr:
2974 // Always hoist the base address of a GetElementPtr. This prevents the
2975 // creation of new constants for every base constant that gets constant
2976 // folded with the offset.
2977 if (Idx == 0)
2978 return 2 * TTI::TCC_Basic;
2979 return TTI::TCC_Free;
2980 case Instruction::Store:
2981 ImmIdx = 0;
2982 break;
2983 case Instruction::ICmp:
2984 // This is an imperfect hack to prevent constant hoisting of
2985 // compares that might be trying to check if a 64-bit value fits in
2986 // 32-bits. The backend can optimize these cases using a right shift by 32.
2987 // Ideally we would check the compare predicate here. There also other
2988 // similar immediates the backend can use shifts for.
2989 if (Idx == 1 && Imm.getBitWidth() == 64) {
2990 uint64_t ImmVal = Imm.getZExtValue();
2991 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
2992 return TTI::TCC_Free;
2994 ImmIdx = 1;
2995 break;
2996 case Instruction::And:
2997 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
2998 // by using a 32-bit operation with implicit zero extension. Detect such
2999 // immediates here as the normal path expects bit 31 to be sign extended.
3000 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
3001 return TTI::TCC_Free;
3002 ImmIdx = 1;
3003 break;
3004 case Instruction::Add:
3005 case Instruction::Sub:
3006 // For add/sub, we can use the opposite instruction for INT32_MIN.
3007 if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
3008 return TTI::TCC_Free;
3009 ImmIdx = 1;
3010 break;
3011 case Instruction::UDiv:
3012 case Instruction::SDiv:
3013 case Instruction::URem:
3014 case Instruction::SRem:
3015 // Division by constant is typically expanded later into a different
3016 // instruction sequence. This completely changes the constants.
3017 // Report them as "free" to stop ConstantHoist from marking them as opaque.
3018 return TTI::TCC_Free;
3019 case Instruction::Mul:
3020 case Instruction::Or:
3021 case Instruction::Xor:
3022 ImmIdx = 1;
3023 break;
3024 // Always return TCC_Free for the shift value of a shift instruction.
3025 case Instruction::Shl:
3026 case Instruction::LShr:
3027 case Instruction::AShr:
3028 if (Idx == 1)
3029 return TTI::TCC_Free;
3030 break;
3031 case Instruction::Trunc:
3032 case Instruction::ZExt:
3033 case Instruction::SExt:
3034 case Instruction::IntToPtr:
3035 case Instruction::PtrToInt:
3036 case Instruction::BitCast:
3037 case Instruction::PHI:
3038 case Instruction::Call:
3039 case Instruction::Select:
3040 case Instruction::Ret:
3041 case Instruction::Load:
3042 break;
3045 if (Idx == ImmIdx) {
3046 int NumConstants = divideCeil(BitSize, 64);
3047 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
3048 return (Cost <= NumConstants * TTI::TCC_Basic)
3049 ? static_cast<int>(TTI::TCC_Free)
3050 : Cost;
3053 return X86TTIImpl::getIntImmCost(Imm, Ty);
3056 int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
3057 Type *Ty) {
3058 assert(Ty->isIntegerTy());
3060 unsigned BitSize = Ty->getPrimitiveSizeInBits();
3061 // There is no cost model for constants with a bit size of 0. Return TCC_Free
3062 // here, so that constant hoisting will ignore this constant.
3063 if (BitSize == 0)
3064 return TTI::TCC_Free;
3066 switch (IID) {
3067 default:
3068 return TTI::TCC_Free;
3069 case Intrinsic::sadd_with_overflow:
3070 case Intrinsic::uadd_with_overflow:
3071 case Intrinsic::ssub_with_overflow:
3072 case Intrinsic::usub_with_overflow:
3073 case Intrinsic::smul_with_overflow:
3074 case Intrinsic::umul_with_overflow:
3075 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
3076 return TTI::TCC_Free;
3077 break;
3078 case Intrinsic::experimental_stackmap:
3079 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3080 return TTI::TCC_Free;
3081 break;
3082 case Intrinsic::experimental_patchpoint_void:
3083 case Intrinsic::experimental_patchpoint_i64:
3084 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
3085 return TTI::TCC_Free;
3086 break;
3088 return X86TTIImpl::getIntImmCost(Imm, Ty);
3091 unsigned X86TTIImpl::getUserCost(const User *U,
3092 ArrayRef<const Value *> Operands) {
3093 if (isa<StoreInst>(U)) {
3094 Value *Ptr = U->getOperand(1);
3095 // Store instruction with index and scale costs 2 Uops.
