[SelectionDAG] Fix the representation of ISD::STEP_VECTOR.
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / ScheduleDAGFast.cpp
blob0022e5ec31f0b162c10a75f6319df390a731772b
1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a fast scheduler.
11 //===----------------------------------------------------------------------===//
13 #include "InstrEmitter.h"
14 #include "ScheduleDAGSDNodes.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/SchedulerRegistry.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
30 #define DEBUG_TYPE "pre-RA-sched"
32 STATISTIC(NumUnfolds, "Number of nodes unfolded");
33 STATISTIC(NumDups, "Number of duplicated nodes");
34 STATISTIC(NumPRCopies, "Number of physical copies");
36 static RegisterScheduler
37 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
38 createFastDAGScheduler);
39 static RegisterScheduler
40 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
41 createDAGLinearizer);
44 namespace {
45 /// FastPriorityQueue - A degenerate priority queue that considers
46 /// all nodes to have the same priority.
47 ///
48 struct FastPriorityQueue {
49 SmallVector<SUnit *, 16> Queue;
51 bool empty() const { return Queue.empty(); }
53 void push(SUnit *U) {
54 Queue.push_back(U);
57 SUnit *pop() {
58 if (empty()) return nullptr;
59 SUnit *V = Queue.back();
60 Queue.pop_back();
61 return V;
65 //===----------------------------------------------------------------------===//
66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
67 ///
68 class ScheduleDAGFast : public ScheduleDAGSDNodes {
69 private:
70 /// AvailableQueue - The priority queue to use for the available SUnits.
71 FastPriorityQueue AvailableQueue;
73 /// LiveRegDefs - A set of physical registers and their definition
74 /// that are "live". These nodes must be scheduled before any other nodes that
75 /// modifies the registers can be scheduled.
76 unsigned NumLiveRegs;
77 std::vector<SUnit*> LiveRegDefs;
78 std::vector<unsigned> LiveRegCycles;
80 public:
81 ScheduleDAGFast(MachineFunction &mf)
82 : ScheduleDAGSDNodes(mf) {}
84 void Schedule() override;
86 /// AddPred - adds a predecessor edge to SUnit SU.
87 /// This returns true if this is a new predecessor.
88 void AddPred(SUnit *SU, const SDep &D) {
89 SU->addPred(D);
92 /// RemovePred - removes a predecessor edge from SUnit SU.
93 /// This returns true if an edge was removed.
94 void RemovePred(SUnit *SU, const SDep &D) {
95 SU->removePred(D);
98 private:
99 void ReleasePred(SUnit *SU, SDep *PredEdge);
100 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
101 void ScheduleNodeBottomUp(SUnit*, unsigned);
102 SUnit *CopyAndMoveSuccessors(SUnit*);
103 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
104 const TargetRegisterClass*,
105 const TargetRegisterClass*,
106 SmallVectorImpl<SUnit*>&);
107 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
108 void ListScheduleBottomUp();
110 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
111 bool forceUnitLatencies() const override { return true; }
113 } // end anonymous namespace
116 /// Schedule - Schedule the DAG using list scheduling.
117 void ScheduleDAGFast::Schedule() {
118 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
120 NumLiveRegs = 0;
121 LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
122 LiveRegCycles.resize(TRI->getNumRegs(), 0);
124 // Build the scheduling graph.
125 BuildSchedGraph(nullptr);
127 LLVM_DEBUG(dump());
129 // Execute the actual scheduling loop.
130 ListScheduleBottomUp();
133 //===----------------------------------------------------------------------===//
134 // Bottom-Up Scheduling
135 //===----------------------------------------------------------------------===//
137 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
138 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
139 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
140 SUnit *PredSU = PredEdge->getSUnit();
142 #ifndef NDEBUG
143 if (PredSU->NumSuccsLeft == 0) {
144 dbgs() << "*** Scheduling failed! ***\n";
145 dumpNode(*PredSU);
146 dbgs() << " has been released too many times!\n";
147 llvm_unreachable(nullptr);
149 #endif
150 --PredSU->NumSuccsLeft;
152 // If all the node's successors are scheduled, this node is ready
153 // to be scheduled. Ignore the special EntrySU node.
