[Alignment][NFC] Value::getPointerAlignment returns MaybeAlign
[llvm-core.git] / lib / Analysis / TargetTransformInfo.cpp
blobc9c294873ea60b97be32c76798cc10ed28df4ca4
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/CFG.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopIterator.h"
24 #include <utility>
26 using namespace llvm;
27 using namespace PatternMatch;
29 #define DEBUG_TYPE "tti"
31 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
32 cl::Hidden,
33 cl::desc("Recognize reduction patterns."));
35 namespace {
36 /// No-op implementation of the TTI interface using the utility base
37 /// classes.
38 ///
39 /// This is used when no target specific information is available.
40 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
41 explicit NoTTIImpl(const DataLayout &DL)
42 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
46 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
47 // If the loop has irreducible control flow, it can not be converted to
48 // Hardware loop.
49 LoopBlocksRPO RPOT(L);
50 RPOT.perform(&LI);
51 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
52 return false;
53 return true;
56 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
57 LoopInfo &LI, DominatorTree &DT,
58 bool ForceNestedLoop,
59 bool ForceHardwareLoopPHI) {
60 SmallVector<BasicBlock *, 4> ExitingBlocks;
61 L->getExitingBlocks(ExitingBlocks);
63 for (BasicBlock *BB : ExitingBlocks) {
64 // If we pass the updated counter back through a phi, we need to know
65 // which latch the updated value will be coming from.
66 if (!L->isLoopLatch(BB)) {
67 if (ForceHardwareLoopPHI || CounterInReg)
68 continue;
71 const SCEV *EC = SE.getExitCount(L, BB);
72 if (isa<SCEVCouldNotCompute>(EC))
73 continue;
74 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
75 if (ConstEC->getValue()->isZero())
76 continue;
77 } else if (!SE.isLoopInvariant(EC, L))
78 continue;
80 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
81 continue;
83 // If this exiting block is contained in a nested loop, it is not eligible
84 // for insertion of the branch-and-decrement since the inner loop would
85 // end up messing up the value in the CTR.
86 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
87 continue;
89 // We now have a loop-invariant count of loop iterations (which is not the
90 // constant zero) for which we know that this loop will not exit via this
91 // existing block.
93 // We need to make sure that this block will run on every loop iteration.
94 // For this to be true, we must dominate all blocks with backedges. Such
95 // blocks are in-loop predecessors to the header block.
96 bool NotAlways = false;
97 for (BasicBlock *Pred : predecessors(L->getHeader())) {
98 if (!L->contains(Pred))
99 continue;
101 if (!DT.dominates(BB, Pred)) {
102 NotAlways = true;
103 break;
107 if (NotAlways)
108 continue;
110 // Make sure this blocks ends with a conditional branch.
111 Instruction *TI = BB->getTerminator();
112 if (!TI)
113 continue;
115 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
116 if (!BI->isConditional())
117 continue;
119 ExitBranch = BI;
120 } else
121 continue;
123 // Note that this block may not be the loop latch block, even if the loop
124 // has a latch block.
