1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This is the parent TargetLowering class for hardware code gen
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUISelLowering.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/IR/DiagnosticInfo.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Target/TargetMachine.h"
32 #include "AMDGPUGenCallingConv.inc"
34 static cl::opt
<bool> AMDGPUBypassSlowDiv(
35 "amdgpu-bypass-slow-div",
36 cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
39 // Find a larger type to do a load / store of a vector with.
40 EVT
AMDGPUTargetLowering::getEquivalentMemType(LLVMContext
&Ctx
, EVT VT
) {
41 unsigned StoreSize
= VT
.getStoreSizeInBits();
43 return EVT::getIntegerVT(Ctx
, StoreSize
);
45 assert(StoreSize
% 32 == 0 && "Store size not a multiple of 32");
46 return EVT::getVectorVT(Ctx
, MVT::i32
, StoreSize
/ 32);
49 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op
, SelectionDAG
&DAG
) {
50 return DAG
.computeKnownBits(Op
).countMaxActiveBits();
53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op
, SelectionDAG
&DAG
) {
54 // In order for this to be a signed 24-bit value, bit 23, must
56 return DAG
.ComputeMaxSignificantBits(Op
);
59 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine
&TM
,
60 const AMDGPUSubtarget
&STI
)
61 : TargetLowering(TM
), Subtarget(&STI
) {
62 // Lower floating point store/load to integer store/load to reduce the number
63 // of patterns in tablegen.
64 setOperationAction(ISD::LOAD
, MVT::f32
, Promote
);
65 AddPromotedToType(ISD::LOAD
, MVT::f32
, MVT::i32
);
67 setOperationAction(ISD::LOAD
, MVT::v2f32
, Promote
);
68 AddPromotedToType(ISD::LOAD
, MVT::v2f32
, MVT::v2i32
);
70 setOperationAction(ISD::LOAD
, MVT::v3f32
, Promote
);
71 AddPromotedToType(ISD::LOAD
, MVT::v3f32
, MVT::v3i32
);
73 setOperationAction(ISD::LOAD
, MVT::v4f32
, Promote
);
74 AddPromotedToType(ISD::LOAD
, MVT::v4f32
, MVT::v4i32
);
76 setOperationAction(ISD::LOAD
, MVT::v5f32
, Promote
);
77 AddPromotedToType(ISD::LOAD
, MVT::v5f32
, MVT::v5i32
);
79 setOperationAction(ISD::LOAD
, MVT::v6f32
, Promote
);
80 AddPromotedToType(ISD::LOAD
, MVT::v6f32
, MVT::v6i32
);
82 setOperationAction(ISD::LOAD
, MVT::v7f32
, Promote
);
83 AddPromotedToType(ISD::LOAD
, MVT::v7f32
, MVT::v7i32
);
85 setOperationAction(ISD::LOAD
, MVT::v8f32
, Promote
);
86 AddPromotedToType(ISD::LOAD
, MVT::v8f32
, MVT::v8i32
);
88 setOperationAction(ISD::LOAD
, MVT::v9f32
, Promote
);
89 AddPromotedToType(ISD::LOAD
, MVT::v9f32
, MVT::v9i32
);
91 setOperationAction(ISD::LOAD
, MVT::v10f32
, Promote
);
92 AddPromotedToType(ISD::LOAD
, MVT::v10f32
, MVT::v10i32
);
94 setOperationAction(ISD::LOAD
, MVT::v11f32
, Promote
);
95 AddPromotedToType(ISD::LOAD
, MVT::v11f32
, MVT::v11i32
);
97 setOperationAction(ISD::LOAD
, MVT::v12f32
, Promote
);
98 AddPromotedToType(ISD::LOAD
, MVT::v12f32
, MVT::v12i32
);
100 setOperationAction(ISD::LOAD
, MVT::v16f32
, Promote
);
101 AddPromotedToType(ISD::LOAD
, MVT::v16f32
, MVT::v16i32
);
103 setOperationAction(ISD::LOAD
, MVT::v32f32
, Promote
);
104 AddPromotedToType(ISD::LOAD
, MVT::v32f32
, MVT::v32i32
);
106 setOperationAction(ISD::LOAD
, MVT::i64
, Promote
);
107 AddPromotedToType(ISD::LOAD
, MVT::i64
, MVT::v2i32
);
109 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
110 AddPromotedToType(ISD::LOAD
, MVT::v2i64
, MVT::v4i32
);
112 setOperationAction(ISD::LOAD
, MVT::f64
, Promote
);
113 AddPromotedToType(ISD::LOAD
, MVT::f64
, MVT::v2i32
);
115 setOperationAction(ISD::LOAD
, MVT::v2f64
, Promote
);
116 AddPromotedToType(ISD::LOAD
, MVT::v2f64
, MVT::v4i32
);
118 setOperationAction(ISD::LOAD
, MVT::v3i64
, Promote
);
119 AddPromotedToType(ISD::LOAD
, MVT::v3i64
, MVT::v6i32
);
121 setOperationAction(ISD::LOAD
, MVT::v4i64
, Promote
);
122 AddPromotedToType(ISD::LOAD
, MVT::v4i64
, MVT::v8i32
);
124 setOperationAction(ISD::LOAD
, MVT::v3f64
, Promote
);
125 AddPromotedToType(ISD::LOAD
, MVT::v3f64
, MVT::v6i32
);
127 setOperationAction(ISD::LOAD
, MVT::v4f64
, Promote
);
128 AddPromotedToType(ISD::LOAD
, MVT::v4f64
, MVT::v8i32
);
130 setOperationAction(ISD::LOAD
, MVT::v8i64
, Promote
);
131 AddPromotedToType(ISD::LOAD
, MVT::v8i64
, MVT::v16i32
);
133 setOperationAction(ISD::LOAD
, MVT::v8f64
, Promote
);
134 AddPromotedToType(ISD::LOAD
, MVT::v8f64
, MVT::v16i32
);
136 setOperationAction(ISD::LOAD
, MVT::v16i64
, Promote
);
137 AddPromotedToType(ISD::LOAD
, MVT::v16i64
, MVT::v32i32
);
139 setOperationAction(ISD::LOAD
, MVT::v16f64
, Promote
);
140 AddPromotedToType(ISD::LOAD
, MVT::v16f64
, MVT::v32i32
);
142 setOperationAction(ISD::LOAD
, MVT::i128
, Promote
);
143 AddPromotedToType(ISD::LOAD
, MVT::i128
, MVT::v4i32
);
145 // There are no 64-bit extloads. These should be done as a 32-bit extload and
146 // an extension to 64-bit.
147 for (MVT VT
: MVT::integer_valuetypes())
148 setLoadExtAction({ISD::EXTLOAD
, ISD::SEXTLOAD
, ISD::ZEXTLOAD
}, MVT::i64
, VT
,
151 for (MVT VT
: MVT::integer_valuetypes()) {
155 for (auto Op
: {ISD::SEXTLOAD
, ISD::ZEXTLOAD
, ISD::EXTLOAD
}) {
156 setLoadExtAction(Op
, VT
, MVT::i1
, Promote
);
157 setLoadExtAction(Op
, VT
, MVT::i8
, Legal
);
158 setLoadExtAction(Op
, VT
, MVT::i16
, Legal
);
159 setLoadExtAction(Op
, VT
, MVT::i32
, Expand
);
163 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes())
165 {MVT::v2i8
, MVT::v4i8
, MVT::v2i16
, MVT::v3i16
, MVT::v4i16
})
166 setLoadExtAction({ISD::SEXTLOAD
, ISD::ZEXTLOAD
, ISD::EXTLOAD
}, VT
, MemVT
,
169 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::f16
, Expand
);
170 setLoadExtAction(ISD::EXTLOAD
, MVT::f32
, MVT::bf16
, Expand
);
171 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f32
, MVT::v2f16
, Expand
);
172 setLoadExtAction(ISD::EXTLOAD
, MVT::v3f32
, MVT::v3f16
, Expand
);
173 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f32
, MVT::v4f16
, Expand
);
174 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f32
, MVT::v8f16
, Expand
);
175 setLoadExtAction(ISD::EXTLOAD
, MVT::v16f32
, MVT::v16f16
, Expand
);
176 setLoadExtAction(ISD::EXTLOAD
, MVT::v32f32
, MVT::v32f16
, Expand
);
178 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f32
, Expand
);
179 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f32
, Expand
);
180 setLoadExtAction(ISD::EXTLOAD
, MVT::v3f64
, MVT::v3f32
, Expand
);
181 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Expand
);
182 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f32
, Expand
);
183 setLoadExtAction(ISD::EXTLOAD
, MVT::v16f64
, MVT::v16f32
, Expand
);
185 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::f16
, Expand
);
186 setLoadExtAction(ISD::EXTLOAD
, MVT::f64
, MVT::bf16
, Expand
);
187 setLoadExtAction(ISD::EXTLOAD
, MVT::v2f64
, MVT::v2f16
, Expand
);
188 setLoadExtAction(ISD::EXTLOAD
, MVT::v3f64
, MVT::v3f16
, Expand
);
189 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f16
, Expand
);
190 setLoadExtAction(ISD::EXTLOAD
, MVT::v8f64
, MVT::v8f16
, Expand
);
191 setLoadExtAction(ISD::EXTLOAD
, MVT::v16f64
, MVT::v16f16
, Expand
);
193 setOperationAction(ISD::STORE
, MVT::f32
, Promote
);
194 AddPromotedToType(ISD::STORE
, MVT::f32
, MVT::i32
);
196 setOperationAction(ISD::STORE
, MVT::v2f32
, Promote
);
197 AddPromotedToType(ISD::STORE
, MVT::v2f32
, MVT::v2i32
);
199 setOperationAction(ISD::STORE
, MVT::v3f32
, Promote
);
200 AddPromotedToType(ISD::STORE
, MVT::v3f32
, MVT::v3i32
);
202 setOperationAction(ISD::STORE
, MVT::v4f32
, Promote
);
203 AddPromotedToType(ISD::STORE
, MVT::v4f32
, MVT::v4i32
);
205 setOperationAction(ISD::STORE
, MVT::v5f32
, Promote
);
206 AddPromotedToType(ISD::STORE
, MVT::v5f32
, MVT::v5i32
);
208 setOperationAction(ISD::STORE
, MVT::v6f32
, Promote
);
209 AddPromotedToType(ISD::STORE
, MVT::v6f32
, MVT::v6i32
);
211 setOperationAction(ISD::STORE
, MVT::v7f32
, Promote
);
212 AddPromotedToType(ISD::STORE
, MVT::v7f32
, MVT::v7i32
);
214 setOperationAction(ISD::STORE
, MVT::v8f32
, Promote
);
215 AddPromotedToType(ISD::STORE
, MVT::v8f32
, MVT::v8i32
);
217 setOperationAction(ISD::STORE
, MVT::v9f32
, Promote
);
218 AddPromotedToType(ISD::STORE
, MVT::v9f32
, MVT::v9i32
);
220 setOperationAction(ISD::STORE
, MVT::v10f32
, Promote
);
221 AddPromotedToType(ISD::STORE
, MVT::v10f32
, MVT::v10i32
);
223 setOperationAction(ISD::STORE
, MVT::v11f32
, Promote
);
224 AddPromotedToType(ISD::STORE
, MVT::v11f32
, MVT::v11i32
);
226 setOperationAction(ISD::STORE
, MVT::v12f32
, Promote
);
227 AddPromotedToType(ISD::STORE
, MVT::v12f32
, MVT::v12i32
);
229 setOperationAction(ISD::STORE
, MVT::v16f32
, Promote
);
230 AddPromotedToType(ISD::STORE
, MVT::v16f32
, MVT::v16i32
);
232 setOperationAction(ISD::STORE
, MVT::v32f32
, Promote
);
233 AddPromotedToType(ISD::STORE
, MVT::v32f32
, MVT::v32i32
);
235 setOperationAction(ISD::STORE
, MVT::i64
, Promote
);
236 AddPromotedToType(ISD::STORE
, MVT::i64
, MVT::v2i32
);
238 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
239 AddPromotedToType(ISD::STORE
, MVT::v2i64
, MVT::v4i32
);
241 setOperationAction(ISD::STORE
, MVT::f64
, Promote
);
242 AddPromotedToType(ISD::STORE
, MVT::f64
, MVT::v2i32
);
244 setOperationAction(ISD::STORE
, MVT::v2f64
, Promote
);
245 AddPromotedToType(ISD::STORE
, MVT::v2f64
, MVT::v4i32
);
247 setOperationAction(ISD::STORE
, MVT::v3i64
, Promote
);
248 AddPromotedToType(ISD::STORE
, MVT::v3i64
, MVT::v6i32
);
250 setOperationAction(ISD::STORE
, MVT::v3f64
, Promote
);
251 AddPromotedToType(ISD::STORE
, MVT::v3f64
, MVT::v6i32
);
253 setOperationAction(ISD::STORE
, MVT::v4i64
, Promote
);
254 AddPromotedToType(ISD::STORE
, MVT::v4i64
, MVT::v8i32
);
256 setOperationAction(ISD::STORE
, MVT::v4f64
, Promote
);
257 AddPromotedToType(ISD::STORE
, MVT::v4f64
, MVT::v8i32
);
259 setOperationAction(ISD::STORE
, MVT::v8i64
, Promote
);
260 AddPromotedToType(ISD::STORE
, MVT::v8i64
, MVT::v16i32
);
262 setOperationAction(ISD::STORE
, MVT::v8f64
, Promote
);
263 AddPromotedToType(ISD::STORE
, MVT::v8f64
, MVT::v16i32
);
265 setOperationAction(ISD::STORE
, MVT::v16i64
, Promote
);
266 AddPromotedToType(ISD::STORE
, MVT::v16i64
, MVT::v32i32
);
268 setOperationAction(ISD::STORE
, MVT::v16f64
, Promote
);
269 AddPromotedToType(ISD::STORE
, MVT::v16f64
, MVT::v32i32
);
271 setOperationAction(ISD::STORE
, MVT::i128
, Promote
);
272 AddPromotedToType(ISD::STORE
, MVT::i128
, MVT::v4i32
);
274 setTruncStoreAction(MVT::i64
, MVT::i1
, Expand
);
275 setTruncStoreAction(MVT::i64
, MVT::i8
, Expand
);
276 setTruncStoreAction(MVT::i64
, MVT::i16
, Expand
);
277 setTruncStoreAction(MVT::i64
, MVT::i32
, Expand
);
279 setTruncStoreAction(MVT::v2i64
, MVT::v2i1
, Expand
);
280 setTruncStoreAction(MVT::v2i64
, MVT::v2i8
, Expand
);
281 setTruncStoreAction(MVT::v2i64
, MVT::v2i16
, Expand
);
282 setTruncStoreAction(MVT::v2i64
, MVT::v2i32
, Expand
);
284 setTruncStoreAction(MVT::f32
, MVT::bf16
, Expand
);
285 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
286 setTruncStoreAction(MVT::v2f32
, MVT::v2f16
, Expand
);
287 setTruncStoreAction(MVT::v3f32
, MVT::v3f16
, Expand
);
288 setTruncStoreAction(MVT::v4f32
, MVT::v4f16
, Expand
);
289 setTruncStoreAction(MVT::v8f32
, MVT::v8f16
, Expand
);
290 setTruncStoreAction(MVT::v16f32
, MVT::v16f16
, Expand
);
291 setTruncStoreAction(MVT::v32f32
, MVT::v32f16
, Expand
);
293 setTruncStoreAction(MVT::f64
, MVT::bf16
, Expand
);
294 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
295 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
297 setTruncStoreAction(MVT::v2f64
, MVT::v2f32
, Expand
);
298 setTruncStoreAction(MVT::v2f64
, MVT::v2f16
, Expand
);
300 setTruncStoreAction(MVT::v3i64
, MVT::v3i32
, Expand
);
301 setTruncStoreAction(MVT::v3i64
, MVT::v3i16
, Expand
);
302 setTruncStoreAction(MVT::v3f64
, MVT::v3f32
, Expand
);
303 setTruncStoreAction(MVT::v3f64
, MVT::v3f16
, Expand
);
305 setTruncStoreAction(MVT::v4i64
, MVT::v4i32
, Expand
);
306 setTruncStoreAction(MVT::v4i64
, MVT::v4i16
, Expand
);
307 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Expand
);
308 setTruncStoreAction(MVT::v4f64
, MVT::v4f16
, Expand
);
310 setTruncStoreAction(MVT::v8f64
, MVT::v8f32
, Expand
);
311 setTruncStoreAction(MVT::v8f64
, MVT::v8f16
, Expand
);
313 setTruncStoreAction(MVT::v16f64
, MVT::v16f32
, Expand
);
314 setTruncStoreAction(MVT::v16f64
, MVT::v16f16
, Expand
);
315 setTruncStoreAction(MVT::v16i64
, MVT::v16i16
, Expand
);
316 setTruncStoreAction(MVT::v16i64
, MVT::v16i16
, Expand
);
317 setTruncStoreAction(MVT::v16i64
, MVT::v16i8
, Expand
);
318 setTruncStoreAction(MVT::v16i64
, MVT::v16i8
, Expand
);
319 setTruncStoreAction(MVT::v16i64
, MVT::v16i1
, Expand
);
321 setOperationAction(ISD::Constant
, {MVT::i32
, MVT::i64
}, Legal
);
322 setOperationAction(ISD::ConstantFP
, {MVT::f32
, MVT::f64
}, Legal
);
324 setOperationAction({ISD::BR_JT
, ISD::BRIND
}, MVT::Other
, Expand
);
326 // This is totally unsupported, just custom lower to produce an error.
327 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
329 // Library functions. These default to Expand, but we have instructions
331 setOperationAction({ISD::FCEIL
, ISD::FEXP2
, ISD::FPOW
, ISD::FABS
, ISD::FFLOOR
,
332 ISD::FRINT
, ISD::FTRUNC
, ISD::FMINNUM
, ISD::FMAXNUM
},
335 setOperationAction(ISD::FLOG2
, MVT::f32
, Custom
);
336 setOperationAction(ISD::FROUND
, {MVT::f32
, MVT::f64
}, Custom
);
338 setOperationAction({ISD::FLOG
, ISD::FLOG10
, ISD::FEXP
}, MVT::f32
, Custom
);
340 setOperationAction(ISD::FNEARBYINT
, {MVT::f16
, MVT::f32
, MVT::f64
}, Custom
);
342 setOperationAction(ISD::FROUNDEVEN
, {MVT::f16
, MVT::f32
, MVT::f64
}, Custom
);
344 setOperationAction(ISD::FREM
, {MVT::f16
, MVT::f32
, MVT::f64
}, Custom
);
346 if (Subtarget
->has16BitInsts())
347 setOperationAction(ISD::IS_FPCLASS
, {MVT::f16
, MVT::f32
, MVT::f64
}, Legal
);
349 setOperationAction(ISD::IS_FPCLASS
, {MVT::f32
, MVT::f64
}, Legal
);
350 setOperationAction(ISD::FLOG2
, MVT::f16
, Custom
);
353 // FIXME: These IS_FPCLASS vector fp types are marked custom so it reaches
354 // scalarization code. Can be removed when IS_FPCLASS expand isn't called by
355 // default unless marked custom/legal.
358 {MVT::v2f16
, MVT::v3f16
, MVT::v4f16
, MVT::v16f16
, MVT::v2f32
, MVT::v3f32
,
359 MVT::v4f32
, MVT::v5f32
, MVT::v6f32
, MVT::v7f32
, MVT::v8f32
, MVT::v16f32
,
360 MVT::v2f64
, MVT::v3f64
, MVT::v4f64
, MVT::v8f64
, MVT::v16f64
},
363 // Expand to fneg + fadd.
364 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
366 setOperationAction(ISD::CONCAT_VECTORS
,
367 {MVT::v3i32
, MVT::v3f32
, MVT::v4i32
, MVT::v4f32
,
368 MVT::v5i32
, MVT::v5f32
, MVT::v6i32
, MVT::v6f32
,
369 MVT::v7i32
, MVT::v7f32
, MVT::v8i32
, MVT::v8f32
,
370 MVT::v9i32
, MVT::v9f32
, MVT::v10i32
, MVT::v10f32
,
371 MVT::v11i32
, MVT::v11f32
, MVT::v12i32
, MVT::v12f32
},
374 ISD::EXTRACT_SUBVECTOR
,
375 {MVT::v2f16
, MVT::v2i16
, MVT::v4f16
, MVT::v4i16
, MVT::v2f32
,
376 MVT::v2i32
, MVT::v3f32
, MVT::v3i32
, MVT::v4f32
, MVT::v4i32
,
377 MVT::v5f32
, MVT::v5i32
, MVT::v6f32
, MVT::v6i32
, MVT::v7f32
,
378 MVT::v7i32
, MVT::v8f32
, MVT::v8i32
, MVT::v9f32
, MVT::v9i32
,
379 MVT::v10i32
, MVT::v10f32
, MVT::v11i32
, MVT::v11f32
, MVT::v12i32
,
380 MVT::v12f32
, MVT::v16f16
, MVT::v16i16
, MVT::v16f32
, MVT::v16i32
,
381 MVT::v32f32
, MVT::v32i32
, MVT::v2f64
, MVT::v2i64
, MVT::v3f64
,
382 MVT::v3i64
, MVT::v4f64
, MVT::v4i64
, MVT::v8f64
, MVT::v8i64
,
383 MVT::v16f64
, MVT::v16i64
},
386 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
387 setOperationAction(ISD::FP_TO_FP16
, {MVT::f64
, MVT::f32
}, Custom
);
389 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
390 for (MVT VT
: ScalarIntVTs
) {
391 // These should use [SU]DIVREM, so set them to expand
392 setOperationAction({ISD::SDIV
, ISD::UDIV
, ISD::SREM
, ISD::UREM
}, VT
,
395 // GPU does not have divrem function for signed or unsigned.
396 setOperationAction({ISD::SDIVREM
, ISD::UDIVREM
}, VT
, Custom
);
398 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
399 setOperationAction({ISD::SMUL_LOHI
, ISD::UMUL_LOHI
}, VT
, Expand
);
401 setOperationAction({ISD::BSWAP
, ISD::CTTZ
, ISD::CTLZ
}, VT
, Expand
);
403 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
404 setOperationAction({ISD::ADDC
, ISD::SUBC
, ISD::ADDE
, ISD::SUBE
}, VT
, Legal
);
407 // The hardware supports 32-bit FSHR, but not FSHL.
408 setOperationAction(ISD::FSHR
, MVT::i32
, Legal
);
410 // The hardware supports 32-bit ROTR, but not ROTL.
411 setOperationAction(ISD::ROTL
, {MVT::i32
, MVT::i64
}, Expand
);
412 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
414 setOperationAction({ISD::MULHU
, ISD::MULHS
}, MVT::i16
, Expand
);
416 setOperationAction({ISD::MUL
, ISD::MULHU
, ISD::MULHS
}, MVT::i64
, Expand
);
418 {ISD::UINT_TO_FP
, ISD::SINT_TO_FP
, ISD::FP_TO_SINT
, ISD::FP_TO_UINT
},
420 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
422 setOperationAction({ISD::SMIN
, ISD::UMIN
, ISD::SMAX
, ISD::UMAX
}, MVT::i32
,
426 {ISD::CTTZ
, ISD::CTTZ_ZERO_UNDEF
, ISD::CTLZ
, ISD::CTLZ_ZERO_UNDEF
},
429 static const MVT::SimpleValueType VectorIntTypes
[] = {
430 MVT::v2i32
, MVT::v3i32
, MVT::v4i32
, MVT::v5i32
, MVT::v6i32
, MVT::v7i32
,
431 MVT::v9i32
, MVT::v10i32
, MVT::v11i32
, MVT::v12i32
};
433 for (MVT VT
: VectorIntTypes
) {
434 // Expand the following operations for the current type by default.
435 setOperationAction({ISD::ADD
, ISD::AND
, ISD::FP_TO_SINT
,
436 ISD::FP_TO_UINT
, ISD::MUL
, ISD::MULHU
,
437 ISD::MULHS
, ISD::OR
, ISD::SHL
,
438 ISD::SRA
, ISD::SRL
, ISD::ROTL
,
439 ISD::ROTR
, ISD::SUB
, ISD::SINT_TO_FP
,
440 ISD::UINT_TO_FP
, ISD::SDIV
, ISD::UDIV
,
441 ISD::SREM
, ISD::UREM
, ISD::SMUL_LOHI
,
442 ISD::UMUL_LOHI
, ISD::SDIVREM
, ISD::UDIVREM
,
443 ISD::SELECT
, ISD::VSELECT
, ISD::SELECT_CC
,
444 ISD::XOR
, ISD::BSWAP
, ISD::CTPOP
,
445 ISD::CTTZ
, ISD::CTLZ
, ISD::VECTOR_SHUFFLE
,
450 static const MVT::SimpleValueType FloatVectorTypes
[] = {
451 MVT::v2f32
, MVT::v3f32
, MVT::v4f32
, MVT::v5f32
, MVT::v6f32
, MVT::v7f32
,
452 MVT::v9f32
, MVT::v10f32
, MVT::v11f32
, MVT::v12f32
};
454 for (MVT VT
: FloatVectorTypes
) {
456 {ISD::FABS
, ISD::FMINNUM
, ISD::FMAXNUM
, ISD::FADD
,
457 ISD::FCEIL
, ISD::FCOS
, ISD::FDIV
, ISD::FEXP2
,
458 ISD::FEXP
, ISD::FLOG2
, ISD::FREM
, ISD::FLOG
,
459 ISD::FLOG10
, ISD::FPOW
, ISD::FFLOOR
, ISD::FTRUNC
,
460 ISD::FMUL
, ISD::FMA
, ISD::FRINT
, ISD::FNEARBYINT
,
461 ISD::FSQRT
, ISD::FSIN
, ISD::FSUB
, ISD::FNEG
,
462 ISD::VSELECT
, ISD::SELECT_CC
, ISD::FCOPYSIGN
, ISD::VECTOR_SHUFFLE
,
463 ISD::SETCC
, ISD::FCANONICALIZE
},
467 // This causes using an unrolled select operation rather than expansion with
468 // bit operations. This is in general better, but the alternative using BFI
469 // instructions may be better if the select sources are SGPRs.
470 setOperationAction(ISD::SELECT
, MVT::v2f32
, Promote
);
471 AddPromotedToType(ISD::SELECT
, MVT::v2f32
, MVT::v2i32
);
473 setOperationAction(ISD::SELECT
, MVT::v3f32
, Promote
);
474 AddPromotedToType(ISD::SELECT
, MVT::v3f32
, MVT::v3i32
);
476 setOperationAction(ISD::SELECT
, MVT::v4f32
, Promote
);
477 AddPromotedToType(ISD::SELECT
, MVT::v4f32
, MVT::v4i32
);
479 setOperationAction(ISD::SELECT
, MVT::v5f32
, Promote
);
480 AddPromotedToType(ISD::SELECT
, MVT::v5f32
, MVT::v5i32
);
482 setOperationAction(ISD::SELECT
, MVT::v6f32
, Promote
);
483 AddPromotedToType(ISD::SELECT
, MVT::v6f32
, MVT::v6i32
);
485 setOperationAction(ISD::SELECT
, MVT::v7f32
, Promote
);
486 AddPromotedToType(ISD::SELECT
, MVT::v7f32
, MVT::v7i32
);
488 setOperationAction(ISD::SELECT
, MVT::v9f32
, Promote
);
489 AddPromotedToType(ISD::SELECT
, MVT::v9f32
, MVT::v9i32
);
491 setOperationAction(ISD::SELECT
, MVT::v10f32
, Promote
);
492 AddPromotedToType(ISD::SELECT
, MVT::v10f32
, MVT::v10i32
);
494 setOperationAction(ISD::SELECT
, MVT::v11f32
, Promote
);
495 AddPromotedToType(ISD::SELECT
, MVT::v11f32
, MVT::v11i32
);
497 setOperationAction(ISD::SELECT
, MVT::v12f32
, Promote
);
498 AddPromotedToType(ISD::SELECT
, MVT::v12f32
, MVT::v12i32
);
500 // There are no libcalls of any kind.