3096 // Check the preceding GEP to identify non-const indices.
3097 if (auto GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
3098 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
3099 return TTI::TCC_Basic * 2;
3101 return TTI::TCC_Basic;
3103 return BaseT::getUserCost(U, Operands);
3106 // Return an average cost of Gather / Scatter instruction, maybe improved later
3107 int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
3108 unsigned Alignment, unsigned AddressSpace) {
3110 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
3111 unsigned VF = SrcVTy->getVectorNumElements();
3113 // Try to reduce index size from 64 bit (default for GEP)
3114 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
3115 // operation will use 16 x 64 indices which do not fit in a zmm and needs
3116 // to split. Also check that the base pointer is the same for all lanes,
3117 // and that there's at most one variable index.
3118 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
3119 unsigned IndexSize = DL.getPointerSizeInBits();
3120 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3121 if (IndexSize < 64 || !GEP)
3122 return IndexSize;
3124 unsigned NumOfVarIndices = 0;
3125 Value *Ptrs = GEP->getPointerOperand();
3126 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
3127 return IndexSize;
3128 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
3129 if (isa<Constant>(GEP->getOperand(i)))
3130 continue;
3131 Type *IndxTy = GEP->getOperand(i)->getType();
3132 if (IndxTy->isVectorTy())
3133 IndxTy = IndxTy->getVectorElementType();
3134 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
3135 !isa<SExtInst>(GEP->getOperand(i))) ||
3136 ++NumOfVarIndices > 1)
3137 return IndexSize; // 64
3139 return (unsigned)32;
3143 // Trying to reduce IndexSize to 32 bits for vector 16.
3144 // By default the IndexSize is equal to pointer size.
3145 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
3146 ? getIndexSizeInBits(Ptr, DL)
3147 : DL.getPointerSizeInBits();
3149 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
3150 IndexSize), VF);
3151 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
3152 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
3153 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
3154 if (SplitFactor > 1) {
3155 // Handle splitting of vector of pointers
3156 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
3157 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
3158 AddressSpace);
3161 // The gather / scatter cost is given by Intel architects. It is a rough
3162 // number since we are looking at one instruction in a time.
3163 const int GSOverhead = (Opcode == Instruction::Load)
3164 ? ST->getGatherOverhead()
3165 : ST->getScatterOverhead();
3166 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3167 Alignment, AddressSpace);
3170 /// Return the cost of full scalarization of gather / scatter operation.
3172 /// Opcode - Load or Store instruction.
3173 /// SrcVTy - The type of the data vector that should be gathered or scattered.
3174 /// VariableMask - The mask is non-constant at compile time.
3175 /// Alignment - Alignment for one element.
3176 /// AddressSpace - pointer[s] address space.
3178 int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
3179 bool VariableMask, unsigned Alignment,
3180 unsigned AddressSpace) {
3181 unsigned VF = SrcVTy->getVectorNumElements();
3183 int MaskUnpackCost = 0;
3184 if (VariableMask) {
3185 VectorType *MaskTy =
3186 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
3187 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
3188 int ScalarCompareCost =
3189 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
3190 nullptr);
3191 int BranchCost = getCFInstrCost(Instruction::Br);
3192 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
3195 // The cost of the scalar loads/stores.
3196 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
3197 Alignment, AddressSpace);
3199 int InsertExtractCost = 0;
3200 if (Opcode == Instruction::Load)
3201 for (unsigned i = 0; i < VF; ++i)
3202 // Add the cost of inserting each scalar load into the vector
3203 InsertExtractCost +=
3204 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
3205 else
3206 for (unsigned i = 0; i < VF; ++i)
3207 // Add the cost of extracting each element out of the data vector
3208 InsertExtractCost +=
3209 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
3211 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
3214 /// Calculate the cost of Gather / Scatter operation
3215 int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
3216 Value *Ptr, bool VariableMask,
3217 unsigned Alignment) {
3218 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
3219 unsigned VF = SrcVTy->getVectorNumElements();
3220 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3221 if (!PtrTy && Ptr->getType()->isVectorTy())
3222 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
3223 assert(PtrTy && "Unexpected type for Ptr argument");
3224 unsigned AddressSpace = PtrTy->getAddressSpace();
3226 bool Scalarize = false;
3227 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
3228 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
3229 Scalarize = true;
3230 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
3231 // Vector-4 of gather/scatter instruction does not exist on KNL.
