1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/PhiValues.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
62 #define DEBUG_TYPE "basicaa"
66 /// Enable analysis of recursive PHI nodes.
67 static cl::opt
<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden
,
70 /// By default, even on 32-bit architectures we use 64-bit integers for
71 /// calculations. This will allow us to more-aggressively decompose indexing
72 /// expressions calculated using i64 values (e.g., long long in C) which is
73 /// common enough to worry about.
74 static cl::opt
<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
75 cl::Hidden
, cl::init(true));
76 static cl::opt
<bool> DoubleCalcBits("basicaa-double-calc-bits",
77 cl::Hidden
, cl::init(false));
79 /// SearchLimitReached / SearchTimes shows how often the limit of
80 /// to decompose GEPs is reached. It will affect the precision
81 /// of basic alias analysis.
82 STATISTIC(SearchLimitReached
, "Number of times the limit to "
83 "decompose GEPs is reached");
84 STATISTIC(SearchTimes
, "Number of times a GEP is decomposed");
86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
88 /// careful with value equivalence. We use reachability to make sure a value
89 /// cannot be involved in a cycle.
90 const unsigned MaxNumPhiBBsValueReachabilityCheck
= 20;
92 // The max limit of the search depth in DecomposeGEPExpression() and
93 // GetUnderlyingObject(), both functions need to use the same search
94 // depth otherwise the algorithm in aliasGEP will assert.
95 static const unsigned MaxLookupSearchDepth
= 6;
97 bool BasicAAResult::invalidate(Function
&Fn
, const PreservedAnalyses
&PA
,
98 FunctionAnalysisManager::Invalidator
&Inv
) {
99 // We don't care if this analysis itself is preserved, it has no state. But
100 // we need to check that the analyses it depends on have been. Note that we
101 // may be created without handles to some analyses and in that case don't
103 if (Inv
.invalidate
<AssumptionAnalysis
>(Fn
, PA
) ||
104 (DT
&& Inv
.invalidate
<DominatorTreeAnalysis
>(Fn
, PA
)) ||
105 (LI
&& Inv
.invalidate
<LoopAnalysis
>(Fn
, PA
)) ||
106 (PV
&& Inv
.invalidate
<PhiValuesAnalysis
>(Fn
, PA
)))
109 // Otherwise this analysis result remains valid.
113 //===----------------------------------------------------------------------===//
115 //===----------------------------------------------------------------------===//
117 /// Returns true if the pointer is to a function-local object that never
118 /// escapes from the function.
119 static bool isNonEscapingLocalObject(
121 SmallDenseMap
<const Value
*, bool, 8> *IsCapturedCache
= nullptr) {
122 SmallDenseMap
<const Value
*, bool, 8>::iterator CacheIt
;
123 if (IsCapturedCache
) {
125 std::tie(CacheIt
, Inserted
) = IsCapturedCache
->insert({V
, false});
127 // Found cached result, return it!
128 return CacheIt
->second
;
131 // If this is a local allocation, check to see if it escapes.
132 if (isa
<AllocaInst
>(V
) || isNoAliasCall(V
)) {
133 // Set StoreCaptures to True so that we can assume in our callers that the
134 // pointer is not the result of a load instruction. Currently
135 // PointerMayBeCaptured doesn't have any special analysis for the
136 // StoreCaptures=false case; if it did, our callers could be refined to be
138 auto Ret
= !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
140 CacheIt
->second
= Ret
;
144 // If this is an argument that corresponds to a byval or noalias argument,
145 // then it has not escaped before entering the function. Check if it escapes
146 // inside the function.
147 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
148 if (A
->hasByValAttr() || A
->hasNoAliasAttr()) {
149 // Note even if the argument is marked nocapture, we still need to check
150 // for copies made inside the function. The nocapture attribute only
151 // specifies that there are no copies made that outlive the function.
152 auto Ret
= !PointerMayBeCaptured(V
, false, /*StoreCaptures=*/true);
154 CacheIt
->second
= Ret
;
161 /// Returns true if the pointer is one which would have been considered an
162 /// escape by isNonEscapingLocalObject.
163 static bool isEscapeSource(const Value
*V
) {
164 if (isa
<CallBase
>(V
))
167 if (isa
<Argument
>(V
))
170 // The load case works because isNonEscapingLocalObject considers all
171 // stores to be escapes (it passes true for the StoreCaptures argument
172 // to PointerMayBeCaptured).
173 if (isa
<LoadInst
>(V
))
179 /// Returns the size of the object specified by V or UnknownSize if unknown.
180 static uint64_t getObjectSize(const Value
*V
, const DataLayout
&DL
,
181 const TargetLibraryInfo
&TLI
,
183 bool RoundToAlign
= false) {
186 Opts
.RoundToAlign
= RoundToAlign
;
187 Opts
.NullIsUnknownSize
= NullIsValidLoc
;
188 if (getObjectSize(V
, Size
, DL
, &TLI
, Opts
))
190 return MemoryLocation::UnknownSize
;
193 /// Returns true if we can prove that the object specified by V is smaller than
195 static bool isObjectSmallerThan(const Value
*V
, uint64_t Size
,
196 const DataLayout
&DL
,
197 const TargetLibraryInfo
&TLI
,
198 bool NullIsValidLoc
) {
199 // Note that the meanings of the "object" are slightly different in the
200 // following contexts:
201 // c1: llvm::getObjectSize()
202 // c2: llvm.objectsize() intrinsic
203 // c3: isObjectSmallerThan()
204 // c1 and c2 share the same meaning; however, the meaning of "object" in c3
205 // refers to the "entire object".
207 // Consider this example:
208 // char *p = (char*)malloc(100)
211 // In the context of c1 and c2, the "object" pointed by q refers to the
212 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214 // However, in the context of c3, the "object" refers to the chunk of memory
215 // being allocated. So, the "object" has 100 bytes, and q points to the middle
216 // the "object". In case q is passed to isObjectSmallerThan() as the 1st
217 // parameter, before the llvm::getObjectSize() is called to get the size of
218 // entire object, we should:
219 // - either rewind the pointer q to the base-address of the object in
220 // question (in this case rewind to p), or
221 // - just give up. It is up to caller to make sure the pointer is pointing
222 // to the base address the object.
224 // We go for 2nd option for simplicity.
225 if (!isIdentifiedObject(V
))
228 // This function needs to use the aligned object size because we allow
229 // reads a bit past the end given sufficient alignment.
230 uint64_t ObjectSize
= getObjectSize(V
, DL
, TLI
, NullIsValidLoc
,
231 /*RoundToAlign*/ true);
233 return ObjectSize
!= MemoryLocation::UnknownSize
&& ObjectSize
< Size
;
236 /// Return the minimal extent from \p V to the end of the underlying object,
237 /// assuming the result is used in an aliasing query. E.g., we do use the query
238 /// location size and the fact that null pointers cannot alias here.
239 static uint64_t getMinimalExtentFrom(const Value
&V
,
240 const LocationSize
&LocSize
,
241 const DataLayout
&DL
,
242 bool NullIsValidLoc
) {
243 // If we have dereferenceability information we know a lower bound for the
244 // extent as accesses for a lower offset would be valid. We need to exclude
245 // the "or null" part if null is a valid pointer.
247 uint64_t DerefBytes
= V
.getPointerDereferenceableBytes(DL
, CanBeNull
);
248 DerefBytes
= (CanBeNull
&& NullIsValidLoc
) ? 0 : DerefBytes
;
249 // If queried with a precise location size, we assume that location size to be
250 // accessed, thus valid.
251 if (LocSize
.isPrecise())
252 DerefBytes
= std::max(DerefBytes
, LocSize
.getValue());
256 /// Returns true if we can prove that the object specified by V has size Size.
257 static bool isObjectSize(const Value
*V
, uint64_t Size
, const DataLayout
&DL
,
258 const TargetLibraryInfo
&TLI
, bool NullIsValidLoc
) {
259 uint64_t ObjectSize
= getObjectSize(V
, DL
, TLI
, NullIsValidLoc
);
260 return ObjectSize
!= MemoryLocation::UnknownSize
&& ObjectSize
== Size
;
263 //===----------------------------------------------------------------------===//
264 // GetElementPtr Instruction Decomposition and Analysis
265 //===----------------------------------------------------------------------===//
267 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
268 /// B are constant integers.
270 /// Returns the scale and offset values as APInts and return V as a Value*, and
271 /// return whether we looked through any sign or zero extends. The incoming
272 /// Value is known to have IntegerType, and it may already be sign or zero
275 /// Note that this looks through extends, so the high bits may not be
276 /// represented in the result.
277 /*static*/ const Value
*BasicAAResult::GetLinearExpression(
278 const Value
*V
, APInt
&Scale
, APInt
&Offset
, unsigned &ZExtBits
,
279 unsigned &SExtBits
, const DataLayout
&DL
, unsigned Depth
,
280 AssumptionCache
*AC
, DominatorTree
*DT
, bool &NSW
, bool &NUW
) {
281 assert(V
->getType()->isIntegerTy() && "Not an integer value");
283 // Limit our recursion depth.
290 if (const ConstantInt
*Const
= dyn_cast
<ConstantInt
>(V
)) {
291 // If it's a constant, just convert it to an offset and remove the variable.
292 // If we've been called recursively, the Offset bit width will be greater
293 // than the constant's (the Offset's always as wide as the outermost call),
294 // so we'll zext here and process any extension in the isa<SExtInst> &
295 // isa<ZExtInst> cases below.
296 Offset
+= Const
->getValue().zextOrSelf(Offset
.getBitWidth());
297 assert(Scale
== 0 && "Constant values don't have a scale");
301 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(V
)) {
302 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(BOp
->getOperand(1))) {
303 // If we've been called recursively, then Offset and Scale will be wider
304 // than the BOp operands. We'll always zext it here as we'll process sign
305 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
306 APInt RHS
= RHSC
->getValue().zextOrSelf(Offset
.getBitWidth());
308 switch (BOp
->getOpcode()) {
310 // We don't understand this instruction, so we can't decompose it any
315 case Instruction::Or
:
316 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
318 if (!MaskedValueIsZero(BOp
->getOperand(0), RHSC
->getValue(), DL
, 0, AC
,
325 case Instruction::Add
:
326 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
327 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
330 case Instruction::Sub
:
331 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
332 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
335 case Instruction::Mul
:
336 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
337 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
341 case Instruction::Shl
:
342 V
= GetLinearExpression(BOp
->getOperand(0), Scale
, Offset
, ZExtBits
,
343 SExtBits
, DL
, Depth
+ 1, AC
, DT
, NSW
, NUW
);
345 // We're trying to linearize an expression of the kind:
347 // where the shift count exceeds the bitwidth of the type.