501 for (int I
= 0; I
< RTLIB::UNKNOWN_LIBCALL
; ++I
)
502 setLibcallName(static_cast<RTLIB::Libcall
>(I
), nullptr);
504 setSchedulingPreference(Sched::RegPressure
);
505 setJumpIsExpensive(true);
507 // FIXME: This is only partially true. If we have to do vector compares, any
508 // SGPR pair can be a condition register. If we have a uniform condition, we
509 // are better off doing SALU operations, where there is only one SCC. For now,
510 // we don't have a way of knowing during instruction selection if a condition
511 // will be uniform and we always use vector compares. Assume we are using
512 // vector compares until that is fixed.
513 setHasMultipleConditionRegisters(true);
515 setMinCmpXchgSizeInBits(32);
516 setSupportsUnalignedAtomics(false);
518 PredictableSelectIsExpensive
= false;
520 // We want to find all load dependencies for long chains of stores to enable
521 // merging into very wide vectors. The problem is with vectors with > 4
522 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
523 // vectors are a legal type, even though we have to split the loads
524 // usually. When we can more precisely specify load legality per address
525 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
526 // smarter so that they can figure out what to do in 2 iterations without all
527 // N > 4 stores on the same chain.
528 GatherAllAliasesMaxDepth
= 16;
530 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
531 // about these during lowering.
532 MaxStoresPerMemcpy
= 0xffffffff;
533 MaxStoresPerMemmove
= 0xffffffff;
534 MaxStoresPerMemset
= 0xffffffff;
536 // The expansion for 64-bit division is enormous.
537 if (AMDGPUBypassSlowDiv
)
538 addBypassSlowDiv(64, 32);
540 setTargetDAGCombine({ISD::BITCAST
, ISD::SHL
,
542 ISD::TRUNCATE
, ISD::MUL
,
543 ISD::SMUL_LOHI
, ISD::UMUL_LOHI
,
544 ISD::MULHU
, ISD::MULHS
,
545 ISD::SELECT
, ISD::SELECT_CC
,
546 ISD::STORE
, ISD::FADD
,
547 ISD::FSUB
, ISD::FNEG
,
548 ISD::FABS
, ISD::AssertZext
,
549 ISD::AssertSext
, ISD::INTRINSIC_WO_CHAIN
});
552 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op
) const {
553 if (getTargetMachine().Options
.NoSignedZerosFPMath
)
556 const auto Flags
= Op
.getNode()->getFlags();
557 if (Flags
.hasNoSignedZeros())
563 //===----------------------------------------------------------------------===//
564 // Target Information
565 //===----------------------------------------------------------------------===//
568 static bool fnegFoldsIntoOpcode(unsigned Opc
) {
577 case ISD::FMINNUM_IEEE
:
578 case ISD::FMAXNUM_IEEE
:
583 case ISD::FNEARBYINT
:
584 case ISD::FCANONICALIZE
:
586 case AMDGPUISD::RCP_LEGACY
:
587 case AMDGPUISD::RCP_IFLAG
:
588 case AMDGPUISD::SIN_HW
:
589 case AMDGPUISD::FMUL_LEGACY
:
590 case AMDGPUISD::FMIN_LEGACY
:
591 case AMDGPUISD::FMAX_LEGACY
:
592 case AMDGPUISD::FMED3
:
593 // TODO: handle llvm.amdgcn.fma.legacy
596 llvm_unreachable("bitcast is special cased");
602 static bool fnegFoldsIntoOp(const SDNode
*N
) {
603 unsigned Opc
= N
->getOpcode();
604 if (Opc
== ISD::BITCAST
) {
605 // TODO: Is there a benefit to checking the conditions performFNegCombine
606 // does? We don't for the other cases.
607 SDValue BCSrc
= N
->getOperand(0);
608 if (BCSrc
.getOpcode() == ISD::BUILD_VECTOR
) {
609 return BCSrc
.getNumOperands() == 2 &&
610 BCSrc
.getOperand(1).getValueSizeInBits() == 32;
613 return BCSrc
.getOpcode() == ISD::SELECT
&& BCSrc
.getValueType() == MVT::f32
;
616 return fnegFoldsIntoOpcode(Opc
);
619 /// \p returns true if the operation will definitely need to use a 64-bit
620 /// encoding, and thus will use a VOP3 encoding regardless of the source
623 static bool opMustUseVOP3Encoding(const SDNode
*N
, MVT VT
) {
624 return (N
->getNumOperands() > 2 && N
->getOpcode() != ISD::SELECT
) ||
628 /// Return true if v_cndmask_b32 will support fabs/fneg source modifiers for the
629 /// type for ISD::SELECT.
631 static bool selectSupportsSourceMods(const SDNode
*N
) {
632 // TODO: Only applies if select will be vector
633 return N
->getValueType(0) == MVT::f32
;
636 // Most FP instructions support source modifiers, but this could be refined
639 static bool hasSourceMods(const SDNode
*N
) {
640 if (isa
<MemSDNode
>(N
))
643 switch (N
->getOpcode()) {
648 case ISD::INLINEASM_BR
:
649 case AMDGPUISD::DIV_SCALE
:
650 case ISD::INTRINSIC_W_CHAIN
:
652 // TODO: Should really be looking at the users of the bitcast. These are
653 // problematic because bitcasts are used to legalize all stores to integer
657 case ISD::INTRINSIC_WO_CHAIN
: {
658 switch (cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue()) {
659 case Intrinsic::amdgcn_interp_p1
:
660 case Intrinsic::amdgcn_interp_p2
:
661 case Intrinsic::amdgcn_interp_mov
:
662 case Intrinsic::amdgcn_interp_p1_f16
:
663 case Intrinsic::amdgcn_interp_p2_f16
:
670 return selectSupportsSourceMods(N
);
676 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode
*N
,
677 unsigned CostThreshold
) {
678 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
679 // it is truly free to use a source modifier in all cases. If there are
680 // multiple users but for each one will necessitate using VOP3, there will be
681 // a code size increase. Try to avoid increasing code size unless we know it
682 // will save on the instruction count.
683 unsigned NumMayIncreaseSize
= 0;
684 MVT VT
= N
->getValueType(0).getScalarType().getSimpleVT();
686 assert(!N
->use_empty());
688 // XXX - Should this limit number of uses to check?
689 for (const SDNode
*U
: N
->uses()) {
690 if (!hasSourceMods(U
))
693 if (!opMustUseVOP3Encoding(U
, VT
)) {
694 if (++NumMayIncreaseSize
> CostThreshold
)
702 EVT
AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
703 ISD::NodeType ExtendKind
) const {
704 assert(!VT
.isVector() && "only scalar expected");
706 // Round to the next multiple of 32-bits.
707 unsigned Size
= VT
.getSizeInBits();
710 return EVT::getIntegerVT(Context
, 32 * ((Size
+ 31) / 32));
713 MVT
AMDGPUTargetLowering::getVectorIdxTy(const DataLayout
&) const {
717 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType
) const {
721 // The backend supports 32 and 64 bit floating point immediates.
722 // FIXME: Why are we reporting vectors of FP immediates as legal?
723 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
724 bool ForCodeSize
) const {
725 EVT ScalarVT
= VT
.getScalarType();
726 return (ScalarVT
== MVT::f32
|| ScalarVT
== MVT::f64
||
727 (ScalarVT
== MVT::f16
&& Subtarget
->has16BitInsts()));
730 // We don't want to shrink f64 / f32 constants.
731 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT
) const {
732 EVT ScalarVT
= VT
.getScalarType();
733 return (ScalarVT
!= MVT::f32
&& ScalarVT
!= MVT::f64
);
736 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode
*N
,
737 ISD::LoadExtType ExtTy
,
739 // TODO: This may be worth removing. Check regression tests for diffs.
740 if (!TargetLoweringBase::shouldReduceLoadWidth(N
, ExtTy
, NewVT
))
743 unsigned NewSize
= NewVT
.getStoreSizeInBits();
745 // If we are reducing to a 32-bit load or a smaller multi-dword load,
746 // this is always better.
750 EVT OldVT
= N
->getValueType(0);
751 unsigned OldSize
= OldVT
.getStoreSizeInBits();
753 MemSDNode
*MN
= cast
<MemSDNode
>(N
);
754 unsigned AS
= MN
->getAddressSpace();
755 // Do not shrink an aligned scalar load to sub-dword.
756 // Scalar engine cannot do sub-dword loads.
757 if (OldSize
>= 32 && NewSize
< 32 && MN
->getAlign() >= Align(4) &&
758 (AS
== AMDGPUAS::CONSTANT_ADDRESS
||
759 AS
== AMDGPUAS::CONSTANT_ADDRESS_32BIT
||
760 (isa
<LoadSDNode
>(N
) && AS
== AMDGPUAS::GLOBAL_ADDRESS
&&
761 MN
->isInvariant())) &&
762 AMDGPUInstrInfo::isUniformMMO(MN
->getMemOperand()))
765 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
766 // extloads, so doing one requires using a buffer_load. In cases where we
767 // still couldn't use a scalar load, using the wider load shouldn't really
770 // If the old size already had to be an extload, there's no harm in continuing
771 // to reduce the width.
772 return (OldSize
< 32);
775 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy
, EVT CastTy
,
776 const SelectionDAG
&DAG
,
777 const MachineMemOperand
&MMO
) const {
779 assert(LoadTy
.getSizeInBits() == CastTy
.getSizeInBits());
781 if (LoadTy
.getScalarType() == MVT::i32
)
784 unsigned LScalarSize
= LoadTy
.getScalarSizeInBits();
785 unsigned CastScalarSize
= CastTy
.getScalarSizeInBits();
787 if ((LScalarSize
>= CastScalarSize
) && (CastScalarSize
< 32))
791 return allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
792 CastTy
, MMO
, &Fast
) &&
796 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
797 // profitable with the expansion for 64-bit since it's generally good to
799 bool AMDGPUTargetLowering::isCheapToSpeculateCttz(Type
*Ty
) const {
803 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz(Type
*Ty
) const {
807 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode
*N
) const {
808 switch (N
->getOpcode()) {
809 case ISD::EntryToken
:
810 case ISD::TokenFactor
:
812 case ISD::INTRINSIC_WO_CHAIN
: {
813 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
815 case Intrinsic::amdgcn_readfirstlane
:
816 case Intrinsic::amdgcn_readlane
:
822 if (cast
<LoadSDNode
>(N
)->getMemOperand()->getAddrSpace() ==
823 AMDGPUAS::CONSTANT_ADDRESS_32BIT
)
826 case AMDGPUISD::SETCC
: // ballot-style instruction
832 SDValue
AMDGPUTargetLowering::getNegatedExpression(
833 SDValue Op
, SelectionDAG
&DAG
, bool LegalOperations
, bool ForCodeSize
,
834 NegatibleCost
&Cost
, unsigned Depth
) const {
836 switch (Op
.getOpcode()) {
839 // Negating a fma is not free if it has users without source mods.
840 if (!allUsesHaveSourceMods(Op
.getNode()))
844 case AMDGPUISD::RCP
: {
845 SDValue Src
= Op
.getOperand(0);
846 EVT VT
= Op
.getValueType();
849 SDValue NegSrc
= getNegatedExpression(Src
, DAG
, LegalOperations
,
850 ForCodeSize
, Cost
, Depth
+ 1);
852 return DAG
.getNode(AMDGPUISD::RCP
, SL
, VT
, NegSrc
, Op
->getFlags());
859 return TargetLowering::getNegatedExpression(Op
, DAG
, LegalOperations
,
860 ForCodeSize
, Cost
, Depth
);
863 //===---------------------------------------------------------------------===//
865 //===---------------------------------------------------------------------===//
867 bool AMDGPUTargetLowering::isFAbsFree(EVT VT
) const {
868 assert(VT
.isFloatingPoint());
870 // Packed operations do not have a fabs modifier.
871 return VT
== MVT::f32
|| VT
== MVT::f64
||
872 (Subtarget
->has16BitInsts() && VT
== MVT::f16
);
875 bool AMDGPUTargetLowering::isFNegFree(EVT VT
) const {
876 assert(VT
.isFloatingPoint());
877 // Report this based on the end legalized type.
878 VT
= VT
.getScalarType();
879 return VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f16
;
882 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(bool IsZero
, EVT MemVT
,
888 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT
) const {
889 // There are few operations which truly have vector input operands. Any vector
890 // operation is going to involve operations on each component, and a
891 // build_vector will be a copy per element, so it always makes sense to use a
892 // build_vector input in place of the extracted element to avoid a copy into a
895 // We should probably only do this if all users are extracts only, but this
896 // should be the common case.
900 bool AMDGPUTargetLowering::isTruncateFree(EVT Source
, EVT Dest
) const {
901 // Truncate is just accessing a subregister.
903 unsigned SrcSize
= Source
.getSizeInBits();
904 unsigned DestSize
= Dest
.getSizeInBits();
906 return DestSize
< SrcSize
&& DestSize
% 32 == 0 ;
909 bool AMDGPUTargetLowering::isTruncateFree(Type
*Source
, Type
*Dest
) const {
910 // Truncate is just accessing a subregister.
912 unsigned SrcSize
= Source
->getScalarSizeInBits();
913 unsigned DestSize
= Dest
->getScalarSizeInBits();
915 if (DestSize
== 16 && Subtarget
->has16BitInsts())
916 return SrcSize
>= 32;
918 return DestSize
< SrcSize
&& DestSize
% 32 == 0;
921 bool AMDGPUTargetLowering::isZExtFree(Type
*Src
, Type
*Dest
) const {
922 unsigned SrcSize
= Src
->getScalarSizeInBits();
923 unsigned DestSize
= Dest
->getScalarSizeInBits();
925 if (SrcSize
== 16 && Subtarget
->has16BitInsts())
926 return DestSize
>= 32;
928 return SrcSize
== 32 && DestSize
== 64;
931 bool AMDGPUTargetLowering::isZExtFree(EVT Src
, EVT Dest
) const {
932 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
933 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
934 // this will enable reducing 64-bit operations the 32-bit, which is always
938 return Dest
== MVT::i32
||Dest
== MVT::i64
;
940 return Src
== MVT::i32
&& Dest
== MVT::i64
;
943 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT
, EVT DestVT
) const {
944 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
945 // limited number of native 64-bit operations. Shrinking an operation to fit
946 // in a single 32-bit register should always be helpful. As currently used,
947 // this is much less general than the name suggests, and is only used in
948 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
949 // not profitable, and may actually be harmful.
950 return SrcVT
.getSizeInBits() > 32 && DestVT
.getSizeInBits() == 32;
953 bool AMDGPUTargetLowering::isDesirableToCommuteWithShift(
954 const SDNode
* N
, CombineLevel Level
) const {
955 assert((N
->getOpcode() == ISD::SHL
|| N
->getOpcode() == ISD::SRA
||
956 N
->getOpcode() == ISD::SRL
) &&
957 "Expected shift op");
958 // Always commute pre-type legalization and right shifts.
959 // We're looking for shl(or(x,y),z) patterns.
960 if (Level
< CombineLevel::AfterLegalizeTypes
||
961 N
->getOpcode() != ISD::SHL
|| N
->getOperand(0).getOpcode() != ISD::OR
)
964 // If only user is a i32 right-shift, then don't destroy a BFE pattern.
965 if (N
->getValueType(0) == MVT::i32
&& N
->use_size() == 1 &&
966 (N
->use_begin()->getOpcode() == ISD::SRA
||
967 N
->use_begin()->getOpcode() == ISD::SRL
))
970 // Don't destroy or(shl(load_zext(),c), load_zext()) patterns.
971 auto IsShiftAndLoad
= [](SDValue LHS
, SDValue RHS
) {
972 if (LHS
.getOpcode() != ISD::SHL
)
974 auto *RHSLd
= dyn_cast
<LoadSDNode
>(RHS
);
975 auto *LHS0
= dyn_cast
<LoadSDNode
>(LHS
.getOperand(0));
976 auto *LHS1
= dyn_cast
<ConstantSDNode
>(LHS
.getOperand(1));
977 return LHS0
&& LHS1
&& RHSLd
&& LHS0
->getExtensionType() == ISD::ZEXTLOAD
&&
978 LHS1
->getAPIntValue() == LHS0
->getMemoryVT().getScalarSizeInBits() &&
979 RHSLd
->getExtensionType() == ISD::ZEXTLOAD
;
981 SDValue LHS
= N
->getOperand(0).getOperand(0);
982 SDValue RHS
= N
->getOperand(0).getOperand(1);
983 return !(IsShiftAndLoad(LHS
, RHS
) || IsShiftAndLoad(RHS
, LHS
));
986 //===---------------------------------------------------------------------===//
987 // TargetLowering Callbacks
988 //===---------------------------------------------------------------------===//
990 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC
,
993 case CallingConv::AMDGPU_VS
:
994 case CallingConv::AMDGPU_GS
:
995 case CallingConv::AMDGPU_PS
:
996 case CallingConv::AMDGPU_CS
:
997 case CallingConv::AMDGPU_HS
:
998 case CallingConv::AMDGPU_ES
:
999 case CallingConv::AMDGPU_LS
:
1001 case CallingConv::C
:
1002 case CallingConv::Fast
:
1003 case CallingConv::Cold
:
1004 return CC_AMDGPU_Func
;
1005 case CallingConv::AMDGPU_Gfx
:
1007 case CallingConv::AMDGPU_KERNEL
:
1008 case CallingConv::SPIR_KERNEL
:
1010 report_fatal_error("Unsupported calling convention for call");
1014 CCAssignFn
*AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1017 case CallingConv::AMDGPU_KERNEL
:
1018 case CallingConv::SPIR_KERNEL
:
1019 llvm_unreachable("kernels should not be handled here");
1020 case CallingConv::AMDGPU_VS
:
1021 case CallingConv::AMDGPU_GS
:
1022 case CallingConv::AMDGPU_PS
:
1023 case CallingConv::AMDGPU_CS
:
1024 case CallingConv::AMDGPU_HS
:
1025 case CallingConv::AMDGPU_ES
:
1026 case CallingConv::AMDGPU_LS
:
1027 return RetCC_SI_Shader
;
1028 case CallingConv::AMDGPU_Gfx
:
1029 return RetCC_SI_Gfx
;
1030 case CallingConv::C
:
1031 case CallingConv::Fast
:
1032 case CallingConv::Cold
:
1033 return RetCC_AMDGPU_Func
;
1035 report_fatal_error("Unsupported calling convention.");
1039 /// The SelectionDAGBuilder will automatically promote function arguments
1040 /// with illegal types. However, this does not work for the AMDGPU targets
1041 /// since the function arguments are stored in memory as these illegal types.
1042 /// In order to handle this properly we need to get the original types sizes
1043 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1044 /// passing them to AnalyzeFormalArguments()
1046 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1047 /// input values across multiple registers. Each item in the Ins array
1048 /// represents a single value that will be stored in registers. Ins[x].VT is
1049 /// the value type of the value that will be stored in the register, so
1050 /// whatever SDNode we lower the argument to needs to be this type.
1052 /// In order to correctly lower the arguments we need to know the size of each
1053 /// argument. Since Ins[x].VT gives us the size of the register that will
1054 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1055 /// for the original function argument so that we can deduce the correct memory
1056 /// type to use for Ins[x]. In most cases the correct memory type will be
1057 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
1058 /// we have a kernel argument of type v8i8, this argument will be split into
1059 /// 8 parts and each part will be represented by its own item in the Ins array.
1060 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1061 /// the argument before it was split. From this, we deduce that the memory type
1062 /// for each individual part is i8. We pass the memory type as LocVT to the
1063 /// calling convention analysis function and the register type (Ins[x].VT) as
1065 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1067 const SmallVectorImpl
<ISD::InputArg
> &Ins
) const {
1068 const MachineFunction
&MF
= State
.getMachineFunction();
1069 const Function
&Fn
= MF
.getFunction();
1070 LLVMContext
&Ctx
= Fn
.getParent()->getContext();
1071 const AMDGPUSubtarget
&ST
= AMDGPUSubtarget::get(MF
);
1072 const unsigned ExplicitOffset
= ST
.getExplicitKernelArgOffset();
1073 CallingConv::ID CC
= Fn
.getCallingConv();
1075 Align MaxAlign
= Align(1);
1076 uint64_t ExplicitArgOffset
= 0;
1077 const DataLayout
&DL
= Fn
.getParent()->getDataLayout();
1079 unsigned InIndex
= 0;
1081 for (const Argument
&Arg
: Fn
.args()) {
1082 const bool IsByRef
= Arg
.hasByRefAttr();
1083 Type
*BaseArgTy
= Arg
.getType();
1084 Type
*MemArgTy
= IsByRef
? Arg
.getParamByRefType() : BaseArgTy
;
1085 Align Alignment
= DL
.getValueOrABITypeAlignment(
1086 IsByRef
? Arg
.getParamAlign() : std::nullopt
, MemArgTy
);
1087 MaxAlign
= std::max(Alignment
, MaxAlign
);
1088 uint64_t AllocSize
= DL
.getTypeAllocSize(MemArgTy
);
1090 uint64_t ArgOffset
= alignTo(ExplicitArgOffset
, Alignment
) + ExplicitOffset
;
1091 ExplicitArgOffset
= alignTo(ExplicitArgOffset
, Alignment
) + AllocSize
;
1093 // We're basically throwing away everything passed into us and starting over
1094 // to get accurate in-memory offsets. The "PartOffset" is completely useless
1095 // to us as computed in Ins.
1097 // We also need to figure out what type legalization is trying to do to get
1098 // the correct memory offsets.
1100 SmallVector
<EVT
, 16> ValueVTs
;
1101 SmallVector
<uint64_t, 16> Offsets
;
1102 ComputeValueVTs(*this, DL
, BaseArgTy
, ValueVTs
, &Offsets
, ArgOffset
);
1104 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
1105 Value
!= NumValues
; ++Value
) {
1106 uint64_t BasePartOffset
= Offsets
[Value
];
1108 EVT ArgVT
= ValueVTs
[Value
];
1110 MVT RegisterVT
= getRegisterTypeForCallingConv(Ctx
, CC
, ArgVT
);
1111 unsigned NumRegs
= getNumRegistersForCallingConv(Ctx
, CC
, ArgVT
);
1114 // This argument is not split, so the IR type is the memory type.
1115 if (ArgVT
.isExtended()) {
1116 // We have an extended type, like i24, so we should just use the
1122 } else if (ArgVT
.isVector() && RegisterVT
.isVector() &&
1123 ArgVT
.getScalarType() == RegisterVT
.getScalarType()) {
1124 assert(ArgVT
.getVectorNumElements() > RegisterVT
.getVectorNumElements());
1125 // We have a vector value which has been split into a vector with
1126 // the same scalar type, but fewer elements. This should handle
1127 // all the floating-point vector types.
1129 } else if (ArgVT
.isVector() &&
1130 ArgVT
.getVectorNumElements() == NumRegs
) {
1131 // This arg has been split so that each element is stored in a separate
1133 MemVT
= ArgVT
.getScalarType();
1134 } else if (ArgVT
.isExtended()) {
1135 // We have an extended type, like i65.
1138 unsigned MemoryBits
= ArgVT
.getStoreSizeInBits() / NumRegs
;
1139 assert(ArgVT
.getStoreSizeInBits() % NumRegs
== 0);
1140 if (RegisterVT
.isInteger()) {
1141 MemVT
= EVT::getIntegerVT(State
.getContext(), MemoryBits
);
1142 } else if (RegisterVT
.isVector()) {
1143 assert(!RegisterVT
.getScalarType().isFloatingPoint());
1144 unsigned NumElements
= RegisterVT
.getVectorNumElements();
1145 assert(MemoryBits
% NumElements
== 0);
1146 // This vector type has been split into another vector type with
1147 // a different elements size.
1148 EVT ScalarVT
= EVT::getIntegerVT(State
.getContext(),
1149 MemoryBits
/ NumElements
);
1150 MemVT
= EVT::getVectorVT(State
.getContext(), ScalarVT
, NumElements
);
1152 llvm_unreachable("cannot deduce memory type.");
1156 // Convert one element vectors to scalar.
1157 if (MemVT
.isVector() && MemVT
.getVectorNumElements() == 1)
1158 MemVT
= MemVT
.getScalarType();
1160 // Round up vec3/vec5 argument.
1161 if (MemVT
.isVector() && !MemVT
.isPow2VectorType()) {
1162 assert(MemVT
.getVectorNumElements() == 3 ||
1163 MemVT
.getVectorNumElements() == 5 ||
1164 (MemVT
.getVectorNumElements() >= 9 &&
1165 MemVT
.getVectorNumElements() <= 12));
1166 MemVT
= MemVT
.getPow2VectorType(State
.getContext());
1167 } else if (!MemVT
.isSimple() && !MemVT
.isVector()) {
1168 MemVT
= MemVT
.getRoundIntegerType(State
.getContext());
1171 unsigned PartOffset
= 0;
1172 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1173 State
.addLoc(CCValAssign::getCustomMem(InIndex
++, RegisterVT
,
1174 BasePartOffset
+ PartOffset
,
1175 MemVT
.getSimpleVT(),
1176 CCValAssign::Full
));
1177 PartOffset
+= MemVT
.getStoreSize();
1183 SDValue
AMDGPUTargetLowering::LowerReturn(
1184 SDValue Chain
, CallingConv::ID CallConv
,
1186 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1187 const SmallVectorImpl
<SDValue
> &OutVals
,
1188 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
1189 // FIXME: Fails for r600 tests
1190 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1191 // "wave terminate should not have return values");
1192 return DAG
.getNode(AMDGPUISD::ENDPGM
, DL
, MVT::Other
, Chain
);
1195 //===---------------------------------------------------------------------===//
1196 // Target specific lowering
1197 //===---------------------------------------------------------------------===//
1199 /// Selects the correct CCAssignFn for a given CallingConvention value.
1200 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1202 return AMDGPUCallLowering::CCAssignFnForCall(CC
, IsVarArg
);
1205 CCAssignFn
*AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
1207 return AMDGPUCallLowering::CCAssignFnForReturn(CC
, IsVarArg
);
1210 SDValue
AMDGPUTargetLowering::addTokenForArgument(SDValue Chain
,
1212 MachineFrameInfo
&MFI
,
1213 int ClobberedFI
) const {
1214 SmallVector
<SDValue
, 8> ArgChains
;
1215 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
1216 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
1218 // Include the original chain at the beginning of the list. When this is
1219 // used by target LowerCall hooks, this helps legalize find the
1220 // CALLSEQ_BEGIN node.
1221 ArgChains
.push_back(Chain
);
1223 // Add a chain value for each stack argument corresponding
1224 for (SDNode
*U
: DAG
.getEntryNode().getNode()->uses()) {
1225 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(U
)) {
1226 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr())) {
1227 if (FI
->getIndex() < 0) {
1228 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
1229 int64_t InLastByte
= InFirstByte
;
1230 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
1232 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
1233 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
1234 ArgChains
.push_back(SDValue(L
, 1));
1240 // Build a tokenfactor for all the chains.