3232 // We can extend it to 8 elements, but zeroing upper bits of
3233 // the mask vector will add more instructions. Right now we give the scalar
3234 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
3235 // is better in the VariableMask case.
3236 if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
3237 Scalarize = true;
3239 if (Scalarize)
3240 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
3241 AddressSpace);
3243 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
3246 bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
3247 TargetTransformInfo::LSRCost &C2) {
3248 // X86 specific here are "instruction number 1st priority".
3249 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3250 C1.NumIVMuls, C1.NumBaseAdds,
3251 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
3252 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3253 C2.NumIVMuls, C2.NumBaseAdds,
3254 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
3257 bool X86TTIImpl::canMacroFuseCmp() {
3258 return ST->hasMacroFusion() || ST->hasBranchFusion();
3261 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, MaybeAlign Alignment) {
3262 if (!ST->hasAVX())
3263 return false;
3265 // The backend can't handle a single element vector.
3266 if (isa<VectorType>(DataTy) && DataTy->getVectorNumElements() == 1)
3267 return false;
3268 Type *ScalarTy = DataTy->getScalarType();
3270 if (ScalarTy->isPointerTy())
3271 return true;
3273 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3274 return true;
3276 if (!ScalarTy->isIntegerTy())
3277 return false;
3279 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3280 return IntWidth == 32 || IntWidth == 64 ||
3281 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
3284 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, MaybeAlign Alignment) {
3285 return isLegalMaskedLoad(DataType, Alignment);
3288 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
3289 unsigned DataSize = DL.getTypeStoreSize(DataType);
3290 // The only supported nontemporal loads are for aligned vectors of 16 or 32
3291 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
3292 // (the equivalent stores only require AVX).
3293 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
3294 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
3296 return false;
3299 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
3300 unsigned DataSize = DL.getTypeStoreSize(DataType);
3302 // SSE4A supports nontemporal stores of float and double at arbitrary
3303 // alignment.
3304 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
3305 return true;
3307 // Besides the SSE4A subtarget exception above, only aligned stores are
3308 // available nontemporaly on any other subtarget. And only stores with a size
3309 // of 4..32 bytes (powers of 2, only) are permitted.
3310 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
3311 !isPowerOf2_32(DataSize))
3312 return false;
3314 // 32-byte vector nontemporal stores are supported by AVX (the equivalent
3315 // loads require AVX2).
3316 if (DataSize == 32)
3317 return ST->hasAVX();
3318 else if (DataSize == 16)
3319 return ST->hasSSE1();
3320 return true;
3323 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
3324 if (!isa<VectorType>(DataTy))
3325 return false;
3327 if (!ST->hasAVX512())
3328 return false;
3330 // The backend can't handle a single element vector.
3331 if (DataTy->getVectorNumElements() == 1)
3332 return false;
3334 Type *ScalarTy = DataTy->getVectorElementType();
3336 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3337 return true;
3339 if (!ScalarTy->isIntegerTy())
3340 return false;
3342 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3343 return IntWidth == 32 || IntWidth == 64 ||
3344 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
3347 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
3348 return isLegalMaskedExpandLoad(DataTy);
3351 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
3352 // Some CPUs have better gather performance than others.
3353 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
3354 // enable gather with a -march.
3355 if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
3356 return false;
3358 // This function is called now in two cases: from the Loop Vectorizer
3359 // and from the Scalarizer.
3360 // When the Loop Vectorizer asks about legality of the feature,
3361 // the vectorization factor is not calculated yet. The Loop Vectorizer
3362 // sends a scalar type and the decision is based on the width of the
3363 // scalar element.
3364 // Later on, the cost model will estimate usage this intrinsic based on
3365 // the vector type.
3366 // The Scalarizer asks again about legality. It sends a vector type.
3367 // In this case we can reject non-power-of-2 vectors.
3368 // We also reject single element vectors as the type legalizer can't
3369 // scalarize it.