125 ExitBlock = BB;
126 ExitCount = EC;
127 break;
130 if (!ExitBlock)
131 return false;
132 return true;
135 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
136 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
138 TargetTransformInfo::~TargetTransformInfo() {}
140 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
141 : TTIImpl(std::move(Arg.TTIImpl)) {}
143 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
144 TTIImpl = std::move(RHS.TTIImpl);
145 return *this;
148 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
149 Type *OpTy) const {
150 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
151 assert(Cost >= 0 && "TTI should not produce negative costs!");
152 return Cost;
155 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
156 const User *U) const {
157 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
158 assert(Cost >= 0 && "TTI should not produce negative costs!");
159 return Cost;
162 int TargetTransformInfo::getCallCost(const Function *F,
163 ArrayRef<const Value *> Arguments,
164 const User *U) const {
165 int Cost = TTIImpl->getCallCost(F, Arguments, U);
166 assert(Cost >= 0 && "TTI should not produce negative costs!");
167 return Cost;
170 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
171 return TTIImpl->getInliningThresholdMultiplier();
174 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
175 return TTIImpl->getInlinerVectorBonusPercent();
178 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
179 ArrayRef<const Value *> Operands) const {
180 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
183 int TargetTransformInfo::getExtCost(const Instruction *I,
184 const Value *Src) const {
185 return TTIImpl->getExtCost(I, Src);
188 int TargetTransformInfo::getIntrinsicCost(
189 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
190 const User *U) const {
191 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
192 assert(Cost >= 0 && "TTI should not produce negative costs!");
193 return Cost;
196 unsigned
197 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
198 unsigned &JTSize) const {
199 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
202 int TargetTransformInfo::getUserCost(const User *U,
203 ArrayRef<const Value *> Operands) const {
204 int Cost = TTIImpl->getUserCost(U, Operands);
205 assert(Cost >= 0 && "TTI should not produce negative costs!");
206 return Cost;
209 bool TargetTransformInfo::hasBranchDivergence() const {
210 return TTIImpl->hasBranchDivergence();
213 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
214 return TTIImpl->isSourceOfDivergence(V);
217 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
218 return TTIImpl->isAlwaysUniform(V);
221 unsigned TargetTransformInfo::getFlatAddressSpace() const {
222 return TTIImpl->getFlatAddressSpace();
225 bool TargetTransformInfo::collectFlatAddressOperands(
226 SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
227 return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
230 bool TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
231 IntrinsicInst *II, Value *OldV, Value *NewV) const {
232 return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
235 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
236 return TTIImpl->isLoweredToCall(F);
239 bool TargetTransformInfo::isHardwareLoopProfitable(
240 Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
241 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
242 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
245 void TargetTransformInfo::getUnrollingPreferences(
246 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
247 return TTIImpl->getUnrollingPreferences(L, SE, UP);
250 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
251 return TTIImpl->isLegalAddImmediate(Imm);
254 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
255 return TTIImpl->isLegalICmpImmediate(Imm);
258 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
259 int64_t BaseOffset,
260 bool HasBaseReg,
261 int64_t Scale,
262 unsigned AddrSpace,
263 Instruction *I) const {
264 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
265 Scale, AddrSpace, I);
268 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
269 return TTIImpl->isLSRCostLess(C1, C2);
272 bool TargetTransformInfo::canMacroFuseCmp() const {
273 return TTIImpl->canMacroFuseCmp();
276 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
277 ScalarEvolution *SE, LoopInfo *LI,
278 DominatorTree *DT, AssumptionCache *AC,
279 TargetLibraryInfo *LibInfo) const {
280 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
283 bool TargetTransformInfo::shouldFavorPostInc() const {
284 return TTIImpl->shouldFavorPostInc();
287 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
288 return TTIImpl->shouldFavorBackedgeIndex(L);
291 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
292 MaybeAlign Alignment) const {
293 return TTIImpl->isLegalMaskedStore(DataType, Alignment);
296 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
297 MaybeAlign Alignment) const {
298 return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
301 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
302 Align Alignment) const {
303 return TTIImpl->isLegalNTStore(DataType, Alignment);
306 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
307 return TTIImpl->isLegalNTLoad(DataType, Alignment);
310 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
311 return TTIImpl->isLegalMaskedGather(DataType);
314 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
315 return TTIImpl->isLegalMaskedScatter(DataType);
318 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
319 return TTIImpl->isLegalMaskedCompressStore(DataType);
322 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
323 return TTIImpl->isLegalMaskedExpandLoad(DataType);
326 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
327 return TTIImpl->hasDivRemOp(DataType, IsSigned);
330 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
331 unsigned AddrSpace) const {
332 return TTIImpl->hasVolatileVariant(I, AddrSpace);
335 bool TargetTransformInfo::prefersVectorizedAddressing() const {
336 return TTIImpl->prefersVectorizedAddressing();
339 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
340 int64_t BaseOffset,
341 bool HasBaseReg,
342 int64_t Scale,
343 unsigned AddrSpace) const {