1241 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
1244 SDValue
AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo
&CLI
,
1245 SmallVectorImpl
<SDValue
> &InVals
,
1246 StringRef Reason
) const {
1247 SDValue Callee
= CLI
.Callee
;
1248 SelectionDAG
&DAG
= CLI
.DAG
;
1250 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1252 StringRef
FuncName("<unknown>");
1254 if (const ExternalSymbolSDNode
*G
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1255 FuncName
= G
->getSymbol();
1256 else if (const GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1257 FuncName
= G
->getGlobal()->getName();
1259 DiagnosticInfoUnsupported
NoCalls(
1260 Fn
, Reason
+ FuncName
, CLI
.DL
.getDebugLoc());
1261 DAG
.getContext()->diagnose(NoCalls
);
1263 if (!CLI
.IsTailCall
) {
1264 for (unsigned I
= 0, E
= CLI
.Ins
.size(); I
!= E
; ++I
)
1265 InVals
.push_back(DAG
.getUNDEF(CLI
.Ins
[I
].VT
));
1268 return DAG
.getEntryNode();
1271 SDValue
AMDGPUTargetLowering::LowerCall(CallLoweringInfo
&CLI
,
1272 SmallVectorImpl
<SDValue
> &InVals
) const {
1273 return lowerUnhandledCall(CLI
, InVals
, "unsupported call to function ");
1276 SDValue
AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
1277 SelectionDAG
&DAG
) const {
1278 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1280 DiagnosticInfoUnsupported
NoDynamicAlloca(Fn
, "unsupported dynamic alloca",
1281 SDLoc(Op
).getDebugLoc());
1282 DAG
.getContext()->diagnose(NoDynamicAlloca
);
1283 auto Ops
= {DAG
.getConstant(0, SDLoc(), Op
.getValueType()), Op
.getOperand(0)};
1284 return DAG
.getMergeValues(Ops
, SDLoc());
1287 SDValue
AMDGPUTargetLowering::LowerOperation(SDValue Op
,
1288 SelectionDAG
&DAG
) const {
1289 switch (Op
.getOpcode()) {
1291 Op
->print(errs(), &DAG
);
1292 llvm_unreachable("Custom lowering code for this "
1293 "instruction is not implemented yet!");
1295 case ISD::SIGN_EXTEND_INREG
: return LowerSIGN_EXTEND_INREG(Op
, DAG
);
1296 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
);
1297 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
1298 case ISD::UDIVREM
: return LowerUDIVREM(Op
, DAG
);
1299 case ISD::SDIVREM
: return LowerSDIVREM(Op
, DAG
);
1300 case ISD::FREM
: return LowerFREM(Op
, DAG
);
1301 case ISD::FCEIL
: return LowerFCEIL(Op
, DAG
);
1302 case ISD::FTRUNC
: return LowerFTRUNC(Op
, DAG
);
1303 case ISD::FRINT
: return LowerFRINT(Op
, DAG
);
1304 case ISD::FNEARBYINT
: return LowerFNEARBYINT(Op
, DAG
);
1305 case ISD::FROUNDEVEN
:
1306 return LowerFROUNDEVEN(Op
, DAG
);
1307 case ISD::FROUND
: return LowerFROUND(Op
, DAG
);
1308 case ISD::FFLOOR
: return LowerFFLOOR(Op
, DAG
);
1310 return LowerFLOG2(Op
, DAG
);
1312 return LowerFLOG(Op
, DAG
, numbers::ln2
);
1314 return LowerFLOG(Op
, DAG
, numbers::ln2
/ numbers::ln10
);
1316 return lowerFEXP(Op
, DAG
);
1317 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
1318 case ISD::UINT_TO_FP
: return LowerUINT_TO_FP(Op
, DAG
);
1319 case ISD::FP_TO_FP16
: return LowerFP_TO_FP16(Op
, DAG
);
1320 case ISD::FP_TO_SINT
:
1321 case ISD::FP_TO_UINT
:
1322 return LowerFP_TO_INT(Op
, DAG
);
1324 case ISD::CTTZ_ZERO_UNDEF
:
1326 case ISD::CTLZ_ZERO_UNDEF
:
1327 return LowerCTLZ_CTTZ(Op
, DAG
);
1328 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
1333 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode
*N
,
1334 SmallVectorImpl
<SDValue
> &Results
,
1335 SelectionDAG
&DAG
) const {
1336 switch (N
->getOpcode()) {
1337 case ISD::SIGN_EXTEND_INREG
:
1338 // Different parts of legalization seem to interpret which type of
1339 // sign_extend_inreg is the one to check for custom lowering. The extended
1340 // from type is what really matters, but some places check for custom
1341 // lowering of the result type. This results in trying to use
1342 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1343 // nothing here and let the illegal result integer be handled normally.
1346 if (SDValue Lowered
= LowerFLOG2(SDValue(N
, 0), DAG
))
1347 Results
.push_back(Lowered
);
1354 SDValue
AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
* MFI
,
1356 SelectionDAG
&DAG
) const {
1358 const DataLayout
&DL
= DAG
.getDataLayout();
1359 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Op
);
1360 const GlobalValue
*GV
= G
->getGlobal();
1362 if (!MFI
->isModuleEntryFunction()) {
1363 if (std::optional
<uint32_t> Address
=
1364 AMDGPUMachineFunction::getLDSAbsoluteAddress(*GV
)) {
1365 return DAG
.getConstant(*Address
, SDLoc(Op
), Op
.getValueType());
1369 if (G
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1370 G
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
) {
1371 if (!MFI
->isModuleEntryFunction() &&
1372 !GV
->getName().equals("llvm.amdgcn.module.lds")) {
1374 const Function
&Fn
= DAG
.getMachineFunction().getFunction();
1375 DiagnosticInfoUnsupported
BadLDSDecl(
1376 Fn
, "local memory global used by non-kernel function",
1377 DL
.getDebugLoc(), DS_Warning
);
1378 DAG
.getContext()->diagnose(BadLDSDecl
);
1380 // We currently don't have a way to correctly allocate LDS objects that
1381 // aren't directly associated with a kernel. We do force inlining of
1382 // functions that use local objects. However, if these dead functions are
1383 // not eliminated, we don't want a compile time error. Just emit a warning
1384 // and a trap, since there should be no callable path here.
1385 SDValue Trap
= DAG
.getNode(ISD::TRAP
, DL
, MVT::Other
, DAG
.getEntryNode());
1386 SDValue OutputChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
1387 Trap
, DAG
.getRoot());
1388 DAG
.setRoot(OutputChain
);
1389 return DAG
.getUNDEF(Op
.getValueType());
1392 // XXX: What does the value of G->getOffset() mean?
1393 assert(G
->getOffset() == 0 &&
1394 "Do not know what to do with an non-zero offset");
1396 // TODO: We could emit code to handle the initialization somewhere.
1397 // We ignore the initializer for now and legalize it to allow selection.
1398 // The initializer will anyway get errored out during assembly emission.
1399 unsigned Offset
= MFI
->allocateLDSGlobal(DL
, *cast
<GlobalVariable
>(GV
));
1400 return DAG
.getConstant(Offset
, SDLoc(Op
), Op
.getValueType());
1405 SDValue
AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op
,
1406 SelectionDAG
&DAG
) const {
1407 SmallVector
<SDValue
, 8> Args
;
1410 EVT VT
= Op
.getValueType();
1411 if (VT
.getVectorElementType().getSizeInBits() < 32) {
1412 unsigned OpBitSize
= Op
.getOperand(0).getValueType().getSizeInBits();
1413 if (OpBitSize
>= 32 && OpBitSize
% 32 == 0) {
1414 unsigned NewNumElt
= OpBitSize
/ 32;
1415 EVT NewEltVT
= (NewNumElt
== 1) ? MVT::i32
1416 : EVT::getVectorVT(*DAG
.getContext(),
1417 MVT::i32
, NewNumElt
);
1418 for (const SDUse
&U
: Op
->ops()) {
1419 SDValue In
= U
.get();
1420 SDValue NewIn
= DAG
.getNode(ISD::BITCAST
, SL
, NewEltVT
, In
);
1422 DAG
.ExtractVectorElements(NewIn
, Args
);
1424 Args
.push_back(NewIn
);
1427 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
1428 NewNumElt
* Op
.getNumOperands());
1429 SDValue BV
= DAG
.getBuildVector(NewVT
, SL
, Args
);
1430 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, BV
);
1434 for (const SDUse
&U
: Op
->ops())
1435 DAG
.ExtractVectorElements(U
.get(), Args
);
1437 return DAG
.getBuildVector(Op
.getValueType(), SL
, Args
);
1440 SDValue
AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
1441 SelectionDAG
&DAG
) const {
1443 SmallVector
<SDValue
, 8> Args
;
1444 unsigned Start
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1445 EVT VT
= Op
.getValueType();
1446 EVT SrcVT
= Op
.getOperand(0).getValueType();
1448 if (VT
.getScalarSizeInBits() == 16 && Start
% 2 == 0) {
1449 unsigned NumElt
= VT
.getVectorNumElements();
1450 unsigned NumSrcElt
= SrcVT
.getVectorNumElements();
1451 assert(NumElt
% 2 == 0 && NumSrcElt
% 2 == 0 && "expect legal types");
1453 // Extract 32-bit registers at a time.
1454 EVT NewSrcVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumSrcElt
/ 2);
1455 EVT NewVT
= NumElt
== 2
1457 : EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElt
/ 2);
1458 SDValue Tmp
= DAG
.getNode(ISD::BITCAST
, SL
, NewSrcVT
, Op
.getOperand(0));
1460 DAG
.ExtractVectorElements(Tmp
, Args
, Start
/ 2, NumElt
/ 2);
1464 Tmp
= DAG
.getBuildVector(NewVT
, SL
, Args
);
1466 return DAG
.getNode(ISD::BITCAST
, SL
, VT
, Tmp
);
1469 DAG
.ExtractVectorElements(Op
.getOperand(0), Args
, Start
,
1470 VT
.getVectorNumElements());
1472 return DAG
.getBuildVector(Op
.getValueType(), SL
, Args
);
1475 // TODO: Handle fabs too
1476 static SDValue
peekFNeg(SDValue Val
) {
1477 if (Val
.getOpcode() == ISD::FNEG
)
1478 return Val
.getOperand(0);
1482 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacyImpl(
1483 const SDLoc
&DL
, EVT VT
, SDValue LHS
, SDValue RHS
, SDValue True
,
1484 SDValue False
, SDValue CC
, DAGCombinerInfo
&DCI
) const {
1485 SelectionDAG
&DAG
= DCI
.DAG
;
1486 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
1495 case ISD::SETFALSE2
:
1504 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1505 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1511 // Ordered. Assume ordered for undefined.
1513 // Only do this after legalization to avoid interfering with other combines
1514 // which might occur.
1515 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1516 !DCI
.isCalledByLegalizer())
1519 // We need to permute the operands to get the correct NaN behavior. The
1520 // selected operand is the second one based on the failing compare with NaN,
1521 // so permute it based on the compare type the hardware uses.
1523 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1524 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1529 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, RHS
, LHS
);
1530 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, LHS
, RHS
);
1536 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
&&
1537 !DCI
.isCalledByLegalizer())
1541 return DAG
.getNode(AMDGPUISD::FMAX_LEGACY
, DL
, VT
, LHS
, RHS
);
1542 return DAG
.getNode(AMDGPUISD::FMIN_LEGACY
, DL
, VT
, RHS
, LHS
);
1544 case ISD::SETCC_INVALID
:
1545 llvm_unreachable("Invalid setcc condcode!");
1550 /// Generate Min/Max node
1551 SDValue
AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc
&DL
, EVT VT
,
1552 SDValue LHS
, SDValue RHS
,
1553 SDValue True
, SDValue False
,
1555 DAGCombinerInfo
&DCI
) const {
1556 if ((LHS
== True
&& RHS
== False
) || (LHS
== False
&& RHS
== True
))
1557 return combineFMinMaxLegacyImpl(DL
, VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
1559 SelectionDAG
&DAG
= DCI
.DAG
;
1561 // If we can't directly match this, try to see if we can fold an fneg to
1564 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
1565 ConstantFPSDNode
*CFalse
= dyn_cast
<ConstantFPSDNode
>(False
);
1566 SDValue NegTrue
= peekFNeg(True
);
1568 // Undo the combine foldFreeOpFromSelect does if it helps us match the
1571 // select (fcmp olt (lhs, K)), (fneg lhs), -K
1572 // -> fneg (fmin_legacy lhs, K)
1574 // TODO: Use getNegatedExpression
1575 if (LHS
== NegTrue
&& CFalse
&& CRHS
) {
1576 APFloat NegRHS
= neg(CRHS
->getValueAPF());
1577 if (NegRHS
== CFalse
->getValueAPF()) {
1579 combineFMinMaxLegacyImpl(DL
, VT
, LHS
, RHS
, NegTrue
, False
, CC
, DCI
);
1581 return DAG
.getNode(ISD::FNEG
, DL
, VT
, Combined
);
1589 std::pair
<SDValue
, SDValue
>
1590 AMDGPUTargetLowering::split64BitValue(SDValue Op
, SelectionDAG
&DAG
) const {
1593 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1595 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1596 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1598 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1599 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1601 return std::pair(Lo
, Hi
);
1604 SDValue
AMDGPUTargetLowering::getLoHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1607 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1608 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
1609 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, Zero
);
1612 SDValue
AMDGPUTargetLowering::getHiHalf64(SDValue Op
, SelectionDAG
&DAG
) const {
1615 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::v2i32
, Op
);
1616 const SDValue One
= DAG
.getConstant(1, SL
, MVT::i32
);
1617 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, MVT::i32
, Vec
, One
);
1620 // Split a vector type into two parts. The first part is a power of two vector.
1621 // The second part is whatever is left over, and is a scalar if it would
1622 // otherwise be a 1-vector.
1624 AMDGPUTargetLowering::getSplitDestVTs(const EVT
&VT
, SelectionDAG
&DAG
) const {
1626 EVT EltVT
= VT
.getVectorElementType();
1627 unsigned NumElts
= VT
.getVectorNumElements();
1628 unsigned LoNumElts
= PowerOf2Ceil((NumElts
+ 1) / 2);
1629 LoVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, LoNumElts
);
1630 HiVT
= NumElts
- LoNumElts
== 1
1632 : EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
- LoNumElts
);
1633 return std::pair(LoVT
, HiVT
);
1636 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1638 std::pair
<SDValue
, SDValue
>
1639 AMDGPUTargetLowering::splitVector(const SDValue
&N
, const SDLoc
&DL
,
1640 const EVT
&LoVT
, const EVT
&HiVT
,
1641 SelectionDAG
&DAG
) const {
1642 assert(LoVT
.getVectorNumElements() +
1643 (HiVT
.isVector() ? HiVT
.getVectorNumElements() : 1) <=
1644 N
.getValueType().getVectorNumElements() &&
1645 "More vector elements requested than available!");
1646 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
1647 DAG
.getVectorIdxConstant(0, DL
));
1648 SDValue Hi
= DAG
.getNode(
1649 HiVT
.isVector() ? ISD::EXTRACT_SUBVECTOR
: ISD::EXTRACT_VECTOR_ELT
, DL
,
1650 HiVT
, N
, DAG
.getVectorIdxConstant(LoVT
.getVectorNumElements(), DL
));
1651 return std::pair(Lo
, Hi
);
1654 SDValue
AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op
,
1655 SelectionDAG
&DAG
) const {
1656 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1657 EVT VT
= Op
.getValueType();
1661 // If this is a 2 element vector, we really want to scalarize and not create
1662 // weird 1 element vectors.
1663 if (VT
.getVectorNumElements() == 2) {
1665 std::tie(Ops
[0], Ops
[1]) = scalarizeVectorLoad(Load
, DAG
);
1666 return DAG
.getMergeValues(Ops
, SL
);
1669 SDValue BasePtr
= Load
->getBasePtr();
1670 EVT MemVT
= Load
->getMemoryVT();
1672 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1675 EVT LoMemVT
, HiMemVT
;
1678 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1679 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1680 std::tie(Lo
, Hi
) = splitVector(Op
, SL
, LoVT
, HiVT
, DAG
);
1682 unsigned Size
= LoMemVT
.getStoreSize();
1683 Align BaseAlign
= Load
->getAlign();
1684 Align HiAlign
= commonAlignment(BaseAlign
, Size
);
1686 SDValue LoLoad
= DAG
.getExtLoad(Load
->getExtensionType(), SL
, LoVT
,
1687 Load
->getChain(), BasePtr
, SrcValue
, LoMemVT
,
1688 BaseAlign
, Load
->getMemOperand()->getFlags());
1689 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, TypeSize::Fixed(Size
));
1691 DAG
.getExtLoad(Load
->getExtensionType(), SL
, HiVT
, Load
->getChain(),
1692 HiPtr
, SrcValue
.getWithOffset(LoMemVT
.getStoreSize()),
1693 HiMemVT
, HiAlign
, Load
->getMemOperand()->getFlags());
1697 // This is the case that the vector is power of two so was evenly split.
1698 Join
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, VT
, LoLoad
, HiLoad
);
1700 Join
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SL
, VT
, DAG
.getUNDEF(VT
), LoLoad
,
1701 DAG
.getVectorIdxConstant(0, SL
));
1703 HiVT
.isVector() ? ISD::INSERT_SUBVECTOR
: ISD::INSERT_VECTOR_ELT
, SL
,
1705 DAG
.getVectorIdxConstant(LoVT
.getVectorNumElements(), SL
));
1708 SDValue Ops
[] = {Join
, DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
,
1709 LoLoad
.getValue(1), HiLoad
.getValue(1))};
1711 return DAG
.getMergeValues(Ops
, SL
);
1714 SDValue
AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op
,
1715 SelectionDAG
&DAG
) const {
1716 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1717 EVT VT
= Op
.getValueType();
1718 SDValue BasePtr
= Load
->getBasePtr();
1719 EVT MemVT
= Load
->getMemoryVT();
1721 const MachinePointerInfo
&SrcValue
= Load
->getMemOperand()->getPointerInfo();
1722 Align BaseAlign
= Load
->getAlign();
1723 unsigned NumElements
= MemVT
.getVectorNumElements();
1725 // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1726 // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1727 if (NumElements
!= 3 ||
1728 (BaseAlign
< Align(8) &&
1729 !SrcValue
.isDereferenceable(16, *DAG
.getContext(), DAG
.getDataLayout())))
1730 return SplitVectorLoad(Op
, DAG
);
1732 assert(NumElements
== 3);
1735 EVT::getVectorVT(*DAG
.getContext(), VT
.getVectorElementType(), 4);
1737 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getVectorElementType(), 4);
1738 SDValue WideLoad
= DAG
.getExtLoad(
1739 Load
->getExtensionType(), SL
, WideVT
, Load
->getChain(), BasePtr
, SrcValue
,
1740 WideMemVT
, BaseAlign
, Load
->getMemOperand()->getFlags());
1741 return DAG
.getMergeValues(
1742 {DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SL
, VT
, WideLoad
,
1743 DAG
.getVectorIdxConstant(0, SL
)),
1744 WideLoad
.getValue(1)},
1748 SDValue
AMDGPUTargetLowering::SplitVectorStore(SDValue Op
,
1749 SelectionDAG
&DAG
) const {
1750 StoreSDNode
*Store
= cast
<StoreSDNode
>(Op
);
1751 SDValue Val
= Store
->getValue();
1752 EVT VT
= Val
.getValueType();
1754 // If this is a 2 element vector, we really want to scalarize and not create
1755 // weird 1 element vectors.
1756 if (VT
.getVectorNumElements() == 2)
1757 return scalarizeVectorStore(Store
, DAG
);
1759 EVT MemVT
= Store
->getMemoryVT();
1760 SDValue Chain
= Store
->getChain();
1761 SDValue BasePtr
= Store
->getBasePtr();
1765 EVT LoMemVT
, HiMemVT
;
1768 std::tie(LoVT
, HiVT
) = getSplitDestVTs(VT
, DAG
);
1769 std::tie(LoMemVT
, HiMemVT
) = getSplitDestVTs(MemVT
, DAG
);
1770 std::tie(Lo
, Hi
) = splitVector(Val
, SL
, LoVT
, HiVT
, DAG
);
1772 SDValue HiPtr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, LoMemVT
.getStoreSize());
1774 const MachinePointerInfo
&SrcValue
= Store
->getMemOperand()->getPointerInfo();
1775 Align BaseAlign
= Store
->getAlign();
1776 unsigned Size
= LoMemVT
.getStoreSize();
1777 Align HiAlign
= commonAlignment(BaseAlign
, Size
);
1780 DAG
.getTruncStore(Chain
, SL
, Lo
, BasePtr
, SrcValue
, LoMemVT
, BaseAlign
,
1781 Store
->getMemOperand()->getFlags());
1783 DAG
.getTruncStore(Chain
, SL
, Hi
, HiPtr
, SrcValue
.getWithOffset(Size
),
1784 HiMemVT
, HiAlign
, Store
->getMemOperand()->getFlags());
1786 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoStore
, HiStore
);
1789 // This is a shortcut for integer division because we have fast i32<->f32
1790 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1791 // float is enough to accurately represent up to a 24-bit signed integer.
1792 SDValue
AMDGPUTargetLowering::LowerDIVREM24(SDValue Op
, SelectionDAG
&DAG
,
1795 EVT VT
= Op
.getValueType();
1796 SDValue LHS
= Op
.getOperand(0);
1797 SDValue RHS
= Op
.getOperand(1);
1798 MVT IntVT
= MVT::i32
;
1799 MVT FltVT
= MVT::f32
;
1801 unsigned LHSSignBits
= DAG
.ComputeNumSignBits(LHS
);
1802 if (LHSSignBits
< 9)
1805 unsigned RHSSignBits
= DAG
.ComputeNumSignBits(RHS
);
1806 if (RHSSignBits
< 9)
1809 unsigned BitSize
= VT
.getSizeInBits();
1810 unsigned SignBits
= std::min(LHSSignBits
, RHSSignBits
);
1811 unsigned DivBits
= BitSize
- SignBits
;
1815 ISD::NodeType ToFp
= Sign
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
1816 ISD::NodeType ToInt
= Sign
? ISD::FP_TO_SINT
: ISD::FP_TO_UINT
;
1818 SDValue jq
= DAG
.getConstant(1, DL
, IntVT
);
1821 // char|short jq = ia ^ ib;
1822 jq
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, RHS
);
1824 // jq = jq >> (bitsize - 2)
1825 jq
= DAG
.getNode(ISD::SRA
, DL
, VT
, jq
,
1826 DAG
.getConstant(BitSize
- 2, DL
, VT
));
1829 jq
= DAG
.getNode(ISD::OR
, DL
, VT
, jq
, DAG
.getConstant(1, DL
, VT
));
1832 // int ia = (int)LHS;
1835 // int ib, (int)RHS;
1838 // float fa = (float)ia;
1839 SDValue fa
= DAG
.getNode(ToFp
, DL
, FltVT
, ia
);
1841 // float fb = (float)ib;
1842 SDValue fb
= DAG
.getNode(ToFp
, DL
, FltVT
, ib
);
1844 SDValue fq
= DAG
.getNode(ISD::FMUL
, DL
, FltVT
,
1845 fa
, DAG
.getNode(AMDGPUISD::RCP
, DL
, FltVT
, fb
));
1848 fq
= DAG
.getNode(ISD::FTRUNC
, DL
, FltVT
, fq
);
1850 // float fqneg = -fq;
1851 SDValue fqneg
= DAG
.getNode(ISD::FNEG
, DL
, FltVT
, fq
);
1853 MachineFunction
&MF
= DAG
.getMachineFunction();
1855 bool UseFmadFtz
= false;
1856 if (Subtarget
->isGCN()) {
1857 const SIMachineFunctionInfo
*MFI
= MF
.getInfo
<SIMachineFunctionInfo
>();
1858 UseFmadFtz
= MFI
->getMode().allFP32Denormals();
1861 // float fr = mad(fqneg, fb, fa);
1862 unsigned OpCode
= !Subtarget
->hasMadMacF32Insts() ? (unsigned)ISD::FMA
1863 : UseFmadFtz
? (unsigned)AMDGPUISD::FMAD_FTZ
1864 : (unsigned)ISD::FMAD
;
1865 SDValue fr
= DAG
.getNode(OpCode
, DL
, FltVT
, fqneg
, fb
, fa
);
1867 // int iq = (int)fq;
1868 SDValue iq
= DAG
.getNode(ToInt
, DL
, IntVT
, fq
);
1871 fr
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fr
);
1874 fb
= DAG
.getNode(ISD::FABS
, DL
, FltVT
, fb
);
1876 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
1878 // int cv = fr >= fb;
1879 SDValue cv
= DAG
.getSetCC(DL
, SetCCVT
, fr
, fb
, ISD::SETOGE
);
1881 // jq = (cv ? jq : 0);
1882 jq
= DAG
.getNode(ISD::SELECT
, DL
, VT
, cv
, jq
, DAG
.getConstant(0, DL
, VT
));
1885 SDValue Div
= DAG
.getNode(ISD::ADD
, DL
, VT
, iq
, jq
);
1887 // Rem needs compensation, it's easier to recompute it
1888 SDValue Rem
= DAG
.getNode(ISD::MUL
, DL
, VT
, Div
, RHS
);
1889 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, LHS
, Rem
);
1891 // Truncate to number of bits this divide really is.
1894 = DAG
.getValueType(EVT::getIntegerVT(*DAG
.getContext(), DivBits
));
1895 Div
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Div
, InRegSize
);
1896 Rem
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Rem
, InRegSize
);
1898 SDValue TruncMask
= DAG
.getConstant((UINT64_C(1) << DivBits
) - 1, DL
, VT
);
1899 Div
= DAG
.getNode(ISD::AND
, DL
, VT
, Div
, TruncMask
);
1900 Rem
= DAG
.getNode(ISD::AND
, DL
, VT
, Rem
, TruncMask
);
1903 return DAG
.getMergeValues({ Div
, Rem
}, DL
);
1906 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op
,
1908 SmallVectorImpl
<SDValue
> &Results
) const {
1910 EVT VT
= Op
.getValueType();
1912 assert(VT
== MVT::i64
&& "LowerUDIVREM64 expects an i64");
1914 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
1916 SDValue One
= DAG
.getConstant(1, DL
, HalfVT
);
1917 SDValue Zero
= DAG
.getConstant(0, DL
, HalfVT
);
1920 SDValue LHS_Lo
, LHS_Hi
;
1921 SDValue LHS
= Op
.getOperand(0);
1922 std::tie(LHS_Lo
, LHS_Hi
) = DAG
.SplitScalar(LHS
, DL
, HalfVT
, HalfVT
);
1924 SDValue RHS_Lo
, RHS_Hi
;
1925 SDValue RHS
= Op
.getOperand(1);
1926 std::tie(RHS_Lo
, RHS_Hi
) = DAG
.SplitScalar(RHS
, DL
, HalfVT
, HalfVT
);
1928 if (DAG
.MaskedValueIsZero(RHS
, APInt::getHighBitsSet(64, 32)) &&
1929 DAG
.MaskedValueIsZero(LHS
, APInt::getHighBitsSet(64, 32))) {
1931 SDValue Res
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
1934 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(0), Zero
});
1935 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {Res
.getValue(1), Zero
});
1937 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
));
1938 Results
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
));
1942 if (isTypeLegal(MVT::i64
)) {
1943 // The algorithm here is based on ideas from "Software Integer Division",
1944 // Tom Rodeheffer, August 2008.