3370 if (isa<VectorType>(DataTy)) {
3371 unsigned NumElts = DataTy->getVectorNumElements();
3372 if (NumElts == 1 || !isPowerOf2_32(NumElts))
3373 return false;
3375 Type *ScalarTy = DataTy->getScalarType();
3376 if (ScalarTy->isPointerTy())
3377 return true;
3379 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
3380 return true;
3382 if (!ScalarTy->isIntegerTy())
3383 return false;
3385 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
3386 return IntWidth == 32 || IntWidth == 64;
3389 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
3390 // AVX2 doesn't support scatter
3391 if (!ST->hasAVX512())
3392 return false;
3393 return isLegalMaskedGather(DataType);
3396 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
3397 EVT VT = TLI->getValueType(DL, DataType);
3398 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
3401 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
3402 return false;
3405 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
3406 const Function *Callee) const {
3407 const TargetMachine &TM = getTLI()->getTargetMachine();
3409 // Work this as a subsetting of subtarget features.
3410 const FeatureBitset &CallerBits =
3411 TM.getSubtargetImpl(*Caller)->getFeatureBits();
3412 const FeatureBitset &CalleeBits =
3413 TM.getSubtargetImpl(*Callee)->getFeatureBits();
3415 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
3416 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
3417 return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
3420 bool X86TTIImpl::areFunctionArgsABICompatible(
3421 const Function *Caller, const Function *Callee,
3422 SmallPtrSetImpl<Argument *> &Args) const {
3423 if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
3424 return false;
3426 // If we get here, we know the target features match. If one function
3427 // considers 512-bit vectors legal and the other does not, consider them
3428 // incompatible.
3429 // FIXME Look at the arguments and only consider 512 bit or larger vectors?
3430 const TargetMachine &TM = getTLI()->getTargetMachine();
3432 return TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
3433 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs();
3436 X86TTIImpl::TTI::MemCmpExpansionOptions
3437 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3438 TTI::MemCmpExpansionOptions Options;
3439 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3440 Options.NumLoadsPerBlock = 2;
3441 if (IsZeroCmp) {
3442 // Only enable vector loads for equality comparison. Right now the vector
3443 // version is not as fast for three way compare (see #33329).
3444 const unsigned PreferredWidth = ST->getPreferVectorWidth();
3445 if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
3446 if (PreferredWidth >= 256 && ST->hasAVX2()) Options.LoadSizes.push_back(32);
3447 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
3448 // All GPR and vector loads can be unaligned. SIMD compare requires integer
3449 // vectors (SSE2/AVX2).
3450 Options.AllowOverlappingLoads = true;
3452 if (ST->is64Bit()) {
3453 Options.LoadSizes.push_back(8);
3455 Options.LoadSizes.push_back(4);
3456 Options.LoadSizes.push_back(2);
3457 Options.LoadSizes.push_back(1);
3458 return Options;
3461 bool X86TTIImpl::enableInterleavedAccessVectorization() {
3462 // TODO: We expect this to be beneficial regardless of arch,
3463 // but there are currently some unexplained performance artifacts on Atom.
3464 // As a temporary solution, disable on Atom.
3465 return !(ST->isAtom());
3468 // Get estimation for interleaved load/store operations for AVX2.
3469 // \p Factor is the interleaved-access factor (stride) - number of
3470 // (interleaved) elements in the group.
3471 // \p Indices contains the indices for a strided load: when the
3472 // interleaved load has gaps they indicate which elements are used.
3473 // If Indices is empty (or if the number of indices is equal to the size
3474 // of the interleaved-access as given in \p Factor) the access has no gaps.
3476 // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
3477 // computing the cost using a generic formula as a function of generic
3478 // shuffles. We therefore use a lookup table instead, filled according to
3479 // the instruction sequences that codegen currently generates.
3480 int X86TTIImpl::getInterleavedMemoryOpCostAVX2(unsigned Opcode, Type *VecTy,
3481 unsigned Factor,
3482 ArrayRef<unsigned> Indices,
3483 unsigned Alignment,
3484 unsigned AddressSpace,
3485 bool UseMaskForCond,
3486 bool UseMaskForGaps) {
3488 if (UseMaskForCond || UseMaskForGaps)
3489 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3490 Alignment, AddressSpace,
3491 UseMaskForCond, UseMaskForGaps);
3493 // We currently Support only fully-interleaved groups, with no gaps.
3494 // TODO: Support also strided loads (interleaved-groups with gaps).