348 // We can't decompose this further (the expression would return
350 if (Offset
.getBitWidth() < RHS
.getLimitedValue() ||
351 Scale
.getBitWidth() < RHS
.getLimitedValue()) {
357 Offset
<<= RHS
.getLimitedValue();
358 Scale
<<= RHS
.getLimitedValue();
359 // the semantics of nsw and nuw for left shifts don't match those of
360 // multiplications, so we won't propagate them.
365 if (isa
<OverflowingBinaryOperator
>(BOp
)) {
366 NUW
&= BOp
->hasNoUnsignedWrap();
367 NSW
&= BOp
->hasNoSignedWrap();
373 // Since GEP indices are sign extended anyway, we don't care about the high
374 // bits of a sign or zero extended value - just scales and offsets. The
375 // extensions have to be consistent though.
376 if (isa
<SExtInst
>(V
) || isa
<ZExtInst
>(V
)) {
377 Value
*CastOp
= cast
<CastInst
>(V
)->getOperand(0);
378 unsigned NewWidth
= V
->getType()->getPrimitiveSizeInBits();
379 unsigned SmallWidth
= CastOp
->getType()->getPrimitiveSizeInBits();
380 unsigned OldZExtBits
= ZExtBits
, OldSExtBits
= SExtBits
;
381 const Value
*Result
=
382 GetLinearExpression(CastOp
, Scale
, Offset
, ZExtBits
, SExtBits
, DL
,
383 Depth
+ 1, AC
, DT
, NSW
, NUW
);
385 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
386 // by just incrementing the number of bits we've extended by.
387 unsigned ExtendedBy
= NewWidth
- SmallWidth
;
389 if (isa
<SExtInst
>(V
) && ZExtBits
== 0) {
390 // sext(sext(%x, a), b) == sext(%x, a + b)
393 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
394 // into sext(%x) + sext(c). We'll sext the Offset ourselves:
395 unsigned OldWidth
= Offset
.getBitWidth();
396 Offset
= Offset
.trunc(SmallWidth
).sext(NewWidth
).zextOrSelf(OldWidth
);
398 // We may have signed-wrapped, so don't decompose sext(%x + c) into
399 // sext(%x) + sext(c)
403 ZExtBits
= OldZExtBits
;
404 SExtBits
= OldSExtBits
;
406 SExtBits
+= ExtendedBy
;
408 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
411 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
412 // zext(%x) + zext(c)
416 ZExtBits
= OldZExtBits
;
417 SExtBits
= OldSExtBits
;
419 ZExtBits
+= ExtendedBy
;
430 /// To ensure a pointer offset fits in an integer of size PointerSize
431 /// (in bits) when that size is smaller than the maximum pointer size. This is
432 /// an issue, for example, in particular for 32b pointers with negative indices
433 /// that rely on two's complement wrap-arounds for precise alias information
434 /// where the maximum pointer size is 64b.
435 static APInt
adjustToPointerSize(APInt Offset
, unsigned PointerSize
) {
436 assert(PointerSize
<= Offset
.getBitWidth() && "Invalid PointerSize!");
437 unsigned ShiftBits
= Offset
.getBitWidth() - PointerSize
;
438 return (Offset
<< ShiftBits
).ashr(ShiftBits
);
441 static unsigned getMaxPointerSize(const DataLayout
&DL
) {
442 unsigned MaxPointerSize
= DL
.getMaxPointerSizeInBits();
443 if (MaxPointerSize
< 64 && ForceAtLeast64Bits
) MaxPointerSize
= 64;
444 if (DoubleCalcBits
) MaxPointerSize
*= 2;
446 return MaxPointerSize
;
449 /// If V is a symbolic pointer expression, decompose it into a base pointer
450 /// with a constant offset and a number of scaled symbolic offsets.
452 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
453 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
454 /// specified amount, but which may have other unrepresented high bits. As
455 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
457 /// When DataLayout is around, this function is capable of analyzing everything
458 /// that GetUnderlyingObject can look through. To be able to do that
459 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
460 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
461 /// through pointer casts.
462 bool BasicAAResult::DecomposeGEPExpression(const Value
*V
,
463 DecomposedGEP
&Decomposed
, const DataLayout
&DL
, AssumptionCache
*AC
,
465 // Limit recursion depth to limit compile time in crazy cases.
466 unsigned MaxLookup
= MaxLookupSearchDepth
;
469 unsigned MaxPointerSize
= getMaxPointerSize(DL
);
470 Decomposed
.VarIndices
.clear();
472 // See if this is a bitcast or GEP.
473 const Operator
*Op
= dyn_cast
<Operator
>(V
);
475 // The only non-operator case we can handle are GlobalAliases.
476 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
477 if (!GA
->isInterposable()) {
478 V
= GA
->getAliasee();
486 if (Op
->getOpcode() == Instruction::BitCast
||
487 Op
->getOpcode() == Instruction::AddrSpaceCast
) {
488 V
= Op
->getOperand(0);
492 const GEPOperator
*GEPOp
= dyn_cast
<GEPOperator
>(Op
);
494 if (const auto *Call
= dyn_cast
<CallBase
>(V
)) {
495 // CaptureTracking can know about special capturing properties of some
496 // intrinsics like launder.invariant.group, that can't be expressed with
497 // the attributes, but have properties like returning aliasing pointer.
498 // Because some analysis may assume that nocaptured pointer is not
499 // returned from some special intrinsic (because function would have to
500 // be marked with returns attribute), it is crucial to use this function
501 // because it should be in sync with CaptureTracking. Not using it may
502 // cause weird miscompilations where 2 aliasing pointers are assumed to
504 if (auto *RP
= getArgumentAliasingToReturnedPointer(Call
, false)) {
510 // If it's not a GEP, hand it off to SimplifyInstruction to see if it
511 // can come up with something. This matches what GetUnderlyingObject does.
512 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
513 // TODO: Get a DominatorTree and AssumptionCache and use them here
514 // (these are both now available in this function, but this should be
515 // updated when GetUnderlyingObject is updated). TLI should be
517 if (const Value
*Simplified
=
518 SimplifyInstruction(const_cast<Instruction
*>(I
), DL
)) {
527 // Don't attempt to analyze GEPs over unsized objects.
528 if (!GEPOp
->getSourceElementType()->isSized()) {
533 unsigned AS
= GEPOp
->getPointerAddressSpace();
534 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
535 gep_type_iterator GTI
= gep_type_begin(GEPOp
);
536 unsigned PointerSize
= DL
.getPointerSizeInBits(AS
);
537 // Assume all GEP operands are constants until proven otherwise.
538 bool GepHasConstantOffset
= true;
539 for (User::const_op_iterator I
= GEPOp
->op_begin() + 1, E
= GEPOp
->op_end();
540 I
!= E
; ++I
, ++GTI
) {
541 const Value
*Index
= *I
;
542 // Compute the (potentially symbolic) offset in bytes for this index.
543 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
544 // For a struct, add the member offset.
545 unsigned FieldNo
= cast
<ConstantInt
>(Index
)->getZExtValue();
549 Decomposed
.StructOffset
+=
550 DL
.getStructLayout(STy
)->getElementOffset(FieldNo
);
554 // For an array/pointer, add the element offset, explicitly scaled.
555 if (const ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Index
)) {
558 Decomposed
.OtherOffset
+=
559 (DL
.getTypeAllocSize(GTI
.getIndexedType()) *
560 CIdx
->getValue().sextOrSelf(MaxPointerSize
))
561 .sextOrTrunc(MaxPointerSize
);
565 GepHasConstantOffset
= false;
567 APInt
Scale(MaxPointerSize
, DL
.getTypeAllocSize(GTI
.getIndexedType()));
568 unsigned ZExtBits
= 0, SExtBits
= 0;
570 // If the integer type is smaller than the pointer size, it is implicitly
571 // sign extended to pointer size.
572 unsigned Width
= Index
->getType()->getIntegerBitWidth();
573 if (PointerSize
> Width
)
574 SExtBits
+= PointerSize
- Width
;
576 // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
577 APInt
IndexScale(Width
, 0), IndexOffset(Width
, 0);
578 bool NSW
= true, NUW
= true;
579 const Value
*OrigIndex
= Index
;
580 Index
= GetLinearExpression(Index
, IndexScale
, IndexOffset
, ZExtBits
,
581 SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
583 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
584 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
586 // It can be the case that, even through C1*V+C2 does not overflow for
587 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
588 // decompose the expression in this way.
590 // FIXME: C1*Scale and the other operations in the decomposed
591 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
593 APInt WideScaledOffset
= IndexOffset
.sextOrTrunc(MaxPointerSize
*2) *
594 Scale
.sext(MaxPointerSize
*2);
595 if (WideScaledOffset
.getMinSignedBits() > MaxPointerSize
) {
600 ZExtBits
= SExtBits
= 0;
601 if (PointerSize
> Width
)
602 SExtBits
+= PointerSize
- Width
;
604 Decomposed
.OtherOffset
+= IndexOffset
.sextOrTrunc(MaxPointerSize
) * Scale
;
605 Scale
*= IndexScale
.sextOrTrunc(MaxPointerSize
);
608 // If we already had an occurrence of this index variable, merge this
609 // scale into it. For example, we want to handle:
610 // A[x][x] -> x*16 + x*4 -> x*20
611 // This also ensures that 'x' only appears in the index list once.
612 for (unsigned i
= 0, e
= Decomposed
.VarIndices
.size(); i
!= e
; ++i
) {
613 if (Decomposed
.VarIndices
[i
].V
== Index
&&
614 Decomposed
.VarIndices
[i
].ZExtBits
== ZExtBits
&&
615 Decomposed
.VarIndices
[i
].SExtBits
== SExtBits
) {
616 Scale
+= Decomposed
.VarIndices
[i
].Scale
;
617 Decomposed
.VarIndices
.erase(Decomposed
.VarIndices
.begin() + i
);
622 // Make sure that we have a scale that makes sense for this target's
624 Scale
= adjustToPointerSize(Scale
, PointerSize
);
627 VariableGEPIndex Entry
= {Index
, ZExtBits
, SExtBits
, Scale
};
628 Decomposed
.VarIndices
.push_back(Entry
);
632 // Take care of wrap-arounds
633 if (GepHasConstantOffset
) {
634 Decomposed
.StructOffset
=
635 adjustToPointerSize(Decomposed
.StructOffset
, PointerSize
);
636 Decomposed
.OtherOffset
=
637 adjustToPointerSize(Decomposed
.OtherOffset
, PointerSize
);
640 // Analyze the base pointer next.