1946 MachineFunction
&MF
= DAG
.getMachineFunction();
1947 const SIMachineFunctionInfo
*MFI
= MF
.getInfo
<SIMachineFunctionInfo
>();
1949 // Compute denominator reciprocal.
1950 unsigned FMAD
= !Subtarget
->hasMadMacF32Insts() ?
1951 (unsigned)ISD::FMA
:
1952 !MFI
->getMode().allFP32Denormals() ?
1953 (unsigned)ISD::FMAD
:
1954 (unsigned)AMDGPUISD::FMAD_FTZ
;
1956 SDValue Cvt_Lo
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Lo
);
1957 SDValue Cvt_Hi
= DAG
.getNode(ISD::UINT_TO_FP
, DL
, MVT::f32
, RHS_Hi
);
1958 SDValue Mad1
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Cvt_Hi
,
1959 DAG
.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL
, MVT::f32
),
1961 SDValue Rcp
= DAG
.getNode(AMDGPUISD::RCP
, DL
, MVT::f32
, Mad1
);
1962 SDValue Mul1
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Rcp
,
1963 DAG
.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL
, MVT::f32
));
1964 SDValue Mul2
= DAG
.getNode(ISD::FMUL
, DL
, MVT::f32
, Mul1
,
1965 DAG
.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL
, MVT::f32
));
1966 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, DL
, MVT::f32
, Mul2
);
1967 SDValue Mad2
= DAG
.getNode(FMAD
, DL
, MVT::f32
, Trunc
,
1968 DAG
.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL
, MVT::f32
),
1970 SDValue Rcp_Lo
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Mad2
);
1971 SDValue Rcp_Hi
= DAG
.getNode(ISD::FP_TO_UINT
, DL
, HalfVT
, Trunc
);
1972 SDValue Rcp64
= DAG
.getBitcast(VT
,
1973 DAG
.getBuildVector(MVT::v2i32
, DL
, {Rcp_Lo
, Rcp_Hi
}));
1975 SDValue Zero64
= DAG
.getConstant(0, DL
, VT
);
1976 SDValue One64
= DAG
.getConstant(1, DL
, VT
);
1977 SDValue Zero1
= DAG
.getConstant(0, DL
, MVT::i1
);
1978 SDVTList HalfCarryVT
= DAG
.getVTList(HalfVT
, MVT::i1
);
1980 // First round of UNR (Unsigned integer Newton-Raphson).
1981 SDValue Neg_RHS
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero64
, RHS
);
1982 SDValue Mullo1
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Rcp64
);
1983 SDValue Mulhi1
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Rcp64
, Mullo1
);
1984 SDValue Mulhi1_Lo
, Mulhi1_Hi
;
1985 std::tie(Mulhi1_Lo
, Mulhi1_Hi
) =
1986 DAG
.SplitScalar(Mulhi1
, DL
, HalfVT
, HalfVT
);
1987 SDValue Add1_Lo
= DAG
.getNode(ISD::UADDO_CARRY
, DL
, HalfCarryVT
, Rcp_Lo
,
1989 SDValue Add1_Hi
= DAG
.getNode(ISD::UADDO_CARRY
, DL
, HalfCarryVT
, Rcp_Hi
,
1990 Mulhi1_Hi
, Add1_Lo
.getValue(1));
1991 SDValue Add1
= DAG
.getBitcast(VT
,
1992 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add1_Lo
, Add1_Hi
}));
1994 // Second round of UNR.
1995 SDValue Mullo2
= DAG
.getNode(ISD::MUL
, DL
, VT
, Neg_RHS
, Add1
);
1996 SDValue Mulhi2
= DAG
.getNode(ISD::MULHU
, DL
, VT
, Add1
, Mullo2
);
1997 SDValue Mulhi2_Lo
, Mulhi2_Hi
;
1998 std::tie(Mulhi2_Lo
, Mulhi2_Hi
) =
1999 DAG
.SplitScalar(Mulhi2
, DL
, HalfVT
, HalfVT
);
2000 SDValue Add2_Lo
= DAG
.getNode(ISD::UADDO_CARRY
, DL
, HalfCarryVT
, Add1_Lo
,
2002 SDValue Add2_Hi
= DAG
.getNode(ISD::UADDO_CARRY
, DL
, HalfCarryVT
, Add1_Hi
,
2003 Mulhi2_Hi
, Add2_Lo
.getValue(1));
2004 SDValue Add2
= DAG
.getBitcast(VT
,
2005 DAG
.getBuildVector(MVT::v2i32
, DL
, {Add2_Lo
, Add2_Hi
}));
2007 SDValue Mulhi3
= DAG
.getNode(ISD::MULHU
, DL
, VT
, LHS
, Add2
);
2009 SDValue Mul3
= DAG
.getNode(ISD::MUL
, DL
, VT
, RHS
, Mulhi3
);
2011 SDValue Mul3_Lo
, Mul3_Hi
;
2012 std::tie(Mul3_Lo
, Mul3_Hi
) = DAG
.SplitScalar(Mul3
, DL
, HalfVT
, HalfVT
);
2013 SDValue Sub1_Lo
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, LHS_Lo
,
2015 SDValue Sub1_Hi
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, LHS_Hi
,
2016 Mul3_Hi
, Sub1_Lo
.getValue(1));
2017 SDValue Sub1_Mi
= DAG
.getNode(ISD::SUB
, DL
, HalfVT
, LHS_Hi
, Mul3_Hi
);
2018 SDValue Sub1
= DAG
.getBitcast(VT
,
2019 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub1_Lo
, Sub1_Hi
}));
2021 SDValue MinusOne
= DAG
.getConstant(0xffffffffu
, DL
, HalfVT
);
2022 SDValue C1
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, MinusOne
, Zero
,
2024 SDValue C2
= DAG
.getSelectCC(DL
, Sub1_Lo
, RHS_Lo
, MinusOne
, Zero
,
2026 SDValue C3
= DAG
.getSelectCC(DL
, Sub1_Hi
, RHS_Hi
, C2
, C1
, ISD::SETEQ
);
2028 // TODO: Here and below portions of the code can be enclosed into if/endif.
2029 // Currently control flow is unconditional and we have 4 selects after
2030 // potential endif to substitute PHIs.
2033 SDValue Sub2_Lo
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, Sub1_Lo
,
2035 SDValue Sub2_Mi
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, Sub1_Mi
,
2036 RHS_Hi
, Sub1_Lo
.getValue(1));
2037 SDValue Sub2_Hi
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
2038 Zero
, Sub2_Lo
.getValue(1));
2039 SDValue Sub2
= DAG
.getBitcast(VT
,
2040 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub2_Lo
, Sub2_Hi
}));
2042 SDValue Add3
= DAG
.getNode(ISD::ADD
, DL
, VT
, Mulhi3
, One64
);
2044 SDValue C4
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, MinusOne
, Zero
,
2046 SDValue C5
= DAG
.getSelectCC(DL
, Sub2_Lo
, RHS_Lo
, MinusOne
, Zero
,
2048 SDValue C6
= DAG
.getSelectCC(DL
, Sub2_Hi
, RHS_Hi
, C5
, C4
, ISD::SETEQ
);
2051 SDValue Add4
= DAG
.getNode(ISD::ADD
, DL
, VT
, Add3
, One64
);
2053 SDValue Sub3_Lo
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, Sub2_Lo
,
2055 SDValue Sub3_Mi
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, Sub2_Mi
,
2056 RHS_Hi
, Sub2_Lo
.getValue(1));
2057 SDValue Sub3_Hi
= DAG
.getNode(ISD::USUBO_CARRY
, DL
, HalfCarryVT
, Sub3_Mi
,
2058 Zero
, Sub3_Lo
.getValue(1));
2059 SDValue Sub3
= DAG
.getBitcast(VT
,
2060 DAG
.getBuildVector(MVT::v2i32
, DL
, {Sub3_Lo
, Sub3_Hi
}));
2065 SDValue Sel1
= DAG
.getSelectCC(DL
, C6
, Zero
, Add4
, Add3
, ISD::SETNE
);
2066 SDValue Div
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel1
, Mulhi3
, ISD::SETNE
);
2068 SDValue Sel2
= DAG
.getSelectCC(DL
, C6
, Zero
, Sub3
, Sub2
, ISD::SETNE
);
2069 SDValue Rem
= DAG
.getSelectCC(DL
, C3
, Zero
, Sel2
, Sub1
, ISD::SETNE
);
2071 Results
.push_back(Div
);
2072 Results
.push_back(Rem
);
2078 // Get Speculative values
2079 SDValue DIV_Part
= DAG
.getNode(ISD::UDIV
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
2080 SDValue REM_Part
= DAG
.getNode(ISD::UREM
, DL
, HalfVT
, LHS_Hi
, RHS_Lo
);
2082 SDValue REM_Lo
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, REM_Part
, LHS_Hi
, ISD::SETEQ
);
2083 SDValue REM
= DAG
.getBuildVector(MVT::v2i32
, DL
, {REM_Lo
, Zero
});
2084 REM
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, REM
);
2086 SDValue DIV_Hi
= DAG
.getSelectCC(DL
, RHS_Hi
, Zero
, DIV_Part
, Zero
, ISD::SETEQ
);
2087 SDValue DIV_Lo
= Zero
;
2089 const unsigned halfBitWidth
= HalfVT
.getSizeInBits();
2091 for (unsigned i
= 0; i
< halfBitWidth
; ++i
) {
2092 const unsigned bitPos
= halfBitWidth
- i
- 1;
2093 SDValue POS
= DAG
.getConstant(bitPos
, DL
, HalfVT
);
2094 // Get value of high bit
2095 SDValue HBit
= DAG
.getNode(ISD::SRL
, DL
, HalfVT
, LHS_Lo
, POS
);
2096 HBit
= DAG
.getNode(ISD::AND
, DL
, HalfVT
, HBit
, One
);
2097 HBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, HBit
);
2100 REM
= DAG
.getNode(ISD::SHL
, DL
, VT
, REM
, DAG
.getConstant(1, DL
, VT
));
2102 REM
= DAG
.getNode(ISD::OR
, DL
, VT
, REM
, HBit
);
2104 SDValue BIT
= DAG
.getConstant(1ULL << bitPos
, DL
, HalfVT
);
2105 SDValue realBIT
= DAG
.getSelectCC(DL
, REM
, RHS
, BIT
, Zero
, ISD::SETUGE
);
2107 DIV_Lo
= DAG
.getNode(ISD::OR
, DL
, HalfVT
, DIV_Lo
, realBIT
);
2110 SDValue REM_sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, REM
, RHS
);
2111 REM
= DAG
.getSelectCC(DL
, REM
, RHS
, REM_sub
, REM
, ISD::SETUGE
);
2114 SDValue DIV
= DAG
.getBuildVector(MVT::v2i32
, DL
, {DIV_Lo
, DIV_Hi
});
2115 DIV
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, DIV
);
2116 Results
.push_back(DIV
);
2117 Results
.push_back(REM
);
2120 SDValue
AMDGPUTargetLowering::LowerUDIVREM(SDValue Op
,
2121 SelectionDAG
&DAG
) const {
2123 EVT VT
= Op
.getValueType();
2125 if (VT
== MVT::i64
) {
2126 SmallVector
<SDValue
, 2> Results
;
2127 LowerUDIVREM64(Op
, DAG
, Results
);
2128 return DAG
.getMergeValues(Results
, DL
);
2131 if (VT
== MVT::i32
) {
2132 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, false))
2136 SDValue X
= Op
.getOperand(0);
2137 SDValue Y
= Op
.getOperand(1);
2139 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2140 // algorithm used here.
2142 // Initial estimate of inv(y).
2143 SDValue Z
= DAG
.getNode(AMDGPUISD::URECIP
, DL
, VT
, Y
);
2145 // One round of UNR.
2146 SDValue NegY
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Y
);
2147 SDValue NegYZ
= DAG
.getNode(ISD::MUL
, DL
, VT
, NegY
, Z
);
2148 Z
= DAG
.getNode(ISD::ADD
, DL
, VT
, Z
,
2149 DAG
.getNode(ISD::MULHU
, DL
, VT
, Z
, NegYZ
));
2151 // Quotient/remainder estimate.
2152 SDValue Q
= DAG
.getNode(ISD::MULHU
, DL
, VT
, X
, Z
);
2154 DAG
.getNode(ISD::SUB
, DL
, VT
, X
, DAG
.getNode(ISD::MUL
, DL
, VT
, Q
, Y
));
2156 // First quotient/remainder refinement.
2157 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2158 SDValue One
= DAG
.getConstant(1, DL
, VT
);
2159 SDValue Cond
= DAG
.getSetCC(DL
, CCVT
, R
, Y
, ISD::SETUGE
);
2160 Q
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2161 DAG
.getNode(ISD::ADD
, DL
, VT
, Q
, One
), Q
);
2162 R
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2163 DAG
.getNode(ISD::SUB
, DL
, VT
, R
, Y
), R
);
2165 // Second quotient/remainder refinement.
2166 Cond
= DAG
.getSetCC(DL
, CCVT
, R
, Y
, ISD::SETUGE
);
2167 Q
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2168 DAG
.getNode(ISD::ADD
, DL
, VT
, Q
, One
), Q
);
2169 R
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2170 DAG
.getNode(ISD::SUB
, DL
, VT
, R
, Y
), R
);
2172 return DAG
.getMergeValues({Q
, R
}, DL
);
2175 SDValue
AMDGPUTargetLowering::LowerSDIVREM(SDValue Op
,
2176 SelectionDAG
&DAG
) const {
2178 EVT VT
= Op
.getValueType();
2180 SDValue LHS
= Op
.getOperand(0);
2181 SDValue RHS
= Op
.getOperand(1);
2183 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
2184 SDValue NegOne
= DAG
.getConstant(-1, DL
, VT
);
2186 if (VT
== MVT::i32
) {
2187 if (SDValue Res
= LowerDIVREM24(Op
, DAG
, true))
2191 if (VT
== MVT::i64
&&
2192 DAG
.ComputeNumSignBits(LHS
) > 32 &&
2193 DAG
.ComputeNumSignBits(RHS
) > 32) {
2194 EVT HalfVT
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
2197 SDValue LHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, LHS
, Zero
);
2198 SDValue RHS_Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
, HalfVT
, RHS
, Zero
);
2199 SDValue DIVREM
= DAG
.getNode(ISD::SDIVREM
, DL
, DAG
.getVTList(HalfVT
, HalfVT
),
2202 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(0)),
2203 DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, DIVREM
.getValue(1))
2205 return DAG
.getMergeValues(Res
, DL
);
2208 SDValue LHSign
= DAG
.getSelectCC(DL
, LHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
2209 SDValue RHSign
= DAG
.getSelectCC(DL
, RHS
, Zero
, NegOne
, Zero
, ISD::SETLT
);
2210 SDValue DSign
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHSign
, RHSign
);
2211 SDValue RSign
= LHSign
; // Remainder sign is the same as LHS
2213 LHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, LHSign
);
2214 RHS
= DAG
.getNode(ISD::ADD
, DL
, VT
, RHS
, RHSign
);
2216 LHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, LHS
, LHSign
);
2217 RHS
= DAG
.getNode(ISD::XOR
, DL
, VT
, RHS
, RHSign
);
2219 SDValue Div
= DAG
.getNode(ISD::UDIVREM
, DL
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
2220 SDValue Rem
= Div
.getValue(1);
2222 Div
= DAG
.getNode(ISD::XOR
, DL
, VT
, Div
, DSign
);
2223 Rem
= DAG
.getNode(ISD::XOR
, DL
, VT
, Rem
, RSign
);
2225 Div
= DAG
.getNode(ISD::SUB
, DL
, VT
, Div
, DSign
);
2226 Rem
= DAG
.getNode(ISD::SUB
, DL
, VT
, Rem
, RSign
);
2232 return DAG
.getMergeValues(Res
, DL
);
2235 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2236 SDValue
AMDGPUTargetLowering::LowerFREM(SDValue Op
, SelectionDAG
&DAG
) const {
2238 EVT VT
= Op
.getValueType();
2239 auto Flags
= Op
->getFlags();
2240 SDValue X
= Op
.getOperand(0);
2241 SDValue Y
= Op
.getOperand(1);
2243 SDValue Div
= DAG
.getNode(ISD::FDIV
, SL
, VT
, X
, Y
, Flags
);
2244 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, Div
, Flags
);
2245 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, VT
, Trunc
, Flags
);
2246 // TODO: For f32 use FMAD instead if !hasFastFMA32?
2247 return DAG
.getNode(ISD::FMA
, SL
, VT
, Neg
, Y
, X
, Flags
);
2250 SDValue
AMDGPUTargetLowering::LowerFCEIL(SDValue Op
, SelectionDAG
&DAG
) const {
2252 SDValue Src
= Op
.getOperand(0);
2254 // result = trunc(src)
2255 // if (src > 0.0 && src != result)
2258 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2260 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2261 const SDValue One
= DAG
.getConstantFP(1.0, SL
, MVT::f64
);
2264 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2266 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOGT
);
2267 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2268 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2270 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, One
, Zero
);
2271 // TODO: Should this propagate fast-math-flags?
2272 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2275 static SDValue
extractF64Exponent(SDValue Hi
, const SDLoc
&SL
,
2276 SelectionDAG
&DAG
) {
2277 const unsigned FractBits
= 52;
2278 const unsigned ExpBits
= 11;
2280 SDValue ExpPart
= DAG
.getNode(AMDGPUISD::BFE_U32
, SL
, MVT::i32
,
2282 DAG
.getConstant(FractBits
- 32, SL
, MVT::i32
),
2283 DAG
.getConstant(ExpBits
, SL
, MVT::i32
));
2284 SDValue Exp
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ExpPart
,
2285 DAG
.getConstant(1023, SL
, MVT::i32
));
2290 SDValue
AMDGPUTargetLowering::LowerFTRUNC(SDValue Op
, SelectionDAG
&DAG
) const {
2292 SDValue Src
= Op
.getOperand(0);
2294 assert(Op
.getValueType() == MVT::f64
);
2296 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
2298 // Extract the upper half, since this is where we will find the sign and
2300 SDValue Hi
= getHiHalf64(Src
, DAG
);
2302 SDValue Exp
= extractF64Exponent(Hi
, SL
, DAG
);
2304 const unsigned FractBits
= 52;
2306 // Extract the sign bit.
2307 const SDValue SignBitMask
= DAG
.getConstant(UINT32_C(1) << 31, SL
, MVT::i32
);
2308 SDValue SignBit
= DAG
.getNode(ISD::AND
, SL
, MVT::i32
, Hi
, SignBitMask
);
2310 // Extend back to 64-bits.
2311 SDValue SignBit64
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, SignBit
});
2312 SignBit64
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, SignBit64
);
2314 SDValue BcInt
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Src
);
2315 const SDValue FractMask
2316 = DAG
.getConstant((UINT64_C(1) << FractBits
) - 1, SL
, MVT::i64
);
2318 SDValue Shr
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, FractMask
, Exp
);
2319 SDValue Not
= DAG
.getNOT(SL
, Shr
, MVT::i64
);
2320 SDValue Tmp0
= DAG
.getNode(ISD::AND
, SL
, MVT::i64
, BcInt
, Not
);
2323 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::i32
);
2325 const SDValue FiftyOne
= DAG
.getConstant(FractBits
- 1, SL
, MVT::i32
);
2327 SDValue ExpLt0
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, Zero
, ISD::SETLT
);
2328 SDValue ExpGt51
= DAG
.getSetCC(SL
, SetCCVT
, Exp
, FiftyOne
, ISD::SETGT
);
2330 SDValue Tmp1
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpLt0
, SignBit64
, Tmp0
);
2331 SDValue Tmp2
= DAG
.getNode(ISD::SELECT
, SL
, MVT::i64
, ExpGt51
, BcInt
, Tmp1
);
2333 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f64
, Tmp2
);
2336 SDValue
AMDGPUTargetLowering::LowerFRINT(SDValue Op
, SelectionDAG
&DAG
) const {
2338 SDValue Src
= Op
.getOperand(0);
2340 assert(Op
.getValueType() == MVT::f64
);
2342 APFloat
C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2343 SDValue C1
= DAG
.getConstantFP(C1Val
, SL
, MVT::f64
);
2344 SDValue CopySign
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, MVT::f64
, C1
, Src
);
2346 // TODO: Should this propagate fast-math-flags?
2348 SDValue Tmp1
= DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Src
, CopySign
);
2349 SDValue Tmp2
= DAG
.getNode(ISD::FSUB
, SL
, MVT::f64
, Tmp1
, CopySign
);
2351 SDValue Fabs
= DAG
.getNode(ISD::FABS
, SL
, MVT::f64
, Src
);
2353 APFloat
C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2354 SDValue C2
= DAG
.getConstantFP(C2Val
, SL
, MVT::f64
);
2357 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2358 SDValue Cond
= DAG
.getSetCC(SL
, SetCCVT
, Fabs
, C2
, ISD::SETOGT
);
2360 return DAG
.getSelect(SL
, MVT::f64
, Cond
, Src
, Tmp2
);
2363 SDValue
AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op
, SelectionDAG
&DAG
) const {
2364 // FNEARBYINT and FRINT are the same, except in their handling of FP
2365 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2366 // rint, so just treat them as equivalent.
2367 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), Op
.getValueType(), Op
.getOperand(0));
2370 SDValue
AMDGPUTargetLowering::LowerFROUNDEVEN(SDValue Op
,
2371 SelectionDAG
&DAG
) const {
2372 auto VT
= Op
.getValueType();
2373 auto Arg
= Op
.getOperand(0u);
2374 return DAG
.getNode(ISD::FRINT
, SDLoc(Op
), VT
, Arg
);
2377 // XXX - May require not supporting f32 denormals?
2379 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2380 // compare and vselect end up producing worse code than scalarizing the whole
2382 SDValue
AMDGPUTargetLowering::LowerFROUND(SDValue Op
, SelectionDAG
&DAG
) const {
2384 SDValue X
= Op
.getOperand(0);
2385 EVT VT
= Op
.getValueType();
2387 SDValue T
= DAG
.getNode(ISD::FTRUNC
, SL
, VT
, X
);
2389 // TODO: Should this propagate fast-math-flags?
2391 SDValue Diff
= DAG
.getNode(ISD::FSUB
, SL
, VT
, X
, T
);
2393 SDValue AbsDiff
= DAG
.getNode(ISD::FABS
, SL
, VT
, Diff
);
2395 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2396 const SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2397 const SDValue Half
= DAG
.getConstantFP(0.5, SL
, VT
);
2399 SDValue SignOne
= DAG
.getNode(ISD::FCOPYSIGN
, SL
, VT
, One
, X
);
2402 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
2404 SDValue Cmp
= DAG
.getSetCC(SL
, SetCCVT
, AbsDiff
, Half
, ISD::SETOGE
);
2406 SDValue Sel
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cmp
, SignOne
, Zero
);
2408 return DAG
.getNode(ISD::FADD
, SL
, VT
, T
, Sel
);
2411 SDValue
AMDGPUTargetLowering::LowerFFLOOR(SDValue Op
, SelectionDAG
&DAG
) const {
2413 SDValue Src
= Op
.getOperand(0);
2415 // result = trunc(src);
2416 // if (src < 0.0 && src != result)
2419 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, MVT::f64
, Src
);
2421 const SDValue Zero
= DAG
.getConstantFP(0.0, SL
, MVT::f64
);
2422 const SDValue NegOne
= DAG
.getConstantFP(-1.0, SL
, MVT::f64
);
2425 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), MVT::f64
);
2427 SDValue Lt0
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Zero
, ISD::SETOLT
);
2428 SDValue NeTrunc
= DAG
.getSetCC(SL
, SetCCVT
, Src
, Trunc
, ISD::SETONE
);
2429 SDValue And
= DAG
.getNode(ISD::AND
, SL
, SetCCVT
, Lt0
, NeTrunc
);
2431 SDValue Add
= DAG
.getNode(ISD::SELECT
, SL
, MVT::f64
, And
, NegOne
, Zero
);
2432 // TODO: Should this propagate fast-math-flags?
2433 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, Trunc
, Add
);
2436 /// Return true if it's known that \p Src can never be an f32 denormal value.
2437 static bool valueIsKnownNeverF32Denorm(SDValue Src
) {
2438 switch (Src
.getOpcode()) {
2439 case ISD::FP_EXTEND
:
2440 return Src
.getOperand(0).getValueType() == MVT::f16
;
2441 case ISD::FP16_TO_FP
:
2447 llvm_unreachable("covered opcode switch");
2450 SDValue
AMDGPUTargetLowering::LowerFLOG2(SDValue Op
, SelectionDAG
&DAG
) const {
2451 // v_log_f32 is good enough for OpenCL, except it doesn't handle denormals.
2452 // If we have to handle denormals, scale up the input and adjust the result.
2454 // scaled = x * (is_denormal ? 0x1.0p+32 : 1.0)
2455 // log2 = amdgpu_log2 - (is_denormal ? 32.0 : 0.0)
2458 EVT VT
= Op
.getValueType();
2459 SDValue Src
= Op
.getOperand(0);
2460 SDNodeFlags Flags
= Op
->getFlags();
2462 if (VT
== MVT::f16
) {
2463 // Nothing in half is a denormal when promoted to f32.