3495 if (Indices.size() && Indices.size() != Factor)
3496 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3497 Alignment, AddressSpace);
3499 // VecTy for interleave memop is <VF*Factor x Elt>.
3500 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3501 // VecTy = <12 x i32>.
3502 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3504 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
3505 // the VF=2, while v2i128 is an unsupported MVT vector type
3506 // (see MachineValueType.h::getVectorVT()).
3507 if (!LegalVT.isVector())
3508 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3509 Alignment, AddressSpace);
3511 unsigned VF = VecTy->getVectorNumElements() / Factor;
3512 Type *ScalarTy = VecTy->getVectorElementType();
3514 // Calculate the number of memory operations (NumOfMemOps), required
3515 // for load/store the VecTy.
3516 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3517 unsigned LegalVTSize = LegalVT.getStoreSize();
3518 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3520 // Get the cost of one memory operation.
3521 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3522 LegalVT.getVectorNumElements());
3523 unsigned MemOpCost =
3524 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3526 VectorType *VT = VectorType::get(ScalarTy, VF);
3527 EVT ETy = TLI->getValueType(DL, VT);
3528 if (!ETy.isSimple())
3529 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3530 Alignment, AddressSpace);
3532 // TODO: Complete for other data-types and strides.
3533 // Each combination of Stride, ElementTy and VF results in a different
3534 // sequence; The cost tables are therefore accessed with:
3535 // Factor (stride) and VectorType=VFxElemType.
3536 // The Cost accounts only for the shuffle sequence;
3537 // The cost of the loads/stores is accounted for separately.
3539 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
3540 { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
3541 { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
3543 { 3, MVT::v2i8, 10 }, //(load 6i8 and) deinterleave into 3 x 2i8
3544 { 3, MVT::v4i8, 4 }, //(load 12i8 and) deinterleave into 3 x 4i8
3545 { 3, MVT::v8i8, 9 }, //(load 24i8 and) deinterleave into 3 x 8i8
3546 { 3, MVT::v16i8, 11}, //(load 48i8 and) deinterleave into 3 x 16i8
3547 { 3, MVT::v32i8, 13}, //(load 96i8 and) deinterleave into 3 x 32i8
3548 { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
3550 { 4, MVT::v2i8, 12 }, //(load 8i8 and) deinterleave into 4 x 2i8
3551 { 4, MVT::v4i8, 4 }, //(load 16i8 and) deinterleave into 4 x 4i8
3552 { 4, MVT::v8i8, 20 }, //(load 32i8 and) deinterleave into 4 x 8i8
3553 { 4, MVT::v16i8, 39 }, //(load 64i8 and) deinterleave into 4 x 16i8
3554 { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
3556 { 8, MVT::v8f32, 40 } //(load 64f32 and)deinterleave into 8 x 8f32
3559 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
3560 { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
3561 { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
3563 { 3, MVT::v2i8, 7 }, //interleave 3 x 2i8 into 6i8 (and store)
3564 { 3, MVT::v4i8, 8 }, //interleave 3 x 4i8 into 12i8 (and store)
3565 { 3, MVT::v8i8, 11 }, //interleave 3 x 8i8 into 24i8 (and store)
3566 { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
3567 { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
3569 { 4, MVT::v2i8, 12 }, //interleave 4 x 2i8 into 8i8 (and store)
3570 { 4, MVT::v4i8, 9 }, //interleave 4 x 4i8 into 16i8 (and store)
3571 { 4, MVT::v8i8, 10 }, //interleave 4 x 8i8 into 32i8 (and store)
3572 { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
3573 { 4, MVT::v32i8, 12 } //interleave 4 x 32i8 into 128i8 (and store)
3576 if (Opcode == Instruction::Load) {
3577 if (const auto *Entry =
3578 CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
3579 return NumOfMemOps * MemOpCost + Entry->Cost;
3580 } else {
3581 assert(Opcode == Instruction::Store &&
3582 "Expected Store Instruction at this point");
3583 if (const auto *Entry =
3584 CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
3585 return NumOfMemOps * MemOpCost + Entry->Cost;
3588 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3589 Alignment, AddressSpace);
3592 // Get estimation for interleaved load/store operations and strided load.
3593 // \p Indices contains indices for strided load.
3594 // \p Factor - the factor of interleaving.