344 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
345 Scale, AddrSpace);
346 assert(Cost >= 0 && "TTI should not produce negative costs!");
347 return Cost;
350 bool TargetTransformInfo::LSRWithInstrQueries() const {
351 return TTIImpl->LSRWithInstrQueries();
354 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
355 return TTIImpl->isTruncateFree(Ty1, Ty2);
358 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
359 return TTIImpl->isProfitableToHoist(I);
362 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
364 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
365 return TTIImpl->isTypeLegal(Ty);
368 bool TargetTransformInfo::shouldBuildLookupTables() const {
369 return TTIImpl->shouldBuildLookupTables();
371 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
372 return TTIImpl->shouldBuildLookupTablesForConstant(C);
375 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
376 return TTIImpl->useColdCCForColdCall(F);
379 unsigned TargetTransformInfo::
380 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
381 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
384 unsigned TargetTransformInfo::
385 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
386 unsigned VF) const {
387 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
390 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
391 return TTIImpl->supportsEfficientVectorElementLoadStore();
394 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
395 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
398 TargetTransformInfo::MemCmpExpansionOptions
399 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
400 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
403 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
404 return TTIImpl->enableInterleavedAccessVectorization();
407 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
408 return TTIImpl->enableMaskedInterleavedAccessVectorization();
411 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
412 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
415 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
416 unsigned BitWidth,
417 unsigned AddressSpace,
418 unsigned Alignment,
419 bool *Fast) const {
420 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
421 Alignment, Fast);
424 TargetTransformInfo::PopcntSupportKind
425 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
426 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
429 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
430 return TTIImpl->haveFastSqrt(Ty);
433 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
434 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
437 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
438 int Cost = TTIImpl->getFPOpCost(Ty);
439 assert(Cost >= 0 && "TTI should not produce negative costs!");
440 return Cost;
443 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
444 const APInt &Imm,
445 Type *Ty) const {
446 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
447 assert(Cost >= 0 && "TTI should not produce negative costs!");
448 return Cost;
451 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
452 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
453 assert(Cost >= 0 && "TTI should not produce negative costs!");
454 return Cost;
457 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
458 const APInt &Imm, Type *Ty) const {
459 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
460 assert(Cost >= 0 && "TTI should not produce negative costs!");
461 return Cost;
464 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
465 const APInt &Imm, Type *Ty) const {
466 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
467 assert(Cost >= 0 && "TTI should not produce negative costs!");
468 return Cost;
471 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
472 return TTIImpl->getNumberOfRegisters(ClassID);
475 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector, Type *Ty) const {
476 return TTIImpl->getRegisterClassForType(Vector, Ty);
479 const char* TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
480 return TTIImpl->getRegisterClassName(ClassID);
483 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
484 return TTIImpl->getRegisterBitWidth(Vector);
487 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
488 return TTIImpl->getMinVectorRegisterBitWidth();
491 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
492 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
495 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
496 return TTIImpl->getMinimumVF(ElemWidth);
499 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
500 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
501 return TTIImpl->shouldConsiderAddressTypePromotion(
502 I, AllowPromotionWithoutCommonHeader);
505 unsigned TargetTransformInfo::getCacheLineSize() const {
506 return TTIImpl->getCacheLineSize();
509 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
510 const {
511 return TTIImpl->getCacheSize(Level);
514 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
515 CacheLevel Level) const {
516 return TTIImpl->getCacheAssociativity(Level);
519 unsigned TargetTransformInfo::getPrefetchDistance() const {
520 return TTIImpl->getPrefetchDistance();
523 unsigned TargetTransformInfo::getMinPrefetchStride() const {
524 return TTIImpl->getMinPrefetchStride();
527 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
528 return TTIImpl->getMaxPrefetchIterationsAhead();
531 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
532 return TTIImpl->getMaxInterleaveFactor(VF);
535 TargetTransformInfo::OperandValueKind
536 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
537 OperandValueKind OpInfo = OK_AnyValue;
538 OpProps = OP_None;
540 if (auto *CI = dyn_cast<ConstantInt>(V)) {
541 if (CI->getValue().isPowerOf2())
542 OpProps = OP_PowerOf2;
543 return OK_UniformConstantValue;
546 // A broadcast shuffle creates a uniform value.
547 // TODO: Add support for non-zero index broadcasts.
548 // TODO: Add support for different source vector width.
549 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
550 if (ShuffleInst->isZeroEltSplat())
551 OpInfo = OK_UniformValue;
553 const Value *Splat = getSplatValue(V);
555 // Check for a splat of a constant or for a non uniform vector of constants
556 // and check if the constant(s) are all powers of two.