641 V
= GEPOp
->getOperand(0);
642 } while (--MaxLookup
);
644 // If the chain of expressions is too deep, just return early.
646 SearchLimitReached
++;
650 /// Returns whether the given pointer value points to memory that is local to
651 /// the function, with global constants being considered local to all
653 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation
&Loc
,
654 AAQueryInfo
&AAQI
, bool OrLocal
) {
655 assert(Visited
.empty() && "Visited must be cleared after use!");
657 unsigned MaxLookup
= 8;
658 SmallVector
<const Value
*, 16> Worklist
;
659 Worklist
.push_back(Loc
.Ptr
);
661 const Value
*V
= GetUnderlyingObject(Worklist
.pop_back_val(), DL
);
662 if (!Visited
.insert(V
).second
) {
664 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
667 // An alloca instruction defines local memory.
668 if (OrLocal
&& isa
<AllocaInst
>(V
))
671 // A global constant counts as local memory for our purposes.
672 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
)) {
673 // Note: this doesn't require GV to be "ODR" because it isn't legal for a
674 // global to be marked constant in some modules and non-constant in
675 // others. GV may even be a declaration, not a definition.
676 if (!GV
->isConstant()) {
678 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
683 // If both select values point to local memory, then so does the select.
684 if (const SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
685 Worklist
.push_back(SI
->getTrueValue());
686 Worklist
.push_back(SI
->getFalseValue());
690 // If all values incoming to a phi node point to local memory, then so does
692 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
693 // Don't bother inspecting phi nodes with many operands.
694 if (PN
->getNumIncomingValues() > MaxLookup
) {
696 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
698 for (Value
*IncValue
: PN
->incoming_values())
699 Worklist
.push_back(IncValue
);
703 // Otherwise be conservative.
705 return AAResultBase::pointsToConstantMemory(Loc
, AAQI
, OrLocal
);
706 } while (!Worklist
.empty() && --MaxLookup
);
709 return Worklist
.empty();
712 /// Returns the behavior when calling the given call site.
713 FunctionModRefBehavior
BasicAAResult::getModRefBehavior(const CallBase
*Call
) {
714 if (Call
->doesNotAccessMemory())
715 // Can't do better than this.
716 return FMRB_DoesNotAccessMemory
;
718 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
720 // If the callsite knows it only reads memory, don't return worse
722 if (Call
->onlyReadsMemory())
723 Min
= FMRB_OnlyReadsMemory
;
724 else if (Call
->doesNotReadMemory())
725 Min
= FMRB_DoesNotReadMemory
;
727 if (Call
->onlyAccessesArgMemory())
728 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesArgumentPointees
);
729 else if (Call
->onlyAccessesInaccessibleMemory())
730 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleMem
);
731 else if (Call
->onlyAccessesInaccessibleMemOrArgMem())
732 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleOrArgMem
);
734 // If the call has operand bundles then aliasing attributes from the function
735 // it calls do not directly apply to the call. This can be made more precise
737 if (!Call
->hasOperandBundles())
738 if (const Function
*F
= Call
->getCalledFunction())
740 FunctionModRefBehavior(Min
& getBestAAResults().getModRefBehavior(F
));
745 /// Returns the behavior when calling the given function. For use when the call
746 /// site is not known.
747 FunctionModRefBehavior
BasicAAResult::getModRefBehavior(const Function
*F
) {
748 // If the function declares it doesn't access memory, we can't do better.
749 if (F
->doesNotAccessMemory())
750 return FMRB_DoesNotAccessMemory
;
752 FunctionModRefBehavior Min
= FMRB_UnknownModRefBehavior
;
754 // If the function declares it only reads memory, go with that.
755 if (F
->onlyReadsMemory())
756 Min
= FMRB_OnlyReadsMemory
;
757 else if (F
->doesNotReadMemory())
758 Min
= FMRB_DoesNotReadMemory
;
760 if (F
->onlyAccessesArgMemory())
761 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesArgumentPointees
);
762 else if (F
->onlyAccessesInaccessibleMemory())
763 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleMem
);
764 else if (F
->onlyAccessesInaccessibleMemOrArgMem())
765 Min
= FunctionModRefBehavior(Min
& FMRB_OnlyAccessesInaccessibleOrArgMem
);
770 /// Returns true if this is a writeonly (i.e Mod only) parameter.
771 static bool isWriteOnlyParam(const CallBase
*Call
, unsigned ArgIdx
,
772 const TargetLibraryInfo
&TLI
) {
773 if (Call
->paramHasAttr(ArgIdx
, Attribute::WriteOnly
))
776 // We can bound the aliasing properties of memset_pattern16 just as we can
777 // for memcpy/memset. This is particularly important because the
778 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
779 // whenever possible.
780 // FIXME Consider handling this in InferFunctionAttr.cpp together with other
783 if (Call
->getCalledFunction() &&
784 TLI
.getLibFunc(*Call
->getCalledFunction(), F
) &&
785 F
== LibFunc_memset_pattern16
&& TLI
.has(F
))
789 // TODO: memset_pattern4, memset_pattern8
790 // TODO: _chk variants
791 // TODO: strcmp, strcpy
796 ModRefInfo
BasicAAResult::getArgModRefInfo(const CallBase
*Call
,
798 // Checking for known builtin intrinsics and target library functions.
799 if (isWriteOnlyParam(Call
, ArgIdx
, TLI
))
800 return ModRefInfo::Mod
;
802 if (Call
->paramHasAttr(ArgIdx
, Attribute::ReadOnly
))
803 return ModRefInfo::Ref
;
805 if (Call
->paramHasAttr(ArgIdx
, Attribute::ReadNone
))
806 return ModRefInfo::NoModRef
;
808 return AAResultBase::getArgModRefInfo(Call
, ArgIdx
);
811 static bool isIntrinsicCall(const CallBase
*Call
, Intrinsic::ID IID
) {
812 const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Call
);
813 return II
&& II
->getIntrinsicID() == IID
;
817 static const Function
*getParent(const Value
*V
) {
818 if (const Instruction
*inst
= dyn_cast
<Instruction
>(V
)) {
819 if (!inst
->getParent())
821 return inst
->getParent()->getParent();
824 if (const Argument
*arg
= dyn_cast
<Argument
>(V
))
825 return arg
->getParent();
830 static bool notDifferentParent(const Value
*O1
, const Value
*O2
) {
832 const Function
*F1
= getParent(O1
);
833 const Function
*F2
= getParent(O2
);
835 return !F1
|| !F2
|| F1
== F2
;
839 AliasResult
BasicAAResult::alias(const MemoryLocation
&LocA
,
840 const MemoryLocation
&LocB
,
842 assert(notDifferentParent(LocA
.Ptr
, LocB
.Ptr
) &&
843 "BasicAliasAnalysis doesn't support interprocedural queries.");
845 // If we have a directly cached entry for these locations, we have recursed
846 // through this once, so just return the cached results. Notably, when this
847 // happens, we don't clear the cache.
848 auto CacheIt
= AAQI
.AliasCache
.find(AAQueryInfo::LocPair(LocA
, LocB
));
849 if (CacheIt
!= AAQI
.AliasCache
.end())
850 return CacheIt
->second
;
852 CacheIt
= AAQI
.AliasCache
.find(AAQueryInfo::LocPair(LocB
, LocA
));
853 if (CacheIt
!= AAQI
.AliasCache
.end())
854 return CacheIt
->second
;
856 AliasResult Alias
= aliasCheck(LocA
.Ptr
, LocA
.Size
, LocA
.AATags
, LocB
.Ptr
,
857 LocB
.Size
, LocB
.AATags
, AAQI
);
859 VisitedPhiBBs
.clear();
863 /// Checks to see if the specified callsite can clobber the specified memory
866 /// Since we only look at local properties of this function, we really can't
867 /// say much about this query. We do, however, use simple "address taken"
868 /// analysis on local objects.
869 ModRefInfo
BasicAAResult::getModRefInfo(const CallBase
*Call
,
870 const MemoryLocation
&Loc
,
872 assert(notDifferentParent(Call
, Loc
.Ptr
) &&
873 "AliasAnalysis query involving multiple functions!");
875 const Value
*Object
= GetUnderlyingObject(Loc
.Ptr
, DL
);
877 // Calls marked 'tail' cannot read or write allocas from the current frame
878 // because the current frame might be destroyed by the time they run. However,
879 // a tail call may use an alloca with byval. Calling with byval copies the
880 // contents of the alloca into argument registers or stack slots, so there is
881 // no lifetime issue.
882 if (isa
<AllocaInst
>(Object
))
883 if (const CallInst
*CI
= dyn_cast
<CallInst
>(Call
))
884 if (CI
->isTailCall() &&
885 !CI
->getAttributes().hasAttrSomewhere(Attribute::ByVal
))
886 return ModRefInfo::NoModRef
;
888 // Stack restore is able to modify unescaped dynamic allocas. Assume it may
889 // modify them even though the alloca is not escaped.
890 if (auto *AI
= dyn_cast
<AllocaInst
>(Object
))
891 if (!AI
->isStaticAlloca() && isIntrinsicCall(Call
, Intrinsic::stackrestore
))
892 return ModRefInfo::Mod
;
894 // If the pointer is to a locally allocated object that does not escape,
895 // then the call can not mod/ref the pointer unless the call takes the pointer
896 // as an argument, and itself doesn't capture it.
897 if (!isa
<Constant
>(Object
) && Call
!= Object
&&
898 isNonEscapingLocalObject(Object
, &AAQI
.IsCapturedCache
)) {
900 // Optimistically assume that call doesn't touch Object and check this
901 // assumption in the following loop.
902 ModRefInfo Result
= ModRefInfo::NoModRef
;
903 bool IsMustAlias
= true;
905 unsigned OperandNo
= 0;
906 for (auto CI
= Call
->data_operands_begin(), CE
= Call
->data_operands_end();
907 CI
!= CE
; ++CI
, ++OperandNo
) {
908 // Only look at the no-capture or byval pointer arguments. If this
909 // pointer were passed to arguments that were neither of these, then it
910 // couldn't be no-capture.
