1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
136 using namespace llvm
;
138 #define DEBUG_TYPE "scalar-evolution"
140 STATISTIC(NumArrayLenItCounts
,
141 "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed
,
143 "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed
,
145 "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed
,
147 "Number of loops with trip counts computed by force");
149 static cl::opt
<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
152 cl::desc("Maximum number of iterations SCEV will "
153 "symbolically execute a constant "
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt
<bool> VerifySCEV(
159 "verify-scev", cl::Hidden
,
160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt
<bool> VerifySCEVStrict(
162 "verify-scev-strict", cl::Hidden
,
163 cl::desc("Enable stricter verification with -verify-scev is passed"));
165 VerifySCEVMap("verify-scev-maps", cl::Hidden
,
166 cl::desc("Verify no dangling value in ScalarEvolution's "
167 "ExprValueMap (slow)"));
169 static cl::opt
<bool> VerifyIR(
170 "scev-verify-ir", cl::Hidden
,
171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174 static cl::opt
<unsigned> MulOpsInlineThreshold(
175 "scev-mulops-inline-threshold", cl::Hidden
,
176 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179 static cl::opt
<unsigned> AddOpsInlineThreshold(
180 "scev-addops-inline-threshold", cl::Hidden
,
181 cl::desc("Threshold for inlining addition operands into a SCEV"),
184 static cl::opt
<unsigned> MaxSCEVCompareDepth(
185 "scalar-evolution-max-scev-compare-depth", cl::Hidden
,
186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189 static cl::opt
<unsigned> MaxSCEVOperationsImplicationDepth(
190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden
,
191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194 static cl::opt
<unsigned> MaxValueCompareDepth(
195 "scalar-evolution-max-value-compare-depth", cl::Hidden
,
196 cl::desc("Maximum depth of recursive value complexity comparisons"),
199 static cl::opt
<unsigned>
200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden
,
201 cl::desc("Maximum depth of recursive arithmetics"),
204 static cl::opt
<unsigned> MaxConstantEvolvingDepth(
205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden
,
206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 static cl::opt
<unsigned>
209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden
,
210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213 static cl::opt
<unsigned>
214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden
,
215 cl::desc("Max coefficients in AddRec during evolving"),
218 static cl::opt
<unsigned>
219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden
,
220 cl::desc("Size of the expression which is considered huge"),
223 //===----------------------------------------------------------------------===//
224 // SCEV class definitions
225 //===----------------------------------------------------------------------===//
227 //===----------------------------------------------------------------------===//
228 // Implementation of the SCEV class.
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD
void SCEV::dump() const {
238 void SCEV::print(raw_ostream
&OS
) const {
239 switch (static_cast<SCEVTypes
>(getSCEVType())) {
241 cast
<SCEVConstant
>(this)->getValue()->printAsOperand(OS
, false);
244 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(this);
245 const SCEV
*Op
= Trunc
->getOperand();
246 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to "
247 << *Trunc
->getType() << ")";
251 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(this);
252 const SCEV
*Op
= ZExt
->getOperand();
253 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to "
254 << *ZExt
->getType() << ")";
258 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(this);
259 const SCEV
*Op
= SExt
->getOperand();
260 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to "
261 << *SExt
->getType() << ")";
265 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(this);
266 OS
<< "{" << *AR
->getOperand(0);
267 for (unsigned i
= 1, e
= AR
->getNumOperands(); i
!= e
; ++i
)
268 OS
<< ",+," << *AR
->getOperand(i
);
270 if (AR
->hasNoUnsignedWrap())
272 if (AR
->hasNoSignedWrap())
274 if (AR
->hasNoSelfWrap() &&
275 !AR
->getNoWrapFlags((NoWrapFlags
)(FlagNUW
| FlagNSW
)))
277 AR
->getLoop()->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
287 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(this);
288 const char *OpStr
= nullptr;
289 switch (NAry
->getSCEVType()) {
290 case scAddExpr
: OpStr
= " + "; break;
291 case scMulExpr
: OpStr
= " * "; break;
292 case scUMaxExpr
: OpStr
= " umax "; break;
293 case scSMaxExpr
: OpStr
= " smax "; break;
302 for (SCEVNAryExpr::op_iterator I
= NAry
->op_begin(), E
= NAry
->op_end();
305 if (std::next(I
) != E
)
309 switch (NAry
->getSCEVType()) {
312 if (NAry
->hasNoUnsignedWrap())
314 if (NAry
->hasNoSignedWrap())
320 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(this);
321 OS
<< "(" << *UDiv
->getLHS() << " /u " << *UDiv
->getRHS() << ")";
325 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(this);
327 if (U
->isSizeOf(AllocTy
)) {
328 OS
<< "sizeof(" << *AllocTy
<< ")";
331 if (U
->isAlignOf(AllocTy
)) {
332 OS
<< "alignof(" << *AllocTy
<< ")";
338 if (U
->isOffsetOf(CTy
, FieldNo
)) {
339 OS
<< "offsetof(" << *CTy
<< ", ";
340 FieldNo
->printAsOperand(OS
, false);
345 // Otherwise just print it normally.
346 U
->getValue()->printAsOperand(OS
, false);
349 case scCouldNotCompute
:
350 OS
<< "***COULDNOTCOMPUTE***";
353 llvm_unreachable("Unknown SCEV kind!");
356 Type
*SCEV::getType() const {
357 switch (static_cast<SCEVTypes
>(getSCEVType())) {
359 return cast
<SCEVConstant
>(this)->getType();
363 return cast
<SCEVCastExpr
>(this)->getType();
370 return cast
<SCEVNAryExpr
>(this)->getType();
372 return cast
<SCEVAddExpr
>(this)->getType();
374 return cast
<SCEVUDivExpr
>(this)->getType();
376 return cast
<SCEVUnknown
>(this)->getType();
377 case scCouldNotCompute
:
378 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
380 llvm_unreachable("Unknown SCEV kind!");
383 bool SCEV::isZero() const {
384 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
385 return SC
->getValue()->isZero();
389 bool SCEV::isOne() const {
390 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
391 return SC
->getValue()->isOne();
395 bool SCEV::isAllOnesValue() const {
396 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
397 return SC
->getValue()->isMinusOne();
401 bool SCEV::isNonConstantNegative() const {
402 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(this);
403 if (!Mul
) return false;
405 // If there is a constant factor, it will be first.
406 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
407 if (!SC
) return false;
409 // Return true if the value is negative, this matches things like (-42 * V).
410 return SC
->getAPInt().isNegative();
413 SCEVCouldNotCompute::SCEVCouldNotCompute() :
414 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute
, 0) {}
416 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
417 return S
->getSCEVType() == scCouldNotCompute
;
420 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
422 ID
.AddInteger(scConstant
);
425 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
426 SCEV
*S
= new (SCEVAllocator
) SCEVConstant(ID
.Intern(SCEVAllocator
), V
);
427 UniqueSCEVs
.InsertNode(S
, IP
);
431 const SCEV
*ScalarEvolution::getConstant(const APInt
&Val
) {
432 return getConstant(ConstantInt::get(getContext(), Val
));
436 ScalarEvolution::getConstant(Type
*Ty
, uint64_t V
, bool isSigned
) {
437 IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
438 return getConstant(ConstantInt::get(ITy
, V
, isSigned
));
441 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID
,
442 unsigned SCEVTy
, const SCEV
*op
, Type
*ty
)
443 : SCEV(ID
, SCEVTy
, computeExpressionSize(op
)), Op(op
), Ty(ty
) {}
445 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID
,
446 const SCEV
*op
, Type
*ty
)
447 : SCEVCastExpr(ID
, scTruncate
, op
, ty
) {
448 assert(Op
->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
449 "Cannot truncate non-integer value!");
452 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID
,
453 const SCEV
*op
, Type
*ty
)
454 : SCEVCastExpr(ID
, scZeroExtend
, op
, ty
) {
455 assert(Op
->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
456 "Cannot zero extend non-integer value!");
459 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID
,
460 const SCEV
*op
, Type
*ty
)
461 : SCEVCastExpr(ID
, scSignExtend
, op
, ty
) {
462 assert(Op
->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
463 "Cannot sign extend non-integer value!");
466 void SCEVUnknown::deleted() {
467 // Clear this SCEVUnknown from various maps.
468 SE
->forgetMemoizedResults(this);
470 // Remove this SCEVUnknown from the uniquing map.
471 SE
->UniqueSCEVs
.RemoveNode(this);
473 // Release the value.
477 void SCEVUnknown::allUsesReplacedWith(Value
*New
) {
478 // Remove this SCEVUnknown from the uniquing map.
479 SE
->UniqueSCEVs
.RemoveNode(this);
481 // Update this SCEVUnknown to point to the new value. This is needed
482 // because there may still be outstanding SCEVs which still point to
487 bool SCEVUnknown::isSizeOf(Type
*&AllocTy
) const {
488 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
489 if (VCE
->getOpcode() == Instruction::PtrToInt
)
490 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
491 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
492 CE
->getOperand(0)->isNullValue() &&
493 CE
->getNumOperands() == 2)
494 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(1)))
496 AllocTy
= cast
<PointerType
>(CE
->getOperand(0)->getType())
504 bool SCEVUnknown::isAlignOf(Type
*&AllocTy
) const {
505 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
506 if (VCE
->getOpcode() == Instruction::PtrToInt
)
507 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
508 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
509 CE
->getOperand(0)->isNullValue()) {
511 cast
<PointerType
>(CE
->getOperand(0)->getType())->getElementType();
512 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
513 if (!STy
->isPacked() &&
514 CE
->getNumOperands() == 3 &&
515 CE
->getOperand(1)->isNullValue()) {
516 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CE
->getOperand(2)))
518 STy
->getNumElements() == 2 &&
519 STy
->getElementType(0)->isIntegerTy(1)) {
520 AllocTy
= STy
->getElementType(1);
529 bool SCEVUnknown::isOffsetOf(Type
*&CTy
, Constant
*&FieldNo
) const {
530 if (ConstantExpr
*VCE
= dyn_cast
<ConstantExpr
>(getValue()))
531 if (VCE
->getOpcode() == Instruction::PtrToInt
)
532 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(VCE
->getOperand(0)))
533 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
534 CE
->getNumOperands() == 3 &&
535 CE
->getOperand(0)->isNullValue() &&
536 CE
->getOperand(1)->isNullValue()) {
538 cast
<PointerType
>(CE
->getOperand(0)->getType())->getElementType();
539 // Ignore vector types here so that ScalarEvolutionExpander doesn't
540 // emit getelementptrs that index into vectors.
541 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
543 FieldNo
= CE
->getOperand(2);
551 //===----------------------------------------------------------------------===//
553 //===----------------------------------------------------------------------===//
555 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
556 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
557 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
558 /// have been previously deemed to be "equally complex" by this routine. It is
559 /// intended to avoid exponential time complexity in cases like:
569 /// CompareValueComplexity(%f, %c)
571 /// Since we do not continue running this routine on expression trees once we
572 /// have seen unequal values, there is no need to track them in the cache.
574 CompareValueComplexity(EquivalenceClasses
<const Value
*> &EqCacheValue
,
575 const LoopInfo
*const LI
, Value
*LV
, Value
*RV
,
577 if (Depth
> MaxValueCompareDepth
|| EqCacheValue
.isEquivalent(LV
, RV
))
580 // Order pointer values after integer values. This helps SCEVExpander form
582 bool LIsPointer
= LV
->getType()->isPointerTy(),
583 RIsPointer
= RV
->getType()->isPointerTy();
584 if (LIsPointer
!= RIsPointer
)
585 return (int)LIsPointer
- (int)RIsPointer
;
587 // Compare getValueID values.
588 unsigned LID
= LV
->getValueID(), RID
= RV
->getValueID();
590 return (int)LID
- (int)RID
;
592 // Sort arguments by their position.
593 if (const auto *LA
= dyn_cast
<Argument
>(LV
)) {
594 const auto *RA
= cast
<Argument
>(RV
);
595 unsigned LArgNo
= LA
->getArgNo(), RArgNo
= RA
->getArgNo();
596 return (int)LArgNo
- (int)RArgNo
;
599 if (const auto *LGV
= dyn_cast
<GlobalValue
>(LV
)) {
600 const auto *RGV
= cast
<GlobalValue
>(RV
);
602 const auto IsGVNameSemantic
= [&](const GlobalValue
*GV
) {
603 auto LT
= GV
->getLinkage();
604 return !(GlobalValue::isPrivateLinkage(LT
) ||
605 GlobalValue::isInternalLinkage(LT
));
608 // Use the names to distinguish the two values, but only if the
609 // names are semantically important.
610 if (IsGVNameSemantic(LGV
) && IsGVNameSemantic(RGV
))
611 return LGV
->getName().compare(RGV
->getName());
614 // For instructions, compare their loop depth, and their operand count. This
616 if (const auto *LInst
= dyn_cast
<Instruction
>(LV
)) {
617 const auto *RInst
= cast
<Instruction
>(RV
);
619 // Compare loop depths.
620 const BasicBlock
*LParent
= LInst
->getParent(),
621 *RParent
= RInst
->getParent();
622 if (LParent
!= RParent
) {
623 unsigned LDepth
= LI
->getLoopDepth(LParent
),
624 RDepth
= LI
->getLoopDepth(RParent
);
625 if (LDepth
!= RDepth
)
626 return (int)LDepth
- (int)RDepth
;
629 // Compare the number of operands.
630 unsigned LNumOps
= LInst
->getNumOperands(),
631 RNumOps
= RInst
->getNumOperands();
632 if (LNumOps
!= RNumOps
)
633 return (int)LNumOps
- (int)RNumOps
;
635 for (unsigned Idx
: seq(0u, LNumOps
)) {
637 CompareValueComplexity(EqCacheValue
, LI
, LInst
->getOperand(Idx
),
638 RInst
->getOperand(Idx
), Depth
+ 1);
644 EqCacheValue
.unionSets(LV
, RV
);
648 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
649 // than RHS, respectively. A three-way result allows recursive comparisons to be
651 static int CompareSCEVComplexity(
652 EquivalenceClasses
<const SCEV
*> &EqCacheSCEV
,
653 EquivalenceClasses
<const Value
*> &EqCacheValue
,
654 const LoopInfo
*const LI
, const SCEV
*LHS
, const SCEV
*RHS
,
655 DominatorTree
&DT
, unsigned Depth
= 0) {
656 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
660 // Primarily, sort the SCEVs by their getSCEVType().
661 unsigned LType
= LHS
->getSCEVType(), RType
= RHS
->getSCEVType();
663 return (int)LType
- (int)RType
;
665 if (Depth
> MaxSCEVCompareDepth
|| EqCacheSCEV
.isEquivalent(LHS
, RHS
))
667 // Aside from the getSCEVType() ordering, the particular ordering
668 // isn't very important except that it's beneficial to be consistent,
669 // so that (a + b) and (b + a) don't end up as different expressions.
670 switch (static_cast<SCEVTypes
>(LType
)) {
672 const SCEVUnknown
*LU
= cast
<SCEVUnknown
>(LHS
);
673 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
675 int X
= CompareValueComplexity(EqCacheValue
, LI
, LU
->getValue(),
676 RU
->getValue(), Depth
+ 1);
678 EqCacheSCEV
.unionSets(LHS
, RHS
);
683 const SCEVConstant
*LC
= cast
<SCEVConstant
>(LHS
);
684 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
686 // Compare constant values.
687 const APInt
&LA
= LC
->getAPInt();
688 const APInt
&RA
= RC
->getAPInt();
689 unsigned LBitWidth
= LA
.getBitWidth(), RBitWidth
= RA
.getBitWidth();
690 if (LBitWidth
!= RBitWidth
)
691 return (int)LBitWidth
- (int)RBitWidth
;
692 return LA
.ult(RA
) ? -1 : 1;
696 const SCEVAddRecExpr
*LA
= cast
<SCEVAddRecExpr
>(LHS
);
697 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
699 // There is always a dominance between two recs that are used by one SCEV,
700 // so we can safely sort recs by loop header dominance. We require such
701 // order in getAddExpr.
702 const Loop
*LLoop
= LA
->getLoop(), *RLoop
= RA
->getLoop();
703 if (LLoop
!= RLoop
) {
704 const BasicBlock
*LHead
= LLoop
->getHeader(), *RHead
= RLoop
->getHeader();
705 assert(LHead
!= RHead
&& "Two loops share the same header?");
706 if (DT
.dominates(LHead
, RHead
))
709 assert(DT
.dominates(RHead
, LHead
) &&
710 "No dominance between recurrences used by one SCEV?");
714 // Addrec complexity grows with operand count.
715 unsigned LNumOps
= LA
->getNumOperands(), RNumOps
= RA
->getNumOperands();
716 if (LNumOps
!= RNumOps
)
717 return (int)LNumOps
- (int)RNumOps
;
719 // Lexicographically compare.
720 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
721 int X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
,
722 LA
->getOperand(i
), RA
->getOperand(i
), DT
,
727 EqCacheSCEV
.unionSets(LHS
, RHS
);
737 const SCEVNAryExpr
*LC
= cast
<SCEVNAryExpr
>(LHS
);
738 const SCEVNAryExpr
*RC
= cast
<SCEVNAryExpr
>(RHS
);
740 // Lexicographically compare n-ary expressions.
741 unsigned LNumOps
= LC
->getNumOperands(), RNumOps
= RC
->getNumOperands();
742 if (LNumOps
!= RNumOps
)
743 return (int)LNumOps
- (int)RNumOps
;
745 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
746 int X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
,
747 LC
->getOperand(i
), RC
->getOperand(i
), DT
,
752 EqCacheSCEV
.unionSets(LHS
, RHS
);
757 const SCEVUDivExpr
*LC
= cast
<SCEVUDivExpr
>(LHS
);
758 const SCEVUDivExpr
*RC
= cast
<SCEVUDivExpr
>(RHS
);
760 // Lexicographically compare udiv expressions.
761 int X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LC
->getLHS(),
762 RC
->getLHS(), DT
, Depth
+ 1);
765 X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LC
->getRHS(),
766 RC
->getRHS(), DT
, Depth
+ 1);
768 EqCacheSCEV
.unionSets(LHS
, RHS
);
775 const SCEVCastExpr
*LC
= cast
<SCEVCastExpr
>(LHS
);
776 const SCEVCastExpr
*RC
= cast
<SCEVCastExpr
>(RHS
);
778 // Compare cast expressions by operand.
779 int X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
,
780 LC
->getOperand(), RC
->getOperand(), DT
,
783 EqCacheSCEV
.unionSets(LHS
, RHS
);
787 case scCouldNotCompute
:
788 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
790 llvm_unreachable("Unknown SCEV kind!");
793 /// Given a list of SCEV objects, order them by their complexity, and group
794 /// objects of the same complexity together by value. When this routine is
795 /// finished, we know that any duplicates in the vector are consecutive and that
796 /// complexity is monotonically increasing.
798 /// Note that we go take special precautions to ensure that we get deterministic
799 /// results from this routine. In other words, we don't want the results of
800 /// this to depend on where the addresses of various SCEV objects happened to
802 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
803 LoopInfo
*LI
, DominatorTree
&DT
) {
804 if (Ops
.size() < 2) return; // Noop
806 EquivalenceClasses
<const SCEV
*> EqCacheSCEV
;
807 EquivalenceClasses
<const Value
*> EqCacheValue
;
808 if (Ops
.size() == 2) {
809 // This is the common case, which also happens to be trivially simple.
811 const SCEV
*&LHS
= Ops
[0], *&RHS
= Ops
[1];
812 if (CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, RHS
, LHS
, DT
) < 0)
817 // Do the rough sort by complexity.
818 llvm::stable_sort(Ops
, [&](const SCEV
*LHS
, const SCEV
*RHS
) {
819 return CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LHS
, RHS
, DT
) <
823 // Now that we are sorted by complexity, group elements of the same
824 // complexity. Note that this is, at worst, N^2, but the vector is likely to
825 // be extremely short in practice. Note that we take this approach because we
826 // do not want to depend on the addresses of the objects we are grouping.
827 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
828 const SCEV
*S
= Ops
[i
];
829 unsigned Complexity
= S
->getSCEVType();
831 // If there are any objects of the same complexity and same value as this
833 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
834 if (Ops
[j
] == S
) { // Found a duplicate.
835 // Move it to immediately after i'th element.
836 std::swap(Ops
[i
+1], Ops
[j
]);
837 ++i
; // no need to rescan it.
838 if (i
== e
-2) return; // Done!
844 // Returns the size of the SCEV S.
845 static inline int sizeOfSCEV(const SCEV
*S
) {
846 struct FindSCEVSize
{
849 FindSCEVSize() = default;
851 bool follow(const SCEV
*S
) {
853 // Keep looking at all operands of S.
857 bool isDone() const {
863 SCEVTraversal
<FindSCEVSize
> ST(F
);
868 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
870 static bool isHugeExpression(const SCEV
*S
) {
871 return S
->getExpressionSize() >= HugeExprThreshold
;
874 /// Returns true of \p Ops contains a huge SCEV (see definition above).
875 static bool hasHugeExpression(ArrayRef
<const SCEV
*> Ops
) {
876 return any_of(Ops
, isHugeExpression
);
881 struct SCEVDivision
: public SCEVVisitor
<SCEVDivision
, void> {
883 // Computes the Quotient and Remainder of the division of Numerator by
885 static void divide(ScalarEvolution
&SE
, const SCEV
*Numerator
,
886 const SCEV
*Denominator
, const SCEV
**Quotient
,
887 const SCEV
**Remainder
) {
888 assert(Numerator
&& Denominator
&& "Uninitialized SCEV");
890 SCEVDivision
D(SE
, Numerator
, Denominator
);
892 // Check for the trivial case here to avoid having to check for it in the
894 if (Numerator
== Denominator
) {
900 if (Numerator
->isZero()) {
906 // A simple case when N/1. The quotient is N.
907 if (Denominator
->isOne()) {
908 *Quotient
= Numerator
;
913 // Split the Denominator when it is a product.
914 if (const SCEVMulExpr
*T
= dyn_cast
<SCEVMulExpr
>(Denominator
)) {
916 *Quotient
= Numerator
;
917 for (const SCEV
*Op
: T
->operands()) {
918 divide(SE
, *Quotient
, Op
, &Q
, &R
);
921 // Bail out when the Numerator is not divisible by one of the terms of
925 *Remainder
= Numerator
;
934 *Quotient
= D
.Quotient
;
935 *Remainder
= D
.Remainder
;
938 // Except in the trivial case described above, we do not know how to divide
939 // Expr by Denominator for the following functions with empty implementation.
940 void visitTruncateExpr(const SCEVTruncateExpr
*Numerator
) {}
941 void visitZeroExtendExpr(const SCEVZeroExtendExpr
*Numerator
) {}
942 void visitSignExtendExpr(const SCEVSignExtendExpr
*Numerator
) {}
943 void visitUDivExpr(const SCEVUDivExpr
*Numerator
) {}
944 void visitSMaxExpr(const SCEVSMaxExpr
*Numerator
) {}
945 void visitUMaxExpr(const SCEVUMaxExpr
*Numerator
) {}
946 void visitSMinExpr(const SCEVSMinExpr
*Numerator
) {}
947 void visitUMinExpr(const SCEVUMinExpr
*Numerator
) {}
948 void visitUnknown(const SCEVUnknown
*Numerator
) {}
949 void visitCouldNotCompute(const SCEVCouldNotCompute
*Numerator
) {}
951 void visitConstant(const SCEVConstant
*Numerator
) {
952 if (const SCEVConstant
*D
= dyn_cast
<SCEVConstant
>(Denominator
)) {
953 APInt NumeratorVal
= Numerator
->getAPInt();
954 APInt DenominatorVal
= D
->getAPInt();
955 uint32_t NumeratorBW
= NumeratorVal
.getBitWidth();
956 uint32_t DenominatorBW
= DenominatorVal
.getBitWidth();
958 if (NumeratorBW
> DenominatorBW
)
959 DenominatorVal
= DenominatorVal
.sext(NumeratorBW
);
960 else if (NumeratorBW
< DenominatorBW
)
961 NumeratorVal
= NumeratorVal
.sext(DenominatorBW
);
963 APInt
QuotientVal(NumeratorVal
.getBitWidth(), 0);
964 APInt
RemainderVal(NumeratorVal
.getBitWidth(), 0);
965 APInt::sdivrem(NumeratorVal
, DenominatorVal
, QuotientVal
, RemainderVal
);
966 Quotient
= SE
.getConstant(QuotientVal
);
967 Remainder
= SE
.getConstant(RemainderVal
);
972 void visitAddRecExpr(const SCEVAddRecExpr
*Numerator
) {
973 const SCEV
*StartQ
, *StartR
, *StepQ
, *StepR
;
974 if (!Numerator
->isAffine())
975 return cannotDivide(Numerator
);
976 divide(SE
, Numerator
->getStart(), Denominator
, &StartQ
, &StartR
);
977 divide(SE
, Numerator
->getStepRecurrence(SE
), Denominator
, &StepQ
, &StepR
);
978 // Bail out if the types do not match.
979 Type
*Ty
= Denominator
->getType();
980 if (Ty
!= StartQ
->getType() || Ty
!= StartR
->getType() ||
981 Ty
!= StepQ
->getType() || Ty
!= StepR
->getType())
982 return cannotDivide(Numerator
);
983 Quotient
= SE
.getAddRecExpr(StartQ
, StepQ
, Numerator
->getLoop(),
984 Numerator
->getNoWrapFlags());
985 Remainder
= SE
.getAddRecExpr(StartR
, StepR
, Numerator
->getLoop(),
986 Numerator
->getNoWrapFlags());
989 void visitAddExpr(const SCEVAddExpr
*Numerator
) {
990 SmallVector
<const SCEV
*, 2> Qs
, Rs
;
991 Type
*Ty
= Denominator
->getType();
993 for (const SCEV
*Op
: Numerator
->operands()) {
995 divide(SE
, Op
, Denominator
, &Q
, &R
);
997 // Bail out if types do not match.
998 if (Ty
!= Q
->getType() || Ty
!= R
->getType())
999 return cannotDivide(Numerator
);
1005 if (Qs
.size() == 1) {
1011 Quotient
= SE
.getAddExpr(Qs
);
1012 Remainder
= SE
.getAddExpr(Rs
);
1015 void visitMulExpr(const SCEVMulExpr
*Numerator
) {
1016 SmallVector
<const SCEV
*, 2> Qs
;
1017 Type
*Ty
= Denominator
->getType();
1019 bool FoundDenominatorTerm
= false;
1020 for (const SCEV
*Op
: Numerator
->operands()) {
1021 // Bail out if types do not match.
1022 if (Ty
!= Op
->getType())
1023 return cannotDivide(Numerator
);
1025 if (FoundDenominatorTerm
) {
1030 // Check whether Denominator divides one of the product operands.
1032 divide(SE
, Op
, Denominator
, &Q
, &R
);
1038 // Bail out if types do not match.
1039 if (Ty
!= Q
->getType())
1040 return cannotDivide(Numerator
);
1042 FoundDenominatorTerm
= true;
1046 if (FoundDenominatorTerm
) {
1051 Quotient
= SE
.getMulExpr(Qs
);
1055 if (!isa
<SCEVUnknown
>(Denominator
))
1056 return cannotDivide(Numerator
);
1058 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1059 ValueToValueMap RewriteMap
;
1060 RewriteMap
[cast
<SCEVUnknown
>(Denominator
)->getValue()] =
1061 cast
<SCEVConstant
>(Zero
)->getValue();
1062 Remainder
= SCEVParameterRewriter::rewrite(Numerator
, SE
, RewriteMap
, true);
1064 if (Remainder
->isZero()) {
1065 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1066 RewriteMap
[cast
<SCEVUnknown
>(Denominator
)->getValue()] =
1067 cast
<SCEVConstant
>(One
)->getValue();
1069 SCEVParameterRewriter::rewrite(Numerator
, SE
, RewriteMap
, true);
1073 // Quotient is (Numerator - Remainder) divided by Denominator.
1075 const SCEV
*Diff
= SE
.getMinusSCEV(Numerator
, Remainder
);
1076 // This SCEV does not seem to simplify: fail the division here.
1077 if (sizeOfSCEV(Diff
) > sizeOfSCEV(Numerator
))
1078 return cannotDivide(Numerator
);
1079 divide(SE
, Diff
, Denominator
, &Q
, &R
);
1081 return cannotDivide(Numerator
);
1086 SCEVDivision(ScalarEvolution
&S
, const SCEV
*Numerator
,
1087 const SCEV
*Denominator
)
1088 : SE(S
), Denominator(Denominator
) {
1089 Zero
= SE
.getZero(Denominator
->getType());
1090 One
= SE
.getOne(Denominator
->getType());
1092 // We generally do not know how to divide Expr by Denominator. We
1093 // initialize the division to a "cannot divide" state to simplify the rest
1095 cannotDivide(Numerator
);
1098 // Convenience function for giving up on the division. We set the quotient to
1099 // be equal to zero and the remainder to be equal to the numerator.
1100 void cannotDivide(const SCEV
*Numerator
) {
1102 Remainder
= Numerator
;
1105 ScalarEvolution
&SE
;
1106 const SCEV
*Denominator
, *Quotient
, *Remainder
, *Zero
, *One
;
1109 } // end anonymous namespace
1111 //===----------------------------------------------------------------------===//
1112 // Simple SCEV method implementations
1113 //===----------------------------------------------------------------------===//
1115 /// Compute BC(It, K). The result has width W. Assume, K > 0.
1116 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
1117 ScalarEvolution
&SE
,
1119 // Handle the simplest case efficiently.
1121 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
1123 // We are using the following formula for BC(It, K):
1125 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1127 // Suppose, W is the bitwidth of the return value. We must be prepared for
1128 // overflow. Hence, we must assure that the result of our computation is
1129 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1130 // safe in modular arithmetic.
1132 // However, this code doesn't use exactly that formula; the formula it uses
1133 // is something like the following, where T is the number of factors of 2 in
1134 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1137 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1139 // This formula is trivially equivalent to the previous formula. However,
1140 // this formula can be implemented much more efficiently. The trick is that
1141 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1142 // arithmetic. To do exact division in modular arithmetic, all we have
1143 // to do is multiply by the inverse. Therefore, this step can be done at
1146 // The next issue is how to safely do the division by 2^T. The way this
1147 // is done is by doing the multiplication step at a width of at least W + T
1148 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1149 // when we perform the division by 2^T (which is equivalent to a right shift
1150 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1151 // truncated out after the division by 2^T.
1153 // In comparison to just directly using the first formula, this technique
1154 // is much more efficient; using the first formula requires W * K bits,
1155 // but this formula less than W + K bits. Also, the first formula requires
1156 // a division step, whereas this formula only requires multiplies and shifts.
1158 // It doesn't matter whether the subtraction step is done in the calculation
1159 // width or the input iteration count's width; if the subtraction overflows,
1160 // the result must be zero anyway. We prefer here to do it in the width of
1161 // the induction variable because it helps a lot for certain cases; CodeGen
1162 // isn't smart enough to ignore the overflow, which leads to much less
1163 // efficient code if the width of the subtraction is wider than the native
1166 // (It's possible to not widen at all by pulling out factors of 2 before
1167 // the multiplication; for example, K=2 can be calculated as
1168 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1169 // extra arithmetic, so it's not an obvious win, and it gets
1170 // much more complicated for K > 3.)
1172 // Protection from insane SCEVs; this bound is conservative,
1173 // but it probably doesn't matter.
1175 return SE
.getCouldNotCompute();
1177 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
1179 // Calculate K! / 2^T and T; we divide out the factors of two before
1180 // multiplying for calculating K! / 2^T to avoid overflow.
1181 // Other overflow doesn't matter because we only care about the bottom
1182 // W bits of the result.
1183 APInt
OddFactorial(W
, 1);
1185 for (unsigned i
= 3; i
<= K
; ++i
) {
1187 unsigned TwoFactors
= Mult
.countTrailingZeros();
1189 Mult
.lshrInPlace(TwoFactors
);
1190 OddFactorial
*= Mult
;
1193 // We need at least W + T bits for the multiplication step
1194 unsigned CalculationBits
= W
+ T
;
1196 // Calculate 2^T, at width T+W.
1197 APInt DivFactor
= APInt::getOneBitSet(CalculationBits
, T
);
1199 // Calculate the multiplicative inverse of K! / 2^T;
1200 // this multiplication factor will perform the exact division by
1202 APInt Mod
= APInt::getSignedMinValue(W
+1);
1203 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
1204 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
1205 MultiplyFactor
= MultiplyFactor
.trunc(W
);
1207 // Calculate the product, at width T+W
1208 IntegerType
*CalculationTy
= IntegerType::get(SE
.getContext(),
1210 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
1211 for (unsigned i
= 1; i
!= K
; ++i
) {
1212 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getConstant(It
->getType(), i
));
1213 Dividend
= SE
.getMulExpr(Dividend
,
1214 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
1218 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
1220 // Truncate the result, and divide by K! / 2^T.
1222 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
1223 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
1226 /// Return the value of this chain of recurrences at the specified iteration
1227 /// number. We can evaluate this recurrence by multiplying each element in the
1228 /// chain by the binomial coefficient corresponding to it. In other words, we
1229 /// can evaluate {A,+,B,+,C,+,D} as:
1231 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1233 /// where BC(It, k) stands for binomial coefficient.
1234 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
1235 ScalarEvolution
&SE
) const {
1236 const SCEV
*Result
= getStart();
1237 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1238 // The computation is correct in the face of overflow provided that the
1239 // multiplication is performed _after_ the evaluation of the binomial
1241 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, getType());
1242 if (isa
<SCEVCouldNotCompute
>(Coeff
))
1245 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(getOperand(i
), Coeff
));
1250 //===----------------------------------------------------------------------===//
1251 // SCEV Expression folder implementations
1252 //===----------------------------------------------------------------------===//
1254 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
, Type
*Ty
,
1256 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
1257 "This is not a truncating conversion!");
1258 assert(isSCEVable(Ty
) &&
1259 "This is not a conversion to a SCEVable type!");
1260 Ty
= getEffectiveSCEVType(Ty
);
1262 FoldingSetNodeID ID
;
1263 ID
.AddInteger(scTruncate
);
1267 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1269 // Fold if the operand is constant.
1270 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1272 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
1274 // trunc(trunc(x)) --> trunc(x)
1275 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
1276 return getTruncateExpr(ST
->getOperand(), Ty
, Depth
+ 1);
1278 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1279 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1280 return getTruncateOrSignExtend(SS
->getOperand(), Ty
, Depth
+ 1);
1282 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1283 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1284 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
, Depth
+ 1);
1286 if (Depth
> MaxCastDepth
) {
1288 new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
), Op
, Ty
);
1289 UniqueSCEVs
.InsertNode(S
, IP
);
1290 addToLoopUseLists(S
);
1294 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1295 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1296 // if after transforming we have at most one truncate, not counting truncates
1297 // that replace other casts.
1298 if (isa
<SCEVAddExpr
>(Op
) || isa
<SCEVMulExpr
>(Op
)) {
1299 auto *CommOp
= cast
<SCEVCommutativeExpr
>(Op
);
1300 SmallVector
<const SCEV
*, 4> Operands
;
1301 unsigned numTruncs
= 0;
1302 for (unsigned i
= 0, e
= CommOp
->getNumOperands(); i
!= e
&& numTruncs
< 2;
1304 const SCEV
*S
= getTruncateExpr(CommOp
->getOperand(i
), Ty
, Depth
+ 1);
1305 if (!isa
<SCEVCastExpr
>(CommOp
->getOperand(i
)) && isa
<SCEVTruncateExpr
>(S
))
1307 Operands
.push_back(S
);
1309 if (numTruncs
< 2) {
1310 if (isa
<SCEVAddExpr
>(Op
))
1311 return getAddExpr(Operands
);
1312 else if (isa
<SCEVMulExpr
>(Op
))
1313 return getMulExpr(Operands
);
1315 llvm_unreachable("Unexpected SCEV type for Op.");
1317 // Although we checked in the beginning that ID is not in the cache, it is
1318 // possible that during recursion and different modification ID was inserted
1319 // into the cache. So if we find it, just return it.
1320 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1324 // If the input value is a chrec scev, truncate the chrec's operands.
1325 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
1326 SmallVector
<const SCEV
*, 4> Operands
;
1327 for (const SCEV
*Op
: AddRec
->operands())
1328 Operands
.push_back(getTruncateExpr(Op
, Ty
, Depth
+ 1));
1329 return getAddRecExpr(Operands
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
1332 // The cast wasn't folded; create an explicit cast node. We can reuse
1333 // the existing insert position since if we get here, we won't have
1334 // made any changes which would invalidate it.
1335 SCEV
*S
= new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
),
1337 UniqueSCEVs
.InsertNode(S
, IP
);
1338 addToLoopUseLists(S
);
1342 // Get the limit of a recurrence such that incrementing by Step cannot cause
1343 // signed overflow as long as the value of the recurrence within the
1344 // loop does not exceed this limit before incrementing.
1345 static const SCEV
*getSignedOverflowLimitForStep(const SCEV
*Step
,
1346 ICmpInst::Predicate
*Pred
,
1347 ScalarEvolution
*SE
) {
1348 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1349 if (SE
->isKnownPositive(Step
)) {
1350 *Pred
= ICmpInst::ICMP_SLT
;
1351 return SE
->getConstant(APInt::getSignedMinValue(BitWidth
) -
1352 SE
->getSignedRangeMax(Step
));
1354 if (SE
->isKnownNegative(Step
)) {
1355 *Pred
= ICmpInst::ICMP_SGT
;
1356 return SE
->getConstant(APInt::getSignedMaxValue(BitWidth
) -
1357 SE
->getSignedRangeMin(Step
));
1362 // Get the limit of a recurrence such that incrementing by Step cannot cause
1363 // unsigned overflow as long as the value of the recurrence within the loop does
1364 // not exceed this limit before incrementing.
1365 static const SCEV
*getUnsignedOverflowLimitForStep(const SCEV
*Step
,
1366 ICmpInst::Predicate
*Pred
,
1367 ScalarEvolution
*SE
) {
1368 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1369 *Pred
= ICmpInst::ICMP_ULT
;
1371 return SE
->getConstant(APInt::getMinValue(BitWidth
) -
1372 SE
->getUnsignedRangeMax(Step
));
1377 struct ExtendOpTraitsBase
{
1378 typedef const SCEV
*(ScalarEvolution::*GetExtendExprTy
)(const SCEV
*, Type
*,
1382 // Used to make code generic over signed and unsigned overflow.
1383 template <typename ExtendOp
> struct ExtendOpTraits
{
1386 // static const SCEV::NoWrapFlags WrapType;
1388 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1390 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1391 // ICmpInst::Predicate *Pred,
1392 // ScalarEvolution *SE);
1396 struct ExtendOpTraits
<SCEVSignExtendExpr
> : public ExtendOpTraitsBase
{
1397 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNSW
;
1399 static const GetExtendExprTy GetExtendExpr
;
1401 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1402 ICmpInst::Predicate
*Pred
,
1403 ScalarEvolution
*SE
) {
1404 return getSignedOverflowLimitForStep(Step
, Pred
, SE
);
1408 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1409 SCEVSignExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getSignExtendExpr
;
1412 struct ExtendOpTraits
<SCEVZeroExtendExpr
> : public ExtendOpTraitsBase
{
1413 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNUW
;
1415 static const GetExtendExprTy GetExtendExpr
;
1417 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1418 ICmpInst::Predicate
*Pred
,
1419 ScalarEvolution
*SE
) {
1420 return getUnsignedOverflowLimitForStep(Step
, Pred
, SE
);
1424 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1425 SCEVZeroExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getZeroExtendExpr
;
1427 } // end anonymous namespace
1429 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1430 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1431 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1432 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1433 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1434 // expression "Step + sext/zext(PreIncAR)" is congruent with
1435 // "sext/zext(PostIncAR)"
1436 template <typename ExtendOpTy
>
1437 static const SCEV
*getPreStartForExtend(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1438 ScalarEvolution
*SE
, unsigned Depth
) {
1439 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1440 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1442 const Loop
*L
= AR
->getLoop();
1443 const SCEV
*Start
= AR
->getStart();
1444 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1446 // Check for a simple looking step prior to loop entry.
1447 const SCEVAddExpr
*SA
= dyn_cast
<SCEVAddExpr
>(Start
);
1451 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1452 // subtraction is expensive. For this purpose, perform a quick and dirty
1453 // difference, by checking for Step in the operand list.
1454 SmallVector
<const SCEV
*, 4> DiffOps
;
1455 for (const SCEV
*Op
: SA
->operands())
1457 DiffOps
.push_back(Op
);
1459 if (DiffOps
.size() == SA
->getNumOperands())
1462 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1465 // 1. NSW/NUW flags on the step increment.
1466 auto PreStartFlags
=
1467 ScalarEvolution::maskFlags(SA
->getNoWrapFlags(), SCEV::FlagNUW
);
1468 const SCEV
*PreStart
= SE
->getAddExpr(DiffOps
, PreStartFlags
);
1469 const SCEVAddRecExpr
*PreAR
= dyn_cast
<SCEVAddRecExpr
>(
1470 SE
->getAddRecExpr(PreStart
, Step
, L
, SCEV::FlagAnyWrap
));
1472 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1473 // "S+X does not sign/unsign-overflow".
1476 const SCEV
*BECount
= SE
->getBackedgeTakenCount(L
);
1477 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
) &&
1478 !isa
<SCEVCouldNotCompute
>(BECount
) && SE
->isKnownPositive(BECount
))
1481 // 2. Direct overflow check on the step operation's expression.
1482 unsigned BitWidth
= SE
->getTypeSizeInBits(AR
->getType());
1483 Type
*WideTy
= IntegerType::get(SE
->getContext(), BitWidth
* 2);
1484 const SCEV
*OperandExtendedStart
=
1485 SE
->getAddExpr((SE
->*GetExtendExpr
)(PreStart
, WideTy
, Depth
),
1486 (SE
->*GetExtendExpr
)(Step
, WideTy
, Depth
));
1487 if ((SE
->*GetExtendExpr
)(Start
, WideTy
, Depth
) == OperandExtendedStart
) {
1488 if (PreAR
&& AR
->getNoWrapFlags(WrapType
)) {
1489 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1490 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1491 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1492 const_cast<SCEVAddRecExpr
*>(PreAR
)->setNoWrapFlags(WrapType
);
1497 // 3. Loop precondition.
1498 ICmpInst::Predicate Pred
;
1499 const SCEV
*OverflowLimit
=
1500 ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(Step
, &Pred
, SE
);
1502 if (OverflowLimit
&&
1503 SE
->isLoopEntryGuardedByCond(L
, Pred
, PreStart
, OverflowLimit
))
1509 // Get the normalized zero or sign extended expression for this AddRec's Start.
1510 template <typename ExtendOpTy
>
1511 static const SCEV
*getExtendAddRecStart(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1512 ScalarEvolution
*SE
,
1514 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1516 const SCEV
*PreStart
= getPreStartForExtend
<ExtendOpTy
>(AR
, Ty
, SE
, Depth
);
1518 return (SE
->*GetExtendExpr
)(AR
->getStart(), Ty
, Depth
);
1520 return SE
->getAddExpr((SE
->*GetExtendExpr
)(AR
->getStepRecurrence(*SE
), Ty
,
1522 (SE
->*GetExtendExpr
)(PreStart
, Ty
, Depth
));
1525 // Try to prove away overflow by looking at "nearby" add recurrences. A
1526 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1527 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1531 // {S,+,X} == {S-T,+,X} + T
1532 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1534 // If ({S-T,+,X} + T) does not overflow ... (1)
1536 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1538 // If {S-T,+,X} does not overflow ... (2)
1540 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1541 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1543 // If (S-T)+T does not overflow ... (3)
1545 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1546 // == {Ext(S),+,Ext(X)} == LHS
1548 // Thus, if (1), (2) and (3) are true for some T, then
1549 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1551 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1552 // does not overflow" restricted to the 0th iteration. Therefore we only need
1553 // to check for (1) and (2).
1555 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1556 // is `Delta` (defined below).
1557 template <typename ExtendOpTy
>
1558 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV
*Start
,
1561 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1563 // We restrict `Start` to a constant to prevent SCEV from spending too much
1564 // time here. It is correct (but more expensive) to continue with a
1565 // non-constant `Start` and do a general SCEV subtraction to compute
1566 // `PreStart` below.
1567 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
);
1571 APInt StartAI
= StartC
->getAPInt();
1573 for (unsigned Delta
: {-2, -1, 1, 2}) {
1574 const SCEV
*PreStart
= getConstant(StartAI
- Delta
);
1576 FoldingSetNodeID ID
;
1577 ID
.AddInteger(scAddRecExpr
);
1578 ID
.AddPointer(PreStart
);
1579 ID
.AddPointer(Step
);
1583 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
1585 // Give up if we don't already have the add recurrence we need because
1586 // actually constructing an add recurrence is relatively expensive.
1587 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
)) { // proves (2)
1588 const SCEV
*DeltaS
= getConstant(StartC
->getType(), Delta
);
1589 ICmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
1590 const SCEV
*Limit
= ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(
1591 DeltaS
, &Pred
, this);
1592 if (Limit
&& isKnownPredicate(Pred
, PreAR
, Limit
)) // proves (1)
1600 // Finds an integer D for an expression (C + x + y + ...) such that the top
1601 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1602 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1603 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1604 // the (C + x + y + ...) expression is \p WholeAddExpr.
1605 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1606 const SCEVConstant
*ConstantTerm
,
1607 const SCEVAddExpr
*WholeAddExpr
) {
1608 const APInt C
= ConstantTerm
->getAPInt();
1609 const unsigned BitWidth
= C
.getBitWidth();
1610 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1611 uint32_t TZ
= BitWidth
;
1612 for (unsigned I
= 1, E
= WholeAddExpr
->getNumOperands(); I
< E
&& TZ
; ++I
)
1613 TZ
= std::min(TZ
, SE
.GetMinTrailingZeros(WholeAddExpr
->getOperand(I
)));
1615 // Set D to be as many least significant bits of C as possible while still
1616 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1617 return TZ
< BitWidth
? C
.trunc(TZ
).zext(BitWidth
) : C
;
1619 return APInt(BitWidth
, 0);
1622 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1623 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1624 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1625 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1626 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1627 const APInt
&ConstantStart
,
1629 const unsigned BitWidth
= ConstantStart
.getBitWidth();
1630 const uint32_t TZ
= SE
.GetMinTrailingZeros(Step
);
1632 return TZ
< BitWidth
? ConstantStart
.trunc(TZ
).zext(BitWidth
)
1634 return APInt(BitWidth
, 0);
1638 ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1639 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1640 "This is not an extending conversion!");
1641 assert(isSCEVable(Ty
) &&
1642 "This is not a conversion to a SCEVable type!");
1643 Ty
= getEffectiveSCEVType(Ty
);
1645 // Fold if the operand is constant.
1646 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1648 cast
<ConstantInt
>(ConstantExpr::getZExt(SC
->getValue(), Ty
)));
1650 // zext(zext(x)) --> zext(x)
1651 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1652 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1654 // Before doing any expensive analysis, check to see if we've already
1655 // computed a SCEV for this Op and Ty.
1656 FoldingSetNodeID ID
;
1657 ID
.AddInteger(scZeroExtend
);
1661 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1662 if (Depth
> MaxCastDepth
) {
1663 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1665 UniqueSCEVs
.InsertNode(S
, IP
);
1666 addToLoopUseLists(S
);
1670 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1671 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1672 // It's possible the bits taken off by the truncate were all zero bits. If
1673 // so, we should be able to simplify this further.
1674 const SCEV
*X
= ST
->getOperand();
1675 ConstantRange CR
= getUnsignedRange(X
);
1676 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1677 unsigned NewBits
= getTypeSizeInBits(Ty
);
1678 if (CR
.truncate(TruncBits
).zeroExtend(NewBits
).contains(
1679 CR
.zextOrTrunc(NewBits
)))
1680 return getTruncateOrZeroExtend(X
, Ty
, Depth
);
1683 // If the input value is a chrec scev, and we can prove that the value
1684 // did not overflow the old, smaller, value, we can zero extend all of the
1685 // operands (often constants). This allows analysis of something like
1686 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1687 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1688 if (AR
->isAffine()) {
1689 const SCEV
*Start
= AR
->getStart();
1690 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1691 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1692 const Loop
*L
= AR
->getLoop();
1694 if (!AR
->hasNoUnsignedWrap()) {
1695 auto NewFlags
= proveNoWrapViaConstantRanges(AR
);
1696 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(NewFlags
);
1699 // If we have special knowledge that this addrec won't overflow,
1700 // we don't need to do any further analysis.
1701 if (AR
->hasNoUnsignedWrap())
1702 return getAddRecExpr(
1703 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
1704 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
1706 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1707 // Note that this serves two purposes: It filters out loops that are
1708 // simply not analyzable, and it covers the case where this code is
1709 // being called from within backedge-taken count analysis, such that
1710 // attempting to ask for the backedge-taken count would likely result
1711 // in infinite recursion. In the later case, the analysis code will
1712 // cope with a conservative value, and it will take care to purge
1713 // that value once it has finished.
1714 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
1715 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
1716 // Manually compute the final value for AR, checking for
1719 // Check whether the backedge-taken count can be losslessly casted to
1720 // the addrec's type. The count is always unsigned.
1721 const SCEV
*CastedMaxBECount
=
1722 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
1723 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
1724 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
1725 if (MaxBECount
== RecastedMaxBECount
) {
1726 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
1727 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1728 const SCEV
*ZMul
= getMulExpr(CastedMaxBECount
, Step
,
1729 SCEV::FlagAnyWrap
, Depth
+ 1);
1730 const SCEV
*ZAdd
= getZeroExtendExpr(getAddExpr(Start
, ZMul
,
1734 const SCEV
*WideStart
= getZeroExtendExpr(Start
, WideTy
, Depth
+ 1);
1735 const SCEV
*WideMaxBECount
=
1736 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
1737 const SCEV
*OperandExtendedAdd
=
1738 getAddExpr(WideStart
,
1739 getMulExpr(WideMaxBECount
,
1740 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
1741 SCEV::FlagAnyWrap
, Depth
+ 1),
1742 SCEV::FlagAnyWrap
, Depth
+ 1);
1743 if (ZAdd
== OperandExtendedAdd
) {
1744 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1745 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNUW
);
1746 // Return the expression with the addrec on the outside.
1747 return getAddRecExpr(
1748 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1750 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1751 AR
->getNoWrapFlags());
1753 // Similar to above, only this time treat the step value as signed.
1754 // This covers loops that count down.
1755 OperandExtendedAdd
=
1756 getAddExpr(WideStart
,
1757 getMulExpr(WideMaxBECount
,
1758 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
1759 SCEV::FlagAnyWrap
, Depth
+ 1),
1760 SCEV::FlagAnyWrap
, Depth
+ 1);
1761 if (ZAdd
== OperandExtendedAdd
) {
1762 // Cache knowledge of AR NW, which is propagated to this AddRec.
1763 // Negative step causes unsigned wrap, but it still can't self-wrap.
1764 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNW
);
1765 // Return the expression with the addrec on the outside.
1766 return getAddRecExpr(
1767 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1769 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1770 AR
->getNoWrapFlags());
1775 // Normally, in the cases we can prove no-overflow via a
1776 // backedge guarding condition, we can also compute a backedge
1777 // taken count for the loop. The exceptions are assumptions and
1778 // guards present in the loop -- SCEV is not great at exploiting
1779 // these to compute max backedge taken counts, but can still use
1780 // these to prove lack of overflow. Use this fact to avoid
1781 // doing extra work that may not pay off.
1782 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) || HasGuards
||
1783 !AC
.assumptions().empty()) {
1784 // If the backedge is guarded by a comparison with the pre-inc
1785 // value the addrec is safe. Also, if the entry is guarded by
1786 // a comparison with the start value and the backedge is
1787 // guarded by a comparison with the post-inc value, the addrec
1789 if (isKnownPositive(Step
)) {
1790 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
1791 getUnsignedRangeMax(Step
));
1792 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
1793 isKnownOnEveryIteration(ICmpInst::ICMP_ULT
, AR
, N
)) {
1794 // Cache knowledge of AR NUW, which is propagated to this
1796 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNUW
);
1797 // Return the expression with the addrec on the outside.
1798 return getAddRecExpr(
1799 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1801 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1802 AR
->getNoWrapFlags());
1804 } else if (isKnownNegative(Step
)) {
1805 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
1806 getSignedRangeMin(Step
));
1807 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) ||
1808 isKnownOnEveryIteration(ICmpInst::ICMP_UGT
, AR
, N
)) {
1809 // Cache knowledge of AR NW, which is propagated to this
1810 // AddRec. Negative step causes unsigned wrap, but it
1811 // still can't self-wrap.
1812 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNW
);
1813 // Return the expression with the addrec on the outside.
1814 return getAddRecExpr(
1815 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1817 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
,
1818 AR
->getNoWrapFlags());
1823 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1824 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1825 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1826 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
1827 const APInt
&C
= SC
->getAPInt();
1828 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
1830 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1831 const SCEV
*SResidual
=
1832 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
1833 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1834 return getAddExpr(SZExtD
, SZExtR
,
1835 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1840 if (proveNoWrapByVaryingStart
<SCEVZeroExtendExpr
>(Start
, Step
, L
)) {
1841 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNUW
);
1842 return getAddRecExpr(
1843 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
1844 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
1848 // zext(A % B) --> zext(A) % zext(B)
1852 if (matchURem(Op
, LHS
, RHS
))
1853 return getURemExpr(getZeroExtendExpr(LHS
, Ty
, Depth
+ 1),
1854 getZeroExtendExpr(RHS
, Ty
, Depth
+ 1));
1857 // zext(A / B) --> zext(A) / zext(B).
1858 if (auto *Div
= dyn_cast
<SCEVUDivExpr
>(Op
))
1859 return getUDivExpr(getZeroExtendExpr(Div
->getLHS(), Ty
, Depth
+ 1),
1860 getZeroExtendExpr(Div
->getRHS(), Ty
, Depth
+ 1));
1862 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1863 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1864 if (SA
->hasNoUnsignedWrap()) {
1865 // If the addition does not unsign overflow then we can, by definition,
1866 // commute the zero extension with the addition operation.