557 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
558 OpInfo = OK_NonUniformConstantValue;
559 if (Splat) {
560 OpInfo = OK_UniformConstantValue;
561 if (auto *CI = dyn_cast<ConstantInt>(Splat))
562 if (CI->getValue().isPowerOf2())
563 OpProps = OP_PowerOf2;
564 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
565 OpProps = OP_PowerOf2;
566 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
567 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
568 if (CI->getValue().isPowerOf2())
569 continue;
570 OpProps = OP_None;
571 break;
576 // Check for a splat of a uniform value. This is not loop aware, so return
577 // true only for the obviously uniform cases (argument, globalvalue)
578 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
579 OpInfo = OK_UniformValue;
581 return OpInfo;
584 int TargetTransformInfo::getArithmeticInstrCost(
585 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
586 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
587 OperandValueProperties Opd2PropInfo,
588 ArrayRef<const Value *> Args) const {
589 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
590 Opd1PropInfo, Opd2PropInfo, Args);
591 assert(Cost >= 0 && "TTI should not produce negative costs!");
592 return Cost;
595 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
596 Type *SubTp) const {
597 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
598 assert(Cost >= 0 && "TTI should not produce negative costs!");
599 return Cost;
602 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
603 Type *Src, const Instruction *I) const {
604 assert ((I == nullptr || I->getOpcode() == Opcode) &&
605 "Opcode should reflect passed instruction.");
606 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
607 assert(Cost >= 0 && "TTI should not produce negative costs!");
608 return Cost;
611 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
612 VectorType *VecTy,
613 unsigned Index) const {
614 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
615 assert(Cost >= 0 && "TTI should not produce negative costs!");
616 return Cost;
619 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
620 int Cost = TTIImpl->getCFInstrCost(Opcode);
621 assert(Cost >= 0 && "TTI should not produce negative costs!");
622 return Cost;
625 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
626 Type *CondTy, const Instruction *I) const {
627 assert ((I == nullptr || I->getOpcode() == Opcode) &&
628 "Opcode should reflect passed instruction.");
629 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
630 assert(Cost >= 0 && "TTI should not produce negative costs!");
631 return Cost;
634 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
635 unsigned Index) const {
636 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
637 assert(Cost >= 0 && "TTI should not produce negative costs!");
638 return Cost;
641 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
642 unsigned Alignment,
643 unsigned AddressSpace,
644 const Instruction *I) const {
645 assert ((I == nullptr || I->getOpcode() == Opcode) &&
646 "Opcode should reflect passed instruction.");
647 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
648 assert(Cost >= 0 && "TTI should not produce negative costs!");
649 return Cost;
652 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
653 unsigned Alignment,
654 unsigned AddressSpace) const {
655 int Cost =
656 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
657 assert(Cost >= 0 && "TTI should not produce negative costs!");
658 return Cost;
661 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
662 Value *Ptr, bool VariableMask,
663 unsigned Alignment) const {
664 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
665 Alignment);
666 assert(Cost >= 0 && "TTI should not produce negative costs!");
667 return Cost;
670 int TargetTransformInfo::getInterleavedMemoryOpCost(
671 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
672 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
673 bool UseMaskForGaps) const {
674 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
675 Alignment, AddressSpace,
676 UseMaskForCond,
677 UseMaskForGaps);
678 assert(Cost >= 0 && "TTI should not produce negative costs!");
679 return Cost;
682 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
683 ArrayRef<Type *> Tys, FastMathFlags FMF,
684 unsigned ScalarizationCostPassed) const {
685 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
686 ScalarizationCostPassed);
687 assert(Cost >= 0 && "TTI should not produce negative costs!");
688 return Cost;
691 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
692 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
693 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
694 assert(Cost >= 0 && "TTI should not produce negative costs!");
695 return Cost;
698 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
699 ArrayRef<Type *> Tys) const {
700 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
701 assert(Cost >= 0 && "TTI should not produce negative costs!");
702 return Cost;
705 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
706 return TTIImpl->getNumberOfParts(Tp);
709 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
710 ScalarEvolution *SE,
711 const SCEV *Ptr) const {
712 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
713 assert(Cost >= 0 && "TTI should not produce negative costs!");
714 return Cost;
717 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
718 int Cost = TTIImpl->getMemcpyCost(I);
719 assert(Cost >= 0 && "TTI should not produce negative costs!");
720 return Cost;
723 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
724 bool IsPairwiseForm) const {
725 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
726 assert(Cost >= 0 && "TTI should not produce negative costs!");
727 return Cost;
730 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
731 bool IsPairwiseForm,
732 bool IsUnsigned) const {
733 int Cost =
734 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
735 assert(Cost >= 0 && "TTI should not produce negative costs!");
736 return Cost;
739 unsigned
740 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
741 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
744 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
745 MemIntrinsicInfo &Info) const {