911 if (!(*CI
)->getType()->isPointerTy() ||
912 (!Call
->doesNotCapture(OperandNo
) &&
913 OperandNo
< Call
->getNumArgOperands() &&
914 !Call
->isByValArgument(OperandNo
)))
917 // Call doesn't access memory through this operand, so we don't care
918 // if it aliases with Object.
919 if (Call
->doesNotAccessMemory(OperandNo
))
922 // If this is a no-capture pointer argument, see if we can tell that it
923 // is impossible to alias the pointer we're checking.
924 AliasResult AR
= getBestAAResults().alias(MemoryLocation(*CI
),
925 MemoryLocation(Object
), AAQI
);
928 // Operand doesn't alias 'Object', continue looking for other aliases
931 // Operand aliases 'Object', but call doesn't modify it. Strengthen
932 // initial assumption and keep looking in case if there are more aliases.
933 if (Call
->onlyReadsMemory(OperandNo
)) {
934 Result
= setRef(Result
);
937 // Operand aliases 'Object' but call only writes into it.
938 if (Call
->doesNotReadMemory(OperandNo
)) {
939 Result
= setMod(Result
);
942 // This operand aliases 'Object' and call reads and writes into it.
943 // Setting ModRef will not yield an early return below, MustAlias is not
945 Result
= ModRefInfo::ModRef
;
949 // No operand aliases, reset Must bit. Add below if at least one aliases
950 // and all aliases found are MustAlias.
951 if (isNoModRef(Result
))
954 // Early return if we improved mod ref information
955 if (!isModAndRefSet(Result
)) {
956 if (isNoModRef(Result
))
957 return ModRefInfo::NoModRef
;
958 return IsMustAlias
? setMust(Result
) : clearMust(Result
);
962 // If the call is to malloc or calloc, we can assume that it doesn't
963 // modify any IR visible value. This is only valid because we assume these
964 // routines do not read values visible in the IR. TODO: Consider special
965 // casing realloc and strdup routines which access only their arguments as
966 // well. Or alternatively, replace all of this with inaccessiblememonly once
967 // that's implemented fully.
968 if (isMallocOrCallocLikeFn(Call
, &TLI
)) {
969 // Be conservative if the accessed pointer may alias the allocation -
970 // fallback to the generic handling below.
971 if (getBestAAResults().alias(MemoryLocation(Call
), Loc
, AAQI
) == NoAlias
)
972 return ModRefInfo::NoModRef
;
975 // The semantics of memcpy intrinsics forbid overlap between their respective
976 // operands, i.e., source and destination of any given memcpy must no-alias.
977 // If Loc must-aliases either one of these two locations, then it necessarily
978 // no-aliases the other.
979 if (auto *Inst
= dyn_cast
<AnyMemCpyInst
>(Call
)) {
980 AliasResult SrcAA
, DestAA
;
982 if ((SrcAA
= getBestAAResults().alias(MemoryLocation::getForSource(Inst
),
983 Loc
, AAQI
)) == MustAlias
)
984 // Loc is exactly the memcpy source thus disjoint from memcpy dest.
985 return ModRefInfo::Ref
;
986 if ((DestAA
= getBestAAResults().alias(MemoryLocation::getForDest(Inst
),
987 Loc
, AAQI
)) == MustAlias
)
988 // The converse case.
989 return ModRefInfo::Mod
;
991 // It's also possible for Loc to alias both src and dest, or neither.
992 ModRefInfo rv
= ModRefInfo::NoModRef
;
993 if (SrcAA
!= NoAlias
)
995 if (DestAA
!= NoAlias
)
1000 // While the assume intrinsic is marked as arbitrarily writing so that
1001 // proper control dependencies will be maintained, it never aliases any
1002 // particular memory location.
1003 if (isIntrinsicCall(Call
, Intrinsic::assume
))
1004 return ModRefInfo::NoModRef
;
1006 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1007 // that proper control dependencies are maintained but they never mods any
1008 // particular memory location.
1010 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1011 // heap state at the point the guard is issued needs to be consistent in case
1012 // the guard invokes the "deopt" continuation.
1013 if (isIntrinsicCall(Call
, Intrinsic::experimental_guard
))
1014 return ModRefInfo::Ref
;
1016 // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1017 // writing so that proper control dependencies are maintained but they never
1018 // mod any particular memory location visible to the IR.
1019 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1020 // intrinsic is now modeled as reading memory. This prevents hoisting the
1021 // invariant.start intrinsic over stores. Consider:
1024 // invariant_start(ptr)
1028 // This cannot be transformed to:
1031 // invariant_start(ptr)
1036 // The transformation will cause the second store to be ignored (based on
1037 // rules of invariant.start) and print 40, while the first program always
1039 if (isIntrinsicCall(Call
, Intrinsic::invariant_start
))
1040 return ModRefInfo::Ref
;
1042 // The AAResultBase base class has some smarts, lets use them.
1043 return AAResultBase::getModRefInfo(Call
, Loc
, AAQI
);
1046 ModRefInfo
BasicAAResult::getModRefInfo(const CallBase
*Call1
,
1047 const CallBase
*Call2
,
1048 AAQueryInfo
&AAQI
) {
1049 // While the assume intrinsic is marked as arbitrarily writing so that
1050 // proper control dependencies will be maintained, it never aliases any
1051 // particular memory location.
1052 if (isIntrinsicCall(Call1
, Intrinsic::assume
) ||
1053 isIntrinsicCall(Call2
, Intrinsic::assume
))
1054 return ModRefInfo::NoModRef
;
1056 // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1057 // that proper control dependencies are maintained but they never mod any
1058 // particular memory location.
1060 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1061 // heap state at the point the guard is issued needs to be consistent in case
1062 // the guard invokes the "deopt" continuation.
1064 // NB! This function is *not* commutative, so we special case two
1065 // possibilities for guard intrinsics.
1067 if (isIntrinsicCall(Call1
, Intrinsic::experimental_guard
))
1068 return isModSet(createModRefInfo(getModRefBehavior(Call2
)))
1070 : ModRefInfo::NoModRef
;
1072 if (isIntrinsicCall(Call2
, Intrinsic::experimental_guard
))
1073 return isModSet(createModRefInfo(getModRefBehavior(Call1
)))
1075 : ModRefInfo::NoModRef
;
1077 // The AAResultBase base class has some smarts, lets use them.
1078 return AAResultBase::getModRefInfo(Call1
, Call2
, AAQI
);
1081 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1082 /// both having the exact same pointer operand.
1083 static AliasResult
aliasSameBasePointerGEPs(const GEPOperator
*GEP1
,
1084 LocationSize MaybeV1Size
,
1085 const GEPOperator
*GEP2
,
1086 LocationSize MaybeV2Size
,
1087 const DataLayout
&DL
) {
1088 assert(GEP1
->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1089 GEP2
->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1090 GEP1
->getPointerOperandType() == GEP2
->getPointerOperandType() &&
1091 "Expected GEPs with the same pointer operand");
1093 // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1094 // such that the struct field accesses provably cannot alias.
1095 // We also need at least two indices (the pointer, and the struct field).
1096 if (GEP1
->getNumIndices() != GEP2
->getNumIndices() ||
1097 GEP1
->getNumIndices() < 2)
1100 // If we don't know the size of the accesses through both GEPs, we can't
1101 // determine whether the struct fields accessed can't alias.
1102 if (MaybeV1Size
== LocationSize::unknown() ||
1103 MaybeV2Size
== LocationSize::unknown())
1106 const uint64_t V1Size
= MaybeV1Size
.getValue();
1107 const uint64_t V2Size
= MaybeV2Size
.getValue();
1110 dyn_cast
<ConstantInt
>(GEP1
->getOperand(GEP1
->getNumOperands() - 1));
1112 dyn_cast
<ConstantInt
>(GEP2
->getOperand(GEP2
->getNumOperands() - 1));
1114 // If the last (struct) indices are constants and are equal, the other indices
1115 // might be also be dynamically equal, so the GEPs can alias.
1117 unsigned BitWidth
= std::max(C1
->getBitWidth(), C2
->getBitWidth());
1118 if (C1
->getValue().sextOrSelf(BitWidth
) ==
1119 C2
->getValue().sextOrSelf(BitWidth
))
1123 // Find the last-indexed type of the GEP, i.e., the type you'd get if
1124 // you stripped the last index.
1125 // On the way, look at each indexed type. If there's something other
1126 // than an array, different indices can lead to different final types.
1127 SmallVector
<Value
*, 8> IntermediateIndices
;
1129 // Insert the first index; we don't need to check the type indexed
1130 // through it as it only drops the pointer indirection.
1131 assert(GEP1
->getNumIndices() > 1 && "Not enough GEP indices to examine");
1132 IntermediateIndices
.push_back(GEP1
->getOperand(1));
1134 // Insert all the remaining indices but the last one.
1135 // Also, check that they all index through arrays.
1136 for (unsigned i
= 1, e
= GEP1
->getNumIndices() - 1; i
!= e
; ++i
) {
1137 if (!isa
<ArrayType
>(GetElementPtrInst::getIndexedType(
1138 GEP1
->getSourceElementType(), IntermediateIndices
)))
1140 IntermediateIndices
.push_back(GEP1
->getOperand(i
+ 1));
1143 auto *Ty
= GetElementPtrInst::getIndexedType(
1144 GEP1
->getSourceElementType(), IntermediateIndices
);
1145 StructType
*LastIndexedStruct
= dyn_cast
<StructType
>(Ty
);
1147 if (isa
<SequentialType
>(Ty
)) {
1149 // - both GEPs begin indexing from the exact same pointer;
1150 // - the last indices in both GEPs are constants, indexing into a sequential
1151 // type (array or pointer);
1152 // - both GEPs only index through arrays prior to that.
1154 // Because array indices greater than the number of elements are valid in
1155 // GEPs, unless we know the intermediate indices are identical between
1156 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1157 // partially overlap. We also need to check that the loaded size matches
1158 // the element size, otherwise we could still have overlap.
1159 const uint64_t ElementSize
=
1160 DL
.getTypeStoreSize(cast
<SequentialType
>(Ty
)->getElementType());
1161 if (V1Size
!= ElementSize
|| V2Size
!= ElementSize
)
1164 for (unsigned i
= 0, e
= GEP1
->getNumIndices() - 1; i
!= e
; ++i
)
1165 if (GEP1
->getOperand(i
+ 1) != GEP2
->getOperand(i
+ 1))
1168 // Now we know that the array/pointer that GEP1 indexes into and that
1169 // that GEP2 indexes into must either precisely overlap or be disjoint.