154 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
155 PredSU->isAvailable = true;
156 AvailableQueue.push(PredSU);
160 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
161 // Bottom up: release predecessors
162 for (SDep &Pred : SU->Preds) {
163 ReleasePred(SU, &Pred);
164 if (Pred.isAssignedRegDep()) {
165 // This is a physical register dependency and it's impossible or
166 // expensive to copy the register. Make sure nothing that can
167 // clobber the register is scheduled between the predecessor and
168 // this node.
169 if (!LiveRegDefs[Pred.getReg()]) {
170 ++NumLiveRegs;
171 LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
172 LiveRegCycles[Pred.getReg()] = CurCycle;
178 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
179 /// count of its predecessors. If a predecessor pending count is zero, add it to
180 /// the Available queue.
181 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
182 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
183 LLVM_DEBUG(dumpNode(*SU));
185 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
186 SU->setHeightToAtLeast(CurCycle);
187 Sequence.push_back(SU);
189 ReleasePredecessors(SU, CurCycle);
191 // Release all the implicit physical register defs that are live.
192 for (SDep &Succ : SU->Succs) {
193 if (Succ.isAssignedRegDep()) {
194 if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) {
195 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
196 assert(LiveRegDefs[Succ.getReg()] == SU &&
197 "Physical register dependency violated?");
198 --NumLiveRegs;
199 LiveRegDefs[Succ.getReg()] = nullptr;
200 LiveRegCycles[Succ.getReg()] = 0;
205 SU->isScheduled = true;
208 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
209 /// successors to the newly created node.
210 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
211 if (SU->getNode()->getGluedNode())
212 return nullptr;
214 SDNode *N = SU->getNode();
215 if (!N)
216 return nullptr;
218 SUnit *NewSU;
219 bool TryUnfold = false;
220 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
221 MVT VT = N->getSimpleValueType(i);
222 if (VT == MVT::Glue)
223 return nullptr;
224 else if (VT == MVT::Other)
225 TryUnfold = true;
227 for (const SDValue &Op : N->op_values()) {
228 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
229 if (VT == MVT::Glue)
230 return nullptr;
233 if (TryUnfold) {
234 SmallVector<SDNode*, 2> NewNodes;
235 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
236 return nullptr;
238 LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
239 assert(NewNodes.size() == 2 && "Expected a load folding node!");
241 N = NewNodes[1];
242 SDNode *LoadNode = NewNodes[0];
243 unsigned NumVals = N->getNumValues();
244 unsigned OldNumVals = SU->getNode()->getNumValues();
245 for (unsigned i = 0; i != NumVals; ++i)
246 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
247 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
248 SDValue(LoadNode, 1));
250 SUnit *NewSU = newSUnit(N);
251 assert(N->getNodeId() == -1 && "Node already inserted!");
252 N->setNodeId(NewSU->NodeNum);
254 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
255 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
256 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
257 NewSU->isTwoAddress = true;
258 break;
261 if (MCID.isCommutable())
262 NewSU->isCommutable = true;
264 // LoadNode may already exist. This can happen when there is another
265 // load from the same location and producing the same type of value
266 // but it has different alignment or volatileness.