746 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
749 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
750 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
753 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
754 IntrinsicInst *Inst, Type *ExpectedType) const {
755 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
758 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
759 Value *Length,
760 unsigned SrcAlign,
761 unsigned DestAlign) const {
762 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
763 DestAlign);
766 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
767 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
768 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
769 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
770 SrcAlign, DestAlign);
773 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
774 const Function *Callee) const {
775 return TTIImpl->areInlineCompatible(Caller, Callee);
778 bool TargetTransformInfo::areFunctionArgsABICompatible(
779 const Function *Caller, const Function *Callee,
780 SmallPtrSetImpl<Argument *> &Args) const {
781 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
784 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
785 Type *Ty) const {
786 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
789 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
790 Type *Ty) const {
791 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
794 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
795 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
798 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
799 return TTIImpl->isLegalToVectorizeLoad(LI);
802 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
803 return TTIImpl->isLegalToVectorizeStore(SI);
806 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
807 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
808 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
809 AddrSpace);
812 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
813 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
814 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
815 AddrSpace);
818 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
819 unsigned LoadSize,
820 unsigned ChainSizeInBytes,
821 VectorType *VecTy) const {
822 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
825 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
826 unsigned StoreSize,
827 unsigned ChainSizeInBytes,
828 VectorType *VecTy) const {
829 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
832 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
833 Type *Ty, ReductionFlags Flags) const {
834 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
837 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
838 return TTIImpl->shouldExpandReduction(II);
841 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
842 return TTIImpl->getGISelRematGlobalCost();
845 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
846 return TTIImpl->getInstructionLatency(I);
849 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
850 unsigned Level) {
851 // We don't need a shuffle if we just want to have element 0 in position 0 of
852 // the vector.
853 if (!SI && Level == 0 && IsLeft)
854 return true;
855 else if (!SI)
856 return false;
858 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
860 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
861 // we look at the left or right side.
862 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
863 Mask[i] = val;
865 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
866 return Mask == ActualMask;
869 namespace {
870 /// Kind of the reduction data.
871 enum ReductionKind {
872 RK_None, /// Not a reduction.
873 RK_Arithmetic, /// Binary reduction data.
874 RK_MinMax, /// Min/max reduction data.
875 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
877 /// Contains opcode + LHS/RHS parts of the reduction operations.
878 struct ReductionData {
879 ReductionData() = delete;
880 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
881 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
882 assert(Kind != RK_None && "expected binary or min/max reduction only.");
884 unsigned Opcode = 0;
885 Value *LHS = nullptr;
886 Value *RHS = nullptr;
887 ReductionKind Kind = RK_None;
888 bool hasSameData(ReductionData &RD) const {
889 return Kind == RD.Kind && Opcode == RD.Opcode;
892 } // namespace
894 static Optional<ReductionData> getReductionData(Instruction *I) {
895 Value *L, *R;
896 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
897 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
898 if (auto *SI = dyn_cast<SelectInst>(I)) {
899 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
900 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
901 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
902 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
903 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
904 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
905 auto *CI = cast<CmpInst>(SI->getCondition());
906 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
908 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
909 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
910 auto *CI = cast<CmpInst>(SI->getCondition());
911 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
914 return llvm::None;
917 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
918 unsigned Level,
919 unsigned NumLevels) {
920 // Match one level of pairwise operations.
921 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
922 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
923 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
924 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
925 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
926 if (!I)
927 return RK_None;
929 assert(I->getType()->isVectorTy() && "Expecting a vector type");
931 Optional<ReductionData> RD = getReductionData(I);
932 if (!RD)
933 return RK_None;
935 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
936 if (!LS && Level)
937 return RK_None;
938 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
939 if (!RS && Level)
940 return RK_None;
942 // On level 0 we can omit one shufflevector instruction.