1170 // Because they cannot partially overlap and because fields in an array
1171 // cannot overlap, if we can prove the final indices are different between
1172 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1174 // If the last indices are constants, we've already checked they don't
1175 // equal each other so we can exit early.
1179 Value
*GEP1LastIdx
= GEP1
->getOperand(GEP1
->getNumOperands() - 1);
1180 Value
*GEP2LastIdx
= GEP2
->getOperand(GEP2
->getNumOperands() - 1);
1181 if (isa
<PHINode
>(GEP1LastIdx
) || isa
<PHINode
>(GEP2LastIdx
)) {
1182 // If one of the indices is a PHI node, be safe and only use
1183 // computeKnownBits so we don't make any assumptions about the
1184 // relationships between the two indices. This is important if we're
1185 // asking about values from different loop iterations. See PR32314.
1186 // TODO: We may be able to change the check so we only do this when
1187 // we definitely looked through a PHINode.
1188 if (GEP1LastIdx
!= GEP2LastIdx
&&
1189 GEP1LastIdx
->getType() == GEP2LastIdx
->getType()) {
1190 KnownBits Known1
= computeKnownBits(GEP1LastIdx
, DL
);
1191 KnownBits Known2
= computeKnownBits(GEP2LastIdx
, DL
);
1192 if (Known1
.Zero
.intersects(Known2
.One
) ||
1193 Known1
.One
.intersects(Known2
.Zero
))
1196 } else if (isKnownNonEqual(GEP1LastIdx
, GEP2LastIdx
, DL
))
1200 } else if (!LastIndexedStruct
|| !C1
|| !C2
) {
1204 if (C1
->getValue().getActiveBits() > 64 ||
1205 C2
->getValue().getActiveBits() > 64)
1209 // - both GEPs begin indexing from the exact same pointer;
1210 // - the last indices in both GEPs are constants, indexing into a struct;
1211 // - said indices are different, hence, the pointed-to fields are different;
1212 // - both GEPs only index through arrays prior to that.
1214 // This lets us determine that the struct that GEP1 indexes into and the
1215 // struct that GEP2 indexes into must either precisely overlap or be
1216 // completely disjoint. Because they cannot partially overlap, indexing into
1217 // different non-overlapping fields of the struct will never alias.
1219 // Therefore, the only remaining thing needed to show that both GEPs can't
1220 // alias is that the fields are not overlapping.
1221 const StructLayout
*SL
= DL
.getStructLayout(LastIndexedStruct
);
1222 const uint64_t StructSize
= SL
->getSizeInBytes();
1223 const uint64_t V1Off
= SL
->getElementOffset(C1
->getZExtValue());
1224 const uint64_t V2Off
= SL
->getElementOffset(C2
->getZExtValue());
1226 auto EltsDontOverlap
= [StructSize
](uint64_t V1Off
, uint64_t V1Size
,
1227 uint64_t V2Off
, uint64_t V2Size
) {
1228 return V1Off
< V2Off
&& V1Off
+ V1Size
<= V2Off
&&
1229 ((V2Off
+ V2Size
<= StructSize
) ||
1230 (V2Off
+ V2Size
- StructSize
<= V1Off
));
1233 if (EltsDontOverlap(V1Off
, V1Size
, V2Off
, V2Size
) ||
1234 EltsDontOverlap(V2Off
, V2Size
, V1Off
, V1Size
))
1240 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1241 // beginning of the object the GEP points would have a negative offset with
1242 // repsect to the alloca, that means the GEP can not alias pointer (b).
1243 // Note that the pointer based on the alloca may not be a GEP. For
1244 // example, it may be the alloca itself.
1245 // The same applies if (b) is based on a GlobalVariable. Note that just being
1246 // based on isIdentifiedObject() is not enough - we need an identified object
1247 // that does not permit access to negative offsets. For example, a negative
1248 // offset from a noalias argument or call can be inbounds w.r.t the actual
1249 // underlying object.
1251 // For example, consider:
1253 // struct { int f0, int f1, ...} foo;
1255 // foo* random = bar(alloca);
1256 // int *f0 = &alloca.f0
1257 // int *f1 = &random->f1;
1259 // Which is lowered, approximately, to:
1261 // %alloca = alloca %struct.foo
1262 // %random = call %struct.foo* @random(%struct.foo* %alloca)
1263 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1264 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1266 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1267 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1268 // point into the same object. But since %f0 points to the beginning of %alloca,
1269 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1270 // than (%alloca - 1), and so is not inbounds, a contradiction.
1271 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator
*GEPOp
,
1272 const DecomposedGEP
&DecompGEP
, const DecomposedGEP
&DecompObject
,
1273 LocationSize MaybeObjectAccessSize
) {
1274 // If the object access size is unknown, or the GEP isn't inbounds, bail.
1275 if (MaybeObjectAccessSize
== LocationSize::unknown() || !GEPOp
->isInBounds())
1278 const uint64_t ObjectAccessSize
= MaybeObjectAccessSize
.getValue();
1280 // We need the object to be an alloca or a globalvariable, and want to know
1281 // the offset of the pointer from the object precisely, so no variable
1282 // indices are allowed.
1283 if (!(isa
<AllocaInst
>(DecompObject
.Base
) ||
1284 isa
<GlobalVariable
>(DecompObject
.Base
)) ||
1285 !DecompObject
.VarIndices
.empty())
1288 APInt ObjectBaseOffset
= DecompObject
.StructOffset
+
1289 DecompObject
.OtherOffset
;
1291 // If the GEP has no variable indices, we know the precise offset
1292 // from the base, then use it. If the GEP has variable indices,
1293 // we can't get exact GEP offset to identify pointer alias. So return
1294 // false in that case.
1295 if (!DecompGEP
.VarIndices
.empty())
1298 APInt GEPBaseOffset
= DecompGEP
.StructOffset
;
1299 GEPBaseOffset
+= DecompGEP
.OtherOffset
;
1301 return GEPBaseOffset
.sge(ObjectBaseOffset
+ (int64_t)ObjectAccessSize
);
1304 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1305 /// another pointer.
1307 /// We know that V1 is a GEP, but we don't know anything about V2.
1308 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1310 AliasResult
BasicAAResult::aliasGEP(
1311 const GEPOperator
*GEP1
, LocationSize V1Size
, const AAMDNodes
&V1AAInfo
,
1312 const Value
*V2
, LocationSize V2Size
, const AAMDNodes
&V2AAInfo
,
1313 const Value
*UnderlyingV1
, const Value
*UnderlyingV2
, AAQueryInfo
&AAQI
) {
1314 DecomposedGEP DecompGEP1
, DecompGEP2
;
1315 unsigned MaxPointerSize
= getMaxPointerSize(DL
);
1316 DecompGEP1
.StructOffset
= DecompGEP1
.OtherOffset
= APInt(MaxPointerSize
, 0);
1317 DecompGEP2
.StructOffset
= DecompGEP2
.OtherOffset
= APInt(MaxPointerSize
, 0);
1319 bool GEP1MaxLookupReached
=
1320 DecomposeGEPExpression(GEP1
, DecompGEP1
, DL
, &AC
, DT
);
1321 bool GEP2MaxLookupReached
=
1322 DecomposeGEPExpression(V2
, DecompGEP2
, DL
, &AC
, DT
);
1324 APInt GEP1BaseOffset
= DecompGEP1
.StructOffset
+ DecompGEP1
.OtherOffset
;
1325 APInt GEP2BaseOffset
= DecompGEP2
.StructOffset
+ DecompGEP2
.OtherOffset
;
1327 assert(DecompGEP1
.Base
== UnderlyingV1
&& DecompGEP2
.Base
== UnderlyingV2
&&
1328 "DecomposeGEPExpression returned a result different from "
1329 "GetUnderlyingObject");
1331 // If the GEP's offset relative to its base is such that the base would
1332 // fall below the start of the object underlying V2, then the GEP and V2
1334 if (!GEP1MaxLookupReached
&& !GEP2MaxLookupReached
&&
1335 isGEPBaseAtNegativeOffset(GEP1
, DecompGEP1
, DecompGEP2
, V2Size
))
1337 // If we have two gep instructions with must-alias or not-alias'ing base
1338 // pointers, figure out if the indexes to the GEP tell us anything about the
1340 if (const GEPOperator
*GEP2
= dyn_cast
<GEPOperator
>(V2
)) {
1341 // Check for the GEP base being at a negative offset, this time in the other
1343 if (!GEP1MaxLookupReached
&& !GEP2MaxLookupReached
&&
1344 isGEPBaseAtNegativeOffset(GEP2
, DecompGEP2
, DecompGEP1
, V1Size
))
1346 // Do the base pointers alias?
1347 AliasResult BaseAlias
=
1348 aliasCheck(UnderlyingV1
, LocationSize::unknown(), AAMDNodes(),
1349 UnderlyingV2
, LocationSize::unknown(), AAMDNodes(), AAQI
);
1351 // Check for geps of non-aliasing underlying pointers where the offsets are
1353 if ((BaseAlias
== MayAlias
) && V1Size
== V2Size
) {
1354 // Do the base pointers alias assuming type and size.
1355 AliasResult PreciseBaseAlias
= aliasCheck(
1356 UnderlyingV1
, V1Size
, V1AAInfo
, UnderlyingV2
, V2Size
, V2AAInfo
, AAQI
);
1357 if (PreciseBaseAlias
== NoAlias
) {
1358 // See if the computed offset from the common pointer tells us about the
1359 // relation of the resulting pointer.
1360 // If the max search depth is reached the result is undefined
1361 if (GEP2MaxLookupReached
|| GEP1MaxLookupReached
)
1365 if (GEP1BaseOffset
== GEP2BaseOffset
&&
1366 DecompGEP1
.VarIndices
== DecompGEP2
.VarIndices
)
1371 // If we get a No or May, then return it immediately, no amount of analysis
1372 // will improve this situation.
1373 if (BaseAlias
!= MustAlias
) {
1374 assert(BaseAlias
== NoAlias
|| BaseAlias
== MayAlias
);
1378 // Otherwise, we have a MustAlias. Since the base pointers alias each other
1379 // exactly, see if the computed offset from the common pointer tells us
1380 // about the relation of the resulting pointer.