1867 SmallVector
<const SCEV
*, 4> Ops
;
1868 for (const auto *Op
: SA
->operands())
1869 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1870 return getAddExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1873 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1874 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1875 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1877 // Often address arithmetics contain expressions like
1878 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1879 // This transformation is useful while proving that such expressions are
1880 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1881 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1882 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1884 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1885 const SCEV
*SResidual
=
1886 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1887 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1888 return getAddExpr(SZExtD
, SZExtR
,
1889 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1895 if (auto *SM
= dyn_cast
<SCEVMulExpr
>(Op
)) {
1896 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1897 if (SM
->hasNoUnsignedWrap()) {
1898 // If the multiply does not unsign overflow then we can, by definition,
1899 // commute the zero extension with the multiply operation.
1900 SmallVector
<const SCEV
*, 4> Ops
;
1901 for (const auto *Op
: SM
->operands())
1902 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1903 return getMulExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1906 // zext(2^K * (trunc X to iN)) to iM ->
1907 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1911 // zext(2^K * (trunc X to iN)) to iM
1912 // = zext((trunc X to iN) << K) to iM
1913 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1914 // (because shl removes the top K bits)
1915 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1916 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1918 if (SM
->getNumOperands() == 2)
1919 if (auto *MulLHS
= dyn_cast
<SCEVConstant
>(SM
->getOperand(0)))
1920 if (MulLHS
->getAPInt().isPowerOf2())
1921 if (auto *TruncRHS
= dyn_cast
<SCEVTruncateExpr
>(SM
->getOperand(1))) {
1922 int NewTruncBits
= getTypeSizeInBits(TruncRHS
->getType()) -
1923 MulLHS
->getAPInt().logBase2();
1924 Type
*NewTruncTy
= IntegerType::get(getContext(), NewTruncBits
);
1926 getZeroExtendExpr(MulLHS
, Ty
),
1928 getTruncateExpr(TruncRHS
->getOperand(), NewTruncTy
), Ty
),
1929 SCEV::FlagNUW
, Depth
+ 1);
1933 // The cast wasn't folded; create an explicit cast node.
1934 // Recompute the insert position, as it may have been invalidated.
1935 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1936 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1938 UniqueSCEVs
.InsertNode(S
, IP
);
1939 addToLoopUseLists(S
);
1944 ScalarEvolution::getSignExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1945 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1946 "This is not an extending conversion!");
1947 assert(isSCEVable(Ty
) &&
1948 "This is not a conversion to a SCEVable type!");
1949 Ty
= getEffectiveSCEVType(Ty
);
1951 // Fold if the operand is constant.
1952 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1954 cast
<ConstantInt
>(ConstantExpr::getSExt(SC
->getValue(), Ty
)));
1956 // sext(sext(x)) --> sext(x)
1957 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1958 return getSignExtendExpr(SS
->getOperand(), Ty
, Depth
+ 1);
1960 // sext(zext(x)) --> zext(x)
1961 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1962 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1964 // Before doing any expensive analysis, check to see if we've already
1965 // computed a SCEV for this Op and Ty.
1966 FoldingSetNodeID ID
;
1967 ID
.AddInteger(scSignExtend
);
1971 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1972 // Limit recursion depth.
1973 if (Depth
> MaxCastDepth
) {
1974 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
1976 UniqueSCEVs
.InsertNode(S
, IP
);
1977 addToLoopUseLists(S
);
1981 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1982 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1983 // It's possible the bits taken off by the truncate were all sign bits. If
1984 // so, we should be able to simplify this further.
1985 const SCEV
*X
= ST
->getOperand();
1986 ConstantRange CR
= getSignedRange(X
);
1987 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1988 unsigned NewBits
= getTypeSizeInBits(Ty
);
1989 if (CR
.truncate(TruncBits
).signExtend(NewBits
).contains(
1990 CR
.sextOrTrunc(NewBits
)))
1991 return getTruncateOrSignExtend(X
, Ty
, Depth
);
1994 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1995 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1996 if (SA
->hasNoSignedWrap()) {
1997 // If the addition does not sign overflow then we can, by definition,
1998 // commute the sign extension with the addition operation.
1999 SmallVector
<const SCEV
*, 4> Ops
;
2000 for (const auto *Op
: SA
->operands())
2001 Ops
.push_back(getSignExtendExpr(Op
, Ty
, Depth
+ 1));
2002 return getAddExpr(Ops
, SCEV::FlagNSW
, Depth
+ 1);
2005 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2006 // if D + (C - D + x + y + ...) could be proven to not signed wrap
2007 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2009 // For instance, this will bring two seemingly different expressions:
2010 // 1 + sext(5 + 20 * %x + 24 * %y) and
2011 // sext(6 + 20 * %x + 24 * %y)
2012 // to the same form:
2013 // 2 + sext(4 + 20 * %x + 24 * %y)
2014 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
2015 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
2017 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
2018 const SCEV
*SResidual
=
2019 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
2020 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
2021 return getAddExpr(SSExtD
, SSExtR
,
2022 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
2027 // If the input value is a chrec scev, and we can prove that the value
2028 // did not overflow the old, smaller, value, we can sign extend all of the
2029 // operands (often constants). This allows analysis of something like
2030 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
2031 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
2032 if (AR
->isAffine()) {
2033 const SCEV
*Start
= AR
->getStart();
2034 const SCEV
*Step
= AR
->getStepRecurrence(*this);
2035 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
2036 const Loop
*L
= AR
->getLoop();
2038 if (!AR
->hasNoSignedWrap()) {
2039 auto NewFlags
= proveNoWrapViaConstantRanges(AR
);
2040 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(NewFlags
);
2043 // If we have special knowledge that this addrec won't overflow,
2044 // we don't need to do any further analysis.
2045 if (AR
->hasNoSignedWrap())
2046 return getAddRecExpr(
2047 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
2048 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
, SCEV::FlagNSW
);
2050 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2051 // Note that this serves two purposes: It filters out loops that are
2052 // simply not analyzable, and it covers the case where this code is
2053 // being called from within backedge-taken count analysis, such that
2054 // attempting to ask for the backedge-taken count would likely result
2055 // in infinite recursion. In the later case, the analysis code will
2056 // cope with a conservative value, and it will take care to purge
2057 // that value once it has finished.
2058 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
2059 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
2060 // Manually compute the final value for AR, checking for
2063 // Check whether the backedge-taken count can be losslessly casted to
2064 // the addrec's type. The count is always unsigned.
2065 const SCEV
*CastedMaxBECount
=
2066 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
2067 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
2068 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
2069 if (MaxBECount
== RecastedMaxBECount
) {
2070 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
2071 // Check whether Start+Step*MaxBECount has no signed overflow.
2072 const SCEV
*SMul
= getMulExpr(CastedMaxBECount
, Step
,
2073 SCEV::FlagAnyWrap
, Depth
+ 1);
2074 const SCEV
*SAdd
= getSignExtendExpr(getAddExpr(Start
, SMul
,
2078 const SCEV
*WideStart
= getSignExtendExpr(Start
, WideTy
, Depth
+ 1);
2079 const SCEV
*WideMaxBECount
=
2080 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
2081 const SCEV
*OperandExtendedAdd
=
2082 getAddExpr(WideStart
,
2083 getMulExpr(WideMaxBECount
,
2084 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
2085 SCEV::FlagAnyWrap
, Depth
+ 1),
2086 SCEV::FlagAnyWrap
, Depth
+ 1);
2087 if (SAdd
== OperandExtendedAdd
) {
2088 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2089 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNSW
);
2090 // Return the expression with the addrec on the outside.
2091 return getAddRecExpr(
2092 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2094 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
,
2095 AR
->getNoWrapFlags());
2097 // Similar to above, only this time treat the step value as unsigned.
2098 // This covers loops that count up with an unsigned step.
2099 OperandExtendedAdd
=
2100 getAddExpr(WideStart
,
2101 getMulExpr(WideMaxBECount
,
2102 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
2103 SCEV::FlagAnyWrap
, Depth
+ 1),
2104 SCEV::FlagAnyWrap
, Depth
+ 1);
2105 if (SAdd
== OperandExtendedAdd
) {
2106 // If AR wraps around then
2108 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2109 // => SAdd != OperandExtendedAdd
2111 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2112 // (SAdd == OperandExtendedAdd => AR is NW)
2114 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNW
);
2116 // Return the expression with the addrec on the outside.
2117 return getAddRecExpr(
2118 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2120 getZeroExtendExpr(Step
, Ty
, Depth
+ 1), L
,
2121 AR
->getNoWrapFlags());
2126 // Normally, in the cases we can prove no-overflow via a
2127 // backedge guarding condition, we can also compute a backedge
2128 // taken count for the loop. The exceptions are assumptions and
2129 // guards present in the loop -- SCEV is not great at exploiting
2130 // these to compute max backedge taken counts, but can still use
2131 // these to prove lack of overflow. Use this fact to avoid
2132 // doing extra work that may not pay off.
2134 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) || HasGuards
||
2135 !AC
.assumptions().empty()) {
2136 // If the backedge is guarded by a comparison with the pre-inc
2137 // value the addrec is safe. Also, if the entry is guarded by
2138 // a comparison with the start value and the backedge is
2139 // guarded by a comparison with the post-inc value, the addrec
2141 ICmpInst::Predicate Pred
;
2142 const SCEV
*OverflowLimit
=
2143 getSignedOverflowLimitForStep(Step
, &Pred
, this);
2144 if (OverflowLimit
&&
2145 (isLoopBackedgeGuardedByCond(L
, Pred
, AR
, OverflowLimit
) ||
2146 isKnownOnEveryIteration(Pred
, AR
, OverflowLimit
))) {
2147 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2148 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNSW
);
2149 return getAddRecExpr(
2150 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
2151 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
2155 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2156 // if D + (C - D + Step * n) could be proven to not signed wrap
2157 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2158 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
2159 const APInt
&C
= SC
->getAPInt();
2160 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
2162 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
2163 const SCEV
*SResidual
=
2164 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
2165 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
2166 return getAddExpr(SSExtD
, SSExtR
,
2167 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
2172 if (proveNoWrapByVaryingStart
<SCEVSignExtendExpr
>(Start
, Step
, L
)) {
2173 const_cast<SCEVAddRecExpr
*>(AR
)->setNoWrapFlags(SCEV::FlagNSW
);
2174 return getAddRecExpr(
2175 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1),
2176 getSignExtendExpr(Step
, Ty
, Depth
+ 1), L
, AR
->getNoWrapFlags());
2180 // If the input value is provably positive and we could not simplify
2181 // away the sext build a zext instead.
2182 if (isKnownNonNegative(Op
))
2183 return getZeroExtendExpr(Op
, Ty
, Depth
+ 1);
2185 // The cast wasn't folded; create an explicit cast node.
2186 // Recompute the insert position, as it may have been invalidated.
2187 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2188 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
2190 UniqueSCEVs
.InsertNode(S
, IP
);
2191 addToLoopUseLists(S
);
2195 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2196 /// unspecified bits out to the given type.
2197 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
2199 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
2200 "This is not an extending conversion!");
2201 assert(isSCEVable(Ty
) &&
2202 "This is not a conversion to a SCEVable type!");
2203 Ty
= getEffectiveSCEVType(Ty
);
2205 // Sign-extend negative constants.
2206 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
2207 if (SC
->getAPInt().isNegative())
2208 return getSignExtendExpr(Op
, Ty
);
2210 // Peel off a truncate cast.
2211 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
2212 const SCEV
*NewOp
= T
->getOperand();
2213 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
2214 return getAnyExtendExpr(NewOp
, Ty
);
2215 return getTruncateOrNoop(NewOp
, Ty
);
2218 // Next try a zext cast. If the cast is folded, use it.
2219 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
2220 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
2223 // Next try a sext cast. If the cast is folded, use it.
2224 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
2225 if (!isa
<SCEVSignExtendExpr
>(SExt
))
2228 // Force the cast to be folded into the operands of an addrec.
2229 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
2230 SmallVector
<const SCEV
*, 4> Ops
;
2231 for (const SCEV
*Op
: AR
->operands())
2232 Ops
.push_back(getAnyExtendExpr(Op
, Ty
));
2233 return getAddRecExpr(Ops
, AR
->getLoop(), SCEV::FlagNW
);
2236 // If the expression is obviously signed, use the sext cast value.
2237 if (isa
<SCEVSMaxExpr
>(Op
))
2240 // Absent any other information, use the zext cast value.
2244 /// Process the given Ops list, which is a list of operands to be added under
2245 /// the given scale, update the given map. This is a helper function for
2246 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2247 /// that would form an add expression like this:
2249 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2251 /// where A and B are constants, update the map with these values:
2253 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2255 /// and add 13 + A*B*29 to AccumulatedConstant.
2256 /// This will allow getAddRecExpr to produce this:
2258 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2260 /// This form often exposes folding opportunities that are hidden in
2261 /// the original operand list.
2263 /// Return true iff it appears that any interesting folding opportunities
2264 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2265 /// the common case where no interesting opportunities are present, and
2266 /// is also used as a check to avoid infinite recursion.
2268 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
2269 SmallVectorImpl
<const SCEV
*> &NewOps
,
2270 APInt
&AccumulatedConstant
,
2271 const SCEV
*const *Ops
, size_t NumOperands
,
2273 ScalarEvolution
&SE
) {
2274 bool Interesting
= false;
2276 // Iterate over the add operands. They are sorted, with constants first.
2278 while (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2280 // Pull a buried constant out to the outside.
2281 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->getValue()->isZero())
2283 AccumulatedConstant
+= Scale
* C
->getAPInt();
2286 // Next comes everything else. We're especially interested in multiplies
2287 // here, but they're in the middle, so just visit the rest with one loop.
2288 for (; i
!= NumOperands
; ++i
) {
2289 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
2290 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
2292 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getAPInt();
2293 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
2294 // A multiplication of a constant with another add; recurse.
2295 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(Mul
->getOperand(1));
2297 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2298 Add
->op_begin(), Add
->getNumOperands(),
2301 // A multiplication of a constant with some other value. Update
2303 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin()+1, Mul
->op_end());
2304 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
2305 auto Pair
= M
.insert({Key
, NewScale
});
2307 NewOps
.push_back(Pair
.first
->first
);
2309 Pair
.first
->second
+= NewScale
;
2310 // The map already had an entry for this value, which may indicate
2311 // a folding opportunity.
2316 // An ordinary operand. Update the map.
2317 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
2318 M
.insert({Ops
[i
], Scale
});
2320 NewOps
.push_back(Pair
.first
->first
);
2322 Pair
.first
->second
+= Scale
;
2323 // The map already had an entry for this value, which may indicate
2324 // a folding opportunity.
2333 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2334 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2335 // can't-overflow flags for the operation if possible.
2336 static SCEV::NoWrapFlags
2337 StrengthenNoWrapFlags(ScalarEvolution
*SE
, SCEVTypes Type
,
2338 const ArrayRef
<const SCEV
*> Ops
,
2339 SCEV::NoWrapFlags Flags
) {
2340 using namespace std::placeholders
;
2342 using OBO
= OverflowingBinaryOperator
;
2345 Type
== scAddExpr
|| Type
== scAddRecExpr
|| Type
== scMulExpr
;
2347 assert(CanAnalyze
&& "don't call from other places!");
2349 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
2350 SCEV::NoWrapFlags SignOrUnsignWrap
=
2351 ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2353 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2354 auto IsKnownNonNegative
= [&](const SCEV
*S
) {
2355 return SE
->isKnownNonNegative(S
);
2358 if (SignOrUnsignWrap
== SCEV::FlagNSW
&& all_of(Ops
, IsKnownNonNegative
))
2360 ScalarEvolution::setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
2362 SignOrUnsignWrap
= ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2364 if (SignOrUnsignWrap
!= SignOrUnsignMask
&&
2365 (Type
== scAddExpr
|| Type
== scMulExpr
) && Ops
.size() == 2 &&
2366 isa
<SCEVConstant
>(Ops
[0])) {
2371 return Instruction::Add
;
2373 return Instruction::Mul
;
2375 llvm_unreachable("Unexpected SCEV op.");
2379 const APInt
&C
= cast
<SCEVConstant
>(Ops
[0])->getAPInt();
2381 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2382 if (!(SignOrUnsignWrap
& SCEV::FlagNSW
)) {
2383 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2384 Opcode
, C
, OBO::NoSignedWrap
);
2385 if (NSWRegion
.contains(SE
->getSignedRange(Ops
[1])))
2386 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2389 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2390 if (!(SignOrUnsignWrap
& SCEV::FlagNUW
)) {
2391 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2392 Opcode
, C
, OBO::NoUnsignedWrap
);
2393 if (NUWRegion
.contains(SE
->getUnsignedRange(Ops
[1])))
2394 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2401 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV
*S
, const Loop
*L
) {
2402 return isLoopInvariant(S
, L
) && properlyDominates(S
, L
->getHeader());
2405 /// Get a canonical add expression, or something simpler if possible.
2406 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
2407 SCEV::NoWrapFlags Flags
,
2409 assert(!(Flags
& ~(SCEV::FlagNUW
| SCEV::FlagNSW
)) &&
2410 "only nuw or nsw allowed");
2411 assert(!Ops
.empty() && "Cannot get empty add!");
2412 if (Ops
.size() == 1) return Ops
[0];
2414 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2415 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2416 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2417 "SCEVAddExpr operand types don't match!");
2420 // Sort by complexity, this groups all similar expression types together.
2421 GroupByComplexity(Ops
, &LI
, DT
);
2423 Flags
= StrengthenNoWrapFlags(this, scAddExpr
, Ops
, Flags
);
2425 // If there are any constants, fold them together.
2427 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2429 assert(Idx
< Ops
.size());
2430 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2431 // We found two constants, fold them together!
2432 Ops
[0] = getConstant(LHSC
->getAPInt() + RHSC
->getAPInt());
2433 if (Ops
.size() == 2) return Ops
[0];
2434 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2435 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
2438 // If we are left with a constant zero being added, strip it off.
2439 if (LHSC
->getValue()->isZero()) {
2440 Ops
.erase(Ops
.begin());
2444 if (Ops
.size() == 1) return Ops
[0];
2447 // Limit recursion calls depth.
2448 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
2449 return getOrCreateAddExpr(Ops
, Flags
);
2451 // Okay, check to see if the same value occurs in the operand list more than
2452 // once. If so, merge them together into an multiply expression. Since we
2453 // sorted the list, these values are required to be adjacent.
2454 Type
*Ty
= Ops
[0]->getType();
2455 bool FoundMatch
= false;
2456 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-1; ++i
)
2457 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
2458 // Scan ahead to count how many equal operands there are.
2460 while (i
+Count
!= e
&& Ops
[i
+Count
] == Ops
[i
])
2462 // Merge the values into a multiply.
2463 const SCEV
*Scale
= getConstant(Ty
, Count
);
2464 const SCEV
*Mul
= getMulExpr(Scale
, Ops
[i
], SCEV::FlagAnyWrap
, Depth
+ 1);
2465 if (Ops
.size() == Count
)
2468 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+Count
);
2469 --i
; e
-= Count
- 1;
2473 return getAddExpr(Ops
, Flags
, Depth
+ 1);
2475 // Check for truncates. If all the operands are truncated from the same
2476 // type, see if factoring out the truncate would permit the result to be
2477 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2478 // if the contents of the resulting outer trunc fold to something simple.
2479 auto FindTruncSrcType
= [&]() -> Type
* {
2480 // We're ultimately looking to fold an addrec of truncs and muls of only
2481 // constants and truncs, so if we find any other types of SCEV
2482 // as operands of the addrec then we bail and return nullptr here.
2483 // Otherwise, we return the type of the operand of a trunc that we find.
2484 if (auto *T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[Idx
]))
2485 return T
->getOperand()->getType();
2486 if (const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
2487 const auto *LastOp
= Mul
->getOperand(Mul
->getNumOperands() - 1);
2488 if (const auto *T
= dyn_cast
<SCEVTruncateExpr
>(LastOp
))
2489 return T
->getOperand()->getType();
2493 if (auto *SrcType
= FindTruncSrcType()) {
2494 SmallVector
<const SCEV
*, 8> LargeOps
;
2496 // Check all the operands to see if they can be represented in the
2497 // source type of the truncate.
2498 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
2499 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
2500 if (T
->getOperand()->getType() != SrcType
) {
2504 LargeOps
.push_back(T
->getOperand());
2505 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2506 LargeOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2507 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
2508 SmallVector
<const SCEV
*, 8> LargeMulOps
;
2509 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
2510 if (const SCEVTruncateExpr
*T
=
2511 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
2512 if (T
->getOperand()->getType() != SrcType
) {
2516 LargeMulOps
.push_back(T
->getOperand());
2517 } else if (const auto *C
= dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
2518 LargeMulOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2525 LargeOps
.push_back(getMulExpr(LargeMulOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
2532 // Evaluate the expression in the larger type.
2533 const SCEV
*Fold
= getAddExpr(LargeOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2534 // If it folds to something simple, use it. Otherwise, don't.
2535 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
2536 return getTruncateExpr(Fold
, Ty
);
2540 // Skip past any other cast SCEVs.
2541 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
2544 // If there are add operands they would be next.
2545 if (Idx
< Ops
.size()) {
2546 bool DeletedAdd
= false;
2547 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
2548 if (Ops
.size() > AddOpsInlineThreshold
||
2549 Add
->getNumOperands() > AddOpsInlineThreshold
)
2551 // If we have an add, expand the add operands onto the end of the operands
2553 Ops
.erase(Ops
.begin()+Idx
);
2554 Ops
.append(Add
->op_begin(), Add
->op_end());
2558 // If we deleted at least one add, we added operands to the end of the list,
2559 // and they are not necessarily sorted. Recurse to resort and resimplify
2560 // any operands we just acquired.
2562 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2565 // Skip over the add expression until we get to a multiply.
2566 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
2569 // Check to see if there are any folding opportunities present with
2570 // operands multiplied by constant values.
2571 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
2572 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
2573 DenseMap
<const SCEV
*, APInt
> M
;
2574 SmallVector
<const SCEV
*, 8> NewOps
;
2575 APInt
AccumulatedConstant(BitWidth
, 0);
2576 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2577 Ops
.data(), Ops
.size(),
2578 APInt(BitWidth
, 1), *this)) {
2579 struct APIntCompare
{
2580 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
2581 return LHS
.ult(RHS
);
2585 // Some interesting folding opportunity is present, so its worthwhile to
2586 // re-generate the operands list. Group the operands by constant scale,
2587 // to avoid multiplying by the same constant scale multiple times.
2588 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
2589 for (const SCEV
*NewOp
: NewOps
)
2590 MulOpLists
[M
.find(NewOp
)->second
].push_back(NewOp
);
2591 // Re-generate the operands list.
2593 if (AccumulatedConstant
!= 0)
2594 Ops
.push_back(getConstant(AccumulatedConstant
));
2595 for (auto &MulOp
: MulOpLists
)
2596 if (MulOp
.first
!= 0)
2597 Ops
.push_back(getMulExpr(
2598 getConstant(MulOp
.first
),
2599 getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1),
2600 SCEV::FlagAnyWrap
, Depth
+ 1));
2603 if (Ops
.size() == 1)
2605 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2609 // If we are adding something to a multiply expression, make sure the
2610 // something is not already an operand of the multiply. If so, merge it into
2612 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
2613 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
2614 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
2615 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
2616 if (isa
<SCEVConstant
>(MulOpSCEV
))
2618 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
2619 if (MulOpSCEV
== Ops
[AddOp
]) {
2620 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2621 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
2622 if (Mul
->getNumOperands() != 2) {
2623 // If the multiply has more than two operands, we must get the
2625 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
2626 Mul
->op_begin()+MulOp
);
2627 MulOps
.append(Mul
->op_begin()+MulOp
+1, Mul
->op_end());
2628 InnerMul
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2630 SmallVector
<const SCEV
*, 2> TwoOps
= {getOne(Ty
), InnerMul
};
2631 const SCEV
*AddOne
= getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2632 const SCEV
*OuterMul
= getMulExpr(AddOne
, MulOpSCEV
,
2633 SCEV::FlagAnyWrap
, Depth
+ 1);
2634 if (Ops
.size() == 2) return OuterMul
;
2636 Ops
.erase(Ops
.begin()+AddOp
);
2637 Ops
.erase(Ops
.begin()+Idx
-1);
2639 Ops
.erase(Ops
.begin()+Idx
);
2640 Ops
.erase(Ops
.begin()+AddOp
-1);
2642 Ops
.push_back(OuterMul
);
2643 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2646 // Check this multiply against other multiplies being added together.
2647 for (unsigned OtherMulIdx
= Idx
+1;
2648 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2650 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2651 // If MulOp occurs in OtherMul, we can fold the two multiplies
2653 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
2654 OMulOp
!= e
; ++OMulOp
)
2655 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
2656 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2657 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
2658 if (Mul
->getNumOperands() != 2) {
2659 SmallVector
<const SCEV
*, 4> MulOps(Mul
->op_begin(),
2660 Mul
->op_begin()+MulOp
);
2661 MulOps
.append(Mul
->op_begin()+MulOp
+1, Mul
->op_end());
2662 InnerMul1
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2664 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
2665 if (OtherMul
->getNumOperands() != 2) {
2666 SmallVector
<const SCEV
*, 4> MulOps(OtherMul
->op_begin(),
2667 OtherMul
->op_begin()+OMulOp
);
2668 MulOps
.append(OtherMul
->op_begin()+OMulOp
+1, OtherMul
->op_end());
2669 InnerMul2
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2671 SmallVector
<const SCEV
*, 2> TwoOps
= {InnerMul1
, InnerMul2
};
2672 const SCEV
*InnerMulSum
=
2673 getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2674 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
,
2675 SCEV::FlagAnyWrap
, Depth
+ 1);
2676 if (Ops
.size() == 2) return OuterMul
;
2677 Ops
.erase(Ops
.begin()+Idx
);
2678 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
2679 Ops
.push_back(OuterMul
);
2680 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2686 // If there are any add recurrences in the operands list, see if any other
2687 // added values are loop invariant. If so, we can fold them into the
2689 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
2692 // Scan over all recurrences, trying to fold loop invariants into them.
2693 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
2694 // Scan all of the other operands to this add and add them to the vector if
2695 // they are loop invariant w.r.t. the recurrence.
2696 SmallVector
<const SCEV
*, 8> LIOps
;
2697 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
2698 const Loop
*AddRecLoop
= AddRec
->getLoop();
2699 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2700 if (isAvailableAtLoopEntry(Ops
[i
], AddRecLoop
)) {
2701 LIOps
.push_back(Ops
[i
]);
2702 Ops
.erase(Ops
.begin()+i
);
2706 // If we found some loop invariants, fold them into the recurrence.
2707 if (!LIOps
.empty()) {
2708 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2709 LIOps
.push_back(AddRec
->getStart());
2711 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
2713 // This follows from the fact that the no-wrap flags on the outer add
2714 // expression are applicable on the 0th iteration, when the add recurrence
2715 // will be equal to its start value.
2716 AddRecOps
[0] = getAddExpr(LIOps
, Flags
, Depth
+ 1);
2718 // Build the new addrec. Propagate the NUW and NSW flags if both the
2719 // outer add and the inner addrec are guaranteed to have no overflow.
2720 // Always propagate NW.
2721 Flags
= AddRec
->getNoWrapFlags(setFlags(Flags
, SCEV::FlagNW
));
2722 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRecLoop
, Flags
);
2724 // If all of the other operands were loop invariant, we are done.
2725 if (Ops
.size() == 1) return NewRec
;
2727 // Otherwise, add the folded AddRec by the non-invariant parts.
2728 for (unsigned i
= 0;; ++i
)
2729 if (Ops
[i
] == AddRec
) {
2733 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2736 // Okay, if there weren't any loop invariants to be folded, check to see if
2737 // there are multiple AddRec's with the same loop induction variable being
2738 // added together. If so, we can fold them.
2739 for (unsigned OtherIdx
= Idx
+1;
2740 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2742 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2743 // so that the 1st found AddRecExpr is dominated by all others.
2744 assert(DT
.dominates(
2745 cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()->getHeader(),
2746 AddRec
->getLoop()->getHeader()) &&
2747 "AddRecExprs are not sorted in reverse dominance order?");
2748 if (AddRecLoop
== cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()) {
2749 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2750 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->op_begin(),
2752 for (; OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2754 const auto *OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2755 if (OtherAddRec
->getLoop() == AddRecLoop
) {
2756 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands();
2758 if (i
>= AddRecOps
.size()) {
2759 AddRecOps
.append(OtherAddRec
->op_begin()+i
,
2760 OtherAddRec
->op_end());
2763 SmallVector
<const SCEV
*, 2> TwoOps
= {
2764 AddRecOps
[i
], OtherAddRec
->getOperand(i
)};
2765 AddRecOps
[i
] = getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2767 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
2770 // Step size has changed, so we cannot guarantee no self-wraparound.
2771 Ops
[Idx
] = getAddRecExpr(AddRecOps
, AddRecLoop
, SCEV::FlagAnyWrap
);
2772 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2776 // Otherwise couldn't fold anything into this recurrence. Move onto the
2780 // Okay, it looks like we really DO need an add expr. Check to see if we
2781 // already have one, otherwise create a new one.
2782 return getOrCreateAddExpr(Ops
, Flags
);
2786 ScalarEvolution::getOrCreateAddExpr(ArrayRef
<const SCEV
*> Ops
,
2787 SCEV::NoWrapFlags Flags
) {
2788 FoldingSetNodeID ID
;
2789 ID
.AddInteger(scAddExpr
);
2790 for (const SCEV
*Op
: Ops
)
2794 static_cast<SCEVAddExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2796 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2797 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2798 S
= new (SCEVAllocator
)
2799 SCEVAddExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size());
2800 UniqueSCEVs
.InsertNode(S
, IP
);
2801 addToLoopUseLists(S
);
2803 S
->setNoWrapFlags(Flags
);
2808 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef
<const SCEV
*> Ops
,
2809 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
2810 FoldingSetNodeID ID
;
2811 ID
.AddInteger(scAddRecExpr
);
2812 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2813 ID
.AddPointer(Ops
[i
]);
2817 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2819 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2820 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2821 S
= new (SCEVAllocator
)
2822 SCEVAddRecExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size(), L
);
2823 UniqueSCEVs
.InsertNode(S
, IP
);
2824 addToLoopUseLists(S
);
2826 S
->setNoWrapFlags(Flags
);
2831 ScalarEvolution::getOrCreateMulExpr(ArrayRef
<const SCEV
*> Ops
,
2832 SCEV::NoWrapFlags Flags
) {
2833 FoldingSetNodeID ID
;
2834 ID
.AddInteger(scMulExpr
);
2835 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2836 ID
.AddPointer(Ops
[i
]);
2839 static_cast<SCEVMulExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2841 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2842 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2843 S
= new (SCEVAllocator
) SCEVMulExpr(ID
.Intern(SCEVAllocator
),
2845 UniqueSCEVs
.InsertNode(S
, IP
);
2846 addToLoopUseLists(S
);
2848 S
->setNoWrapFlags(Flags
);
2852 static uint64_t umul_ov(uint64_t i
, uint64_t j
, bool &Overflow
) {
2854 if (j
> 1 && k
/ j
!= i
) Overflow
= true;
2858 /// Compute the result of "n choose k", the binomial coefficient. If an
2859 /// intermediate computation overflows, Overflow will be set and the return will
2860 /// be garbage. Overflow is not cleared on absence of overflow.
2861 static uint64_t Choose(uint64_t n
, uint64_t k
, bool &Overflow
) {
2862 // We use the multiplicative formula:
2863 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2864 // At each iteration, we take the n-th term of the numeral and divide by the
2865 // (k-n)th term of the denominator. This division will always produce an
2866 // integral result, and helps reduce the chance of overflow in the
2867 // intermediate computations. However, we can still overflow even when the
2868 // final result would fit.
2870 if (n
== 0 || n
== k
) return 1;
2871 if (k
> n
) return 0;
2877 for (uint64_t i
= 1; i
<= k
; ++i
) {
2878 r
= umul_ov(r
, n
-(i
-1), Overflow
);
2884 /// Determine if any of the operands in this SCEV are a constant or if
2885 /// any of the add or multiply expressions in this SCEV contain a constant.
2886 static bool containsConstantInAddMulChain(const SCEV
*StartExpr
) {
2887 struct FindConstantInAddMulChain
{
2888 bool FoundConstant
= false;
2890 bool follow(const SCEV
*S
) {
2891 FoundConstant
|= isa
<SCEVConstant
>(S
);
2892 return isa
<SCEVAddExpr
>(S
) || isa
<SCEVMulExpr
>(S
);
2895 bool isDone() const {
2896 return FoundConstant
;
2900 FindConstantInAddMulChain F
;
2901 SCEVTraversal
<FindConstantInAddMulChain
> ST(F
);
2902 ST
.visitAll(StartExpr
);
2903 return F
.FoundConstant
;
2906 /// Get a canonical multiply expression, or something simpler if possible.
2907 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
2908 SCEV::NoWrapFlags Flags
,
2910 assert(Flags
== maskFlags(Flags
, SCEV::FlagNUW
| SCEV::FlagNSW
) &&
2911 "only nuw or nsw allowed");
2912 assert(!Ops
.empty() && "Cannot get empty mul!");
2913 if (Ops
.size() == 1) return Ops
[0];
2915 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2916 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2917 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2918 "SCEVMulExpr operand types don't match!");
2921 // Sort by complexity, this groups all similar expression types together.
2922 GroupByComplexity(Ops
, &LI
, DT
);
2924 Flags
= StrengthenNoWrapFlags(this, scMulExpr
, Ops
, Flags
);
2926 // Limit recursion calls depth.
2927 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
2928 return getOrCreateMulExpr(Ops
, Flags
);
2930 // If there are any constants, fold them together.
2932 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2934 if (Ops
.size() == 2)
2935 // C1*(C2+V) -> C1*C2 + C1*V
2936 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
2937 // If any of Add's ops are Adds or Muls with a constant, apply this
2938 // transformation as well.
2940 // TODO: There are some cases where this transformation is not
2941 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2942 // this transformation should be narrowed down.
2943 if (Add
->getNumOperands() == 2 && containsConstantInAddMulChain(Add
))
2944 return getAddExpr(getMulExpr(LHSC
, Add
->getOperand(0),
2945 SCEV::FlagAnyWrap
, Depth
+ 1),
2946 getMulExpr(LHSC
, Add
->getOperand(1),
2947 SCEV::FlagAnyWrap
, Depth
+ 1),
2948 SCEV::FlagAnyWrap
, Depth
+ 1);
2951 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2952 // We found two constants, fold them together!
2954 ConstantInt::get(getContext(), LHSC
->getAPInt() * RHSC
->getAPInt());
2955 Ops
[0] = getConstant(Fold
);
2956 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2957 if (Ops
.size() == 1) return Ops
[0];
2958 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
2961 // If we are left with a constant one being multiplied, strip it off.
2962 if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isOne()) {
2963 Ops
.erase(Ops
.begin());
2965 } else if (cast
<SCEVConstant
>(Ops
[0])->getValue()->isZero()) {
2966 // If we have a multiply of zero, it will always be zero.
2968 } else if (Ops
[0]->isAllOnesValue()) {
2969 // If we have a mul by -1 of an add, try distributing the -1 among the
2971 if (Ops
.size() == 2) {
2972 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1])) {
2973 SmallVector
<const SCEV
*, 4> NewOps
;
2974 bool AnyFolded
= false;
2975 for (const SCEV
*AddOp
: Add
->operands()) {
2976 const SCEV
*Mul
= getMulExpr(Ops
[0], AddOp
, SCEV::FlagAnyWrap
,
2978 if (!isa
<SCEVMulExpr
>(Mul
)) AnyFolded
= true;
2979 NewOps
.push_back(Mul
);
2982 return getAddExpr(NewOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2983 } else if (const auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(Ops
[1])) {
2984 // Negation preserves a recurrence's no self-wrap property.
2985 SmallVector
<const SCEV
*, 4> Operands
;
2986 for (const SCEV
*AddRecOp
: AddRec
->operands())
2987 Operands
.push_back(getMulExpr(Ops
[0], AddRecOp
, SCEV::FlagAnyWrap
,
2990 return getAddRecExpr(Operands
, AddRec
->getLoop(),
2991 AddRec
->getNoWrapFlags(SCEV::FlagNW
));
2996 if (Ops
.size() == 1)
3000 // Skip over the add expression until we get to a multiply.
3001 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
3004 // If there are mul operands inline them all into this expression.
3005 if (Idx
< Ops
.size()) {
3006 bool DeletedMul
= false;
3007 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
3008 if (Ops
.size() > MulOpsInlineThreshold
)
3010 // If we have an mul, expand the mul operands onto the end of the
3012 Ops
.erase(Ops
.begin()+Idx
);
3013 Ops
.append(Mul
->op_begin(), Mul
->op_end());
3017 // If we deleted at least one mul, we added operands to the end of the
3018 // list, and they are not necessarily sorted. Recurse to resort and
3019 // resimplify any operands we just acquired.
3021 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3024 // If there are any add recurrences in the operands list, see if any other
3025 // added values are loop invariant. If so, we can fold them into the
3027 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
3030 // Scan over all recurrences, trying to fold loop invariants into them.
3031 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
3032 // Scan all of the other operands to this mul and add them to the vector
3033 // if they are loop invariant w.r.t. the recurrence.
3034 SmallVector
<const SCEV
*, 8> LIOps
;
3035 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
3036 const Loop
*AddRecLoop
= AddRec
->getLoop();
3037 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3038 if (isAvailableAtLoopEntry(Ops
[i
], AddRecLoop
)) {
3039 LIOps
.push_back(Ops
[i
]);
3040 Ops
.erase(Ops
.begin()+i
);
3044 // If we found some loop invariants, fold them into the recurrence.
3045 if (!LIOps
.empty()) {
3046 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3047 SmallVector
<const SCEV
*, 4> NewOps
;
3048 NewOps
.reserve(AddRec
->getNumOperands());
3049 const SCEV
*Scale
= getMulExpr(LIOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3050 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
)
3051 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
),
3052 SCEV::FlagAnyWrap
, Depth
+ 1));
3054 // Build the new addrec. Propagate the NUW and NSW flags if both the
3055 // outer mul and the inner addrec are guaranteed to have no overflow.
3057 // No self-wrap cannot be guaranteed after changing the step size, but
3058 // will be inferred if either NUW or NSW is true.
3059 Flags
= AddRec
->getNoWrapFlags(clearFlags(Flags
, SCEV::FlagNW
));
3060 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRecLoop
, Flags
);
3062 // If all of the other operands were loop invariant, we are done.
3063 if (Ops
.size() == 1) return NewRec
;
3065 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3066 for (unsigned i
= 0;; ++i
)
3067 if (Ops
[i
] == AddRec
) {
3071 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3074 // Okay, if there weren't any loop invariants to be folded, check to see
3075 // if there are multiple AddRec's with the same loop induction variable
3076 // being multiplied together. If so, we can fold them.
3078 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3079 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3080 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3081 // ]]],+,...up to x=2n}.
3082 // Note that the arguments to choose() are always integers with values
3083 // known at compile time, never SCEV objects.
3085 // The implementation avoids pointless extra computations when the two
3086 // addrec's are of different length (mathematically, it's equivalent to
3087 // an infinite stream of zeros on the right).
3088 bool OpsModified
= false;
3089 for (unsigned OtherIdx
= Idx
+1;
3090 OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3092 const SCEVAddRecExpr
*OtherAddRec
=
3093 dyn_cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3094 if (!OtherAddRec
|| OtherAddRec
->getLoop() != AddRecLoop
)
3097 // Limit max number of arguments to avoid creation of unreasonably big
3098 // SCEVAddRecs with very complex operands.
3099 if (AddRec
->getNumOperands() + OtherAddRec
->getNumOperands() - 1 >
3100 MaxAddRecSize
|| isHugeExpression(AddRec
) ||
3101 isHugeExpression(OtherAddRec
))
3104 bool Overflow
= false;
3105 Type
*Ty
= AddRec
->getType();
3106 bool LargerThan64Bits
= getTypeSizeInBits(Ty
) > 64;
3107 SmallVector
<const SCEV
*, 7> AddRecOps
;
3108 for (int x
= 0, xe
= AddRec
->getNumOperands() +
3109 OtherAddRec
->getNumOperands() - 1; x
!= xe
&& !Overflow
; ++x
) {
3110 SmallVector
<const SCEV
*, 7> SumOps
;
3111 for (int y
= x
, ye
= 2*x
+1; y
!= ye
&& !Overflow
; ++y
) {
3112 uint64_t Coeff1
= Choose(x
, 2*x
- y
, Overflow
);
3113 for (int z
= std::max(y
-x
, y
-(int)AddRec
->getNumOperands()+1),
3114 ze
= std::min(x
+1, (int)OtherAddRec
->getNumOperands());
3115 z
< ze
&& !Overflow
; ++z
) {
3116 uint64_t Coeff2
= Choose(2*x
- y
, x
-z
, Overflow
);
3118 if (LargerThan64Bits
)
3119 Coeff
= umul_ov(Coeff1
, Coeff2
, Overflow
);
3121 Coeff
= Coeff1
*Coeff2
;
3122 const SCEV
*CoeffTerm
= getConstant(Ty
, Coeff
);
3123 const SCEV
*Term1
= AddRec
->getOperand(y
-z
);
3124 const SCEV
*Term2
= OtherAddRec
->getOperand(z
);
3125 SumOps
.push_back(getMulExpr(CoeffTerm
, Term1
, Term2
,
3126 SCEV::FlagAnyWrap
, Depth
+ 1));
3130 SumOps
.push_back(getZero(Ty
));
3131 AddRecOps
.push_back(getAddExpr(SumOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
3134 const SCEV
*NewAddRec
= getAddRecExpr(AddRecOps
, AddRecLoop
,
3136 if (Ops
.size() == 2) return NewAddRec
;
3137 Ops
[Idx
] = NewAddRec
;
3138 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
3140 AddRec
= dyn_cast
<SCEVAddRecExpr
>(NewAddRec
);
3146 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3148 // Otherwise couldn't fold anything into this recurrence. Move onto the
3152 // Okay, it looks like we really DO need an mul expr. Check to see if we
3153 // already have one, otherwise create a new one.
3154 return getOrCreateMulExpr(Ops
, Flags
);
3157 /// Represents an unsigned remainder expression based on unsigned division.
3158 const SCEV
*ScalarEvolution::getURemExpr(const SCEV
*LHS
,
3160 assert(getEffectiveSCEVType(LHS
->getType()) ==
3161 getEffectiveSCEVType(RHS
->getType()) &&
3162 "SCEVURemExpr operand types don't match!");
3164 // Short-circuit easy cases
3165 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3166 // If constant is one, the result is trivial
3167 if (RHSC
->getValue()->isOne())
3168 return getZero(LHS
->getType()); // X urem 1 --> 0
3170 // If constant is a power of two, fold into a zext(trunc(LHS)).
3171 if (RHSC
->getAPInt().isPowerOf2()) {
3172 Type
*FullTy
= LHS
->getType();
3174 IntegerType::get(getContext(), RHSC
->getAPInt().logBase2());
3175 return getZeroExtendExpr(getTruncateExpr(LHS
, TruncTy
), FullTy
);
3179 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3180 const SCEV
*UDiv
= getUDivExpr(LHS
, RHS
);
3181 const SCEV
*Mult
= getMulExpr(UDiv
, RHS
, SCEV::FlagNUW
);
3182 return getMinusSCEV(LHS
, Mult
, SCEV::FlagNUW
);
3185 /// Get a canonical unsigned division expression, or something simpler if
3187 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
3189 assert(getEffectiveSCEVType(LHS
->getType()) ==
3190 getEffectiveSCEVType(RHS
->getType()) &&
3191 "SCEVUDivExpr operand types don't match!");
3193 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3194 if (RHSC
->getValue()->isOne())
3195 return LHS
; // X udiv 1 --> x
3196 // If the denominator is zero, the result of the udiv is undefined. Don't
3197 // try to analyze it, because the resolution chosen here may differ from
3198 // the resolution chosen in other parts of the compiler.
3199 if (!RHSC
->getValue()->isZero()) {
3200 // Determine if the division can be folded into the operands of
3202 // TODO: Generalize this to non-constants by using known-bits information.
3203 Type
*Ty
= LHS
->getType();
3204 unsigned LZ
= RHSC
->getAPInt().countLeadingZeros();
3205 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
- 1;
3206 // For non-power-of-two values, effectively round the value up to the
3207 // nearest power of two.
3208 if (!RHSC
->getAPInt().isPowerOf2())
3210 IntegerType
*ExtTy
=
3211 IntegerType::get(getContext(), getTypeSizeInBits(Ty
) + MaxShiftAmt
);
3212 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3213 if (const SCEVConstant
*Step
=
3214 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this))) {
3215 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3216 const APInt
&StepInt
= Step
->getAPInt();
3217 const APInt
&DivInt
= RHSC
->getAPInt();
3218 if (!StepInt
.urem(DivInt
) &&
3219 getZeroExtendExpr(AR
, ExtTy
) ==
3220 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3221 getZeroExtendExpr(Step
, ExtTy
),
3222 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3223 SmallVector
<const SCEV
*, 4> Operands
;
3224 for (const SCEV
*Op
: AR
->operands())
3225 Operands
.push_back(getUDivExpr(Op
, RHS
));
3226 return getAddRecExpr(Operands
, AR
->getLoop(), SCEV::FlagNW
);
3228 /// Get a canonical UDivExpr for a recurrence.
3229 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3230 // We can currently only fold X%N if X is constant.
3231 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(AR
->getStart());
3232 if (StartC
&& !DivInt
.urem(StepInt
) &&
3233 getZeroExtendExpr(AR
, ExtTy
) ==
3234 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3235 getZeroExtendExpr(Step
, ExtTy
),
3236 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3237 const APInt
&StartInt
= StartC
->getAPInt();
3238 const APInt
&StartRem
= StartInt
.urem(StepInt
);
3240 LHS
= getAddRecExpr(getConstant(StartInt
- StartRem
), Step
,
3241 AR
->getLoop(), SCEV::FlagNW
);
3244 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3245 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
3246 SmallVector
<const SCEV
*, 4> Operands
;
3247 for (const SCEV
*Op
: M
->operands())
3248 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3249 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
3250 // Find an operand that's safely divisible.
3251 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
3252 const SCEV
*Op
= M
->getOperand(i
);
3253 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
3254 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
3255 Operands
= SmallVector
<const SCEV
*, 4>(M
->op_begin(),
3258 return getMulExpr(Operands
);
3263 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3264 if (const SCEVUDivExpr
*OtherDiv
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
3265 if (auto *DivisorConstant
=
3266 dyn_cast
<SCEVConstant
>(OtherDiv
->getRHS())) {
3267 bool Overflow
= false;
3269 DivisorConstant
->getAPInt().umul_ov(RHSC
->getAPInt(), Overflow
);
3271 return getConstant(RHSC
->getType(), 0, false);
3273 return getUDivExpr(OtherDiv
->getLHS(), getConstant(NewRHS
));
3277 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3278 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
3279 SmallVector
<const SCEV
*, 4> Operands
;
3280 for (const SCEV
*Op
: A
->operands())
3281 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3282 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
3284 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
3285 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
3286 if (isa
<SCEVUDivExpr
>(Op
) ||
3287 getMulExpr(Op
, RHS
) != A
->getOperand(i
))
3289 Operands
.push_back(Op
);
3291 if (Operands
.size() == A
->getNumOperands())
3292 return getAddExpr(Operands
);
3296 // Fold if both operands are constant.
3297 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
3298 Constant
*LHSCV
= LHSC
->getValue();
3299 Constant
*RHSCV
= RHSC
->getValue();
3300 return getConstant(cast
<ConstantInt
>(ConstantExpr::getUDiv(LHSCV
,
3306 FoldingSetNodeID ID
;
3307 ID
.AddInteger(scUDivExpr
);
3311 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
3312 SCEV
*S
= new (SCEVAllocator
) SCEVUDivExpr(ID
.Intern(SCEVAllocator
),
3314 UniqueSCEVs
.InsertNode(S
, IP
);
3315 addToLoopUseLists(S
);
3319 static const APInt
gcd(const SCEVConstant
*C1
, const SCEVConstant
*C2
) {
3320 APInt A
= C1
->getAPInt().abs();
3321 APInt B
= C2
->getAPInt().abs();
3322 uint32_t ABW
= A
.getBitWidth();
3323 uint32_t BBW
= B
.getBitWidth();
3330 return APIntOps::GreatestCommonDivisor(std::move(A
), std::move(B
));
3333 /// Get a canonical unsigned division expression, or something simpler if
3334 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3335 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3336 /// it's not exact because the udiv may be clearing bits.
3337 const SCEV
*ScalarEvolution::getUDivExactExpr(const SCEV
*LHS
,
3339 // TODO: we could try to find factors in all sorts of things, but for now we
3340 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3341 // end of this file for inspiration.
3343 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3344 if (!Mul
|| !Mul
->hasNoUnsignedWrap())
3345 return getUDivExpr(LHS
, RHS
);
3347 if (const SCEVConstant
*RHSCst
= dyn_cast
<SCEVConstant
>(RHS
)) {
3348 // If the mulexpr multiplies by a constant, then that constant must be the
3349 // first element of the mulexpr.
3350 if (const auto *LHSCst
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3351 if (LHSCst
== RHSCst
) {
3352 SmallVector
<const SCEV
*, 2> Operands
;
3353 Operands
.append(Mul
->op_begin() + 1, Mul
->op_end());
3354 return getMulExpr(Operands
);
3357 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3358 // that there's a factor provided by one of the other terms. We need to
3360 APInt Factor
= gcd(LHSCst
, RHSCst
);
3361 if (!Factor
.isIntN(1)) {
3363 cast
<SCEVConstant
>(getConstant(LHSCst
->getAPInt().udiv(Factor
)));
3365 cast
<SCEVConstant
>(getConstant(RHSCst
->getAPInt().udiv(Factor
)));
3366 SmallVector
<const SCEV
*, 2> Operands
;
3367 Operands
.push_back(LHSCst
);
3368 Operands
.append(Mul
->op_begin() + 1, Mul
->op_end());
3369 LHS
= getMulExpr(Operands
);
3371 Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3373 return getUDivExactExpr(LHS
, RHS
);
3378 for (int i
= 0, e
= Mul
->getNumOperands(); i
!= e
; ++i
) {
3379 if (Mul
->getOperand(i
) == RHS
) {
3380 SmallVector
<const SCEV
*, 2> Operands
;
3381 Operands
.append(Mul
->op_begin(), Mul
->op_begin() + i
);
3382 Operands
.append(Mul
->op_begin() + i
+ 1, Mul
->op_end());
3383 return getMulExpr(Operands
);
3387 return getUDivExpr(LHS
, RHS
);
3390 /// Get an add recurrence expression for the specified loop. Simplify the
3391 /// expression as much as possible.
3392 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
, const SCEV
*Step
,
3394 SCEV::NoWrapFlags Flags
) {
3395 SmallVector
<const SCEV
*, 4> Operands
;
3396 Operands
.push_back(Start
);
3397 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
3398 if (StepChrec
->getLoop() == L
) {
3399 Operands
.append(StepChrec
->op_begin(), StepChrec
->op_end());
3400 return getAddRecExpr(Operands
, L
, maskFlags(Flags
, SCEV::FlagNW
));
3403 Operands
.push_back(Step
);
3404 return getAddRecExpr(Operands
, L
, Flags
);
3407 /// Get an add recurrence expression for the specified loop. Simplify the
3408 /// expression as much as possible.
3410 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
3411 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
3412 if (Operands
.size() == 1) return Operands
[0];
3414 Type
*ETy
= getEffectiveSCEVType(Operands
[0]->getType());
3415 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
)
3416 assert(getEffectiveSCEVType(Operands
[i
]->getType()) == ETy
&&
3417 "SCEVAddRecExpr operand types don't match!");
3418 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
3419 assert(isLoopInvariant(Operands
[i
], L
) &&
3420 "SCEVAddRecExpr operand is not loop-invariant!");
3423 if (Operands
.back()->isZero()) {
3424 Operands
.pop_back();
3425 return getAddRecExpr(Operands
, L
, SCEV::FlagAnyWrap
); // {X,+,0} --> X
3428 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3429 // use that information to infer NUW and NSW flags. However, computing a
3430 // BE count requires calling getAddRecExpr, so we may not yet have a
3431 // meaningful BE count at this point (and if we don't, we'd be stuck
3432 // with a SCEVCouldNotCompute as the cached BE count).
3434 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
3436 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3437 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
3438 const Loop
*NestedLoop
= NestedAR
->getLoop();
3439 if (L
->contains(NestedLoop
)
3440 ? (L
->getLoopDepth() < NestedLoop
->getLoopDepth())
3441 : (!NestedLoop
->contains(L
) &&
3442 DT
.dominates(L
->getHeader(), NestedLoop
->getHeader()))) {
3443 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->op_begin(),
3444 NestedAR
->op_end());
3445 Operands
[0] = NestedAR
->getStart();
3446 // AddRecs require their operands be loop-invariant with respect to their
3447 // loops. Don't perform this transformation if it would break this
3449 bool AllInvariant
= all_of(
3450 Operands
, [&](const SCEV
*Op
) { return isLoopInvariant(Op
, L
); });
3453 // Create a recurrence for the outer loop with the same step size.
3455 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3456 // inner recurrence has the same property.
3457 SCEV::NoWrapFlags OuterFlags
=
3458 maskFlags(Flags
, SCEV::FlagNW
| NestedAR
->getNoWrapFlags());
3460 NestedOperands
[0] = getAddRecExpr(Operands
, L
, OuterFlags
);
3461 AllInvariant
= all_of(NestedOperands
, [&](const SCEV
*Op
) {
3462 return isLoopInvariant(Op
, NestedLoop
);
3466 // Ok, both add recurrences are valid after the transformation.
3468 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3469 // the outer recurrence has the same property.
3470 SCEV::NoWrapFlags InnerFlags
=
3471 maskFlags(NestedAR
->getNoWrapFlags(), SCEV::FlagNW
| Flags
);
3472 return getAddRecExpr(NestedOperands
, NestedLoop
, InnerFlags
);
3475 // Reset Operands to its original state.
3476 Operands
[0] = NestedAR
;
3480 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3481 // already have one, otherwise create a new one.
3482 return getOrCreateAddRecExpr(Operands
, L
, Flags
);
3486 ScalarEvolution::getGEPExpr(GEPOperator
*GEP
,
3487 const SmallVectorImpl
<const SCEV
*> &IndexExprs
) {
3488 const SCEV
*BaseExpr
= getSCEV(GEP
->getPointerOperand());
3489 // getSCEV(Base)->getType() has the same address space as Base->getType()
3490 // because SCEV::getType() preserves the address space.