267 bool isNewLoad = true;
268 SUnit *LoadSU;
269 if (LoadNode->getNodeId() != -1) {
270 LoadSU = &SUnits[LoadNode->getNodeId()];
271 isNewLoad = false;
272 } else {
273 LoadSU = newSUnit(LoadNode);
274 LoadNode->setNodeId(LoadSU->NodeNum);
277 SDep ChainPred;
278 SmallVector<SDep, 4> ChainSuccs;
279 SmallVector<SDep, 4> LoadPreds;
280 SmallVector<SDep, 4> NodePreds;
281 SmallVector<SDep, 4> NodeSuccs;
282 for (SDep &Pred : SU->Preds) {
283 if (Pred.isCtrl())
284 ChainPred = Pred;
285 else if (Pred.getSUnit()->getNode() &&
286 Pred.getSUnit()->getNode()->isOperandOf(LoadNode))
287 LoadPreds.push_back(Pred);
288 else
289 NodePreds.push_back(Pred);
291 for (SDep &Succ : SU->Succs) {
292 if (Succ.isCtrl())
293 ChainSuccs.push_back(Succ);
294 else
295 NodeSuccs.push_back(Succ);
298 if (ChainPred.getSUnit()) {
299 RemovePred(SU, ChainPred);
300 if (isNewLoad)
301 AddPred(LoadSU, ChainPred);
303 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
304 const SDep &Pred = LoadPreds[i];
305 RemovePred(SU, Pred);
306 if (isNewLoad) {
307 AddPred(LoadSU, Pred);
310 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
311 const SDep &Pred = NodePreds[i];
312 RemovePred(SU, Pred);
313 AddPred(NewSU, Pred);
315 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
316 SDep D = NodeSuccs[i];
317 SUnit *SuccDep = D.getSUnit();
318 D.setSUnit(SU);
319 RemovePred(SuccDep, D);
320 D.setSUnit(NewSU);
321 AddPred(SuccDep, D);
323 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
324 SDep D = ChainSuccs[i];
325 SUnit *SuccDep = D.getSUnit();
326 D.setSUnit(SU);
327 RemovePred(SuccDep, D);
328 if (isNewLoad) {
329 D.setSUnit(LoadSU);
330 AddPred(SuccDep, D);
333 if (isNewLoad) {
334 SDep D(LoadSU, SDep::Barrier);
335 D.setLatency(LoadSU->Latency);
336 AddPred(NewSU, D);
339 ++NumUnfolds;
341 if (NewSU->NumSuccsLeft == 0) {
342 NewSU->isAvailable = true;
343 return NewSU;
345 SU = NewSU;
348 LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
349 NewSU = Clone(SU);
351 // New SUnit has the exact same predecessors.
352 for (SDep &Pred : SU->Preds)
353 if (!Pred.isArtificial())
354 AddPred(NewSU, Pred);
356 // Only copy scheduled successors. Cut them from old node's successor
357 // list and move them over.
358 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
359 for (SDep &Succ : SU->Succs) {
360 if (Succ.isArtificial())
361 continue;
362 SUnit *SuccSU = Succ.getSUnit();
363 if (SuccSU->isScheduled) {
364 SDep D = Succ;
365 D.setSUnit(NewSU);
366 AddPred(SuccSU, D);
367 D.setSUnit(SU);
368 DelDeps.push_back(std::make_pair(SuccSU, D));
371 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
372 RemovePred(DelDeps[i].first, DelDeps[i].second);
374 ++NumDups;
375 return NewSU;
378 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
379 /// scheduled successors of the given SUnit to the last copy.
380 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
381 const TargetRegisterClass *DestRC,
382 const TargetRegisterClass *SrcRC,
383 SmallVectorImpl<SUnit*> &Copies) {
384 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
385 CopyFromSU->CopySrcRC = SrcRC;
386 CopyFromSU->CopyDstRC = DestRC;
388 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
389 CopyToSU->CopySrcRC = DestRC;
390 CopyToSU->CopyDstRC = SrcRC;
392 // Only copy scheduled successors. Cut them from old node's successor
393 // list and move them over.