1381 // If we know the two GEPs are based off of the exact same pointer (and not
1382 // just the same underlying object), see if that tells us anything about
1383 // the resulting pointers.
1384 if (GEP1
->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1385 GEP2
->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1386 GEP1
->getPointerOperandType() == GEP2
->getPointerOperandType()) {
1387 AliasResult R
= aliasSameBasePointerGEPs(GEP1
, V1Size
, GEP2
, V2Size
, DL
);
1388 // If we couldn't find anything interesting, don't abandon just yet.
1393 // If the max search depth is reached, the result is undefined
1394 if (GEP2MaxLookupReached
|| GEP1MaxLookupReached
)
1397 // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1398 // symbolic difference.
1399 GEP1BaseOffset
-= GEP2BaseOffset
;
1400 GetIndexDifference(DecompGEP1
.VarIndices
, DecompGEP2
.VarIndices
);
1403 // Check to see if these two pointers are related by the getelementptr
1404 // instruction. If one pointer is a GEP with a non-zero index of the other
1405 // pointer, we know they cannot alias.
1407 // If both accesses are unknown size, we can't do anything useful here.
1408 if (V1Size
== LocationSize::unknown() && V2Size
== LocationSize::unknown())
1411 AliasResult R
= aliasCheck(UnderlyingV1
, LocationSize::unknown(),
1412 AAMDNodes(), V2
, LocationSize::unknown(),
1413 V2AAInfo
, AAQI
, nullptr, UnderlyingV2
);
1414 if (R
!= MustAlias
) {
1415 // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1416 // If V2 is known not to alias GEP base pointer, then the two values
1417 // cannot alias per GEP semantics: "Any memory access must be done through
1418 // a pointer value associated with an address range of the memory access,
1419 // otherwise the behavior is undefined.".
1420 assert(R
== NoAlias
|| R
== MayAlias
);
1424 // If the max search depth is reached the result is undefined
1425 if (GEP1MaxLookupReached
)
1429 // In the two GEP Case, if there is no difference in the offsets of the
1430 // computed pointers, the resultant pointers are a must alias. This
1431 // happens when we have two lexically identical GEP's (for example).
1433 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1434 // must aliases the GEP, the end result is a must alias also.
1435 if (GEP1BaseOffset
== 0 && DecompGEP1
.VarIndices
.empty())
1438 // If there is a constant difference between the pointers, but the difference
1439 // is less than the size of the associated memory object, then we know
1440 // that the objects are partially overlapping. If the difference is
1441 // greater, we know they do not overlap.
1442 if (GEP1BaseOffset
!= 0 && DecompGEP1
.VarIndices
.empty()) {
1443 if (GEP1BaseOffset
.sge(0)) {
1444 if (V2Size
!= LocationSize::unknown()) {
1445 if (GEP1BaseOffset
.ult(V2Size
.getValue()))
1446 return PartialAlias
;
1450 // We have the situation where:
1453 // ---------------->|
1454 // |-->V1Size |-------> V2Size
1456 // We need to know that V2Size is not unknown, otherwise we might have
1457 // stripped a gep with negative index ('gep <ptr>, -1, ...).
1458 if (V1Size
!= LocationSize::unknown() &&
1459 V2Size
!= LocationSize::unknown()) {
1460 if ((-GEP1BaseOffset
).ult(V1Size
.getValue()))
1461 return PartialAlias
;
1467 if (!DecompGEP1
.VarIndices
.empty()) {
1468 APInt
Modulo(MaxPointerSize
, 0);
1469 bool AllPositive
= true;
1470 for (unsigned i
= 0, e
= DecompGEP1
.VarIndices
.size(); i
!= e
; ++i
) {
1472 // Try to distinguish something like &A[i][1] against &A[42][0].
1473 // Grab the least significant bit set in any of the scales. We
1474 // don't need std::abs here (even if the scale's negative) as we'll
1475 // be ^'ing Modulo with itself later.
1476 Modulo
|= DecompGEP1
.VarIndices
[i
].Scale
;
1479 // If the Value could change between cycles, then any reasoning about
1480 // the Value this cycle may not hold in the next cycle. We'll just
1481 // give up if we can't determine conditions that hold for every cycle:
1482 const Value
*V
= DecompGEP1
.VarIndices
[i
].V
;
1484 KnownBits Known
= computeKnownBits(V
, DL
, 0, &AC
, nullptr, DT
);
1485 bool SignKnownZero
= Known
.isNonNegative();
1486 bool SignKnownOne
= Known
.isNegative();
1488 // Zero-extension widens the variable, and so forces the sign
1490 bool IsZExt
= DecompGEP1
.VarIndices
[i
].ZExtBits
> 0 || isa
<ZExtInst
>(V
);
1491 SignKnownZero
|= IsZExt
;
1492 SignKnownOne
&= !IsZExt
;
1494 // If the variable begins with a zero then we know it's
1495 // positive, regardless of whether the value is signed or
1497 APInt Scale
= DecompGEP1
.VarIndices
[i
].Scale
;
1499 (SignKnownZero
&& Scale
.sge(0)) || (SignKnownOne
&& Scale
.slt(0));
1503 Modulo
= Modulo
^ (Modulo
& (Modulo
- 1));
1505 // We can compute the difference between the two addresses
1506 // mod Modulo. Check whether that difference guarantees that the
1507 // two locations do not alias.
1508 APInt ModOffset
= GEP1BaseOffset
& (Modulo
- 1);
1509 if (V1Size
!= LocationSize::unknown() &&
1510 V2Size
!= LocationSize::unknown() && ModOffset
.uge(V2Size
.getValue()) &&
1511 (Modulo
- ModOffset
).uge(V1Size
.getValue()))
1514 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1515 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1516 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1517 if (AllPositive
&& GEP1BaseOffset
.sgt(0) &&
1518 V2Size
!= LocationSize::unknown() &&
1519 GEP1BaseOffset
.uge(V2Size
.getValue()))
1522 if (constantOffsetHeuristic(DecompGEP1
.VarIndices
, V1Size
, V2Size
,
1523 GEP1BaseOffset
, &AC
, DT
))
1527 // Statically, we can see that the base objects are the same, but the
1528 // pointers have dynamic offsets which we can't resolve. And none of our
1529 // little tricks above worked.
1533 static AliasResult
MergeAliasResults(AliasResult A
, AliasResult B
) {
1534 // If the results agree, take it.
1537 // A mix of PartialAlias and MustAlias is PartialAlias.
1538 if ((A
== PartialAlias
&& B
== MustAlias
) ||
1539 (B
== PartialAlias
&& A
== MustAlias
))
1540 return PartialAlias
;
1541 // Otherwise, we don't know anything.
1545 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1546 /// against another.
1548 BasicAAResult::aliasSelect(const SelectInst
*SI
, LocationSize SISize
,
1549 const AAMDNodes
&SIAAInfo
, const Value
*V2
,
1550 LocationSize V2Size
, const AAMDNodes
&V2AAInfo
,
1551 const Value
*UnderV2
, AAQueryInfo
&AAQI
) {
1552 // If the values are Selects with the same condition, we can do a more precise
1553 // check: just check for aliases between the values on corresponding arms.
1554 if (const SelectInst
*SI2
= dyn_cast
<SelectInst
>(V2
))
1555 if (SI
->getCondition() == SI2
->getCondition()) {
1557 aliasCheck(SI
->getTrueValue(), SISize
, SIAAInfo
, SI2
->getTrueValue(),
1558 V2Size
, V2AAInfo
, AAQI
);
1559 if (Alias
== MayAlias
)
1561 AliasResult ThisAlias
=
1562 aliasCheck(SI
->getFalseValue(), SISize
, SIAAInfo
,
1563 SI2
->getFalseValue(), V2Size
, V2AAInfo
, AAQI
);
1564 return MergeAliasResults(ThisAlias
, Alias
);
1567 // If both arms of the Select node NoAlias or MustAlias V2, then returns
1568 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1569 AliasResult Alias
= aliasCheck(V2
, V2Size
, V2AAInfo
, SI
->getTrueValue(),
1570 SISize
, SIAAInfo
, AAQI
, UnderV2
);
1571 if (Alias
== MayAlias
)
1574 AliasResult ThisAlias
= aliasCheck(V2
, V2Size
, V2AAInfo
, SI
->getFalseValue(),
1575 SISize
, SIAAInfo
, AAQI
, UnderV2
);
1576 return MergeAliasResults(ThisAlias
, Alias
);
1579 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1581 AliasResult
BasicAAResult::aliasPHI(const PHINode
*PN
, LocationSize PNSize
,
1582 const AAMDNodes
&PNAAInfo
, const Value
*V2
,
1583 LocationSize V2Size
,
1584 const AAMDNodes
&V2AAInfo
,
1585 const Value
*UnderV2
, AAQueryInfo
&AAQI
) {
1586 // Track phi nodes we have visited. We use this information when we determine
1587 // value equivalence.
1588 VisitedPhiBBs
.insert(PN
->getParent());
1590 // If the values are PHIs in the same block, we can do a more precise
1591 // as well as efficient check: just check for aliases between the values
1592 // on corresponding edges.
1593 if (const PHINode
*PN2
= dyn_cast
<PHINode
>(V2
))
1594 if (PN2
->getParent() == PN
->getParent()) {
1595 AAQueryInfo::LocPair
Locs(MemoryLocation(PN
, PNSize
, PNAAInfo
),
1596 MemoryLocation(V2
, V2Size
, V2AAInfo
));
1598 std::swap(Locs
.first
, Locs
.second
);
1599 // Analyse the PHIs' inputs under the assumption that the PHIs are
1601 // If the PHIs are May/MustAlias there must be (recursively) an input
1602 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1603 // there must be an operation on the PHIs within the PHIs' value cycle
1604 // that causes a MayAlias.
1605 // Pretend the phis do not alias.
1606 AliasResult Alias
= NoAlias
;
1607 AliasResult OrigAliasResult
;
1609 // Limited lifetime iterator invalidated by the aliasCheck call below.
1610 auto CacheIt
= AAQI
.AliasCache
.find(Locs
);
1611 assert((CacheIt
!= AAQI
.AliasCache
.end()) &&
1612 "There must exist an entry for the phi node");
1613 OrigAliasResult
= CacheIt
->second
;
1614 CacheIt
->second
= NoAlias
;
1617 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1618 AliasResult ThisAlias
=
1619 aliasCheck(PN
->getIncomingValue(i
), PNSize
, PNAAInfo
,
1620 PN2
->getIncomingValueForBlock(PN
->getIncomingBlock(i
)),
1621 V2Size
, V2AAInfo
, AAQI
);
1622 Alias
= MergeAliasResults(ThisAlias
, Alias
);
1623 if (Alias
== MayAlias
)
1627 // Reset if speculation failed.