3491 Type
*IntPtrTy
= getEffectiveSCEVType(BaseExpr
->getType());
3492 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3493 // instruction to its SCEV, because the Instruction may be guarded by control
3494 // flow and the no-overflow bits may not be valid for the expression in any
3495 // context. This can be fixed similarly to how these flags are handled for
3497 SCEV::NoWrapFlags Wrap
= GEP
->isInBounds() ? SCEV::FlagNSW
3498 : SCEV::FlagAnyWrap
;
3500 const SCEV
*TotalOffset
= getZero(IntPtrTy
);
3501 // The array size is unimportant. The first thing we do on CurTy is getting
3502 // its element type.
3503 Type
*CurTy
= ArrayType::get(GEP
->getSourceElementType(), 0);
3504 for (const SCEV
*IndexExpr
: IndexExprs
) {
3505 // Compute the (potentially symbolic) offset in bytes for this index.
3506 if (StructType
*STy
= dyn_cast
<StructType
>(CurTy
)) {
3507 // For a struct, add the member offset.
3508 ConstantInt
*Index
= cast
<SCEVConstant
>(IndexExpr
)->getValue();
3509 unsigned FieldNo
= Index
->getZExtValue();
3510 const SCEV
*FieldOffset
= getOffsetOfExpr(IntPtrTy
, STy
, FieldNo
);
3512 // Add the field offset to the running total offset.
3513 TotalOffset
= getAddExpr(TotalOffset
, FieldOffset
);
3515 // Update CurTy to the type of the field at Index.
3516 CurTy
= STy
->getTypeAtIndex(Index
);
3518 // Update CurTy to its element type.
3519 CurTy
= cast
<SequentialType
>(CurTy
)->getElementType();
3520 // For an array, add the element offset, explicitly scaled.
3521 const SCEV
*ElementSize
= getSizeOfExpr(IntPtrTy
, CurTy
);
3522 // Getelementptr indices are signed.
3523 IndexExpr
= getTruncateOrSignExtend(IndexExpr
, IntPtrTy
);
3525 // Multiply the index by the element size to compute the element offset.
3526 const SCEV
*LocalOffset
= getMulExpr(IndexExpr
, ElementSize
, Wrap
);
3528 // Add the element offset to the running total offset.
3529 TotalOffset
= getAddExpr(TotalOffset
, LocalOffset
);
3533 // Add the total offset from all the GEP indices to the base.
3534 return getAddExpr(BaseExpr
, TotalOffset
, Wrap
);
3537 std::tuple
<const SCEV
*, FoldingSetNodeID
, void *>
3538 ScalarEvolution::findExistingSCEVInCache(int SCEVType
,
3539 ArrayRef
<const SCEV
*> Ops
) {
3540 FoldingSetNodeID ID
;
3542 ID
.AddInteger(SCEVType
);
3543 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3544 ID
.AddPointer(Ops
[i
]);
3545 return std::tuple
<const SCEV
*, FoldingSetNodeID
, void *>(
3546 UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
), std::move(ID
), IP
);
3549 const SCEV
*ScalarEvolution::getMinMaxExpr(unsigned Kind
,
3550 SmallVectorImpl
<const SCEV
*> &Ops
) {
3551 assert(!Ops
.empty() && "Cannot get empty (u|s)(min|max)!");
3552 if (Ops
.size() == 1) return Ops
[0];
3554 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
3555 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
3556 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
3557 "Operand types don't match!");
3560 bool IsSigned
= Kind
== scSMaxExpr
|| Kind
== scSMinExpr
;
3561 bool IsMax
= Kind
== scSMaxExpr
|| Kind
== scUMaxExpr
;
3563 // Sort by complexity, this groups all similar expression types together.
3564 GroupByComplexity(Ops
, &LI
, DT
);
3566 // Check if we have created the same expression before.
3567 if (const SCEV
*S
= std::get
<0>(findExistingSCEVInCache(Kind
, Ops
))) {
3571 // If there are any constants, fold them together.
3573 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3575 assert(Idx
< Ops
.size());
3576 auto FoldOp
= [&](const APInt
&LHS
, const APInt
&RHS
) {
3577 if (Kind
== scSMaxExpr
)
3578 return APIntOps::smax(LHS
, RHS
);
3579 else if (Kind
== scSMinExpr
)
3580 return APIntOps::smin(LHS
, RHS
);
3581 else if (Kind
== scUMaxExpr
)
3582 return APIntOps::umax(LHS
, RHS
);
3583 else if (Kind
== scUMinExpr
)
3584 return APIntOps::umin(LHS
, RHS
);
3585 llvm_unreachable("Unknown SCEV min/max opcode");
3588 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
3589 // We found two constants, fold them together!
3590 ConstantInt
*Fold
= ConstantInt::get(
3591 getContext(), FoldOp(LHSC
->getAPInt(), RHSC
->getAPInt()));
3592 Ops
[0] = getConstant(Fold
);
3593 Ops
.erase(Ops
.begin()+1); // Erase the folded element
3594 if (Ops
.size() == 1) return Ops
[0];
3595 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
3598 bool IsMinV
= LHSC
->getValue()->isMinValue(IsSigned
);
3599 bool IsMaxV
= LHSC
->getValue()->isMaxValue(IsSigned
);
3601 if (IsMax
? IsMinV
: IsMaxV
) {
3602 // If we are left with a constant minimum(/maximum)-int, strip it off.
3603 Ops
.erase(Ops
.begin());
3605 } else if (IsMax
? IsMaxV
: IsMinV
) {
3606 // If we have a max(/min) with a constant maximum(/minimum)-int,
3607 // it will always be the extremum.
3611 if (Ops
.size() == 1) return Ops
[0];
3614 // Find the first operation of the same kind
3615 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < Kind
)
3618 // Check to see if one of the operands is of the same kind. If so, expand its
3619 // operands onto our operand list, and recurse to simplify.
3620 if (Idx
< Ops
.size()) {
3621 bool DeletedAny
= false;
3622 while (Ops
[Idx
]->getSCEVType() == Kind
) {
3623 const SCEVMinMaxExpr
*SMME
= cast
<SCEVMinMaxExpr
>(Ops
[Idx
]);
3624 Ops
.erase(Ops
.begin()+Idx
);
3625 Ops
.append(SMME
->op_begin(), SMME
->op_end());
3630 return getMinMaxExpr(Kind
, Ops
);
3633 // Okay, check to see if the same value occurs in the operand list twice. If
3634 // so, delete one. Since we sorted the list, these values are required to
3636 llvm::CmpInst::Predicate GEPred
=
3637 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
3638 llvm::CmpInst::Predicate LEPred
=
3639 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
3640 llvm::CmpInst::Predicate FirstPred
= IsMax
? GEPred
: LEPred
;
3641 llvm::CmpInst::Predicate SecondPred
= IsMax
? LEPred
: GEPred
;
3642 for (unsigned i
= 0, e
= Ops
.size() - 1; i
!= e
; ++i
) {
3643 if (Ops
[i
] == Ops
[i
+ 1] ||
3644 isKnownViaNonRecursiveReasoning(FirstPred
, Ops
[i
], Ops
[i
+ 1])) {
3645 // X op Y op Y --> X op Y
3646 // X op Y --> X, if we know X, Y are ordered appropriately
3647 Ops
.erase(Ops
.begin() + i
+ 1, Ops
.begin() + i
+ 2);
3650 } else if (isKnownViaNonRecursiveReasoning(SecondPred
, Ops
[i
],
3652 // X op Y --> Y, if we know X, Y are ordered appropriately
3653 Ops
.erase(Ops
.begin() + i
, Ops
.begin() + i
+ 1);
3659 if (Ops
.size() == 1) return Ops
[0];
3661 assert(!Ops
.empty() && "Reduced smax down to nothing!");
3663 // Okay, it looks like we really DO need an expr. Check to see if we
3664 // already have one, otherwise create a new one.
3665 const SCEV
*ExistingSCEV
;
3666 FoldingSetNodeID ID
;
3668 std::tie(ExistingSCEV
, ID
, IP
) = findExistingSCEVInCache(Kind
, Ops
);
3670 return ExistingSCEV
;
3671 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3672 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3673 SCEV
*S
= new (SCEVAllocator
) SCEVMinMaxExpr(
3674 ID
.Intern(SCEVAllocator
), static_cast<SCEVTypes
>(Kind
), O
, Ops
.size());
3676 UniqueSCEVs
.InsertNode(S
, IP
);
3677 addToLoopUseLists(S
);
3681 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
3682 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
3683 return getSMaxExpr(Ops
);
3686 const SCEV
*ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3687 return getMinMaxExpr(scSMaxExpr
, Ops
);
3690 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
3691 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
3692 return getUMaxExpr(Ops
);
3695 const SCEV
*ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3696 return getMinMaxExpr(scUMaxExpr
, Ops
);
3699 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
3701 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
3702 return getSMinExpr(Ops
);
3705 const SCEV
*ScalarEvolution::getSMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3706 return getMinMaxExpr(scSMinExpr
, Ops
);
3709 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
,
3711 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
3712 return getUMinExpr(Ops
);
3715 const SCEV
*ScalarEvolution::getUMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
3716 return getMinMaxExpr(scUMinExpr
, Ops
);
3719 const SCEV
*ScalarEvolution::getSizeOfExpr(Type
*IntTy
, Type
*AllocTy
) {
3720 // We can bypass creating a target-independent
3721 // constant expression and then folding it back into a ConstantInt.
3722 // This is just a compile-time optimization.
3723 return getConstant(IntTy
, getDataLayout().getTypeAllocSize(AllocTy
));
3726 const SCEV
*ScalarEvolution::getOffsetOfExpr(Type
*IntTy
,
3729 // We can bypass creating a target-independent
3730 // constant expression and then folding it back into a ConstantInt.
3731 // This is just a compile-time optimization.
3733 IntTy
, getDataLayout().getStructLayout(STy
)->getElementOffset(FieldNo
));
3736 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
3737 // Don't attempt to do anything other than create a SCEVUnknown object
3738 // here. createSCEV only calls getUnknown after checking for all other
3739 // interesting possibilities, and any other code that calls getUnknown
3740 // is doing so in order to hide a value from SCEV canonicalization.
3742 FoldingSetNodeID ID
;
3743 ID
.AddInteger(scUnknown
);
3746 if (SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) {
3747 assert(cast
<SCEVUnknown
>(S
)->getValue() == V
&&
3748 "Stale SCEVUnknown in uniquing map!");
3751 SCEV
*S
= new (SCEVAllocator
) SCEVUnknown(ID
.Intern(SCEVAllocator
), V
, this,
3753 FirstUnknown
= cast
<SCEVUnknown
>(S
);
3754 UniqueSCEVs
.InsertNode(S
, IP
);
3758 //===----------------------------------------------------------------------===//
3759 // Basic SCEV Analysis and PHI Idiom Recognition Code
3762 /// Test if values of the given type are analyzable within the SCEV
3763 /// framework. This primarily includes integer types, and it can optionally
3764 /// include pointer types if the ScalarEvolution class has access to
3765 /// target-specific information.
3766 bool ScalarEvolution::isSCEVable(Type
*Ty
) const {
3767 // Integers and pointers are always SCEVable.
3768 return Ty
->isIntOrPtrTy();
3771 /// Return the size in bits of the specified type, for which isSCEVable must
3773 uint64_t ScalarEvolution::getTypeSizeInBits(Type
*Ty
) const {
3774 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
3775 if (Ty
->isPointerTy())
3776 return getDataLayout().getIndexTypeSizeInBits(Ty
);
3777 return getDataLayout().getTypeSizeInBits(Ty
);
3780 /// Return a type with the same bitwidth as the given type and which represents
3781 /// how SCEV will treat the given type, for which isSCEVable must return
3782 /// true. For pointer types, this is the pointer-sized integer type.
3783 Type
*ScalarEvolution::getEffectiveSCEVType(Type
*Ty
) const {
3784 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
3786 if (Ty
->isIntegerTy())
3789 // The only other support type is pointer.
3790 assert(Ty
->isPointerTy() && "Unexpected non-pointer non-integer type!");
3791 return getDataLayout().getIntPtrType(Ty
);
3794 Type
*ScalarEvolution::getWiderType(Type
*T1
, Type
*T2
) const {
3795 return getTypeSizeInBits(T1
) >= getTypeSizeInBits(T2
) ? T1
: T2
;
3798 const SCEV
*ScalarEvolution::getCouldNotCompute() {
3799 return CouldNotCompute
.get();
3802 bool ScalarEvolution::checkValidity(const SCEV
*S
) const {
3803 bool ContainsNulls
= SCEVExprContains(S
, [](const SCEV
*S
) {
3804 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
3805 return SU
&& SU
->getValue() == nullptr;
3808 return !ContainsNulls
;
3811 bool ScalarEvolution::containsAddRecurrence(const SCEV
*S
) {
3812 HasRecMapType::iterator I
= HasRecMap
.find(S
);
3813 if (I
!= HasRecMap
.end())
3816 bool FoundAddRec
= SCEVExprContains(S
, isa
<SCEVAddRecExpr
, const SCEV
*>);
3817 HasRecMap
.insert({S
, FoundAddRec
});
3821 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3822 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3823 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3824 static std::pair
<const SCEV
*, ConstantInt
*> splitAddExpr(const SCEV
*S
) {
3825 const auto *Add
= dyn_cast
<SCEVAddExpr
>(S
);
3827 return {S
, nullptr};
3829 if (Add
->getNumOperands() != 2)
3830 return {S
, nullptr};
3832 auto *ConstOp
= dyn_cast
<SCEVConstant
>(Add
->getOperand(0));
3834 return {S
, nullptr};
3836 return {Add
->getOperand(1), ConstOp
->getValue()};
3839 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3840 /// by the value and offset from any ValueOffsetPair in the set.
3841 SetVector
<ScalarEvolution::ValueOffsetPair
> *
3842 ScalarEvolution::getSCEVValues(const SCEV
*S
) {
3843 ExprValueMapType::iterator SI
= ExprValueMap
.find_as(S
);
3844 if (SI
== ExprValueMap
.end())
3847 if (VerifySCEVMap
) {
3848 // Check there is no dangling Value in the set returned.
3849 for (const auto &VE
: SI
->second
)
3850 assert(ValueExprMap
.count(VE
.first
));
3856 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3857 /// cannot be used separately. eraseValueFromMap should be used to remove
3858 /// V from ValueExprMap and ExprValueMap at the same time.
3859 void ScalarEvolution::eraseValueFromMap(Value
*V
) {
3860 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
3861 if (I
!= ValueExprMap
.end()) {
3862 const SCEV
*S
= I
->second
;
3863 // Remove {V, 0} from the set of ExprValueMap[S]
3864 if (SetVector
<ValueOffsetPair
> *SV
= getSCEVValues(S
))
3865 SV
->remove({V
, nullptr});
3867 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3868 const SCEV
*Stripped
;
3869 ConstantInt
*Offset
;
3870 std::tie(Stripped
, Offset
) = splitAddExpr(S
);
3871 if (Offset
!= nullptr) {
3872 if (SetVector
<ValueOffsetPair
> *SV
= getSCEVValues(Stripped
))
3873 SV
->remove({V
, Offset
});
3875 ValueExprMap
.erase(V
);
3879 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3880 /// TODO: In reality it is better to check the poison recursively
3881 /// but this is better than nothing.
3882 static bool SCEVLostPoisonFlags(const SCEV
*S
, const Value
*V
) {
3883 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
3884 if (isa
<OverflowingBinaryOperator
>(I
)) {
3885 if (auto *NS
= dyn_cast
<SCEVNAryExpr
>(S
)) {
3886 if (I
->hasNoSignedWrap() && !NS
->hasNoSignedWrap())
3888 if (I
->hasNoUnsignedWrap() && !NS
->hasNoUnsignedWrap())
3891 } else if (isa
<PossiblyExactOperator
>(I
) && I
->isExact())
3897 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3898 /// create a new one.
3899 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
3900 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
3902 const SCEV
*S
= getExistingSCEV(V
);
3905 // During PHI resolution, it is possible to create two SCEVs for the same
3906 // V, so it is needed to double check whether V->S is inserted into
3907 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3908 std::pair
<ValueExprMapType::iterator
, bool> Pair
=
3909 ValueExprMap
.insert({SCEVCallbackVH(V
, this), S
});
3910 if (Pair
.second
&& !SCEVLostPoisonFlags(S
, V
)) {
3911 ExprValueMap
[S
].insert({V
, nullptr});
3913 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3915 const SCEV
*Stripped
= S
;
3916 ConstantInt
*Offset
= nullptr;
3917 std::tie(Stripped
, Offset
) = splitAddExpr(S
);
3918 // If stripped is SCEVUnknown, don't bother to save
3919 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3920 // increase the complexity of the expansion code.
3921 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3922 // because it may generate add/sub instead of GEP in SCEV expansion.
3923 if (Offset
!= nullptr && !isa
<SCEVUnknown
>(Stripped
) &&
3924 !isa
<GetElementPtrInst
>(V
))
3925 ExprValueMap
[Stripped
].insert({V
, Offset
});
3931 const SCEV
*ScalarEvolution::getExistingSCEV(Value
*V
) {
3932 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
3934 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
3935 if (I
!= ValueExprMap
.end()) {
3936 const SCEV
*S
= I
->second
;
3937 if (checkValidity(S
))
3939 eraseValueFromMap(V
);
3940 forgetMemoizedResults(S
);
3945 /// Return a SCEV corresponding to -V = -1*V
3946 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
,
3947 SCEV::NoWrapFlags Flags
) {
3948 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
3950 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
3952 Type
*Ty
= V
->getType();
3953 Ty
= getEffectiveSCEVType(Ty
);
3955 V
, getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
))), Flags
);
3958 /// If Expr computes ~A, return A else return nullptr
3959 static const SCEV
*MatchNotExpr(const SCEV
*Expr
) {
3960 const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
3961 if (!Add
|| Add
->getNumOperands() != 2 ||
3962 !Add
->getOperand(0)->isAllOnesValue())
3965 const SCEVMulExpr
*AddRHS
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(1));
3966 if (!AddRHS
|| AddRHS
->getNumOperands() != 2 ||
3967 !AddRHS
->getOperand(0)->isAllOnesValue())
3970 return AddRHS
->getOperand(1);
3973 /// Return a SCEV corresponding to ~V = -1-V
3974 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
3975 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
3977 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
3979 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3980 if (const SCEVMinMaxExpr
*MME
= dyn_cast
<SCEVMinMaxExpr
>(V
)) {
3981 auto MatchMinMaxNegation
= [&](const SCEVMinMaxExpr
*MME
) {
3982 SmallVector
<const SCEV
*, 2> MatchedOperands
;
3983 for (const SCEV
*Operand
: MME
->operands()) {
3984 const SCEV
*Matched
= MatchNotExpr(Operand
);
3986 return (const SCEV
*)nullptr;
3987 MatchedOperands
.push_back(Matched
);
3989 return getMinMaxExpr(
3990 SCEVMinMaxExpr::negate(static_cast<SCEVTypes
>(MME
->getSCEVType())),
3993 if (const SCEV
*Replaced
= MatchMinMaxNegation(MME
))
3997 Type
*Ty
= V
->getType();
3998 Ty
= getEffectiveSCEVType(Ty
);
3999 const SCEV
*AllOnes
=
4000 getConstant(cast
<ConstantInt
>(Constant::getAllOnesValue(Ty
)));
4001 return getMinusSCEV(AllOnes
, V
);
4004 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
, const SCEV
*RHS
,
4005 SCEV::NoWrapFlags Flags
,
4007 // Fast path: X - X --> 0.
4009 return getZero(LHS
->getType());
4011 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4012 // makes it so that we cannot make much use of NUW.
4013 auto AddFlags
= SCEV::FlagAnyWrap
;
4014 const bool RHSIsNotMinSigned
=
4015 !getSignedRangeMin(RHS
).isMinSignedValue();
4016 if (maskFlags(Flags
, SCEV::FlagNSW
) == SCEV::FlagNSW
) {
4017 // Let M be the minimum representable signed value. Then (-1)*RHS
4018 // signed-wraps if and only if RHS is M. That can happen even for
4019 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4020 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4021 // (-1)*RHS, we need to prove that RHS != M.
4023 // If LHS is non-negative and we know that LHS - RHS does not
4024 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4025 // either by proving that RHS > M or that LHS >= 0.
4026 if (RHSIsNotMinSigned
|| isKnownNonNegative(LHS
)) {
4027 AddFlags
= SCEV::FlagNSW
;
4031 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4032 // RHS is NSW and LHS >= 0.
4034 // The difficulty here is that the NSW flag may have been proven
4035 // relative to a loop that is to be found in a recurrence in LHS and
4036 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4037 // larger scope than intended.
4038 auto NegFlags
= RHSIsNotMinSigned
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
4040 return getAddExpr(LHS
, getNegativeSCEV(RHS
, NegFlags
), AddFlags
, Depth
);
4043 const SCEV
*ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
, Type
*Ty
,
4045 Type
*SrcTy
= V
->getType();
4046 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4047 "Cannot truncate or zero extend with non-integer arguments!");
4048 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4049 return V
; // No conversion
4050 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4051 return getTruncateExpr(V
, Ty
, Depth
);
4052 return getZeroExtendExpr(V
, Ty
, Depth
);
4055 const SCEV
*ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
, Type
*Ty
,
4057 Type
*SrcTy
= V
->getType();
4058 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4059 "Cannot truncate or zero extend with non-integer arguments!");
4060 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4061 return V
; // No conversion
4062 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4063 return getTruncateExpr(V
, Ty
, Depth
);
4064 return getSignExtendExpr(V
, Ty
, Depth
);
4068 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, Type
*Ty
) {
4069 Type
*SrcTy
= V
->getType();
4070 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4071 "Cannot noop or zero extend with non-integer arguments!");
4072 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4073 "getNoopOrZeroExtend cannot truncate!");
4074 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4075 return V
; // No conversion
4076 return getZeroExtendExpr(V
, Ty
);
4080 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, Type
*Ty
) {
4081 Type
*SrcTy
= V
->getType();
4082 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4083 "Cannot noop or sign extend with non-integer arguments!");
4084 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4085 "getNoopOrSignExtend cannot truncate!");
4086 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4087 return V
; // No conversion
4088 return getSignExtendExpr(V
, Ty
);
4092 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, Type
*Ty
) {
4093 Type
*SrcTy
= V
->getType();
4094 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4095 "Cannot noop or any extend with non-integer arguments!");
4096 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4097 "getNoopOrAnyExtend cannot truncate!");
4098 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4099 return V
; // No conversion
4100 return getAnyExtendExpr(V
, Ty
);
4104 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, Type
*Ty
) {
4105 Type
*SrcTy
= V
->getType();
4106 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4107 "Cannot truncate or noop with non-integer arguments!");
4108 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
4109 "getTruncateOrNoop cannot extend!");
4110 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4111 return V
; // No conversion
4112 return getTruncateExpr(V
, Ty
);
4115 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
4117 const SCEV
*PromotedLHS
= LHS
;
4118 const SCEV
*PromotedRHS
= RHS
;
4120 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
4121 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
4123 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
4125 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
4128 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
4130 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4131 return getUMinFromMismatchedTypes(Ops
);
4134 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(
4135 SmallVectorImpl
<const SCEV
*> &Ops
) {
4136 assert(!Ops
.empty() && "At least one operand must be!");
4138 if (Ops
.size() == 1)
4141 // Find the max type first.
4142 Type
*MaxType
= nullptr;
4145 MaxType
= getWiderType(MaxType
, S
->getType());
4147 MaxType
= S
->getType();
4149 // Extend all ops to max type.
4150 SmallVector
<const SCEV
*, 2> PromotedOps
;
4152 PromotedOps
.push_back(getNoopOrZeroExtend(S
, MaxType
));
4155 return getUMinExpr(PromotedOps
);
4158 const SCEV
*ScalarEvolution::getPointerBase(const SCEV
*V
) {
4159 // A pointer operand may evaluate to a nonpointer expression, such as null.
4160 if (!V
->getType()->isPointerTy())
4163 if (const SCEVCastExpr
*Cast
= dyn_cast
<SCEVCastExpr
>(V
)) {
4164 return getPointerBase(Cast
->getOperand());
4165 } else if (const SCEVNAryExpr
*NAry
= dyn_cast
<SCEVNAryExpr
>(V
)) {
4166 const SCEV
*PtrOp
= nullptr;
4167 for (const SCEV
*NAryOp
: NAry
->operands()) {
4168 if (NAryOp
->getType()->isPointerTy()) {
4169 // Cannot find the base of an expression with multiple pointer operands.
4177 return getPointerBase(PtrOp
);
4182 /// Push users of the given Instruction onto the given Worklist.
4184 PushDefUseChildren(Instruction
*I
,
4185 SmallVectorImpl
<Instruction
*> &Worklist
) {
4186 // Push the def-use children onto the Worklist stack.
4187 for (User
*U
: I
->users())
4188 Worklist
.push_back(cast
<Instruction
>(U
));
4191 void ScalarEvolution::forgetSymbolicName(Instruction
*PN
, const SCEV
*SymName
) {
4192 SmallVector
<Instruction
*, 16> Worklist
;
4193 PushDefUseChildren(PN
, Worklist
);
4195 SmallPtrSet
<Instruction
*, 8> Visited
;
4197 while (!Worklist
.empty()) {
4198 Instruction
*I
= Worklist
.pop_back_val();
4199 if (!Visited
.insert(I
).second
)
4202 auto It
= ValueExprMap
.find_as(static_cast<Value
*>(I
));
4203 if (It
!= ValueExprMap
.end()) {
4204 const SCEV
*Old
= It
->second
;
4206 // Short-circuit the def-use traversal if the symbolic name
4207 // ceases to appear in expressions.
4208 if (Old
!= SymName
&& !hasOperand(Old
, SymName
))
4211 // SCEVUnknown for a PHI either means that it has an unrecognized
4212 // structure, it's a PHI that's in the progress of being computed
4213 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4214 // additional loop trip count information isn't going to change anything.
4215 // In the second case, createNodeForPHI will perform the necessary
4216 // updates on its own when it gets to that point. In the third, we do
4217 // want to forget the SCEVUnknown.
4218 if (!isa
<PHINode
>(I
) ||
4219 !isa
<SCEVUnknown
>(Old
) ||
4220 (I
!= PN
&& Old
== SymName
)) {
4221 eraseValueFromMap(It
->first
);
4222 forgetMemoizedResults(Old
);
4226 PushDefUseChildren(I
, Worklist
);
4232 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4233 /// expression in case its Loop is L. If it is not L then
4234 /// if IgnoreOtherLoops is true then use AddRec itself
4235 /// otherwise rewrite cannot be done.
4236 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4237 class SCEVInitRewriter
: public SCEVRewriteVisitor
<SCEVInitRewriter
> {
4239 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
4240 bool IgnoreOtherLoops
= true) {
4241 SCEVInitRewriter
Rewriter(L
, SE
);
4242 const SCEV
*Result
= Rewriter
.visit(S
);
4243 if (Rewriter
.hasSeenLoopVariantSCEVUnknown())
4244 return SE
.getCouldNotCompute();
4245 return Rewriter
.hasSeenOtherLoops() && !IgnoreOtherLoops
4246 ? SE
.getCouldNotCompute()
4250 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4251 if (!SE
.isLoopInvariant(Expr
, L
))
4252 SeenLoopVariantSCEVUnknown
= true;
4256 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4257 // Only re-write AddRecExprs for this loop.
4258 if (Expr
->getLoop() == L
)
4259 return Expr
->getStart();
4260 SeenOtherLoops
= true;
4264 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4266 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4269 explicit SCEVInitRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4270 : SCEVRewriteVisitor(SE
), L(L
) {}
4273 bool SeenLoopVariantSCEVUnknown
= false;
4274 bool SeenOtherLoops
= false;
4277 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4278 /// increment expression in case its Loop is L. If it is not L then
4279 /// use AddRec itself.
4280 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4281 class SCEVPostIncRewriter
: public SCEVRewriteVisitor
<SCEVPostIncRewriter
> {
4283 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
) {
4284 SCEVPostIncRewriter
Rewriter(L
, SE
);
4285 const SCEV
*Result
= Rewriter
.visit(S
);
4286 return Rewriter
.hasSeenLoopVariantSCEVUnknown()
4287 ? SE
.getCouldNotCompute()
4291 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4292 if (!SE
.isLoopInvariant(Expr
, L
))
4293 SeenLoopVariantSCEVUnknown
= true;
4297 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4298 // Only re-write AddRecExprs for this loop.
4299 if (Expr
->getLoop() == L
)
4300 return Expr
->getPostIncExpr(SE
);
4301 SeenOtherLoops
= true;
4305 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4307 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4310 explicit SCEVPostIncRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4311 : SCEVRewriteVisitor(SE
), L(L
) {}
4314 bool SeenLoopVariantSCEVUnknown
= false;
4315 bool SeenOtherLoops
= false;
4318 /// This class evaluates the compare condition by matching it against the
4319 /// condition of loop latch. If there is a match we assume a true value
4320 /// for the condition while building SCEV nodes.
4321 class SCEVBackedgeConditionFolder
4322 : public SCEVRewriteVisitor
<SCEVBackedgeConditionFolder
> {
4324 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4325 ScalarEvolution
&SE
) {
4326 bool IsPosBECond
= false;
4327 Value
*BECond
= nullptr;
4328 if (BasicBlock
*Latch
= L
->getLoopLatch()) {
4329 BranchInst
*BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
4330 if (BI
&& BI
->isConditional()) {
4331 assert(BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
4332 "Both outgoing branches should not target same header!");
4333 BECond
= BI
->getCondition();
4334 IsPosBECond
= BI
->getSuccessor(0) == L
->getHeader();
4339 SCEVBackedgeConditionFolder
Rewriter(L
, BECond
, IsPosBECond
, SE
);
4340 return Rewriter
.visit(S
);
4343 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4344 const SCEV
*Result
= Expr
;
4345 bool InvariantF
= SE
.isLoopInvariant(Expr
, L
);
4348 Instruction
*I
= cast
<Instruction
>(Expr
->getValue());
4349 switch (I
->getOpcode()) {
4350 case Instruction::Select
: {
4351 SelectInst
*SI
= cast
<SelectInst
>(I
);
4352 Optional
<const SCEV
*> Res
=
4353 compareWithBackedgeCondition(SI
->getCondition());
4354 if (Res
.hasValue()) {
4355 bool IsOne
= cast
<SCEVConstant
>(Res
.getValue())->getValue()->isOne();
4356 Result
= SE
.getSCEV(IsOne
? SI
->getTrueValue() : SI
->getFalseValue());
4361 Optional
<const SCEV
*> Res
= compareWithBackedgeCondition(I
);
4363 Result
= Res
.getValue();
4372 explicit SCEVBackedgeConditionFolder(const Loop
*L
, Value
*BECond
,
4373 bool IsPosBECond
, ScalarEvolution
&SE
)
4374 : SCEVRewriteVisitor(SE
), L(L
), BackedgeCond(BECond
),
4375 IsPositiveBECond(IsPosBECond
) {}
4377 Optional
<const SCEV
*> compareWithBackedgeCondition(Value
*IC
);
4380 /// Loop back condition.
4381 Value
*BackedgeCond
= nullptr;
4382 /// Set to true if loop back is on positive branch condition.
4383 bool IsPositiveBECond
;
4386 Optional
<const SCEV
*>
4387 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value
*IC
) {
4389 // If value matches the backedge condition for loop latch,
4390 // then return a constant evolution node based on loopback
4392 if (BackedgeCond
== IC
)
4393 return IsPositiveBECond
? SE
.getOne(Type::getInt1Ty(SE
.getContext()))
4394 : SE
.getZero(Type::getInt1Ty(SE
.getContext()));
4398 class SCEVShiftRewriter
: public SCEVRewriteVisitor
<SCEVShiftRewriter
> {
4400 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4401 ScalarEvolution
&SE
) {
4402 SCEVShiftRewriter
Rewriter(L
, SE
);
4403 const SCEV
*Result
= Rewriter
.visit(S
);
4404 return Rewriter
.isValid() ? Result
: SE
.getCouldNotCompute();
4407 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4408 // Only allow AddRecExprs for this loop.
4409 if (!SE
.isLoopInvariant(Expr
, L
))
4414 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4415 if (Expr
->getLoop() == L
&& Expr
->isAffine())
4416 return SE
.getMinusSCEV(Expr
, Expr
->getStepRecurrence(SE
));
4421 bool isValid() { return Valid
; }
4424 explicit SCEVShiftRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4425 : SCEVRewriteVisitor(SE
), L(L
) {}
4431 } // end anonymous namespace
4434 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr
*AR
) {
4435 if (!AR
->isAffine())
4436 return SCEV::FlagAnyWrap
;
4438 using OBO
= OverflowingBinaryOperator
;
4440 SCEV::NoWrapFlags Result
= SCEV::FlagAnyWrap
;
4442 if (!AR
->hasNoSignedWrap()) {
4443 ConstantRange AddRecRange
= getSignedRange(AR
);
4444 ConstantRange IncRange
= getSignedRange(AR
->getStepRecurrence(*this));
4446 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
4447 Instruction::Add
, IncRange
, OBO::NoSignedWrap
);
4448 if (NSWRegion
.contains(AddRecRange
))
4449 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNSW
);
4452 if (!AR
->hasNoUnsignedWrap()) {
4453 ConstantRange AddRecRange
= getUnsignedRange(AR
);
4454 ConstantRange IncRange
= getUnsignedRange(AR
->getStepRecurrence(*this));
4456 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
4457 Instruction::Add
, IncRange
, OBO::NoUnsignedWrap
);
4458 if (NUWRegion
.contains(AddRecRange
))
4459 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNUW
);
4467 /// Represents an abstract binary operation. This may exist as a
4468 /// normal instruction or constant expression, or may have been
4469 /// derived from an expression tree.
4477 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4478 /// constant expression.
4479 Operator
*Op
= nullptr;
4481 explicit BinaryOp(Operator
*Op
)
4482 : Opcode(Op
->getOpcode()), LHS(Op
->getOperand(0)), RHS(Op
->getOperand(1)),
4484 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(Op
)) {
4485 IsNSW
= OBO
->hasNoSignedWrap();
4486 IsNUW
= OBO
->hasNoUnsignedWrap();
4490 explicit BinaryOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
, bool IsNSW
= false,
4492 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), IsNSW(IsNSW
), IsNUW(IsNUW
) {}
4495 } // end anonymous namespace
4497 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4498 static Optional
<BinaryOp
> MatchBinaryOp(Value
*V
, DominatorTree
&DT
) {
4499 auto *Op
= dyn_cast
<Operator
>(V
);
4503 // Implementation detail: all the cleverness here should happen without
4504 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4505 // SCEV expressions when possible, and we should not break that.
4507 switch (Op
->getOpcode()) {
4508 case Instruction::Add
:
4509 case Instruction::Sub
:
4510 case Instruction::Mul
:
4511 case Instruction::UDiv
:
4512 case Instruction::URem
:
4513 case Instruction::And
:
4514 case Instruction::Or
:
4515 case Instruction::AShr
:
4516 case Instruction::Shl
:
4517 return BinaryOp(Op
);
4519 case Instruction::Xor
:
4520 if (auto *RHSC
= dyn_cast
<ConstantInt
>(Op
->getOperand(1)))
4521 // If the RHS of the xor is a signmask, then this is just an add.
4522 // Instcombine turns add of signmask into xor as a strength reduction step.
4523 if (RHSC
->getValue().isSignMask())
4524 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1));
4525 return BinaryOp(Op
);
4527 case Instruction::LShr
:
4528 // Turn logical shift right of a constant into a unsigned divide.
4529 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(Op
->getOperand(1))) {
4530 uint32_t BitWidth
= cast
<IntegerType
>(Op
->getType())->getBitWidth();
4532 // If the shift count is not less than the bitwidth, the result of
4533 // the shift is undefined. Don't try to analyze it, because the
4534 // resolution chosen here may differ from the resolution chosen in
4535 // other parts of the compiler.
4536 if (SA
->getValue().ult(BitWidth
)) {
4538 ConstantInt::get(SA
->getContext(),
4539 APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
4540 return BinaryOp(Instruction::UDiv
, Op
->getOperand(0), X
);
4543 return BinaryOp(Op
);
4545 case Instruction::ExtractValue
: {
4546 auto *EVI
= cast
<ExtractValueInst
>(Op
);
4547 if (EVI
->getNumIndices() != 1 || EVI
->getIndices()[0] != 0)
4550 auto *WO
= dyn_cast
<WithOverflowInst
>(EVI
->getAggregateOperand());
4554 Instruction::BinaryOps BinOp
= WO
->getBinaryOp();
4555 bool Signed
= WO
->isSigned();
4556 // TODO: Should add nuw/nsw flags for mul as well.
4557 if (BinOp
== Instruction::Mul
|| !isOverflowIntrinsicNoWrap(WO
, DT
))
4558 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS());
4560 // Now that we know that all uses of the arithmetic-result component of
4561 // CI are guarded by the overflow check, we can go ahead and pretend
4562 // that the arithmetic is non-overflowing.
4563 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS(),
4564 /* IsNSW = */ Signed
, /* IsNUW = */ !Signed
);
4574 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4575 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4576 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4577 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4578 /// follows one of the following patterns:
4579 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4580 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4581 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4582 /// we return the type of the truncation operation, and indicate whether the
4583 /// truncated type should be treated as signed/unsigned by setting
4584 /// \p Signed to true/false, respectively.
4585 static Type
*isSimpleCastedPHI(const SCEV
*Op
, const SCEVUnknown
*SymbolicPHI
,
4586 bool &Signed
, ScalarEvolution
&SE
) {
4587 // The case where Op == SymbolicPHI (that is, with no type conversions on
4588 // the way) is handled by the regular add recurrence creating logic and
4589 // would have already been triggered in createAddRecForPHI. Reaching it here
4590 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4591 // because one of the other operands of the SCEVAddExpr updating this PHI is
4594 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4595 // this case predicates that allow us to prove that Op == SymbolicPHI will
4597 if (Op
== SymbolicPHI
)
4600 unsigned SourceBits
= SE
.getTypeSizeInBits(SymbolicPHI
->getType());
4601 unsigned NewBits
= SE
.getTypeSizeInBits(Op
->getType());
4602 if (SourceBits
!= NewBits
)
4605 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(Op
);
4606 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Op
);
4609 const SCEVTruncateExpr
*Trunc
=
4610 SExt
? dyn_cast
<SCEVTruncateExpr
>(SExt
->getOperand())
4611 : dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand());
4614 const SCEV
*X
= Trunc
->getOperand();
4615 if (X
!= SymbolicPHI
)
4617 Signed
= SExt
!= nullptr;
4618 return Trunc
->getType();
4621 static const Loop
*isIntegerLoopHeaderPHI(const PHINode
*PN
, LoopInfo
&LI
) {
4622 if (!PN
->getType()->isIntegerTy())
4624 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
4625 if (!L
|| L
->getHeader() != PN
->getParent())
4630 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4631 // computation that updates the phi follows the following pattern:
4632 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4633 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4634 // If so, try to see if it can be rewritten as an AddRecExpr under some
4635 // Predicates. If successful, return them as a pair. Also cache the results
4638 // Example usage scenario:
4639 // Say the Rewriter is called for the following SCEV:
4640 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4642 // %X = phi i64 (%Start, %BEValue)
4643 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4644 // and call this function with %SymbolicPHI = %X.
4646 // The analysis will find that the value coming around the backedge has
4647 // the following SCEV:
4648 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4649 // Upon concluding that this matches the desired pattern, the function
4650 // will return the pair {NewAddRec, SmallPredsVec} where:
4651 // NewAddRec = {%Start,+,%Step}
4652 // SmallPredsVec = {P1, P2, P3} as follows:
4653 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4654 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4655 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4656 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4657 // under the predicates {P1,P2,P3}.
4658 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4659 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4663 // 1) Extend the Induction descriptor to also support inductions that involve
4664 // casts: When needed (namely, when we are called in the context of the
4665 // vectorizer induction analysis), a Set of cast instructions will be
4666 // populated by this method, and provided back to isInductionPHI. This is
4667 // needed to allow the vectorizer to properly record them to be ignored by
4668 // the cost model and to avoid vectorizing them (otherwise these casts,
4669 // which are redundant under the runtime overflow checks, will be
4670 // vectorized, which can be costly).
4672 // 2) Support additional induction/PHISCEV patterns: We also want to support
4673 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4674 // after the induction update operation (the induction increment):
4676 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4677 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4679 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4680 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4682 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4683 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
4684 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown
*SymbolicPHI
) {
4685 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
4687 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4688 // return an AddRec expression under some predicate.
4690 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
4691 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
4692 assert(L
&& "Expecting an integer loop header phi");
4694 // The loop may have multiple entrances or multiple exits; we can analyze
4695 // this phi as an addrec if it has a unique entry value and a unique
4697 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
4698 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
4699 Value
*V
= PN
->getIncomingValue(i
);
4700 if (L
->contains(PN
->getIncomingBlock(i
))) {
4703 } else if (BEValueV
!= V
) {
4707 } else if (!StartValueV
) {
4709 } else if (StartValueV
!= V
) {
4710 StartValueV
= nullptr;
4714 if (!BEValueV
|| !StartValueV
)
4717 const SCEV
*BEValue
= getSCEV(BEValueV
);
4719 // If the value coming around the backedge is an add with the symbolic
4720 // value we just inserted, possibly with casts that we can ignore under
4721 // an appropriate runtime guard, then we found a simple induction variable!
4722 const auto *Add
= dyn_cast
<SCEVAddExpr
>(BEValue
);
4726 // If there is a single occurrence of the symbolic value, possibly
4727 // casted, replace it with a recurrence.
4728 unsigned FoundIndex
= Add
->getNumOperands();
4729 Type
*TruncTy
= nullptr;
4731 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
4733 isSimpleCastedPHI(Add
->getOperand(i
), SymbolicPHI
, Signed
, *this)))
4734 if (FoundIndex
== e
) {
4739 if (FoundIndex
== Add
->getNumOperands())
4742 // Create an add with everything but the specified operand.
4743 SmallVector
<const SCEV
*, 8> Ops
;
4744 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
4745 if (i
!= FoundIndex
)
4746 Ops
.push_back(Add
->getOperand(i
));
4747 const SCEV
*Accum
= getAddExpr(Ops
);
4749 // The runtime checks will not be valid if the step amount is
4750 // varying inside the loop.
4751 if (!isLoopInvariant(Accum
, L
))
4754 // *** Part2: Create the predicates
4756 // Analysis was successful: we have a phi-with-cast pattern for which we
4757 // can return an AddRec expression under the following predicates:
4759 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4760 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4761 // P2: An Equal predicate that guarantees that
4762 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4763 // P3: An Equal predicate that guarantees that
4764 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4766 // As we next prove, the above predicates guarantee that:
4767 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4770 // More formally, we want to prove that:
4771 // Expr(i+1) = Start + (i+1) * Accum
4772 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4775 // 1) Expr(0) = Start
4776 // 2) Expr(1) = Start + Accum
4777 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4778 // 3) Induction hypothesis (step i):
4779 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4783 // = Start + (i+1)*Accum
4784 // = (Start + i*Accum) + Accum
4785 // = Expr(i) + Accum
4786 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4789 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4791 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4792 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4793 // + Accum :: from P3
4795 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4796 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4798 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4799 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4801 // By induction, the same applies to all iterations 1<=i<n:
4804 // Create a truncated addrec for which we will add a no overflow check (P1).
4805 const SCEV
*StartVal
= getSCEV(StartValueV
);
4806 const SCEV
*PHISCEV
=
4807 getAddRecExpr(getTruncateExpr(StartVal
, TruncTy
),
4808 getTruncateExpr(Accum
, TruncTy
), L
, SCEV::FlagAnyWrap
);
4810 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4811 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4812 // will be constant.
4814 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4816 if (const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
4817 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
=
4818 Signed
? SCEVWrapPredicate::IncrementNSSW
4819 : SCEVWrapPredicate::IncrementNUSW
;
4820 const SCEVPredicate
*AddRecPred
= getWrapPredicate(AR
, AddedFlags
);
4821 Predicates
.push_back(AddRecPred
);
4824 // Create the Equal Predicates P2,P3:
4826 // It is possible that the predicates P2 and/or P3 are computable at
4827 // compile time due to StartVal and/or Accum being constants.
4828 // If either one is, then we can check that now and escape if either P2
4831 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4832 // for each of StartVal and Accum
4833 auto getExtendedExpr
= [&](const SCEV
*Expr
,
4834 bool CreateSignExtend
) -> const SCEV
* {
4835 assert(isLoopInvariant(Expr
, L
) && "Expr is expected to be invariant");
4836 const SCEV
*TruncatedExpr
= getTruncateExpr(Expr
, TruncTy
);
4837 const SCEV
*ExtendedExpr
=
4838 CreateSignExtend
? getSignExtendExpr(TruncatedExpr
, Expr
->getType())
4839 : getZeroExtendExpr(TruncatedExpr
, Expr
->getType());
4840 return ExtendedExpr
;
4844 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4845 // = getExtendedExpr(Expr)
4846 // Determine whether the predicate P: Expr == ExtendedExpr
4847 // is known to be false at compile time
4848 auto PredIsKnownFalse
= [&](const SCEV
*Expr
,
4849 const SCEV
*ExtendedExpr
) -> bool {
4850 return Expr
!= ExtendedExpr
&&
4851 isKnownPredicate(ICmpInst::ICMP_NE
, Expr
, ExtendedExpr
);
4854 const SCEV
*StartExtended
= getExtendedExpr(StartVal
, Signed
);
4855 if (PredIsKnownFalse(StartVal
, StartExtended
)) {
4856 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4860 // The Step is always Signed (because the overflow checks are either
4862 const SCEV
*AccumExtended
= getExtendedExpr(Accum
, /*CreateSignExtend=*/true);
4863 if (PredIsKnownFalse(Accum
, AccumExtended
)) {
4864 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4868 auto AppendPredicate
= [&](const SCEV
*Expr
,
4869 const SCEV
*ExtendedExpr
) -> void {
4870 if (Expr
!= ExtendedExpr
&&
4871 !isKnownPredicate(ICmpInst::ICMP_EQ
, Expr
, ExtendedExpr
)) {
4872 const SCEVPredicate
*Pred
= getEqualPredicate(Expr
, ExtendedExpr
);
4873 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred
);
4874 Predicates
.push_back(Pred
);
4878 AppendPredicate(StartVal
, StartExtended
);
4879 AppendPredicate(Accum
, AccumExtended
);
4881 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4882 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4883 // into NewAR if it will also add the runtime overflow checks specified in
4885 auto *NewAR
= getAddRecExpr(StartVal
, Accum
, L
, SCEV::FlagAnyWrap
);
4887 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> PredRewrite
=
4888 std::make_pair(NewAR
, Predicates
);
4889 // Remember the result of the analysis for this SCEV at this locayyytion.
4890 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = PredRewrite
;
4894 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
4895 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown
*SymbolicPHI
) {
4896 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
4897 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
4901 // Check to see if we already analyzed this PHI.
4902 auto I
= PredicatedSCEVRewrites
.find({SymbolicPHI
, L
});
4903 if (I
!= PredicatedSCEVRewrites
.end()) {
4904 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> Rewrite
=
4906 // Analysis was done before and failed to create an AddRec:
4907 if (Rewrite
.first
== SymbolicPHI
)
4909 // Analysis was done before and succeeded to create an AddRec under
4911 assert(isa
<SCEVAddRecExpr
>(Rewrite
.first
) && "Expected an AddRec");
4912 assert(!(Rewrite
.second
).empty() && "Expected to find Predicates");
4916 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
4917 Rewrite
= createAddRecFromPHIWithCastsImpl(SymbolicPHI
);
4919 // Record in the cache that the analysis failed
4921 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
4922 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = {SymbolicPHI
, Predicates
};
4929 // FIXME: This utility is currently required because the Rewriter currently
4930 // does not rewrite this expression:
4931 // {0, +, (sext ix (trunc iy to ix) to iy)}
4932 // into {0, +, %step},
4933 // even when the following Equal predicate exists:
4934 // "%step == (sext ix (trunc iy to ix) to iy)".
4935 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4936 const SCEVAddRecExpr
*AR1
, const SCEVAddRecExpr
*AR2
) const {
4940 auto areExprsEqual
= [&](const SCEV
*Expr1
, const SCEV
*Expr2
) -> bool {
4941 if (Expr1
!= Expr2
&& !Preds
.implies(SE
.getEqualPredicate(Expr1
, Expr2
)) &&
4942 !Preds
.implies(SE
.getEqualPredicate(Expr2
, Expr1
)))
4947 if (!areExprsEqual(AR1
->getStart(), AR2
->getStart()) ||
4948 !areExprsEqual(AR1
->getStepRecurrence(SE
), AR2
->getStepRecurrence(SE
)))
4953 /// A helper function for createAddRecFromPHI to handle simple cases.
4955 /// This function tries to find an AddRec expression for the simplest (yet most
4956 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4957 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4958 /// technique for finding the AddRec expression.
4959 const SCEV
*ScalarEvolution::createSimpleAffineAddRec(PHINode
*PN
,
4961 Value
*StartValueV
) {
4962 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
4963 assert(L
&& L
->getHeader() == PN
->getParent());
4964 assert(BEValueV
&& StartValueV
);
4966 auto BO
= MatchBinaryOp(BEValueV
, DT
);
4970 if (BO
->Opcode
!= Instruction::Add
)
4973 const SCEV
*Accum
= nullptr;
4974 if (BO
->LHS
== PN
&& L
->isLoopInvariant(BO
->RHS
))
4975 Accum
= getSCEV(BO
->RHS
);
4976 else if (BO
->RHS
== PN
&& L
->isLoopInvariant(BO
->LHS
))
4977 Accum
= getSCEV(BO
->LHS
);
4982 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
4984 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
4986 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
4988 const SCEV
*StartVal
= getSCEV(StartValueV
);
4989 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
4991 ValueExprMap
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
4993 // We can add Flags to the post-inc expression only if we
4994 // know that it is *undefined behavior* for BEValueV to
4996 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
))
4997 if (isLoopInvariant(Accum
, L
) && isAddRecNeverPoison(BEInst
, L
))
4998 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5003 const SCEV
*ScalarEvolution::createAddRecFromPHI(PHINode
*PN
) {
5004 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5005 if (!L
|| L
->getHeader() != PN
->getParent())
5008 // The loop may have multiple entrances or multiple exits; we can analyze
5009 // this phi as an addrec if it has a unique entry value and a unique
5011 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5012 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5013 Value
*V
= PN
->getIncomingValue(i
);
5014 if (L
->contains(PN
->getIncomingBlock(i
))) {
5017 } else if (BEValueV
!= V
) {
5021 } else if (!StartValueV
) {
5023 } else if (StartValueV
!= V
) {
5024 StartValueV
= nullptr;
5028 if (!BEValueV
|| !StartValueV
)
5031 assert(ValueExprMap
.find_as(PN
) == ValueExprMap
.end() &&
5032 "PHI node already processed?");
5034 // First, try to find AddRec expression without creating a fictituos symbolic
5036 if (auto *S
= createSimpleAffineAddRec(PN
, BEValueV
, StartValueV
))
5039 // Handle PHI node value symbolically.
5040 const SCEV
*SymbolicName
= getUnknown(PN
);
5041 ValueExprMap
.insert({SCEVCallbackVH(PN
, this), SymbolicName
});
5043 // Using this symbolic name for the PHI, analyze the value coming around
5045 const SCEV
*BEValue
= getSCEV(BEValueV
);
5047 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5048 // has a special value for the first iteration of the loop.
5050 // If the value coming around the backedge is an add with the symbolic
5051 // value we just inserted, then we found a simple induction variable!
5052 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
5053 // If there is a single occurrence of the symbolic value, replace it
5054 // with a recurrence.
5055 unsigned FoundIndex
= Add
->getNumOperands();
5056 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5057 if (Add
->getOperand(i
) == SymbolicName
)
5058 if (FoundIndex
== e
) {
5063 if (FoundIndex
!= Add
->getNumOperands()) {
5064 // Create an add with everything but the specified operand.
5065 SmallVector
<const SCEV
*, 8> Ops
;
5066 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5067 if (i
!= FoundIndex
)
5068 Ops
.push_back(SCEVBackedgeConditionFolder::rewrite(Add
->getOperand(i
),
5070 const SCEV
*Accum
= getAddExpr(Ops
);
5072 // This is not a valid addrec if the step amount is varying each
5073 // loop iteration, but is not itself an addrec in this loop.
5074 if (isLoopInvariant(Accum
, L
) ||
5075 (isa
<SCEVAddRecExpr
>(Accum
) &&
5076 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
5077 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5079 if (auto BO
= MatchBinaryOp(BEValueV
, DT
)) {
5080 if (BO
->Opcode
== Instruction::Add
&& BO
->LHS
== PN
) {
5082 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5084 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5086 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(BEValueV
)) {
5087 // If the increment is an inbounds GEP, then we know the address
5088 // space cannot be wrapped around. We cannot make any guarantee
5089 // about signed or unsigned overflow because pointers are
5090 // unsigned but we may have a negative index from the base
5091 // pointer. We can guarantee that no unsigned wrap occurs if the
5092 // indices form a positive value.
5093 if (GEP
->isInBounds() && GEP
->getOperand(0) == PN
) {
5094 Flags
= setFlags(Flags
, SCEV::FlagNW
);
5096 const SCEV
*Ptr
= getSCEV(GEP
->getPointerOperand());
5097 if (isKnownPositive(getMinusSCEV(getSCEV(GEP
), Ptr
)))
5098 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5101 // We cannot transfer nuw and nsw flags from subtraction
5102 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5106 const SCEV
*StartVal
= getSCEV(StartValueV
);
5107 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5109 // Okay, for the entire analysis of this edge we assumed the PHI
5110 // to be symbolic. We now need to go back and purge all of the
5111 // entries for the scalars that use the symbolic expression.
5112 forgetSymbolicName(PN
, SymbolicName
);
5113 ValueExprMap
[SCEVCallbackVH(PN
, this)] = PHISCEV
;
5115 // We can add Flags to the post-inc expression only if we
5116 // know that it is *undefined behavior* for BEValueV to
5118 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
))
5119 if (isLoopInvariant(Accum
, L
) && isAddRecNeverPoison(BEInst
, L
))
5120 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5126 // Otherwise, this could be a loop like this:
5127 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5128 // In this case, j = {1,+,1} and BEValue is j.