2464 assert(!Subtarget
->has16BitInsts());
2465 SDValue Ext
= DAG
.getNode(ISD::FP_EXTEND
, SL
, MVT::f32
, Src
, Flags
);
2466 SDValue Log
= DAG
.getNode(AMDGPUISD::LOG
, SL
, MVT::f32
, Ext
, Flags
);
2467 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Log
,
2468 DAG
.getTargetConstant(0, SL
, MVT::i32
), Flags
);
2471 bool NeedDenormHandling
=
2472 !Flags
.hasApproximateFuncs() && !DAG
.getTarget().Options
.UnsafeFPMath
&&
2473 !DAG
.getTarget().Options
.ApproxFuncFPMath
&&
2474 !valueIsKnownNeverF32Denorm(Src
) &&
2475 DAG
.getDenormalMode(VT
).Input
!= DenormalMode::PreserveSign
;
2477 if (!NeedDenormHandling
)
2478 return DAG
.getNode(AMDGPUISD::LOG
, SL
, VT
, Src
, Flags
);
2480 const fltSemantics
&Semantics
= APFloat::IEEEsingle();
2481 SDValue SmallestNormal
=
2482 DAG
.getConstantFP(APFloat::getSmallestNormalized(Semantics
), SL
, VT
);
2484 // Want to scale denormals up, but negatives and 0 work just as well on the
2486 SDValue IsLtSmallestNormal
= DAG
.getSetCC(
2487 SL
, getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
), Src
,
2488 SmallestNormal
, ISD::SETOLT
);
2490 SDValue Scale32
= DAG
.getConstantFP(0x1.0p
+32, SL
, VT
);
2491 SDValue One
= DAG
.getConstantFP(1.0, SL
, VT
);
2492 SDValue ScaleFactor
=
2493 DAG
.getNode(ISD::SELECT
, SL
, VT
, IsLtSmallestNormal
, Scale32
, One
, Flags
);
2495 SDValue ScaledInput
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, ScaleFactor
, Flags
);
2497 SDValue Log2
= DAG
.getNode(AMDGPUISD::LOG
, SL
, VT
, ScaledInput
, Flags
);
2499 SDValue ThirtyTwo
= DAG
.getConstantFP(32.0, SL
, VT
);
2500 SDValue Zero
= DAG
.getConstantFP(0.0, SL
, VT
);
2501 SDValue ResultOffset
=
2502 DAG
.getNode(ISD::SELECT
, SL
, VT
, IsLtSmallestNormal
, ThirtyTwo
, Zero
);
2503 return DAG
.getNode(ISD::FSUB
, SL
, VT
, Log2
, ResultOffset
, Flags
);
2506 SDValue
AMDGPUTargetLowering::LowerFLOG(SDValue Op
, SelectionDAG
&DAG
,
2507 double Log2BaseInverted
) const {
2508 EVT VT
= Op
.getValueType();
2511 SDValue Operand
= Op
.getOperand(0);
2512 SDValue Log2Operand
= DAG
.getNode(ISD::FLOG2
, SL
, VT
, Operand
);
2513 SDValue Log2BaseInvertedOperand
= DAG
.getConstantFP(Log2BaseInverted
, SL
, VT
);
2515 return DAG
.getNode(ISD::FMUL
, SL
, VT
, Log2Operand
, Log2BaseInvertedOperand
);
2518 // exp2(M_LOG2E_F * f);
2519 SDValue
AMDGPUTargetLowering::lowerFEXP(SDValue Op
, SelectionDAG
&DAG
) const {
2520 EVT VT
= Op
.getValueType();
2522 SDValue Src
= Op
.getOperand(0);
2524 const SDValue K
= DAG
.getConstantFP(numbers::log2e
, SL
, VT
);
2525 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, VT
, Src
, K
, Op
->getFlags());
2526 return DAG
.getNode(ISD::FEXP2
, SL
, VT
, Mul
, Op
->getFlags());
2529 static bool isCtlzOpc(unsigned Opc
) {
2530 return Opc
== ISD::CTLZ
|| Opc
== ISD::CTLZ_ZERO_UNDEF
;
2533 static bool isCttzOpc(unsigned Opc
) {
2534 return Opc
== ISD::CTTZ
|| Opc
== ISD::CTTZ_ZERO_UNDEF
;
2537 SDValue
AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op
, SelectionDAG
&DAG
) const {
2539 SDValue Src
= Op
.getOperand(0);
2541 assert(isCtlzOpc(Op
.getOpcode()) || isCttzOpc(Op
.getOpcode()));
2542 bool Ctlz
= isCtlzOpc(Op
.getOpcode());
2543 unsigned NewOpc
= Ctlz
? AMDGPUISD::FFBH_U32
: AMDGPUISD::FFBL_B32
;
2545 bool ZeroUndef
= Op
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
||
2546 Op
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
;
2548 if (Src
.getValueType() == MVT::i32
) {
2549 // (ctlz hi:lo) -> (umin (ffbh src), 32)
2550 // (cttz hi:lo) -> (umin (ffbl src), 32)
2551 // (ctlz_zero_undef src) -> (ffbh src)
2552 // (cttz_zero_undef src) -> (ffbl src)
2553 SDValue NewOpr
= DAG
.getNode(NewOpc
, SL
, MVT::i32
, Src
);
2555 const SDValue Const32
= DAG
.getConstant(32, SL
, MVT::i32
);
2556 NewOpr
= DAG
.getNode(ISD::UMIN
, SL
, MVT::i32
, NewOpr
, Const32
);
2562 std::tie(Lo
, Hi
) = split64BitValue(Src
, DAG
);
2564 SDValue OprLo
= DAG
.getNode(NewOpc
, SL
, MVT::i32
, Lo
);
2565 SDValue OprHi
= DAG
.getNode(NewOpc
, SL
, MVT::i32
, Hi
);
2567 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64)
2568 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64)
2569 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32))
2570 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo))
2572 unsigned AddOpc
= ZeroUndef
? ISD::ADD
: ISD::UADDSAT
;
2573 const SDValue Const32
= DAG
.getConstant(32, SL
, MVT::i32
);
2575 OprLo
= DAG
.getNode(AddOpc
, SL
, MVT::i32
, OprLo
, Const32
);
2577 OprHi
= DAG
.getNode(AddOpc
, SL
, MVT::i32
, OprHi
, Const32
);
2580 NewOpr
= DAG
.getNode(ISD::UMIN
, SL
, MVT::i32
, OprLo
, OprHi
);
2582 const SDValue Const64
= DAG
.getConstant(64, SL
, MVT::i32
);
2583 NewOpr
= DAG
.getNode(ISD::UMIN
, SL
, MVT::i32
, NewOpr
, Const64
);
2586 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, MVT::i64
, NewOpr
);
2589 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op
, SelectionDAG
&DAG
,
2590 bool Signed
) const {
2591 // The regular method converting a 64-bit integer to float roughly consists of
2592 // 2 steps: normalization and rounding. In fact, after normalization, the
2593 // conversion from a 64-bit integer to a float is essentially the same as the
2594 // one from a 32-bit integer. The only difference is that it has more
2595 // trailing bits to be rounded. To leverage the native 32-bit conversion, a
2596 // 64-bit integer could be preprocessed and fit into a 32-bit integer then
2597 // converted into the correct float number. The basic steps for the unsigned
2598 // conversion are illustrated in the following pseudo code:
2600 // f32 uitofp(i64 u) {
2601 // i32 hi, lo = split(u);
2602 // // Only count the leading zeros in hi as we have native support of the
2603 // // conversion from i32 to f32. If hi is all 0s, the conversion is
2604 // // reduced to a 32-bit one automatically.
2605 // i32 shamt = clz(hi); // Return 32 if hi is all 0s.
2607 // hi, lo = split(u);
2608 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo.
2609 // // convert it as a 32-bit integer and scale the result back.
2610 // return uitofp(hi) * 2^(32 - shamt);
2613 // The signed one follows the same principle but uses 'ffbh_i32' to count its
2614 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is
2615 // converted instead followed by negation based its sign bit.
2618 SDValue Src
= Op
.getOperand(0);
2621 std::tie(Lo
, Hi
) = split64BitValue(Src
, DAG
);
2624 if (Signed
&& Subtarget
->isGCN()) {
2625 // We also need to consider the sign bit in Lo if Hi has just sign bits,
2626 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into
2627 // account. That is, the maximal shift is
2628 // - 32 if Lo and Hi have opposite signs;
2629 // - 33 if Lo and Hi have the same sign.
2631 // Or, MaxShAmt = 33 + OppositeSign, where
2633 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is
2634 // - -1 if Lo and Hi have opposite signs; and
2637 // All in all, ShAmt is calculated as
2639 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1.
2643 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31).
2645 // to reduce the critical path.
2646 SDValue OppositeSign
= DAG
.getNode(
2647 ISD::SRA
, SL
, MVT::i32
, DAG
.getNode(ISD::XOR
, SL
, MVT::i32
, Lo
, Hi
),
2648 DAG
.getConstant(31, SL
, MVT::i32
));
2650 DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, DAG
.getConstant(32, SL
, MVT::i32
),
2652 // Count the leading sign bits.
2653 ShAmt
= DAG
.getNode(AMDGPUISD::FFBH_I32
, SL
, MVT::i32
, Hi
);
2654 // Different from unsigned conversion, the shift should be one bit less to
2655 // preserve the sign bit.
2656 ShAmt
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, ShAmt
,
2657 DAG
.getConstant(1, SL
, MVT::i32
));
2658 ShAmt
= DAG
.getNode(ISD::UMIN
, SL
, MVT::i32
, ShAmt
, MaxShAmt
);
2661 // Without 'ffbh_i32', only leading zeros could be counted. Take the
2662 // absolute value first.
2663 Sign
= DAG
.getNode(ISD::SRA
, SL
, MVT::i64
, Src
,
2664 DAG
.getConstant(63, SL
, MVT::i64
));
2666 DAG
.getNode(ISD::XOR
, SL
, MVT::i64
,
2667 DAG
.getNode(ISD::ADD
, SL
, MVT::i64
, Src
, Sign
), Sign
);
2668 std::tie(Lo
, Hi
) = split64BitValue(Abs
, DAG
);
2670 // Count the leading zeros.
2671 ShAmt
= DAG
.getNode(ISD::CTLZ
, SL
, MVT::i32
, Hi
);
2672 // The shift amount for signed integers is [0, 32].
2674 // Normalize the given 64-bit integer.
2675 SDValue Norm
= DAG
.getNode(ISD::SHL
, SL
, MVT::i64
, Src
, ShAmt
);
2677 std::tie(Lo
, Hi
) = split64BitValue(Norm
, DAG
);
2678 // Calculate the adjust bit for rounding.
2679 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo)
2680 SDValue Adjust
= DAG
.getNode(ISD::UMIN
, SL
, MVT::i32
,
2681 DAG
.getConstant(1, SL
, MVT::i32
), Lo
);
2682 // Get the 32-bit normalized integer.
2683 Norm
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
, Hi
, Adjust
);
2684 // Convert the normalized 32-bit integer into f32.
2686 (Signed
&& Subtarget
->isGCN()) ? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
;
2687 SDValue FVal
= DAG
.getNode(Opc
, SL
, MVT::f32
, Norm
);
2689 // Finally, need to scale back the converted floating number as the original
2690 // 64-bit integer is converted as a 32-bit one.
2691 ShAmt
= DAG
.getNode(ISD::SUB
, SL
, MVT::i32
, DAG
.getConstant(32, SL
, MVT::i32
),
2693 // On GCN, use LDEXP directly.
2694 if (Subtarget
->isGCN())
2695 return DAG
.getNode(ISD::FLDEXP
, SL
, MVT::f32
, FVal
, ShAmt
);
2697 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent
2698 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit
2699 // exponent is enough to avoid overflowing into the sign bit.
2700 SDValue Exp
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, ShAmt
,
2701 DAG
.getConstant(23, SL
, MVT::i32
));
2703 DAG
.getNode(ISD::ADD
, SL
, MVT::i32
,
2704 DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, FVal
), Exp
);
2706 // Set the sign bit.
2707 Sign
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
,
2708 DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, Sign
),
2709 DAG
.getConstant(31, SL
, MVT::i32
));
2710 IVal
= DAG
.getNode(ISD::OR
, SL
, MVT::i32
, IVal
, Sign
);
2712 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, IVal
);
2715 SDValue
AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op
, SelectionDAG
&DAG
,
2716 bool Signed
) const {
2718 SDValue Src
= Op
.getOperand(0);
2721 std::tie(Lo
, Hi
) = split64BitValue(Src
, DAG
);
2723 SDValue CvtHi
= DAG
.getNode(Signed
? ISD::SINT_TO_FP
: ISD::UINT_TO_FP
,
2726 SDValue CvtLo
= DAG
.getNode(ISD::UINT_TO_FP
, SL
, MVT::f64
, Lo
);
2728 SDValue LdExp
= DAG
.getNode(ISD::FLDEXP
, SL
, MVT::f64
, CvtHi
,
2729 DAG
.getConstant(32, SL
, MVT::i32
));
2730 // TODO: Should this propagate fast-math-flags?
2731 return DAG
.getNode(ISD::FADD
, SL
, MVT::f64
, LdExp
, CvtLo
);
2734 SDValue
AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op
,
2735 SelectionDAG
&DAG
) const {
2736 // TODO: Factor out code common with LowerSINT_TO_FP.
2737 EVT DestVT
= Op
.getValueType();
2738 SDValue Src
= Op
.getOperand(0);
2739 EVT SrcVT
= Src
.getValueType();
2741 if (SrcVT
== MVT::i16
) {
2742 if (DestVT
== MVT::f16
)
2746 // Promote src to i32
2747 SDValue Ext
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Src
);
2748 return DAG
.getNode(ISD::UINT_TO_FP
, DL
, DestVT
, Ext
);
2751 assert(SrcVT
== MVT::i64
&& "operation should be legal");
2753 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2756 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2757 SDValue FPRoundFlag
=
2758 DAG
.getIntPtrConstant(0, SDLoc(Op
), /*isTarget=*/true);
2760 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2765 if (DestVT
== MVT::f32
)
2766 return LowerINT_TO_FP32(Op
, DAG
, false);
2768 assert(DestVT
== MVT::f64
);
2769 return LowerINT_TO_FP64(Op
, DAG
, false);
2772 SDValue
AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op
,
2773 SelectionDAG
&DAG
) const {
2774 EVT DestVT
= Op
.getValueType();
2776 SDValue Src
= Op
.getOperand(0);
2777 EVT SrcVT
= Src
.getValueType();
2779 if (SrcVT
== MVT::i16
) {
2780 if (DestVT
== MVT::f16
)
2784 // Promote src to i32
2785 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i32
, Src
);
2786 return DAG
.getNode(ISD::SINT_TO_FP
, DL
, DestVT
, Ext
);
2789 assert(SrcVT
== MVT::i64
&& "operation should be legal");
2791 // TODO: Factor out code common with LowerUINT_TO_FP.
2793 if (Subtarget
->has16BitInsts() && DestVT
== MVT::f16
) {
2795 SDValue Src
= Op
.getOperand(0);
2797 SDValue IntToFp32
= DAG
.getNode(Op
.getOpcode(), DL
, MVT::f32
, Src
);
2798 SDValue FPRoundFlag
=
2799 DAG
.getIntPtrConstant(0, SDLoc(Op
), /*isTarget=*/true);
2801 DAG
.getNode(ISD::FP_ROUND
, DL
, MVT::f16
, IntToFp32
, FPRoundFlag
);
2806 if (DestVT
== MVT::f32
)
2807 return LowerINT_TO_FP32(Op
, DAG
, true);
2809 assert(DestVT
== MVT::f64
);
2810 return LowerINT_TO_FP64(Op
, DAG
, true);
2813 SDValue
AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op
, SelectionDAG
&DAG
,
2814 bool Signed
) const {
2817 SDValue Src
= Op
.getOperand(0);
2818 EVT SrcVT
= Src
.getValueType();
2820 assert(SrcVT
== MVT::f32
|| SrcVT
== MVT::f64
);
2822 // The basic idea of converting a floating point number into a pair of 32-bit
2823 // integers is illustrated as follows:
2825 // tf := trunc(val);
2826 // hif := floor(tf * 2^-32);
2827 // lof := tf - hif * 2^32; // lof is always positive due to floor.
2828 // hi := fptoi(hif);
2829 // lo := fptoi(lof);
2831 SDValue Trunc
= DAG
.getNode(ISD::FTRUNC
, SL
, SrcVT
, Src
);
2833 if (Signed
&& SrcVT
== MVT::f32
) {
2834 // However, a 32-bit floating point number has only 23 bits mantissa and
2835 // it's not enough to hold all the significant bits of `lof` if val is
2836 // negative. To avoid the loss of precision, We need to take the absolute
2837 // value after truncating and flip the result back based on the original
2839 Sign
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
,
2840 DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Trunc
),
2841 DAG
.getConstant(31, SL
, MVT::i32
));
2842 Trunc
= DAG
.getNode(ISD::FABS
, SL
, SrcVT
, Trunc
);
2846 if (SrcVT
== MVT::f64
) {
2847 K0
= DAG
.getConstantFP(
2848 llvm::bit_cast
<double>(UINT64_C(/*2^-32*/ 0x3df0000000000000)), SL
,
2850 K1
= DAG
.getConstantFP(
2851 llvm::bit_cast
<double>(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), SL
,
2854 K0
= DAG
.getConstantFP(
2855 llvm::bit_cast
<float>(UINT32_C(/*2^-32*/ 0x2f800000)), SL
, SrcVT
);
2856 K1
= DAG
.getConstantFP(
2857 llvm::bit_cast
<float>(UINT32_C(/*-2^32*/ 0xcf800000)), SL
, SrcVT
);
2859 // TODO: Should this propagate fast-math-flags?
2860 SDValue Mul
= DAG
.getNode(ISD::FMUL
, SL
, SrcVT
, Trunc
, K0
);
2862 SDValue FloorMul
= DAG
.getNode(ISD::FFLOOR
, SL
, SrcVT
, Mul
);
2864 SDValue Fma
= DAG
.getNode(ISD::FMA
, SL
, SrcVT
, FloorMul
, K1
, Trunc
);
2866 SDValue Hi
= DAG
.getNode((Signed
&& SrcVT
== MVT::f64
) ? ISD::FP_TO_SINT
2868 SL
, MVT::i32
, FloorMul
);
2869 SDValue Lo
= DAG
.getNode(ISD::FP_TO_UINT
, SL
, MVT::i32
, Fma
);
2871 SDValue Result
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
,
2872 DAG
.getBuildVector(MVT::v2i32
, SL
, {Lo
, Hi
}));
2874 if (Signed
&& SrcVT
== MVT::f32
) {
2876 // Flip the result based on the signedness, which is either all 0s or 1s.
2877 Sign
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
,
2878 DAG
.getBuildVector(MVT::v2i32
, SL
, {Sign
, Sign
}));
2879 // r := xor(r, sign) - sign;
2881 DAG
.getNode(ISD::SUB
, SL
, MVT::i64
,
2882 DAG
.getNode(ISD::XOR
, SL
, MVT::i64
, Result
, Sign
), Sign
);
2888 SDValue
AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op
, SelectionDAG
&DAG
) const {
2890 SDValue N0
= Op
.getOperand(0);
2892 // Convert to target node to get known bits
2893 if (N0
.getValueType() == MVT::f32
)
2894 return DAG
.getNode(AMDGPUISD::FP_TO_FP16
, DL
, Op
.getValueType(), N0
);
2896 if (getTargetMachine().Options
.UnsafeFPMath
) {
2897 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2901 assert(N0
.getSimpleValueType() == MVT::f64
);
2903 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2904 const unsigned ExpMask
= 0x7ff;
2905 const unsigned ExpBiasf64
= 1023;
2906 const unsigned ExpBiasf16
= 15;
2907 SDValue Zero
= DAG
.getConstant(0, DL
, MVT::i32
);
2908 SDValue One
= DAG
.getConstant(1, DL
, MVT::i32
);
2909 SDValue U
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, N0
);
2910 SDValue UH
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, U
,
2911 DAG
.getConstant(32, DL
, MVT::i64
));
2912 UH
= DAG
.getZExtOrTrunc(UH
, DL
, MVT::i32
);
2913 U
= DAG
.getZExtOrTrunc(U
, DL
, MVT::i32
);
2914 SDValue E
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2915 DAG
.getConstant(20, DL
, MVT::i64
));
2916 E
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, E
,
2917 DAG
.getConstant(ExpMask
, DL
, MVT::i32
));
2918 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2919 // add the f16 bias (15) to get the biased exponent for the f16 format.
2920 E
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, E
,
2921 DAG
.getConstant(-ExpBiasf64
+ ExpBiasf16
, DL
, MVT::i32
));
2923 SDValue M
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2924 DAG
.getConstant(8, DL
, MVT::i32
));
2925 M
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, M
,
2926 DAG
.getConstant(0xffe, DL
, MVT::i32
));
2928 SDValue MaskedSig
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, UH
,
2929 DAG
.getConstant(0x1ff, DL
, MVT::i32
));
2930 MaskedSig
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, MaskedSig
, U
);
2932 SDValue Lo40Set
= DAG
.getSelectCC(DL
, MaskedSig
, Zero
, Zero
, One
, ISD::SETEQ
);
2933 M
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
, Lo40Set
);
2935 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2936 SDValue I
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
,
2937 DAG
.getSelectCC(DL
, M
, Zero
, DAG
.getConstant(0x0200, DL
, MVT::i32
),
2938 Zero
, ISD::SETNE
), DAG
.getConstant(0x7c00, DL
, MVT::i32
));
2940 // N = M | (E << 12);
2941 SDValue N
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2942 DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, E
,
2943 DAG
.getConstant(12, DL
, MVT::i32
)));
2945 // B = clamp(1-E, 0, 13);
2946 SDValue OneSubExp
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
2948 SDValue B
= DAG
.getNode(ISD::SMAX
, DL
, MVT::i32
, OneSubExp
, Zero
);
2949 B
= DAG
.getNode(ISD::SMIN
, DL
, MVT::i32
, B
,
2950 DAG
.getConstant(13, DL
, MVT::i32
));
2952 SDValue SigSetHigh
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, M
,
2953 DAG
.getConstant(0x1000, DL
, MVT::i32
));
2955 SDValue D
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SigSetHigh
, B
);
2956 SDValue D0
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, D
, B
);
2957 SDValue D1
= DAG
.getSelectCC(DL
, D0
, SigSetHigh
, One
, Zero
, ISD::SETNE
);
2958 D
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, D
, D1
);
2960 SDValue V
= DAG
.getSelectCC(DL
, E
, One
, D
, N
, ISD::SETLT
);
2961 SDValue VLow3
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, V
,
2962 DAG
.getConstant(0x7, DL
, MVT::i32
));
2963 V
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, V
,
2964 DAG
.getConstant(2, DL
, MVT::i32
));
2965 SDValue V0
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(3, DL
, MVT::i32
),
2966 One
, Zero
, ISD::SETEQ
);
2967 SDValue V1
= DAG
.getSelectCC(DL
, VLow3
, DAG
.getConstant(5, DL
, MVT::i32
),
2968 One
, Zero
, ISD::SETGT
);
2969 V1
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, V0
, V1
);
2970 V
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, V
, V1
);
2972 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(30, DL
, MVT::i32
),
2973 DAG
.getConstant(0x7c00, DL
, MVT::i32
), V
, ISD::SETGT
);
2974 V
= DAG
.getSelectCC(DL
, E
, DAG
.getConstant(1039, DL
, MVT::i32
),
2977 // Extract the sign bit.
2978 SDValue Sign
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, UH
,
2979 DAG
.getConstant(16, DL
, MVT::i32
));
2980 Sign
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Sign
,
2981 DAG
.getConstant(0x8000, DL
, MVT::i32
));
2983 V
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Sign
, V
);
2984 return DAG
.getZExtOrTrunc(V
, DL
, Op
.getValueType());
2987 SDValue
AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op
,
2988 SelectionDAG
&DAG
) const {
2989 SDValue Src
= Op
.getOperand(0);
2990 unsigned OpOpcode
= Op
.getOpcode();
2991 EVT SrcVT
= Src
.getValueType();
2992 EVT DestVT
= Op
.getValueType();
2994 // Will be selected natively
2995 if (SrcVT
== MVT::f16
&& DestVT
== MVT::i16
)
2998 // Promote i16 to i32
2999 if (DestVT
== MVT::i16
&& (SrcVT
== MVT::f32
|| SrcVT
== MVT::f64
)) {
3002 SDValue FpToInt32
= DAG
.getNode(OpOpcode
, DL
, MVT::i32
, Src
);
3003 return DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i16
, FpToInt32
);
3006 if (SrcVT
== MVT::f16
||
3007 (SrcVT
== MVT::f32
&& Src
.getOpcode() == ISD::FP16_TO_FP
)) {
3010 SDValue FpToInt32
= DAG
.getNode(OpOpcode
, DL
, MVT::i32
, Src
);
3012 OpOpcode
== ISD::FP_TO_SINT
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
3013 return DAG
.getNode(Ext
, DL
, MVT::i64
, FpToInt32
);
3016 if (DestVT
== MVT::i64
&& (SrcVT
== MVT::f32
|| SrcVT
== MVT::f64
))
3017 return LowerFP_TO_INT64(Op
, DAG
, OpOpcode
== ISD::FP_TO_SINT
);
3022 SDValue
AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op
,
3023 SelectionDAG
&DAG
) const {
3024 EVT ExtraVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
3025 MVT VT
= Op
.getSimpleValueType();
3026 MVT ScalarVT
= VT
.getScalarType();
3028 assert(VT
.isVector());
3030 SDValue Src
= Op
.getOperand(0);
3033 // TODO: Don't scalarize on Evergreen?
3034 unsigned NElts
= VT
.getVectorNumElements();
3035 SmallVector
<SDValue
, 8> Args
;
3036 DAG
.ExtractVectorElements(Src
, Args
, 0, NElts
);
3038 SDValue VTOp
= DAG
.getValueType(ExtraVT
.getScalarType());
3039 for (unsigned I
= 0; I
< NElts
; ++I
)
3040 Args
[I
] = DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, ScalarVT
, Args
[I
], VTOp
);
3042 return DAG
.getBuildVector(VT
, DL
, Args
);
3045 //===----------------------------------------------------------------------===//
3046 // Custom DAG optimizations
3047 //===----------------------------------------------------------------------===//
3049 static bool isU24(SDValue Op
, SelectionDAG
&DAG
) {
3050 return AMDGPUTargetLowering::numBitsUnsigned(Op
, DAG
) <= 24;
3053 static bool isI24(SDValue Op
, SelectionDAG
&DAG
) {
3054 EVT VT
= Op
.getValueType();
3055 return VT
.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
3056 // as unsigned 24-bit values.
3057 AMDGPUTargetLowering::numBitsSigned(Op
, DAG
) <= 24;
3060 static SDValue
simplifyMul24(SDNode
*Node24
,
3061 TargetLowering::DAGCombinerInfo
&DCI
) {
3062 SelectionDAG
&DAG
= DCI
.DAG
;
3063 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3064 bool IsIntrin
= Node24
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
;
3066 SDValue LHS
= IsIntrin
? Node24
->getOperand(1) : Node24
->getOperand(0);
3067 SDValue RHS
= IsIntrin
? Node24
->getOperand(2) : Node24
->getOperand(1);
3068 unsigned NewOpcode
= Node24
->getOpcode();
3070 unsigned IID
= cast
<ConstantSDNode
>(Node24
->getOperand(0))->getZExtValue();
3072 case Intrinsic::amdgcn_mul_i24
:
3073 NewOpcode
= AMDGPUISD::MUL_I24
;
3075 case Intrinsic::amdgcn_mul_u24
:
3076 NewOpcode
= AMDGPUISD::MUL_U24
;
3078 case Intrinsic::amdgcn_mulhi_i24
:
3079 NewOpcode
= AMDGPUISD::MULHI_I24
;
3081 case Intrinsic::amdgcn_mulhi_u24
:
3082 NewOpcode
= AMDGPUISD::MULHI_U24
;
3085 llvm_unreachable("Expected 24-bit mul intrinsic");
3089 APInt Demanded
= APInt::getLowBitsSet(LHS
.getValueSizeInBits(), 24);
3091 // First try to simplify using SimplifyMultipleUseDemandedBits which allows
3092 // the operands to have other uses, but will only perform simplifications that
3093 // involve bypassing some nodes for this user.
3094 SDValue DemandedLHS
= TLI
.SimplifyMultipleUseDemandedBits(LHS
, Demanded
, DAG
);
3095 SDValue DemandedRHS
= TLI
.SimplifyMultipleUseDemandedBits(RHS
, Demanded
, DAG
);
3096 if (DemandedLHS
|| DemandedRHS
)
3097 return DAG
.getNode(NewOpcode
, SDLoc(Node24
), Node24
->getVTList(),
3098 DemandedLHS
? DemandedLHS
: LHS
,
3099 DemandedRHS
? DemandedRHS
: RHS
);
3101 // Now try SimplifyDemandedBits which can simplify the nodes used by our
3102 // operands if this node is the only user.