3595 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
3596 int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
3597 unsigned Factor,
3598 ArrayRef<unsigned> Indices,
3599 unsigned Alignment,
3600 unsigned AddressSpace,
3601 bool UseMaskForCond,
3602 bool UseMaskForGaps) {
3604 if (UseMaskForCond || UseMaskForGaps)
3605 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3606 Alignment, AddressSpace,
3607 UseMaskForCond, UseMaskForGaps);
3609 // VecTy for interleave memop is <VF*Factor x Elt>.
3610 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
3611 // VecTy = <12 x i32>.
3613 // Calculate the number of memory operations (NumOfMemOps), required
3614 // for load/store the VecTy.
3615 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
3616 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
3617 unsigned LegalVTSize = LegalVT.getStoreSize();
3618 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
3620 // Get the cost of one memory operation.
3621 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
3622 LegalVT.getVectorNumElements());
3623 unsigned MemOpCost =
3624 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
3626 unsigned VF = VecTy->getVectorNumElements() / Factor;
3627 MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
3629 if (Opcode == Instruction::Load) {
3630 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
3631 // contain the cost of the optimized shuffle sequence that the
3632 // X86InterleavedAccess pass will generate.
3633 // The cost of loads and stores are computed separately from the table.
3635 // X86InterleavedAccess support only the following interleaved-access group.
3636 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
3637 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
3638 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
3639 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
3642 if (const auto *Entry =
3643 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
3644 return NumOfMemOps * MemOpCost + Entry->Cost;
3645 //If an entry does not exist, fallback to the default implementation.
3647 // Kind of shuffle depends on number of loaded values.
3648 // If we load the entire data in one register, we can use a 1-src shuffle.
3649 // Otherwise, we'll merge 2 sources in each operation.
3650 TTI::ShuffleKind ShuffleKind =
3651 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
3653 unsigned ShuffleCost =
3654 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
3656 unsigned NumOfLoadsInInterleaveGrp =
3657 Indices.size() ? Indices.size() : Factor;
3658 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
3659 VecTy->getVectorNumElements() / Factor);
3660 unsigned NumOfResults =
3661 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
3662 NumOfLoadsInInterleaveGrp;
3664 // About a half of the loads may be folded in shuffles when we have only
3665 // one result. If we have more than one result, we do not fold loads at all.
3666 unsigned NumOfUnfoldedLoads =
3667 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
3669 // Get a number of shuffle operations per result.
3670 unsigned NumOfShufflesPerResult =
3671 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
3673 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3674 // When we have more than one destination, we need additional instructions
3675 // to keep sources.
3676 unsigned NumOfMoves = 0;
3677 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
3678 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
3680 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
3681 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
3683 return Cost;
3686 // Store.
3687 assert(Opcode == Instruction::Store &&
3688 "Expected Store Instruction at this point");
3689 // X86InterleavedAccess support only the following interleaved-access group.
3690 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
3691 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
3692 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
3693 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
3695 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
3696 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
3697 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
3698 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
3701 if (const auto *Entry =
3702 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
3703 return NumOfMemOps * MemOpCost + Entry->Cost;
3704 //If an entry does not exist, fallback to the default implementation.
3706 // There is no strided stores meanwhile. And store can't be folded in
3707 // shuffle.
3708 unsigned NumOfSources = Factor; // The number of values to be merged.
3709 unsigned ShuffleCost =
3710 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
3711 unsigned NumOfShufflesPerStore = NumOfSources - 1;
3713 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
3714 // We need additional instructions to keep sources.
3715 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
3716 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
3717 NumOfMoves;
3718 return Cost;
3721 int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
3722 unsigned Factor,
3723 ArrayRef<unsigned> Indices,
3724 unsigned Alignment,
3725 unsigned AddressSpace,
3726 bool UseMaskForCond,
3727 bool UseMaskForGaps) {
3728 auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
3729 Type *EltTy = VecTy->getVectorElementType();
3730 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
3731 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
3732 return true;
3733 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
3734 return HasBW;
3735 return false;
3737 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
3738 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
3739 Alignment, AddressSpace,
3740 UseMaskForCond, UseMaskForGaps);
3741 if (ST->hasAVX2())
3742 return getInterleavedMemoryOpCostAVX2(Opcode, VecTy, Factor, Indices,
3743 Alignment, AddressSpace,
3744 UseMaskForCond, UseMaskForGaps);
3746 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3747 Alignment, AddressSpace,
3748 UseMaskForCond, UseMaskForGaps);