1628 if (Alias
!= NoAlias
) {
1630 AAQI
.AliasCache
.insert(std::make_pair(Locs
, OrigAliasResult
));
1631 assert(!Pair
.second
&& "Entry must have existed");
1632 Pair
.first
->second
= OrigAliasResult
;
1637 SmallVector
<Value
*, 4> V1Srcs
;
1638 bool isRecursive
= false;
1640 // If we have PhiValues then use it to get the underlying phi values.
1641 const PhiValues::ValueSet
&PhiValueSet
= PV
->getValuesForPhi(PN
);
1642 // If we have more phi values than the search depth then return MayAlias
1643 // conservatively to avoid compile time explosion. The worst possible case
1644 // is if both sides are PHI nodes. In which case, this is O(m x n) time
1645 // where 'm' and 'n' are the number of PHI sources.
1646 if (PhiValueSet
.size() > MaxLookupSearchDepth
)
1648 // Add the values to V1Srcs
1649 for (Value
*PV1
: PhiValueSet
) {
1650 if (EnableRecPhiAnalysis
) {
1651 if (GEPOperator
*PV1GEP
= dyn_cast
<GEPOperator
>(PV1
)) {
1652 // Check whether the incoming value is a GEP that advances the pointer
1653 // result of this PHI node (e.g. in a loop). If this is the case, we
1654 // would recurse and always get a MayAlias. Handle this case specially
1656 if (PV1GEP
->getPointerOperand() == PN
&& PV1GEP
->getNumIndices() == 1 &&
1657 isa
<ConstantInt
>(PV1GEP
->idx_begin())) {
1663 V1Srcs
.push_back(PV1
);
1666 // If we don't have PhiInfo then just look at the operands of the phi itself
1667 // FIXME: Remove this once we can guarantee that we have PhiInfo always
1668 SmallPtrSet
<Value
*, 4> UniqueSrc
;
1669 for (Value
*PV1
: PN
->incoming_values()) {
1670 if (isa
<PHINode
>(PV1
))
1671 // If any of the source itself is a PHI, return MayAlias conservatively
1672 // to avoid compile time explosion. The worst possible case is if both
1673 // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1674 // and 'n' are the number of PHI sources.
1677 if (EnableRecPhiAnalysis
)
1678 if (GEPOperator
*PV1GEP
= dyn_cast
<GEPOperator
>(PV1
)) {
1679 // Check whether the incoming value is a GEP that advances the pointer
1680 // result of this PHI node (e.g. in a loop). If this is the case, we
1681 // would recurse and always get a MayAlias. Handle this case specially
1683 if (PV1GEP
->getPointerOperand() == PN
&& PV1GEP
->getNumIndices() == 1 &&
1684 isa
<ConstantInt
>(PV1GEP
->idx_begin())) {
1690 if (UniqueSrc
.insert(PV1
).second
)
1691 V1Srcs
.push_back(PV1
);
1695 // If V1Srcs is empty then that means that the phi has no underlying non-phi
1696 // value. This should only be possible in blocks unreachable from the entry
1697 // block, but return MayAlias just in case.
1701 // If this PHI node is recursive, set the size of the accessed memory to
1702 // unknown to represent all the possible values the GEP could advance the
1705 PNSize
= LocationSize::unknown();
1707 AliasResult Alias
= aliasCheck(V2
, V2Size
, V2AAInfo
, V1Srcs
[0], PNSize
,
1708 PNAAInfo
, AAQI
, UnderV2
);
1710 // Early exit if the check of the first PHI source against V2 is MayAlias.
1711 // Other results are not possible.
1712 if (Alias
== MayAlias
)
1715 // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1716 // NoAlias / MustAlias. Otherwise, returns MayAlias.
1717 for (unsigned i
= 1, e
= V1Srcs
.size(); i
!= e
; ++i
) {
1718 Value
*V
= V1Srcs
[i
];
1720 AliasResult ThisAlias
=
1721 aliasCheck(V2
, V2Size
, V2AAInfo
, V
, PNSize
, PNAAInfo
, AAQI
, UnderV2
);
1722 Alias
= MergeAliasResults(ThisAlias
, Alias
);
1723 if (Alias
== MayAlias
)
1730 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1731 /// array references.
1732 AliasResult
BasicAAResult::aliasCheck(const Value
*V1
, LocationSize V1Size
,
1733 AAMDNodes V1AAInfo
, const Value
*V2
,
1734 LocationSize V2Size
, AAMDNodes V2AAInfo
,
1735 AAQueryInfo
&AAQI
, const Value
*O1
,
1737 // If either of the memory references is empty, it doesn't matter what the
1738 // pointer values are.
1739 if (V1Size
.isZero() || V2Size
.isZero())
1742 // Strip off any casts if they exist.
1743 V1
= V1
->stripPointerCastsAndInvariantGroups();
1744 V2
= V2
->stripPointerCastsAndInvariantGroups();
1746 // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1747 // value for undef that aliases nothing in the program.
1748 if (isa
<UndefValue
>(V1
) || isa
<UndefValue
>(V2
))
1751 // Are we checking for alias of the same value?
1752 // Because we look 'through' phi nodes, we could look at "Value" pointers from
1753 // different iterations. We must therefore make sure that this is not the
1754 // case. The function isValueEqualInPotentialCycles ensures that this cannot
1755 // happen by looking at the visited phi nodes and making sure they cannot
1757 if (isValueEqualInPotentialCycles(V1
, V2
))
1760 if (!V1
->getType()->isPointerTy() || !V2
->getType()->isPointerTy())
1761 return NoAlias
; // Scalars cannot alias each other
1763 // Figure out what objects these things are pointing to if we can.
1765 O1
= GetUnderlyingObject(V1
, DL
, MaxLookupSearchDepth
);
1768 O2
= GetUnderlyingObject(V2
, DL
, MaxLookupSearchDepth
);
1770 // Null values in the default address space don't point to any object, so they
1771 // don't alias any other pointer.
1772 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O1
))
1773 if (!NullPointerIsDefined(&F
, CPN
->getType()->getAddressSpace()))
1775 if (const ConstantPointerNull
*CPN
= dyn_cast
<ConstantPointerNull
>(O2
))
1776 if (!NullPointerIsDefined(&F
, CPN
->getType()->getAddressSpace()))
1780 // If V1/V2 point to two different objects, we know that we have no alias.
1781 if (isIdentifiedObject(O1
) && isIdentifiedObject(O2
))
1784 // Constant pointers can't alias with non-const isIdentifiedObject objects.
1785 if ((isa
<Constant
>(O1
) && isIdentifiedObject(O2
) && !isa
<Constant
>(O2
)) ||
1786 (isa
<Constant
>(O2
) && isIdentifiedObject(O1
) && !isa
<Constant
>(O1
)))
1789 // Function arguments can't alias with things that are known to be
1790 // unambigously identified at the function level.
1791 if ((isa
<Argument
>(O1
) && isIdentifiedFunctionLocal(O2
)) ||
1792 (isa
<Argument
>(O2
) && isIdentifiedFunctionLocal(O1
)))
1795 // If one pointer is the result of a call/invoke or load and the other is a
1796 // non-escaping local object within the same function, then we know the
1797 // object couldn't escape to a point where the call could return it.
1799 // Note that if the pointers are in different functions, there are a
1800 // variety of complications. A call with a nocapture argument may still
1801 // temporary store the nocapture argument's value in a temporary memory
1802 // location if that memory location doesn't escape. Or it may pass a
1803 // nocapture value to other functions as long as they don't capture it.
1804 if (isEscapeSource(O1
) &&
1805 isNonEscapingLocalObject(O2
, &AAQI
.IsCapturedCache
))
1807 if (isEscapeSource(O2
) &&
1808 isNonEscapingLocalObject(O1
, &AAQI
.IsCapturedCache
))
1812 // If the size of one access is larger than the entire object on the other
1813 // side, then we know such behavior is undefined and can assume no alias.
1814 bool NullIsValidLocation
= NullPointerIsDefined(&F
);
1815 if ((isObjectSmallerThan(
1816 O2
, getMinimalExtentFrom(*V1
, V1Size
, DL
, NullIsValidLocation
), DL
,
1817 TLI
, NullIsValidLocation
)) ||
1818 (isObjectSmallerThan(
1819 O1
, getMinimalExtentFrom(*V2
, V2Size
, DL
, NullIsValidLocation
), DL
,
1820 TLI
, NullIsValidLocation
)))
1823 // Check the cache before climbing up use-def chains. This also terminates
1824 // otherwise infinitely recursive queries.
1825 AAQueryInfo::LocPair
Locs(MemoryLocation(V1
, V1Size
, V1AAInfo
),
1826 MemoryLocation(V2
, V2Size
, V2AAInfo
));
1828 std::swap(Locs
.first
, Locs
.second
);
1829 std::pair
<AAQueryInfo::AliasCacheT::iterator
, bool> Pair
=
1830 AAQI
.AliasCache
.try_emplace(Locs
, MayAlias
);
1832 return Pair
.first
->second
;
1834 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1835 // GEP can't simplify, we don't even look at the PHI cases.
1836 if (!isa
<GEPOperator
>(V1
) && isa
<GEPOperator
>(V2
)) {
1838 std::swap(V1Size
, V2Size
);
1840 std::swap(V1AAInfo
, V2AAInfo
);
1842 if (const GEPOperator
*GV1
= dyn_cast
<GEPOperator
>(V1
)) {
1843 AliasResult Result
=
1844 aliasGEP(GV1
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O1
, O2
, AAQI
);
1845 if (Result
!= MayAlias
) {
1846 auto ItInsPair
= AAQI
.AliasCache
.insert(std::make_pair(Locs
, Result
));
1847 assert(!ItInsPair
.second
&& "Entry must have existed");
1848 ItInsPair
.first
->second
= Result
;
1853 if (isa
<PHINode
>(V2
) && !isa
<PHINode
>(V1
)) {
1856 std::swap(V1Size
, V2Size
);
1857 std::swap(V1AAInfo
, V2AAInfo
);
1859 if (const PHINode
*PN
= dyn_cast
<PHINode
>(V1
)) {
1860 AliasResult Result
=
1861 aliasPHI(PN
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O2
, AAQI
);
1862 if (Result
!= MayAlias
) {
1863 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, Result
);
1864 assert(!Pair
.second
&& "Entry must have existed");
1865 return Pair
.first
->second
= Result
;
1869 if (isa
<SelectInst
>(V2
) && !isa
<SelectInst
>(V1
)) {
1872 std::swap(V1Size
, V2Size
);
1873 std::swap(V1AAInfo
, V2AAInfo
);
1875 if (const SelectInst
*S1
= dyn_cast
<SelectInst
>(V1
)) {
1876 AliasResult Result
=
1877 aliasSelect(S1
, V1Size
, V1AAInfo
, V2
, V2Size
, V2AAInfo
, O2
, AAQI
);
1878 if (Result
!= MayAlias
) {
1879 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, Result
);
1880 assert(!Pair
.second
&& "Entry must have existed");
1881 return Pair
.first
->second
= Result
;
1885 // If both pointers are pointing into the same object and one of them
1886 // accesses the entire object, then the accesses must overlap in some way.