3103 if (TLI
.SimplifyDemandedBits(LHS
, Demanded
, DCI
))
3104 return SDValue(Node24
, 0);
3105 if (TLI
.SimplifyDemandedBits(RHS
, Demanded
, DCI
))
3106 return SDValue(Node24
, 0);
3111 template <typename IntTy
>
3112 static SDValue
constantFoldBFE(SelectionDAG
&DAG
, IntTy Src0
, uint32_t Offset
,
3113 uint32_t Width
, const SDLoc
&DL
) {
3114 if (Width
+ Offset
< 32) {
3115 uint32_t Shl
= static_cast<uint32_t>(Src0
) << (32 - Offset
- Width
);
3116 IntTy Result
= static_cast<IntTy
>(Shl
) >> (32 - Width
);
3117 return DAG
.getConstant(Result
, DL
, MVT::i32
);
3120 return DAG
.getConstant(Src0
>> Offset
, DL
, MVT::i32
);
3123 static bool hasVolatileUser(SDNode
*Val
) {
3124 for (SDNode
*U
: Val
->uses()) {
3125 if (MemSDNode
*M
= dyn_cast
<MemSDNode
>(U
)) {
3126 if (M
->isVolatile())
3134 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT
) const {
3135 // i32 vectors are the canonical memory type.
3136 if (VT
.getScalarType() == MVT::i32
|| isTypeLegal(VT
))
3139 if (!VT
.isByteSized())
3142 unsigned Size
= VT
.getStoreSize();
3144 if ((Size
== 1 || Size
== 2 || Size
== 4) && !VT
.isVector())
3147 if (Size
== 3 || (Size
> 4 && (Size
% 4 != 0)))
3153 // Replace load of an illegal type with a store of a bitcast to a friendlier
3155 SDValue
AMDGPUTargetLowering::performLoadCombine(SDNode
*N
,
3156 DAGCombinerInfo
&DCI
) const {
3157 if (!DCI
.isBeforeLegalize())
3160 LoadSDNode
*LN
= cast
<LoadSDNode
>(N
);
3161 if (!LN
->isSimple() || !ISD::isNormalLoad(LN
) || hasVolatileUser(LN
))
3165 SelectionDAG
&DAG
= DCI
.DAG
;
3166 EVT VT
= LN
->getMemoryVT();
3168 unsigned Size
= VT
.getStoreSize();
3169 Align Alignment
= LN
->getAlign();
3170 if (Alignment
< Size
&& isTypeLegal(VT
)) {
3172 unsigned AS
= LN
->getAddressSpace();
3174 // Expand unaligned loads earlier than legalization. Due to visitation order
3175 // problems during legalization, the emitted instructions to pack and unpack
3176 // the bytes again are not eliminated in the case of an unaligned copy.
3177 if (!allowsMisalignedMemoryAccesses(
3178 VT
, AS
, Alignment
, LN
->getMemOperand()->getFlags(), &IsFast
)) {
3180 return SplitVectorLoad(SDValue(LN
, 0), DAG
);
3183 std::tie(Ops
[0], Ops
[1]) = expandUnalignedLoad(LN
, DAG
);
3185 return DAG
.getMergeValues(Ops
, SDLoc(N
));
3192 if (!shouldCombineMemoryType(VT
))
3195 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
3198 = DAG
.getLoad(NewVT
, SL
, LN
->getChain(),
3199 LN
->getBasePtr(), LN
->getMemOperand());
3201 SDValue BC
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, NewLoad
);
3202 DCI
.CombineTo(N
, BC
, NewLoad
.getValue(1));
3203 return SDValue(N
, 0);
3206 // Replace store of an illegal type with a store of a bitcast to a friendlier
3208 SDValue
AMDGPUTargetLowering::performStoreCombine(SDNode
*N
,
3209 DAGCombinerInfo
&DCI
) const {
3210 if (!DCI
.isBeforeLegalize())
3213 StoreSDNode
*SN
= cast
<StoreSDNode
>(N
);
3214 if (!SN
->isSimple() || !ISD::isNormalStore(SN
))
3217 EVT VT
= SN
->getMemoryVT();
3218 unsigned Size
= VT
.getStoreSize();
3221 SelectionDAG
&DAG
= DCI
.DAG
;
3222 Align Alignment
= SN
->getAlign();
3223 if (Alignment
< Size
&& isTypeLegal(VT
)) {
3225 unsigned AS
= SN
->getAddressSpace();
3227 // Expand unaligned stores earlier than legalization. Due to visitation
3228 // order problems during legalization, the emitted instructions to pack and
3229 // unpack the bytes again are not eliminated in the case of an unaligned
3231 if (!allowsMisalignedMemoryAccesses(
3232 VT
, AS
, Alignment
, SN
->getMemOperand()->getFlags(), &IsFast
)) {
3234 return SplitVectorStore(SDValue(SN
, 0), DAG
);
3236 return expandUnalignedStore(SN
, DAG
);
3243 if (!shouldCombineMemoryType(VT
))
3246 EVT NewVT
= getEquivalentMemType(*DAG
.getContext(), VT
);
3247 SDValue Val
= SN
->getValue();
3249 //DCI.AddToWorklist(Val.getNode());
3251 bool OtherUses
= !Val
.hasOneUse();
3252 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NewVT
, Val
);
3254 SDValue CastBack
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, CastVal
);
3255 DAG
.ReplaceAllUsesOfValueWith(Val
, CastBack
);
3258 return DAG
.getStore(SN
->getChain(), SL
, CastVal
,
3259 SN
->getBasePtr(), SN
->getMemOperand());
3262 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3263 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3265 SDValue
AMDGPUTargetLowering::performAssertSZExtCombine(SDNode
*N
,
3266 DAGCombinerInfo
&DCI
) const {
3267 SelectionDAG
&DAG
= DCI
.DAG
;
3268 SDValue N0
= N
->getOperand(0);
3270 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3271 // (vt2 (truncate (assertzext vt0:x, vt1)))
3272 if (N0
.getOpcode() == ISD::TRUNCATE
) {
3273 SDValue N1
= N
->getOperand(1);
3274 EVT ExtVT
= cast
<VTSDNode
>(N1
)->getVT();
3277 SDValue Src
= N0
.getOperand(0);
3278 EVT SrcVT
= Src
.getValueType();
3279 if (SrcVT
.bitsGE(ExtVT
)) {
3280 SDValue NewInReg
= DAG
.getNode(N
->getOpcode(), SL
, SrcVT
, Src
, N1
);
3281 return DAG
.getNode(ISD::TRUNCATE
, SL
, N
->getValueType(0), NewInReg
);
3288 SDValue
AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3289 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3290 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
3292 case Intrinsic::amdgcn_mul_i24
:
3293 case Intrinsic::amdgcn_mul_u24
:
3294 case Intrinsic::amdgcn_mulhi_i24
:
3295 case Intrinsic::amdgcn_mulhi_u24
:
3296 return simplifyMul24(N
, DCI
);
3297 case Intrinsic::amdgcn_fract
:
3298 case Intrinsic::amdgcn_rsq
:
3299 case Intrinsic::amdgcn_rcp_legacy
:
3300 case Intrinsic::amdgcn_rsq_legacy
:
3301 case Intrinsic::amdgcn_rsq_clamp
:
3302 case Intrinsic::amdgcn_ldexp
: {
3303 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3304 SDValue Src
= N
->getOperand(1);
3305 return Src
.isUndef() ? Src
: SDValue();
3312 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3313 /// binary operation \p Opc to it with the corresponding constant operands.
3314 SDValue
AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3315 DAGCombinerInfo
&DCI
, const SDLoc
&SL
,
3316 unsigned Opc
, SDValue LHS
,
3317 uint32_t ValLo
, uint32_t ValHi
) const {
3318 SelectionDAG
&DAG
= DCI
.DAG
;
3320 std::tie(Lo
, Hi
) = split64BitValue(LHS
, DAG
);
3322 SDValue LoRHS
= DAG
.getConstant(ValLo
, SL
, MVT::i32
);
3323 SDValue HiRHS
= DAG
.getConstant(ValHi
, SL
, MVT::i32
);
3325 SDValue LoAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Lo
, LoRHS
);
3326 SDValue HiAnd
= DAG
.getNode(Opc
, SL
, MVT::i32
, Hi
, HiRHS
);
3328 // Re-visit the ands. It's possible we eliminated one of them and it could
3329 // simplify the vector.
3330 DCI
.AddToWorklist(Lo
.getNode());
3331 DCI
.AddToWorklist(Hi
.getNode());
3333 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {LoAnd
, HiAnd
});
3334 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3337 SDValue
AMDGPUTargetLowering::performShlCombine(SDNode
*N
,
3338 DAGCombinerInfo
&DCI
) const {
3339 EVT VT
= N
->getValueType(0);
3341 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3345 SDValue LHS
= N
->getOperand(0);
3346 unsigned RHSVal
= RHS
->getZExtValue();
3351 SelectionDAG
&DAG
= DCI
.DAG
;
3353 switch (LHS
->getOpcode()) {
3356 case ISD::ZERO_EXTEND
:
3357 case ISD::SIGN_EXTEND
:
3358 case ISD::ANY_EXTEND
: {
3359 SDValue X
= LHS
->getOperand(0);
3361 if (VT
== MVT::i32
&& RHSVal
== 16 && X
.getValueType() == MVT::i16
&&
3362 isOperationLegal(ISD::BUILD_VECTOR
, MVT::v2i16
)) {
3363 // Prefer build_vector as the canonical form if packed types are legal.
3364 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3365 SDValue Vec
= DAG
.getBuildVector(MVT::v2i16
, SL
,
3366 { DAG
.getConstant(0, SL
, MVT::i16
), LHS
->getOperand(0) });
3367 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i32
, Vec
);
3370 // shl (ext x) => zext (shl x), if shift does not overflow int
3373 KnownBits Known
= DAG
.computeKnownBits(X
);
3374 unsigned LZ
= Known
.countMinLeadingZeros();
3377 EVT XVT
= X
.getValueType();
3378 SDValue Shl
= DAG
.getNode(ISD::SHL
, SL
, XVT
, X
, SDValue(RHS
, 0));
3379 return DAG
.getZExtOrTrunc(Shl
, SL
, VT
);
3386 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3388 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3389 // common case, splitting this into a move and a 32-bit shift is faster and
3390 // the same code size.
3394 SDValue ShiftAmt
= DAG
.getConstant(RHSVal
- 32, SL
, MVT::i32
);
3396 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, SL
, MVT::i32
, LHS
);
3397 SDValue NewShift
= DAG
.getNode(ISD::SHL
, SL
, MVT::i32
, Lo
, ShiftAmt
);
3399 const SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3401 SDValue Vec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Zero
, NewShift
});
3402 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, Vec
);
3405 SDValue
AMDGPUTargetLowering::performSraCombine(SDNode
*N
,
3406 DAGCombinerInfo
&DCI
) const {
3407 if (N
->getValueType(0) != MVT::i64
)
3410 const ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3414 SelectionDAG
&DAG
= DCI
.DAG
;
3416 unsigned RHSVal
= RHS
->getZExtValue();
3418 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3420 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3421 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3422 DAG
.getConstant(31, SL
, MVT::i32
));
3424 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {Hi
, NewShift
});
3425 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3428 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3430 SDValue Hi
= getHiHalf64(N
->getOperand(0), DAG
);
3431 SDValue NewShift
= DAG
.getNode(ISD::SRA
, SL
, MVT::i32
, Hi
,
3432 DAG
.getConstant(31, SL
, MVT::i32
));
3433 SDValue BuildVec
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, NewShift
});
3434 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildVec
);
3440 SDValue
AMDGPUTargetLowering::performSrlCombine(SDNode
*N
,
3441 DAGCombinerInfo
&DCI
) const {
3442 auto *RHS
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
3446 EVT VT
= N
->getValueType(0);
3447 SDValue LHS
= N
->getOperand(0);
3448 unsigned ShiftAmt
= RHS
->getZExtValue();
3449 SelectionDAG
&DAG
= DCI
.DAG
;
3452 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3453 // this improves the ability to match BFE patterns in isel.
3454 if (LHS
.getOpcode() == ISD::AND
) {
3455 if (auto *Mask
= dyn_cast
<ConstantSDNode
>(LHS
.getOperand(1))) {
3456 unsigned MaskIdx
, MaskLen
;
3457 if (Mask
->getAPIntValue().isShiftedMask(MaskIdx
, MaskLen
) &&
3458 MaskIdx
== ShiftAmt
) {
3461 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(0), N
->getOperand(1)),
3462 DAG
.getNode(ISD::SRL
, SL
, VT
, LHS
.getOperand(1), N
->getOperand(1)));
3473 // srl i64:x, C for C >= 32
3475 // build_pair (srl hi_32(x), C - 32), 0
3476 SDValue Zero
= DAG
.getConstant(0, SL
, MVT::i32
);
3478 SDValue Hi
= getHiHalf64(LHS
, DAG
);
3480 SDValue NewConst
= DAG
.getConstant(ShiftAmt
- 32, SL
, MVT::i32
);
3481 SDValue NewShift
= DAG
.getNode(ISD::SRL
, SL
, MVT::i32
, Hi
, NewConst
);
3483 SDValue BuildPair
= DAG
.getBuildVector(MVT::v2i32
, SL
, {NewShift
, Zero
});
3485 return DAG
.getNode(ISD::BITCAST
, SL
, MVT::i64
, BuildPair
);
3488 SDValue
AMDGPUTargetLowering::performTruncateCombine(
3489 SDNode
*N
, DAGCombinerInfo
&DCI
) const {
3491 SelectionDAG
&DAG
= DCI
.DAG
;
3492 EVT VT
= N
->getValueType(0);
3493 SDValue Src
= N
->getOperand(0);
3495 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3496 if (Src
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
3497 SDValue Vec
= Src
.getOperand(0);
3498 if (Vec
.getOpcode() == ISD::BUILD_VECTOR
) {
3499 SDValue Elt0
= Vec
.getOperand(0);
3500 EVT EltVT
= Elt0
.getValueType();
3501 if (VT
.getFixedSizeInBits() <= EltVT
.getFixedSizeInBits()) {
3502 if (EltVT
.isFloatingPoint()) {
3503 Elt0
= DAG
.getNode(ISD::BITCAST
, SL
,
3504 EltVT
.changeTypeToInteger(), Elt0
);
3507 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, Elt0
);
3512 // Equivalent of above for accessing the high element of a vector as an
3513 // integer operation.
3514 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3515 if (Src
.getOpcode() == ISD::SRL
&& !VT
.isVector()) {
3516 if (auto K
= isConstOrConstSplat(Src
.getOperand(1))) {
3517 if (2 * K
->getZExtValue() == Src
.getValueType().getScalarSizeInBits()) {
3518 SDValue BV
= stripBitcast(Src
.getOperand(0));
3519 if (BV
.getOpcode() == ISD::BUILD_VECTOR
&&
3520 BV
.getValueType().getVectorNumElements() == 2) {
3521 SDValue SrcElt
= BV
.getOperand(1);
3522 EVT SrcEltVT
= SrcElt
.getValueType();
3523 if (SrcEltVT
.isFloatingPoint()) {
3524 SrcElt
= DAG
.getNode(ISD::BITCAST
, SL
,
3525 SrcEltVT
.changeTypeToInteger(), SrcElt
);
3528 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, SrcElt
);
3534 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3536 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3537 // i16 (trunc (srl (i32 (trunc x), K)))
3538 if (VT
.getScalarSizeInBits() < 32) {
3539 EVT SrcVT
= Src
.getValueType();
3540 if (SrcVT
.getScalarSizeInBits() > 32 &&
3541 (Src
.getOpcode() == ISD::SRL
||
3542 Src
.getOpcode() == ISD::SRA
||
3543 Src
.getOpcode() == ISD::SHL
)) {
3544 SDValue Amt
= Src
.getOperand(1);
3545 KnownBits Known
= DAG
.computeKnownBits(Amt
);
3547 // - For left shifts, do the transform as long as the shift
3548 // amount is still legal for i32, so when ShiftAmt < 32 (<= 31)
3549 // - For right shift, do it if ShiftAmt <= (32 - Size) to avoid
3550 // losing information stored in the high bits when truncating.
3551 const unsigned MaxCstSize
=
3552 (Src
.getOpcode() == ISD::SHL
) ? 31 : (32 - VT
.getScalarSizeInBits());
3553 if (Known
.getMaxValue().ule(MaxCstSize
)) {
3554 EVT MidVT
= VT
.isVector() ?
3555 EVT::getVectorVT(*DAG
.getContext(), MVT::i32
,
3556 VT
.getVectorNumElements()) : MVT::i32
;
3558 EVT NewShiftVT
= getShiftAmountTy(MidVT
, DAG
.getDataLayout());
3559 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MidVT
,
3561 DCI
.AddToWorklist(Trunc
.getNode());
3563 if (Amt
.getValueType() != NewShiftVT
) {
3564 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, NewShiftVT
);
3565 DCI
.AddToWorklist(Amt
.getNode());
3568 SDValue ShrunkShift
= DAG
.getNode(Src
.getOpcode(), SL
, MidVT
,
3570 return DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, ShrunkShift
);
3578 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3579 // instructions. If we only match on the legalized i64 mul expansion,
3580 // SimplifyDemandedBits will be unable to remove them because there will be
3581 // multiple uses due to the separate mul + mulh[su].
3582 static SDValue
getMul24(SelectionDAG
&DAG
, const SDLoc
&SL
,
3583 SDValue N0
, SDValue N1
, unsigned Size
, bool Signed
) {
3585 unsigned MulOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3586 return DAG
.getNode(MulOpc
, SL
, MVT::i32
, N0
, N1
);
3589 unsigned MulLoOpc
= Signed
? AMDGPUISD::MUL_I24
: AMDGPUISD::MUL_U24
;
3590 unsigned MulHiOpc
= Signed
? AMDGPUISD::MULHI_I24
: AMDGPUISD::MULHI_U24
;
3592 SDValue MulLo
= DAG
.getNode(MulLoOpc
, SL
, MVT::i32
, N0
, N1
);
3593 SDValue MulHi
= DAG
.getNode(MulHiOpc
, SL
, MVT::i32
, N0
, N1
);
3595 return DAG
.getNode(ISD::BUILD_PAIR
, SL
, MVT::i64
, MulLo
, MulHi
);
3598 /// If \p V is an add of a constant 1, returns the other operand. Otherwise
3599 /// return SDValue().
3600 static SDValue
getAddOneOp(const SDNode
*V
) {
3601 if (V
->getOpcode() != ISD::ADD
)
3604 auto *C
= dyn_cast
<ConstantSDNode
>(V
->getOperand(1));
3605 return C
&& C
->isOne() ? V
->getOperand(0) : SDValue();
3608 SDValue
AMDGPUTargetLowering::performMulCombine(SDNode
*N
,
3609 DAGCombinerInfo
&DCI
) const {
3610 EVT VT
= N
->getValueType(0);
3612 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3613 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3614 // unnecessarily). isDivergent() is used as an approximation of whether the
3615 // value is in an SGPR.
3616 if (!N
->isDivergent())
3619 unsigned Size
= VT
.getSizeInBits();
3620 if (VT
.isVector() || Size
> 64)
3623 SelectionDAG
&DAG
= DCI
.DAG
;
3626 SDValue N0
= N
->getOperand(0);
3627 SDValue N1
= N
->getOperand(1);
3629 // Undo InstCombine canonicalize X * (Y + 1) -> X * Y + X to enable mad
3632 // mul x, (add y, 1) -> add (mul x, y), x
3633 auto IsFoldableAdd
= [](SDValue V
) -> SDValue
{
3634 SDValue AddOp
= getAddOneOp(V
.getNode());
3638 if (V
.hasOneUse() || all_of(V
->uses(), [](const SDNode
*U
) -> bool {
3639 return U
->getOpcode() == ISD::MUL
;
3646 // FIXME: The selection pattern is not properly checking for commuted
3647 // operands, so we have to place the mul in the LHS
3648 if (SDValue MulOper
= IsFoldableAdd(N0
)) {
3649 SDValue MulVal
= DAG
.getNode(N
->getOpcode(), DL
, VT
, N1
, MulOper
);
3650 return DAG
.getNode(ISD::ADD
, DL
, VT
, MulVal
, N1
);
3653 if (SDValue MulOper
= IsFoldableAdd(N1
)) {
3654 SDValue MulVal
= DAG
.getNode(N
->getOpcode(), DL
, VT
, N0
, MulOper
);
3655 return DAG
.getNode(ISD::ADD
, DL
, VT
, MulVal
, N0
);
3658 // Skip if already mul24.
3659 if (N
->getOpcode() != ISD::MUL
)
3662 // There are i16 integer mul/mad.
3663 if (Subtarget
->has16BitInsts() && VT
.getScalarType().bitsLE(MVT::i16
))
3666 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3667 // in the source into any_extends if the result of the mul is truncated. Since
3668 // we can assume the high bits are whatever we want, use the underlying value
3669 // to avoid the unknown high bits from interfering.
3670 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3671 N0
= N0
.getOperand(0);
3673 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3674 N1
= N1
.getOperand(0);
3678 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3679 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3680 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3681 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, false);
3682 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3683 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3684 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3685 Mul
= getMul24(DAG
, DL
, N0
, N1
, Size
, true);
3690 // We need to use sext even for MUL_U24, because MUL_U24 is used
3691 // for signed multiply of 8 and 16-bit types.
3692 return DAG
.getSExtOrTrunc(Mul
, DL
, VT
);
3696 AMDGPUTargetLowering::performMulLoHiCombine(SDNode
*N
,
3697 DAGCombinerInfo
&DCI
) const {
3698 if (N
->getValueType(0) != MVT::i32
)
3701 SelectionDAG
&DAG
= DCI
.DAG
;
3704 SDValue N0
= N
->getOperand(0);
3705 SDValue N1
= N
->getOperand(1);
3707 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3708 // in the source into any_extends if the result of the mul is truncated. Since
3709 // we can assume the high bits are whatever we want, use the underlying value
3710 // to avoid the unknown high bits from interfering.
3711 if (N0
.getOpcode() == ISD::ANY_EXTEND
)
3712 N0
= N0
.getOperand(0);
3713 if (N1
.getOpcode() == ISD::ANY_EXTEND
)
3714 N1
= N1
.getOperand(0);
3716 // Try to use two fast 24-bit multiplies (one for each half of the result)
3717 // instead of one slow extending multiply.
3718 unsigned LoOpcode
, HiOpcode
;
3719 if (Subtarget
->hasMulU24() && isU24(N0
, DAG
) && isU24(N1
, DAG
)) {
3720 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3721 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3722 LoOpcode
= AMDGPUISD::MUL_U24
;
3723 HiOpcode
= AMDGPUISD::MULHI_U24
;
3724 } else if (Subtarget
->hasMulI24() && isI24(N0
, DAG
) && isI24(N1
, DAG
)) {
3725 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3726 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3727 LoOpcode
= AMDGPUISD::MUL_I24
;
3728 HiOpcode
= AMDGPUISD::MULHI_I24
;
3733 SDValue Lo
= DAG
.getNode(LoOpcode
, DL
, MVT::i32
, N0
, N1
);
3734 SDValue Hi
= DAG
.getNode(HiOpcode
, DL
, MVT::i32
, N0
, N1
);
3735 DCI
.CombineTo(N
, Lo
, Hi
);
3736 return SDValue(N
, 0);
3739 SDValue
AMDGPUTargetLowering::performMulhsCombine(SDNode
*N
,
3740 DAGCombinerInfo
&DCI
) const {
3741 EVT VT
= N
->getValueType(0);
3743 if (!Subtarget
->hasMulI24() || VT
.isVector())
3746 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3747 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3748 // unnecessarily). isDivergent() is used as an approximation of whether the
3749 // value is in an SGPR.
3750 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3752 if (Subtarget
->hasSMulHi() && !N
->isDivergent())
3755 SelectionDAG
&DAG
= DCI
.DAG
;
3758 SDValue N0
= N
->getOperand(0);
3759 SDValue N1
= N
->getOperand(1);
3761 if (!isI24(N0
, DAG
) || !isI24(N1
, DAG
))
3764 N0
= DAG
.getSExtOrTrunc(N0
, DL
, MVT::i32
);
3765 N1
= DAG
.getSExtOrTrunc(N1
, DL
, MVT::i32
);
3767 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_I24
, DL
, MVT::i32
, N0
, N1
);
3768 DCI
.AddToWorklist(Mulhi
.getNode());
3769 return DAG
.getSExtOrTrunc(Mulhi
, DL
, VT
);
3772 SDValue
AMDGPUTargetLowering::performMulhuCombine(SDNode
*N
,
3773 DAGCombinerInfo
&DCI
) const {
3774 EVT VT
= N
->getValueType(0);
3776 if (!Subtarget
->hasMulU24() || VT
.isVector() || VT
.getSizeInBits() > 32)
3779 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3780 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3781 // unnecessarily). isDivergent() is used as an approximation of whether the
3782 // value is in an SGPR.
3783 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3785 if (Subtarget
->hasSMulHi() && !N
->isDivergent())
3788 SelectionDAG
&DAG
= DCI
.DAG
;
3791 SDValue N0
= N
->getOperand(0);
3792 SDValue N1
= N
->getOperand(1);
3794 if (!isU24(N0
, DAG
) || !isU24(N1
, DAG
))
3797 N0
= DAG
.getZExtOrTrunc(N0
, DL
, MVT::i32
);
3798 N1
= DAG
.getZExtOrTrunc(N1
, DL
, MVT::i32
);
3800 SDValue Mulhi
= DAG
.getNode(AMDGPUISD::MULHI_U24
, DL
, MVT::i32
, N0
, N1
);
3801 DCI
.AddToWorklist(Mulhi
.getNode());
3802 return DAG
.getZExtOrTrunc(Mulhi
, DL
, VT
);
3805 SDValue
AMDGPUTargetLowering::getFFBX_U32(SelectionDAG
&DAG
,
3808 unsigned Opc
) const {
3809 EVT VT
= Op
.getValueType();
3810 EVT LegalVT
= getTypeToTransformTo(*DAG
.getContext(), VT
);
3811 if (LegalVT
!= MVT::i32
&& (Subtarget
->has16BitInsts() &&
3812 LegalVT
!= MVT::i16
))
3816 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, Op
);
3818 SDValue FFBX
= DAG
.getNode(Opc
, DL
, MVT::i32
, Op
);
3820 FFBX
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, FFBX
);
3825 // The native instructions return -1 on 0 input. Optimize out a select that
3826 // produces -1 on 0.
3828 // TODO: If zero is not undef, we could also do this if the output is compared
3829 // against the bitwidth.
3831 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3832 SDValue
AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc
&SL
, SDValue Cond
,
3833 SDValue LHS
, SDValue RHS
,
3834 DAGCombinerInfo
&DCI
) const {
3835 ConstantSDNode
*CmpRhs
= dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
3836 if (!CmpRhs
|| !CmpRhs
->isZero())
3839 SelectionDAG
&DAG
= DCI
.DAG
;
3840 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
3841 SDValue CmpLHS
= Cond
.getOperand(0);
3843 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3844 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3845 if (CCOpcode
== ISD::SETEQ
&&
3846 (isCtlzOpc(RHS
.getOpcode()) || isCttzOpc(RHS
.getOpcode())) &&
3847 RHS
.getOperand(0) == CmpLHS
&& isAllOnesConstant(LHS
)) {
3849 isCttzOpc(RHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
: AMDGPUISD::FFBH_U32
;
3850 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3853 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3854 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3855 if (CCOpcode
== ISD::SETNE
&&
3856 (isCtlzOpc(LHS
.getOpcode()) || isCttzOpc(LHS
.getOpcode())) &&
3857 LHS
.getOperand(0) == CmpLHS
&& isAllOnesConstant(RHS
)) {
3859 isCttzOpc(LHS
.getOpcode()) ? AMDGPUISD::FFBL_B32
: AMDGPUISD::FFBH_U32
;
3861 return getFFBX_U32(DAG
, CmpLHS
, SL
, Opc
);
3867 static SDValue
distributeOpThroughSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3873 SelectionDAG
&DAG
= DCI
.DAG
;
3874 EVT VT
= N1
.getValueType();
3876 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
, Cond
,
3877 N1
.getOperand(0), N2
.getOperand(0));
3878 DCI
.AddToWorklist(NewSelect
.getNode());
3879 return DAG
.getNode(Op
, SL
, VT
, NewSelect
);
3882 // Pull a free FP operation out of a select so it may fold into uses.
