[Alignment][NFC] Value::getPointerAlignment returns MaybeAlign
[llvm-core.git] / lib / Analysis / PhiValues.cpp
blob49749bc44746dc9032d6693c59ff10ec54859166
1 //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/PhiValues.h"
10 #include "llvm/ADT/SmallPtrSet.h"
11 #include "llvm/ADT/SmallVector.h"
12 #include "llvm/IR/Instructions.h"
14 using namespace llvm;
16 void PhiValues::PhiValuesCallbackVH::deleted() {
17 PV->invalidateValue(getValPtr());
20 void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) {
21 // We could potentially update the cached values we have with the new value,
22 // but it's simpler to just treat the old value as invalidated.
23 PV->invalidateValue(getValPtr());
26 bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA,
27 FunctionAnalysisManager::Invalidator &) {
28 // PhiValues is invalidated if it isn't preserved.
29 auto PAC = PA.getChecker<PhiValuesAnalysis>();
30 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
33 // The goal here is to find all of the non-phi values reachable from this phi,
34 // and to do the same for all of the phis reachable from this phi, as doing so
35 // is necessary anyway in order to get the values for this phi. We do this using
36 // Tarjan's algorithm with Nuutila's improvements to find the strongly connected
37 // components of the phi graph rooted in this phi:
38 // * All phis in a strongly connected component will have the same reachable
39 // non-phi values. The SCC may not be the maximal subgraph for that set of
40 // reachable values, but finding out that isn't really necessary (it would
41 // only reduce the amount of memory needed to store the values).
42 // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it
43 // never completes a component before the components reachable from it have
44 // been completed. This means that when we complete a component we have
45 // everything we need to collect the values reachable from that component.
46 // * We collect both the non-phi values reachable from each SCC, as that's what
47 // we're ultimately interested in, and all of the reachable values, i.e.
48 // including phis, as that makes invalidateValue easier.
49 void PhiValues::processPhi(const PHINode *Phi,
50 SmallVector<const PHINode *, 8> &Stack) {
51 // Initialize the phi with the next depth number.
52 assert(DepthMap.lookup(Phi) == 0);
53 assert(NextDepthNumber != UINT_MAX);
54 unsigned int DepthNumber = ++NextDepthNumber;
55 DepthMap[Phi] = DepthNumber;
57 // Recursively process the incoming phis of this phi.
58 TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this));
59 for (Value *PhiOp : Phi->incoming_values()) {
60 if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) {
61 // Recurse if the phi has not yet been visited.
62 if (DepthMap.lookup(PhiPhiOp) == 0)
63 processPhi(PhiPhiOp, Stack);
64 assert(DepthMap.lookup(PhiPhiOp) != 0);
65 // If the phi did not become part of a component then this phi and that
66 // phi are part of the same component, so adjust the depth number.
67 if (!ReachableMap.count(DepthMap[PhiPhiOp]))
68 DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]);
69 } else {
70 TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this));
74 // Now that incoming phis have been handled, push this phi to the stack.
75 Stack.push_back(Phi);
77 // If the depth number has not changed then we've finished collecting the phis
78 // of a strongly connected component.
79 if (DepthMap[Phi] == DepthNumber) {
80 // Collect the reachable values for this component. The phis of this
81 // component will be those on top of the depth stach with the same or
82 // greater depth number.
83 ConstValueSet Reachable;
84 while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) {
85 const PHINode *ComponentPhi = Stack.pop_back_val();
86 Reachable.insert(ComponentPhi);
87 DepthMap[ComponentPhi] = DepthNumber;
88 for (Value *Op : ComponentPhi->incoming_values()) {
89 if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) {
90 // If this phi is not part of the same component then that component
91 // is guaranteed to have been completed before this one. Therefore we
92 // can just add its reachable values to the reachable values of this
93 // component.
94 auto It = ReachableMap.find(DepthMap[PhiOp]);
95 if (It != ReachableMap.end())
96 Reachable.insert(It->second.begin(), It->second.end());
97 } else {
98 Reachable.insert(Op);
102 ReachableMap.insert({DepthNumber,Reachable});
104 // Filter out phis to get the non-phi reachable values.
105 ValueSet NonPhi;
106 for (const Value *V : Reachable)
107 if (!isa<PHINode>(V))
108 NonPhi.insert(const_cast<Value*>(V));
109 NonPhiReachableMap.insert({DepthNumber,NonPhi});
113 const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) {
114 if (DepthMap.count(PN) == 0) {
115 SmallVector<const PHINode *, 8> Stack;
116 processPhi(PN, Stack);
117 assert(Stack.empty());
119 assert(DepthMap.lookup(PN) != 0);
120 return NonPhiReachableMap[DepthMap[PN]];
123 void PhiValues::invalidateValue(const Value *V) {
124 // Components that can reach V are invalid.
125 SmallVector<unsigned int, 8> InvalidComponents;
126 for (auto &Pair : ReachableMap)
127 if (Pair.second.count(V))
128 InvalidComponents.push_back(Pair.first);
130 for (unsigned int N : InvalidComponents) {
131 for (const Value *V : ReachableMap[N])
132 if (const PHINode *PN = dyn_cast<PHINode>(V))
133 DepthMap.erase(PN);
134 NonPhiReachableMap.erase(N);
135 ReachableMap.erase(N);
137 // This value is no longer tracked
138 auto It = TrackedValues.find_as(V);
139 if (It != TrackedValues.end())
140 TrackedValues.erase(It);
143 void PhiValues::releaseMemory() {
144 DepthMap.clear();
145 NonPhiReachableMap.clear();
146 ReachableMap.clear();
149 void PhiValues::print(raw_ostream &OS) const {
150 // Iterate through the phi nodes of the function rather than iterating through
151 // DepthMap in order to get predictable ordering.
152 for (const BasicBlock &BB : F) {
153 for (const PHINode &PN : BB.phis()) {
154 OS << "PHI ";
155 PN.printAsOperand(OS, false);
156 OS << " has values:\n";
157 unsigned int N = DepthMap.lookup(&PN);
158 auto It = NonPhiReachableMap.find(N);
159 if (It == NonPhiReachableMap.end())
160 OS << " UNKNOWN\n";
161 else if (It->second.empty())
162 OS << " NONE\n";
163 else
164 for (Value *V : It->second)
165 // Printing of an instruction prints two spaces at the start, so
166 // handle instructions and everything else slightly differently in
167 // order to get consistent indenting.
168 if (Instruction *I = dyn_cast<Instruction>(V))
169 OS << *I << "\n";
170 else
171 OS << " " << *V << "\n";
176 AnalysisKey PhiValuesAnalysis::Key;
177 PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) {
178 return PhiValues(F);
181 PreservedAnalyses PhiValuesPrinterPass::run(Function &F,
182 FunctionAnalysisManager &AM) {
183 OS << "PHI Values for function: " << F.getName() << "\n";
184 PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F);
185 for (const BasicBlock &BB : F)
186 for (const PHINode &PN : BB.phis())
187 PI.getValuesForPhi(&PN);
188 PI.print(OS);
189 return PreservedAnalyses::all();
192 PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) {
193 initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry());
196 bool PhiValuesWrapperPass::runOnFunction(Function &F) {
197 Result.reset(new PhiValues(F));
198 return false;
201 void PhiValuesWrapperPass::releaseMemory() {
202 Result->releaseMemory();
205 void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
206 AU.setPreservesAll();
209 char PhiValuesWrapperPass::ID = 0;
211 INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false,
212 true)