5129 // Because the other in-value of i (0) fits the evolution of BEValue
5130 // i really is an addrec evolution.
5132 // We can generalize this saying that i is the shifted value of BEValue
5133 // by one iteration:
5134 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5135 const SCEV
*Shifted
= SCEVShiftRewriter::rewrite(BEValue
, L
, *this);
5136 const SCEV
*Start
= SCEVInitRewriter::rewrite(Shifted
, L
, *this, false);
5137 if (Shifted
!= getCouldNotCompute() &&
5138 Start
!= getCouldNotCompute()) {
5139 const SCEV
*StartVal
= getSCEV(StartValueV
);
5140 if (Start
== StartVal
) {
5141 // Okay, for the entire analysis of this edge we assumed the PHI
5142 // to be symbolic. We now need to go back and purge all of the
5143 // entries for the scalars that use the symbolic expression.
5144 forgetSymbolicName(PN
, SymbolicName
);
5145 ValueExprMap
[SCEVCallbackVH(PN
, this)] = Shifted
;
5151 // Remove the temporary PHI node SCEV that has been inserted while intending
5152 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5153 // as it will prevent later (possibly simpler) SCEV expressions to be added
5154 // to the ValueExprMap.
5155 eraseValueFromMap(PN
);
5160 // Checks if the SCEV S is available at BB. S is considered available at BB
5161 // if S can be materialized at BB without introducing a fault.
5162 static bool IsAvailableOnEntry(const Loop
*L
, DominatorTree
&DT
, const SCEV
*S
,
5164 struct CheckAvailable
{
5165 bool TraversalDone
= false;
5166 bool Available
= true;
5168 const Loop
*L
= nullptr; // The loop BB is in (can be nullptr)
5169 BasicBlock
*BB
= nullptr;
5172 CheckAvailable(const Loop
*L
, BasicBlock
*BB
, DominatorTree
&DT
)
5173 : L(L
), BB(BB
), DT(DT
) {}
5175 bool setUnavailable() {
5176 TraversalDone
= true;
5181 bool follow(const SCEV
*S
) {
5182 switch (S
->getSCEVType()) {
5183 case scConstant
: case scTruncate
: case scZeroExtend
: case scSignExtend
:
5184 case scAddExpr
: case scMulExpr
: case scUMaxExpr
: case scSMaxExpr
:
5187 // These expressions are available if their operand(s) is/are.
5190 case scAddRecExpr
: {
5191 // We allow add recurrences that are on the loop BB is in, or some
5192 // outer loop. This guarantees availability because the value of the
5193 // add recurrence at BB is simply the "current" value of the induction
5194 // variable. We can relax this in the future; for instance an add
5195 // recurrence on a sibling dominating loop is also available at BB.
5196 const auto *ARLoop
= cast
<SCEVAddRecExpr
>(S
)->getLoop();
5197 if (L
&& (ARLoop
== L
|| ARLoop
->contains(L
)))
5200 return setUnavailable();
5204 // For SCEVUnknown, we check for simple dominance.
5205 const auto *SU
= cast
<SCEVUnknown
>(S
);
5206 Value
*V
= SU
->getValue();
5208 if (isa
<Argument
>(V
))
5211 if (isa
<Instruction
>(V
) && DT
.dominates(cast
<Instruction
>(V
), BB
))
5214 return setUnavailable();
5218 case scCouldNotCompute
:
5219 // We do not try to smart about these at all.
5220 return setUnavailable();
5222 llvm_unreachable("switch should be fully covered!");
5225 bool isDone() { return TraversalDone
; }
5228 CheckAvailable
CA(L
, BB
, DT
);
5229 SCEVTraversal
<CheckAvailable
> ST(CA
);
5232 return CA
.Available
;
5235 // Try to match a control flow sequence that branches out at BI and merges back
5236 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5238 static bool BrPHIToSelect(DominatorTree
&DT
, BranchInst
*BI
, PHINode
*Merge
,
5239 Value
*&C
, Value
*&LHS
, Value
*&RHS
) {
5240 C
= BI
->getCondition();
5242 BasicBlockEdge
LeftEdge(BI
->getParent(), BI
->getSuccessor(0));
5243 BasicBlockEdge
RightEdge(BI
->getParent(), BI
->getSuccessor(1));
5245 if (!LeftEdge
.isSingleEdge())
5248 assert(RightEdge
.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5250 Use
&LeftUse
= Merge
->getOperandUse(0);
5251 Use
&RightUse
= Merge
->getOperandUse(1);
5253 if (DT
.dominates(LeftEdge
, LeftUse
) && DT
.dominates(RightEdge
, RightUse
)) {
5259 if (DT
.dominates(LeftEdge
, RightUse
) && DT
.dominates(RightEdge
, LeftUse
)) {
5268 const SCEV
*ScalarEvolution::createNodeFromSelectLikePHI(PHINode
*PN
) {
5270 [&](BasicBlock
*BB
) { return DT
.isReachableFromEntry(BB
); };
5271 if (PN
->getNumIncomingValues() == 2 && all_of(PN
->blocks(), IsReachable
)) {
5272 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5274 // We don't want to break LCSSA, even in a SCEV expression tree.
5275 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
5276 if (LI
.getLoopFor(PN
->getIncomingBlock(i
)) != L
)
5281 // br %cond, label %left, label %right
5287 // V = phi [ %x, %left ], [ %y, %right ]
5289 // as "select %cond, %x, %y"
5291 BasicBlock
*IDom
= DT
[PN
->getParent()]->getIDom()->getBlock();
5292 assert(IDom
&& "At least the entry block should dominate PN");
5294 auto *BI
= dyn_cast
<BranchInst
>(IDom
->getTerminator());
5295 Value
*Cond
= nullptr, *LHS
= nullptr, *RHS
= nullptr;
5297 if (BI
&& BI
->isConditional() &&
5298 BrPHIToSelect(DT
, BI
, PN
, Cond
, LHS
, RHS
) &&
5299 IsAvailableOnEntry(L
, DT
, getSCEV(LHS
), PN
->getParent()) &&
5300 IsAvailableOnEntry(L
, DT
, getSCEV(RHS
), PN
->getParent()))
5301 return createNodeForSelectOrPHI(PN
, Cond
, LHS
, RHS
);
5307 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
5308 if (const SCEV
*S
= createAddRecFromPHI(PN
))
5311 if (const SCEV
*S
= createNodeFromSelectLikePHI(PN
))
5314 // If the PHI has a single incoming value, follow that value, unless the
5315 // PHI's incoming blocks are in a different loop, in which case doing so
5316 // risks breaking LCSSA form. Instcombine would normally zap these, but
5317 // it doesn't have DominatorTree information, so it may miss cases.
5318 if (Value
*V
= SimplifyInstruction(PN
, {getDataLayout(), &TLI
, &DT
, &AC
}))
5319 if (LI
.replacementPreservesLCSSAForm(PN
, V
))
5322 // If it's not a loop phi, we can't handle it yet.
5323 return getUnknown(PN
);
5326 const SCEV
*ScalarEvolution::createNodeForSelectOrPHI(Instruction
*I
,
5330 // Handle "constant" branch or select. This can occur for instance when a
5331 // loop pass transforms an inner loop and moves on to process the outer loop.
5332 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
))
5333 return getSCEV(CI
->isOne() ? TrueVal
: FalseVal
);
5335 // Try to match some simple smax or umax patterns.
5336 auto *ICI
= dyn_cast
<ICmpInst
>(Cond
);
5338 return getUnknown(I
);
5340 Value
*LHS
= ICI
->getOperand(0);
5341 Value
*RHS
= ICI
->getOperand(1);
5343 switch (ICI
->getPredicate()) {
5344 case ICmpInst::ICMP_SLT
:
5345 case ICmpInst::ICMP_SLE
:
5346 std::swap(LHS
, RHS
);
5348 case ICmpInst::ICMP_SGT
:
5349 case ICmpInst::ICMP_SGE
:
5350 // a >s b ? a+x : b+x -> smax(a, b)+x
5351 // a >s b ? b+x : a+x -> smin(a, b)+x
5352 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType())) {
5353 const SCEV
*LS
= getNoopOrSignExtend(getSCEV(LHS
), I
->getType());
5354 const SCEV
*RS
= getNoopOrSignExtend(getSCEV(RHS
), I
->getType());
5355 const SCEV
*LA
= getSCEV(TrueVal
);
5356 const SCEV
*RA
= getSCEV(FalseVal
);
5357 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
5358 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
5360 return getAddExpr(getSMaxExpr(LS
, RS
), LDiff
);
5361 LDiff
= getMinusSCEV(LA
, RS
);
5362 RDiff
= getMinusSCEV(RA
, LS
);
5364 return getAddExpr(getSMinExpr(LS
, RS
), LDiff
);
5367 case ICmpInst::ICMP_ULT
:
5368 case ICmpInst::ICMP_ULE
:
5369 std::swap(LHS
, RHS
);
5371 case ICmpInst::ICMP_UGT
:
5372 case ICmpInst::ICMP_UGE
:
5373 // a >u b ? a+x : b+x -> umax(a, b)+x
5374 // a >u b ? b+x : a+x -> umin(a, b)+x
5375 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType())) {
5376 const SCEV
*LS
= getNoopOrZeroExtend(getSCEV(LHS
), I
->getType());
5377 const SCEV
*RS
= getNoopOrZeroExtend(getSCEV(RHS
), I
->getType());
5378 const SCEV
*LA
= getSCEV(TrueVal
);
5379 const SCEV
*RA
= getSCEV(FalseVal
);
5380 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
5381 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
5383 return getAddExpr(getUMaxExpr(LS
, RS
), LDiff
);
5384 LDiff
= getMinusSCEV(LA
, RS
);
5385 RDiff
= getMinusSCEV(RA
, LS
);
5387 return getAddExpr(getUMinExpr(LS
, RS
), LDiff
);
5390 case ICmpInst::ICMP_NE
:
5391 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5392 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType()) &&
5393 isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()) {
5394 const SCEV
*One
= getOne(I
->getType());
5395 const SCEV
*LS
= getNoopOrZeroExtend(getSCEV(LHS
), I
->getType());
5396 const SCEV
*LA
= getSCEV(TrueVal
);
5397 const SCEV
*RA
= getSCEV(FalseVal
);
5398 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
5399 const SCEV
*RDiff
= getMinusSCEV(RA
, One
);
5401 return getAddExpr(getUMaxExpr(One
, LS
), LDiff
);
5404 case ICmpInst::ICMP_EQ
:
5405 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5406 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(I
->getType()) &&
5407 isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()) {
5408 const SCEV
*One
= getOne(I
->getType());
5409 const SCEV
*LS
= getNoopOrZeroExtend(getSCEV(LHS
), I
->getType());
5410 const SCEV
*LA
= getSCEV(TrueVal
);
5411 const SCEV
*RA
= getSCEV(FalseVal
);
5412 const SCEV
*LDiff
= getMinusSCEV(LA
, One
);
5413 const SCEV
*RDiff
= getMinusSCEV(RA
, LS
);
5415 return getAddExpr(getUMaxExpr(One
, LS
), LDiff
);
5422 return getUnknown(I
);
5425 /// Expand GEP instructions into add and multiply operations. This allows them
5426 /// to be analyzed by regular SCEV code.
5427 const SCEV
*ScalarEvolution::createNodeForGEP(GEPOperator
*GEP
) {
5428 // Don't attempt to analyze GEPs over unsized objects.
5429 if (!GEP
->getSourceElementType()->isSized())
5430 return getUnknown(GEP
);
5432 SmallVector
<const SCEV
*, 4> IndexExprs
;
5433 for (auto Index
= GEP
->idx_begin(); Index
!= GEP
->idx_end(); ++Index
)
5434 IndexExprs
.push_back(getSCEV(*Index
));
5435 return getGEPExpr(GEP
, IndexExprs
);
5438 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV
*S
) {
5439 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
5440 return C
->getAPInt().countTrailingZeros();
5442 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(S
))
5443 return std::min(GetMinTrailingZeros(T
->getOperand()),
5444 (uint32_t)getTypeSizeInBits(T
->getType()));
5446 if (const SCEVZeroExtendExpr
*E
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
5447 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
5448 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType())
5449 ? getTypeSizeInBits(E
->getType())
5453 if (const SCEVSignExtendExpr
*E
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
5454 uint32_t OpRes
= GetMinTrailingZeros(E
->getOperand());
5455 return OpRes
== getTypeSizeInBits(E
->getOperand()->getType())
5456 ? getTypeSizeInBits(E
->getType())
5460 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(S
)) {
5461 // The result is the min of all operands results.
5462 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
5463 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5464 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
5468 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(S
)) {
5469 // The result is the sum of all operands results.
5470 uint32_t SumOpRes
= GetMinTrailingZeros(M
->getOperand(0));
5471 uint32_t BitWidth
= getTypeSizeInBits(M
->getType());
5472 for (unsigned i
= 1, e
= M
->getNumOperands();
5473 SumOpRes
!= BitWidth
&& i
!= e
; ++i
)
5475 std::min(SumOpRes
+ GetMinTrailingZeros(M
->getOperand(i
)), BitWidth
);
5479 if (const SCEVAddRecExpr
*A
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
5480 // The result is the min of all operands results.
5481 uint32_t MinOpRes
= GetMinTrailingZeros(A
->getOperand(0));
5482 for (unsigned i
= 1, e
= A
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5483 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(A
->getOperand(i
)));
5487 if (const SCEVSMaxExpr
*M
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
5488 // The result is the min of all operands results.
5489 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
5490 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5491 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
5495 if (const SCEVUMaxExpr
*M
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
5496 // The result is the min of all operands results.
5497 uint32_t MinOpRes
= GetMinTrailingZeros(M
->getOperand(0));
5498 for (unsigned i
= 1, e
= M
->getNumOperands(); MinOpRes
&& i
!= e
; ++i
)
5499 MinOpRes
= std::min(MinOpRes
, GetMinTrailingZeros(M
->getOperand(i
)));
5503 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
5504 // For a SCEVUnknown, ask ValueTracking.
5505 KnownBits Known
= computeKnownBits(U
->getValue(), getDataLayout(), 0, &AC
, nullptr, &DT
);
5506 return Known
.countMinTrailingZeros();
5513 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV
*S
) {
5514 auto I
= MinTrailingZerosCache
.find(S
);
5515 if (I
!= MinTrailingZerosCache
.end())
5518 uint32_t Result
= GetMinTrailingZerosImpl(S
);
5519 auto InsertPair
= MinTrailingZerosCache
.insert({S
, Result
});
5520 assert(InsertPair
.second
&& "Should insert a new key");
5521 return InsertPair
.first
->second
;
5524 /// Helper method to assign a range to V from metadata present in the IR.
5525 static Optional
<ConstantRange
> GetRangeFromMetadata(Value
*V
) {
5526 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5527 if (MDNode
*MD
= I
->getMetadata(LLVMContext::MD_range
))
5528 return getConstantRangeFromMetadata(*MD
);
5533 /// Determine the range for a particular SCEV. If SignHint is
5534 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5535 /// with a "cleaner" unsigned (resp. signed) representation.
5536 const ConstantRange
&
5537 ScalarEvolution::getRangeRef(const SCEV
*S
,
5538 ScalarEvolution::RangeSignHint SignHint
) {
5539 DenseMap
<const SCEV
*, ConstantRange
> &Cache
=
5540 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? UnsignedRanges
5542 ConstantRange::PreferredRangeType RangeType
=
5543 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
5544 ? ConstantRange::Unsigned
: ConstantRange::Signed
;
5546 // See if we've computed this range already.
5547 DenseMap
<const SCEV
*, ConstantRange
>::iterator I
= Cache
.find(S
);
5548 if (I
!= Cache
.end())
5551 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
5552 return setRange(C
, SignHint
, ConstantRange(C
->getAPInt()));
5554 unsigned BitWidth
= getTypeSizeInBits(S
->getType());
5555 ConstantRange
ConservativeResult(BitWidth
, /*isFullSet=*/true);
5557 // If the value has known zeros, the maximum value will have those known zeros
5559 uint32_t TZ
= GetMinTrailingZeros(S
);
5561 if (SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
)
5562 ConservativeResult
=
5563 ConstantRange(APInt::getMinValue(BitWidth
),
5564 APInt::getMaxValue(BitWidth
).lshr(TZ
).shl(TZ
) + 1);
5566 ConservativeResult
= ConstantRange(
5567 APInt::getSignedMinValue(BitWidth
),
5568 APInt::getSignedMaxValue(BitWidth
).ashr(TZ
).shl(TZ
) + 1);
5571 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
)) {
5572 ConstantRange X
= getRangeRef(Add
->getOperand(0), SignHint
);
5573 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5574 X
= X
.add(getRangeRef(Add
->getOperand(i
), SignHint
));
5575 return setRange(Add
, SignHint
,
5576 ConservativeResult
.intersectWith(X
, RangeType
));
5579 if (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
5580 ConstantRange X
= getRangeRef(Mul
->getOperand(0), SignHint
);
5581 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
5582 X
= X
.multiply(getRangeRef(Mul
->getOperand(i
), SignHint
));
5583 return setRange(Mul
, SignHint
,
5584 ConservativeResult
.intersectWith(X
, RangeType
));
5587 if (const SCEVSMaxExpr
*SMax
= dyn_cast
<SCEVSMaxExpr
>(S
)) {
5588 ConstantRange X
= getRangeRef(SMax
->getOperand(0), SignHint
);
5589 for (unsigned i
= 1, e
= SMax
->getNumOperands(); i
!= e
; ++i
)
5590 X
= X
.smax(getRangeRef(SMax
->getOperand(i
), SignHint
));
5591 return setRange(SMax
, SignHint
,
5592 ConservativeResult
.intersectWith(X
, RangeType
));
5595 if (const SCEVUMaxExpr
*UMax
= dyn_cast
<SCEVUMaxExpr
>(S
)) {
5596 ConstantRange X
= getRangeRef(UMax
->getOperand(0), SignHint
);
5597 for (unsigned i
= 1, e
= UMax
->getNumOperands(); i
!= e
; ++i
)
5598 X
= X
.umax(getRangeRef(UMax
->getOperand(i
), SignHint
));
5599 return setRange(UMax
, SignHint
,
5600 ConservativeResult
.intersectWith(X
, RangeType
));
5603 if (const SCEVSMinExpr
*SMin
= dyn_cast
<SCEVSMinExpr
>(S
)) {
5604 ConstantRange X
= getRangeRef(SMin
->getOperand(0), SignHint
);
5605 for (unsigned i
= 1, e
= SMin
->getNumOperands(); i
!= e
; ++i
)
5606 X
= X
.smin(getRangeRef(SMin
->getOperand(i
), SignHint
));
5607 return setRange(SMin
, SignHint
,
5608 ConservativeResult
.intersectWith(X
, RangeType
));
5611 if (const SCEVUMinExpr
*UMin
= dyn_cast
<SCEVUMinExpr
>(S
)) {
5612 ConstantRange X
= getRangeRef(UMin
->getOperand(0), SignHint
);
5613 for (unsigned i
= 1, e
= UMin
->getNumOperands(); i
!= e
; ++i
)
5614 X
= X
.umin(getRangeRef(UMin
->getOperand(i
), SignHint
));
5615 return setRange(UMin
, SignHint
,
5616 ConservativeResult
.intersectWith(X
, RangeType
));
5619 if (const SCEVUDivExpr
*UDiv
= dyn_cast
<SCEVUDivExpr
>(S
)) {
5620 ConstantRange X
= getRangeRef(UDiv
->getLHS(), SignHint
);
5621 ConstantRange Y
= getRangeRef(UDiv
->getRHS(), SignHint
);
5622 return setRange(UDiv
, SignHint
,
5623 ConservativeResult
.intersectWith(X
.udiv(Y
), RangeType
));
5626 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
)) {
5627 ConstantRange X
= getRangeRef(ZExt
->getOperand(), SignHint
);
5628 return setRange(ZExt
, SignHint
,
5629 ConservativeResult
.intersectWith(X
.zeroExtend(BitWidth
),
5633 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
)) {
5634 ConstantRange X
= getRangeRef(SExt
->getOperand(), SignHint
);
5635 return setRange(SExt
, SignHint
,
5636 ConservativeResult
.intersectWith(X
.signExtend(BitWidth
),
5640 if (const SCEVTruncateExpr
*Trunc
= dyn_cast
<SCEVTruncateExpr
>(S
)) {
5641 ConstantRange X
= getRangeRef(Trunc
->getOperand(), SignHint
);
5642 return setRange(Trunc
, SignHint
,
5643 ConservativeResult
.intersectWith(X
.truncate(BitWidth
),
5647 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
5648 // If there's no unsigned wrap, the value will never be less than its
5650 if (AddRec
->hasNoUnsignedWrap())
5651 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(AddRec
->getStart()))
5652 if (!C
->getValue()->isZero())
5653 ConservativeResult
= ConservativeResult
.intersectWith(
5654 ConstantRange(C
->getAPInt(), APInt(BitWidth
, 0)), RangeType
);
5656 // If there's no signed wrap, and all the operands have the same sign or
5657 // zero, the value won't ever change sign.
5658 if (AddRec
->hasNoSignedWrap()) {
5659 bool AllNonNeg
= true;
5660 bool AllNonPos
= true;
5661 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
5662 if (!isKnownNonNegative(AddRec
->getOperand(i
))) AllNonNeg
= false;
5663 if (!isKnownNonPositive(AddRec
->getOperand(i
))) AllNonPos
= false;
5666 ConservativeResult
= ConservativeResult
.intersectWith(
5667 ConstantRange(APInt(BitWidth
, 0),
5668 APInt::getSignedMinValue(BitWidth
)), RangeType
);
5670 ConservativeResult
= ConservativeResult
.intersectWith(
5671 ConstantRange(APInt::getSignedMinValue(BitWidth
),
5672 APInt(BitWidth
, 1)), RangeType
);
5675 // TODO: non-affine addrec
5676 if (AddRec
->isAffine()) {
5677 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(AddRec
->getLoop());
5678 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
5679 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
) {
5680 auto RangeFromAffine
= getRangeForAffineAR(
5681 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
,
5683 if (!RangeFromAffine
.isFullSet())
5684 ConservativeResult
=
5685 ConservativeResult
.intersectWith(RangeFromAffine
, RangeType
);
5687 auto RangeFromFactoring
= getRangeViaFactoring(
5688 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
,
5690 if (!RangeFromFactoring
.isFullSet())
5691 ConservativeResult
=
5692 ConservativeResult
.intersectWith(RangeFromFactoring
, RangeType
);
5696 return setRange(AddRec
, SignHint
, std::move(ConservativeResult
));
5699 if (const SCEVUnknown
*U
= dyn_cast
<SCEVUnknown
>(S
)) {
5700 // Check if the IR explicitly contains !range metadata.
5701 Optional
<ConstantRange
> MDRange
= GetRangeFromMetadata(U
->getValue());
5702 if (MDRange
.hasValue())
5703 ConservativeResult
= ConservativeResult
.intersectWith(MDRange
.getValue(),
5706 // Split here to avoid paying the compile-time cost of calling both
5707 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5709 const DataLayout
&DL
= getDataLayout();
5710 if (SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
) {
5711 // For a SCEVUnknown, ask ValueTracking.
5712 KnownBits Known
= computeKnownBits(U
->getValue(), DL
, 0, &AC
, nullptr, &DT
);
5713 if (Known
.One
!= ~Known
.Zero
+ 1)
5714 ConservativeResult
=
5715 ConservativeResult
.intersectWith(
5716 ConstantRange(Known
.One
, ~Known
.Zero
+ 1), RangeType
);
5718 assert(SignHint
== ScalarEvolution::HINT_RANGE_SIGNED
&&
5719 "generalize as needed!");
5720 unsigned NS
= ComputeNumSignBits(U
->getValue(), DL
, 0, &AC
, nullptr, &DT
);
5722 ConservativeResult
= ConservativeResult
.intersectWith(
5723 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
5724 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1) + 1),
5728 // A range of Phi is a subset of union of all ranges of its input.
5729 if (const PHINode
*Phi
= dyn_cast
<PHINode
>(U
->getValue())) {
5730 // Make sure that we do not run over cycled Phis.
5731 if (PendingPhiRanges
.insert(Phi
).second
) {
5732 ConstantRange
RangeFromOps(BitWidth
, /*isFullSet=*/false);
5733 for (auto &Op
: Phi
->operands()) {
5734 auto OpRange
= getRangeRef(getSCEV(Op
), SignHint
);
5735 RangeFromOps
= RangeFromOps
.unionWith(OpRange
);
5736 // No point to continue if we already have a full set.
5737 if (RangeFromOps
.isFullSet())
5740 ConservativeResult
=
5741 ConservativeResult
.intersectWith(RangeFromOps
, RangeType
);
5742 bool Erased
= PendingPhiRanges
.erase(Phi
);
5743 assert(Erased
&& "Failed to erase Phi properly?");
5748 return setRange(U
, SignHint
, std::move(ConservativeResult
));
5751 return setRange(S
, SignHint
, std::move(ConservativeResult
));
5754 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5755 // values that the expression can take. Initially, the expression has a value
5756 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5757 // argument defines if we treat Step as signed or unsigned.
5758 static ConstantRange
getRangeForAffineARHelper(APInt Step
,
5759 const ConstantRange
&StartRange
,
5760 const APInt
&MaxBECount
,
5761 unsigned BitWidth
, bool Signed
) {
5762 // If either Step or MaxBECount is 0, then the expression won't change, and we
5763 // just need to return the initial range.
5764 if (Step
== 0 || MaxBECount
== 0)
5767 // If we don't know anything about the initial value (i.e. StartRange is
5768 // FullRange), then we don't know anything about the final range either.
5769 // Return FullRange.
5770 if (StartRange
.isFullSet())
5771 return ConstantRange::getFull(BitWidth
);
5773 // If Step is signed and negative, then we use its absolute value, but we also
5774 // note that we're moving in the opposite direction.
5775 bool Descending
= Signed
&& Step
.isNegative();
5778 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5779 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5780 // This equations hold true due to the well-defined wrap-around behavior of
5784 // Check if Offset is more than full span of BitWidth. If it is, the
5785 // expression is guaranteed to overflow.
5786 if (APInt::getMaxValue(StartRange
.getBitWidth()).udiv(Step
).ult(MaxBECount
))
5787 return ConstantRange::getFull(BitWidth
);
5789 // Offset is by how much the expression can change. Checks above guarantee no
5791 APInt Offset
= Step
* MaxBECount
;
5793 // Minimum value of the final range will match the minimal value of StartRange
5794 // if the expression is increasing and will be decreased by Offset otherwise.
5795 // Maximum value of the final range will match the maximal value of StartRange
5796 // if the expression is decreasing and will be increased by Offset otherwise.
5797 APInt StartLower
= StartRange
.getLower();
5798 APInt StartUpper
= StartRange
.getUpper() - 1;
5799 APInt MovedBoundary
= Descending
? (StartLower
- std::move(Offset
))
5800 : (StartUpper
+ std::move(Offset
));
5802 // It's possible that the new minimum/maximum value will fall into the initial
5803 // range (due to wrap around). This means that the expression can take any
5804 // value in this bitwidth, and we have to return full range.
5805 if (StartRange
.contains(MovedBoundary
))
5806 return ConstantRange::getFull(BitWidth
);
5809 Descending
? std::move(MovedBoundary
) : std::move(StartLower
);
5811 Descending
? std::move(StartUpper
) : std::move(MovedBoundary
);
5814 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5815 return ConstantRange::getNonEmpty(std::move(NewLower
), std::move(NewUpper
));
5818 ConstantRange
ScalarEvolution::getRangeForAffineAR(const SCEV
*Start
,
5820 const SCEV
*MaxBECount
,
5821 unsigned BitWidth
) {
5822 assert(!isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
5823 getTypeSizeInBits(MaxBECount
->getType()) <= BitWidth
&&
5826 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, Start
->getType());
5827 APInt MaxBECountValue
= getUnsignedRangeMax(MaxBECount
);
5829 // First, consider step signed.
5830 ConstantRange StartSRange
= getSignedRange(Start
);
5831 ConstantRange StepSRange
= getSignedRange(Step
);
5833 // If Step can be both positive and negative, we need to find ranges for the
5834 // maximum absolute step values in both directions and union them.
5836 getRangeForAffineARHelper(StepSRange
.getSignedMin(), StartSRange
,
5837 MaxBECountValue
, BitWidth
, /* Signed = */ true);
5838 SR
= SR
.unionWith(getRangeForAffineARHelper(StepSRange
.getSignedMax(),
5839 StartSRange
, MaxBECountValue
,
5840 BitWidth
, /* Signed = */ true));
5842 // Next, consider step unsigned.
5843 ConstantRange UR
= getRangeForAffineARHelper(
5844 getUnsignedRangeMax(Step
), getUnsignedRange(Start
),
5845 MaxBECountValue
, BitWidth
, /* Signed = */ false);
5847 // Finally, intersect signed and unsigned ranges.
5848 return SR
.intersectWith(UR
, ConstantRange::Smallest
);
5851 ConstantRange
ScalarEvolution::getRangeViaFactoring(const SCEV
*Start
,
5853 const SCEV
*MaxBECount
,
5854 unsigned BitWidth
) {
5855 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5856 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5858 struct SelectPattern
{
5859 Value
*Condition
= nullptr;
5863 explicit SelectPattern(ScalarEvolution
&SE
, unsigned BitWidth
,
5865 Optional
<unsigned> CastOp
;
5866 APInt
Offset(BitWidth
, 0);
5868 assert(SE
.getTypeSizeInBits(S
->getType()) == BitWidth
&&
5871 // Peel off a constant offset:
5872 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(S
)) {
5873 // In the future we could consider being smarter here and handle
5874 // {Start+Step,+,Step} too.
5875 if (SA
->getNumOperands() != 2 || !isa
<SCEVConstant
>(SA
->getOperand(0)))
5878 Offset
= cast
<SCEVConstant
>(SA
->getOperand(0))->getAPInt();
5879 S
= SA
->getOperand(1);
5882 // Peel off a cast operation
5883 if (auto *SCast
= dyn_cast
<SCEVCastExpr
>(S
)) {
5884 CastOp
= SCast
->getSCEVType();
5885 S
= SCast
->getOperand();
5888 using namespace llvm::PatternMatch
;
5890 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
5891 const APInt
*TrueVal
, *FalseVal
;
5893 !match(SU
->getValue(), m_Select(m_Value(Condition
), m_APInt(TrueVal
),
5894 m_APInt(FalseVal
)))) {
5895 Condition
= nullptr;
5899 TrueValue
= *TrueVal
;
5900 FalseValue
= *FalseVal
;
5902 // Re-apply the cast we peeled off earlier
5903 if (CastOp
.hasValue())
5906 llvm_unreachable("Unknown SCEV cast type!");
5909 TrueValue
= TrueValue
.trunc(BitWidth
);
5910 FalseValue
= FalseValue
.trunc(BitWidth
);
5913 TrueValue
= TrueValue
.zext(BitWidth
);
5914 FalseValue
= FalseValue
.zext(BitWidth
);
5917 TrueValue
= TrueValue
.sext(BitWidth
);
5918 FalseValue
= FalseValue
.sext(BitWidth
);
5922 // Re-apply the constant offset we peeled off earlier
5923 TrueValue
+= Offset
;
5924 FalseValue
+= Offset
;
5927 bool isRecognized() { return Condition
!= nullptr; }
5930 SelectPattern
StartPattern(*this, BitWidth
, Start
);
5931 if (!StartPattern
.isRecognized())
5932 return ConstantRange::getFull(BitWidth
);
5934 SelectPattern
StepPattern(*this, BitWidth
, Step
);
5935 if (!StepPattern
.isRecognized())
5936 return ConstantRange::getFull(BitWidth
);
5938 if (StartPattern
.Condition
!= StepPattern
.Condition
) {
5939 // We don't handle this case today; but we could, by considering four
5940 // possibilities below instead of two. I'm not sure if there are cases where
5941 // that will help over what getRange already does, though.
5942 return ConstantRange::getFull(BitWidth
);
5945 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5946 // construct arbitrary general SCEV expressions here. This function is called
5947 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5948 // say) can end up caching a suboptimal value.
5950 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5951 // C2352 and C2512 (otherwise it isn't needed).
5953 const SCEV
*TrueStart
= this->getConstant(StartPattern
.TrueValue
);
5954 const SCEV
*TrueStep
= this->getConstant(StepPattern
.TrueValue
);
5955 const SCEV
*FalseStart
= this->getConstant(StartPattern
.FalseValue
);
5956 const SCEV
*FalseStep
= this->getConstant(StepPattern
.FalseValue
);
5958 ConstantRange TrueRange
=
5959 this->getRangeForAffineAR(TrueStart
, TrueStep
, MaxBECount
, BitWidth
);
5960 ConstantRange FalseRange
=
5961 this->getRangeForAffineAR(FalseStart
, FalseStep
, MaxBECount
, BitWidth
);
5963 return TrueRange
.unionWith(FalseRange
);
5966 SCEV::NoWrapFlags
ScalarEvolution::getNoWrapFlagsFromUB(const Value
*V
) {
5967 if (isa
<ConstantExpr
>(V
)) return SCEV::FlagAnyWrap
;
5968 const BinaryOperator
*BinOp
= cast
<BinaryOperator
>(V
);
5970 // Return early if there are no flags to propagate to the SCEV.
5971 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5972 if (BinOp
->hasNoUnsignedWrap())
5973 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
5974 if (BinOp
->hasNoSignedWrap())
5975 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
5976 if (Flags
== SCEV::FlagAnyWrap
)
5977 return SCEV::FlagAnyWrap
;
5979 return isSCEVExprNeverPoison(BinOp
) ? Flags
: SCEV::FlagAnyWrap
;
5982 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction
*I
) {
5983 // Here we check that I is in the header of the innermost loop containing I,
5984 // since we only deal with instructions in the loop header. The actual loop we
5985 // need to check later will come from an add recurrence, but getting that
5986 // requires computing the SCEV of the operands, which can be expensive. This
5987 // check we can do cheaply to rule out some cases early.
5988 Loop
*InnermostContainingLoop
= LI
.getLoopFor(I
->getParent());
5989 if (InnermostContainingLoop
== nullptr ||
5990 InnermostContainingLoop
->getHeader() != I
->getParent())
5993 // Only proceed if we can prove that I does not yield poison.
5994 if (!programUndefinedIfFullPoison(I
))
5997 // At this point we know that if I is executed, then it does not wrap
5998 // according to at least one of NSW or NUW. If I is not executed, then we do
5999 // not know if the calculation that I represents would wrap. Multiple
6000 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6001 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6002 // derived from other instructions that map to the same SCEV. We cannot make
6003 // that guarantee for cases where I is not executed. So we need to find the
6004 // loop that I is considered in relation to and prove that I is executed for
6005 // every iteration of that loop. That implies that the value that I
6006 // calculates does not wrap anywhere in the loop, so then we can apply the
6007 // flags to the SCEV.
6009 // We check isLoopInvariant to disambiguate in case we are adding recurrences
6010 // from different loops, so that we know which loop to prove that I is
6012 for (unsigned OpIndex
= 0; OpIndex
< I
->getNumOperands(); ++OpIndex
) {
6013 // I could be an extractvalue from a call to an overflow intrinsic.
6014 // TODO: We can do better here in some cases.
6015 if (!isSCEVable(I
->getOperand(OpIndex
)->getType()))
6017 const SCEV
*Op
= getSCEV(I
->getOperand(OpIndex
));
6018 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
6019 bool AllOtherOpsLoopInvariant
= true;
6020 for (unsigned OtherOpIndex
= 0; OtherOpIndex
< I
->getNumOperands();
6022 if (OtherOpIndex
!= OpIndex
) {
6023 const SCEV
*OtherOp
= getSCEV(I
->getOperand(OtherOpIndex
));
6024 if (!isLoopInvariant(OtherOp
, AddRec
->getLoop())) {
6025 AllOtherOpsLoopInvariant
= false;
6030 if (AllOtherOpsLoopInvariant
&&
6031 isGuaranteedToExecuteForEveryIteration(I
, AddRec
->getLoop()))
6038 bool ScalarEvolution::isAddRecNeverPoison(const Instruction
*I
, const Loop
*L
) {
6039 // If we know that \c I can never be poison period, then that's enough.
6040 if (isSCEVExprNeverPoison(I
))
6043 // For an add recurrence specifically, we assume that infinite loops without
6044 // side effects are undefined behavior, and then reason as follows:
6046 // If the add recurrence is poison in any iteration, it is poison on all
6047 // future iterations (since incrementing poison yields poison). If the result
6048 // of the add recurrence is fed into the loop latch condition and the loop
6049 // does not contain any throws or exiting blocks other than the latch, we now
6050 // have the ability to "choose" whether the backedge is taken or not (by
6051 // choosing a sufficiently evil value for the poison feeding into the branch)
6052 // for every iteration including and after the one in which \p I first became
6053 // poison. There are two possibilities (let's call the iteration in which \p
6054 // I first became poison as K):
6056 // 1. In the set of iterations including and after K, the loop body executes
6057 // no side effects. In this case executing the backege an infinte number
6058 // of times will yield undefined behavior.
6060 // 2. In the set of iterations including and after K, the loop body executes
6061 // at least one side effect. In this case, that specific instance of side
6062 // effect is control dependent on poison, which also yields undefined
6065 auto *ExitingBB
= L
->getExitingBlock();
6066 auto *LatchBB
= L
->getLoopLatch();
6067 if (!ExitingBB
|| !LatchBB
|| ExitingBB
!= LatchBB
)
6070 SmallPtrSet
<const Instruction
*, 16> Pushed
;
6071 SmallVector
<const Instruction
*, 8> PoisonStack
;
6073 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6074 // things that are known to be fully poison under that assumption go on the
6077 PoisonStack
.push_back(I
);
6079 bool LatchControlDependentOnPoison
= false;
6080 while (!PoisonStack
.empty() && !LatchControlDependentOnPoison
) {
6081 const Instruction
*Poison
= PoisonStack
.pop_back_val();
6083 for (auto *PoisonUser
: Poison
->users()) {
6084 if (propagatesFullPoison(cast
<Instruction
>(PoisonUser
))) {
6085 if (Pushed
.insert(cast
<Instruction
>(PoisonUser
)).second
)
6086 PoisonStack
.push_back(cast
<Instruction
>(PoisonUser
));
6087 } else if (auto *BI
= dyn_cast
<BranchInst
>(PoisonUser
)) {
6088 assert(BI
->isConditional() && "Only possibility!");
6089 if (BI
->getParent() == LatchBB
) {
6090 LatchControlDependentOnPoison
= true;
6097 return LatchControlDependentOnPoison
&& loopHasNoAbnormalExits(L
);
6100 ScalarEvolution::LoopProperties
6101 ScalarEvolution::getLoopProperties(const Loop
*L
) {
6102 using LoopProperties
= ScalarEvolution::LoopProperties
;
6104 auto Itr
= LoopPropertiesCache
.find(L
);
6105 if (Itr
== LoopPropertiesCache
.end()) {
6106 auto HasSideEffects
= [](Instruction
*I
) {
6107 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
6108 return !SI
->isSimple();
6110 return I
->mayHaveSideEffects();
6113 LoopProperties LP
= {/* HasNoAbnormalExits */ true,
6114 /*HasNoSideEffects*/ true};
6116 for (auto *BB
: L
->getBlocks())
6117 for (auto &I
: *BB
) {
6118 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
6119 LP
.HasNoAbnormalExits
= false;
6120 if (HasSideEffects(&I
))
6121 LP
.HasNoSideEffects
= false;
6122 if (!LP
.HasNoAbnormalExits
&& !LP
.HasNoSideEffects
)
6123 break; // We're already as pessimistic as we can get.
6126 auto InsertPair
= LoopPropertiesCache
.insert({L
, LP
});
6127 assert(InsertPair
.second
&& "We just checked!");
6128 Itr
= InsertPair
.first
;
6134 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
6135 if (!isSCEVable(V
->getType()))
6136 return getUnknown(V
);
6138 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
6139 // Don't attempt to analyze instructions in blocks that aren't
6140 // reachable. Such instructions don't matter, and they aren't required
6141 // to obey basic rules for definitions dominating uses which this
6142 // analysis depends on.
6143 if (!DT
.isReachableFromEntry(I
->getParent()))
6144 return getUnknown(UndefValue::get(V
->getType()));
6145 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
6146 return getConstant(CI
);
6147 else if (isa
<ConstantPointerNull
>(V
))
6148 return getZero(V
->getType());
6149 else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
))
6150 return GA
->isInterposable() ? getUnknown(V
) : getSCEV(GA
->getAliasee());
6151 else if (!isa
<ConstantExpr
>(V
))
6152 return getUnknown(V
);
6154 Operator
*U
= cast
<Operator
>(V
);
6155 if (auto BO
= MatchBinaryOp(U
, DT
)) {
6156 switch (BO
->Opcode
) {
6157 case Instruction::Add
: {
6158 // The simple thing to do would be to just call getSCEV on both operands
6159 // and call getAddExpr with the result. However if we're looking at a
6160 // bunch of things all added together, this can be quite inefficient,
6161 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6162 // Instead, gather up all the operands and make a single getAddExpr call.
6163 // LLVM IR canonical form means we need only traverse the left operands.
6164 SmallVector
<const SCEV
*, 4> AddOps
;
6167 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
6168 AddOps
.push_back(OpSCEV
);
6172 // If a NUW or NSW flag can be applied to the SCEV for this
6173 // addition, then compute the SCEV for this addition by itself
6174 // with a separate call to getAddExpr. We need to do that
6175 // instead of pushing the operands of the addition onto AddOps,
6176 // since the flags are only known to apply to this particular
6177 // addition - they may not apply to other additions that can be
6178 // formed with operands from AddOps.
6179 const SCEV
*RHS
= getSCEV(BO
->RHS
);
6180 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6181 if (Flags
!= SCEV::FlagAnyWrap
) {
6182 const SCEV
*LHS
= getSCEV(BO
->LHS
);
6183 if (BO
->Opcode
== Instruction::Sub
)
6184 AddOps
.push_back(getMinusSCEV(LHS
, RHS
, Flags
));
6186 AddOps
.push_back(getAddExpr(LHS
, RHS
, Flags
));
6191 if (BO
->Opcode
== Instruction::Sub
)
6192 AddOps
.push_back(getNegativeSCEV(getSCEV(BO
->RHS
)));
6194 AddOps
.push_back(getSCEV(BO
->RHS
));
6196 auto NewBO
= MatchBinaryOp(BO
->LHS
, DT
);
6197 if (!NewBO
|| (NewBO
->Opcode
!= Instruction::Add
&&
6198 NewBO
->Opcode
!= Instruction::Sub
)) {
6199 AddOps
.push_back(getSCEV(BO
->LHS
));
6205 return getAddExpr(AddOps
);
6208 case Instruction::Mul
: {
6209 SmallVector
<const SCEV
*, 4> MulOps
;
6212 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
6213 MulOps
.push_back(OpSCEV
);
6217 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6218 if (Flags
!= SCEV::FlagAnyWrap
) {
6220 getMulExpr(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
), Flags
));
6225 MulOps
.push_back(getSCEV(BO
->RHS
));
6226 auto NewBO
= MatchBinaryOp(BO
->LHS
, DT
);
6227 if (!NewBO
|| NewBO
->Opcode
!= Instruction::Mul
) {
6228 MulOps
.push_back(getSCEV(BO
->LHS
));
6234 return getMulExpr(MulOps
);
6236 case Instruction::UDiv
:
6237 return getUDivExpr(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
));
6238 case Instruction::URem
:
6239 return getURemExpr(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
));
6240 case Instruction::Sub
: {
6241 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
6243 Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6244 return getMinusSCEV(getSCEV(BO
->LHS
), getSCEV(BO
->RHS
), Flags
);
6246 case Instruction::And
:
6247 // For an expression like x&255 that merely masks off the high bits,
6248 // use zext(trunc(x)) as the SCEV expression.
6249 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6251 return getSCEV(BO
->RHS
);
6252 if (CI
->isMinusOne())
6253 return getSCEV(BO
->LHS
);
6254 const APInt
&A
= CI
->getValue();
6256 // Instcombine's ShrinkDemandedConstant may strip bits out of
6257 // constants, obscuring what would otherwise be a low-bits mask.
6258 // Use computeKnownBits to compute what ShrinkDemandedConstant
6259 // knew about to reconstruct a low-bits mask value.
6260 unsigned LZ
= A
.countLeadingZeros();
6261 unsigned TZ
= A
.countTrailingZeros();
6262 unsigned BitWidth
= A
.getBitWidth();
6263 KnownBits
Known(BitWidth
);
6264 computeKnownBits(BO
->LHS
, Known
, getDataLayout(),
6265 0, &AC
, nullptr, &DT
);
6267 APInt EffectiveMask
=
6268 APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
- TZ
).shl(TZ
);
6269 if ((LZ
!= 0 || TZ
!= 0) && !((~A
& ~Known
.Zero
) & EffectiveMask
)) {
6270 const SCEV
*MulCount
= getConstant(APInt::getOneBitSet(BitWidth
, TZ
));
6271 const SCEV
*LHS
= getSCEV(BO
->LHS
);
6272 const SCEV
*ShiftedLHS
= nullptr;
6273 if (auto *LHSMul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
6274 if (auto *OpC
= dyn_cast
<SCEVConstant
>(LHSMul
->getOperand(0))) {
6275 // For an expression like (x * 8) & 8, simplify the multiply.
6276 unsigned MulZeros
= OpC
->getAPInt().countTrailingZeros();
6277 unsigned GCD
= std::min(MulZeros
, TZ
);
6278 APInt DivAmt
= APInt::getOneBitSet(BitWidth
, TZ
- GCD
);
6279 SmallVector
<const SCEV
*, 4> MulOps
;
6280 MulOps
.push_back(getConstant(OpC
->getAPInt().lshr(GCD
)));
6281 MulOps
.append(LHSMul
->op_begin() + 1, LHSMul
->op_end());
6282 auto *NewMul
= getMulExpr(MulOps
, LHSMul
->getNoWrapFlags());
6283 ShiftedLHS
= getUDivExpr(NewMul
, getConstant(DivAmt
));
6287 ShiftedLHS
= getUDivExpr(LHS
, MulCount
);
6290 getTruncateExpr(ShiftedLHS
,
6291 IntegerType::get(getContext(), BitWidth
- LZ
- TZ
)),
6292 BO
->LHS
->getType()),
6298 case Instruction::Or
:
6299 // If the RHS of the Or is a constant, we may have something like:
6300 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6301 // optimizations will transparently handle this case.
6303 // In order for this transformation to be safe, the LHS must be of the
6304 // form X*(2^n) and the Or constant must be less than 2^n.
6305 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6306 const SCEV
*LHS
= getSCEV(BO
->LHS
);
6307 const APInt
&CIVal
= CI
->getValue();
6308 if (GetMinTrailingZeros(LHS
) >=
6309 (CIVal
.getBitWidth() - CIVal
.countLeadingZeros())) {
6310 // Build a plain add SCEV.
6311 const SCEV
*S
= getAddExpr(LHS
, getSCEV(CI
));
6312 // If the LHS of the add was an addrec and it has no-wrap flags,
6313 // transfer the no-wrap flags, since an or won't introduce a wrap.
6314 if (const SCEVAddRecExpr
*NewAR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
6315 const SCEVAddRecExpr
*OldAR
= cast
<SCEVAddRecExpr
>(LHS
);
6316 const_cast<SCEVAddRecExpr
*>(NewAR
)->setNoWrapFlags(
6317 OldAR
->getNoWrapFlags());
6324 case Instruction::Xor
:
6325 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6326 // If the RHS of xor is -1, then this is a not operation.
6327 if (CI
->isMinusOne())
6328 return getNotSCEV(getSCEV(BO
->LHS
));
6330 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6331 // This is a variant of the check for xor with -1, and it handles
6332 // the case where instcombine has trimmed non-demanded bits out
6333 // of an xor with -1.
6334 if (auto *LBO
= dyn_cast
<BinaryOperator
>(BO
->LHS
))
6335 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(LBO
->getOperand(1)))
6336 if (LBO
->getOpcode() == Instruction::And
&&
6337 LCI
->getValue() == CI
->getValue())
6338 if (const SCEVZeroExtendExpr
*Z
=
6339 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(BO
->LHS
))) {
6340 Type
*UTy
= BO
->LHS
->getType();
6341 const SCEV
*Z0
= Z
->getOperand();
6342 Type
*Z0Ty
= Z0
->getType();
6343 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
6345 // If C is a low-bits mask, the zero extend is serving to
6346 // mask off the high bits. Complement the operand and
6347 // re-apply the zext.
6348 if (CI
->getValue().isMask(Z0TySize
))
6349 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
6351 // If C is a single bit, it may be in the sign-bit position
6352 // before the zero-extend. In this case, represent the xor
6353 // using an add, which is equivalent, and re-apply the zext.
6354 APInt Trunc
= CI
->getValue().trunc(Z0TySize
);
6355 if (Trunc
.zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
6357 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
6363 case Instruction::Shl
:
6364 // Turn shift left of a constant amount into a multiply.
6365 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
6366 uint32_t BitWidth
= cast
<IntegerType
>(SA
->getType())->getBitWidth();
6368 // If the shift count is not less than the bitwidth, the result of
6369 // the shift is undefined. Don't try to analyze it, because the
6370 // resolution chosen here may differ from the resolution chosen in
6371 // other parts of the compiler.
6372 if (SA
->getValue().uge(BitWidth
))
6375 // It is currently not resolved how to interpret NSW for left
6376 // shift by BitWidth - 1, so we avoid applying flags in that
6377 // case. Remove this check (or this comment) once the situation
6379 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6380 // and http://reviews.llvm.org/D8890 .
6381 auto Flags
= SCEV::FlagAnyWrap
;
6382 if (BO
->Op
&& SA
->getValue().ult(BitWidth
- 1))
6383 Flags
= getNoWrapFlagsFromUB(BO
->Op
);
6385 Constant
*X
= ConstantInt::get(
6386 getContext(), APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
6387 return getMulExpr(getSCEV(BO
->LHS
), getSCEV(X
), Flags
);
6391 case Instruction::AShr
: {
6392 // AShr X, C, where C is a constant.
6393 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
);
6397 Type
*OuterTy
= BO
->LHS
->getType();
6398 uint64_t BitWidth
= getTypeSizeInBits(OuterTy
);
6399 // If the shift count is not less than the bitwidth, the result of
6400 // the shift is undefined. Don't try to analyze it, because the
6401 // resolution chosen here may differ from the resolution chosen in
6402 // other parts of the compiler.
6403 if (CI
->getValue().uge(BitWidth
))
6407 return getSCEV(BO
->LHS
); // shift by zero --> noop
6409 uint64_t AShrAmt
= CI
->getZExtValue();
6410 Type
*TruncTy
= IntegerType::get(getContext(), BitWidth
- AShrAmt
);
6412 Operator
*L
= dyn_cast
<Operator
>(BO
->LHS
);
6413 if (L
&& L
->getOpcode() == Instruction::Shl
) {
6416 // Both n and m are constant.
6418 const SCEV
*ShlOp0SCEV
= getSCEV(L
->getOperand(0));
6419 if (L
->getOperand(1) == BO
->RHS
)
6420 // For a two-shift sext-inreg, i.e. n = m,
6421 // use sext(trunc(x)) as the SCEV expression.
6422 return getSignExtendExpr(
6423 getTruncateExpr(ShlOp0SCEV
, TruncTy
), OuterTy
);
6425 ConstantInt
*ShlAmtCI
= dyn_cast
<ConstantInt
>(L
->getOperand(1));
6426 if (ShlAmtCI
&& ShlAmtCI
->getValue().ult(BitWidth
)) {
6427 uint64_t ShlAmt
= ShlAmtCI
->getZExtValue();
6428 if (ShlAmt
> AShrAmt
) {
6429 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6430 // expression. We already checked that ShlAmt < BitWidth, so
6431 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6432 // ShlAmt - AShrAmt < Amt.
6433 APInt Mul
= APInt::getOneBitSet(BitWidth
- AShrAmt
,
6435 return getSignExtendExpr(
6436 getMulExpr(getTruncateExpr(ShlOp0SCEV
, TruncTy
),
6437 getConstant(Mul
)), OuterTy
);
6446 switch (U
->getOpcode()) {
6447 case Instruction::Trunc
:
6448 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
6450 case Instruction::ZExt
:
6451 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
6453 case Instruction::SExt
:
6454 if (auto BO
= MatchBinaryOp(U
->getOperand(0), DT
)) {
6455 // The NSW flag of a subtract does not always survive the conversion to
6456 // A + (-1)*B. By pushing sign extension onto its operands we are much
6457 // more likely to preserve NSW and allow later AddRec optimisations.
6459 // NOTE: This is effectively duplicating this logic from getSignExtend:
6460 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6461 // but by that point the NSW information has potentially been lost.
6462 if (BO
->Opcode
== Instruction::Sub
&& BO
->IsNSW
) {
6463 Type
*Ty
= U
->getType();
6464 auto *V1
= getSignExtendExpr(getSCEV(BO
->LHS
), Ty
);
6465 auto *V2
= getSignExtendExpr(getSCEV(BO
->RHS
), Ty
);
6466 return getMinusSCEV(V1
, V2
, SCEV::FlagNSW
);
6469 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
6471 case Instruction::BitCast
:
6472 // BitCasts are no-op casts so we just eliminate the cast.
6473 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
6474 return getSCEV(U
->getOperand(0));
6477 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6478 // lead to pointer expressions which cannot safely be expanded to GEPs,
6479 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6480 // simplifying integer expressions.
6482 case Instruction::GetElementPtr
:
6483 return createNodeForGEP(cast
<GEPOperator
>(U
));
6485 case Instruction::PHI
:
6486 return createNodeForPHI(cast
<PHINode
>(U
));
6488 case Instruction::Select
:
6489 // U can also be a select constant expr, which let fall through. Since
6490 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6491 // constant expressions cannot have instructions as operands, we'd have
6492 // returned getUnknown for a select constant expressions anyway.