943 if (!Level && !RS && !LS)
944 return RK_None;
946 // Shuffle inputs must match.
947 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
948 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
949 Value *NextLevelOp = nullptr;
950 if (NextLevelOpR && NextLevelOpL) {
951 // If we have two shuffles their operands must match.
952 if (NextLevelOpL != NextLevelOpR)
953 return RK_None;
955 NextLevelOp = NextLevelOpL;
956 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
957 // On the first level we can omit the shufflevector <0, undef,...>. So the
958 // input to the other shufflevector <1, undef> must match with one of the
959 // inputs to the current binary operation.
960 // Example:
961 // %NextLevelOpL = shufflevector %R, <1, undef ...>
962 // %BinOp = fadd %NextLevelOpL, %R
963 if (NextLevelOpL && NextLevelOpL != RD->RHS)
964 return RK_None;
965 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
966 return RK_None;
968 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
969 } else
970 return RK_None;
972 // Check that the next levels binary operation exists and matches with the
973 // current one.
974 if (Level + 1 != NumLevels) {
975 Optional<ReductionData> NextLevelRD =
976 getReductionData(cast<Instruction>(NextLevelOp));
977 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
978 return RK_None;
981 // Shuffle mask for pairwise operation must match.
982 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
983 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
984 return RK_None;
985 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
986 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
987 return RK_None;
988 } else {
989 return RK_None;
992 if (++Level == NumLevels)
993 return RD->Kind;
995 // Match next level.
996 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
997 NumLevels);
1000 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
1001 unsigned &Opcode, Type *&Ty) {
1002 if (!EnableReduxCost)
1003 return RK_None;
1005 // Need to extract the first element.
1006 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1007 unsigned Idx = ~0u;
1008 if (CI)
1009 Idx = CI->getZExtValue();
1010 if (Idx != 0)
1011 return RK_None;
1013 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1014 if (!RdxStart)
1015 return RK_None;
1016 Optional<ReductionData> RD = getReductionData(RdxStart);
1017 if (!RD)
1018 return RK_None;
1020 Type *VecTy = RdxStart->getType();
1021 unsigned NumVecElems = VecTy->getVectorNumElements();
1022 if (!isPowerOf2_32(NumVecElems))
1023 return RK_None;
1025 // We look for a sequence of shuffle,shuffle,add triples like the following
1026 // that builds a pairwise reduction tree.
1028 // (X0, X1, X2, X3)
1029 // (X0 + X1, X2 + X3, undef, undef)
1030 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
1032 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1033 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1034 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1035 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1036 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1037 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1038 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1039 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1040 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1041 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1042 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1043 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1044 RK_None)
1045 return RK_None;
1047 Opcode = RD->Opcode;
1048 Ty = VecTy;
1050 return RD->Kind;
1053 static std::pair<Value *, ShuffleVectorInst *>
1054 getShuffleAndOtherOprd(Value *L, Value *R) {
1055 ShuffleVectorInst *S = nullptr;
1057 if ((S = dyn_cast<ShuffleVectorInst>(L)))
1058 return std::make_pair(R, S);
1060 S = dyn_cast<ShuffleVectorInst>(R);
1061 return std::make_pair(L, S);
1064 static ReductionKind
1065 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1066 unsigned &Opcode, Type *&Ty) {
1067 if (!EnableReduxCost)
1068 return RK_None;
1070 // Need to extract the first element.
1071 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1072 unsigned Idx = ~0u;
1073 if (CI)
1074 Idx = CI->getZExtValue();
1075 if (Idx != 0)
1076 return RK_None;
1078 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1079 if (!RdxStart)
1080 return RK_None;
1081 Optional<ReductionData> RD = getReductionData(RdxStart);
1082 if (!RD)
1083 return RK_None;
1085 Type *VecTy = ReduxRoot->getOperand(0)->getType();
1086 unsigned NumVecElems = VecTy->getVectorNumElements();
1087 if (!isPowerOf2_32(NumVecElems))
1088 return RK_None;
1090 // We look for a sequence of shuffles and adds like the following matching one
1091 // fadd, shuffle vector pair at a time.