394 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
395 for (SDep &Succ : SU->Succs) {
396 if (Succ.isArtificial())
397 continue;
398 SUnit *SuccSU = Succ.getSUnit();
399 if (SuccSU->isScheduled) {
400 SDep D = Succ;
401 D.setSUnit(CopyToSU);
402 AddPred(SuccSU, D);
403 DelDeps.push_back(std::make_pair(SuccSU, Succ));
406 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
407 RemovePred(DelDeps[i].first, DelDeps[i].second);
409 SDep FromDep(SU, SDep::Data, Reg);
410 FromDep.setLatency(SU->Latency);
411 AddPred(CopyFromSU, FromDep);
412 SDep ToDep(CopyFromSU, SDep::Data, 0);
413 ToDep.setLatency(CopyFromSU->Latency);
414 AddPred(CopyToSU, ToDep);
416 Copies.push_back(CopyFromSU);
417 Copies.push_back(CopyToSU);
419 ++NumPRCopies;
422 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
423 /// definition of the specified node.
424 /// FIXME: Move to SelectionDAG?
425 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
426 const TargetInstrInfo *TII) {
427 unsigned NumRes;
428 if (N->getOpcode() == ISD::CopyFromReg) {
429 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
430 NumRes = 1;
431 } else {
432 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
433 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
434 NumRes = MCID.getNumDefs();
435 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
436 if (Reg == *ImpDef)
437 break;
438 ++NumRes;
441 return N->getSimpleValueType(NumRes);
444 /// CheckForLiveRegDef - Return true and update live register vector if the
445 /// specified register def of the specified SUnit clobbers any "live" registers.
446 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
447 std::vector<SUnit*> &LiveRegDefs,
448 SmallSet<unsigned, 4> &RegAdded,
449 SmallVectorImpl<unsigned> &LRegs,
450 const TargetRegisterInfo *TRI) {
451 bool Added = false;
452 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
453 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
454 if (RegAdded.insert(*AI).second) {
455 LRegs.push_back(*AI);
456 Added = true;
460 return Added;
463 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
464 /// scheduling of the given node to satisfy live physical register dependencies.
465 /// If the specific node is the last one that's available to schedule, do
466 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
467 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
468 SmallVectorImpl<unsigned> &LRegs){
469 if (NumLiveRegs == 0)
470 return false;
472 SmallSet<unsigned, 4> RegAdded;
473 // If this node would clobber any "live" register, then it's not ready.
474 for (SDep &Pred : SU->Preds) {
475 if (Pred.isAssignedRegDep()) {
476 CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs,
477 RegAdded, LRegs, TRI);
481 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
482 if (Node->getOpcode() == ISD::INLINEASM ||
483 Node->getOpcode() == ISD::INLINEASM_BR) {
484 // Inline asm can clobber physical defs.
485 unsigned NumOps = Node->getNumOperands();
486 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
487 --NumOps; // Ignore the glue operand.
489 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
490 unsigned Flags =
491 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
492 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
494 ++i; // Skip the ID value.
495 if (InlineAsm::isRegDefKind(Flags) ||
496 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
497 InlineAsm::isClobberKind(Flags)) {
498 // Check for def of register or earlyclobber register.
499 for (; NumVals; --NumVals, ++i) {
500 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
501 if (Register::isPhysicalRegister(Reg))
502 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
504 } else
505 i += NumVals;
507 continue;
509 if (!Node->isMachineOpcode())
510 continue;
511 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
512 if (!MCID.ImplicitDefs)
513 continue;
514 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
515 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
518 return !LRegs.empty();
522 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
523 /// schedulers.
524 void ScheduleDAGFast::ListScheduleBottomUp() {
525 unsigned CurCycle = 0;
527 // Release any predecessors of the special Exit node.
528 ReleasePredecessors(&ExitSU, CurCycle);
530 // Add root to Available queue.
531 if (!SUnits.empty()) {
532 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
533 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
534 RootSU->isAvailable = true;
535 AvailableQueue.push(RootSU);
538 // While Available queue is not empty, grab the node with the highest
539 // priority. If it is not ready put it back. Schedule the node.