6493 if (isa
<Instruction
>(U
))
6494 return createNodeForSelectOrPHI(cast
<Instruction
>(U
), U
->getOperand(0),
6495 U
->getOperand(1), U
->getOperand(2));
6498 case Instruction::Call
:
6499 case Instruction::Invoke
:
6500 if (Value
*RV
= CallSite(U
).getReturnedArgOperand())
6505 return getUnknown(V
);
6508 //===----------------------------------------------------------------------===//
6509 // Iteration Count Computation Code
6512 static unsigned getConstantTripCount(const SCEVConstant
*ExitCount
) {
6516 ConstantInt
*ExitConst
= ExitCount
->getValue();
6518 // Guard against huge trip counts.
6519 if (ExitConst
->getValue().getActiveBits() > 32)
6522 // In case of integer overflow, this returns 0, which is correct.
6523 return ((unsigned)ExitConst
->getZExtValue()) + 1;
6526 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop
*L
) {
6527 if (BasicBlock
*ExitingBB
= L
->getExitingBlock())
6528 return getSmallConstantTripCount(L
, ExitingBB
);
6530 // No trip count information for multiple exits.
6534 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop
*L
,
6535 BasicBlock
*ExitingBlock
) {
6536 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
6537 assert(L
->isLoopExiting(ExitingBlock
) &&
6538 "Exiting block must actually branch out of the loop!");
6539 const SCEVConstant
*ExitCount
=
6540 dyn_cast
<SCEVConstant
>(getExitCount(L
, ExitingBlock
));
6541 return getConstantTripCount(ExitCount
);
6544 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop
*L
) {
6545 const auto *MaxExitCount
=
6546 dyn_cast
<SCEVConstant
>(getConstantMaxBackedgeTakenCount(L
));
6547 return getConstantTripCount(MaxExitCount
);
6550 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
) {
6551 if (BasicBlock
*ExitingBB
= L
->getExitingBlock())
6552 return getSmallConstantTripMultiple(L
, ExitingBB
);
6554 // No trip multiple information for multiple exits.
6558 /// Returns the largest constant divisor of the trip count of this loop as a
6559 /// normal unsigned value, if possible. This means that the actual trip count is
6560 /// always a multiple of the returned value (don't forget the trip count could
6561 /// very well be zero as well!).
6563 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6564 /// multiple of a constant (which is also the case if the trip count is simply
6565 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6566 /// if the trip count is very large (>= 2^32).
6568 /// As explained in the comments for getSmallConstantTripCount, this assumes
6569 /// that control exits the loop via ExitingBlock.
6571 ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
6572 BasicBlock
*ExitingBlock
) {
6573 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
6574 assert(L
->isLoopExiting(ExitingBlock
) &&
6575 "Exiting block must actually branch out of the loop!");
6576 const SCEV
*ExitCount
= getExitCount(L
, ExitingBlock
);
6577 if (ExitCount
== getCouldNotCompute())
6580 // Get the trip count from the BE count by adding 1.
6581 const SCEV
*TCExpr
= getAddExpr(ExitCount
, getOne(ExitCount
->getType()));
6583 const SCEVConstant
*TC
= dyn_cast
<SCEVConstant
>(TCExpr
);
6585 // Attempt to factor more general cases. Returns the greatest power of
6586 // two divisor. If overflow happens, the trip count expression is still
6587 // divisible by the greatest power of 2 divisor returned.
6588 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr
));
6590 ConstantInt
*Result
= TC
->getValue();
6592 // Guard against huge trip counts (this requires checking
6593 // for zero to handle the case where the trip count == -1 and the
6595 if (!Result
|| Result
->getValue().getActiveBits() > 32 ||
6596 Result
->getValue().getActiveBits() == 0)
6599 return (unsigned)Result
->getZExtValue();
6602 /// Get the expression for the number of loop iterations for which this loop is
6603 /// guaranteed not to exit via ExitingBlock. Otherwise return
6604 /// SCEVCouldNotCompute.
6605 const SCEV
*ScalarEvolution::getExitCount(const Loop
*L
,
6606 BasicBlock
*ExitingBlock
) {
6607 return getBackedgeTakenInfo(L
).getExact(ExitingBlock
, this);
6611 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop
*L
,
6612 SCEVUnionPredicate
&Preds
) {
6613 return getPredicatedBackedgeTakenInfo(L
).getExact(L
, this, &Preds
);
6616 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
) {
6617 return getBackedgeTakenInfo(L
).getExact(L
, this);
6620 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6621 /// known never to be less than the actual backedge taken count.
6622 const SCEV
*ScalarEvolution::getConstantMaxBackedgeTakenCount(const Loop
*L
) {
6623 return getBackedgeTakenInfo(L
).getMax(this);
6626 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop
*L
) {
6627 return getBackedgeTakenInfo(L
).isMaxOrZero(this);
6630 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6632 PushLoopPHIs(const Loop
*L
, SmallVectorImpl
<Instruction
*> &Worklist
) {
6633 BasicBlock
*Header
= L
->getHeader();
6635 // Push all Loop-header PHIs onto the Worklist stack.
6636 for (PHINode
&PN
: Header
->phis())
6637 Worklist
.push_back(&PN
);
6640 const ScalarEvolution::BackedgeTakenInfo
&
6641 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop
*L
) {
6642 auto &BTI
= getBackedgeTakenInfo(L
);
6643 if (BTI
.hasFullInfo())
6646 auto Pair
= PredicatedBackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
6649 return Pair
.first
->second
;
6651 BackedgeTakenInfo Result
=
6652 computeBackedgeTakenCount(L
, /*AllowPredicates=*/true);
6654 return PredicatedBackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
6657 const ScalarEvolution::BackedgeTakenInfo
&
6658 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
6659 // Initially insert an invalid entry for this loop. If the insertion
6660 // succeeds, proceed to actually compute a backedge-taken count and
6661 // update the value. The temporary CouldNotCompute value tells SCEV
6662 // code elsewhere that it shouldn't attempt to request a new
6663 // backedge-taken count, which could result in infinite recursion.
6664 std::pair
<DenseMap
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
6665 BackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
6667 return Pair
.first
->second
;
6669 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6670 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6671 // must be cleared in this scope.
6672 BackedgeTakenInfo Result
= computeBackedgeTakenCount(L
);
6674 // In product build, there are no usage of statistic.
6675 (void)NumTripCountsComputed
;
6676 (void)NumTripCountsNotComputed
;
6677 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6678 const SCEV
*BEExact
= Result
.getExact(L
, this);
6679 if (BEExact
!= getCouldNotCompute()) {
6680 assert(isLoopInvariant(BEExact
, L
) &&
6681 isLoopInvariant(Result
.getMax(this), L
) &&
6682 "Computed backedge-taken count isn't loop invariant for loop!");
6683 ++NumTripCountsComputed
;
6685 else if (Result
.getMax(this) == getCouldNotCompute() &&
6686 isa
<PHINode
>(L
->getHeader()->begin())) {
6687 // Only count loops that have phi nodes as not being computable.
6688 ++NumTripCountsNotComputed
;
6690 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6692 // Now that we know more about the trip count for this loop, forget any
6693 // existing SCEV values for PHI nodes in this loop since they are only
6694 // conservative estimates made without the benefit of trip count
6695 // information. This is similar to the code in forgetLoop, except that
6696 // it handles SCEVUnknown PHI nodes specially.
6697 if (Result
.hasAnyInfo()) {
6698 SmallVector
<Instruction
*, 16> Worklist
;
6699 PushLoopPHIs(L
, Worklist
);
6701 SmallPtrSet
<Instruction
*, 8> Discovered
;
6702 while (!Worklist
.empty()) {
6703 Instruction
*I
= Worklist
.pop_back_val();
6705 ValueExprMapType::iterator It
=
6706 ValueExprMap
.find_as(static_cast<Value
*>(I
));
6707 if (It
!= ValueExprMap
.end()) {
6708 const SCEV
*Old
= It
->second
;
6710 // SCEVUnknown for a PHI either means that it has an unrecognized
6711 // structure, or it's a PHI that's in the progress of being computed
6712 // by createNodeForPHI. In the former case, additional loop trip
6713 // count information isn't going to change anything. In the later
6714 // case, createNodeForPHI will perform the necessary updates on its
6715 // own when it gets to that point.
6716 if (!isa
<PHINode
>(I
) || !isa
<SCEVUnknown
>(Old
)) {
6717 eraseValueFromMap(It
->first
);
6718 forgetMemoizedResults(Old
);
6720 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
6721 ConstantEvolutionLoopExitValue
.erase(PN
);
6724 // Since we don't need to invalidate anything for correctness and we're
6725 // only invalidating to make SCEV's results more precise, we get to stop
6726 // early to avoid invalidating too much. This is especially important in
6729 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6737 // where both loop0 and loop1's backedge taken count uses the SCEV
6738 // expression for %v. If we don't have the early stop below then in cases
6739 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6740 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6741 // count for loop1, effectively nullifying SCEV's trip count cache.
6742 for (auto *U
: I
->users())
6743 if (auto *I
= dyn_cast
<Instruction
>(U
)) {
6744 auto *LoopForUser
= LI
.getLoopFor(I
->getParent());
6745 if (LoopForUser
&& L
->contains(LoopForUser
) &&
6746 Discovered
.insert(I
).second
)
6747 Worklist
.push_back(I
);
6752 // Re-lookup the insert position, since the call to
6753 // computeBackedgeTakenCount above could result in a
6754 // recusive call to getBackedgeTakenInfo (on a different
6755 // loop), which would invalidate the iterator computed
6757 return BackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
6760 void ScalarEvolution::forgetAllLoops() {
6761 // This method is intended to forget all info about loops. It should
6762 // invalidate caches as if the following happened:
6763 // - The trip counts of all loops have changed arbitrarily
6764 // - Every llvm::Value has been updated in place to produce a different
6766 BackedgeTakenCounts
.clear();
6767 PredicatedBackedgeTakenCounts
.clear();
6768 LoopPropertiesCache
.clear();
6769 ConstantEvolutionLoopExitValue
.clear();
6770 ValueExprMap
.clear();
6771 ValuesAtScopes
.clear();
6772 LoopDispositions
.clear();
6773 BlockDispositions
.clear();
6774 UnsignedRanges
.clear();
6775 SignedRanges
.clear();
6776 ExprValueMap
.clear();
6778 MinTrailingZerosCache
.clear();
6779 PredicatedSCEVRewrites
.clear();
6782 void ScalarEvolution::forgetLoop(const Loop
*L
) {
6783 // Drop any stored trip count value.
6784 auto RemoveLoopFromBackedgeMap
=
6785 [](DenseMap
<const Loop
*, BackedgeTakenInfo
> &Map
, const Loop
*L
) {
6786 auto BTCPos
= Map
.find(L
);
6787 if (BTCPos
!= Map
.end()) {
6788 BTCPos
->second
.clear();
6793 SmallVector
<const Loop
*, 16> LoopWorklist(1, L
);
6794 SmallVector
<Instruction
*, 32> Worklist
;
6795 SmallPtrSet
<Instruction
*, 16> Visited
;
6797 // Iterate over all the loops and sub-loops to drop SCEV information.
6798 while (!LoopWorklist
.empty()) {
6799 auto *CurrL
= LoopWorklist
.pop_back_val();
6801 RemoveLoopFromBackedgeMap(BackedgeTakenCounts
, CurrL
);
6802 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts
, CurrL
);
6804 // Drop information about predicated SCEV rewrites for this loop.
6805 for (auto I
= PredicatedSCEVRewrites
.begin();
6806 I
!= PredicatedSCEVRewrites
.end();) {
6807 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
6808 if (Entry
.second
== CurrL
)
6809 PredicatedSCEVRewrites
.erase(I
++);
6814 auto LoopUsersItr
= LoopUsers
.find(CurrL
);
6815 if (LoopUsersItr
!= LoopUsers
.end()) {
6816 for (auto *S
: LoopUsersItr
->second
)
6817 forgetMemoizedResults(S
);
6818 LoopUsers
.erase(LoopUsersItr
);
6821 // Drop information about expressions based on loop-header PHIs.
6822 PushLoopPHIs(CurrL
, Worklist
);
6824 while (!Worklist
.empty()) {
6825 Instruction
*I
= Worklist
.pop_back_val();
6826 if (!Visited
.insert(I
).second
)
6829 ValueExprMapType::iterator It
=
6830 ValueExprMap
.find_as(static_cast<Value
*>(I
));
6831 if (It
!= ValueExprMap
.end()) {
6832 eraseValueFromMap(It
->first
);
6833 forgetMemoizedResults(It
->second
);
6834 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
6835 ConstantEvolutionLoopExitValue
.erase(PN
);
6838 PushDefUseChildren(I
, Worklist
);
6841 LoopPropertiesCache
.erase(CurrL
);
6842 // Forget all contained loops too, to avoid dangling entries in the
6843 // ValuesAtScopes map.
6844 LoopWorklist
.append(CurrL
->begin(), CurrL
->end());
6848 void ScalarEvolution::forgetTopmostLoop(const Loop
*L
) {
6849 while (Loop
*Parent
= L
->getParentLoop())
6854 void ScalarEvolution::forgetValue(Value
*V
) {
6855 Instruction
*I
= dyn_cast
<Instruction
>(V
);
6858 // Drop information about expressions based on loop-header PHIs.
6859 SmallVector
<Instruction
*, 16> Worklist
;
6860 Worklist
.push_back(I
);
6862 SmallPtrSet
<Instruction
*, 8> Visited
;
6863 while (!Worklist
.empty()) {
6864 I
= Worklist
.pop_back_val();
6865 if (!Visited
.insert(I
).second
)
6868 ValueExprMapType::iterator It
=
6869 ValueExprMap
.find_as(static_cast<Value
*>(I
));
6870 if (It
!= ValueExprMap
.end()) {
6871 eraseValueFromMap(It
->first
);
6872 forgetMemoizedResults(It
->second
);
6873 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
6874 ConstantEvolutionLoopExitValue
.erase(PN
);
6877 PushDefUseChildren(I
, Worklist
);
6881 /// Get the exact loop backedge taken count considering all loop exits. A
6882 /// computable result can only be returned for loops with all exiting blocks
6883 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6884 /// is never skipped. This is a valid assumption as long as the loop exits via
6885 /// that test. For precise results, it is the caller's responsibility to specify
6886 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6888 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop
*L
, ScalarEvolution
*SE
,
6889 SCEVUnionPredicate
*Preds
) const {
6890 // If any exits were not computable, the loop is not computable.
6891 if (!isComplete() || ExitNotTaken
.empty())
6892 return SE
->getCouldNotCompute();
6894 const BasicBlock
*Latch
= L
->getLoopLatch();
6895 // All exiting blocks we have collected must dominate the only backedge.
6897 return SE
->getCouldNotCompute();
6899 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6900 // count is simply a minimum out of all these calculated exit counts.
6901 SmallVector
<const SCEV
*, 2> Ops
;
6902 for (auto &ENT
: ExitNotTaken
) {
6903 const SCEV
*BECount
= ENT
.ExactNotTaken
;
6904 assert(BECount
!= SE
->getCouldNotCompute() && "Bad exit SCEV!");
6905 assert(SE
->DT
.dominates(ENT
.ExitingBlock
, Latch
) &&
6906 "We should only have known counts for exiting blocks that dominate "
6909 Ops
.push_back(BECount
);
6911 if (Preds
&& !ENT
.hasAlwaysTruePredicate())
6912 Preds
->add(ENT
.Predicate
.get());
6914 assert((Preds
|| ENT
.hasAlwaysTruePredicate()) &&
6915 "Predicate should be always true!");
6918 return SE
->getUMinFromMismatchedTypes(Ops
);
6921 /// Get the exact not taken count for this loop exit.
6923 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock
*ExitingBlock
,
6924 ScalarEvolution
*SE
) const {
6925 for (auto &ENT
: ExitNotTaken
)
6926 if (ENT
.ExitingBlock
== ExitingBlock
&& ENT
.hasAlwaysTruePredicate())
6927 return ENT
.ExactNotTaken
;
6929 return SE
->getCouldNotCompute();
6932 /// getMax - Get the max backedge taken count for the loop.
6934 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution
*SE
) const {
6935 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
6936 return !ENT
.hasAlwaysTruePredicate();
6939 if (any_of(ExitNotTaken
, PredicateNotAlwaysTrue
) || !getMax())
6940 return SE
->getCouldNotCompute();
6942 assert((isa
<SCEVCouldNotCompute
>(getMax()) || isa
<SCEVConstant
>(getMax())) &&
6943 "No point in having a non-constant max backedge taken count!");
6947 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution
*SE
) const {
6948 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
6949 return !ENT
.hasAlwaysTruePredicate();
6951 return MaxOrZero
&& !any_of(ExitNotTaken
, PredicateNotAlwaysTrue
);
6954 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV
*S
,
6955 ScalarEvolution
*SE
) const {
6956 if (getMax() && getMax() != SE
->getCouldNotCompute() &&
6957 SE
->hasOperand(getMax(), S
))
6960 for (auto &ENT
: ExitNotTaken
)
6961 if (ENT
.ExactNotTaken
!= SE
->getCouldNotCompute() &&
6962 SE
->hasOperand(ENT
.ExactNotTaken
, S
))
6968 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
)
6969 : ExactNotTaken(E
), MaxNotTaken(E
) {
6970 assert((isa
<SCEVCouldNotCompute
>(MaxNotTaken
) ||
6971 isa
<SCEVConstant
>(MaxNotTaken
)) &&
6972 "No point in having a non-constant max backedge taken count!");
6975 ScalarEvolution::ExitLimit::ExitLimit(
6976 const SCEV
*E
, const SCEV
*M
, bool MaxOrZero
,
6977 ArrayRef
<const SmallPtrSetImpl
<const SCEVPredicate
*> *> PredSetList
)
6978 : ExactNotTaken(E
), MaxNotTaken(M
), MaxOrZero(MaxOrZero
) {
6979 assert((isa
<SCEVCouldNotCompute
>(ExactNotTaken
) ||
6980 !isa
<SCEVCouldNotCompute
>(MaxNotTaken
)) &&
6981 "Exact is not allowed to be less precise than Max");
6982 assert((isa
<SCEVCouldNotCompute
>(MaxNotTaken
) ||
6983 isa
<SCEVConstant
>(MaxNotTaken
)) &&
6984 "No point in having a non-constant max backedge taken count!");
6985 for (auto *PredSet
: PredSetList
)
6986 for (auto *P
: *PredSet
)
6990 ScalarEvolution::ExitLimit::ExitLimit(
6991 const SCEV
*E
, const SCEV
*M
, bool MaxOrZero
,
6992 const SmallPtrSetImpl
<const SCEVPredicate
*> &PredSet
)
6993 : ExitLimit(E
, M
, MaxOrZero
, {&PredSet
}) {
6994 assert((isa
<SCEVCouldNotCompute
>(MaxNotTaken
) ||
6995 isa
<SCEVConstant
>(MaxNotTaken
)) &&
6996 "No point in having a non-constant max backedge taken count!");
6999 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
, const SCEV
*M
,
7001 : ExitLimit(E
, M
, MaxOrZero
, None
) {
7002 assert((isa
<SCEVCouldNotCompute
>(MaxNotTaken
) ||
7003 isa
<SCEVConstant
>(MaxNotTaken
)) &&
7004 "No point in having a non-constant max backedge taken count!");
7007 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7008 /// computable exit into a persistent ExitNotTakenInfo array.
7009 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7010 ArrayRef
<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
>
7012 bool Complete
, const SCEV
*MaxCount
, bool MaxOrZero
)
7013 : MaxAndComplete(MaxCount
, Complete
), MaxOrZero(MaxOrZero
) {
7014 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
7016 ExitNotTaken
.reserve(ExitCounts
.size());
7018 ExitCounts
.begin(), ExitCounts
.end(), std::back_inserter(ExitNotTaken
),
7019 [&](const EdgeExitInfo
&EEI
) {
7020 BasicBlock
*ExitBB
= EEI
.first
;
7021 const ExitLimit
&EL
= EEI
.second
;
7022 if (EL
.Predicates
.empty())
7023 return ExitNotTakenInfo(ExitBB
, EL
.ExactNotTaken
, nullptr);
7025 std::unique_ptr
<SCEVUnionPredicate
> Predicate(new SCEVUnionPredicate
);
7026 for (auto *Pred
: EL
.Predicates
)
7027 Predicate
->add(Pred
);
7029 return ExitNotTakenInfo(ExitBB
, EL
.ExactNotTaken
, std::move(Predicate
));
7031 assert((isa
<SCEVCouldNotCompute
>(MaxCount
) || isa
<SCEVConstant
>(MaxCount
)) &&
7032 "No point in having a non-constant max backedge taken count!");
7035 /// Invalidate this result and free the ExitNotTakenInfo array.
7036 void ScalarEvolution::BackedgeTakenInfo::clear() {
7037 ExitNotTaken
.clear();
7040 /// Compute the number of times the backedge of the specified loop will execute.
7041 ScalarEvolution::BackedgeTakenInfo
7042 ScalarEvolution::computeBackedgeTakenCount(const Loop
*L
,
7043 bool AllowPredicates
) {
7044 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
7045 L
->getExitingBlocks(ExitingBlocks
);
7047 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
7049 SmallVector
<EdgeExitInfo
, 4> ExitCounts
;
7050 bool CouldComputeBECount
= true;
7051 BasicBlock
*Latch
= L
->getLoopLatch(); // may be NULL.
7052 const SCEV
*MustExitMaxBECount
= nullptr;
7053 const SCEV
*MayExitMaxBECount
= nullptr;
7054 bool MustExitMaxOrZero
= false;
7056 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7057 // and compute maxBECount.
7058 // Do a union of all the predicates here.
7059 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
7060 BasicBlock
*ExitBB
= ExitingBlocks
[i
];
7061 ExitLimit EL
= computeExitLimit(L
, ExitBB
, AllowPredicates
);
7063 assert((AllowPredicates
|| EL
.Predicates
.empty()) &&
7064 "Predicated exit limit when predicates are not allowed!");
7066 // 1. For each exit that can be computed, add an entry to ExitCounts.
7067 // CouldComputeBECount is true only if all exits can be computed.
7068 if (EL
.ExactNotTaken
== getCouldNotCompute())
7069 // We couldn't compute an exact value for this exit, so
7070 // we won't be able to compute an exact value for the loop.
7071 CouldComputeBECount
= false;
7073 ExitCounts
.emplace_back(ExitBB
, EL
);
7075 // 2. Derive the loop's MaxBECount from each exit's max number of
7076 // non-exiting iterations. Partition the loop exits into two kinds:
7077 // LoopMustExits and LoopMayExits.
7079 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7080 // is a LoopMayExit. If any computable LoopMustExit is found, then
7081 // MaxBECount is the minimum EL.MaxNotTaken of computable
7082 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7083 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7084 // computable EL.MaxNotTaken.
7085 if (EL
.MaxNotTaken
!= getCouldNotCompute() && Latch
&&
7086 DT
.dominates(ExitBB
, Latch
)) {
7087 if (!MustExitMaxBECount
) {
7088 MustExitMaxBECount
= EL
.MaxNotTaken
;
7089 MustExitMaxOrZero
= EL
.MaxOrZero
;
7091 MustExitMaxBECount
=
7092 getUMinFromMismatchedTypes(MustExitMaxBECount
, EL
.MaxNotTaken
);
7094 } else if (MayExitMaxBECount
!= getCouldNotCompute()) {
7095 if (!MayExitMaxBECount
|| EL
.MaxNotTaken
== getCouldNotCompute())
7096 MayExitMaxBECount
= EL
.MaxNotTaken
;
7099 getUMaxFromMismatchedTypes(MayExitMaxBECount
, EL
.MaxNotTaken
);
7103 const SCEV
*MaxBECount
= MustExitMaxBECount
? MustExitMaxBECount
:
7104 (MayExitMaxBECount
? MayExitMaxBECount
: getCouldNotCompute());
7105 // The loop backedge will be taken the maximum or zero times if there's
7106 // a single exit that must be taken the maximum or zero times.
7107 bool MaxOrZero
= (MustExitMaxOrZero
&& ExitingBlocks
.size() == 1);
7108 return BackedgeTakenInfo(std::move(ExitCounts
), CouldComputeBECount
,
7109 MaxBECount
, MaxOrZero
);
7112 ScalarEvolution::ExitLimit
7113 ScalarEvolution::computeExitLimit(const Loop
*L
, BasicBlock
*ExitingBlock
,
7114 bool AllowPredicates
) {
7115 assert(L
->contains(ExitingBlock
) && "Exit count for non-loop block?");
7116 // If our exiting block does not dominate the latch, then its connection with
7117 // loop's exit limit may be far from trivial.
7118 const BasicBlock
*Latch
= L
->getLoopLatch();
7119 if (!Latch
|| !DT
.dominates(ExitingBlock
, Latch
))
7120 return getCouldNotCompute();
7122 bool IsOnlyExit
= (L
->getExitingBlock() != nullptr);
7123 Instruction
*Term
= ExitingBlock
->getTerminator();
7124 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Term
)) {
7125 assert(BI
->isConditional() && "If unconditional, it can't be in loop!");
7126 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
7127 assert(ExitIfTrue
== L
->contains(BI
->getSuccessor(1)) &&
7128 "It should have one successor in loop and one exit block!");
7129 // Proceed to the next level to examine the exit condition expression.
7130 return computeExitLimitFromCond(
7131 L
, BI
->getCondition(), ExitIfTrue
,
7132 /*ControlsExit=*/IsOnlyExit
, AllowPredicates
);
7135 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Term
)) {
7136 // For switch, make sure that there is a single exit from the loop.
7137 BasicBlock
*Exit
= nullptr;
7138 for (auto *SBB
: successors(ExitingBlock
))
7139 if (!L
->contains(SBB
)) {
7140 if (Exit
) // Multiple exit successors.
7141 return getCouldNotCompute();
7144 assert(Exit
&& "Exiting block must have at least one exit");
7145 return computeExitLimitFromSingleExitSwitch(L
, SI
, Exit
,
7146 /*ControlsExit=*/IsOnlyExit
);
7149 return getCouldNotCompute();
7152 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCond(
7153 const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7154 bool ControlsExit
, bool AllowPredicates
) {
7155 ScalarEvolution::ExitLimitCacheTy
Cache(L
, ExitIfTrue
, AllowPredicates
);
7156 return computeExitLimitFromCondCached(Cache
, L
, ExitCond
, ExitIfTrue
,
7157 ControlsExit
, AllowPredicates
);
7160 Optional
<ScalarEvolution::ExitLimit
>
7161 ScalarEvolution::ExitLimitCache::find(const Loop
*L
, Value
*ExitCond
,
7162 bool ExitIfTrue
, bool ControlsExit
,
7163 bool AllowPredicates
) {
7165 (void)this->ExitIfTrue
;
7166 (void)this->AllowPredicates
;
7168 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
7169 this->AllowPredicates
== AllowPredicates
&&
7170 "Variance in assumed invariant key components!");
7171 auto Itr
= TripCountMap
.find({ExitCond
, ControlsExit
});
7172 if (Itr
== TripCountMap
.end())
7177 void ScalarEvolution::ExitLimitCache::insert(const Loop
*L
, Value
*ExitCond
,
7180 bool AllowPredicates
,
7181 const ExitLimit
&EL
) {
7182 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
7183 this->AllowPredicates
== AllowPredicates
&&
7184 "Variance in assumed invariant key components!");
7186 auto InsertResult
= TripCountMap
.insert({{ExitCond
, ControlsExit
}, EL
});
7187 assert(InsertResult
.second
&& "Expected successful insertion!");
7192 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondCached(
7193 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7194 bool ControlsExit
, bool AllowPredicates
) {
7197 Cache
.find(L
, ExitCond
, ExitIfTrue
, ControlsExit
, AllowPredicates
))
7200 ExitLimit EL
= computeExitLimitFromCondImpl(Cache
, L
, ExitCond
, ExitIfTrue
,
7201 ControlsExit
, AllowPredicates
);
7202 Cache
.insert(L
, ExitCond
, ExitIfTrue
, ControlsExit
, AllowPredicates
, EL
);
7206 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondImpl(
7207 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
7208 bool ControlsExit
, bool AllowPredicates
) {
7209 // Check if the controlling expression for this loop is an And or Or.
7210 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(ExitCond
)) {
7211 if (BO
->getOpcode() == Instruction::And
) {
7212 // Recurse on the operands of the and.
7213 bool EitherMayExit
= !ExitIfTrue
;
7214 ExitLimit EL0
= computeExitLimitFromCondCached(
7215 Cache
, L
, BO
->getOperand(0), ExitIfTrue
,
7216 ControlsExit
&& !EitherMayExit
, AllowPredicates
);
7217 ExitLimit EL1
= computeExitLimitFromCondCached(
7218 Cache
, L
, BO
->getOperand(1), ExitIfTrue
,
7219 ControlsExit
&& !EitherMayExit
, AllowPredicates
);
7220 const SCEV
*BECount
= getCouldNotCompute();
7221 const SCEV
*MaxBECount
= getCouldNotCompute();
7222 if (EitherMayExit
) {
7223 // Both conditions must be true for the loop to continue executing.
7224 // Choose the less conservative count.
7225 if (EL0
.ExactNotTaken
== getCouldNotCompute() ||
7226 EL1
.ExactNotTaken
== getCouldNotCompute())
7227 BECount
= getCouldNotCompute();
7230 getUMinFromMismatchedTypes(EL0
.ExactNotTaken
, EL1
.ExactNotTaken
);
7231 if (EL0
.MaxNotTaken
== getCouldNotCompute())
7232 MaxBECount
= EL1
.MaxNotTaken
;
7233 else if (EL1
.MaxNotTaken
== getCouldNotCompute())
7234 MaxBECount
= EL0
.MaxNotTaken
;
7237 getUMinFromMismatchedTypes(EL0
.MaxNotTaken
, EL1
.MaxNotTaken
);
7239 // Both conditions must be true at the same time for the loop to exit.
7240 // For now, be conservative.
7241 if (EL0
.MaxNotTaken
== EL1
.MaxNotTaken
)
7242 MaxBECount
= EL0
.MaxNotTaken
;
7243 if (EL0
.ExactNotTaken
== EL1
.ExactNotTaken
)
7244 BECount
= EL0
.ExactNotTaken
;
7247 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7248 // to be more aggressive when computing BECount than when computing
7249 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7250 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7252 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
7253 !isa
<SCEVCouldNotCompute
>(BECount
))
7254 MaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
7256 return ExitLimit(BECount
, MaxBECount
, false,
7257 {&EL0
.Predicates
, &EL1
.Predicates
});
7259 if (BO
->getOpcode() == Instruction::Or
) {
7260 // Recurse on the operands of the or.
7261 bool EitherMayExit
= ExitIfTrue
;
7262 ExitLimit EL0
= computeExitLimitFromCondCached(
7263 Cache
, L
, BO
->getOperand(0), ExitIfTrue
,
7264 ControlsExit
&& !EitherMayExit
, AllowPredicates
);
7265 ExitLimit EL1
= computeExitLimitFromCondCached(
7266 Cache
, L
, BO
->getOperand(1), ExitIfTrue
,
7267 ControlsExit
&& !EitherMayExit
, AllowPredicates
);
7268 const SCEV
*BECount
= getCouldNotCompute();
7269 const SCEV
*MaxBECount
= getCouldNotCompute();
7270 if (EitherMayExit
) {
7271 // Both conditions must be false for the loop to continue executing.
7272 // Choose the less conservative count.
7273 if (EL0
.ExactNotTaken
== getCouldNotCompute() ||
7274 EL1
.ExactNotTaken
== getCouldNotCompute())
7275 BECount
= getCouldNotCompute();
7278 getUMinFromMismatchedTypes(EL0
.ExactNotTaken
, EL1
.ExactNotTaken
);
7279 if (EL0
.MaxNotTaken
== getCouldNotCompute())
7280 MaxBECount
= EL1
.MaxNotTaken
;
7281 else if (EL1
.MaxNotTaken
== getCouldNotCompute())
7282 MaxBECount
= EL0
.MaxNotTaken
;
7285 getUMinFromMismatchedTypes(EL0
.MaxNotTaken
, EL1
.MaxNotTaken
);
7287 // Both conditions must be false at the same time for the loop to exit.
7288 // For now, be conservative.
7289 if (EL0
.MaxNotTaken
== EL1
.MaxNotTaken
)
7290 MaxBECount
= EL0
.MaxNotTaken
;
7291 if (EL0
.ExactNotTaken
== EL1
.ExactNotTaken
)
7292 BECount
= EL0
.ExactNotTaken
;
7294 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7295 // to be more aggressive when computing BECount than when computing
7296 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7297 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7299 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
7300 !isa
<SCEVCouldNotCompute
>(BECount
))
7301 MaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
7303 return ExitLimit(BECount
, MaxBECount
, false,
7304 {&EL0
.Predicates
, &EL1
.Predicates
});
7308 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7309 // Proceed to the next level to examine the icmp.
7310 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
)) {
7312 computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
, ControlsExit
);
7313 if (EL
.hasFullInfo() || !AllowPredicates
)
7316 // Try again, but use SCEV predicates this time.
7317 return computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
, ControlsExit
,
7318 /*AllowPredicates=*/true);
7321 // Check for a constant condition. These are normally stripped out by
7322 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7323 // preserve the CFG and is temporarily leaving constant conditions
7325 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ExitCond
)) {
7326 if (ExitIfTrue
== !CI
->getZExtValue())
7327 // The backedge is always taken.
7328 return getCouldNotCompute();
7330 // The backedge is never taken.
7331 return getZero(CI
->getType());
7334 // If it's not an integer or pointer comparison then compute it the hard way.
7335 return computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
7338 ScalarEvolution::ExitLimit
7339 ScalarEvolution::computeExitLimitFromICmp(const Loop
*L
,
7343 bool AllowPredicates
) {
7344 // If the condition was exit on true, convert the condition to exit on false
7345 ICmpInst::Predicate Pred
;
7347 Pred
= ExitCond
->getPredicate();
7349 Pred
= ExitCond
->getInversePredicate();
7350 const ICmpInst::Predicate OriginalPred
= Pred
;
7352 // Handle common loops like: for (X = "string"; *X; ++X)
7353 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(ExitCond
->getOperand(0)))
7354 if (Constant
*RHS
= dyn_cast
<Constant
>(ExitCond
->getOperand(1))) {
7356 computeLoadConstantCompareExitLimit(LI
, RHS
, L
, Pred
);
7357 if (ItCnt
.hasAnyInfo())
7361 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
7362 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
7364 // Try to evaluate any dependencies out of the loop.
7365 LHS
= getSCEVAtScope(LHS
, L
);
7366 RHS
= getSCEVAtScope(RHS
, L
);
7368 // At this point, we would like to compute how many iterations of the
7369 // loop the predicate will return true for these inputs.
7370 if (isLoopInvariant(LHS
, L
) && !isLoopInvariant(RHS
, L
)) {
7371 // If there is a loop-invariant, force it into the RHS.
7372 std::swap(LHS
, RHS
);
7373 Pred
= ICmpInst::getSwappedPredicate(Pred
);
7376 // Simplify the operands before analyzing them.
7377 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
7379 // If we have a comparison of a chrec against a constant, try to use value
7380 // ranges to answer this query.
7381 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
7382 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
7383 if (AddRec
->getLoop() == L
) {
7384 // Form the constant range.
7385 ConstantRange CompRange
=
7386 ConstantRange::makeExactICmpRegion(Pred
, RHSC
->getAPInt());
7388 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
7389 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
7393 case ICmpInst::ICMP_NE
: { // while (X != Y)
7394 // Convert to: while (X-Y != 0)
7395 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsExit
,
7397 if (EL
.hasAnyInfo()) return EL
;
7400 case ICmpInst::ICMP_EQ
: { // while (X == Y)
7401 // Convert to: while (X-Y == 0)
7402 ExitLimit EL
= howFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
7403 if (EL
.hasAnyInfo()) return EL
;
7406 case ICmpInst::ICMP_SLT
:
7407 case ICmpInst::ICMP_ULT
: { // while (X < Y)
7408 bool IsSigned
= Pred
== ICmpInst::ICMP_SLT
;
7409 ExitLimit EL
= howManyLessThans(LHS
, RHS
, L
, IsSigned
, ControlsExit
,
7411 if (EL
.hasAnyInfo()) return EL
;
7414 case ICmpInst::ICMP_SGT
:
7415 case ICmpInst::ICMP_UGT
: { // while (X > Y)
7416 bool IsSigned
= Pred
== ICmpInst::ICMP_SGT
;
7418 howManyGreaterThans(LHS
, RHS
, L
, IsSigned
, ControlsExit
,
7420 if (EL
.hasAnyInfo()) return EL
;
7427 auto *ExhaustiveCount
=
7428 computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
7430 if (!isa
<SCEVCouldNotCompute
>(ExhaustiveCount
))
7431 return ExhaustiveCount
;
7433 return computeShiftCompareExitLimit(ExitCond
->getOperand(0),
7434 ExitCond
->getOperand(1), L
, OriginalPred
);
7437 ScalarEvolution::ExitLimit
7438 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop
*L
,
7440 BasicBlock
*ExitingBlock
,
7441 bool ControlsExit
) {
7442 assert(!L
->contains(ExitingBlock
) && "Not an exiting block!");
7444 // Give up if the exit is the default dest of a switch.
7445 if (Switch
->getDefaultDest() == ExitingBlock
)
7446 return getCouldNotCompute();
7448 assert(L
->contains(Switch
->getDefaultDest()) &&
7449 "Default case must not exit the loop!");
7450 const SCEV
*LHS
= getSCEVAtScope(Switch
->getCondition(), L
);
7451 const SCEV
*RHS
= getConstant(Switch
->findCaseDest(ExitingBlock
));
7453 // while (X != Y) --> while (X-Y != 0)
7454 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsExit
);
7455 if (EL
.hasAnyInfo())
7458 return getCouldNotCompute();
7461 static ConstantInt
*
7462 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
7463 ScalarEvolution
&SE
) {
7464 const SCEV
*InVal
= SE
.getConstant(C
);
7465 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
7466 assert(isa
<SCEVConstant
>(Val
) &&
7467 "Evaluation of SCEV at constant didn't fold correctly?");
7468 return cast
<SCEVConstant
>(Val
)->getValue();
7471 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7472 /// compute the backedge execution count.
7473 ScalarEvolution::ExitLimit
7474 ScalarEvolution::computeLoadConstantCompareExitLimit(
7478 ICmpInst::Predicate predicate
) {
7479 if (LI
->isVolatile()) return getCouldNotCompute();
7481 // Check to see if the loaded pointer is a getelementptr of a global.
7482 // TODO: Use SCEV instead of manually grubbing with GEPs.
7483 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0));
7484 if (!GEP
) return getCouldNotCompute();
7486 // Make sure that it is really a constant global we are gepping, with an
7487 // initializer, and make sure the first IDX is really 0.
7488 GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0));
7489 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer() ||
7490 GEP
->getNumOperands() < 3 || !isa
<Constant
>(GEP
->getOperand(1)) ||
7491 !cast
<Constant
>(GEP
->getOperand(1))->isNullValue())
7492 return getCouldNotCompute();
7494 // Okay, we allow one non-constant index into the GEP instruction.
7495 Value
*VarIdx
= nullptr;
7496 std::vector
<Constant
*> Indexes
;
7497 unsigned VarIdxNum
= 0;
7498 for (unsigned i
= 2, e
= GEP
->getNumOperands(); i
!= e
; ++i
)
7499 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
7500 Indexes
.push_back(CI
);
7501 } else if (!isa
<ConstantInt
>(GEP
->getOperand(i
))) {
7502 if (VarIdx
) return getCouldNotCompute(); // Multiple non-constant idx's.
7503 VarIdx
= GEP
->getOperand(i
);
7505 Indexes
.push_back(nullptr);
7508 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7510 return getCouldNotCompute();
7512 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7513 // Check to see if X is a loop variant variable value now.
7514 const SCEV
*Idx
= getSCEV(VarIdx
);
7515 Idx
= getSCEVAtScope(Idx
, L
);
7517 // We can only recognize very limited forms of loop index expressions, in
7518 // particular, only affine AddRec's like {C1,+,C2}.
7519 const SCEVAddRecExpr
*IdxExpr
= dyn_cast
<SCEVAddRecExpr
>(Idx
);
7520 if (!IdxExpr
|| !IdxExpr
->isAffine() || isLoopInvariant(IdxExpr
, L
) ||
7521 !isa
<SCEVConstant
>(IdxExpr
->getOperand(0)) ||
7522 !isa
<SCEVConstant
>(IdxExpr
->getOperand(1)))
7523 return getCouldNotCompute();
7525 unsigned MaxSteps
= MaxBruteForceIterations
;
7526 for (unsigned IterationNum
= 0; IterationNum
!= MaxSteps
; ++IterationNum
) {
7527 ConstantInt
*ItCst
= ConstantInt::get(
7528 cast
<IntegerType
>(IdxExpr
->getType()), IterationNum
);
7529 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(IdxExpr
, ItCst
, *this);
7531 // Form the GEP offset.
7532 Indexes
[VarIdxNum
] = Val
;
7534 Constant
*Result
= ConstantFoldLoadThroughGEPIndices(GV
->getInitializer(),
7536 if (!Result
) break; // Cannot compute!
7538 // Evaluate the condition for this iteration.
7539 Result
= ConstantExpr::getICmp(predicate
, Result
, RHS
);
7540 if (!isa
<ConstantInt
>(Result
)) break; // Couldn't decide for sure
7541 if (cast
<ConstantInt
>(Result
)->getValue().isMinValue()) {
7542 ++NumArrayLenItCounts
;
7543 return getConstant(ItCst
); // Found terminating iteration!
7546 return getCouldNotCompute();
7549 ScalarEvolution::ExitLimit
ScalarEvolution::computeShiftCompareExitLimit(
7550 Value
*LHS
, Value
*RHSV
, const Loop
*L
, ICmpInst::Predicate Pred
) {
7551 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(RHSV
);
7553 return getCouldNotCompute();
7555 const BasicBlock
*Latch
= L
->getLoopLatch();
7557 return getCouldNotCompute();
7559 const BasicBlock
*Predecessor
= L
->getLoopPredecessor();
7561 return getCouldNotCompute();
7563 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7564 // Return LHS in OutLHS and shift_opt in OutOpCode.
7565 auto MatchPositiveShift
=
7566 [](Value
*V
, Value
*&OutLHS
, Instruction::BinaryOps
&OutOpCode
) {
7568 using namespace PatternMatch
;
7570 ConstantInt
*ShiftAmt
;
7571 if (match(V
, m_LShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
7572 OutOpCode
= Instruction::LShr
;
7573 else if (match(V
, m_AShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
7574 OutOpCode
= Instruction::AShr
;
7575 else if (match(V
, m_Shl(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
7576 OutOpCode
= Instruction::Shl
;
7580 return ShiftAmt
->getValue().isStrictlyPositive();
7583 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7586 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7587 // %iv.shifted = lshr i32 %iv, <positive constant>
7589 // Return true on a successful match. Return the corresponding PHI node (%iv
7590 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7591 auto MatchShiftRecurrence
=
7592 [&](Value
*V
, PHINode
*&PNOut
, Instruction::BinaryOps
&OpCodeOut
) {
7593 Optional
<Instruction::BinaryOps
> PostShiftOpCode
;
7596 Instruction::BinaryOps OpC
;
7599 // If we encounter a shift instruction, "peel off" the shift operation,
7600 // and remember that we did so. Later when we inspect %iv's backedge
7601 // value, we will make sure that the backedge value uses the same
7604 // Note: the peeled shift operation does not have to be the same
7605 // instruction as the one feeding into the PHI's backedge value. We only
7606 // really care about it being the same *kind* of shift instruction --
7607 // that's all that is required for our later inferences to hold.
7608 if (MatchPositiveShift(LHS
, V
, OpC
)) {
7609 PostShiftOpCode
= OpC
;
7614 PNOut
= dyn_cast
<PHINode
>(LHS
);
7615 if (!PNOut
|| PNOut
->getParent() != L
->getHeader())
7618 Value
*BEValue
= PNOut
->getIncomingValueForBlock(Latch
);
7622 // The backedge value for the PHI node must be a shift by a positive
7624 MatchPositiveShift(BEValue
, OpLHS
, OpCodeOut
) &&
7626 // of the PHI node itself
7629 // and the kind of shift should be match the kind of shift we peeled
7631 (!PostShiftOpCode
.hasValue() || *PostShiftOpCode
== OpCodeOut
);
7635 Instruction::BinaryOps OpCode
;
7636 if (!MatchShiftRecurrence(LHS
, PN
, OpCode
))
7637 return getCouldNotCompute();
7639 const DataLayout
&DL
= getDataLayout();
7641 // The key rationale for this optimization is that for some kinds of shift
7642 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7643 // within a finite number of iterations. If the condition guarding the
7644 // backedge (in the sense that the backedge is taken if the condition is true)
7645 // is false for the value the shift recurrence stabilizes to, then we know
7646 // that the backedge is taken only a finite number of times.
7648 ConstantInt
*StableValue
= nullptr;
7651 llvm_unreachable("Impossible case!");
7653 case Instruction::AShr
: {
7654 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7655 // bitwidth(K) iterations.
7656 Value
*FirstValue
= PN
->getIncomingValueForBlock(Predecessor
);
7657 KnownBits Known
= computeKnownBits(FirstValue
, DL
, 0, nullptr,
7658 Predecessor
->getTerminator(), &DT
);
7659 auto *Ty
= cast
<IntegerType
>(RHS
->getType());
7660 if (Known
.isNonNegative())
7661 StableValue
= ConstantInt::get(Ty
, 0);
7662 else if (Known
.isNegative())
7663 StableValue
= ConstantInt::get(Ty
, -1, true);
7665 return getCouldNotCompute();
7669 case Instruction::LShr
:
7670 case Instruction::Shl
:
7671 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7672 // stabilize to 0 in at most bitwidth(K) iterations.
7673 StableValue
= ConstantInt::get(cast
<IntegerType
>(RHS
->getType()), 0);
7678 ConstantFoldCompareInstOperands(Pred
, StableValue
, RHS
, DL
, &TLI
);
7679 assert(Result
->getType()->isIntegerTy(1) &&
7680 "Otherwise cannot be an operand to a branch instruction");
7682 if (Result
->isZeroValue()) {
7683 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
7684 const SCEV
*UpperBound
=
7685 getConstant(getEffectiveSCEVType(RHS
->getType()), BitWidth
);
7686 return ExitLimit(getCouldNotCompute(), UpperBound
, false);
7689 return getCouldNotCompute();
7692 /// Return true if we can constant fold an instruction of the specified type,
7693 /// assuming that all operands were constants.
7694 static bool CanConstantFold(const Instruction
*I
) {
7695 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
7696 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
7697 isa
<LoadInst
>(I
) || isa
<ExtractValueInst
>(I
))
7700 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
7701 if (const Function
*F
= CI
->getCalledFunction())
7702 return canConstantFoldCallTo(CI
, F
);
7706 /// Determine whether this instruction can constant evolve within this loop
7707 /// assuming its operands can all constant evolve.
7708 static bool canConstantEvolve(Instruction
*I
, const Loop
*L
) {
7709 // An instruction outside of the loop can't be derived from a loop PHI.
7710 if (!L
->contains(I
)) return false;
7712 if (isa
<PHINode
>(I
)) {
7713 // We don't currently keep track of the control flow needed to evaluate
7714 // PHIs, so we cannot handle PHIs inside of loops.
7715 return L
->getHeader() == I
->getParent();
7718 // If we won't be able to constant fold this expression even if the operands
7719 // are constants, bail early.
7720 return CanConstantFold(I
);
7723 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7724 /// recursing through each instruction operand until reaching a loop header phi.
7726 getConstantEvolvingPHIOperands(Instruction
*UseInst
, const Loop
*L
,
7727 DenseMap
<Instruction
*, PHINode
*> &PHIMap
,
7729 if (Depth
> MaxConstantEvolvingDepth
)
7732 // Otherwise, we can evaluate this instruction if all of its operands are
7733 // constant or derived from a PHI node themselves.
7734 PHINode
*PHI
= nullptr;
7735 for (Value
*Op
: UseInst
->operands()) {
7736 if (isa
<Constant
>(Op
)) continue;
7738 Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
);
7739 if (!OpInst
|| !canConstantEvolve(OpInst
, L
)) return nullptr;
7741 PHINode
*P
= dyn_cast
<PHINode
>(OpInst
);
7743 // If this operand is already visited, reuse the prior result.
7744 // We may have P != PHI if this is the deepest point at which the
7745 // inconsistent paths meet.
7746 P
= PHIMap
.lookup(OpInst
);
7748 // Recurse and memoize the results, whether a phi is found or not.
7749 // This recursive call invalidates pointers into PHIMap.
7750 P
= getConstantEvolvingPHIOperands(OpInst
, L
, PHIMap
, Depth
+ 1);
7754 return nullptr; // Not evolving from PHI
7755 if (PHI
&& PHI
!= P
)
7756 return nullptr; // Evolving from multiple different PHIs.
7759 // This is a expression evolving from a constant PHI!
7763 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7764 /// in the loop that V is derived from. We allow arbitrary operations along the
7765 /// way, but the operands of an operation must either be constants or a value
7766 /// derived from a constant PHI. If this expression does not fit with these
7767 /// constraints, return null.
7768 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
7769 Instruction
*I
= dyn_cast
<Instruction
>(V
);
7770 if (!I
|| !canConstantEvolve(I
, L
)) return nullptr;
7772 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
7775 // Record non-constant instructions contained by the loop.
7776 DenseMap
<Instruction
*, PHINode
*> PHIMap
;
7777 return getConstantEvolvingPHIOperands(I
, L
, PHIMap
, 0);
7780 /// EvaluateExpression - Given an expression that passes the
7781 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7782 /// in the loop has the value PHIVal. If we can't fold this expression for some
7783 /// reason, return null.
7784 static Constant
*EvaluateExpression(Value
*V
, const Loop
*L
,
7785 DenseMap
<Instruction
*, Constant
*> &Vals
,
7786 const DataLayout
&DL
,
7787 const TargetLibraryInfo
*TLI
) {
7788 // Convenient constant check, but redundant for recursive calls.
7789 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
7790 Instruction
*I
= dyn_cast
<Instruction
>(V
);
7791 if (!I
) return nullptr;
7793 if (Constant
*C
= Vals
.lookup(I
)) return C
;
7795 // An instruction inside the loop depends on a value outside the loop that we
7796 // weren't given a mapping for, or a value such as a call inside the loop.
7797 if (!canConstantEvolve(I
, L
)) return nullptr;
7799 // An unmapped PHI can be due to a branch or another loop inside this loop,
7800 // or due to this not being the initial iteration through a loop where we
7801 // couldn't compute the evolution of this particular PHI last time.
7802 if (isa
<PHINode
>(I
)) return nullptr;
7804 std::vector
<Constant
*> Operands(I
->getNumOperands());
7806 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
7807 Instruction
*Operand
= dyn_cast
<Instruction
>(I
->getOperand(i
));
7809 Operands
[i
] = dyn_cast
<Constant
>(I
->getOperand(i
));
7810 if (!Operands
[i
]) return nullptr;
7813 Constant
*C
= EvaluateExpression(Operand
, L
, Vals
, DL
, TLI
);
7815 if (!C
) return nullptr;
7819 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
7820 return ConstantFoldCompareInstOperands(CI
->getPredicate(), Operands
[0],
7821 Operands
[1], DL
, TLI
);
7822 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
7823 if (!LI
->isVolatile())
7824 return ConstantFoldLoadFromConstPtr(Operands
[0], LI
->getType(), DL
);
7826 return ConstantFoldInstOperands(I
, Operands
, DL
, TLI
);
7830 // If every incoming value to PN except the one for BB is a specific Constant,
7831 // return that, else return nullptr.
7832 static Constant
*getOtherIncomingValue(PHINode
*PN
, BasicBlock
*BB
) {
7833 Constant
*IncomingVal
= nullptr;
7835 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
7836 if (PN
->getIncomingBlock(i
) == BB
)
7839 auto *CurrentVal
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
));
7843 if (IncomingVal
!= CurrentVal
) {
7846 IncomingVal
= CurrentVal
;
7853 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7854 /// in the header of its containing loop, we know the loop executes a
7855 /// constant number of times, and the PHI node is just a recurrence
7856 /// involving constants, fold it.
7858 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
7861 auto I
= ConstantEvolutionLoopExitValue
.find(PN
);
7862 if (I
!= ConstantEvolutionLoopExitValue
.end())
7865 if (BEs
.ugt(MaxBruteForceIterations
))
7866 return ConstantEvolutionLoopExitValue
[PN
] = nullptr; // Not going to evaluate it.
7868 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
7870 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
7871 BasicBlock
*Header
= L
->getHeader();
7872 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
7874 BasicBlock
*Latch
= L
->getLoopLatch();
7878 for (PHINode
&PHI
: Header
->phis()) {
7879 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
7880 CurrentIterVals
[&PHI
] = StartCST
;
7882 if (!CurrentIterVals
.count(PN
))
7883 return RetVal
= nullptr;
7885 Value
*BEValue
= PN
->getIncomingValueForBlock(Latch
);
7887 // Execute the loop symbolically to determine the exit value.
7888 assert(BEs
.getActiveBits() < CHAR_BIT
* sizeof(unsigned) &&
7889 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7891 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
7892 unsigned IterationNum
= 0;
7893 const DataLayout
&DL
= getDataLayout();
7894 for (; ; ++IterationNum
) {
7895 if (IterationNum
== NumIterations
)
7896 return RetVal
= CurrentIterVals
[PN
]; // Got exit value!
7898 // Compute the value of the PHIs for the next iteration.
7899 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7900 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
7902 EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
7904 return nullptr; // Couldn't evaluate!
7905 NextIterVals
[PN
] = NextPHI
;
7907 bool StoppedEvolving
= NextPHI
== CurrentIterVals
[PN
];
7909 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7910 // cease to be able to evaluate one of them or if they stop evolving,
7911 // because that doesn't necessarily prevent us from computing PN.
7912 SmallVector
<std::pair
<PHINode
*, Constant
*>, 8> PHIsToCompute
;
7913 for (const auto &I
: CurrentIterVals
) {
7914 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
7915 if (!PHI
|| PHI
== PN
|| PHI
->getParent() != Header
) continue;
7916 PHIsToCompute
.emplace_back(PHI
, I
.second
);
7918 // We use two distinct loops because EvaluateExpression may invalidate any
7919 // iterators into CurrentIterVals.