3884 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3885 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3887 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3888 // select c, (fabs x), +k -> fabs (select c, x, k)
3890 AMDGPUTargetLowering::foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo
&DCI
,
3892 SelectionDAG
&DAG
= DCI
.DAG
;
3893 SDValue Cond
= N
.getOperand(0);
3894 SDValue LHS
= N
.getOperand(1);
3895 SDValue RHS
= N
.getOperand(2);
3897 EVT VT
= N
.getValueType();
3898 if ((LHS
.getOpcode() == ISD::FABS
&& RHS
.getOpcode() == ISD::FABS
) ||
3899 (LHS
.getOpcode() == ISD::FNEG
&& RHS
.getOpcode() == ISD::FNEG
)) {
3900 if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N
.getNode()))
3903 return distributeOpThroughSelect(DCI
, LHS
.getOpcode(),
3904 SDLoc(N
), Cond
, LHS
, RHS
);
3908 if (RHS
.getOpcode() == ISD::FABS
|| RHS
.getOpcode() == ISD::FNEG
) {
3909 std::swap(LHS
, RHS
);
3913 // TODO: Support vector constants.
3914 ConstantFPSDNode
*CRHS
= dyn_cast
<ConstantFPSDNode
>(RHS
);
3915 if ((LHS
.getOpcode() == ISD::FNEG
|| LHS
.getOpcode() == ISD::FABS
) && CRHS
&&
3916 !selectSupportsSourceMods(N
.getNode())) {
3918 // If one side is an fneg/fabs and the other is a constant, we can push the
3919 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3920 SDValue NewLHS
= LHS
.getOperand(0);
3921 SDValue NewRHS
= RHS
;
3923 // Careful: if the neg can be folded up, don't try to pull it back down.
3924 bool ShouldFoldNeg
= true;
3926 if (NewLHS
.hasOneUse()) {
3927 unsigned Opc
= NewLHS
.getOpcode();
3928 if (LHS
.getOpcode() == ISD::FNEG
&& fnegFoldsIntoOp(NewLHS
.getNode()))
3929 ShouldFoldNeg
= false;
3930 if (LHS
.getOpcode() == ISD::FABS
&& Opc
== ISD::FMUL
)
3931 ShouldFoldNeg
= false;
3934 if (ShouldFoldNeg
) {
3935 if (LHS
.getOpcode() == ISD::FABS
&& CRHS
->isNegative())
3938 // We're going to be forced to use a source modifier anyway, there's no
3939 // point to pulling the negate out unless we can get a size reduction by
3940 // negating the constant.
3942 // TODO: Generalize to use getCheaperNegatedExpression which doesn't know
3943 // about cheaper constants.
3944 if (NewLHS
.getOpcode() == ISD::FABS
&&
3945 getConstantNegateCost(CRHS
) != NegatibleCost::Cheaper
)
3948 if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N
.getNode()))
3951 if (LHS
.getOpcode() == ISD::FNEG
)
3952 NewRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
3955 std::swap(NewLHS
, NewRHS
);
3957 SDValue NewSelect
= DAG
.getNode(ISD::SELECT
, SL
, VT
,
3958 Cond
, NewLHS
, NewRHS
);
3959 DCI
.AddToWorklist(NewSelect
.getNode());
3960 return DAG
.getNode(LHS
.getOpcode(), SL
, VT
, NewSelect
);
3967 SDValue
AMDGPUTargetLowering::performSelectCombine(SDNode
*N
,
3968 DAGCombinerInfo
&DCI
) const {
3969 if (SDValue Folded
= foldFreeOpFromSelect(DCI
, SDValue(N
, 0)))
3972 SDValue Cond
= N
->getOperand(0);
3973 if (Cond
.getOpcode() != ISD::SETCC
)
3976 EVT VT
= N
->getValueType(0);
3977 SDValue LHS
= Cond
.getOperand(0);
3978 SDValue RHS
= Cond
.getOperand(1);
3979 SDValue CC
= Cond
.getOperand(2);
3981 SDValue True
= N
->getOperand(1);
3982 SDValue False
= N
->getOperand(2);
3984 if (Cond
.hasOneUse()) { // TODO: Look for multiple select uses.
3985 SelectionDAG
&DAG
= DCI
.DAG
;
3986 if (DAG
.isConstantValueOfAnyType(True
) &&
3987 !DAG
.isConstantValueOfAnyType(False
)) {
3988 // Swap cmp + select pair to move constant to false input.
3989 // This will allow using VOPC cndmasks more often.
3990 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3993 ISD::CondCode NewCC
=
3994 getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(), LHS
.getValueType());
3996 SDValue NewCond
= DAG
.getSetCC(SL
, Cond
.getValueType(), LHS
, RHS
, NewCC
);
3997 return DAG
.getNode(ISD::SELECT
, SL
, VT
, NewCond
, False
, True
);
4000 if (VT
== MVT::f32
&& Subtarget
->hasFminFmaxLegacy()) {
4002 = combineFMinMaxLegacy(SDLoc(N
), VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
4003 // Revisit this node so we can catch min3/max3/med3 patterns.
4004 //DCI.AddToWorklist(MinMax.getNode());
4009 // There's no reason to not do this if the condition has other uses.
4010 return performCtlz_CttzCombine(SDLoc(N
), Cond
, True
, False
, DCI
);
4013 static bool isInv2Pi(const APFloat
&APF
) {
4014 static const APFloat
KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
4015 static const APFloat
KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
4016 static const APFloat
KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
4018 return APF
.bitwiseIsEqual(KF16
) ||
4019 APF
.bitwiseIsEqual(KF32
) ||
4020 APF
.bitwiseIsEqual(KF64
);
4023 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
4024 // additional cost to negate them.
4025 TargetLowering::NegatibleCost
4026 AMDGPUTargetLowering::getConstantNegateCost(const ConstantFPSDNode
*C
) const {
4028 return C
->isNegative() ? NegatibleCost::Cheaper
: NegatibleCost::Expensive
;
4030 if (Subtarget
->hasInv2PiInlineImm() && isInv2Pi(C
->getValueAPF()))
4031 return C
->isNegative() ? NegatibleCost::Cheaper
: NegatibleCost::Expensive
;
4033 return NegatibleCost::Neutral
;
4036 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N
) const {
4037 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
))
4038 return getConstantNegateCost(C
) == NegatibleCost::Expensive
;
4042 bool AMDGPUTargetLowering::isConstantCheaperToNegate(SDValue N
) const {
4043 if (const ConstantFPSDNode
*C
= isConstOrConstSplatFP(N
))
4044 return getConstantNegateCost(C
) == NegatibleCost::Cheaper
;
4048 static unsigned inverseMinMax(unsigned Opc
) {
4051 return ISD::FMINNUM
;
4053 return ISD::FMAXNUM
;
4054 case ISD::FMAXNUM_IEEE
:
4055 return ISD::FMINNUM_IEEE
;
4056 case ISD::FMINNUM_IEEE
:
4057 return ISD::FMAXNUM_IEEE
;
4058 case AMDGPUISD::FMAX_LEGACY
:
4059 return AMDGPUISD::FMIN_LEGACY
;
4060 case AMDGPUISD::FMIN_LEGACY
:
4061 return AMDGPUISD::FMAX_LEGACY
;
4063 llvm_unreachable("invalid min/max opcode");
4067 /// \return true if it's profitable to try to push an fneg into its source
4069 bool AMDGPUTargetLowering::shouldFoldFNegIntoSrc(SDNode
*N
, SDValue N0
) {
4070 // If the input has multiple uses and we can either fold the negate down, or
4071 // the other uses cannot, give up. This both prevents unprofitable
4072 // transformations and infinite loops: we won't repeatedly try to fold around
4073 // a negate that has no 'good' form.
4074 if (N0
.hasOneUse()) {
4075 // This may be able to fold into the source, but at a code size cost. Don't
4076 // fold if the fold into the user is free.
4077 if (allUsesHaveSourceMods(N
, 0))
4080 if (fnegFoldsIntoOp(N0
.getNode()) &&
4081 (allUsesHaveSourceMods(N
) || !allUsesHaveSourceMods(N0
.getNode())))
4088 SDValue
AMDGPUTargetLowering::performFNegCombine(SDNode
*N
,
4089 DAGCombinerInfo
&DCI
) const {
4090 SelectionDAG
&DAG
= DCI
.DAG
;
4091 SDValue N0
= N
->getOperand(0);
4092 EVT VT
= N
->getValueType(0);
4094 unsigned Opc
= N0
.getOpcode();
4096 if (!shouldFoldFNegIntoSrc(N
, N0
))
4102 if (!mayIgnoreSignedZero(N0
))
4105 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
4106 SDValue LHS
= N0
.getOperand(0);
4107 SDValue RHS
= N0
.getOperand(1);
4109 if (LHS
.getOpcode() != ISD::FNEG
)
4110 LHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
4112 LHS
= LHS
.getOperand(0);
4114 if (RHS
.getOpcode() != ISD::FNEG
)
4115 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
4117 RHS
= RHS
.getOperand(0);
4119 SDValue Res
= DAG
.getNode(ISD::FADD
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
4120 if (Res
.getOpcode() != ISD::FADD
)
4121 return SDValue(); // Op got folded away.
4122 if (!N0
.hasOneUse())
4123 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
4127 case AMDGPUISD::FMUL_LEGACY
: {
4128 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
4129 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
4130 SDValue LHS
= N0
.getOperand(0);
4131 SDValue RHS
= N0
.getOperand(1);
4133 if (LHS
.getOpcode() == ISD::FNEG
)
4134 LHS
= LHS
.getOperand(0);
4135 else if (RHS
.getOpcode() == ISD::FNEG
)
4136 RHS
= RHS
.getOperand(0);
4138 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
4140 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, RHS
, N0
->getFlags());
4141 if (Res
.getOpcode() != Opc
)
4142 return SDValue(); // Op got folded away.
4143 if (!N0
.hasOneUse())
4144 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
4149 // TODO: handle llvm.amdgcn.fma.legacy
4150 if (!mayIgnoreSignedZero(N0
))
4153 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
4154 SDValue LHS
= N0
.getOperand(0);
4155 SDValue MHS
= N0
.getOperand(1);
4156 SDValue RHS
= N0
.getOperand(2);
4158 if (LHS
.getOpcode() == ISD::FNEG
)
4159 LHS
= LHS
.getOperand(0);
4160 else if (MHS
.getOpcode() == ISD::FNEG
)
4161 MHS
= MHS
.getOperand(0);
4163 MHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, MHS
);
4165 if (RHS
.getOpcode() != ISD::FNEG
)
4166 RHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
4168 RHS
= RHS
.getOperand(0);
4170 SDValue Res
= DAG
.getNode(Opc
, SL
, VT
, LHS
, MHS
, RHS
);
4171 if (Res
.getOpcode() != Opc
)
4172 return SDValue(); // Op got folded away.
4173 if (!N0
.hasOneUse())
4174 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
4179 case ISD::FMAXNUM_IEEE
:
4180 case ISD::FMINNUM_IEEE
:
4181 case AMDGPUISD::FMAX_LEGACY
:
4182 case AMDGPUISD::FMIN_LEGACY
: {
4183 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
4184 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
4185 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
4186 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
4188 SDValue LHS
= N0
.getOperand(0);
4189 SDValue RHS
= N0
.getOperand(1);
4191 // 0 doesn't have a negated inline immediate.
4192 // TODO: This constant check should be generalized to other operations.
4193 if (isConstantCostlierToNegate(RHS
))
4196 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, LHS
);
4197 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, VT
, RHS
);
4198 unsigned Opposite
= inverseMinMax(Opc
);
4200 SDValue Res
= DAG
.getNode(Opposite
, SL
, VT
, NegLHS
, NegRHS
, N0
->getFlags());
4201 if (Res
.getOpcode() != Opposite
)
4202 return SDValue(); // Op got folded away.
4203 if (!N0
.hasOneUse())
4204 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
));
4207 case AMDGPUISD::FMED3
: {
4209 for (unsigned I
= 0; I
< 3; ++I
)
4210 Ops
[I
] = DAG
.getNode(ISD::FNEG
, SL
, VT
, N0
->getOperand(I
), N0
->getFlags());
4212 SDValue Res
= DAG
.getNode(AMDGPUISD::FMED3
, SL
, VT
, Ops
, N0
->getFlags());
4213 if (Res
.getOpcode() != AMDGPUISD::FMED3
)
4214 return SDValue(); // Op got folded away.
4216 if (!N0
.hasOneUse()) {
4217 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, VT
, Res
);
4218 DAG
.ReplaceAllUsesWith(N0
, Neg
);
4220 for (SDNode
*U
: Neg
->uses())
4221 DCI
.AddToWorklist(U
);
4226 case ISD::FP_EXTEND
:
4229 case ISD::FNEARBYINT
: // XXX - Should fround be handled?
4231 case ISD::FCANONICALIZE
:
4232 case AMDGPUISD::RCP
:
4233 case AMDGPUISD::RCP_LEGACY
:
4234 case AMDGPUISD::RCP_IFLAG
:
4235 case AMDGPUISD::SIN_HW
: {
4236 SDValue CvtSrc
= N0
.getOperand(0);
4237 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
4238 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
4239 // (fneg (rcp (fneg x))) -> (rcp x)
4240 return DAG
.getNode(Opc
, SL
, VT
, CvtSrc
.getOperand(0));
4243 if (!N0
.hasOneUse())
4246 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
4247 // (fneg (rcp x)) -> (rcp (fneg x))
4248 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
4249 return DAG
.getNode(Opc
, SL
, VT
, Neg
, N0
->getFlags());
4251 case ISD::FP_ROUND
: {
4252 SDValue CvtSrc
= N0
.getOperand(0);
4254 if (CvtSrc
.getOpcode() == ISD::FNEG
) {
4255 // (fneg (fp_round (fneg x))) -> (fp_round x)
4256 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
,
4257 CvtSrc
.getOperand(0), N0
.getOperand(1));
4260 if (!N0
.hasOneUse())
4263 // (fneg (fp_round x)) -> (fp_round (fneg x))
4264 SDValue Neg
= DAG
.getNode(ISD::FNEG
, SL
, CvtSrc
.getValueType(), CvtSrc
);
4265 return DAG
.getNode(ISD::FP_ROUND
, SL
, VT
, Neg
, N0
.getOperand(1));
4267 case ISD::FP16_TO_FP
: {
4268 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
4269 // f16, but legalization of f16 fneg ends up pulling it out of the source.
4270 // Put the fneg back as a legal source operation that can be matched later.
4273 SDValue Src
= N0
.getOperand(0);
4274 EVT SrcVT
= Src
.getValueType();
4276 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
4277 SDValue IntFNeg
= DAG
.getNode(ISD::XOR
, SL
, SrcVT
, Src
,
4278 DAG
.getConstant(0x8000, SL
, SrcVT
));
4279 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFNeg
);
4282 // fneg (select c, a, b) -> select c, (fneg a), (fneg b)
4283 // TODO: Invert conditions of foldFreeOpFromSelect
4286 case ISD::BITCAST
: {
4288 SDValue BCSrc
= N0
.getOperand(0);
4289 if (BCSrc
.getOpcode() == ISD::BUILD_VECTOR
) {
4290 SDValue HighBits
= BCSrc
.getOperand(BCSrc
.getNumOperands() - 1);
4291 if (HighBits
.getValueType().getSizeInBits() != 32 ||
4292 !fnegFoldsIntoOp(HighBits
.getNode()))
4295 // f64 fneg only really needs to operate on the high half of of the
4296 // register, so try to force it to an f32 operation to help make use of
4297 // source modifiers.
4300 // fneg (f64 (bitcast (build_vector x, y))) ->
4301 // f64 (bitcast (build_vector (bitcast i32:x to f32),
4302 // (fneg (bitcast i32:y to f32)))
4304 SDValue CastHi
= DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, HighBits
);
4305 SDValue NegHi
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, CastHi
);
4307 DAG
.getNode(ISD::BITCAST
, SL
, HighBits
.getValueType(), NegHi
);
4309 SmallVector
<SDValue
, 8> Ops(BCSrc
->op_begin(), BCSrc
->op_end());
4310 Ops
.back() = CastBack
;
4311 DCI
.AddToWorklist(NegHi
.getNode());
4313 DAG
.getNode(ISD::BUILD_VECTOR
, SL
, BCSrc
.getValueType(), Ops
);
4314 SDValue Result
= DAG
.getNode(ISD::BITCAST
, SL
, VT
, Build
);
4316 if (!N0
.hasOneUse())
4317 DAG
.ReplaceAllUsesWith(N0
, DAG
.getNode(ISD::FNEG
, SL
, VT
, Result
));
4321 if (BCSrc
.getOpcode() == ISD::SELECT
&& VT
== MVT::f32
&&
4322 BCSrc
.hasOneUse()) {
4323 // fneg (bitcast (f32 (select cond, i32:lhs, i32:rhs))) ->
4324 // select cond, (bitcast i32:lhs to f32), (bitcast i32:rhs to f32)
4326 // TODO: Cast back result for multiple uses is beneficial in some cases.
4329 DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, BCSrc
.getOperand(1));
4331 DAG
.getNode(ISD::BITCAST
, SL
, MVT::f32
, BCSrc
.getOperand(2));
4333 SDValue NegLHS
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, LHS
);
4334 SDValue NegRHS
= DAG
.getNode(ISD::FNEG
, SL
, MVT::f32
, RHS
);
4336 return DAG
.getNode(ISD::SELECT
, SL
, MVT::f32
, BCSrc
.getOperand(0), NegLHS
,
4347 SDValue
AMDGPUTargetLowering::performFAbsCombine(SDNode
*N
,
4348 DAGCombinerInfo
&DCI
) const {
4349 SelectionDAG
&DAG
= DCI
.DAG
;
4350 SDValue N0
= N
->getOperand(0);
4352 if (!N0
.hasOneUse())
4355 switch (N0
.getOpcode()) {
4356 case ISD::FP16_TO_FP
: {
4357 assert(!Subtarget
->has16BitInsts() && "should only see if f16 is illegal");
4359 SDValue Src
= N0
.getOperand(0);
4360 EVT SrcVT
= Src
.getValueType();
4362 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
4363 SDValue IntFAbs
= DAG
.getNode(ISD::AND
, SL
, SrcVT
, Src
,
4364 DAG
.getConstant(0x7fff, SL
, SrcVT
));
4365 return DAG
.getNode(ISD::FP16_TO_FP
, SL
, N
->getValueType(0), IntFAbs
);
4372 SDValue
AMDGPUTargetLowering::performRcpCombine(SDNode
*N
,
4373 DAGCombinerInfo
&DCI
) const {
4374 const auto *CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0));
4378 // XXX - Should this flush denormals?
4379 const APFloat
&Val
= CFP
->getValueAPF();
4380 APFloat
One(Val
.getSemantics(), "1.0");
4381 return DCI
.DAG
.getConstantFP(One
/ Val
, SDLoc(N
), N
->getValueType(0));
4384 SDValue
AMDGPUTargetLowering::PerformDAGCombine(SDNode
*N
,
4385 DAGCombinerInfo
&DCI
) const {
4386 SelectionDAG
&DAG
= DCI
.DAG
;
4389 switch(N
->getOpcode()) {
4392 case ISD::BITCAST
: {
4393 EVT DestVT
= N
->getValueType(0);
4395 // Push casts through vector builds. This helps avoid emitting a large
4396 // number of copies when materializing floating point vector constants.
4398 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4399 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4400 if (DestVT
.isVector()) {
4401 SDValue Src
= N
->getOperand(0);
4402 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
4403 EVT SrcVT
= Src
.getValueType();
4404 unsigned NElts
= DestVT
.getVectorNumElements();
4406 if (SrcVT
.getVectorNumElements() == NElts
) {
4407 EVT DestEltVT
= DestVT
.getVectorElementType();
4409 SmallVector
<SDValue
, 8> CastedElts
;
4411 for (unsigned I
= 0, E
= SrcVT
.getVectorNumElements(); I
!= E
; ++I
) {
4412 SDValue Elt
= Src
.getOperand(I
);
4413 CastedElts
.push_back(DAG
.getNode(ISD::BITCAST
, DL
, DestEltVT
, Elt
));
4416 return DAG
.getBuildVector(DestVT
, SL
, CastedElts
);
4421 if (DestVT
.getSizeInBits() != 64 || !DestVT
.isVector())
4424 // Fold bitcasts of constants.
4426 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4427 // TODO: Generalize and move to DAGCombiner
4428 SDValue Src
= N
->getOperand(0);
4429 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Src
)) {
4431 uint64_t CVal
= C
->getZExtValue();
4432 SDValue BV
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
4433 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
4434 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
4435 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, BV
);
4438 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Src
)) {
4439 const APInt
&Val
= C
->getValueAPF().bitcastToAPInt();
4441 uint64_t CVal
= Val
.getZExtValue();
4442 SDValue Vec
= DAG
.getNode(ISD::BUILD_VECTOR
, SL
, MVT::v2i32
,
4443 DAG
.getConstant(Lo_32(CVal
), SL
, MVT::i32
),
4444 DAG
.getConstant(Hi_32(CVal
), SL
, MVT::i32
));
4446 return DAG
.getNode(ISD::BITCAST
, SL
, DestVT
, Vec
);
4452 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4455 return performShlCombine(N
, DCI
);
4458 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4461 return performSrlCombine(N
, DCI
);
4464 if (DCI
.getDAGCombineLevel() < AfterLegalizeDAG
)
4467 return performSraCombine(N
, DCI
);
4470 return performTruncateCombine(N
, DCI
);
4472 return performMulCombine(N
, DCI
);
4473 case AMDGPUISD::MUL_U24
:
4474 case AMDGPUISD::MUL_I24
: {
4475 if (SDValue Simplified
= simplifyMul24(N
, DCI
))
4477 return performMulCombine(N
, DCI
);
4479 case AMDGPUISD::MULHI_I24
:
4480 case AMDGPUISD::MULHI_U24
:
4481 return simplifyMul24(N
, DCI
);
4482 case ISD::SMUL_LOHI
:
4483 case ISD::UMUL_LOHI
:
4484 return performMulLoHiCombine(N
, DCI
);
4486 return performMulhsCombine(N
, DCI
);
4488 return performMulhuCombine(N
, DCI
);
4490 return performSelectCombine(N
, DCI
);
4492 return performFNegCombine(N
, DCI
);
4494 return performFAbsCombine(N
, DCI
);
4495 case AMDGPUISD::BFE_I32
:
4496 case AMDGPUISD::BFE_U32
: {
4497 assert(!N
->getValueType(0).isVector() &&
4498 "Vector handling of BFE not implemented");
4499 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
4503 uint32_t WidthVal
= Width
->getZExtValue() & 0x1f;
4505 return DAG
.getConstant(0, DL
, MVT::i32
);
4507 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4511 SDValue BitsFrom
= N
->getOperand(0);
4512 uint32_t OffsetVal
= Offset
->getZExtValue() & 0x1f;
4514 bool Signed
= N
->getOpcode() == AMDGPUISD::BFE_I32
;
4516 if (OffsetVal
== 0) {
4517 // This is already sign / zero extended, so try to fold away extra BFEs.
4518 unsigned SignBits
= Signed
? (32 - WidthVal
+ 1) : (32 - WidthVal
);
4520 unsigned OpSignBits
= DAG
.ComputeNumSignBits(BitsFrom
);
4521 if (OpSignBits
>= SignBits
)
4524 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), WidthVal
);
4526 // This is a sign_extend_inreg. Replace it to take advantage of existing
4527 // DAG Combines. If not eliminated, we will match back to BFE during
4530 // TODO: The sext_inreg of extended types ends, although we can could
4531 // handle them in a single BFE.
4532 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, BitsFrom
,
4533 DAG
.getValueType(SmallVT
));
4536 return DAG
.getZeroExtendInReg(BitsFrom
, DL
, SmallVT
);
4539 if (ConstantSDNode
*CVal
= dyn_cast
<ConstantSDNode
>(BitsFrom
)) {
4541 return constantFoldBFE
<int32_t>(DAG
,
4542 CVal
->getSExtValue(),
4548 return constantFoldBFE
<uint32_t>(DAG
,
4549 CVal
->getZExtValue(),
4555 if ((OffsetVal
+ WidthVal
) >= 32 &&
4556 !(Subtarget
->hasSDWA() && OffsetVal
== 16 && WidthVal
== 16)) {
4557 SDValue ShiftVal
= DAG
.getConstant(OffsetVal
, DL
, MVT::i32
);
4558 return DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, MVT::i32
,
4559 BitsFrom
, ShiftVal
);
4562 if (BitsFrom
.hasOneUse()) {
4563 APInt Demanded
= APInt::getBitsSet(32,
4565 OffsetVal
+ WidthVal
);
4568 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
4569 !DCI
.isBeforeLegalizeOps());
4570 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4571 if (TLI
.ShrinkDemandedConstant(BitsFrom
, Demanded
, TLO
) ||
4572 TLI
.SimplifyDemandedBits(BitsFrom
, Demanded
, Known
, TLO
)) {
4573 DCI
.CommitTargetLoweringOpt(TLO
);
4580 return performLoadCombine(N
, DCI
);
4582 return performStoreCombine(N
, DCI
);
4583 case AMDGPUISD::RCP
:
4584 case AMDGPUISD::RCP_IFLAG
:
4585 return performRcpCombine(N
, DCI
);
4586 case ISD::AssertZext
:
4587 case ISD::AssertSext
:
4588 return performAssertSZExtCombine(N
, DCI
);
4589 case ISD::INTRINSIC_WO_CHAIN
:
4590 return performIntrinsicWOChainCombine(N
, DCI
);
4595 //===----------------------------------------------------------------------===//
4597 //===----------------------------------------------------------------------===//
4599 SDValue
AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG
&DAG
,
4600 const TargetRegisterClass
*RC
,
4601 Register Reg
, EVT VT
,
4603 bool RawReg
) const {
4604 MachineFunction
&MF
= DAG
.getMachineFunction();
4605 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4608 if (!MRI
.isLiveIn(Reg
)) {
4609 VReg
= MRI
.createVirtualRegister(RC
);
4610 MRI
.addLiveIn(Reg
, VReg
);
4612 VReg
= MRI
.getLiveInVirtReg(Reg
);
4616 return DAG
.getRegister(VReg
, VT
);
4618 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SL
, VReg
, VT
);
4621 // This may be called multiple times, and nothing prevents creating multiple
4622 // objects at the same offset. See if we already defined this object.