540 SmallVector<SUnit*, 4> NotReady;
541 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
542 Sequence.reserve(SUnits.size());
543 while (!AvailableQueue.empty()) {
544 bool Delayed = false;
545 LRegsMap.clear();
546 SUnit *CurSU = AvailableQueue.pop();
547 while (CurSU) {
548 SmallVector<unsigned, 4> LRegs;
549 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
550 break;
551 Delayed = true;
552 LRegsMap.insert(std::make_pair(CurSU, LRegs));
554 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
555 NotReady.push_back(CurSU);
556 CurSU = AvailableQueue.pop();
559 // All candidates are delayed due to live physical reg dependencies.
560 // Try code duplication or inserting cross class copies
561 // to resolve it.
562 if (Delayed && !CurSU) {
563 if (!CurSU) {
564 // Try duplicating the nodes that produces these
565 // "expensive to copy" values to break the dependency. In case even
566 // that doesn't work, insert cross class copies.
567 SUnit *TrySU = NotReady[0];
568 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
569 assert(LRegs.size() == 1 && "Can't handle this yet!");
570 unsigned Reg = LRegs[0];
571 SUnit *LRDef = LiveRegDefs[Reg];
572 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
573 const TargetRegisterClass *RC =
574 TRI->getMinimalPhysRegClass(Reg, VT);
575 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
577 // If cross copy register class is the same as RC, then it must be
578 // possible copy the value directly. Do not try duplicate the def.
579 // If cross copy register class is not the same as RC, then it's
580 // possible to copy the value but it require cross register class copies
581 // and it is expensive.
582 // If cross copy register class is null, then it's not possible to copy
583 // the value at all.
584 SUnit *NewDef = nullptr;
585 if (DestRC != RC) {
586 NewDef = CopyAndMoveSuccessors(LRDef);
587 if (!DestRC && !NewDef)
588 report_fatal_error("Can't handle live physical "
589 "register dependency!");
591 if (!NewDef) {
592 // Issue copies, these can be expensive cross register class copies.
593 SmallVector<SUnit*, 2> Copies;
594 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
595 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
596 << " to SU #" << Copies.front()->NodeNum << "\n");
597 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
598 NewDef = Copies.back();
601 LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
602 << " to SU #" << TrySU->NodeNum << "\n");
603 LiveRegDefs[Reg] = NewDef;
604 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
605 TrySU->isAvailable = false;
606 CurSU = NewDef;
609 if (!CurSU) {
610 llvm_unreachable("Unable to resolve live physical register dependencies!");
614 // Add the nodes that aren't ready back onto the available list.
615 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
616 NotReady[i]->isPending = false;
617 // May no longer be available due to backtracking.
618 if (NotReady[i]->isAvailable)
619 AvailableQueue.push(NotReady[i]);
621 NotReady.clear();
623 if (CurSU)
624 ScheduleNodeBottomUp(CurSU, CurCycle);
625 ++CurCycle;
628 // Reverse the order since it is bottom up.
629 std::reverse(Sequence.begin(), Sequence.end());
631 #ifndef NDEBUG
632 VerifyScheduledSequence(/*isBottomUp=*/true);
633 #endif
637 namespace {
638 //===----------------------------------------------------------------------===//
639 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
640 // DAG in topological order.
641 // IMPORTANT: this may not work for targets with phyreg dependency.
643 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
644 public:
645 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
647 void Schedule() override;
649 MachineBasicBlock *
650 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
652 private:
653 std::vector<SDNode*> Sequence;
654 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
656 void ScheduleNode(SDNode *N);
658 } // end anonymous namespace
660 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
661 if (N->getNodeId() != 0)
662 llvm_unreachable(nullptr);
664 if (!N->isMachineOpcode() &&
665 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
666 // These nodes do not need to be translated into MIs.
667 return;
669 LLVM_DEBUG(dbgs() << "\n*** Scheduling: ");
670 LLVM_DEBUG(N->dump(DAG));
671 Sequence.push_back(N);
673 unsigned NumOps = N->getNumOperands();
674 if (unsigned NumLeft = NumOps) {
675 SDNode *GluedOpN = nullptr;
676 do {
677 const SDValue &Op = N->getOperand(NumLeft-1);
678 SDNode *OpN = Op.getNode();
680 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
681 // Schedule glue operand right above N.