7920 for (const auto &I
: PHIsToCompute
) {
7921 PHINode
*PHI
= I
.first
;
7922 Constant
*&NextPHI
= NextIterVals
[PHI
];
7923 if (!NextPHI
) { // Not already computed.
7924 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
7925 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
7927 if (NextPHI
!= I
.second
)
7928 StoppedEvolving
= false;
7931 // If all entries in CurrentIterVals == NextIterVals then we can stop
7932 // iterating, the loop can't continue to change.
7933 if (StoppedEvolving
)
7934 return RetVal
= CurrentIterVals
[PN
];
7936 CurrentIterVals
.swap(NextIterVals
);
7940 const SCEV
*ScalarEvolution::computeExitCountExhaustively(const Loop
*L
,
7943 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
7944 if (!PN
) return getCouldNotCompute();
7946 // If the loop is canonicalized, the PHI will have exactly two entries.
7947 // That's the only form we support here.
7948 if (PN
->getNumIncomingValues() != 2) return getCouldNotCompute();
7950 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
7951 BasicBlock
*Header
= L
->getHeader();
7952 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
7954 BasicBlock
*Latch
= L
->getLoopLatch();
7955 assert(Latch
&& "Should follow from NumIncomingValues == 2!");
7957 for (PHINode
&PHI
: Header
->phis()) {
7958 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
7959 CurrentIterVals
[&PHI
] = StartCST
;
7961 if (!CurrentIterVals
.count(PN
))
7962 return getCouldNotCompute();
7964 // Okay, we find a PHI node that defines the trip count of this loop. Execute
7965 // the loop symbolically to determine when the condition gets a value of
7967 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
7968 const DataLayout
&DL
= getDataLayout();
7969 for (unsigned IterationNum
= 0; IterationNum
!= MaxIterations
;++IterationNum
){
7970 auto *CondVal
= dyn_cast_or_null
<ConstantInt
>(
7971 EvaluateExpression(Cond
, L
, CurrentIterVals
, DL
, &TLI
));
7973 // Couldn't symbolically evaluate.
7974 if (!CondVal
) return getCouldNotCompute();
7976 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
7977 ++NumBruteForceTripCountsComputed
;
7978 return getConstant(Type::getInt32Ty(getContext()), IterationNum
);
7981 // Update all the PHI nodes for the next iteration.
7982 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
7984 // Create a list of which PHIs we need to compute. We want to do this before
7985 // calling EvaluateExpression on them because that may invalidate iterators
7986 // into CurrentIterVals.
7987 SmallVector
<PHINode
*, 8> PHIsToCompute
;
7988 for (const auto &I
: CurrentIterVals
) {
7989 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
7990 if (!PHI
|| PHI
->getParent() != Header
) continue;
7991 PHIsToCompute
.push_back(PHI
);
7993 for (PHINode
*PHI
: PHIsToCompute
) {
7994 Constant
*&NextPHI
= NextIterVals
[PHI
];
7995 if (NextPHI
) continue; // Already computed!
7997 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
7998 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
8000 CurrentIterVals
.swap(NextIterVals
);
8003 // Too many iterations were needed to evaluate.
8004 return getCouldNotCompute();
8007 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
8008 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 2> &Values
=
8010 // Check to see if we've folded this expression at this loop before.
8011 for (auto &LS
: Values
)
8013 return LS
.second
? LS
.second
: V
;
8015 Values
.emplace_back(L
, nullptr);
8017 // Otherwise compute it.
8018 const SCEV
*C
= computeSCEVAtScope(V
, L
);
8019 for (auto &LS
: reverse(ValuesAtScopes
[V
]))
8020 if (LS
.first
== L
) {
8027 /// This builds up a Constant using the ConstantExpr interface. That way, we
8028 /// will return Constants for objects which aren't represented by a
8029 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8030 /// Returns NULL if the SCEV isn't representable as a Constant.
8031 static Constant
*BuildConstantFromSCEV(const SCEV
*V
) {
8032 switch (static_cast<SCEVTypes
>(V
->getSCEVType())) {
8033 case scCouldNotCompute
:
8037 return cast
<SCEVConstant
>(V
)->getValue();
8039 return dyn_cast
<Constant
>(cast
<SCEVUnknown
>(V
)->getValue());
8040 case scSignExtend
: {
8041 const SCEVSignExtendExpr
*SS
= cast
<SCEVSignExtendExpr
>(V
);
8042 if (Constant
*CastOp
= BuildConstantFromSCEV(SS
->getOperand()))
8043 return ConstantExpr::getSExt(CastOp
, SS
->getType());
8046 case scZeroExtend
: {
8047 const SCEVZeroExtendExpr
*SZ
= cast
<SCEVZeroExtendExpr
>(V
);
8048 if (Constant
*CastOp
= BuildConstantFromSCEV(SZ
->getOperand()))
8049 return ConstantExpr::getZExt(CastOp
, SZ
->getType());
8053 const SCEVTruncateExpr
*ST
= cast
<SCEVTruncateExpr
>(V
);
8054 if (Constant
*CastOp
= BuildConstantFromSCEV(ST
->getOperand()))
8055 return ConstantExpr::getTrunc(CastOp
, ST
->getType());
8059 const SCEVAddExpr
*SA
= cast
<SCEVAddExpr
>(V
);
8060 if (Constant
*C
= BuildConstantFromSCEV(SA
->getOperand(0))) {
8061 if (PointerType
*PTy
= dyn_cast
<PointerType
>(C
->getType())) {
8062 unsigned AS
= PTy
->getAddressSpace();
8063 Type
*DestPtrTy
= Type::getInt8PtrTy(C
->getContext(), AS
);
8064 C
= ConstantExpr::getBitCast(C
, DestPtrTy
);
8066 for (unsigned i
= 1, e
= SA
->getNumOperands(); i
!= e
; ++i
) {
8067 Constant
*C2
= BuildConstantFromSCEV(SA
->getOperand(i
));
8068 if (!C2
) return nullptr;
8071 if (!C
->getType()->isPointerTy() && C2
->getType()->isPointerTy()) {
8072 unsigned AS
= C2
->getType()->getPointerAddressSpace();
8074 Type
*DestPtrTy
= Type::getInt8PtrTy(C
->getContext(), AS
);
8075 // The offsets have been converted to bytes. We can add bytes to an
8076 // i8* by GEP with the byte count in the first index.
8077 C
= ConstantExpr::getBitCast(C
, DestPtrTy
);
8080 // Don't bother trying to sum two pointers. We probably can't
8081 // statically compute a load that results from it anyway.
8082 if (C2
->getType()->isPointerTy())
8085 if (PointerType
*PTy
= dyn_cast
<PointerType
>(C
->getType())) {
8086 if (PTy
->getElementType()->isStructTy())
8087 C2
= ConstantExpr::getIntegerCast(
8088 C2
, Type::getInt32Ty(C
->getContext()), true);
8089 C
= ConstantExpr::getGetElementPtr(PTy
->getElementType(), C
, C2
);
8091 C
= ConstantExpr::getAdd(C
, C2
);
8098 const SCEVMulExpr
*SM
= cast
<SCEVMulExpr
>(V
);
8099 if (Constant
*C
= BuildConstantFromSCEV(SM
->getOperand(0))) {
8100 // Don't bother with pointers at all.
8101 if (C
->getType()->isPointerTy()) return nullptr;
8102 for (unsigned i
= 1, e
= SM
->getNumOperands(); i
!= e
; ++i
) {
8103 Constant
*C2
= BuildConstantFromSCEV(SM
->getOperand(i
));
8104 if (!C2
|| C2
->getType()->isPointerTy()) return nullptr;
8105 C
= ConstantExpr::getMul(C
, C2
);
8112 const SCEVUDivExpr
*SU
= cast
<SCEVUDivExpr
>(V
);
8113 if (Constant
*LHS
= BuildConstantFromSCEV(SU
->getLHS()))
8114 if (Constant
*RHS
= BuildConstantFromSCEV(SU
->getRHS()))
8115 if (LHS
->getType() == RHS
->getType())
8116 return ConstantExpr::getUDiv(LHS
, RHS
);
8123 break; // TODO: smax, umax, smin, umax.
8128 const SCEV
*ScalarEvolution::computeSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
8129 if (isa
<SCEVConstant
>(V
)) return V
;
8131 // If this instruction is evolved from a constant-evolving PHI, compute the
8132 // exit value from the loop without using SCEVs.
8133 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
)) {
8134 if (Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue())) {
8135 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
8136 const Loop
*LI
= this->LI
[I
->getParent()];
8137 // Looking for loop exit value.
8138 if (LI
&& LI
->getParentLoop() == L
&&
8139 PN
->getParent() == LI
->getHeader()) {
8140 // Okay, there is no closed form solution for the PHI node. Check
8141 // to see if the loop that contains it has a known backedge-taken
8142 // count. If so, we may be able to force computation of the exit
8144 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(LI
);
8145 // This trivial case can show up in some degenerate cases where
8146 // the incoming IR has not yet been fully simplified.
8147 if (BackedgeTakenCount
->isZero()) {
8148 Value
*InitValue
= nullptr;
8149 bool MultipleInitValues
= false;
8150 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
8151 if (!LI
->contains(PN
->getIncomingBlock(i
))) {
8153 InitValue
= PN
->getIncomingValue(i
);
8154 else if (InitValue
!= PN
->getIncomingValue(i
)) {
8155 MultipleInitValues
= true;
8160 if (!MultipleInitValues
&& InitValue
)
8161 return getSCEV(InitValue
);
8163 // Do we have a loop invariant value flowing around the backedge
8164 // for a loop which must execute the backedge?
8165 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
8166 isKnownPositive(BackedgeTakenCount
) &&
8167 PN
->getNumIncomingValues() == 2) {
8168 unsigned InLoopPred
= LI
->contains(PN
->getIncomingBlock(0)) ? 0 : 1;
8169 const SCEV
*OnBackedge
= getSCEV(PN
->getIncomingValue(InLoopPred
));
8170 if (IsAvailableOnEntry(LI
, DT
, OnBackedge
, PN
->getParent()))
8173 if (auto *BTCC
= dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
8174 // Okay, we know how many times the containing loop executes. If
8175 // this is a constant evolving PHI node, get the final value at
8176 // the specified iteration number.
8178 getConstantEvolutionLoopExitValue(PN
, BTCC
->getAPInt(), LI
);
8179 if (RV
) return getSCEV(RV
);
8183 // If there is a single-input Phi, evaluate it at our scope. If we can
8184 // prove that this replacement does not break LCSSA form, use new value.
8185 if (PN
->getNumOperands() == 1) {
8186 const SCEV
*Input
= getSCEV(PN
->getOperand(0));
8187 const SCEV
*InputAtScope
= getSCEVAtScope(Input
, L
);
8188 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8189 // for the simplest case just support constants.
8190 if (isa
<SCEVConstant
>(InputAtScope
)) return InputAtScope
;
8194 // Okay, this is an expression that we cannot symbolically evaluate
8195 // into a SCEV. Check to see if it's possible to symbolically evaluate
8196 // the arguments into constants, and if so, try to constant propagate the
8197 // result. This is particularly useful for computing loop exit values.
8198 if (CanConstantFold(I
)) {
8199 SmallVector
<Constant
*, 4> Operands
;
8200 bool MadeImprovement
= false;
8201 for (Value
*Op
: I
->operands()) {
8202 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
8203 Operands
.push_back(C
);
8207 // If any of the operands is non-constant and if they are
8208 // non-integer and non-pointer, don't even try to analyze them
8209 // with scev techniques.
8210 if (!isSCEVable(Op
->getType()))
8213 const SCEV
*OrigV
= getSCEV(Op
);
8214 const SCEV
*OpV
= getSCEVAtScope(OrigV
, L
);
8215 MadeImprovement
|= OrigV
!= OpV
;
8217 Constant
*C
= BuildConstantFromSCEV(OpV
);
8219 if (C
->getType() != Op
->getType())
8220 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
8224 Operands
.push_back(C
);
8227 // Check to see if getSCEVAtScope actually made an improvement.
8228 if (MadeImprovement
) {
8229 Constant
*C
= nullptr;
8230 const DataLayout
&DL
= getDataLayout();
8231 if (const CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
8232 C
= ConstantFoldCompareInstOperands(CI
->getPredicate(), Operands
[0],
8233 Operands
[1], DL
, &TLI
);
8234 else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
8235 if (!LI
->isVolatile())
8236 C
= ConstantFoldLoadFromConstPtr(Operands
[0], LI
->getType(), DL
);
8238 C
= ConstantFoldInstOperands(I
, Operands
, DL
, &TLI
);
8245 // This is some other type of SCEVUnknown, just return it.
8249 if (const SCEVCommutativeExpr
*Comm
= dyn_cast
<SCEVCommutativeExpr
>(V
)) {
8250 // Avoid performing the look-up in the common case where the specified
8251 // expression has no loop-variant portions.
8252 for (unsigned i
= 0, e
= Comm
->getNumOperands(); i
!= e
; ++i
) {
8253 const SCEV
*OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
8254 if (OpAtScope
!= Comm
->getOperand(i
)) {
8255 // Okay, at least one of these operands is loop variant but might be
8256 // foldable. Build a new instance of the folded commutative expression.
8257 SmallVector
<const SCEV
*, 8> NewOps(Comm
->op_begin(),
8258 Comm
->op_begin()+i
);
8259 NewOps
.push_back(OpAtScope
);
8261 for (++i
; i
!= e
; ++i
) {
8262 OpAtScope
= getSCEVAtScope(Comm
->getOperand(i
), L
);
8263 NewOps
.push_back(OpAtScope
);
8265 if (isa
<SCEVAddExpr
>(Comm
))
8266 return getAddExpr(NewOps
, Comm
->getNoWrapFlags());
8267 if (isa
<SCEVMulExpr
>(Comm
))
8268 return getMulExpr(NewOps
, Comm
->getNoWrapFlags());
8269 if (isa
<SCEVMinMaxExpr
>(Comm
))
8270 return getMinMaxExpr(Comm
->getSCEVType(), NewOps
);
8271 llvm_unreachable("Unknown commutative SCEV type!");
8274 // If we got here, all operands are loop invariant.
8278 if (const SCEVUDivExpr
*Div
= dyn_cast
<SCEVUDivExpr
>(V
)) {
8279 const SCEV
*LHS
= getSCEVAtScope(Div
->getLHS(), L
);
8280 const SCEV
*RHS
= getSCEVAtScope(Div
->getRHS(), L
);
8281 if (LHS
== Div
->getLHS() && RHS
== Div
->getRHS())
8282 return Div
; // must be loop invariant
8283 return getUDivExpr(LHS
, RHS
);
8286 // If this is a loop recurrence for a loop that does not contain L, then we
8287 // are dealing with the final value computed by the loop.
8288 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
8289 // First, attempt to evaluate each operand.
8290 // Avoid performing the look-up in the common case where the specified
8291 // expression has no loop-variant portions.
8292 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
8293 const SCEV
*OpAtScope
= getSCEVAtScope(AddRec
->getOperand(i
), L
);
8294 if (OpAtScope
== AddRec
->getOperand(i
))
8297 // Okay, at least one of these operands is loop variant but might be
8298 // foldable. Build a new instance of the folded commutative expression.
8299 SmallVector
<const SCEV
*, 8> NewOps(AddRec
->op_begin(),
8300 AddRec
->op_begin()+i
);
8301 NewOps
.push_back(OpAtScope
);
8302 for (++i
; i
!= e
; ++i
)
8303 NewOps
.push_back(getSCEVAtScope(AddRec
->getOperand(i
), L
));
8305 const SCEV
*FoldedRec
=
8306 getAddRecExpr(NewOps
, AddRec
->getLoop(),
8307 AddRec
->getNoWrapFlags(SCEV::FlagNW
));
8308 AddRec
= dyn_cast
<SCEVAddRecExpr
>(FoldedRec
);
8309 // The addrec may be folded to a nonrecurrence, for example, if the
8310 // induction variable is multiplied by zero after constant folding. Go
8311 // ahead and return the folded value.
8317 // If the scope is outside the addrec's loop, evaluate it by using the
8318 // loop exit value of the addrec.
8319 if (!AddRec
->getLoop()->contains(L
)) {
8320 // To evaluate this recurrence, we need to know how many times the AddRec
8321 // loop iterates. Compute this now.
8322 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
8323 if (BackedgeTakenCount
== getCouldNotCompute()) return AddRec
;
8325 // Then, evaluate the AddRec.
8326 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
8332 if (const SCEVZeroExtendExpr
*Cast
= dyn_cast
<SCEVZeroExtendExpr
>(V
)) {
8333 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
8334 if (Op
== Cast
->getOperand())
8335 return Cast
; // must be loop invariant
8336 return getZeroExtendExpr(Op
, Cast
->getType());
8339 if (const SCEVSignExtendExpr
*Cast
= dyn_cast
<SCEVSignExtendExpr
>(V
)) {
8340 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
8341 if (Op
== Cast
->getOperand())
8342 return Cast
; // must be loop invariant
8343 return getSignExtendExpr(Op
, Cast
->getType());
8346 if (const SCEVTruncateExpr
*Cast
= dyn_cast
<SCEVTruncateExpr
>(V
)) {
8347 const SCEV
*Op
= getSCEVAtScope(Cast
->getOperand(), L
);
8348 if (Op
== Cast
->getOperand())
8349 return Cast
; // must be loop invariant
8350 return getTruncateExpr(Op
, Cast
->getType());
8353 llvm_unreachable("Unknown SCEV type!");
8356 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
8357 return getSCEVAtScope(getSCEV(V
), L
);
8360 const SCEV
*ScalarEvolution::stripInjectiveFunctions(const SCEV
*S
) const {
8361 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
))
8362 return stripInjectiveFunctions(ZExt
->getOperand());
8363 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
))
8364 return stripInjectiveFunctions(SExt
->getOperand());
8368 /// Finds the minimum unsigned root of the following equation:
8370 /// A * X = B (mod N)
8372 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8373 /// A and B isn't important.
8375 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8376 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const SCEV
*B
,
8377 ScalarEvolution
&SE
) {
8378 uint32_t BW
= A
.getBitWidth();
8379 assert(BW
== SE
.getTypeSizeInBits(B
->getType()));
8380 assert(A
!= 0 && "A must be non-zero.");
8384 // The gcd of A and N may have only one prime factor: 2. The number of
8385 // trailing zeros in A is its multiplicity
8386 uint32_t Mult2
= A
.countTrailingZeros();
8389 // 2. Check if B is divisible by D.
8391 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8392 // is not less than multiplicity of this prime factor for D.
8393 if (SE
.GetMinTrailingZeros(B
) < Mult2
)
8394 return SE
.getCouldNotCompute();
8396 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8399 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8400 // (N / D) in general. The inverse itself always fits into BW bits, though,
8401 // so we immediately truncate it.
8402 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
8403 APInt
Mod(BW
+ 1, 0);
8404 Mod
.setBit(BW
- Mult2
); // Mod = N / D
8405 APInt I
= AD
.multiplicativeInverse(Mod
).trunc(BW
);
8407 // 4. Compute the minimum unsigned root of the equation:
8408 // I * (B / D) mod (N / D)
8409 // To simplify the computation, we factor out the divide by D:
8410 // (I * B mod N) / D
8411 const SCEV
*D
= SE
.getConstant(APInt::getOneBitSet(BW
, Mult2
));
8412 return SE
.getUDivExactExpr(SE
.getMulExpr(B
, SE
.getConstant(I
)), D
);
8415 /// For a given quadratic addrec, generate coefficients of the corresponding
8416 /// quadratic equation, multiplied by a common value to ensure that they are
8418 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8419 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8420 /// were multiplied by, and BitWidth is the bit width of the original addrec
8422 /// This function returns None if the addrec coefficients are not compile-
8424 static Optional
<std::tuple
<APInt
, APInt
, APInt
, APInt
, unsigned>>
8425 GetQuadraticEquation(const SCEVAddRecExpr
*AddRec
) {
8426 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
8427 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
8428 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
8429 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
8430 LLVM_DEBUG(dbgs() << __func__
<< ": analyzing quadratic addrec: "
8431 << *AddRec
<< '\n');
8433 // We currently can only solve this if the coefficients are constants.
8434 if (!LC
|| !MC
|| !NC
) {
8435 LLVM_DEBUG(dbgs() << __func__
<< ": coefficients are not constant\n");
8439 APInt L
= LC
->getAPInt();
8440 APInt M
= MC
->getAPInt();
8441 APInt N
= NC
->getAPInt();
8442 assert(!N
.isNullValue() && "This is not a quadratic addrec");
8444 unsigned BitWidth
= LC
->getAPInt().getBitWidth();
8445 unsigned NewWidth
= BitWidth
+ 1;
8446 LLVM_DEBUG(dbgs() << __func__
<< ": addrec coeff bw: "
8447 << BitWidth
<< '\n');
8448 // The sign-extension (as opposed to a zero-extension) here matches the
8449 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8450 N
= N
.sext(NewWidth
);
8451 M
= M
.sext(NewWidth
);
8452 L
= L
.sext(NewWidth
);
8454 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8455 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8456 // L+M, L+2M+N, L+3M+3N, ...
8457 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8459 // The equation Acc = 0 is then
8460 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8461 // In a quadratic form it becomes:
8462 // N n^2 + (2M-N) n + 2L = 0.
8465 APInt B
= 2 * M
- A
;
8467 APInt T
= APInt(NewWidth
, 2);
8468 LLVM_DEBUG(dbgs() << __func__
<< ": equation " << A
<< "x^2 + " << B
8469 << "x + " << C
<< ", coeff bw: " << NewWidth
8470 << ", multiplied by " << T
<< '\n');
8471 return std::make_tuple(A
, B
, C
, T
, BitWidth
);
8474 /// Helper function to compare optional APInts:
8475 /// (a) if X and Y both exist, return min(X, Y),
8476 /// (b) if neither X nor Y exist, return None,
8477 /// (c) if exactly one of X and Y exists, return that value.
8478 static Optional
<APInt
> MinOptional(Optional
<APInt
> X
, Optional
<APInt
> Y
) {
8479 if (X
.hasValue() && Y
.hasValue()) {
8480 unsigned W
= std::max(X
->getBitWidth(), Y
->getBitWidth());
8481 APInt XW
= X
->sextOrSelf(W
);
8482 APInt YW
= Y
->sextOrSelf(W
);
8483 return XW
.slt(YW
) ? *X
: *Y
;
8485 if (!X
.hasValue() && !Y
.hasValue())
8487 return X
.hasValue() ? *X
: *Y
;
8490 /// Helper function to truncate an optional APInt to a given BitWidth.
8491 /// When solving addrec-related equations, it is preferable to return a value
8492 /// that has the same bit width as the original addrec's coefficients. If the
8493 /// solution fits in the original bit width, truncate it (except for i1).
8494 /// Returning a value of a different bit width may inhibit some optimizations.
8496 /// In general, a solution to a quadratic equation generated from an addrec
8497 /// may require BW+1 bits, where BW is the bit width of the addrec's
8498 /// coefficients. The reason is that the coefficients of the quadratic
8499 /// equation are BW+1 bits wide (to avoid truncation when converting from
8500 /// the addrec to the equation).
8501 static Optional
<APInt
> TruncIfPossible(Optional
<APInt
> X
, unsigned BitWidth
) {
8504 unsigned W
= X
->getBitWidth();
8505 if (BitWidth
> 1 && BitWidth
< W
&& X
->isIntN(BitWidth
))
8506 return X
->trunc(BitWidth
);
8510 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8511 /// iterations. The values L, M, N are assumed to be signed, and they
8512 /// should all have the same bit widths.
8513 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8514 /// where BW is the bit width of the addrec's coefficients.
8515 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8516 /// returned as such, otherwise the bit width of the returned value may
8517 /// be greater than BW.
8519 /// This function returns None if
8520 /// (a) the addrec coefficients are not constant, or
8521 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8522 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8523 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8524 static Optional
<APInt
>
8525 SolveQuadraticAddRecExact(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
8528 auto T
= GetQuadraticEquation(AddRec
);
8532 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
8533 LLVM_DEBUG(dbgs() << __func__
<< ": solving for unsigned overflow\n");
8534 Optional
<APInt
> X
= APIntOps::SolveQuadraticEquationWrap(A
, B
, C
, BitWidth
+1);
8538 ConstantInt
*CX
= ConstantInt::get(SE
.getContext(), *X
);
8539 ConstantInt
*V
= EvaluateConstantChrecAtConstant(AddRec
, CX
, SE
);
8543 return TruncIfPossible(X
, BitWidth
);
8546 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8547 /// iterations. The values M, N are assumed to be signed, and they
8548 /// should all have the same bit widths.
8549 /// Find the least n such that c(n) does not belong to the given range,
8550 /// while c(n-1) does.
8552 /// This function returns None if
8553 /// (a) the addrec coefficients are not constant, or
8554 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8555 /// bounds of the range.
8556 static Optional
<APInt
>
8557 SolveQuadraticAddRecRange(const SCEVAddRecExpr
*AddRec
,
8558 const ConstantRange
&Range
, ScalarEvolution
&SE
) {
8559 assert(AddRec
->getOperand(0)->isZero() &&
8560 "Starting value of addrec should be 0");
8561 LLVM_DEBUG(dbgs() << __func__
<< ": solving boundary crossing for range "
8562 << Range
<< ", addrec " << *AddRec
<< '\n');
8563 // This case is handled in getNumIterationsInRange. Here we can assume that
8564 // we start in the range.
8565 assert(Range
.contains(APInt(SE
.getTypeSizeInBits(AddRec
->getType()), 0)) &&
8566 "Addrec's initial value should be in range");
8570 auto T
= GetQuadraticEquation(AddRec
);
8574 // Be careful about the return value: there can be two reasons for not
8575 // returning an actual number. First, if no solutions to the equations
8576 // were found, and second, if the solutions don't leave the given range.
8577 // The first case means that the actual solution is "unknown", the second
8578 // means that it's known, but not valid. If the solution is unknown, we
8579 // cannot make any conclusions.
8580 // Return a pair: the optional solution and a flag indicating if the
8581 // solution was found.
8582 auto SolveForBoundary
= [&](APInt Bound
) -> std::pair
<Optional
<APInt
>,bool> {
8583 // Solve for signed overflow and unsigned overflow, pick the lower
8585 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8586 << Bound
<< " (before multiplying by " << M
<< ")\n");
8587 Bound
*= M
; // The quadratic equation multiplier.
8589 Optional
<APInt
> SO
= None
;
8591 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8592 "signed overflow\n");
8593 SO
= APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
, BitWidth
);
8595 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8596 "unsigned overflow\n");
8597 Optional
<APInt
> UO
= APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
,
8600 auto LeavesRange
= [&] (const APInt
&X
) {
8601 ConstantInt
*C0
= ConstantInt::get(SE
.getContext(), X
);
8602 ConstantInt
*V0
= EvaluateConstantChrecAtConstant(AddRec
, C0
, SE
);
8603 if (Range
.contains(V0
->getValue()))
8605 // X should be at least 1, so X-1 is non-negative.
8606 ConstantInt
*C1
= ConstantInt::get(SE
.getContext(), X
-1);
8607 ConstantInt
*V1
= EvaluateConstantChrecAtConstant(AddRec
, C1
, SE
);
8608 if (Range
.contains(V1
->getValue()))
8613 // If SolveQuadraticEquationWrap returns None, it means that there can
8614 // be a solution, but the function failed to find it. We cannot treat it
8615 // as "no solution".
8616 if (!SO
.hasValue() || !UO
.hasValue())
8617 return { None
, false };
8619 // Check the smaller value first to see if it leaves the range.
8620 // At this point, both SO and UO must have values.
8621 Optional
<APInt
> Min
= MinOptional(SO
, UO
);
8622 if (LeavesRange(*Min
))
8623 return { Min
, true };
8624 Optional
<APInt
> Max
= Min
== SO
? UO
: SO
;
8625 if (LeavesRange(*Max
))
8626 return { Max
, true };
8628 // Solutions were found, but were eliminated, hence the "true".
8629 return { None
, true };
8632 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
8633 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8634 APInt Lower
= Range
.getLower().sextOrSelf(A
.getBitWidth()) - 1;
8635 APInt Upper
= Range
.getUpper().sextOrSelf(A
.getBitWidth());
8636 auto SL
= SolveForBoundary(Lower
);
8637 auto SU
= SolveForBoundary(Upper
);
8638 // If any of the solutions was unknown, no meaninigful conclusions can
8640 if (!SL
.second
|| !SU
.second
)
8643 // Claim: The correct solution is not some value between Min and Max.
8645 // Justification: Assuming that Min and Max are different values, one of
8646 // them is when the first signed overflow happens, the other is when the
8647 // first unsigned overflow happens. Crossing the range boundary is only
8648 // possible via an overflow (treating 0 as a special case of it, modeling
8649 // an overflow as crossing k*2^W for some k).
8651 // The interesting case here is when Min was eliminated as an invalid
8652 // solution, but Max was not. The argument is that if there was another
8653 // overflow between Min and Max, it would also have been eliminated if
8654 // it was considered.
8656 // For a given boundary, it is possible to have two overflows of the same
8657 // type (signed/unsigned) without having the other type in between: this
8658 // can happen when the vertex of the parabola is between the iterations
8659 // corresponding to the overflows. This is only possible when the two
8660 // overflows cross k*2^W for the same k. In such case, if the second one
8661 // left the range (and was the first one to do so), the first overflow
8662 // would have to enter the range, which would mean that either we had left
8663 // the range before or that we started outside of it. Both of these cases
8664 // are contradictions.
8666 // Claim: In the case where SolveForBoundary returns None, the correct
8667 // solution is not some value between the Max for this boundary and the
8668 // Min of the other boundary.
8670 // Justification: Assume that we had such Max_A and Min_B corresponding
8671 // to range boundaries A and B and such that Max_A < Min_B. If there was
8672 // a solution between Max_A and Min_B, it would have to be caused by an
8673 // overflow corresponding to either A or B. It cannot correspond to B,
8674 // since Min_B is the first occurrence of such an overflow. If it
8675 // corresponded to A, it would have to be either a signed or an unsigned
8676 // overflow that is larger than both eliminated overflows for A. But
8677 // between the eliminated overflows and this overflow, the values would
8678 // cover the entire value space, thus crossing the other boundary, which
8679 // is a contradiction.
8681 return TruncIfPossible(MinOptional(SL
.first
, SU
.first
), BitWidth
);
8684 ScalarEvolution::ExitLimit
8685 ScalarEvolution::howFarToZero(const SCEV
*V
, const Loop
*L
, bool ControlsExit
,
8686 bool AllowPredicates
) {
8688 // This is only used for loops with a "x != y" exit test. The exit condition
8689 // is now expressed as a single expression, V = x-y. So the exit test is
8690 // effectively V != 0. We know and take advantage of the fact that this
8691 // expression only being used in a comparison by zero context.
8693 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
8694 // If the value is a constant
8695 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
8696 // If the value is already zero, the branch will execute zero times.
8697 if (C
->getValue()->isZero()) return C
;
8698 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8701 const SCEVAddRecExpr
*AddRec
=
8702 dyn_cast
<SCEVAddRecExpr
>(stripInjectiveFunctions(V
));
8704 if (!AddRec
&& AllowPredicates
)
8705 // Try to make this an AddRec using runtime tests, in the first X
8706 // iterations of this loop, where X is the SCEV expression found by the
8708 AddRec
= convertSCEVToAddRecWithPredicates(V
, L
, Predicates
);
8710 if (!AddRec
|| AddRec
->getLoop() != L
)
8711 return getCouldNotCompute();
8713 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8714 // the quadratic equation to solve it.
8715 if (AddRec
->isQuadratic() && AddRec
->getType()->isIntegerTy()) {
8716 // We can only use this value if the chrec ends up with an exact zero
8717 // value at this index. When solving for "X*X != 5", for example, we
8718 // should not accept a root of 2.
8719 if (auto S
= SolveQuadraticAddRecExact(AddRec
, *this)) {
8720 const auto *R
= cast
<SCEVConstant
>(getConstant(S
.getValue()));
8721 return ExitLimit(R
, R
, false, Predicates
);
8723 return getCouldNotCompute();
8726 // Otherwise we can only handle this if it is affine.
8727 if (!AddRec
->isAffine())
8728 return getCouldNotCompute();
8730 // If this is an affine expression, the execution count of this branch is
8731 // the minimum unsigned root of the following equation:
8733 // Start + Step*N = 0 (mod 2^BW)
8737 // Step*N = -Start (mod 2^BW)
8739 // where BW is the common bit width of Start and Step.
8741 // Get the initial value for the loop.
8742 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
8743 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
8745 // For now we handle only constant steps.
8747 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8748 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8749 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8750 // We have not yet seen any such cases.
8751 const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
);
8752 if (!StepC
|| StepC
->getValue()->isZero())
8753 return getCouldNotCompute();
8755 // For positive steps (counting up until unsigned overflow):
8756 // N = -Start/Step (as unsigned)
8757 // For negative steps (counting down to zero):
8759 // First compute the unsigned distance from zero in the direction of Step.
8760 bool CountDown
= StepC
->getAPInt().isNegative();
8761 const SCEV
*Distance
= CountDown
? Start
: getNegativeSCEV(Start
);
8763 // Handle unitary steps, which cannot wraparound.
8764 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8765 // N = Distance (as unsigned)
8766 if (StepC
->getValue()->isOne() || StepC
->getValue()->isMinusOne()) {
8767 APInt MaxBECount
= getUnsignedRangeMax(Distance
);
8769 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8770 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8771 // case, and see if we can improve the bound.
8773 // Explicitly handling this here is necessary because getUnsignedRange
8774 // isn't context-sensitive; it doesn't know that we only care about the
8775 // range inside the loop.
8776 const SCEV
*Zero
= getZero(Distance
->getType());
8777 const SCEV
*One
= getOne(Distance
->getType());
8778 const SCEV
*DistancePlusOne
= getAddExpr(Distance
, One
);
8779 if (isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, DistancePlusOne
, Zero
)) {
8780 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8781 // as "unsigned_max(Distance + 1) - 1".
8782 ConstantRange CR
= getUnsignedRange(DistancePlusOne
);
8783 MaxBECount
= APIntOps::umin(MaxBECount
, CR
.getUnsignedMax() - 1);
8785 return ExitLimit(Distance
, getConstant(MaxBECount
), false, Predicates
);
8788 // If the condition controls loop exit (the loop exits only if the expression
8789 // is true) and the addition is no-wrap we can use unsigned divide to
8790 // compute the backedge count. In this case, the step may not divide the
8791 // distance, but we don't care because if the condition is "missed" the loop
8792 // will have undefined behavior due to wrapping.
8793 if (ControlsExit
&& AddRec
->hasNoSelfWrap() &&
8794 loopHasNoAbnormalExits(AddRec
->getLoop())) {
8796 getUDivExpr(Distance
, CountDown
? getNegativeSCEV(Step
) : Step
);
8798 Exact
== getCouldNotCompute()
8800 : getConstant(getUnsignedRangeMax(Exact
));
8801 return ExitLimit(Exact
, Max
, false, Predicates
);
8804 // Solve the general equation.
8805 const SCEV
*E
= SolveLinEquationWithOverflow(StepC
->getAPInt(),
8806 getNegativeSCEV(Start
), *this);
8807 const SCEV
*M
= E
== getCouldNotCompute()
8809 : getConstant(getUnsignedRangeMax(E
));
8810 return ExitLimit(E
, M
, false, Predicates
);
8813 ScalarEvolution::ExitLimit
8814 ScalarEvolution::howFarToNonZero(const SCEV
*V
, const Loop
*L
) {
8815 // Loops that look like: while (X == 0) are very strange indeed. We don't
8816 // handle them yet except for the trivial case. This could be expanded in the
8817 // future as needed.
8819 // If the value is a constant, check to see if it is known to be non-zero
8820 // already. If so, the backedge will execute zero times.
8821 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
8822 if (!C
->getValue()->isZero())
8823 return getZero(C
->getType());
8824 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8827 // We could implement others, but I really doubt anyone writes loops like
8828 // this, and if they did, they would already be constant folded.
8829 return getCouldNotCompute();
8832 std::pair
<BasicBlock
*, BasicBlock
*>
8833 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock
*BB
) {
8834 // If the block has a unique predecessor, then there is no path from the
8835 // predecessor to the block that does not go through the direct edge
8836 // from the predecessor to the block.
8837 if (BasicBlock
*Pred
= BB
->getSinglePredecessor())
8840 // A loop's header is defined to be a block that dominates the loop.
8841 // If the header has a unique predecessor outside the loop, it must be
8842 // a block that has exactly one successor that can reach the loop.
8843 if (Loop
*L
= LI
.getLoopFor(BB
))
8844 return {L
->getLoopPredecessor(), L
->getHeader()};
8846 return {nullptr, nullptr};
8849 /// SCEV structural equivalence is usually sufficient for testing whether two
8850 /// expressions are equal, however for the purposes of looking for a condition
8851 /// guarding a loop, it can be useful to be a little more general, since a
8852 /// front-end may have replicated the controlling expression.
8853 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
8854 // Quick check to see if they are the same SCEV.
8855 if (A
== B
) return true;
8857 auto ComputesEqualValues
= [](const Instruction
*A
, const Instruction
*B
) {
8858 // Not all instructions that are "identical" compute the same value. For
8859 // instance, two distinct alloca instructions allocating the same type are
8860 // identical and do not read memory; but compute distinct values.
8861 return A
->isIdenticalTo(B
) && (isa
<BinaryOperator
>(A
) || isa
<GetElementPtrInst
>(A
));
8864 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8865 // two different instructions with the same value. Check for this case.
8866 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
8867 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
8868 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
8869 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
8870 if (ComputesEqualValues(AI
, BI
))
8873 // Otherwise assume they may have a different value.
8877 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate
&Pred
,
8878 const SCEV
*&LHS
, const SCEV
*&RHS
,
8880 bool Changed
= false;
8881 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8883 auto TrivialCase
= [&](bool TriviallyTrue
) {
8884 LHS
= RHS
= getConstant(ConstantInt::getFalse(getContext()));
8885 Pred
= TriviallyTrue
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
8888 // If we hit the max recursion limit bail out.
8892 // Canonicalize a constant to the right side.
8893 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
8894 // Check for both operands constant.
8895 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
8896 if (ConstantExpr::getICmp(Pred
,
8898 RHSC
->getValue())->isNullValue())
8899 return TrivialCase(false);
8901 return TrivialCase(true);
8903 // Otherwise swap the operands to put the constant on the right.
8904 std::swap(LHS
, RHS
);
8905 Pred
= ICmpInst::getSwappedPredicate(Pred
);
8909 // If we're comparing an addrec with a value which is loop-invariant in the
8910 // addrec's loop, put the addrec on the left. Also make a dominance check,
8911 // as both operands could be addrecs loop-invariant in each other's loop.
8912 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(RHS
)) {
8913 const Loop
*L
= AR
->getLoop();
8914 if (isLoopInvariant(LHS
, L
) && properlyDominates(LHS
, L
->getHeader())) {
8915 std::swap(LHS
, RHS
);
8916 Pred
= ICmpInst::getSwappedPredicate(Pred
);
8921 // If there's a constant operand, canonicalize comparisons with boundary
8922 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8923 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
8924 const APInt
&RA
= RC
->getAPInt();
8926 bool SimplifiedByConstantRange
= false;
8928 if (!ICmpInst::isEquality(Pred
)) {
8929 ConstantRange ExactCR
= ConstantRange::makeExactICmpRegion(Pred
, RA
);
8930 if (ExactCR
.isFullSet())
8931 return TrivialCase(true);
8932 else if (ExactCR
.isEmptySet())
8933 return TrivialCase(false);
8936 CmpInst::Predicate NewPred
;
8937 if (ExactCR
.getEquivalentICmp(NewPred
, NewRHS
) &&
8938 ICmpInst::isEquality(NewPred
)) {
8939 // We were able to convert an inequality to an equality.
8941 RHS
= getConstant(NewRHS
);
8942 Changed
= SimplifiedByConstantRange
= true;
8946 if (!SimplifiedByConstantRange
) {
8950 case ICmpInst::ICMP_EQ
:
8951 case ICmpInst::ICMP_NE
:
8952 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8954 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(LHS
))
8955 if (const SCEVMulExpr
*ME
=
8956 dyn_cast
<SCEVMulExpr
>(AE
->getOperand(0)))
8957 if (AE
->getNumOperands() == 2 && ME
->getNumOperands() == 2 &&
8958 ME
->getOperand(0)->isAllOnesValue()) {
8959 RHS
= AE
->getOperand(1);
8960 LHS
= ME
->getOperand(1);
8966 // The "Should have been caught earlier!" messages refer to the fact
8967 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8968 // should have fired on the corresponding cases, and canonicalized the
8969 // check to trivial case.
8971 case ICmpInst::ICMP_UGE
:
8972 assert(!RA
.isMinValue() && "Should have been caught earlier!");
8973 Pred
= ICmpInst::ICMP_UGT
;
8974 RHS
= getConstant(RA
- 1);
8977 case ICmpInst::ICMP_ULE
:
8978 assert(!RA
.isMaxValue() && "Should have been caught earlier!");
8979 Pred
= ICmpInst::ICMP_ULT
;
8980 RHS
= getConstant(RA
+ 1);
8983 case ICmpInst::ICMP_SGE
:
8984 assert(!RA
.isMinSignedValue() && "Should have been caught earlier!");
8985 Pred
= ICmpInst::ICMP_SGT
;
8986 RHS
= getConstant(RA
- 1);
8989 case ICmpInst::ICMP_SLE
:
8990 assert(!RA
.isMaxSignedValue() && "Should have been caught earlier!");
8991 Pred
= ICmpInst::ICMP_SLT
;
8992 RHS
= getConstant(RA
+ 1);
8999 // Check for obvious equality.
9000 if (HasSameValue(LHS
, RHS
)) {
9001 if (ICmpInst::isTrueWhenEqual(Pred
))
9002 return TrivialCase(true);
9003 if (ICmpInst::isFalseWhenEqual(Pred
))
9004 return TrivialCase(false);
9007 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9008 // adding or subtracting 1 from one of the operands.
9010 case ICmpInst::ICMP_SLE
:
9011 if (!getSignedRangeMax(RHS
).isMaxSignedValue()) {
9012 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
9014 Pred
= ICmpInst::ICMP_SLT
;
9016 } else if (!getSignedRangeMin(LHS
).isMinSignedValue()) {
9017 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
,
9019 Pred
= ICmpInst::ICMP_SLT
;
9023 case ICmpInst::ICMP_SGE
:
9024 if (!getSignedRangeMin(RHS
).isMinSignedValue()) {
9025 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
,
9027 Pred
= ICmpInst::ICMP_SGT
;
9029 } else if (!getSignedRangeMax(LHS
).isMaxSignedValue()) {
9030 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
9032 Pred
= ICmpInst::ICMP_SGT
;
9036 case ICmpInst::ICMP_ULE
:
9037 if (!getUnsignedRangeMax(RHS
).isMaxValue()) {
9038 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
9040 Pred
= ICmpInst::ICMP_ULT
;
9042 } else if (!getUnsignedRangeMin(LHS
).isMinValue()) {
9043 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
);
9044 Pred
= ICmpInst::ICMP_ULT
;
9048 case ICmpInst::ICMP_UGE
:
9049 if (!getUnsignedRangeMin(RHS
).isMinValue()) {
9050 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
);
9051 Pred
= ICmpInst::ICMP_UGT
;
9053 } else if (!getUnsignedRangeMax(LHS
).isMaxValue()) {
9054 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
9056 Pred
= ICmpInst::ICMP_UGT
;
9064 // TODO: More simplifications are possible here.
9066 // Recursively simplify until we either hit a recursion limit or nothing
9069 return SimplifyICmpOperands(Pred
, LHS
, RHS
, Depth
+1);
9074 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
9075 return getSignedRangeMax(S
).isNegative();
9078 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
9079 return getSignedRangeMin(S
).isStrictlyPositive();
9082 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
9083 return !getSignedRangeMin(S
).isNegative();
9086 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
9087 return !getSignedRangeMax(S
).isStrictlyPositive();
9090 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
9091 return isKnownNegative(S
) || isKnownPositive(S
);
9094 std::pair
<const SCEV
*, const SCEV
*>
9095 ScalarEvolution::SplitIntoInitAndPostInc(const Loop
*L
, const SCEV
*S
) {
9096 // Compute SCEV on entry of loop L.
9097 const SCEV
*Start
= SCEVInitRewriter::rewrite(S
, L
, *this);
9098 if (Start
== getCouldNotCompute())
9099 return { Start
, Start
};
9100 // Compute post increment SCEV for loop L.
9101 const SCEV
*PostInc
= SCEVPostIncRewriter::rewrite(S
, L
, *this);
9102 assert(PostInc
!= getCouldNotCompute() && "Unexpected could not compute");
9103 return { Start
, PostInc
};
9106 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred
,
9107 const SCEV
*LHS
, const SCEV
*RHS
) {
9108 // First collect all loops.
9109 SmallPtrSet
<const Loop
*, 8> LoopsUsed
;
9110 getUsedLoops(LHS
, LoopsUsed
);
9111 getUsedLoops(RHS
, LoopsUsed
);
9113 if (LoopsUsed
.empty())
9116 // Domination relationship must be a linear order on collected loops.
9118 for (auto *L1
: LoopsUsed
)
9119 for (auto *L2
: LoopsUsed
)
9120 assert((DT
.dominates(L1
->getHeader(), L2
->getHeader()) ||
9121 DT
.dominates(L2
->getHeader(), L1
->getHeader())) &&
9122 "Domination relationship is not a linear order");
9126 *std::max_element(LoopsUsed
.begin(), LoopsUsed
.end(),
9127 [&](const Loop
*L1
, const Loop
*L2
) {
9128 return DT
.properlyDominates(L1
->getHeader(), L2
->getHeader());
9131 // Get init and post increment value for LHS.
9132 auto SplitLHS
= SplitIntoInitAndPostInc(MDL
, LHS
);
9133 // if LHS contains unknown non-invariant SCEV then bail out.
9134 if (SplitLHS
.first
== getCouldNotCompute())
9136 assert (SplitLHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
9137 // Get init and post increment value for RHS.
9138 auto SplitRHS
= SplitIntoInitAndPostInc(MDL
, RHS
);
9139 // if RHS contains unknown non-invariant SCEV then bail out.
9140 if (SplitRHS
.first
== getCouldNotCompute())
9142 assert (SplitRHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
9143 // It is possible that init SCEV contains an invariant load but it does
9144 // not dominate MDL and is not available at MDL loop entry, so we should
9146 if (!isAvailableAtLoopEntry(SplitLHS
.first
, MDL
) ||
9147 !isAvailableAtLoopEntry(SplitRHS
.first
, MDL
))
9150 return isLoopEntryGuardedByCond(MDL
, Pred
, SplitLHS
.first
, SplitRHS
.first
) &&
9151 isLoopBackedgeGuardedByCond(MDL
, Pred
, SplitLHS
.second
,
9155 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
9156 const SCEV
*LHS
, const SCEV
*RHS
) {
9157 // Canonicalize the inputs first.
9158 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
9160 if (isKnownViaInduction(Pred
, LHS
, RHS
))
9163 if (isKnownPredicateViaSplitting(Pred
, LHS
, RHS
))
9166 // Otherwise see what can be done with some simple reasoning.
9167 return isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
);
9170 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred
,
9171 const SCEVAddRecExpr
*LHS
,
9173 const Loop
*L
= LHS
->getLoop();
9174 return isLoopEntryGuardedByCond(L
, Pred
, LHS
->getStart(), RHS
) &&
9175 isLoopBackedgeGuardedByCond(L
, Pred
, LHS
->getPostIncExpr(*this), RHS
);
9178 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr
*LHS
,
9179 ICmpInst::Predicate Pred
,
9181 bool Result
= isMonotonicPredicateImpl(LHS
, Pred
, Increasing
);
9184 // Verify an invariant: inverting the predicate should turn a monotonically
9185 // increasing change to a monotonically decreasing one, and vice versa.
9186 bool IncreasingSwapped
;
9187 bool ResultSwapped
= isMonotonicPredicateImpl(
9188 LHS
, ICmpInst::getSwappedPredicate(Pred
), IncreasingSwapped
);
9190 assert(Result
== ResultSwapped
&& "should be able to analyze both!");
9192 assert(Increasing
== !IncreasingSwapped
&&
9193 "monotonicity should flip as we flip the predicate");
9199 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr
*LHS
,
9200 ICmpInst::Predicate Pred
,
9203 // A zero step value for LHS means the induction variable is essentially a
9204 // loop invariant value. We don't really depend on the predicate actually
9205 // flipping from false to true (for increasing predicates, and the other way
9206 // around for decreasing predicates), all we care about is that *if* the
9207 // predicate changes then it only changes from false to true.
9209 // A zero step value in itself is not very useful, but there may be places
9210 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9211 // as general as possible.
9215 return false; // Conservative answer
9217 case ICmpInst::ICMP_UGT
:
9218 case ICmpInst::ICMP_UGE
:
9219 case ICmpInst::ICMP_ULT
:
9220 case ICmpInst::ICMP_ULE
:
9221 if (!LHS
->hasNoUnsignedWrap())
9224 Increasing
= Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
;
9227 case ICmpInst::ICMP_SGT
:
9228 case ICmpInst::ICMP_SGE
:
9229 case ICmpInst::ICMP_SLT
:
9230 case ICmpInst::ICMP_SLE
: {
9231 if (!LHS
->hasNoSignedWrap())
9234 const SCEV
*Step
= LHS
->getStepRecurrence(*this);
9236 if (isKnownNonNegative(Step
)) {
9237 Increasing
= Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
;
9241 if (isKnownNonPositive(Step
)) {
9242 Increasing
= Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
;
9251 llvm_unreachable("switch has default clause!");
9254 bool ScalarEvolution::isLoopInvariantPredicate(
9255 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
,
9256 ICmpInst::Predicate
&InvariantPred
, const SCEV
*&InvariantLHS
,
9257 const SCEV
*&InvariantRHS
) {
9259 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9260 if (!isLoopInvariant(RHS
, L
)) {
9261 if (!isLoopInvariant(LHS
, L
))
9264 std::swap(LHS
, RHS
);
9265 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9268 const SCEVAddRecExpr
*ArLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
9269 if (!ArLHS
|| ArLHS
->getLoop() != L
)
9273 if (!isMonotonicPredicate(ArLHS
, Pred
, Increasing
))
9276 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9277 // true as the loop iterates, and the backedge is control dependent on
9278 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9280 // * if the predicate was false in the first iteration then the predicate
9281 // is never evaluated again, since the loop exits without taking the
9283 // * if the predicate was true in the first iteration then it will
9284 // continue to be true for all future iterations since it is
9285 // monotonically increasing.
9287 // For both the above possibilities, we can replace the loop varying
9288 // predicate with its value on the first iteration of the loop (which is
9291 // A similar reasoning applies for a monotonically decreasing predicate, by
9292 // replacing true with false and false with true in the above two bullets.
9294 auto P
= Increasing
? Pred
: ICmpInst::getInversePredicate(Pred
);
9296 if (!isLoopBackedgeGuardedByCond(L
, P
, LHS
, RHS
))
9299 InvariantPred
= Pred
;
9300 InvariantLHS
= ArLHS
->getStart();
9305 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9306 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
) {
9307 if (HasSameValue(LHS
, RHS
))
9308 return ICmpInst::isTrueWhenEqual(Pred
);
9310 // This code is split out from isKnownPredicate because it is called from
9311 // within isLoopEntryGuardedByCond.
9314 [&](const ConstantRange
&RangeLHS
, const ConstantRange
&RangeRHS
) {
9315 return ConstantRange::makeSatisfyingICmpRegion(Pred
, RangeRHS
)
9316 .contains(RangeLHS
);
9319 // The check at the top of the function catches the case where the values are
9320 // known to be equal.
9321 if (Pred
== CmpInst::ICMP_EQ
)
9324 if (Pred
== CmpInst::ICMP_NE
)
9325 return CheckRanges(getSignedRange(LHS
), getSignedRange(RHS
)) ||
9326 CheckRanges(getUnsignedRange(LHS
), getUnsignedRange(RHS
)) ||
9327 isKnownNonZero(getMinusSCEV(LHS
, RHS
));
9329 if (CmpInst::isSigned(Pred
))
9330 return CheckRanges(getSignedRange(LHS
), getSignedRange(RHS
));
9332 return CheckRanges(getUnsignedRange(LHS
), getUnsignedRange(RHS
));
9335 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred
,
9338 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9339 // Return Y via OutY.
9340 auto MatchBinaryAddToConst
=
9341 [this](const SCEV
*Result
, const SCEV
*X
, APInt
&OutY
,
9342 SCEV::NoWrapFlags ExpectedFlags
) {
9343 const SCEV
*NonConstOp
, *ConstOp
;
9344 SCEV::NoWrapFlags FlagsPresent
;
9346 if (!splitBinaryAdd(Result
, ConstOp
, NonConstOp
, FlagsPresent
) ||
9347 !isa
<SCEVConstant
>(ConstOp
) || NonConstOp
!= X
)
9350 OutY
= cast
<SCEVConstant
>(ConstOp
)->getAPInt();
9351 return (FlagsPresent
& ExpectedFlags
) == ExpectedFlags
;
9360 case ICmpInst::ICMP_SGE
:
9361 std::swap(LHS
, RHS
);
9363 case ICmpInst::ICMP_SLE
:
9364 // X s<= (X + C)<nsw> if C >= 0
9365 if (MatchBinaryAddToConst(RHS
, LHS
, C
, SCEV::FlagNSW
) && C
.isNonNegative())
9368 // (X + C)<nsw> s<= X if C <= 0
9369 if (MatchBinaryAddToConst(LHS
, RHS
, C
, SCEV::FlagNSW
) &&
9370 !C
.isStrictlyPositive())
9374 case ICmpInst::ICMP_SGT
:
9375 std::swap(LHS
, RHS
);
9377 case ICmpInst::ICMP_SLT
:
9378 // X s< (X + C)<nsw> if C > 0
9379 if (MatchBinaryAddToConst(RHS
, LHS
, C
, SCEV::FlagNSW
) &&
9380 C
.isStrictlyPositive())
9383 // (X + C)<nsw> s< X if C < 0
9384 if (MatchBinaryAddToConst(LHS
, RHS
, C
, SCEV::FlagNSW
) && C
.isNegative())
9392 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred
,
9395 if (Pred
!= ICmpInst::ICMP_ULT
|| ProvingSplitPredicate
)
9398 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9399 // the stack can result in exponential time complexity.