4623 static int getOrCreateFixedStackObject(MachineFrameInfo
&MFI
, unsigned Size
,
4625 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
) {
4626 if (MFI
.getObjectOffset(I
) == Offset
) {
4627 assert(MFI
.getObjectSize(I
) == Size
);
4632 return MFI
.CreateFixedObject(Size
, Offset
, true);
4635 SDValue
AMDGPUTargetLowering::loadStackInputValue(SelectionDAG
&DAG
,
4638 int64_t Offset
) const {
4639 MachineFunction
&MF
= DAG
.getMachineFunction();
4640 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4641 int FI
= getOrCreateFixedStackObject(MFI
, VT
.getStoreSize(), Offset
);
4643 auto SrcPtrInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4644 SDValue Ptr
= DAG
.getFrameIndex(FI
, MVT::i32
);
4646 return DAG
.getLoad(VT
, SL
, DAG
.getEntryNode(), Ptr
, SrcPtrInfo
, Align(4),
4647 MachineMemOperand::MODereferenceable
|
4648 MachineMemOperand::MOInvariant
);
4651 SDValue
AMDGPUTargetLowering::storeStackInputValue(SelectionDAG
&DAG
,
4655 int64_t Offset
) const {
4656 MachineFunction
&MF
= DAG
.getMachineFunction();
4657 MachinePointerInfo DstInfo
= MachinePointerInfo::getStack(MF
, Offset
);
4658 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
4660 SDValue Ptr
= DAG
.getConstant(Offset
, SL
, MVT::i32
);
4661 // Stores to the argument stack area are relative to the stack pointer.
4663 DAG
.getCopyFromReg(Chain
, SL
, Info
->getStackPtrOffsetReg(), MVT::i32
);
4664 Ptr
= DAG
.getNode(ISD::ADD
, SL
, MVT::i32
, SP
, Ptr
);
4665 SDValue Store
= DAG
.getStore(Chain
, SL
, ArgVal
, Ptr
, DstInfo
, Align(4),
4666 MachineMemOperand::MODereferenceable
);
4670 SDValue
AMDGPUTargetLowering::loadInputValue(SelectionDAG
&DAG
,
4671 const TargetRegisterClass
*RC
,
4672 EVT VT
, const SDLoc
&SL
,
4673 const ArgDescriptor
&Arg
) const {
4674 assert(Arg
&& "Attempting to load missing argument");
4676 SDValue V
= Arg
.isRegister() ?
4677 CreateLiveInRegister(DAG
, RC
, Arg
.getRegister(), VT
, SL
) :
4678 loadStackInputValue(DAG
, VT
, SL
, Arg
.getStackOffset());
4680 if (!Arg
.isMasked())
4683 unsigned Mask
= Arg
.getMask();
4684 unsigned Shift
= llvm::countr_zero
<unsigned>(Mask
);
4685 V
= DAG
.getNode(ISD::SRL
, SL
, VT
, V
,
4686 DAG
.getShiftAmountConstant(Shift
, VT
, SL
));
4687 return DAG
.getNode(ISD::AND
, SL
, VT
, V
,
4688 DAG
.getConstant(Mask
>> Shift
, SL
, VT
));
4691 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4692 uint64_t ExplicitKernArgSize
, const ImplicitParameter Param
) const {
4693 unsigned ExplicitArgOffset
= Subtarget
->getExplicitKernelArgOffset();
4694 const Align Alignment
= Subtarget
->getAlignmentForImplicitArgPtr();
4695 uint64_t ArgOffset
=
4696 alignTo(ExplicitKernArgSize
, Alignment
) + ExplicitArgOffset
;
4698 case FIRST_IMPLICIT
:
4701 return ArgOffset
+ AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET
;
4703 return ArgOffset
+ AMDGPU::ImplicitArg::SHARED_BASE_OFFSET
;
4705 return ArgOffset
+ AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET
;
4707 llvm_unreachable("unexpected implicit parameter type");
4710 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4711 const MachineFunction
&MF
, const ImplicitParameter Param
) const {
4712 const AMDGPUMachineFunction
*MFI
= MF
.getInfo
<AMDGPUMachineFunction
>();
4713 return getImplicitParameterOffset(MFI
->getExplicitKernArgSize(), Param
);
4716 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4718 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode
) const {
4719 switch ((AMDGPUISD::NodeType
)Opcode
) {
4720 case AMDGPUISD::FIRST_NUMBER
: break;
4722 NODE_NAME_CASE(UMUL
);
4723 NODE_NAME_CASE(BRANCH_COND
);
4727 NODE_NAME_CASE(ELSE
)
4728 NODE_NAME_CASE(LOOP
)
4729 NODE_NAME_CASE(CALL
)
4730 NODE_NAME_CASE(TC_RETURN
)
4731 NODE_NAME_CASE(TC_RETURN_GFX
)
4732 NODE_NAME_CASE(TRAP
)
4733 NODE_NAME_CASE(RET_GLUE
)
4734 NODE_NAME_CASE(RETURN_TO_EPILOG
)
4735 NODE_NAME_CASE(ENDPGM
)
4736 NODE_NAME_CASE(ENDPGM_TRAP
)
4737 NODE_NAME_CASE(DWORDADDR
)
4738 NODE_NAME_CASE(FRACT
)
4739 NODE_NAME_CASE(SETCC
)
4740 NODE_NAME_CASE(SETREG
)
4741 NODE_NAME_CASE(DENORM_MODE
)
4742 NODE_NAME_CASE(FMA_W_CHAIN
)
4743 NODE_NAME_CASE(FMUL_W_CHAIN
)
4744 NODE_NAME_CASE(CLAMP
)
4745 NODE_NAME_CASE(COS_HW
)
4746 NODE_NAME_CASE(SIN_HW
)
4747 NODE_NAME_CASE(FMAX_LEGACY
)
4748 NODE_NAME_CASE(FMIN_LEGACY
)
4749 NODE_NAME_CASE(FMAX3
)
4750 NODE_NAME_CASE(SMAX3
)
4751 NODE_NAME_CASE(UMAX3
)
4752 NODE_NAME_CASE(FMIN3
)
4753 NODE_NAME_CASE(SMIN3
)
4754 NODE_NAME_CASE(UMIN3
)
4755 NODE_NAME_CASE(FMED3
)
4756 NODE_NAME_CASE(SMED3
)
4757 NODE_NAME_CASE(UMED3
)
4758 NODE_NAME_CASE(FDOT2
)
4759 NODE_NAME_CASE(URECIP
)
4760 NODE_NAME_CASE(DIV_SCALE
)
4761 NODE_NAME_CASE(DIV_FMAS
)
4762 NODE_NAME_CASE(DIV_FIXUP
)
4763 NODE_NAME_CASE(FMAD_FTZ
)
4766 NODE_NAME_CASE(RCP_LEGACY
)
4767 NODE_NAME_CASE(RCP_IFLAG
)
4770 NODE_NAME_CASE(FMUL_LEGACY
)
4771 NODE_NAME_CASE(RSQ_CLAMP
)
4772 NODE_NAME_CASE(FP_CLASS
)
4773 NODE_NAME_CASE(DOT4
)
4774 NODE_NAME_CASE(CARRY
)
4775 NODE_NAME_CASE(BORROW
)
4776 NODE_NAME_CASE(BFE_U32
)
4777 NODE_NAME_CASE(BFE_I32
)
4780 NODE_NAME_CASE(FFBH_U32
)
4781 NODE_NAME_CASE(FFBH_I32
)
4782 NODE_NAME_CASE(FFBL_B32
)
4783 NODE_NAME_CASE(MUL_U24
)
4784 NODE_NAME_CASE(MUL_I24
)
4785 NODE_NAME_CASE(MULHI_U24
)
4786 NODE_NAME_CASE(MULHI_I24
)
4787 NODE_NAME_CASE(MAD_U24
)
4788 NODE_NAME_CASE(MAD_I24
)
4789 NODE_NAME_CASE(MAD_I64_I32
)
4790 NODE_NAME_CASE(MAD_U64_U32
)
4791 NODE_NAME_CASE(PERM
)
4792 NODE_NAME_CASE(TEXTURE_FETCH
)
4793 NODE_NAME_CASE(R600_EXPORT
)
4794 NODE_NAME_CASE(CONST_ADDRESS
)
4795 NODE_NAME_CASE(REGISTER_LOAD
)
4796 NODE_NAME_CASE(REGISTER_STORE
)
4797 NODE_NAME_CASE(SAMPLE
)
4798 NODE_NAME_CASE(SAMPLEB
)
4799 NODE_NAME_CASE(SAMPLED
)
4800 NODE_NAME_CASE(SAMPLEL
)
4801 NODE_NAME_CASE(CVT_F32_UBYTE0
)
4802 NODE_NAME_CASE(CVT_F32_UBYTE1
)
4803 NODE_NAME_CASE(CVT_F32_UBYTE2
)
4804 NODE_NAME_CASE(CVT_F32_UBYTE3
)
4805 NODE_NAME_CASE(CVT_PKRTZ_F16_F32
)
4806 NODE_NAME_CASE(CVT_PKNORM_I16_F32
)
4807 NODE_NAME_CASE(CVT_PKNORM_U16_F32
)
4808 NODE_NAME_CASE(CVT_PK_I16_I32
)
4809 NODE_NAME_CASE(CVT_PK_U16_U32
)
4810 NODE_NAME_CASE(FP_TO_FP16
)
4811 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR
)
4812 NODE_NAME_CASE(CONST_DATA_PTR
)
4813 NODE_NAME_CASE(PC_ADD_REL_OFFSET
)
4815 NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD
)
4816 NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD
)
4817 NODE_NAME_CASE(DUMMY_CHAIN
)
4818 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER
: break;
4819 NODE_NAME_CASE(LOAD_D16_HI
)
4820 NODE_NAME_CASE(LOAD_D16_LO
)
4821 NODE_NAME_CASE(LOAD_D16_HI_I8
)
4822 NODE_NAME_CASE(LOAD_D16_HI_U8
)
4823 NODE_NAME_CASE(LOAD_D16_LO_I8
)
4824 NODE_NAME_CASE(LOAD_D16_LO_U8
)
4825 NODE_NAME_CASE(STORE_MSKOR
)
4826 NODE_NAME_CASE(LOAD_CONSTANT
)
4827 NODE_NAME_CASE(TBUFFER_STORE_FORMAT
)
4828 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16
)
4829 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT
)
4830 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16
)
4831 NODE_NAME_CASE(DS_ORDERED_COUNT
)
4832 NODE_NAME_CASE(ATOMIC_CMP_SWAP
)
4833 NODE_NAME_CASE(ATOMIC_LOAD_FMIN
)
4834 NODE_NAME_CASE(ATOMIC_LOAD_FMAX
)
4835 NODE_NAME_CASE(BUFFER_LOAD
)
4836 NODE_NAME_CASE(BUFFER_LOAD_UBYTE
)
4837 NODE_NAME_CASE(BUFFER_LOAD_USHORT
)
4838 NODE_NAME_CASE(BUFFER_LOAD_BYTE
)
4839 NODE_NAME_CASE(BUFFER_LOAD_SHORT
)
4840 NODE_NAME_CASE(BUFFER_LOAD_FORMAT
)
4841 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_TFE
)
4842 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16
)
4843 NODE_NAME_CASE(SBUFFER_LOAD
)
4844 NODE_NAME_CASE(BUFFER_STORE
)
4845 NODE_NAME_CASE(BUFFER_STORE_BYTE
)
4846 NODE_NAME_CASE(BUFFER_STORE_SHORT
)
4847 NODE_NAME_CASE(BUFFER_STORE_FORMAT
)
4848 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16
)
4849 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP
)
4850 NODE_NAME_CASE(BUFFER_ATOMIC_ADD
)
4851 NODE_NAME_CASE(BUFFER_ATOMIC_SUB
)
4852 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN
)
4853 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN
)
4854 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX
)
4855 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX
)
4856 NODE_NAME_CASE(BUFFER_ATOMIC_AND
)
4857 NODE_NAME_CASE(BUFFER_ATOMIC_OR
)
4858 NODE_NAME_CASE(BUFFER_ATOMIC_XOR
)
4859 NODE_NAME_CASE(BUFFER_ATOMIC_INC
)
4860 NODE_NAME_CASE(BUFFER_ATOMIC_DEC
)
4861 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP
)
4862 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB
)
4863 NODE_NAME_CASE(BUFFER_ATOMIC_FADD
)
4864 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN
)
4865 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX
)
4867 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER
: break;
4872 SDValue
AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand
,
4873 SelectionDAG
&DAG
, int Enabled
,
4874 int &RefinementSteps
,
4875 bool &UseOneConstNR
,
4876 bool Reciprocal
) const {
4877 EVT VT
= Operand
.getValueType();
4879 if (VT
== MVT::f32
) {
4880 RefinementSteps
= 0;
4881 return DAG
.getNode(AMDGPUISD::RSQ
, SDLoc(Operand
), VT
, Operand
);
4884 // TODO: There is also f64 rsq instruction, but the documentation is less
4885 // clear on its precision.
4890 SDValue
AMDGPUTargetLowering::getRecipEstimate(SDValue Operand
,
4891 SelectionDAG
&DAG
, int Enabled
,
4892 int &RefinementSteps
) const {
4893 EVT VT
= Operand
.getValueType();
4895 if (VT
== MVT::f32
) {
4896 // Reciprocal, < 1 ulp error.
4898 // This reciprocal approximation converges to < 0.5 ulp error with one
4899 // newton rhapson performed with two fused multiple adds (FMAs).
4901 RefinementSteps
= 0;
4902 return DAG
.getNode(AMDGPUISD::RCP
, SDLoc(Operand
), VT
, Operand
);
4905 // TODO: There is also f64 rcp instruction, but the documentation is less
4906 // clear on its precision.
4911 static unsigned workitemIntrinsicDim(unsigned ID
) {
4913 case Intrinsic::amdgcn_workitem_id_x
:
4915 case Intrinsic::amdgcn_workitem_id_y
:
4917 case Intrinsic::amdgcn_workitem_id_z
:
4920 llvm_unreachable("not a workitem intrinsic");
4924 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4925 const SDValue Op
, KnownBits
&Known
,
4926 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
4928 Known
.resetAll(); // Don't know anything.
4930 unsigned Opc
= Op
.getOpcode();
4935 case AMDGPUISD::CARRY
:
4936 case AMDGPUISD::BORROW
: {
4937 Known
.Zero
= APInt::getHighBitsSet(32, 31);
4941 case AMDGPUISD::BFE_I32
:
4942 case AMDGPUISD::BFE_U32
: {
4943 ConstantSDNode
*CWidth
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
4947 uint32_t Width
= CWidth
->getZExtValue() & 0x1f;
4949 if (Opc
== AMDGPUISD::BFE_U32
)
4950 Known
.Zero
= APInt::getHighBitsSet(32, 32 - Width
);
4954 case AMDGPUISD::FP_TO_FP16
: {
4955 unsigned BitWidth
= Known
.getBitWidth();
4957 // High bits are zero.
4958 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
4961 case AMDGPUISD::MUL_U24
:
4962 case AMDGPUISD::MUL_I24
: {
4963 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
4964 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
4965 unsigned TrailZ
= LHSKnown
.countMinTrailingZeros() +
4966 RHSKnown
.countMinTrailingZeros();
4967 Known
.Zero
.setLowBits(std::min(TrailZ
, 32u));
4968 // Skip extra check if all bits are known zeros.
4972 // Truncate to 24 bits.
4973 LHSKnown
= LHSKnown
.trunc(24);
4974 RHSKnown
= RHSKnown
.trunc(24);
4976 if (Opc
== AMDGPUISD::MUL_I24
) {
4977 unsigned LHSValBits
= LHSKnown
.countMaxSignificantBits();
4978 unsigned RHSValBits
= RHSKnown
.countMaxSignificantBits();
4979 unsigned MaxValBits
= LHSValBits
+ RHSValBits
;
4980 if (MaxValBits
> 32)
4982 unsigned SignBits
= 32 - MaxValBits
+ 1;
4983 bool LHSNegative
= LHSKnown
.isNegative();
4984 bool LHSNonNegative
= LHSKnown
.isNonNegative();
4985 bool LHSPositive
= LHSKnown
.isStrictlyPositive();
4986 bool RHSNegative
= RHSKnown
.isNegative();
4987 bool RHSNonNegative
= RHSKnown
.isNonNegative();
4988 bool RHSPositive
= RHSKnown
.isStrictlyPositive();
4990 if ((LHSNonNegative
&& RHSNonNegative
) || (LHSNegative
&& RHSNegative
))
4991 Known
.Zero
.setHighBits(SignBits
);
4992 else if ((LHSNegative
&& RHSPositive
) || (LHSPositive
&& RHSNegative
))
4993 Known
.One
.setHighBits(SignBits
);
4995 unsigned LHSValBits
= LHSKnown
.countMaxActiveBits();
4996 unsigned RHSValBits
= RHSKnown
.countMaxActiveBits();
4997 unsigned MaxValBits
= LHSValBits
+ RHSValBits
;
4998 if (MaxValBits
>= 32)
5000 Known
.Zero
.setBitsFrom(MaxValBits
);
5004 case AMDGPUISD::PERM
: {
5005 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
5009 KnownBits LHSKnown
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
5010 KnownBits RHSKnown
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
5011 unsigned Sel
= CMask
->getZExtValue();
5013 for (unsigned I
= 0; I
< 32; I
+= 8) {
5014 unsigned SelBits
= Sel
& 0xff;
5017 Known
.One
|= ((RHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
5018 Known
.Zero
|= ((RHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
5019 } else if (SelBits
< 7) {
5020 SelBits
= (SelBits
& 3) * 8;
5021 Known
.One
|= ((LHSKnown
.One
.getZExtValue() >> SelBits
) & 0xff) << I
;
5022 Known
.Zero
|= ((LHSKnown
.Zero
.getZExtValue() >> SelBits
) & 0xff) << I
;
5023 } else if (SelBits
== 0x0c) {
5024 Known
.Zero
|= 0xFFull
<< I
;
5025 } else if (SelBits
> 0x0c) {
5026 Known
.One
|= 0xFFull
<< I
;
5032 case AMDGPUISD::BUFFER_LOAD_UBYTE
: {
5033 Known
.Zero
.setHighBits(24);
5036 case AMDGPUISD::BUFFER_LOAD_USHORT
: {
5037 Known
.Zero
.setHighBits(16);
5040 case AMDGPUISD::LDS
: {
5041 auto GA
= cast
<GlobalAddressSDNode
>(Op
.getOperand(0).getNode());
5042 Align Alignment
= GA
->getGlobal()->getPointerAlignment(DAG
.getDataLayout());
5044 Known
.Zero
.setHighBits(16);
5045 Known
.Zero
.setLowBits(Log2(Alignment
));
5048 case AMDGPUISD::SMIN3
:
5049 case AMDGPUISD::SMAX3
:
5050 case AMDGPUISD::SMED3
:
5051 case AMDGPUISD::UMIN3
:
5052 case AMDGPUISD::UMAX3
:
5053 case AMDGPUISD::UMED3
: {
5054 KnownBits Known2
= DAG
.computeKnownBits(Op
.getOperand(2), Depth
+ 1);
5055 if (Known2
.isUnknown())
5058 KnownBits Known1
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+ 1);
5059 if (Known1
.isUnknown())
5062 KnownBits Known0
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
5063 if (Known0
.isUnknown())
5066 // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling.
5067 Known
.Zero
= Known0
.Zero
& Known1
.Zero
& Known2
.Zero
;
5068 Known
.One
= Known0
.One
& Known1
.One
& Known2
.One
;
5071 case ISD::INTRINSIC_WO_CHAIN
: {
5072 unsigned IID
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5074 case Intrinsic::amdgcn_workitem_id_x
:
5075 case Intrinsic::amdgcn_workitem_id_y
:
5076 case Intrinsic::amdgcn_workitem_id_z
: {
5077 unsigned MaxValue
= Subtarget
->getMaxWorkitemID(
5078 DAG
.getMachineFunction().getFunction(), workitemIntrinsicDim(IID
));
5079 Known
.Zero
.setHighBits(llvm::countl_zero(MaxValue
));
5089 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
5090 SDValue Op
, const APInt
&DemandedElts
, const SelectionDAG
&DAG
,
5091 unsigned Depth
) const {
5092 switch (Op
.getOpcode()) {
5093 case AMDGPUISD::BFE_I32
: {
5094 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
5098 unsigned SignBits
= 32 - Width
->getZExtValue() + 1;
5099 if (!isNullConstant(Op
.getOperand(1)))
5102 // TODO: Could probably figure something out with non-0 offsets.
5103 unsigned Op0SignBits
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
5104 return std::max(SignBits
, Op0SignBits
);
5107 case AMDGPUISD::BFE_U32
: {
5108 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
5109 return Width
? 32 - (Width
->getZExtValue() & 0x1f) : 1;
5112 case AMDGPUISD::CARRY
:
5113 case AMDGPUISD::BORROW
:
5115 case AMDGPUISD::BUFFER_LOAD_BYTE
:
5117 case AMDGPUISD::BUFFER_LOAD_SHORT
:
5119 case AMDGPUISD::BUFFER_LOAD_UBYTE
:
5121 case AMDGPUISD::BUFFER_LOAD_USHORT
:
5123 case AMDGPUISD::FP_TO_FP16
:
5125 case AMDGPUISD::SMIN3
:
5126 case AMDGPUISD::SMAX3
:
5127 case AMDGPUISD::SMED3
:
5128 case AMDGPUISD::UMIN3
:
5129 case AMDGPUISD::UMAX3
:
5130 case AMDGPUISD::UMED3
: {
5131 unsigned Tmp2
= DAG
.ComputeNumSignBits(Op
.getOperand(2), Depth
+ 1);
5133 return 1; // Early out.
5135 unsigned Tmp1
= DAG
.ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
5137 return 1; // Early out.
5139 unsigned Tmp0
= DAG
.ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
5141 return 1; // Early out.
5143 return std::min(Tmp0
, std::min(Tmp1
, Tmp2
));
5150 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
5151 GISelKnownBits
&Analysis
, Register R
,
5152 const APInt
&DemandedElts
, const MachineRegisterInfo
&MRI
,
5153 unsigned Depth
) const {
5154 const MachineInstr
*MI
= MRI
.getVRegDef(R
);
5158 // TODO: Check range metadata on MMO.
5159 switch (MI
->getOpcode()) {
5160 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE
:
5162 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT
:
5164 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE
:
5166 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT
:
5168 case AMDGPU::G_AMDGPU_SMED3
:
5169 case AMDGPU::G_AMDGPU_UMED3
: {
5170 auto [Dst
, Src0
, Src1
, Src2
] = MI
->getFirst4Regs();
5171 unsigned Tmp2
= Analysis
.computeNumSignBits(Src2
, DemandedElts
, Depth
+ 1);
5174 unsigned Tmp1
= Analysis
.computeNumSignBits(Src1
, DemandedElts
, Depth
+ 1);
5177 unsigned Tmp0
= Analysis
.computeNumSignBits(Src0
, DemandedElts
, Depth
+ 1);
5180 return std::min(Tmp0
, std::min(Tmp1
, Tmp2
));
5187 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
5188 const SelectionDAG
&DAG
,
5190 unsigned Depth
) const {
5191 unsigned Opcode
= Op
.getOpcode();
5193 case AMDGPUISD::FMIN_LEGACY
:
5194 case AMDGPUISD::FMAX_LEGACY
: {
5198 // TODO: Can check no nans on one of the operands for each one, but which
5202 case AMDGPUISD::FMUL_LEGACY
:
5203 case AMDGPUISD::CVT_PKRTZ_F16_F32
: {
5206 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
5207 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
5209 case AMDGPUISD::FMED3
:
5210 case AMDGPUISD::FMIN3
:
5211 case AMDGPUISD::FMAX3
:
5212 case AMDGPUISD::FMAD_FTZ
: {
5215 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
5216 DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
5217 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
5219 case AMDGPUISD::CVT_F32_UBYTE0
:
5220 case AMDGPUISD::CVT_F32_UBYTE1
:
5221 case AMDGPUISD::CVT_F32_UBYTE2
:
5222 case AMDGPUISD::CVT_F32_UBYTE3
:
5225 case AMDGPUISD::RCP
:
5226 case AMDGPUISD::RSQ
:
5227 case AMDGPUISD::RCP_LEGACY
:
5228 case AMDGPUISD::RSQ_CLAMP
: {
5232 // TODO: Need is known positive check.
5236 case AMDGPUISD::FRACT
: {
5239 return DAG
.isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
5241 case AMDGPUISD::DIV_SCALE
:
5242 case AMDGPUISD::DIV_FMAS
:
5243 case AMDGPUISD::DIV_FIXUP
:
5244 // TODO: Refine on operands.
5246 case AMDGPUISD::SIN_HW
:
5247 case AMDGPUISD::COS_HW
: {
5248 // TODO: Need check for infinity
5251 case ISD::INTRINSIC_WO_CHAIN
: {
5252 unsigned IntrinsicID
5253 = cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5254 // TODO: Handle more intrinsics
5255 switch (IntrinsicID
) {
5256 case Intrinsic::amdgcn_cubeid
:
5259 case Intrinsic::amdgcn_frexp_mant
: {
5262 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
5264 case Intrinsic::amdgcn_cvt_pkrtz
: {
5267 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
5268 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
5270 case Intrinsic::amdgcn_rcp
:
5271 case Intrinsic::amdgcn_rsq
:
5272 case Intrinsic::amdgcn_rcp_legacy
:
5273 case Intrinsic::amdgcn_rsq_legacy
:
5274 case Intrinsic::amdgcn_rsq_clamp
: {
5278 // TODO: Need is known positive check.
5281 case Intrinsic::amdgcn_trig_preop
:
5282 case Intrinsic::amdgcn_fdot2
:
5283 // TODO: Refine on operand
5285 case Intrinsic::amdgcn_fma_legacy
:
5288 return DAG
.isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
5289 DAG
.isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1) &&
5290 DAG
.isKnownNeverNaN(Op
.getOperand(3), SNaN
, Depth
+ 1);
5300 bool AMDGPUTargetLowering::isReassocProfitable(MachineRegisterInfo
&MRI
,
5301 Register N0
, Register N1
) const {
5302 return true; // FIXME: handle regbanks
5305 TargetLowering::AtomicExpansionKind
5306 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*RMW
) const {
5307 switch (RMW
->getOperation()) {
5308 case AtomicRMWInst::Nand
:
5309 case AtomicRMWInst::FAdd
:
5310 case AtomicRMWInst::FSub
:
5311 case AtomicRMWInst::FMax
:
5312 case AtomicRMWInst::FMin
:
5313 return AtomicExpansionKind::CmpXChg
;
5315 if (auto *IntTy
= dyn_cast
<IntegerType
>(RMW
->getType())) {
5316 unsigned Size
= IntTy
->getBitWidth();
5317 if (Size
== 32 || Size
== 64)
5318 return AtomicExpansionKind::None
;
5321 return AtomicExpansionKind::CmpXChg
;
5326 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal(
5327 unsigned Opc
, LLT Ty1
, LLT Ty2
) const {
5328 return (Ty1
== LLT::scalar(32) || Ty1
== LLT::scalar(64)) &&
5329 Ty2
== LLT::scalar(32);
5332 /// Whether it is profitable to sink the operands of an
5333 /// Instruction I to the basic block of I.
5334 /// This helps using several modifiers (like abs and neg) more often.
5335 bool AMDGPUTargetLowering::shouldSinkOperands(
5336 Instruction
*I
, SmallVectorImpl
<Use
*> &Ops
) const {
5337 using namespace PatternMatch
;
5339 for (auto &Op
: I
->operands()) {
5340 // Ensure we are not already sinking this operand.
5341 if (any_of(Ops
, [&](Use
*U
) { return U
->get() == Op
.get(); }))
5344 if (match(&Op
, m_FAbs(m_Value())) || match(&Op
, m_FNeg(m_Value())))
5348 return !Ops
.empty();