682 GluedOpN = OpN;
683 assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
684 OpN->setNodeId(0);
685 ScheduleNode(OpN);
686 continue;
689 if (OpN == GluedOpN)
690 // Glue operand is already scheduled.
691 continue;
693 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
694 if (DI != GluedMap.end() && DI->second != N)
695 // Users of glues are counted against the glued users.
696 OpN = DI->second;
698 unsigned Degree = OpN->getNodeId();
699 assert(Degree > 0 && "Predecessor over-released!");
700 OpN->setNodeId(--Degree);
701 if (Degree == 0)
702 ScheduleNode(OpN);
703 } while (--NumLeft);
707 /// findGluedUser - Find the representative use of a glue value by walking
708 /// the use chain.
709 static SDNode *findGluedUser(SDNode *N) {
710 while (SDNode *Glued = N->getGluedUser())
711 N = Glued;
712 return N;
715 void ScheduleDAGLinearize::Schedule() {
716 LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");
718 SmallVector<SDNode*, 8> Glues;
719 unsigned DAGSize = 0;
720 for (SDNode &Node : DAG->allnodes()) {
721 SDNode *N = &Node;
723 // Use node id to record degree.
724 unsigned Degree = N->use_size();
725 N->setNodeId(Degree);
726 unsigned NumVals = N->getNumValues();
727 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
728 N->hasAnyUseOfValue(NumVals-1)) {
729 SDNode *User = findGluedUser(N);
730 if (User) {
731 Glues.push_back(N);
732 GluedMap.insert(std::make_pair(N, User));
736 if (N->isMachineOpcode() ||
737 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
738 ++DAGSize;
741 for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
742 SDNode *Glue = Glues[i];
743 SDNode *GUser = GluedMap[Glue];
744 unsigned Degree = Glue->getNodeId();
745 unsigned UDegree = GUser->getNodeId();
747 // Glue user must be scheduled together with the glue operand. So other
748 // users of the glue operand must be treated as its users.
749 SDNode *ImmGUser = Glue->getGluedUser();
750 for (const SDNode *U : Glue->uses())
751 if (U == ImmGUser)
752 --Degree;
753 GUser->setNodeId(UDegree + Degree);
754 Glue->setNodeId(1);
757 Sequence.reserve(DAGSize);
758 ScheduleNode(DAG->getRoot().getNode());
761 MachineBasicBlock*
762 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
763 InstrEmitter Emitter(DAG->getTarget(), BB, InsertPos);
764 DenseMap<SDValue, Register> VRBaseMap;
766 LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; });
768 unsigned NumNodes = Sequence.size();
769 MachineBasicBlock *BB = Emitter.getBlock();
770 for (unsigned i = 0; i != NumNodes; ++i) {
771 SDNode *N = Sequence[NumNodes-i-1];
772 LLVM_DEBUG(N->dump(DAG));
773 Emitter.EmitNode(N, false, false, VRBaseMap);
775 // Emit any debug values associated with the node.
776 if (N->getHasDebugValue()) {
777 MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
778 for (auto DV : DAG->GetDbgValues(N)) {
779 if (!DV->isEmitted())
780 if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap))
781 BB->insert(InsertPos, DbgMI);
786 LLVM_DEBUG(dbgs() << '\n');
788 InsertPos = Emitter.getInsertPos();
789 return Emitter.getBlock();
792 //===----------------------------------------------------------------------===//
793 // Public Constructor Functions
794 //===----------------------------------------------------------------------===//
796 llvm::ScheduleDAGSDNodes *
797 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
798 return new ScheduleDAGFast(*IS->MF);
801 llvm::ScheduleDAGSDNodes *
802 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
803 return new ScheduleDAGLinearize(*IS->MF);