9400 SaveAndRestore
<bool> Restore(ProvingSplitPredicate
, true);
9402 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9404 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9405 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9406 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9407 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9408 // use isKnownPredicate later if needed.
9409 return isKnownNonNegative(RHS
) &&
9410 isKnownPredicate(CmpInst::ICMP_SGE
, LHS
, getZero(LHS
->getType())) &&
9411 isKnownPredicate(CmpInst::ICMP_SLT
, LHS
, RHS
);
9414 bool ScalarEvolution::isImpliedViaGuard(BasicBlock
*BB
,
9415 ICmpInst::Predicate Pred
,
9416 const SCEV
*LHS
, const SCEV
*RHS
) {
9417 // No need to even try if we know the module has no guards.
9421 return any_of(*BB
, [&](Instruction
&I
) {
9422 using namespace llvm::PatternMatch
;
9425 return match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(
9426 m_Value(Condition
))) &&
9427 isImpliedCond(Pred
, LHS
, RHS
, Condition
, false);
9431 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9432 /// protected by a conditional between LHS and RHS. This is used to
9433 /// to eliminate casts.
9435 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
9436 ICmpInst::Predicate Pred
,
9437 const SCEV
*LHS
, const SCEV
*RHS
) {
9438 // Interpret a null as meaning no loop, where there is obviously no guard
9439 // (interprocedural conditions notwithstanding).
9440 if (!L
) return true;
9443 assert(!verifyFunction(*L
->getHeader()->getParent(), &dbgs()) &&
9444 "This cannot be done on broken IR!");
9447 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
9450 BasicBlock
*Latch
= L
->getLoopLatch();
9454 BranchInst
*LoopContinuePredicate
=
9455 dyn_cast
<BranchInst
>(Latch
->getTerminator());
9456 if (LoopContinuePredicate
&& LoopContinuePredicate
->isConditional() &&
9457 isImpliedCond(Pred
, LHS
, RHS
,
9458 LoopContinuePredicate
->getCondition(),
9459 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader()))
9462 // We don't want more than one activation of the following loops on the stack
9463 // -- that can lead to O(n!) time complexity.
9464 if (WalkingBEDominatingConds
)
9467 SaveAndRestore
<bool> ClearOnExit(WalkingBEDominatingConds
, true);
9469 // See if we can exploit a trip count to prove the predicate.
9470 const auto &BETakenInfo
= getBackedgeTakenInfo(L
);
9471 const SCEV
*LatchBECount
= BETakenInfo
.getExact(Latch
, this);
9472 if (LatchBECount
!= getCouldNotCompute()) {
9473 // We know that Latch branches back to the loop header exactly
9474 // LatchBECount times. This means the backdege condition at Latch is
9475 // equivalent to "{0,+,1} u< LatchBECount".
9476 Type
*Ty
= LatchBECount
->getType();
9477 auto NoWrapFlags
= SCEV::NoWrapFlags(SCEV::FlagNUW
| SCEV::FlagNW
);
9478 const SCEV
*LoopCounter
=
9479 getAddRecExpr(getZero(Ty
), getOne(Ty
), L
, NoWrapFlags
);
9480 if (isImpliedCond(Pred
, LHS
, RHS
, ICmpInst::ICMP_ULT
, LoopCounter
,
9485 // Check conditions due to any @llvm.assume intrinsics.
9486 for (auto &AssumeVH
: AC
.assumptions()) {
9489 auto *CI
= cast
<CallInst
>(AssumeVH
);
9490 if (!DT
.dominates(CI
, Latch
->getTerminator()))
9493 if (isImpliedCond(Pred
, LHS
, RHS
, CI
->getArgOperand(0), false))
9497 // If the loop is not reachable from the entry block, we risk running into an
9498 // infinite loop as we walk up into the dom tree. These loops do not matter
9499 // anyway, so we just return a conservative answer when we see them.
9500 if (!DT
.isReachableFromEntry(L
->getHeader()))
9503 if (isImpliedViaGuard(Latch
, Pred
, LHS
, RHS
))
9506 for (DomTreeNode
*DTN
= DT
[Latch
], *HeaderDTN
= DT
[L
->getHeader()];
9507 DTN
!= HeaderDTN
; DTN
= DTN
->getIDom()) {
9508 assert(DTN
&& "should reach the loop header before reaching the root!");
9510 BasicBlock
*BB
= DTN
->getBlock();
9511 if (isImpliedViaGuard(BB
, Pred
, LHS
, RHS
))
9514 BasicBlock
*PBB
= BB
->getSinglePredecessor();
9518 BranchInst
*ContinuePredicate
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
9519 if (!ContinuePredicate
|| !ContinuePredicate
->isConditional())
9522 Value
*Condition
= ContinuePredicate
->getCondition();
9524 // If we have an edge `E` within the loop body that dominates the only
9525 // latch, the condition guarding `E` also guards the backedge. This
9526 // reasoning works only for loops with a single latch.
9528 BasicBlockEdge
DominatingEdge(PBB
, BB
);
9529 if (DominatingEdge
.isSingleEdge()) {
9530 // We're constructively (and conservatively) enumerating edges within the
9531 // loop body that dominate the latch. The dominator tree better agree
9533 assert(DT
.dominates(DominatingEdge
, Latch
) && "should be!");
9535 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
,
9536 BB
!= ContinuePredicate
->getSuccessor(0)))
9545 ScalarEvolution::isLoopEntryGuardedByCond(const Loop
*L
,
9546 ICmpInst::Predicate Pred
,
9547 const SCEV
*LHS
, const SCEV
*RHS
) {
9548 // Interpret a null as meaning no loop, where there is obviously no guard
9549 // (interprocedural conditions notwithstanding).
9550 if (!L
) return false;
9553 assert(!verifyFunction(*L
->getHeader()->getParent(), &dbgs()) &&
9554 "This cannot be done on broken IR!");
9556 // Both LHS and RHS must be available at loop entry.
9557 assert(isAvailableAtLoopEntry(LHS
, L
) &&
9558 "LHS is not available at Loop Entry");
9559 assert(isAvailableAtLoopEntry(RHS
, L
) &&
9560 "RHS is not available at Loop Entry");
9562 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
9565 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9566 // the facts (a >= b && a != b) separately. A typical situation is when the
9567 // non-strict comparison is known from ranges and non-equality is known from
9568 // dominating predicates. If we are proving strict comparison, we always try
9569 // to prove non-equality and non-strict comparison separately.
9570 auto NonStrictPredicate
= ICmpInst::getNonStrictPredicate(Pred
);
9571 const bool ProvingStrictComparison
= (Pred
!= NonStrictPredicate
);
9572 bool ProvedNonStrictComparison
= false;
9573 bool ProvedNonEquality
= false;
9575 if (ProvingStrictComparison
) {
9576 ProvedNonStrictComparison
=
9577 isKnownViaNonRecursiveReasoning(NonStrictPredicate
, LHS
, RHS
);
9579 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE
, LHS
, RHS
);
9580 if (ProvedNonStrictComparison
&& ProvedNonEquality
)
9584 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9585 auto ProveViaGuard
= [&](BasicBlock
*Block
) {
9586 if (isImpliedViaGuard(Block
, Pred
, LHS
, RHS
))
9588 if (ProvingStrictComparison
) {
9589 if (!ProvedNonStrictComparison
)
9590 ProvedNonStrictComparison
=
9591 isImpliedViaGuard(Block
, NonStrictPredicate
, LHS
, RHS
);
9592 if (!ProvedNonEquality
)
9594 isImpliedViaGuard(Block
, ICmpInst::ICMP_NE
, LHS
, RHS
);
9595 if (ProvedNonStrictComparison
&& ProvedNonEquality
)
9601 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9602 auto ProveViaCond
= [&](Value
*Condition
, bool Inverse
) {
9603 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
, Inverse
))
9605 if (ProvingStrictComparison
) {
9606 if (!ProvedNonStrictComparison
)
9607 ProvedNonStrictComparison
=
9608 isImpliedCond(NonStrictPredicate
, LHS
, RHS
, Condition
, Inverse
);
9609 if (!ProvedNonEquality
)
9611 isImpliedCond(ICmpInst::ICMP_NE
, LHS
, RHS
, Condition
, Inverse
);
9612 if (ProvedNonStrictComparison
&& ProvedNonEquality
)
9618 // Starting at the loop predecessor, climb up the predecessor chain, as long
9619 // as there are predecessors that can be found that have unique successors
9620 // leading to the original header.
9621 for (std::pair
<BasicBlock
*, BasicBlock
*>
9622 Pair(L
->getLoopPredecessor(), L
->getHeader());
9624 Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
9626 if (ProveViaGuard(Pair
.first
))
9629 BranchInst
*LoopEntryPredicate
=
9630 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
9631 if (!LoopEntryPredicate
||
9632 LoopEntryPredicate
->isUnconditional())
9635 if (ProveViaCond(LoopEntryPredicate
->getCondition(),
9636 LoopEntryPredicate
->getSuccessor(0) != Pair
.second
))
9640 // Check conditions due to any @llvm.assume intrinsics.
9641 for (auto &AssumeVH
: AC
.assumptions()) {
9644 auto *CI
= cast
<CallInst
>(AssumeVH
);
9645 if (!DT
.dominates(CI
, L
->getHeader()))
9648 if (ProveViaCond(CI
->getArgOperand(0), false))
9655 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
,
9656 const SCEV
*LHS
, const SCEV
*RHS
,
9657 Value
*FoundCondValue
,
9659 if (!PendingLoopPredicates
.insert(FoundCondValue
).second
)
9663 make_scope_exit([&]() { PendingLoopPredicates
.erase(FoundCondValue
); });
9665 // Recursively handle And and Or conditions.
9666 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(FoundCondValue
)) {
9667 if (BO
->getOpcode() == Instruction::And
) {
9669 return isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(0), Inverse
) ||
9670 isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(1), Inverse
);
9671 } else if (BO
->getOpcode() == Instruction::Or
) {
9673 return isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(0), Inverse
) ||
9674 isImpliedCond(Pred
, LHS
, RHS
, BO
->getOperand(1), Inverse
);
9678 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(FoundCondValue
);
9679 if (!ICI
) return false;
9681 // Now that we found a conditional branch that dominates the loop or controls
9682 // the loop latch. Check to see if it is the comparison we are looking for.
9683 ICmpInst::Predicate FoundPred
;
9685 FoundPred
= ICI
->getInversePredicate();
9687 FoundPred
= ICI
->getPredicate();
9689 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
9690 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
9692 return isImpliedCond(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
, FoundRHS
);
9695 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
9697 ICmpInst::Predicate FoundPred
,
9698 const SCEV
*FoundLHS
,
9699 const SCEV
*FoundRHS
) {
9700 // Balance the types.
9701 if (getTypeSizeInBits(LHS
->getType()) <
9702 getTypeSizeInBits(FoundLHS
->getType())) {
9703 if (CmpInst::isSigned(Pred
)) {
9704 LHS
= getSignExtendExpr(LHS
, FoundLHS
->getType());
9705 RHS
= getSignExtendExpr(RHS
, FoundLHS
->getType());
9707 LHS
= getZeroExtendExpr(LHS
, FoundLHS
->getType());
9708 RHS
= getZeroExtendExpr(RHS
, FoundLHS
->getType());
9710 } else if (getTypeSizeInBits(LHS
->getType()) >
9711 getTypeSizeInBits(FoundLHS
->getType())) {
9712 if (CmpInst::isSigned(FoundPred
)) {
9713 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
9714 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
9716 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
9717 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
9721 // Canonicalize the query to match the way instcombine will have
9722 // canonicalized the comparison.
9723 if (SimplifyICmpOperands(Pred
, LHS
, RHS
))
9725 return CmpInst::isTrueWhenEqual(Pred
);
9726 if (SimplifyICmpOperands(FoundPred
, FoundLHS
, FoundRHS
))
9727 if (FoundLHS
== FoundRHS
)
9728 return CmpInst::isFalseWhenEqual(FoundPred
);
9730 // Check to see if we can make the LHS or RHS match.
9731 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
9732 if (isa
<SCEVConstant
>(RHS
)) {
9733 std::swap(FoundLHS
, FoundRHS
);
9734 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
9736 std::swap(LHS
, RHS
);
9737 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9741 // Check whether the found predicate is the same as the desired predicate.
9742 if (FoundPred
== Pred
)
9743 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
);
9745 // Check whether swapping the found predicate makes it the same as the
9746 // desired predicate.
9747 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
9748 if (isa
<SCEVConstant
>(RHS
))
9749 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
);
9751 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred
),
9752 RHS
, LHS
, FoundLHS
, FoundRHS
);
9755 // Unsigned comparison is the same as signed comparison when both the operands
9756 // are non-negative.
9757 if (CmpInst::isUnsigned(FoundPred
) &&
9758 CmpInst::getSignedPredicate(FoundPred
) == Pred
&&
9759 isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
))
9760 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
);
9762 // Check if we can make progress by sharpening ranges.
9763 if (FoundPred
== ICmpInst::ICMP_NE
&&
9764 (isa
<SCEVConstant
>(FoundLHS
) || isa
<SCEVConstant
>(FoundRHS
))) {
9766 const SCEVConstant
*C
= nullptr;
9767 const SCEV
*V
= nullptr;
9769 if (isa
<SCEVConstant
>(FoundLHS
)) {
9770 C
= cast
<SCEVConstant
>(FoundLHS
);
9773 C
= cast
<SCEVConstant
>(FoundRHS
);
9777 // The guarding predicate tells us that C != V. If the known range
9778 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9779 // range we consider has to correspond to same signedness as the
9780 // predicate we're interested in folding.
9782 APInt Min
= ICmpInst::isSigned(Pred
) ?
9783 getSignedRangeMin(V
) : getUnsignedRangeMin(V
);
9785 if (Min
== C
->getAPInt()) {
9786 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9787 // This is true even if (Min + 1) wraps around -- in case of
9788 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9790 APInt SharperMin
= Min
+ 1;
9793 case ICmpInst::ICMP_SGE
:
9794 case ICmpInst::ICMP_UGE
:
9795 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9797 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
,
9798 getConstant(SharperMin
)))
9802 case ICmpInst::ICMP_SGT
:
9803 case ICmpInst::ICMP_UGT
:
9804 // We know from the range information that (V `Pred` Min ||
9805 // V == Min). We know from the guarding condition that !(V
9806 // == Min). This gives us
9808 // V `Pred` Min || V == Min && !(V == Min)
9811 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9813 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(Min
)))
9824 // Check whether the actual condition is beyond sufficient.
9825 if (FoundPred
== ICmpInst::ICMP_EQ
)
9826 if (ICmpInst::isTrueWhenEqual(Pred
))
9827 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
9829 if (Pred
== ICmpInst::ICMP_NE
)
9830 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
9831 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
9834 // Otherwise assume the worst.
9838 bool ScalarEvolution::splitBinaryAdd(const SCEV
*Expr
,
9839 const SCEV
*&L
, const SCEV
*&R
,
9840 SCEV::NoWrapFlags
&Flags
) {
9841 const auto *AE
= dyn_cast
<SCEVAddExpr
>(Expr
);
9842 if (!AE
|| AE
->getNumOperands() != 2)
9845 L
= AE
->getOperand(0);
9846 R
= AE
->getOperand(1);
9847 Flags
= AE
->getNoWrapFlags();
9851 Optional
<APInt
> ScalarEvolution::computeConstantDifference(const SCEV
*More
,
9853 // We avoid subtracting expressions here because this function is usually
9854 // fairly deep in the call stack (i.e. is called many times).
9858 return APInt(getTypeSizeInBits(More
->getType()), 0);
9860 if (isa
<SCEVAddRecExpr
>(Less
) && isa
<SCEVAddRecExpr
>(More
)) {
9861 const auto *LAR
= cast
<SCEVAddRecExpr
>(Less
);
9862 const auto *MAR
= cast
<SCEVAddRecExpr
>(More
);
9864 if (LAR
->getLoop() != MAR
->getLoop())
9867 // We look at affine expressions only; not for correctness but to keep
9868 // getStepRecurrence cheap.
9869 if (!LAR
->isAffine() || !MAR
->isAffine())
9872 if (LAR
->getStepRecurrence(*this) != MAR
->getStepRecurrence(*this))
9875 Less
= LAR
->getStart();
9876 More
= MAR
->getStart();
9881 if (isa
<SCEVConstant
>(Less
) && isa
<SCEVConstant
>(More
)) {
9882 const auto &M
= cast
<SCEVConstant
>(More
)->getAPInt();
9883 const auto &L
= cast
<SCEVConstant
>(Less
)->getAPInt();
9887 SCEV::NoWrapFlags Flags
;
9888 const SCEV
*LLess
= nullptr, *RLess
= nullptr;
9889 const SCEV
*LMore
= nullptr, *RMore
= nullptr;
9890 const SCEVConstant
*C1
= nullptr, *C2
= nullptr;
9891 // Compare (X + C1) vs X.
9892 if (splitBinaryAdd(Less
, LLess
, RLess
, Flags
))
9893 if ((C1
= dyn_cast
<SCEVConstant
>(LLess
)))
9895 return -(C1
->getAPInt());
9897 // Compare X vs (X + C2).
9898 if (splitBinaryAdd(More
, LMore
, RMore
, Flags
))
9899 if ((C2
= dyn_cast
<SCEVConstant
>(LMore
)))
9901 return C2
->getAPInt();
9903 // Compare (X + C1) vs (X + C2).
9904 if (C1
&& C2
&& RLess
== RMore
)
9905 return C2
->getAPInt() - C1
->getAPInt();
9910 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9911 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
9912 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
) {
9913 if (Pred
!= CmpInst::ICMP_SLT
&& Pred
!= CmpInst::ICMP_ULT
)
9916 const auto *AddRecLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
9920 const auto *AddRecFoundLHS
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
);
9921 if (!AddRecFoundLHS
)
9924 // We'd like to let SCEV reason about control dependencies, so we constrain
9925 // both the inequalities to be about add recurrences on the same loop. This
9926 // way we can use isLoopEntryGuardedByCond later.
9928 const Loop
*L
= AddRecFoundLHS
->getLoop();
9929 if (L
!= AddRecLHS
->getLoop())
9932 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
9934 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9937 // Informal proof for (2), assuming (1) [*]:
9939 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9943 // FoundLHS s< FoundRHS s< INT_MIN - C
9944 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
9945 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9946 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
9947 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9948 // <=> FoundLHS + C s< FoundRHS + C
9950 // [*]: (1) can be proved by ruling out overflow.
9952 // [**]: This can be proved by analyzing all the four possibilities:
9953 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9954 // (A s>= 0, B s>= 0).
9957 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9958 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
9959 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
9960 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
9961 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9964 Optional
<APInt
> LDiff
= computeConstantDifference(LHS
, FoundLHS
);
9965 Optional
<APInt
> RDiff
= computeConstantDifference(RHS
, FoundRHS
);
9966 if (!LDiff
|| !RDiff
|| *LDiff
!= *RDiff
)
9969 if (LDiff
->isMinValue())
9972 APInt FoundRHSLimit
;
9974 if (Pred
== CmpInst::ICMP_ULT
) {
9975 FoundRHSLimit
= -(*RDiff
);
9977 assert(Pred
== CmpInst::ICMP_SLT
&& "Checked above!");
9978 FoundRHSLimit
= APInt::getSignedMinValue(getTypeSizeInBits(RHS
->getType())) - *RDiff
;
9981 // Try to prove (1) or (2), as needed.
9982 return isAvailableAtLoopEntry(FoundRHS
, L
) &&
9983 isLoopEntryGuardedByCond(L
, Pred
, FoundRHS
,
9984 getConstant(FoundRHSLimit
));
9987 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred
,
9988 const SCEV
*LHS
, const SCEV
*RHS
,
9989 const SCEV
*FoundLHS
,
9990 const SCEV
*FoundRHS
, unsigned Depth
) {
9991 const PHINode
*LPhi
= nullptr, *RPhi
= nullptr;
9993 auto ClearOnExit
= make_scope_exit([&]() {
9995 bool Erased
= PendingMerges
.erase(LPhi
);
9996 assert(Erased
&& "Failed to erase LPhi!");
10000 bool Erased
= PendingMerges
.erase(RPhi
);
10001 assert(Erased
&& "Failed to erase RPhi!");
10006 // Find respective Phis and check that they are not being pending.
10007 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
))
10008 if (auto *Phi
= dyn_cast
<PHINode
>(LU
->getValue())) {
10009 if (!PendingMerges
.insert(Phi
).second
)
10013 if (const SCEVUnknown
*RU
= dyn_cast
<SCEVUnknown
>(RHS
))
10014 if (auto *Phi
= dyn_cast
<PHINode
>(RU
->getValue())) {
10015 // If we detect a loop of Phi nodes being processed by this method, for
10018 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10019 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10021 // we don't want to deal with a case that complex, so return conservative
10023 if (!PendingMerges
.insert(Phi
).second
)
10028 // If none of LHS, RHS is a Phi, nothing to do here.
10029 if (!LPhi
&& !RPhi
)
10032 // If there is a SCEVUnknown Phi we are interested in, make it left.
10034 std::swap(LHS
, RHS
);
10035 std::swap(FoundLHS
, FoundRHS
);
10036 std::swap(LPhi
, RPhi
);
10037 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10040 assert(LPhi
&& "LPhi should definitely be a SCEVUnknown Phi!");
10041 const BasicBlock
*LBB
= LPhi
->getParent();
10042 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
10044 auto ProvedEasily
= [&](const SCEV
*S1
, const SCEV
*S2
) {
10045 return isKnownViaNonRecursiveReasoning(Pred
, S1
, S2
) ||
10046 isImpliedCondOperandsViaRanges(Pred
, S1
, S2
, FoundLHS
, FoundRHS
) ||
10047 isImpliedViaOperations(Pred
, S1
, S2
, FoundLHS
, FoundRHS
, Depth
);
10050 if (RPhi
&& RPhi
->getParent() == LBB
) {
10051 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10052 // If we compare two Phis from the same block, and for each entry block
10053 // the predicate is true for incoming values from this block, then the
10054 // predicate is also true for the Phis.
10055 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
10056 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
10057 const SCEV
*R
= getSCEV(RPhi
->getIncomingValueForBlock(IncBB
));
10058 if (!ProvedEasily(L
, R
))
10061 } else if (RAR
&& RAR
->getLoop()->getHeader() == LBB
) {
10062 // Case two: RHS is also a Phi from the same basic block, and it is an
10063 // AddRec. It means that there is a loop which has both AddRec and Unknown
10064 // PHIs, for it we can compare incoming values of AddRec from above the loop
10065 // and latch with their respective incoming values of LPhi.
10066 // TODO: Generalize to handle loops with many inputs in a header.
10067 if (LPhi
->getNumIncomingValues() != 2) return false;
10069 auto *RLoop
= RAR
->getLoop();
10070 auto *Predecessor
= RLoop
->getLoopPredecessor();
10071 assert(Predecessor
&& "Loop with AddRec with no predecessor?");
10072 const SCEV
*L1
= getSCEV(LPhi
->getIncomingValueForBlock(Predecessor
));
10073 if (!ProvedEasily(L1
, RAR
->getStart()))
10075 auto *Latch
= RLoop
->getLoopLatch();
10076 assert(Latch
&& "Loop with AddRec with no latch?");
10077 const SCEV
*L2
= getSCEV(LPhi
->getIncomingValueForBlock(Latch
));
10078 if (!ProvedEasily(L2
, RAR
->getPostIncExpr(*this)))
10081 // In all other cases go over inputs of LHS and compare each of them to RHS,
10082 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10083 // At this point RHS is either a non-Phi, or it is a Phi from some block
10084 // different from LBB.
10085 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
10086 // Check that RHS is available in this block.
10087 if (!dominates(RHS
, IncBB
))
10089 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
10090 if (!ProvedEasily(L
, RHS
))
10097 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
10098 const SCEV
*LHS
, const SCEV
*RHS
,
10099 const SCEV
*FoundLHS
,
10100 const SCEV
*FoundRHS
) {
10101 if (isImpliedCondOperandsViaRanges(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
10104 if (isImpliedCondOperandsViaNoOverflow(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
10107 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
10108 FoundLHS
, FoundRHS
) ||
10109 // ~x < ~y --> x > y
10110 isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
10111 getNotSCEV(FoundRHS
),
10112 getNotSCEV(FoundLHS
));
10115 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10116 template <typename MinMaxExprType
>
10117 static bool IsMinMaxConsistingOf(const SCEV
*MaybeMinMaxExpr
,
10118 const SCEV
*Candidate
) {
10119 const MinMaxExprType
*MinMaxExpr
= dyn_cast
<MinMaxExprType
>(MaybeMinMaxExpr
);
10123 return find(MinMaxExpr
->operands(), Candidate
) != MinMaxExpr
->op_end();
10126 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution
&SE
,
10127 ICmpInst::Predicate Pred
,
10128 const SCEV
*LHS
, const SCEV
*RHS
) {
10129 // If both sides are affine addrecs for the same loop, with equal
10130 // steps, and we know the recurrences don't wrap, then we only
10131 // need to check the predicate on the starting values.
10133 if (!ICmpInst::isRelational(Pred
))
10136 const SCEVAddRecExpr
*LAR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10139 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
10142 if (LAR
->getLoop() != RAR
->getLoop())
10144 if (!LAR
->isAffine() || !RAR
->isAffine())
10147 if (LAR
->getStepRecurrence(SE
) != RAR
->getStepRecurrence(SE
))
10150 SCEV::NoWrapFlags NW
= ICmpInst::isSigned(Pred
) ?
10151 SCEV::FlagNSW
: SCEV::FlagNUW
;
10152 if (!LAR
->getNoWrapFlags(NW
) || !RAR
->getNoWrapFlags(NW
))
10155 return SE
.isKnownPredicate(Pred
, LAR
->getStart(), RAR
->getStart());
10158 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10160 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution
&SE
,
10161 ICmpInst::Predicate Pred
,
10162 const SCEV
*LHS
, const SCEV
*RHS
) {
10167 case ICmpInst::ICMP_SGE
:
10168 std::swap(LHS
, RHS
);
10170 case ICmpInst::ICMP_SLE
:
10172 // min(A, ...) <= A
10173 IsMinMaxConsistingOf
<SCEVSMinExpr
>(LHS
, RHS
) ||
10174 // A <= max(A, ...)
10175 IsMinMaxConsistingOf
<SCEVSMaxExpr
>(RHS
, LHS
);
10177 case ICmpInst::ICMP_UGE
:
10178 std::swap(LHS
, RHS
);
10180 case ICmpInst::ICMP_ULE
:
10182 // min(A, ...) <= A
10183 IsMinMaxConsistingOf
<SCEVUMinExpr
>(LHS
, RHS
) ||
10184 // A <= max(A, ...)
10185 IsMinMaxConsistingOf
<SCEVUMaxExpr
>(RHS
, LHS
);
10188 llvm_unreachable("covered switch fell through?!");
10191 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred
,
10192 const SCEV
*LHS
, const SCEV
*RHS
,
10193 const SCEV
*FoundLHS
,
10194 const SCEV
*FoundRHS
,
10196 assert(getTypeSizeInBits(LHS
->getType()) ==
10197 getTypeSizeInBits(RHS
->getType()) &&
10198 "LHS and RHS have different sizes?");
10199 assert(getTypeSizeInBits(FoundLHS
->getType()) ==
10200 getTypeSizeInBits(FoundRHS
->getType()) &&
10201 "FoundLHS and FoundRHS have different sizes?");
10202 // We want to avoid hurting the compile time with analysis of too big trees.
10203 if (Depth
> MaxSCEVOperationsImplicationDepth
)
10205 // We only want to work with ICMP_SGT comparison so far.
10206 // TODO: Extend to ICMP_UGT?
10207 if (Pred
== ICmpInst::ICMP_SLT
) {
10208 Pred
= ICmpInst::ICMP_SGT
;
10209 std::swap(LHS
, RHS
);
10210 std::swap(FoundLHS
, FoundRHS
);
10212 if (Pred
!= ICmpInst::ICMP_SGT
)
10215 auto GetOpFromSExt
= [&](const SCEV
*S
) {
10216 if (auto *Ext
= dyn_cast
<SCEVSignExtendExpr
>(S
))
10217 return Ext
->getOperand();
10218 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10219 // the constant in some cases.
10223 // Acquire values from extensions.
10224 auto *OrigLHS
= LHS
;
10225 auto *OrigFoundLHS
= FoundLHS
;
10226 LHS
= GetOpFromSExt(LHS
);
10227 FoundLHS
= GetOpFromSExt(FoundLHS
);
10229 // Is the SGT predicate can be proved trivially or using the found context.
10230 auto IsSGTViaContext
= [&](const SCEV
*S1
, const SCEV
*S2
) {
10231 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT
, S1
, S2
) ||
10232 isImpliedViaOperations(ICmpInst::ICMP_SGT
, S1
, S2
, OrigFoundLHS
,
10233 FoundRHS
, Depth
+ 1);
10236 if (auto *LHSAddExpr
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
10237 // We want to avoid creation of any new non-constant SCEV. Since we are
10238 // going to compare the operands to RHS, we should be certain that we don't
10239 // need any size extensions for this. So let's decline all cases when the
10240 // sizes of types of LHS and RHS do not match.
10241 // TODO: Maybe try to get RHS from sext to catch more cases?
10242 if (getTypeSizeInBits(LHS
->getType()) != getTypeSizeInBits(RHS
->getType()))
10245 // Should not overflow.
10246 if (!LHSAddExpr
->hasNoSignedWrap())
10249 auto *LL
= LHSAddExpr
->getOperand(0);
10250 auto *LR
= LHSAddExpr
->getOperand(1);
10251 auto *MinusOne
= getNegativeSCEV(getOne(RHS
->getType()));
10253 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10254 auto IsSumGreaterThanRHS
= [&](const SCEV
*S1
, const SCEV
*S2
) {
10255 return IsSGTViaContext(S1
, MinusOne
) && IsSGTViaContext(S2
, RHS
);
10257 // Try to prove the following rule:
10258 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10259 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10260 if (IsSumGreaterThanRHS(LL
, LR
) || IsSumGreaterThanRHS(LR
, LL
))
10262 } else if (auto *LHSUnknownExpr
= dyn_cast
<SCEVUnknown
>(LHS
)) {
10264 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10266 using namespace llvm::PatternMatch
;
10268 if (match(LHSUnknownExpr
->getValue(), m_SDiv(m_Value(LL
), m_Value(LR
)))) {
10269 // Rules for division.
10270 // We are going to perform some comparisons with Denominator and its
10271 // derivative expressions. In general case, creating a SCEV for it may
10272 // lead to a complex analysis of the entire graph, and in particular it
10273 // can request trip count recalculation for the same loop. This would
10274 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10275 // this, we only want to create SCEVs that are constants in this section.
10276 // So we bail if Denominator is not a constant.
10277 if (!isa
<ConstantInt
>(LR
))
10280 auto *Denominator
= cast
<SCEVConstant
>(getSCEV(LR
));
10282 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10283 // then a SCEV for the numerator already exists and matches with FoundLHS.
10284 auto *Numerator
= getExistingSCEV(LL
);
10285 if (!Numerator
|| Numerator
->getType() != FoundLHS
->getType())
10288 // Make sure that the numerator matches with FoundLHS and the denominator
10290 if (!HasSameValue(Numerator
, FoundLHS
) || !isKnownPositive(Denominator
))
10293 auto *DTy
= Denominator
->getType();
10294 auto *FRHSTy
= FoundRHS
->getType();
10295 if (DTy
->isPointerTy() != FRHSTy
->isPointerTy())
10296 // One of types is a pointer and another one is not. We cannot extend
10297 // them properly to a wider type, so let us just reject this case.
10298 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10299 // to avoid this check.
10303 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10304 auto *WTy
= getWiderType(DTy
, FRHSTy
);
10305 auto *DenominatorExt
= getNoopOrSignExtend(Denominator
, WTy
);
10306 auto *FoundRHSExt
= getNoopOrSignExtend(FoundRHS
, WTy
);
10308 // Try to prove the following rule:
10309 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10310 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10311 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10312 auto *DenomMinusTwo
= getMinusSCEV(DenominatorExt
, getConstant(WTy
, 2));
10313 if (isKnownNonPositive(RHS
) &&
10314 IsSGTViaContext(FoundRHSExt
, DenomMinusTwo
))
10317 // Try to prove the following rule:
10318 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10319 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10320 // If we divide it by Denominator > 2, then:
10321 // 1. If FoundLHS is negative, then the result is 0.
10322 // 2. If FoundLHS is non-negative, then the result is non-negative.
10323 // Anyways, the result is non-negative.
10324 auto *MinusOne
= getNegativeSCEV(getOne(WTy
));
10325 auto *NegDenomMinusOne
= getMinusSCEV(MinusOne
, DenominatorExt
);
10326 if (isKnownNegative(RHS
) &&
10327 IsSGTViaContext(FoundRHSExt
, NegDenomMinusOne
))
10332 // If our expression contained SCEVUnknown Phis, and we split it down and now
10333 // need to prove something for them, try to prove the predicate for every
10334 // possible incoming values of those Phis.
10335 if (isImpliedViaMerge(Pred
, OrigLHS
, RHS
, OrigFoundLHS
, FoundRHS
, Depth
+ 1))
10342 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred
,
10343 const SCEV
*LHS
, const SCEV
*RHS
) {
10344 return isKnownPredicateViaConstantRanges(Pred
, LHS
, RHS
) ||
10345 IsKnownPredicateViaMinOrMax(*this, Pred
, LHS
, RHS
) ||
10346 IsKnownPredicateViaAddRecStart(*this, Pred
, LHS
, RHS
) ||
10347 isKnownPredicateViaNoOverflow(Pred
, LHS
, RHS
);
10351 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
10352 const SCEV
*LHS
, const SCEV
*RHS
,
10353 const SCEV
*FoundLHS
,
10354 const SCEV
*FoundRHS
) {
10356 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10357 case ICmpInst::ICMP_EQ
:
10358 case ICmpInst::ICMP_NE
:
10359 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
10362 case ICmpInst::ICMP_SLT
:
10363 case ICmpInst::ICMP_SLE
:
10364 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
10365 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
10368 case ICmpInst::ICMP_SGT
:
10369 case ICmpInst::ICMP_SGE
:
10370 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
10371 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
10374 case ICmpInst::ICMP_ULT
:
10375 case ICmpInst::ICMP_ULE
:
10376 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
10377 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
10380 case ICmpInst::ICMP_UGT
:
10381 case ICmpInst::ICMP_UGE
:
10382 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
10383 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
10388 // Maybe it can be proved via operations?
10389 if (isImpliedViaOperations(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
10395 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred
,
10398 const SCEV
*FoundLHS
,
10399 const SCEV
*FoundRHS
) {
10400 if (!isa
<SCEVConstant
>(RHS
) || !isa
<SCEVConstant
>(FoundRHS
))
10401 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10402 // reduce the compile time impact of this optimization.
10405 Optional
<APInt
> Addend
= computeConstantDifference(LHS
, FoundLHS
);
10409 const APInt
&ConstFoundRHS
= cast
<SCEVConstant
>(FoundRHS
)->getAPInt();
10411 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10412 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10413 ConstantRange FoundLHSRange
=
10414 ConstantRange::makeAllowedICmpRegion(Pred
, ConstFoundRHS
);
10416 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10417 ConstantRange LHSRange
= FoundLHSRange
.add(ConstantRange(*Addend
));
10419 // We can also compute the range of values for `LHS` that satisfy the
10420 // consequent, "`LHS` `Pred` `RHS`":
10421 const APInt
&ConstRHS
= cast
<SCEVConstant
>(RHS
)->getAPInt();
10422 ConstantRange SatisfyingLHSRange
=
10423 ConstantRange::makeSatisfyingICmpRegion(Pred
, ConstRHS
);
10425 // The antecedent implies the consequent if every value of `LHS` that
10426 // satisfies the antecedent also satisfies the consequent.
10427 return SatisfyingLHSRange
.contains(LHSRange
);
10430 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV
*RHS
, const SCEV
*Stride
,
10431 bool IsSigned
, bool NoWrap
) {
10432 assert(isKnownPositive(Stride
) && "Positive stride expected!");
10434 if (NoWrap
) return false;
10436 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
10437 const SCEV
*One
= getOne(Stride
->getType());
10440 APInt MaxRHS
= getSignedRangeMax(RHS
);
10441 APInt MaxValue
= APInt::getSignedMaxValue(BitWidth
);
10442 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
10444 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10445 return (std::move(MaxValue
) - MaxStrideMinusOne
).slt(MaxRHS
);
10448 APInt MaxRHS
= getUnsignedRangeMax(RHS
);
10449 APInt MaxValue
= APInt::getMaxValue(BitWidth
);
10450 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
10452 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10453 return (std::move(MaxValue
) - MaxStrideMinusOne
).ult(MaxRHS
);
10456 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV
*RHS
, const SCEV
*Stride
,
10457 bool IsSigned
, bool NoWrap
) {
10458 if (NoWrap
) return false;
10460 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
10461 const SCEV
*One
= getOne(Stride
->getType());
10464 APInt MinRHS
= getSignedRangeMin(RHS
);
10465 APInt MinValue
= APInt::getSignedMinValue(BitWidth
);
10466 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
10468 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10469 return (std::move(MinValue
) + MaxStrideMinusOne
).sgt(MinRHS
);
10472 APInt MinRHS
= getUnsignedRangeMin(RHS
);
10473 APInt MinValue
= APInt::getMinValue(BitWidth
);
10474 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
10476 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10477 return (std::move(MinValue
) + MaxStrideMinusOne
).ugt(MinRHS
);
10480 const SCEV
*ScalarEvolution::computeBECount(const SCEV
*Delta
, const SCEV
*Step
,
10482 const SCEV
*One
= getOne(Step
->getType());
10483 Delta
= Equality
? getAddExpr(Delta
, Step
)
10484 : getAddExpr(Delta
, getMinusSCEV(Step
, One
));
10485 return getUDivExpr(Delta
, Step
);
10488 const SCEV
*ScalarEvolution::computeMaxBECountForLT(const SCEV
*Start
,
10489 const SCEV
*Stride
,
10494 assert(!isKnownNonPositive(Stride
) &&
10495 "Stride is expected strictly positive!");
10496 // Calculate the maximum backedge count based on the range of values
10497 // permitted by Start, End, and Stride.
10498 const SCEV
*MaxBECount
;
10500 IsSigned
? getSignedRangeMin(Start
) : getUnsignedRangeMin(Start
);
10502 APInt StrideForMaxBECount
=
10503 IsSigned
? getSignedRangeMin(Stride
) : getUnsignedRangeMin(Stride
);
10505 // We already know that the stride is positive, so we paper over conservatism
10506 // in our range computation by forcing StrideForMaxBECount to be at least one.
10507 // In theory this is unnecessary, but we expect MaxBECount to be a
10508 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10509 // is nothing to constant fold it to).
10510 APInt
One(BitWidth
, 1, IsSigned
);
10511 StrideForMaxBECount
= APIntOps::smax(One
, StrideForMaxBECount
);
10513 APInt MaxValue
= IsSigned
? APInt::getSignedMaxValue(BitWidth
)
10514 : APInt::getMaxValue(BitWidth
);
10515 APInt Limit
= MaxValue
- (StrideForMaxBECount
- 1);
10517 // Although End can be a MAX expression we estimate MaxEnd considering only
10518 // the case End = RHS of the loop termination condition. This is safe because
10519 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10521 APInt MaxEnd
= IsSigned
? APIntOps::smin(getSignedRangeMax(End
), Limit
)
10522 : APIntOps::umin(getUnsignedRangeMax(End
), Limit
);
10524 MaxBECount
= computeBECount(getConstant(MaxEnd
- MinStart
) /* Delta */,
10525 getConstant(StrideForMaxBECount
) /* Step */,
10526 false /* Equality */);
10531 ScalarEvolution::ExitLimit
10532 ScalarEvolution::howManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
10533 const Loop
*L
, bool IsSigned
,
10534 bool ControlsExit
, bool AllowPredicates
) {
10535 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
10537 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10538 bool PredicatedIV
= false;
10540 if (!IV
&& AllowPredicates
) {
10541 // Try to make this an AddRec using runtime tests, in the first X
10542 // iterations of this loop, where X is the SCEV expression found by the
10543 // algorithm below.
10544 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
10545 PredicatedIV
= true;
10548 // Avoid weird loops
10549 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
10550 return getCouldNotCompute();
10552 bool NoWrap
= ControlsExit
&&
10553 IV
->getNoWrapFlags(IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
);
10555 const SCEV
*Stride
= IV
->getStepRecurrence(*this);
10557 bool PositiveStride
= isKnownPositive(Stride
);
10559 // Avoid negative or zero stride values.
10560 if (!PositiveStride
) {
10561 // We can compute the correct backedge taken count for loops with unknown
10562 // strides if we can prove that the loop is not an infinite loop with side
10563 // effects. Here's the loop structure we are trying to handle -
10569 // } while (i < end);
10571 // The backedge taken count for such loops is evaluated as -
10572 // (max(end, start + stride) - start - 1) /u stride
10574 // The additional preconditions that we need to check to prove correctness
10575 // of the above formula is as follows -
10577 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10579 // b) loop is single exit with no side effects.
10582 // Precondition a) implies that if the stride is negative, this is a single
10583 // trip loop. The backedge taken count formula reduces to zero in this case.
10585 // Precondition b) implies that the unknown stride cannot be zero otherwise
10588 // The positive stride case is the same as isKnownPositive(Stride) returning
10589 // true (original behavior of the function).
10591 // We want to make sure that the stride is truly unknown as there are edge
10592 // cases where ScalarEvolution propagates no wrap flags to the
10593 // post-increment/decrement IV even though the increment/decrement operation
10594 // itself is wrapping. The computed backedge taken count may be wrong in
10595 // such cases. This is prevented by checking that the stride is not known to
10596 // be either positive or non-positive. For example, no wrap flags are
10597 // propagated to the post-increment IV of this loop with a trip count of 2 -
10599 // unsigned char i;
10600 // for(i=127; i<128; i+=129)
10603 if (PredicatedIV
|| !NoWrap
|| isKnownNonPositive(Stride
) ||
10604 !loopHasNoSideEffects(L
))
10605 return getCouldNotCompute();
10606 } else if (!Stride
->isOne() &&
10607 doesIVOverflowOnLT(RHS
, Stride
, IsSigned
, NoWrap
))
10608 // Avoid proven overflow cases: this will ensure that the backedge taken
10609 // count will not generate any unsigned overflow. Relaxed no-overflow
10610 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10611 // undefined behaviors like the case of C language.
10612 return getCouldNotCompute();
10614 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SLT
10615 : ICmpInst::ICMP_ULT
;
10616 const SCEV
*Start
= IV
->getStart();
10617 const SCEV
*End
= RHS
;
10618 // When the RHS is not invariant, we do not know the end bound of the loop and
10619 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10620 // calculate the MaxBECount, given the start, stride and max value for the end
10621 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10623 if (!isLoopInvariant(RHS
, L
)) {
10624 const SCEV
*MaxBECount
= computeMaxBECountForLT(
10625 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
10626 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount
,
10627 false /*MaxOrZero*/, Predicates
);
10629 // If the backedge is taken at least once, then it will be taken
10630 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10631 // is the LHS value of the less-than comparison the first time it is evaluated
10632 // and End is the RHS.
10633 const SCEV
*BECountIfBackedgeTaken
=
10634 computeBECount(getMinusSCEV(End
, Start
), Stride
, false);
10635 // If the loop entry is guarded by the result of the backedge test of the
10636 // first loop iteration, then we know the backedge will be taken at least
10637 // once and so the backedge taken count is as above. If not then we use the
10638 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10639 // as if the backedge is taken at least once max(End,Start) is End and so the
10640 // result is as above, and if not max(End,Start) is Start so we get a backedge
10642 const SCEV
*BECount
;
10643 if (isLoopEntryGuardedByCond(L
, Cond
, getMinusSCEV(Start
, Stride
), RHS
))
10644 BECount
= BECountIfBackedgeTaken
;
10646 End
= IsSigned
? getSMaxExpr(RHS
, Start
) : getUMaxExpr(RHS
, Start
);
10647 BECount
= computeBECount(getMinusSCEV(End
, Start
), Stride
, false);
10650 const SCEV
*MaxBECount
;
10651 bool MaxOrZero
= false;
10652 if (isa
<SCEVConstant
>(BECount
))
10653 MaxBECount
= BECount
;
10654 else if (isa
<SCEVConstant
>(BECountIfBackedgeTaken
)) {
10655 // If we know exactly how many times the backedge will be taken if it's
10656 // taken at least once, then the backedge count will either be that or
10658 MaxBECount
= BECountIfBackedgeTaken
;
10661 MaxBECount
= computeMaxBECountForLT(
10662 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
10665 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) &&
10666 !isa
<SCEVCouldNotCompute
>(BECount
))
10667 MaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
10669 return ExitLimit(BECount
, MaxBECount
, MaxOrZero
, Predicates
);
10672 ScalarEvolution::ExitLimit
10673 ScalarEvolution::howManyGreaterThans(const SCEV
*LHS
, const SCEV
*RHS
,
10674 const Loop
*L
, bool IsSigned
,
10675 bool ControlsExit
, bool AllowPredicates
) {
10676 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
10677 // We handle only IV > Invariant
10678 if (!isLoopInvariant(RHS
, L
))
10679 return getCouldNotCompute();
10681 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10682 if (!IV
&& AllowPredicates
)
10683 // Try to make this an AddRec using runtime tests, in the first X
10684 // iterations of this loop, where X is the SCEV expression found by the
10685 // algorithm below.
10686 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
10688 // Avoid weird loops
10689 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
10690 return getCouldNotCompute();
10692 bool NoWrap
= ControlsExit
&&
10693 IV
->getNoWrapFlags(IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
);
10695 const SCEV
*Stride
= getNegativeSCEV(IV
->getStepRecurrence(*this));
10697 // Avoid negative or zero stride values
10698 if (!isKnownPositive(Stride
))
10699 return getCouldNotCompute();
10701 // Avoid proven overflow cases: this will ensure that the backedge taken count
10702 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10703 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10704 // behaviors like the case of C language.
10705 if (!Stride
->isOne() && doesIVOverflowOnGT(RHS
, Stride
, IsSigned
, NoWrap
))
10706 return getCouldNotCompute();
10708 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SGT
10709 : ICmpInst::ICMP_UGT
;
10711 const SCEV
*Start
= IV
->getStart();
10712 const SCEV
*End
= RHS
;
10713 if (!isLoopEntryGuardedByCond(L
, Cond
, getAddExpr(Start
, Stride
), RHS
))
10714 End
= IsSigned
? getSMinExpr(RHS
, Start
) : getUMinExpr(RHS
, Start
);
10716 const SCEV
*BECount
= computeBECount(getMinusSCEV(Start
, End
), Stride
, false);
10718 APInt MaxStart
= IsSigned
? getSignedRangeMax(Start
)
10719 : getUnsignedRangeMax(Start
);
10721 APInt MinStride
= IsSigned
? getSignedRangeMin(Stride
)
10722 : getUnsignedRangeMin(Stride
);
10724 unsigned BitWidth
= getTypeSizeInBits(LHS
->getType());
10725 APInt Limit
= IsSigned
? APInt::getSignedMinValue(BitWidth
) + (MinStride
- 1)
10726 : APInt::getMinValue(BitWidth
) + (MinStride
- 1);
10728 // Although End can be a MIN expression we estimate MinEnd considering only
10729 // the case End = RHS. This is safe because in the other case (Start - End)
10730 // is zero, leading to a zero maximum backedge taken count.
10732 IsSigned
? APIntOps::smax(getSignedRangeMin(RHS
), Limit
)
10733 : APIntOps::umax(getUnsignedRangeMin(RHS
), Limit
);
10735 const SCEV
*MaxBECount
= isa
<SCEVConstant
>(BECount
)
10737 : computeBECount(getConstant(MaxStart
- MinEnd
),
10738 getConstant(MinStride
), false);
10740 if (isa
<SCEVCouldNotCompute
>(MaxBECount
))
10741 MaxBECount
= BECount
;
10743 return ExitLimit(BECount
, MaxBECount
, false, Predicates
);
10746 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange
&Range
,
10747 ScalarEvolution
&SE
) const {
10748 if (Range
.isFullSet()) // Infinite loop.
10749 return SE
.getCouldNotCompute();
10751 // If the start is a non-zero constant, shift the range to simplify things.
10752 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
10753 if (!SC
->getValue()->isZero()) {
10754 SmallVector
<const SCEV
*, 4> Operands(op_begin(), op_end());
10755 Operands
[0] = SE
.getZero(SC
->getType());
10756 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop(),
10757 getNoWrapFlags(FlagNW
));
10758 if (const auto *ShiftedAddRec
= dyn_cast
<SCEVAddRecExpr
>(Shifted
))
10759 return ShiftedAddRec
->getNumIterationsInRange(
10760 Range
.subtract(SC
->getAPInt()), SE
);
10761 // This is strange and shouldn't happen.
10762 return SE
.getCouldNotCompute();
10765 // The only time we can solve this is when we have all constant indices.
10766 // Otherwise, we cannot determine the overflow conditions.
10767 if (any_of(operands(), [](const SCEV
*Op
) { return !isa
<SCEVConstant
>(Op
); }))
10768 return SE
.getCouldNotCompute();
10770 // Okay at this point we know that all elements of the chrec are constants and
10771 // that the start element is zero.
10773 // First check to see if the range contains zero. If not, the first
10774 // iteration exits.
10775 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
10776 if (!Range
.contains(APInt(BitWidth
, 0)))
10777 return SE
.getZero(getType());
10780 // If this is an affine expression then we have this situation:
10781 // Solve {0,+,A} in Range === Ax in Range
10783 // We know that zero is in the range. If A is positive then we know that
10784 // the upper value of the range must be the first possible exit value.
10785 // If A is negative then the lower of the range is the last possible loop
10786 // value. Also note that we already checked for a full range.
10787 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getAPInt();
10788 APInt End
= A
.sge(1) ? (Range
.getUpper() - 1) : Range
.getLower();
10790 // The exit value should be (End+A)/A.
10791 APInt ExitVal
= (End
+ A
).udiv(A
);
10792 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
10794 // Evaluate at the exit value. If we really did fall out of the valid
10795 // range, then we computed our trip count, otherwise wrap around or other
10796 // things must have happened.
10797 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
10798 if (Range
.contains(Val
->getValue()))
10799 return SE
.getCouldNotCompute(); // Something strange happened
10801 // Ensure that the previous value is in the range. This is a sanity check.
10802 assert(Range
.contains(
10803 EvaluateConstantChrecAtConstant(this,
10804 ConstantInt::get(SE
.getContext(), ExitVal
- 1), SE
)->getValue()) &&
10805 "Linear scev computation is off in a bad way!");
10806 return SE
.getConstant(ExitValue
);
10809 if (isQuadratic()) {
10810 if (auto S
= SolveQuadraticAddRecRange(this, Range
, SE
))
10811 return SE
.getConstant(S
.getValue());
10814 return SE
.getCouldNotCompute();
10817 const SCEVAddRecExpr
*
10818 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution
&SE
) const {
10819 assert(getNumOperands() > 1 && "AddRec with zero step?");
10820 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10821 // but in this case we cannot guarantee that the value returned will be an
10822 // AddRec because SCEV does not have a fixed point where it stops
10823 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10824 // may happen if we reach arithmetic depth limit while simplifying. So we
10825 // construct the returned value explicitly.
10826 SmallVector
<const SCEV
*, 3> Ops
;
10827 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10828 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10829 for (unsigned i
= 0, e
= getNumOperands() - 1; i
< e
; ++i
)
10830 Ops
.push_back(SE
.getAddExpr(getOperand(i
), getOperand(i
+ 1)));
10831 // We know that the last operand is not a constant zero (otherwise it would
10832 // have been popped out earlier). This guarantees us that if the result has
10833 // the same last operand, then it will also not be popped out, meaning that
10834 // the returned value will be an AddRec.
10835 const SCEV
*Last
= getOperand(getNumOperands() - 1);
10836 assert(!Last
->isZero() && "Recurrency with zero step?");
10837 Ops
.push_back(Last
);
10838 return cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Ops
, getLoop(),
10839 SCEV::FlagAnyWrap
));
10842 // Return true when S contains at least an undef value.
10843 static inline bool containsUndefs(const SCEV
*S
) {
10844 return SCEVExprContains(S
, [](const SCEV
*S
) {
10845 if (const auto *SU
= dyn_cast
<SCEVUnknown
>(S
))
10846 return isa
<UndefValue
>(SU
->getValue());
10853 // Collect all steps of SCEV expressions.
10854 struct SCEVCollectStrides
{
10855 ScalarEvolution
&SE
;
10856 SmallVectorImpl
<const SCEV
*> &Strides
;
10858 SCEVCollectStrides(ScalarEvolution
&SE
, SmallVectorImpl
<const SCEV
*> &S
)
10859 : SE(SE
), Strides(S
) {}
10861 bool follow(const SCEV
*S
) {
10862 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
10863 Strides
.push_back(AR
->getStepRecurrence(SE
));
10867 bool isDone() const { return false; }
10870 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10871 struct SCEVCollectTerms
{
10872 SmallVectorImpl
<const SCEV
*> &Terms
;
10874 SCEVCollectTerms(SmallVectorImpl
<const SCEV
*> &T
) : Terms(T
) {}
10876 bool follow(const SCEV
*S
) {
10877 if (isa
<SCEVUnknown
>(S
) || isa
<SCEVMulExpr
>(S
) ||
10878 isa
<SCEVSignExtendExpr
>(S
)) {
10879 if (!containsUndefs(S
))
10880 Terms
.push_back(S
);
10882 // Stop recursion: once we collected a term, do not walk its operands.
10890 bool isDone() const { return false; }
10893 // Check if a SCEV contains an AddRecExpr.
10894 struct SCEVHasAddRec
{
10895 bool &ContainsAddRec
;
10897 SCEVHasAddRec(bool &ContainsAddRec
) : ContainsAddRec(ContainsAddRec
) {
10898 ContainsAddRec
= false;
10901 bool follow(const SCEV
*S
) {
10902 if (isa
<SCEVAddRecExpr
>(S
)) {
10903 ContainsAddRec
= true;
10905 // Stop recursion: once we collected a term, do not walk its operands.