1093 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1094 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1095 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1096 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1097 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1098 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1099 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1101 unsigned MaskStart = 1;
1102 Instruction *RdxOp = RdxStart;
1103 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1104 unsigned NumVecElemsRemain = NumVecElems;
1105 while (NumVecElemsRemain - 1) {
1106 // Check for the right reduction operation.
1107 if (!RdxOp)
1108 return RK_None;
1109 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1110 if (!RDLevel || !RDLevel->hasSameData(*RD))
1111 return RK_None;
1113 Value *NextRdxOp;
1114 ShuffleVectorInst *Shuffle;
1115 std::tie(NextRdxOp, Shuffle) =
1116 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1118 // Check the current reduction operation and the shuffle use the same value.
1119 if (Shuffle == nullptr)
1120 return RK_None;
1121 if (Shuffle->getOperand(0) != NextRdxOp)
1122 return RK_None;
1124 // Check that shuffle masks matches.
1125 for (unsigned j = 0; j != MaskStart; ++j)
1126 ShuffleMask[j] = MaskStart + j;
1127 // Fill the rest of the mask with -1 for undef.
1128 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1130 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1131 if (ShuffleMask != Mask)
1132 return RK_None;
1134 RdxOp = dyn_cast<Instruction>(NextRdxOp);
1135 NumVecElemsRemain /= 2;
1136 MaskStart *= 2;
1139 Opcode = RD->Opcode;
1140 Ty = VecTy;
1141 return RD->Kind;
1144 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1145 switch (I->getOpcode()) {
1146 case Instruction::GetElementPtr:
1147 return getUserCost(I);
1149 case Instruction::Ret:
1150 case Instruction::PHI:
1151 case Instruction::Br: {
1152 return getCFInstrCost(I->getOpcode());
1154 case Instruction::Add:
1155 case Instruction::FAdd:
1156 case Instruction::Sub:
1157 case Instruction::FSub:
1158 case Instruction::Mul:
1159 case Instruction::FMul:
1160 case Instruction::UDiv:
1161 case Instruction::SDiv:
1162 case Instruction::FDiv:
1163 case Instruction::URem:
1164 case Instruction::SRem:
1165 case Instruction::FRem:
1166 case Instruction::Shl:
1167 case Instruction::LShr:
1168 case Instruction::AShr:
1169 case Instruction::And:
1170 case Instruction::Or:
1171 case Instruction::Xor: {
1172 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1173 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1174 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1175 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1176 SmallVector<const Value *, 2> Operands(I->operand_values());
1177 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1178 Op1VP, Op2VP, Operands);
1180 case Instruction::FNeg: {
1181 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1182 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1183 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1184 Op2VK = OK_AnyValue;
1185 Op2VP = OP_None;
1186 SmallVector<const Value *, 2> Operands(I->operand_values());
1187 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1188 Op1VP, Op2VP, Operands);
1190 case Instruction::Select: {
1191 const SelectInst *SI = cast<SelectInst>(I);
1192 Type *CondTy = SI->getCondition()->getType();
1193 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1195 case Instruction::ICmp:
1196 case Instruction::FCmp: {
1197 Type *ValTy = I->getOperand(0)->getType();
1198 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1200 case Instruction::Store: {
1201 const StoreInst *SI = cast<StoreInst>(I);
1202 Type *ValTy = SI->getValueOperand()->getType();
1203 return getMemoryOpCost(I->getOpcode(), ValTy,
1204 SI->getAlignment(),
1205 SI->getPointerAddressSpace(), I);
1207 case Instruction::Load: {
1208 const LoadInst *LI = cast<LoadInst>(I);
1209 return getMemoryOpCost(I->getOpcode(), I->getType(),
1210 LI->getAlignment(),
1211 LI->getPointerAddressSpace(), I);
1213 case Instruction::ZExt:
1214 case Instruction::SExt:
1215 case Instruction::FPToUI:
1216 case Instruction::FPToSI:
1217 case Instruction::FPExt:
1218 case Instruction::PtrToInt:
1219 case Instruction::IntToPtr:
1220 case Instruction::SIToFP:
1221 case Instruction::UIToFP:
1222 case Instruction::Trunc:
1223 case Instruction::FPTrunc:
1224 case Instruction::BitCast:
1225 case Instruction::AddrSpaceCast: {
1226 Type *SrcTy = I->getOperand(0)->getType();
1227 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1229 case Instruction::ExtractElement: {
1230 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1231 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1232 unsigned Idx = -1;
1233 if (CI)
1234 Idx = CI->getZExtValue();
1236 // Try to match a reduction sequence (series of shufflevector and vector
1237 // adds followed by a extractelement).