1888 if (V1Size
.isPrecise() && V2Size
.isPrecise() &&
1889 (isObjectSize(O1
, V1Size
.getValue(), DL
, TLI
, NullIsValidLocation
) ||
1890 isObjectSize(O2
, V2Size
.getValue(), DL
, TLI
, NullIsValidLocation
))) {
1891 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, PartialAlias
);
1892 assert(!Pair
.second
&& "Entry must have existed");
1893 return Pair
.first
->second
= PartialAlias
;
1896 // Recurse back into the best AA results we have, potentially with refined
1897 // memory locations. We have already ensured that BasicAA has a MayAlias
1898 // cache result for these, so any recursion back into BasicAA won't loop.
1899 AliasResult Result
= getBestAAResults().alias(Locs
.first
, Locs
.second
, AAQI
);
1900 Pair
= AAQI
.AliasCache
.try_emplace(Locs
, Result
);
1901 assert(!Pair
.second
&& "Entry must have existed");
1902 return Pair
.first
->second
= Result
;
1905 /// Check whether two Values can be considered equivalent.
1907 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1908 /// they can not be part of a cycle in the value graph by looking at all
1909 /// visited phi nodes an making sure that the phis cannot reach the value. We
1910 /// have to do this because we are looking through phi nodes (That is we say
1911 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1912 bool BasicAAResult::isValueEqualInPotentialCycles(const Value
*V
,
1917 const Instruction
*Inst
= dyn_cast
<Instruction
>(V
);
1921 if (VisitedPhiBBs
.empty())
1924 if (VisitedPhiBBs
.size() > MaxNumPhiBBsValueReachabilityCheck
)
1927 // Make sure that the visited phis cannot reach the Value. This ensures that
1928 // the Values cannot come from different iterations of a potential cycle the
1929 // phi nodes could be involved in.
1930 for (auto *P
: VisitedPhiBBs
)
1931 if (isPotentiallyReachable(&P
->front(), Inst
, nullptr, DT
, LI
))
1937 /// Computes the symbolic difference between two de-composed GEPs.
1939 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1940 /// instructions GEP1 and GEP2 which have common base pointers.
1941 void BasicAAResult::GetIndexDifference(
1942 SmallVectorImpl
<VariableGEPIndex
> &Dest
,
1943 const SmallVectorImpl
<VariableGEPIndex
> &Src
) {
1947 for (unsigned i
= 0, e
= Src
.size(); i
!= e
; ++i
) {
1948 const Value
*V
= Src
[i
].V
;
1949 unsigned ZExtBits
= Src
[i
].ZExtBits
, SExtBits
= Src
[i
].SExtBits
;
1950 APInt Scale
= Src
[i
].Scale
;
1952 // Find V in Dest. This is N^2, but pointer indices almost never have more
1953 // than a few variable indexes.
1954 for (unsigned j
= 0, e
= Dest
.size(); j
!= e
; ++j
) {
1955 if (!isValueEqualInPotentialCycles(Dest
[j
].V
, V
) ||
1956 Dest
[j
].ZExtBits
!= ZExtBits
|| Dest
[j
].SExtBits
!= SExtBits
)
1959 // If we found it, subtract off Scale V's from the entry in Dest. If it
1960 // goes to zero, remove the entry.
1961 if (Dest
[j
].Scale
!= Scale
)
1962 Dest
[j
].Scale
-= Scale
;
1964 Dest
.erase(Dest
.begin() + j
);
1969 // If we didn't consume this entry, add it to the end of the Dest list.
1971 VariableGEPIndex Entry
= {V
, ZExtBits
, SExtBits
, -Scale
};
1972 Dest
.push_back(Entry
);
1977 bool BasicAAResult::constantOffsetHeuristic(
1978 const SmallVectorImpl
<VariableGEPIndex
> &VarIndices
,
1979 LocationSize MaybeV1Size
, LocationSize MaybeV2Size
, APInt BaseOffset
,
1980 AssumptionCache
*AC
, DominatorTree
*DT
) {
1981 if (VarIndices
.size() != 2 || MaybeV1Size
== LocationSize::unknown() ||
1982 MaybeV2Size
== LocationSize::unknown())
1985 const uint64_t V1Size
= MaybeV1Size
.getValue();
1986 const uint64_t V2Size
= MaybeV2Size
.getValue();
1988 const VariableGEPIndex
&Var0
= VarIndices
[0], &Var1
= VarIndices
[1];
1990 if (Var0
.ZExtBits
!= Var1
.ZExtBits
|| Var0
.SExtBits
!= Var1
.SExtBits
||
1991 Var0
.Scale
!= -Var1
.Scale
)
1994 unsigned Width
= Var1
.V
->getType()->getIntegerBitWidth();
1996 // We'll strip off the Extensions of Var0 and Var1 and do another round
1997 // of GetLinearExpression decomposition. In the example above, if Var0
1998 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2000 APInt
V0Scale(Width
, 0), V0Offset(Width
, 0), V1Scale(Width
, 0),
2002 bool NSW
= true, NUW
= true;
2003 unsigned V0ZExtBits
= 0, V0SExtBits
= 0, V1ZExtBits
= 0, V1SExtBits
= 0;
2004 const Value
*V0
= GetLinearExpression(Var0
.V
, V0Scale
, V0Offset
, V0ZExtBits
,
2005 V0SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
2008 const Value
*V1
= GetLinearExpression(Var1
.V
, V1Scale
, V1Offset
, V1ZExtBits
,
2009 V1SExtBits
, DL
, 0, AC
, DT
, NSW
, NUW
);
2011 if (V0Scale
!= V1Scale
|| V0ZExtBits
!= V1ZExtBits
||
2012 V0SExtBits
!= V1SExtBits
|| !isValueEqualInPotentialCycles(V0
, V1
))
2015 // We have a hit - Var0 and Var1 only differ by a constant offset!
2017 // If we've been sext'ed then zext'd the maximum difference between Var0 and
2018 // Var1 is possible to calculate, but we're just interested in the absolute
2019 // minimum difference between the two. The minimum distance may occur due to
2020 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2021 // the minimum distance between %i and %i + 5 is 3.
2022 APInt MinDiff
= V0Offset
- V1Offset
, Wrapped
= -MinDiff
;
2023 MinDiff
= APIntOps::umin(MinDiff
, Wrapped
);
2024 APInt MinDiffBytes
=
2025 MinDiff
.zextOrTrunc(Var0
.Scale
.getBitWidth()) * Var0
.Scale
.abs();
2027 // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2028 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2029 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2030 // V2Size can fit in the MinDiffBytes gap.
2031 return MinDiffBytes
.uge(V1Size
+ BaseOffset
.abs()) &&
2032 MinDiffBytes
.uge(V2Size
+ BaseOffset
.abs());
2035 //===----------------------------------------------------------------------===//
2036 // BasicAliasAnalysis Pass
2037 //===----------------------------------------------------------------------===//
2039 AnalysisKey
BasicAA::Key
;
2041 BasicAAResult
BasicAA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
2042 return BasicAAResult(F
.getParent()->getDataLayout(),
2044 AM
.getResult
<TargetLibraryAnalysis
>(F
),
2045 AM
.getResult
<AssumptionAnalysis
>(F
),
2046 &AM
.getResult
<DominatorTreeAnalysis
>(F
),
2047 AM
.getCachedResult
<LoopAnalysis
>(F
),
2048 AM
.getCachedResult
<PhiValuesAnalysis
>(F
));
2051 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID
) {
2052 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2055 char BasicAAWrapperPass::ID
= 0;
2057 void BasicAAWrapperPass::anchor() {}
2059 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass
, "basicaa",
2060 "Basic Alias Analysis (stateless AA impl)", false, true)
2061 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
2062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2063 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
2064 INITIALIZE_PASS_END(BasicAAWrapperPass
, "basicaa",
2065 "Basic Alias Analysis (stateless AA impl)", false, true)
2067 FunctionPass
*llvm::createBasicAAWrapperPass() {
2068 return new BasicAAWrapperPass();
2071 bool BasicAAWrapperPass::runOnFunction(Function
&F
) {
2072 auto &ACT
= getAnalysis
<AssumptionCacheTracker
>();
2073 auto &TLIWP
= getAnalysis
<TargetLibraryInfoWrapperPass
>();
2074 auto &DTWP
= getAnalysis
<DominatorTreeWrapperPass
>();
2075 auto *LIWP
= getAnalysisIfAvailable
<LoopInfoWrapperPass
>();
2076 auto *PVWP
= getAnalysisIfAvailable
<PhiValuesWrapperPass
>();
2078 Result
.reset(new BasicAAResult(F
.getParent()->getDataLayout(), F
,
2079 TLIWP
.getTLI(F
), ACT
.getAssumptionCache(F
),
2081 LIWP
? &LIWP
->getLoopInfo() : nullptr,
2082 PVWP
? &PVWP
->getResult() : nullptr));
2087 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
2088 AU
.setPreservesAll();
2089 AU
.addRequired
<AssumptionCacheTracker
>();
2090 AU
.addRequired
<DominatorTreeWrapperPass
>();
2091 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
2092 AU
.addUsedIfAvailable
<PhiValuesWrapperPass
>();
2095 BasicAAResult
llvm::createLegacyPMBasicAAResult(Pass
&P
, Function
&F
) {
2096 return BasicAAResult(
2097 F
.getParent()->getDataLayout(), F
,
2098 P
.getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
2099 P
.getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
));