10913 bool isDone() const { return false; }
10916 // Find factors that are multiplied with an expression that (possibly as a
10917 // subexpression) contains an AddRecExpr. In the expression:
10919 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
10921 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10922 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10923 // parameters as they form a product with an induction variable.
10925 // This collector expects all array size parameters to be in the same MulExpr.
10926 // It might be necessary to later add support for collecting parameters that are
10927 // spread over different nested MulExpr.
10928 struct SCEVCollectAddRecMultiplies
{
10929 SmallVectorImpl
<const SCEV
*> &Terms
;
10930 ScalarEvolution
&SE
;
10932 SCEVCollectAddRecMultiplies(SmallVectorImpl
<const SCEV
*> &T
, ScalarEvolution
&SE
)
10933 : Terms(T
), SE(SE
) {}
10935 bool follow(const SCEV
*S
) {
10936 if (auto *Mul
= dyn_cast
<SCEVMulExpr
>(S
)) {
10937 bool HasAddRec
= false;
10938 SmallVector
<const SCEV
*, 0> Operands
;
10939 for (auto Op
: Mul
->operands()) {
10940 const SCEVUnknown
*Unknown
= dyn_cast
<SCEVUnknown
>(Op
);
10941 if (Unknown
&& !isa
<CallInst
>(Unknown
->getValue())) {
10942 Operands
.push_back(Op
);
10943 } else if (Unknown
) {
10946 bool ContainsAddRec
;
10947 SCEVHasAddRec
ContiansAddRec(ContainsAddRec
);
10948 visitAll(Op
, ContiansAddRec
);
10949 HasAddRec
|= ContainsAddRec
;
10952 if (Operands
.size() == 0)
10958 Terms
.push_back(SE
.getMulExpr(Operands
));
10959 // Stop recursion: once we collected a term, do not walk its operands.
10967 bool isDone() const { return false; }
10970 } // end anonymous namespace
10972 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10974 /// 1) The strides of AddRec expressions.
10975 /// 2) Unknowns that are multiplied with AddRec expressions.
10976 void ScalarEvolution::collectParametricTerms(const SCEV
*Expr
,
10977 SmallVectorImpl
<const SCEV
*> &Terms
) {
10978 SmallVector
<const SCEV
*, 4> Strides
;
10979 SCEVCollectStrides
StrideCollector(*this, Strides
);
10980 visitAll(Expr
, StrideCollector
);
10983 dbgs() << "Strides:\n";
10984 for (const SCEV
*S
: Strides
)
10985 dbgs() << *S
<< "\n";
10988 for (const SCEV
*S
: Strides
) {
10989 SCEVCollectTerms
TermCollector(Terms
);
10990 visitAll(S
, TermCollector
);
10994 dbgs() << "Terms:\n";
10995 for (const SCEV
*T
: Terms
)
10996 dbgs() << *T
<< "\n";
10999 SCEVCollectAddRecMultiplies
MulCollector(Terms
, *this);
11000 visitAll(Expr
, MulCollector
);
11003 static bool findArrayDimensionsRec(ScalarEvolution
&SE
,
11004 SmallVectorImpl
<const SCEV
*> &Terms
,
11005 SmallVectorImpl
<const SCEV
*> &Sizes
) {
11006 int Last
= Terms
.size() - 1;
11007 const SCEV
*Step
= Terms
[Last
];
11009 // End of recursion.
11011 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Step
)) {
11012 SmallVector
<const SCEV
*, 2> Qs
;
11013 for (const SCEV
*Op
: M
->operands())
11014 if (!isa
<SCEVConstant
>(Op
))
11017 Step
= SE
.getMulExpr(Qs
);
11020 Sizes
.push_back(Step
);
11024 for (const SCEV
*&Term
: Terms
) {
11025 // Normalize the terms before the next call to findArrayDimensionsRec.
11027 SCEVDivision::divide(SE
, Term
, Step
, &Q
, &R
);
11029 // Bail out when GCD does not evenly divide one of the terms.
11036 // Remove all SCEVConstants.
11038 remove_if(Terms
, [](const SCEV
*E
) { return isa
<SCEVConstant
>(E
); }),
11041 if (Terms
.size() > 0)
11042 if (!findArrayDimensionsRec(SE
, Terms
, Sizes
))
11045 Sizes
.push_back(Step
);
11049 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11050 static inline bool containsParameters(SmallVectorImpl
<const SCEV
*> &Terms
) {
11051 for (const SCEV
*T
: Terms
)
11052 if (SCEVExprContains(T
, isa
<SCEVUnknown
, const SCEV
*>))
11057 // Return the number of product terms in S.
11058 static inline int numberOfTerms(const SCEV
*S
) {
11059 if (const SCEVMulExpr
*Expr
= dyn_cast
<SCEVMulExpr
>(S
))
11060 return Expr
->getNumOperands();
11064 static const SCEV
*removeConstantFactors(ScalarEvolution
&SE
, const SCEV
*T
) {
11065 if (isa
<SCEVConstant
>(T
))
11068 if (isa
<SCEVUnknown
>(T
))
11071 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(T
)) {
11072 SmallVector
<const SCEV
*, 2> Factors
;
11073 for (const SCEV
*Op
: M
->operands())
11074 if (!isa
<SCEVConstant
>(Op
))
11075 Factors
.push_back(Op
);
11077 return SE
.getMulExpr(Factors
);
11083 /// Return the size of an element read or written by Inst.
11084 const SCEV
*ScalarEvolution::getElementSize(Instruction
*Inst
) {
11086 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(Inst
))
11087 Ty
= Store
->getValueOperand()->getType();
11088 else if (LoadInst
*Load
= dyn_cast
<LoadInst
>(Inst
))
11089 Ty
= Load
->getType();
11093 Type
*ETy
= getEffectiveSCEVType(PointerType::getUnqual(Ty
));
11094 return getSizeOfExpr(ETy
, Ty
);
11097 void ScalarEvolution::findArrayDimensions(SmallVectorImpl
<const SCEV
*> &Terms
,
11098 SmallVectorImpl
<const SCEV
*> &Sizes
,
11099 const SCEV
*ElementSize
) {
11100 if (Terms
.size() < 1 || !ElementSize
)
11103 // Early return when Terms do not contain parameters: we do not delinearize
11104 // non parametric SCEVs.
11105 if (!containsParameters(Terms
))
11109 dbgs() << "Terms:\n";
11110 for (const SCEV
*T
: Terms
)
11111 dbgs() << *T
<< "\n";
11114 // Remove duplicates.
11115 array_pod_sort(Terms
.begin(), Terms
.end());
11116 Terms
.erase(std::unique(Terms
.begin(), Terms
.end()), Terms
.end());
11118 // Put larger terms first.
11119 llvm::sort(Terms
, [](const SCEV
*LHS
, const SCEV
*RHS
) {
11120 return numberOfTerms(LHS
) > numberOfTerms(RHS
);
11123 // Try to divide all terms by the element size. If term is not divisible by
11124 // element size, proceed with the original term.
11125 for (const SCEV
*&Term
: Terms
) {
11127 SCEVDivision::divide(*this, Term
, ElementSize
, &Q
, &R
);
11132 SmallVector
<const SCEV
*, 4> NewTerms
;
11134 // Remove constant factors.
11135 for (const SCEV
*T
: Terms
)
11136 if (const SCEV
*NewT
= removeConstantFactors(*this, T
))
11137 NewTerms
.push_back(NewT
);
11140 dbgs() << "Terms after sorting:\n";
11141 for (const SCEV
*T
: NewTerms
)
11142 dbgs() << *T
<< "\n";
11145 if (NewTerms
.empty() || !findArrayDimensionsRec(*this, NewTerms
, Sizes
)) {
11150 // The last element to be pushed into Sizes is the size of an element.
11151 Sizes
.push_back(ElementSize
);
11154 dbgs() << "Sizes:\n";
11155 for (const SCEV
*S
: Sizes
)
11156 dbgs() << *S
<< "\n";
11160 void ScalarEvolution::computeAccessFunctions(
11161 const SCEV
*Expr
, SmallVectorImpl
<const SCEV
*> &Subscripts
,
11162 SmallVectorImpl
<const SCEV
*> &Sizes
) {
11163 // Early exit in case this SCEV is not an affine multivariate function.
11167 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(Expr
))
11168 if (!AR
->isAffine())
11171 const SCEV
*Res
= Expr
;
11172 int Last
= Sizes
.size() - 1;
11173 for (int i
= Last
; i
>= 0; i
--) {
11175 SCEVDivision::divide(*this, Res
, Sizes
[i
], &Q
, &R
);
11178 dbgs() << "Res: " << *Res
<< "\n";
11179 dbgs() << "Sizes[i]: " << *Sizes
[i
] << "\n";
11180 dbgs() << "Res divided by Sizes[i]:\n";
11181 dbgs() << "Quotient: " << *Q
<< "\n";
11182 dbgs() << "Remainder: " << *R
<< "\n";
11187 // Do not record the last subscript corresponding to the size of elements in
11191 // Bail out if the remainder is too complex.
11192 if (isa
<SCEVAddRecExpr
>(R
)) {
11193 Subscripts
.clear();
11201 // Record the access function for the current subscript.
11202 Subscripts
.push_back(R
);
11205 // Also push in last position the remainder of the last division: it will be
11206 // the access function of the innermost dimension.
11207 Subscripts
.push_back(Res
);
11209 std::reverse(Subscripts
.begin(), Subscripts
.end());
11212 dbgs() << "Subscripts:\n";
11213 for (const SCEV
*S
: Subscripts
)
11214 dbgs() << *S
<< "\n";
11218 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11219 /// sizes of an array access. Returns the remainder of the delinearization that
11220 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11221 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11222 /// expressions in the stride and base of a SCEV corresponding to the
11223 /// computation of a GCD (greatest common divisor) of base and stride. When
11224 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11226 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11228 /// void foo(long n, long m, long o, double A[n][m][o]) {
11230 /// for (long i = 0; i < n; i++)
11231 /// for (long j = 0; j < m; j++)
11232 /// for (long k = 0; k < o; k++)
11233 /// A[i][j][k] = 1.0;
11236 /// the delinearization input is the following AddRec SCEV:
11238 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11240 /// From this SCEV, we are able to say that the base offset of the access is %A
11241 /// because it appears as an offset that does not divide any of the strides in
11244 /// CHECK: Base offset: %A
11246 /// and then SCEV->delinearize determines the size of some of the dimensions of
11247 /// the array as these are the multiples by which the strides are happening:
11249 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11251 /// Note that the outermost dimension remains of UnknownSize because there are
11252 /// no strides that would help identifying the size of the last dimension: when
11253 /// the array has been statically allocated, one could compute the size of that
11254 /// dimension by dividing the overall size of the array by the size of the known
11255 /// dimensions: %m * %o * 8.
11257 /// Finally delinearize provides the access functions for the array reference
11258 /// that does correspond to A[i][j][k] of the above C testcase:
11260 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11262 /// The testcases are checking the output of a function pass:
11263 /// DelinearizationPass that walks through all loads and stores of a function
11264 /// asking for the SCEV of the memory access with respect to all enclosing
11265 /// loops, calling SCEV->delinearize on that and printing the results.
11266 void ScalarEvolution::delinearize(const SCEV
*Expr
,
11267 SmallVectorImpl
<const SCEV
*> &Subscripts
,
11268 SmallVectorImpl
<const SCEV
*> &Sizes
,
11269 const SCEV
*ElementSize
) {
11270 // First step: collect parametric terms.
11271 SmallVector
<const SCEV
*, 4> Terms
;
11272 collectParametricTerms(Expr
, Terms
);
11277 // Second step: find subscript sizes.
11278 findArrayDimensions(Terms
, Sizes
, ElementSize
);
11283 // Third step: compute the access functions for each subscript.
11284 computeAccessFunctions(Expr
, Subscripts
, Sizes
);
11286 if (Subscripts
.empty())
11290 dbgs() << "succeeded to delinearize " << *Expr
<< "\n";
11291 dbgs() << "ArrayDecl[UnknownSize]";
11292 for (const SCEV
*S
: Sizes
)
11293 dbgs() << "[" << *S
<< "]";
11295 dbgs() << "\nArrayRef";
11296 for (const SCEV
*S
: Subscripts
)
11297 dbgs() << "[" << *S
<< "]";
11302 //===----------------------------------------------------------------------===//
11303 // SCEVCallbackVH Class Implementation
11304 //===----------------------------------------------------------------------===//
11306 void ScalarEvolution::SCEVCallbackVH::deleted() {
11307 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
11308 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
11309 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
11310 SE
->eraseValueFromMap(getValPtr());
11311 // this now dangles!
11314 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*V
) {
11315 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
11317 // Forget all the expressions associated with users of the old value,
11318 // so that future queries will recompute the expressions using the new
11320 Value
*Old
= getValPtr();
11321 SmallVector
<User
*, 16> Worklist(Old
->user_begin(), Old
->user_end());
11322 SmallPtrSet
<User
*, 8> Visited
;
11323 while (!Worklist
.empty()) {
11324 User
*U
= Worklist
.pop_back_val();
11325 // Deleting the Old value will cause this to dangle. Postpone
11326 // that until everything else is done.
11329 if (!Visited
.insert(U
).second
)
11331 if (PHINode
*PN
= dyn_cast
<PHINode
>(U
))
11332 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
11333 SE
->eraseValueFromMap(U
);
11334 Worklist
.insert(Worklist
.end(), U
->user_begin(), U
->user_end());
11336 // Delete the Old value.
11337 if (PHINode
*PN
= dyn_cast
<PHINode
>(Old
))
11338 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
11339 SE
->eraseValueFromMap(Old
);
11340 // this now dangles!
11343 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
11344 : CallbackVH(V
), SE(se
) {}
11346 //===----------------------------------------------------------------------===//
11347 // ScalarEvolution Class Implementation
11348 //===----------------------------------------------------------------------===//
11350 ScalarEvolution::ScalarEvolution(Function
&F
, TargetLibraryInfo
&TLI
,
11351 AssumptionCache
&AC
, DominatorTree
&DT
,
11353 : F(F
), TLI(TLI
), AC(AC
), DT(DT
), LI(LI
),
11354 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11355 LoopDispositions(64), BlockDispositions(64) {
11356 // To use guards for proving predicates, we need to scan every instruction in
11357 // relevant basic blocks, and not just terminators. Doing this is a waste of
11358 // time if the IR does not actually contain any calls to
11359 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11361 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11362 // to _add_ guards to the module when there weren't any before, and wants
11363 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11364 // efficient in lieu of being smart in that rather obscure case.
11366 auto *GuardDecl
= F
.getParent()->getFunction(
11367 Intrinsic::getName(Intrinsic::experimental_guard
));
11368 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
11371 ScalarEvolution::ScalarEvolution(ScalarEvolution
&&Arg
)
11372 : F(Arg
.F
), HasGuards(Arg
.HasGuards
), TLI(Arg
.TLI
), AC(Arg
.AC
), DT(Arg
.DT
),
11373 LI(Arg
.LI
), CouldNotCompute(std::move(Arg
.CouldNotCompute
)),
11374 ValueExprMap(std::move(Arg
.ValueExprMap
)),
11375 PendingLoopPredicates(std::move(Arg
.PendingLoopPredicates
)),
11376 PendingPhiRanges(std::move(Arg
.PendingPhiRanges
)),
11377 PendingMerges(std::move(Arg
.PendingMerges
)),
11378 MinTrailingZerosCache(std::move(Arg
.MinTrailingZerosCache
)),
11379 BackedgeTakenCounts(std::move(Arg
.BackedgeTakenCounts
)),
11380 PredicatedBackedgeTakenCounts(
11381 std::move(Arg
.PredicatedBackedgeTakenCounts
)),
11382 ConstantEvolutionLoopExitValue(
11383 std::move(Arg
.ConstantEvolutionLoopExitValue
)),
11384 ValuesAtScopes(std::move(Arg
.ValuesAtScopes
)),
11385 LoopDispositions(std::move(Arg
.LoopDispositions
)),
11386 LoopPropertiesCache(std::move(Arg
.LoopPropertiesCache
)),
11387 BlockDispositions(std::move(Arg
.BlockDispositions
)),
11388 UnsignedRanges(std::move(Arg
.UnsignedRanges
)),
11389 SignedRanges(std::move(Arg
.SignedRanges
)),
11390 UniqueSCEVs(std::move(Arg
.UniqueSCEVs
)),
11391 UniquePreds(std::move(Arg
.UniquePreds
)),
11392 SCEVAllocator(std::move(Arg
.SCEVAllocator
)),
11393 LoopUsers(std::move(Arg
.LoopUsers
)),
11394 PredicatedSCEVRewrites(std::move(Arg
.PredicatedSCEVRewrites
)),
11395 FirstUnknown(Arg
.FirstUnknown
) {
11396 Arg
.FirstUnknown
= nullptr;
11399 ScalarEvolution::~ScalarEvolution() {
11400 // Iterate through all the SCEVUnknown instances and call their
11401 // destructors, so that they release their references to their values.
11402 for (SCEVUnknown
*U
= FirstUnknown
; U
;) {
11403 SCEVUnknown
*Tmp
= U
;
11405 Tmp
->~SCEVUnknown();
11407 FirstUnknown
= nullptr;
11409 ExprValueMap
.clear();
11410 ValueExprMap
.clear();
11413 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11414 // that a loop had multiple computable exits.
11415 for (auto &BTCI
: BackedgeTakenCounts
)
11416 BTCI
.second
.clear();
11417 for (auto &BTCI
: PredicatedBackedgeTakenCounts
)
11418 BTCI
.second
.clear();
11420 assert(PendingLoopPredicates
.empty() && "isImpliedCond garbage");
11421 assert(PendingPhiRanges
.empty() && "getRangeRef garbage");
11422 assert(PendingMerges
.empty() && "isImpliedViaMerge garbage");
11423 assert(!WalkingBEDominatingConds
&& "isLoopBackedgeGuardedByCond garbage!");
11424 assert(!ProvingSplitPredicate
&& "ProvingSplitPredicate garbage!");
11427 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
11428 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
11431 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
11433 // Print all inner loops first
11435 PrintLoopInfo(OS
, SE
, I
);
11438 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
11441 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
11442 L
->getExitingBlocks(ExitingBlocks
);
11443 if (ExitingBlocks
.size() != 1)
11444 OS
<< "<multiple exits> ";
11446 if (SE
->hasLoopInvariantBackedgeTakenCount(L
))
11447 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
) << "\n";
11449 OS
<< "Unpredictable backedge-taken count.\n";
11451 if (ExitingBlocks
.size() > 1)
11452 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
11453 OS
<< " exit count for " << ExitingBlock
->getName() << ": "
11454 << *SE
->getExitCount(L
, ExitingBlock
) << "\n";
11458 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
11461 if (!isa
<SCEVCouldNotCompute
>(SE
->getConstantMaxBackedgeTakenCount(L
))) {
11462 OS
<< "max backedge-taken count is " << *SE
->getConstantMaxBackedgeTakenCount(L
);
11463 if (SE
->isBackedgeTakenCountMaxOrZero(L
))
11464 OS
<< ", actual taken count either this or zero.";
11466 OS
<< "Unpredictable max backedge-taken count. ";
11471 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
11474 SCEVUnionPredicate Pred
;
11475 auto PBT
= SE
->getPredicatedBackedgeTakenCount(L
, Pred
);
11476 if (!isa
<SCEVCouldNotCompute
>(PBT
)) {
11477 OS
<< "Predicated backedge-taken count is " << *PBT
<< "\n";
11478 OS
<< " Predicates:\n";
11481 OS
<< "Unpredictable predicated backedge-taken count. ";
11485 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
11487 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
11489 OS
<< "Trip multiple is " << SE
->getSmallConstantTripMultiple(L
) << "\n";
11493 static StringRef
loopDispositionToStr(ScalarEvolution::LoopDisposition LD
) {
11495 case ScalarEvolution::LoopVariant
:
11497 case ScalarEvolution::LoopInvariant
:
11498 return "Invariant";
11499 case ScalarEvolution::LoopComputable
:
11500 return "Computable";
11502 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11505 void ScalarEvolution::print(raw_ostream
&OS
) const {
11506 // ScalarEvolution's implementation of the print method is to print
11507 // out SCEV values of all instructions that are interesting. Doing
11508 // this potentially causes it to create new SCEV objects though,
11509 // which technically conflicts with the const qualifier. This isn't
11510 // observable from outside the class though, so casting away the
11511 // const isn't dangerous.
11512 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
11514 OS
<< "Classifying expressions for: ";
11515 F
.printAsOperand(OS
, /*PrintType=*/false);
11517 for (Instruction
&I
: instructions(F
))
11518 if (isSCEVable(I
.getType()) && !isa
<CmpInst
>(I
)) {
11521 const SCEV
*SV
= SE
.getSCEV(&I
);
11523 if (!isa
<SCEVCouldNotCompute
>(SV
)) {
11525 SE
.getUnsignedRange(SV
).print(OS
);
11527 SE
.getSignedRange(SV
).print(OS
);
11530 const Loop
*L
= LI
.getLoopFor(I
.getParent());
11532 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
11536 if (!isa
<SCEVCouldNotCompute
>(AtUse
)) {
11538 SE
.getUnsignedRange(AtUse
).print(OS
);
11540 SE
.getSignedRange(AtUse
).print(OS
);
11545 OS
<< "\t\t" "Exits: ";
11546 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
11547 if (!SE
.isLoopInvariant(ExitValue
, L
)) {
11548 OS
<< "<<Unknown>>";
11554 for (auto *Iter
= L
; Iter
; Iter
= Iter
->getParentLoop()) {
11556 OS
<< "\t\t" "LoopDispositions: { ";
11562 Iter
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
11563 OS
<< ": " << loopDispositionToStr(SE
.getLoopDisposition(SV
, Iter
));
11566 for (auto *InnerL
: depth_first(L
)) {
11570 OS
<< "\t\t" "LoopDispositions: { ";
11576 InnerL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
11577 OS
<< ": " << loopDispositionToStr(SE
.getLoopDisposition(SV
, InnerL
));
11586 OS
<< "Determining loop execution counts for: ";
11587 F
.printAsOperand(OS
, /*PrintType=*/false);
11590 PrintLoopInfo(OS
, &SE
, I
);
11593 ScalarEvolution::LoopDisposition
11594 ScalarEvolution::getLoopDisposition(const SCEV
*S
, const Loop
*L
) {
11595 auto &Values
= LoopDispositions
[S
];
11596 for (auto &V
: Values
) {
11597 if (V
.getPointer() == L
)
11600 Values
.emplace_back(L
, LoopVariant
);
11601 LoopDisposition D
= computeLoopDisposition(S
, L
);
11602 auto &Values2
= LoopDispositions
[S
];
11603 for (auto &V
: make_range(Values2
.rbegin(), Values2
.rend())) {
11604 if (V
.getPointer() == L
) {
11612 ScalarEvolution::LoopDisposition
11613 ScalarEvolution::computeLoopDisposition(const SCEV
*S
, const Loop
*L
) {
11614 switch (static_cast<SCEVTypes
>(S
->getSCEVType())) {
11616 return LoopInvariant
;
11620 return getLoopDisposition(cast
<SCEVCastExpr
>(S
)->getOperand(), L
);
11621 case scAddRecExpr
: {
11622 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
11624 // If L is the addrec's loop, it's computable.
11625 if (AR
->getLoop() == L
)
11626 return LoopComputable
;
11628 // Add recurrences are never invariant in the function-body (null loop).
11630 return LoopVariant
;
11632 // Everything that is not defined at loop entry is variant.
11633 if (DT
.dominates(L
->getHeader(), AR
->getLoop()->getHeader()))
11634 return LoopVariant
;
11635 assert(!L
->contains(AR
->getLoop()) && "Containing loop's header does not"
11636 " dominate the contained loop's header?");
11638 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11639 if (AR
->getLoop()->contains(L
))
11640 return LoopInvariant
;
11642 // This recurrence is variant w.r.t. L if any of its operands
11644 for (auto *Op
: AR
->operands())
11645 if (!isLoopInvariant(Op
, L
))
11646 return LoopVariant
;
11648 // Otherwise it's loop-invariant.
11649 return LoopInvariant
;
11657 bool HasVarying
= false;
11658 for (auto *Op
: cast
<SCEVNAryExpr
>(S
)->operands()) {
11659 LoopDisposition D
= getLoopDisposition(Op
, L
);
11660 if (D
== LoopVariant
)
11661 return LoopVariant
;
11662 if (D
== LoopComputable
)
11665 return HasVarying
? LoopComputable
: LoopInvariant
;
11668 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
11669 LoopDisposition LD
= getLoopDisposition(UDiv
->getLHS(), L
);
11670 if (LD
== LoopVariant
)
11671 return LoopVariant
;
11672 LoopDisposition RD
= getLoopDisposition(UDiv
->getRHS(), L
);
11673 if (RD
== LoopVariant
)
11674 return LoopVariant
;
11675 return (LD
== LoopInvariant
&& RD
== LoopInvariant
) ?
11676 LoopInvariant
: LoopComputable
;
11679 // All non-instruction values are loop invariant. All instructions are loop
11680 // invariant if they are not contained in the specified loop.
11681 // Instructions are never considered invariant in the function body
11682 // (null loop) because they are defined within the "loop".
11683 if (auto *I
= dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue()))
11684 return (L
&& !L
->contains(I
)) ? LoopInvariant
: LoopVariant
;
11685 return LoopInvariant
;
11686 case scCouldNotCompute
:
11687 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11689 llvm_unreachable("Unknown SCEV kind!");
11692 bool ScalarEvolution::isLoopInvariant(const SCEV
*S
, const Loop
*L
) {
11693 return getLoopDisposition(S
, L
) == LoopInvariant
;
11696 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV
*S
, const Loop
*L
) {
11697 return getLoopDisposition(S
, L
) == LoopComputable
;
11700 ScalarEvolution::BlockDisposition
11701 ScalarEvolution::getBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
11702 auto &Values
= BlockDispositions
[S
];
11703 for (auto &V
: Values
) {
11704 if (V
.getPointer() == BB
)
11707 Values
.emplace_back(BB
, DoesNotDominateBlock
);
11708 BlockDisposition D
= computeBlockDisposition(S
, BB
);
11709 auto &Values2
= BlockDispositions
[S
];
11710 for (auto &V
: make_range(Values2
.rbegin(), Values2
.rend())) {
11711 if (V
.getPointer() == BB
) {
11719 ScalarEvolution::BlockDisposition
11720 ScalarEvolution::computeBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
11721 switch (static_cast<SCEVTypes
>(S
->getSCEVType())) {
11723 return ProperlyDominatesBlock
;
11727 return getBlockDisposition(cast
<SCEVCastExpr
>(S
)->getOperand(), BB
);
11728 case scAddRecExpr
: {
11729 // This uses a "dominates" query instead of "properly dominates" query
11730 // to test for proper dominance too, because the instruction which
11731 // produces the addrec's value is a PHI, and a PHI effectively properly
11732 // dominates its entire containing block.
11733 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
11734 if (!DT
.dominates(AR
->getLoop()->getHeader(), BB
))
11735 return DoesNotDominateBlock
;
11737 // Fall through into SCEVNAryExpr handling.
11746 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(S
);
11747 bool Proper
= true;
11748 for (const SCEV
*NAryOp
: NAry
->operands()) {
11749 BlockDisposition D
= getBlockDisposition(NAryOp
, BB
);
11750 if (D
== DoesNotDominateBlock
)
11751 return DoesNotDominateBlock
;
11752 if (D
== DominatesBlock
)
11755 return Proper
? ProperlyDominatesBlock
: DominatesBlock
;
11758 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
11759 const SCEV
*LHS
= UDiv
->getLHS(), *RHS
= UDiv
->getRHS();
11760 BlockDisposition LD
= getBlockDisposition(LHS
, BB
);
11761 if (LD
== DoesNotDominateBlock
)
11762 return DoesNotDominateBlock
;
11763 BlockDisposition RD
= getBlockDisposition(RHS
, BB
);
11764 if (RD
== DoesNotDominateBlock
)
11765 return DoesNotDominateBlock
;
11766 return (LD
== ProperlyDominatesBlock
&& RD
== ProperlyDominatesBlock
) ?
11767 ProperlyDominatesBlock
: DominatesBlock
;
11770 if (Instruction
*I
=
11771 dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue())) {
11772 if (I
->getParent() == BB
)
11773 return DominatesBlock
;
11774 if (DT
.properlyDominates(I
->getParent(), BB
))
11775 return ProperlyDominatesBlock
;
11776 return DoesNotDominateBlock
;
11778 return ProperlyDominatesBlock
;
11779 case scCouldNotCompute
:
11780 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11782 llvm_unreachable("Unknown SCEV kind!");
11785 bool ScalarEvolution::dominates(const SCEV
*S
, const BasicBlock
*BB
) {
11786 return getBlockDisposition(S
, BB
) >= DominatesBlock
;
11789 bool ScalarEvolution::properlyDominates(const SCEV
*S
, const BasicBlock
*BB
) {
11790 return getBlockDisposition(S
, BB
) == ProperlyDominatesBlock
;
11793 bool ScalarEvolution::hasOperand(const SCEV
*S
, const SCEV
*Op
) const {
11794 return SCEVExprContains(S
, [&](const SCEV
*Expr
) { return Expr
== Op
; });
11797 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV
*S
) const {
11798 auto IsS
= [&](const SCEV
*X
) { return S
== X
; };
11799 auto ContainsS
= [&](const SCEV
*X
) {
11800 return !isa
<SCEVCouldNotCompute
>(X
) && SCEVExprContains(X
, IsS
);
11802 return ContainsS(ExactNotTaken
) || ContainsS(MaxNotTaken
);
11806 ScalarEvolution::forgetMemoizedResults(const SCEV
*S
) {
11807 ValuesAtScopes
.erase(S
);
11808 LoopDispositions
.erase(S
);
11809 BlockDispositions
.erase(S
);
11810 UnsignedRanges
.erase(S
);
11811 SignedRanges
.erase(S
);
11812 ExprValueMap
.erase(S
);
11813 HasRecMap
.erase(S
);
11814 MinTrailingZerosCache
.erase(S
);
11816 for (auto I
= PredicatedSCEVRewrites
.begin();
11817 I
!= PredicatedSCEVRewrites
.end();) {
11818 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
11819 if (Entry
.first
== S
)
11820 PredicatedSCEVRewrites
.erase(I
++);
11825 auto RemoveSCEVFromBackedgeMap
=
11826 [S
, this](DenseMap
<const Loop
*, BackedgeTakenInfo
> &Map
) {
11827 for (auto I
= Map
.begin(), E
= Map
.end(); I
!= E
;) {
11828 BackedgeTakenInfo
&BEInfo
= I
->second
;
11829 if (BEInfo
.hasOperand(S
, this)) {
11837 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts
);
11838 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts
);
11842 ScalarEvolution::getUsedLoops(const SCEV
*S
,
11843 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
) {
11844 struct FindUsedLoops
{
11845 FindUsedLoops(SmallPtrSetImpl
<const Loop
*> &LoopsUsed
)
11846 : LoopsUsed(LoopsUsed
) {}
11847 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
;
11848 bool follow(const SCEV
*S
) {
11849 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
11850 LoopsUsed
.insert(AR
->getLoop());
11854 bool isDone() const { return false; }
11857 FindUsedLoops
F(LoopsUsed
);
11858 SCEVTraversal
<FindUsedLoops
>(F
).visitAll(S
);
11861 void ScalarEvolution::addToLoopUseLists(const SCEV
*S
) {
11862 SmallPtrSet
<const Loop
*, 8> LoopsUsed
;
11863 getUsedLoops(S
, LoopsUsed
);
11864 for (auto *L
: LoopsUsed
)
11865 LoopUsers
[L
].push_back(S
);
11868 void ScalarEvolution::verify() const {
11869 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
11870 ScalarEvolution
SE2(F
, TLI
, AC
, DT
, LI
);
11872 SmallVector
<Loop
*, 8> LoopStack(LI
.begin(), LI
.end());
11874 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11875 struct SCEVMapper
: public SCEVRewriteVisitor
<SCEVMapper
> {
11876 SCEVMapper(ScalarEvolution
&SE
) : SCEVRewriteVisitor
<SCEVMapper
>(SE
) {}
11878 const SCEV
*visitConstant(const SCEVConstant
*Constant
) {
11879 return SE
.getConstant(Constant
->getAPInt());
11882 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
11883 return SE
.getUnknown(Expr
->getValue());
11886 const SCEV
*visitCouldNotCompute(const SCEVCouldNotCompute
*Expr
) {
11887 return SE
.getCouldNotCompute();
11891 SCEVMapper
SCM(SE2
);
11893 while (!LoopStack
.empty()) {
11894 auto *L
= LoopStack
.pop_back_val();
11895 LoopStack
.insert(LoopStack
.end(), L
->begin(), L
->end());
11897 auto *CurBECount
= SCM
.visit(
11898 const_cast<ScalarEvolution
*>(this)->getBackedgeTakenCount(L
));
11899 auto *NewBECount
= SE2
.getBackedgeTakenCount(L
);
11901 if (CurBECount
== SE2
.getCouldNotCompute() ||
11902 NewBECount
== SE2
.getCouldNotCompute()) {
11903 // NB! This situation is legal, but is very suspicious -- whatever pass
11904 // change the loop to make a trip count go from could not compute to
11905 // computable or vice-versa *should have* invalidated SCEV. However, we
11906 // choose not to assert here (for now) since we don't want false
11911 if (containsUndefs(CurBECount
) || containsUndefs(NewBECount
)) {
11912 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11913 // not propagate undef aggressively). This means we can (and do) fail
11914 // verification in cases where a transform makes the trip count of a loop
11915 // go from "undef" to "undef+1" (say). The transform is fine, since in
11916 // both cases the loop iterates "undef" times, but SCEV thinks we
11917 // increased the trip count of the loop by 1 incorrectly.
11921 if (SE
.getTypeSizeInBits(CurBECount
->getType()) >
11922 SE
.getTypeSizeInBits(NewBECount
->getType()))
11923 NewBECount
= SE2
.getZeroExtendExpr(NewBECount
, CurBECount
->getType());
11924 else if (SE
.getTypeSizeInBits(CurBECount
->getType()) <
11925 SE
.getTypeSizeInBits(NewBECount
->getType()))
11926 CurBECount
= SE2
.getZeroExtendExpr(CurBECount
, NewBECount
->getType());
11928 const SCEV
*Delta
= SE2
.getMinusSCEV(CurBECount
, NewBECount
);
11930 // Unless VerifySCEVStrict is set, we only compare constant deltas.
11931 if ((VerifySCEVStrict
|| isa
<SCEVConstant
>(Delta
)) && !Delta
->isZero()) {
11932 dbgs() << "Trip Count for " << *L
<< " Changed!\n";
11933 dbgs() << "Old: " << *CurBECount
<< "\n";
11934 dbgs() << "New: " << *NewBECount
<< "\n";
11935 dbgs() << "Delta: " << *Delta
<< "\n";
11941 bool ScalarEvolution::invalidate(
11942 Function
&F
, const PreservedAnalyses
&PA
,
11943 FunctionAnalysisManager::Invalidator
&Inv
) {
11944 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11945 // of its dependencies is invalidated.
11946 auto PAC
= PA
.getChecker
<ScalarEvolutionAnalysis
>();
11947 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
11948 Inv
.invalidate
<AssumptionAnalysis
>(F
, PA
) ||
11949 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
) ||
11950 Inv
.invalidate
<LoopAnalysis
>(F
, PA
);
11953 AnalysisKey
ScalarEvolutionAnalysis::Key
;
11955 ScalarEvolution
ScalarEvolutionAnalysis::run(Function
&F
,
11956 FunctionAnalysisManager
&AM
) {
11957 return ScalarEvolution(F
, AM
.getResult
<TargetLibraryAnalysis
>(F
),
11958 AM
.getResult
<AssumptionAnalysis
>(F
),
11959 AM
.getResult
<DominatorTreeAnalysis
>(F
),
11960 AM
.getResult
<LoopAnalysis
>(F
));
11964 ScalarEvolutionPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
11965 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).print(OS
);
11966 return PreservedAnalyses::all();
11969 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass
, "scalar-evolution",
11970 "Scalar Evolution Analysis", false, true)
11971 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
11972 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
11973 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
11974 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
11975 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass
, "scalar-evolution",
11976 "Scalar Evolution Analysis", false, true)
11978 char ScalarEvolutionWrapperPass::ID
= 0;
11980 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID
) {
11981 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11984 bool ScalarEvolutionWrapperPass::runOnFunction(Function
&F
) {
11985 SE
.reset(new ScalarEvolution(
11986 F
, getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
11987 getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
11988 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
11989 getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo()));
11993 void ScalarEvolutionWrapperPass::releaseMemory() { SE
.reset(); }
11995 void ScalarEvolutionWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
11999 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12006 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
12007 AU
.setPreservesAll();
12008 AU
.addRequiredTransitive
<AssumptionCacheTracker
>();
12009 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
12010 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
12011 AU
.addRequiredTransitive
<TargetLibraryInfoWrapperPass
>();
12014 const SCEVPredicate
*ScalarEvolution::getEqualPredicate(const SCEV
*LHS
,
12016 FoldingSetNodeID ID
;
12017 assert(LHS
->getType() == RHS
->getType() &&
12018 "Type mismatch between LHS and RHS");
12019 // Unique this node based on the arguments
12020 ID
.AddInteger(SCEVPredicate::P_Equal
);
12021 ID
.AddPointer(LHS
);
12022 ID
.AddPointer(RHS
);
12023 void *IP
= nullptr;
12024 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
12026 SCEVEqualPredicate
*Eq
= new (SCEVAllocator
)
12027 SCEVEqualPredicate(ID
.Intern(SCEVAllocator
), LHS
, RHS
);
12028 UniquePreds
.InsertNode(Eq
, IP
);
12032 const SCEVPredicate
*ScalarEvolution::getWrapPredicate(
12033 const SCEVAddRecExpr
*AR
,
12034 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
12035 FoldingSetNodeID ID
;
12036 // Unique this node based on the arguments
12037 ID
.AddInteger(SCEVPredicate::P_Wrap
);
12039 ID
.AddInteger(AddedFlags
);
12040 void *IP
= nullptr;
12041 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
12043 auto *OF
= new (SCEVAllocator
)
12044 SCEVWrapPredicate(ID
.Intern(SCEVAllocator
), AR
, AddedFlags
);
12045 UniquePreds
.InsertNode(OF
, IP
);
12051 class SCEVPredicateRewriter
: public SCEVRewriteVisitor
<SCEVPredicateRewriter
> {
12054 /// Rewrites \p S in the context of a loop L and the SCEV predication
12055 /// infrastructure.
12057 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12058 /// equivalences present in \p Pred.
12060 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12061 /// \p NewPreds such that the result will be an AddRecExpr.
12062 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
12063 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
,
12064 SCEVUnionPredicate
*Pred
) {
12065 SCEVPredicateRewriter
Rewriter(L
, SE
, NewPreds
, Pred
);
12066 return Rewriter
.visit(S
);
12069 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
12071 auto ExprPreds
= Pred
->getPredicatesForExpr(Expr
);
12072 for (auto *Pred
: ExprPreds
)
12073 if (const auto *IPred
= dyn_cast
<SCEVEqualPredicate
>(Pred
))
12074 if (IPred
->getLHS() == Expr
)
12075 return IPred
->getRHS();
12077 return convertToAddRecWithPreds(Expr
);
12080 const SCEV
*visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) {
12081 const SCEV
*Operand
= visit(Expr
->getOperand());
12082 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
12083 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
12084 // This couldn't be folded because the operand didn't have the nuw
12085 // flag. Add the nusw flag as an assumption that we could make.
12086 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
12087 Type
*Ty
= Expr
->getType();
12088 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNUSW
))
12089 return SE
.getAddRecExpr(SE
.getZeroExtendExpr(AR
->getStart(), Ty
),
12090 SE
.getSignExtendExpr(Step
, Ty
), L
,
12091 AR
->getNoWrapFlags());
12093 return SE
.getZeroExtendExpr(Operand
, Expr
->getType());
12096 const SCEV
*visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) {
12097 const SCEV
*Operand
= visit(Expr
->getOperand());
12098 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
12099 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
12100 // This couldn't be folded because the operand didn't have the nsw
12101 // flag. Add the nssw flag as an assumption that we could make.
12102 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
12103 Type
*Ty
= Expr
->getType();
12104 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNSSW
))
12105 return SE
.getAddRecExpr(SE
.getSignExtendExpr(AR
->getStart(), Ty
),
12106 SE
.getSignExtendExpr(Step
, Ty
), L
,
12107 AR
->getNoWrapFlags());
12109 return SE
.getSignExtendExpr(Operand
, Expr
->getType());
12113 explicit SCEVPredicateRewriter(const Loop
*L
, ScalarEvolution
&SE
,
12114 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
,
12115 SCEVUnionPredicate
*Pred
)
12116 : SCEVRewriteVisitor(SE
), NewPreds(NewPreds
), Pred(Pred
), L(L
) {}
12118 bool addOverflowAssumption(const SCEVPredicate
*P
) {
12120 // Check if we've already made this assumption.
12121 return Pred
&& Pred
->implies(P
);
12123 NewPreds
->insert(P
);
12127 bool addOverflowAssumption(const SCEVAddRecExpr
*AR
,
12128 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
12129 auto *A
= SE
.getWrapPredicate(AR
, AddedFlags
);
12130 return addOverflowAssumption(A
);
12133 // If \p Expr represents a PHINode, we try to see if it can be represented
12134 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12135 // to add this predicate as a runtime overflow check, we return the AddRec.
12136 // If \p Expr does not meet these conditions (is not a PHI node, or we
12137 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12139 const SCEV
*convertToAddRecWithPreds(const SCEVUnknown
*Expr
) {
12140 if (!isa
<PHINode
>(Expr
->getValue()))
12142 Optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
12143 PredicatedRewrite
= SE
.createAddRecFromPHIWithCasts(Expr
);
12144 if (!PredicatedRewrite
)
12146 for (auto *P
: PredicatedRewrite
->second
){
12147 // Wrap predicates from outer loops are not supported.
12148 if (auto *WP
= dyn_cast
<const SCEVWrapPredicate
>(P
)) {
12149 auto *AR
= cast
<const SCEVAddRecExpr
>(WP
->getExpr());
12150 if (L
!= AR
->getLoop())
12153 if (!addOverflowAssumption(P
))
12156 return PredicatedRewrite
->first
;
12159 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
;
12160 SCEVUnionPredicate
*Pred
;
12164 } // end anonymous namespace
12166 const SCEV
*ScalarEvolution::rewriteUsingPredicate(const SCEV
*S
, const Loop
*L
,
12167 SCEVUnionPredicate
&Preds
) {
12168 return SCEVPredicateRewriter::rewrite(S
, L
, *this, nullptr, &Preds
);
12171 const SCEVAddRecExpr
*ScalarEvolution::convertSCEVToAddRecWithPredicates(
12172 const SCEV
*S
, const Loop
*L
,
12173 SmallPtrSetImpl
<const SCEVPredicate
*> &Preds
) {
12174 SmallPtrSet
<const SCEVPredicate
*, 4> TransformPreds
;
12175 S
= SCEVPredicateRewriter::rewrite(S
, L
, *this, &TransformPreds
, nullptr);
12176 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
);
12181 // Since the transformation was successful, we can now transfer the SCEV
12183 for (auto *P
: TransformPreds
)
12189 /// SCEV predicates
12190 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID
,
12191 SCEVPredicateKind Kind
)
12192 : FastID(ID
), Kind(Kind
) {}
12194 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID
,
12195 const SCEV
*LHS
, const SCEV
*RHS
)
12196 : SCEVPredicate(ID
, P_Equal
), LHS(LHS
), RHS(RHS
) {
12197 assert(LHS
->getType() == RHS
->getType() && "LHS and RHS types don't match");
12198 assert(LHS
!= RHS
&& "LHS and RHS are the same SCEV");
12201 bool SCEVEqualPredicate::implies(const SCEVPredicate
*N
) const {
12202 const auto *Op
= dyn_cast
<SCEVEqualPredicate
>(N
);
12207 return Op
->LHS
== LHS
&& Op
->RHS
== RHS
;
12210 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12212 const SCEV
*SCEVEqualPredicate::getExpr() const { return LHS
; }
12214 void SCEVEqualPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
12215 OS
.indent(Depth
) << "Equal predicate: " << *LHS
<< " == " << *RHS
<< "\n";
12218 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID
,
12219 const SCEVAddRecExpr
*AR
,
12220 IncrementWrapFlags Flags
)
12221 : SCEVPredicate(ID
, P_Wrap
), AR(AR
), Flags(Flags
) {}
12223 const SCEV
*SCEVWrapPredicate::getExpr() const { return AR
; }
12225 bool SCEVWrapPredicate::implies(const SCEVPredicate
*N
) const {
12226 const auto *Op
= dyn_cast
<SCEVWrapPredicate
>(N
);
12228 return Op
&& Op
->AR
== AR
&& setFlags(Flags
, Op
->Flags
) == Flags
;
12231 bool SCEVWrapPredicate::isAlwaysTrue() const {
12232 SCEV::NoWrapFlags ScevFlags
= AR
->getNoWrapFlags();
12233 IncrementWrapFlags IFlags
= Flags
;
12235 if (ScalarEvolution::setFlags(ScevFlags
, SCEV::FlagNSW
) == ScevFlags
)
12236 IFlags
= clearFlags(IFlags
, IncrementNSSW
);
12238 return IFlags
== IncrementAnyWrap
;
12241 void SCEVWrapPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
12242 OS
.indent(Depth
) << *getExpr() << " Added Flags: ";
12243 if (SCEVWrapPredicate::IncrementNUSW
& getFlags())
12245 if (SCEVWrapPredicate::IncrementNSSW
& getFlags())
12250 SCEVWrapPredicate::IncrementWrapFlags
12251 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr
*AR
,
12252 ScalarEvolution
&SE
) {
12253 IncrementWrapFlags ImpliedFlags
= IncrementAnyWrap
;
12254 SCEV::NoWrapFlags StaticFlags
= AR
->getNoWrapFlags();
12256 // We can safely transfer the NSW flag as NSSW.
12257 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNSW
) == StaticFlags
)
12258 ImpliedFlags
= IncrementNSSW
;
12260 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNUW
) == StaticFlags
) {
12261 // If the increment is positive, the SCEV NUW flag will also imply the
12262 // WrapPredicate NUSW flag.
12263 if (const auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(SE
)))
12264 if (Step
->getValue()->getValue().isNonNegative())
12265 ImpliedFlags
= setFlags(ImpliedFlags
, IncrementNUSW
);
12268 return ImpliedFlags
;
12271 /// Union predicates don't get cached so create a dummy set ID for it.
12272 SCEVUnionPredicate::SCEVUnionPredicate()
12273 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union
) {}
12275 bool SCEVUnionPredicate::isAlwaysTrue() const {
12276 return all_of(Preds
,
12277 [](const SCEVPredicate
*I
) { return I
->isAlwaysTrue(); });
12280 ArrayRef
<const SCEVPredicate
*>
12281 SCEVUnionPredicate::getPredicatesForExpr(const SCEV
*Expr
) {
12282 auto I
= SCEVToPreds
.find(Expr
);
12283 if (I
== SCEVToPreds
.end())
12284 return ArrayRef
<const SCEVPredicate
*>();
12288 bool SCEVUnionPredicate::implies(const SCEVPredicate
*N
) const {
12289 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
))
12290 return all_of(Set
->Preds
,
12291 [this](const SCEVPredicate
*I
) { return this->implies(I
); });
12293 auto ScevPredsIt
= SCEVToPreds
.find(N
->getExpr());
12294 if (ScevPredsIt
== SCEVToPreds
.end())
12296 auto &SCEVPreds
= ScevPredsIt
->second
;
12298 return any_of(SCEVPreds
,
12299 [N
](const SCEVPredicate
*I
) { return I
->implies(N
); });
12302 const SCEV
*SCEVUnionPredicate::getExpr() const { return nullptr; }
12304 void SCEVUnionPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
12305 for (auto Pred
: Preds
)
12306 Pred
->print(OS
, Depth
);
12309 void SCEVUnionPredicate::add(const SCEVPredicate
*N
) {
12310 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
)) {
12311 for (auto Pred
: Set
->Preds
)
12319 const SCEV
*Key
= N
->getExpr();
12320 assert(Key
&& "Only SCEVUnionPredicate doesn't have an "
12321 " associated expression!");
12323 SCEVToPreds
[Key
].push_back(N
);
12324 Preds
.push_back(N
);
12327 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution
&SE
,
12331 const SCEV
*PredicatedScalarEvolution::getSCEV(Value
*V
) {
12332 const SCEV
*Expr
= SE
.getSCEV(V
);
12333 RewriteEntry
&Entry
= RewriteMap
[Expr
];
12335 // If we already have an entry and the version matches, return it.
12336 if (Entry
.second
&& Generation
== Entry
.first
)
12337 return Entry
.second
;
12339 // We found an entry but it's stale. Rewrite the stale entry
12340 // according to the current predicate.
12342 Expr
= Entry
.second
;
12344 const SCEV
*NewSCEV
= SE
.rewriteUsingPredicate(Expr
, &L
, Preds
);
12345 Entry
= {Generation
, NewSCEV
};
12350 const SCEV
*PredicatedScalarEvolution::getBackedgeTakenCount() {
12351 if (!BackedgeCount
) {
12352 SCEVUnionPredicate BackedgePred
;
12353 BackedgeCount
= SE
.getPredicatedBackedgeTakenCount(&L
, BackedgePred
);
12354 addPredicate(BackedgePred
);
12356 return BackedgeCount
;
12359 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate
&Pred
) {
12360 if (Preds
.implies(&Pred
))
12363 updateGeneration();
12366 const SCEVUnionPredicate
&PredicatedScalarEvolution::getUnionPredicate() const {
12370 void PredicatedScalarEvolution::updateGeneration() {
12371 // If the generation number wrapped recompute everything.
12372 if (++Generation
== 0) {
12373 for (auto &II
: RewriteMap
) {
12374 const SCEV
*Rewritten
= II
.second
.second
;
12375 II
.second
= {Generation
, SE
.rewriteUsingPredicate(Rewritten
, &L
, Preds
)};
12380 void PredicatedScalarEvolution::setNoOverflow(
12381 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
12382 const SCEV
*Expr
= getSCEV(V
);
12383 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
12385 auto ImpliedFlags
= SCEVWrapPredicate::getImpliedFlags(AR
, SE
);
12387 // Clear the statically implied flags.
12388 Flags
= SCEVWrapPredicate::clearFlags(Flags
, ImpliedFlags
);
12389 addPredicate(*SE
.getWrapPredicate(AR
, Flags
));
12391 auto II
= FlagsMap
.insert({V
, Flags
});
12393 II
.first
->second
= SCEVWrapPredicate::setFlags(Flags
, II
.first
->second
);
12396 bool PredicatedScalarEvolution::hasNoOverflow(
12397 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
12398 const SCEV
*Expr
= getSCEV(V
);
12399 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
12401 Flags
= SCEVWrapPredicate::clearFlags(
12402 Flags
, SCEVWrapPredicate::getImpliedFlags(AR
, SE
));
12404 auto II
= FlagsMap
.find(V
);
12406 if (II
!= FlagsMap
.end())
12407 Flags
= SCEVWrapPredicate::clearFlags(Flags
, II
->second
);
12409 return Flags
== SCEVWrapPredicate::IncrementAnyWrap
;
12412 const SCEVAddRecExpr
*PredicatedScalarEvolution::getAsAddRec(Value
*V
) {
12413 const SCEV
*Expr
= this->getSCEV(V
);
12414 SmallPtrSet
<const SCEVPredicate
*, 4> NewPreds
;
12415 auto *New
= SE
.convertSCEVToAddRecWithPredicates(Expr
, &L
, NewPreds
);
12420 for (auto *P
: NewPreds
)
12423 updateGeneration();
12424 RewriteMap
[SE
.getSCEV(V
)] = {Generation
, New
};
12428 PredicatedScalarEvolution::PredicatedScalarEvolution(
12429 const PredicatedScalarEvolution
&Init
)
12430 : RewriteMap(Init
.RewriteMap
), SE(Init
.SE
), L(Init
.L
), Preds(Init
.Preds
),
12431 Generation(Init
.Generation
), BackedgeCount(Init
.BackedgeCount
) {
12432 for (const auto &I
: Init
.FlagsMap
)
12433 FlagsMap
.insert(I
);
12436 void PredicatedScalarEvolution::print(raw_ostream
&OS
, unsigned Depth
) const {
12438 for (auto *BB
: L
.getBlocks())
12439 for (auto &I
: *BB
) {
12440 if (!SE
.isSCEVable(I
.getType()))
12443 auto *Expr
= SE
.getSCEV(&I
);
12444 auto II
= RewriteMap
.find(Expr
);
12446 if (II
== RewriteMap
.end())
12449 // Don't print things that are not interesting.
12450 if (II
->second
.second
== Expr
)
12453 OS
.indent(Depth
) << "[PSE]" << I
<< ":\n";
12454 OS
.indent(Depth
+ 2) << *Expr
<< "\n";
12455 OS
.indent(Depth
+ 2) << "--> " << *II
->second
.second
<< "\n";
12459 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12460 // arbitrary expressions.
12461 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12462 // 4, A / B becomes X / 8).
12463 bool ScalarEvolution::matchURem(const SCEV
*Expr
, const SCEV
*&LHS
,
12464 const SCEV
*&RHS
) {
12465 const auto *Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
12466 if (Add
== nullptr || Add
->getNumOperands() != 2)
12469 const SCEV
*A
= Add
->getOperand(1);
12470 const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(0));
12472 if (Mul
== nullptr)
12475 const auto MatchURemWithDivisor
= [&](const SCEV
*B
) {
12476 // (SomeExpr + (-(SomeExpr / B) * B)).
12477 if (Expr
== getURemExpr(A
, B
)) {
12485 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12486 if (Mul
->getNumOperands() == 3 && isa
<SCEVConstant
>(Mul
->getOperand(0)))
12487 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
12488 MatchURemWithDivisor(Mul
->getOperand(2));
12490 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12491 if (Mul
->getNumOperands() == 2)
12492 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
12493 MatchURemWithDivisor(Mul
->getOperand(0)) ||
12494 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(1))) ||
12495 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(0)));