1238 unsigned ReduxOpCode;
1239 Type *ReduxType;
1241 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1242 case RK_Arithmetic:
1243 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1244 /*IsPairwiseForm=*/false);
1245 case RK_MinMax:
1246 return getMinMaxReductionCost(
1247 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1248 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1249 case RK_UnsignedMinMax:
1250 return getMinMaxReductionCost(
1251 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1252 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1253 case RK_None:
1254 break;
1257 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1258 case RK_Arithmetic:
1259 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1260 /*IsPairwiseForm=*/true);
1261 case RK_MinMax:
1262 return getMinMaxReductionCost(
1263 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1264 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1265 case RK_UnsignedMinMax:
1266 return getMinMaxReductionCost(
1267 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1268 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1269 case RK_None:
1270 break;
1273 return getVectorInstrCost(I->getOpcode(),
1274 EEI->getOperand(0)->getType(), Idx);
1276 case Instruction::InsertElement: {
1277 const InsertElementInst * IE = cast<InsertElementInst>(I);
1278 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1279 unsigned Idx = -1;
1280 if (CI)
1281 Idx = CI->getZExtValue();
1282 return getVectorInstrCost(I->getOpcode(),
1283 IE->getType(), Idx);
1285 case Instruction::ExtractValue:
1286 return 0; // Model all ExtractValue nodes as free.
1287 case Instruction::ShuffleVector: {
1288 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1289 Type *Ty = Shuffle->getType();
1290 Type *SrcTy = Shuffle->getOperand(0)->getType();
1292 // TODO: Identify and add costs for insert subvector, etc.
1293 int SubIndex;
1294 if (Shuffle->isExtractSubvectorMask(SubIndex))
1295 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1297 if (Shuffle->changesLength())
1298 return -1;
1300 if (Shuffle->isIdentity())
1301 return 0;
1303 if (Shuffle->isReverse())
1304 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1306 if (Shuffle->isSelect())
1307 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1309 if (Shuffle->isTranspose())
1310 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1312 if (Shuffle->isZeroEltSplat())
1313 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1315 if (Shuffle->isSingleSource())
1316 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1318 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1320 case Instruction::Call:
1321 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1322 SmallVector<Value *, 4> Args(II->arg_operands());
1324 FastMathFlags FMF;
1325 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1326 FMF = FPMO->getFastMathFlags();
1328 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1329 Args, FMF);
1331 return -1;
1332 default:
1333 // We don't have any information on this instruction.
1334 return -1;
1338 TargetTransformInfo::Concept::~Concept() {}
1340 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1342 TargetIRAnalysis::TargetIRAnalysis(
1343 std::function<Result(const Function &)> TTICallback)
1344 : TTICallback(std::move(TTICallback)) {}
1346 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1347 FunctionAnalysisManager &) {
1348 return TTICallback(F);
1351 AnalysisKey TargetIRAnalysis::Key;
1353 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1354 return Result(F.getParent()->getDataLayout());
1357 // Register the basic pass.
1358 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1359 "Target Transform Information", false, true)
1360 char TargetTransformInfoWrapperPass::ID = 0;
1362 void TargetTransformInfoWrapperPass::anchor() {}
1364 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1365 : ImmutablePass(ID) {
1366 initializeTargetTransformInfoWrapperPassPass(
1367 *PassRegistry::getPassRegistry());
1370 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1371 TargetIRAnalysis TIRA)
1372 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1373 initializeTargetTransformInfoWrapperPassPass(
1374 *PassRegistry::getPassRegistry());
1377 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1378 FunctionAnalysisManager DummyFAM;
1379 TTI = TIRA.run(F, DummyFAM);
1380 return *TTI;
1383 ImmutablePass *
1384 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1385 return new TargetTransformInfoWrapperPass(std::move(TIRA));