[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / AArch64 / GISel / AArch64LegalizerInfo.cpp
blobe9df7e001d380d64b9abe305d20e18865c13cf10
1 //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
14 #include "AArch64LegalizerInfo.h"
15 #include "AArch64RegisterBankInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/IntrinsicsAArch64.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/MathExtras.h"
31 #include <initializer_list>
33 #define DEBUG_TYPE "aarch64-legalinfo"
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace LegalizeMutations;
38 using namespace LegalityPredicates;
39 using namespace MIPatternMatch;
41 AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
42 : ST(&ST) {
43 using namespace TargetOpcode;
44 const LLT p0 = LLT::pointer(0, 64);
45 const LLT s1 = LLT::scalar(1);
46 const LLT s8 = LLT::scalar(8);
47 const LLT s16 = LLT::scalar(16);
48 const LLT s32 = LLT::scalar(32);
49 const LLT s64 = LLT::scalar(64);
50 const LLT s128 = LLT::scalar(128);
51 const LLT v16s8 = LLT::fixed_vector(16, 8);
52 const LLT v8s8 = LLT::fixed_vector(8, 8);
53 const LLT v4s8 = LLT::fixed_vector(4, 8);
54 const LLT v8s16 = LLT::fixed_vector(8, 16);
55 const LLT v4s16 = LLT::fixed_vector(4, 16);
56 const LLT v2s16 = LLT::fixed_vector(2, 16);
57 const LLT v2s32 = LLT::fixed_vector(2, 32);
58 const LLT v4s32 = LLT::fixed_vector(4, 32);
59 const LLT v2s64 = LLT::fixed_vector(2, 64);
60 const LLT v2p0 = LLT::fixed_vector(2, p0);
62 std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
63 v16s8, v8s16, v4s32,
64 v2s64, v2p0,
65 /* End 128bit types */
66 /* Begin 64bit types */
67 v8s8, v4s16, v2s32};
69 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
71 // FIXME: support subtargets which have neon/fp-armv8 disabled.
72 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
73 getLegacyLegalizerInfo().computeTables();
74 return;
77 // Some instructions only support s16 if the subtarget has full 16-bit FP
78 // support.
79 const bool HasFP16 = ST.hasFullFP16();
80 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
82 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
83 .legalFor({p0, s1, s8, s16, s32, s64})
84 .legalFor(PackedVectorAllTypeList)
85 .widenScalarToNextPow2(0)
86 .clampScalar(0, s8, s64)
87 .fewerElementsIf(
88 [=](const LegalityQuery &Query) {
89 return Query.Types[0].isVector() &&
90 (Query.Types[0].getElementType() != s64 ||
91 Query.Types[0].getNumElements() != 2);
93 [=](const LegalityQuery &Query) {
94 LLT EltTy = Query.Types[0].getElementType();
95 if (EltTy == s64)
96 return std::make_pair(0, LLT::fixed_vector(2, 64));
97 return std::make_pair(0, EltTy);
98 });
100 getActionDefinitionsBuilder(G_PHI)
101 .legalFor({p0, s16, s32, s64})
102 .legalFor(PackedVectorAllTypeList)
103 .widenScalarToNextPow2(0)
104 .clampScalar(0, s16, s64)
105 // Maximum: sN * k = 128
106 .clampMaxNumElements(0, s8, 16)
107 .clampMaxNumElements(0, s16, 8)
108 .clampMaxNumElements(0, s32, 4)
109 .clampMaxNumElements(0, s64, 2)
110 .clampMaxNumElements(0, p0, 2);
112 getActionDefinitionsBuilder(G_BSWAP)
113 .legalFor({s32, s64, v4s32, v2s32, v2s64})
114 .widenScalarToNextPow2(0)
115 .clampScalar(0, s32, s64);
117 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
118 .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
119 .scalarizeIf(
120 [=](const LegalityQuery &Query) {
121 return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
124 .legalFor({v2s64})
125 .widenScalarToNextPow2(0)
126 .clampScalar(0, s32, s64)
127 .clampNumElements(0, v2s32, v4s32)
128 .clampNumElements(0, v2s64, v2s64)
129 .moreElementsToNextPow2(0);
131 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
132 .customIf([=](const LegalityQuery &Query) {
133 const auto &SrcTy = Query.Types[0];
134 const auto &AmtTy = Query.Types[1];
135 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
136 AmtTy.getSizeInBits() == 32;
138 .legalFor({
139 {s32, s32},
140 {s32, s64},
141 {s64, s64},
142 {v8s8, v8s8},
143 {v16s8, v16s8},
144 {v4s16, v4s16},
145 {v8s16, v8s16},
146 {v2s32, v2s32},
147 {v4s32, v4s32},
148 {v2s64, v2s64},
150 .widenScalarToNextPow2(0)
151 .clampScalar(1, s32, s64)
152 .clampScalar(0, s32, s64)
153 .clampNumElements(0, v2s32, v4s32)
154 .clampNumElements(0, v2s64, v2s64)
155 .moreElementsToNextPow2(0)
156 .minScalarSameAs(1, 0);
158 getActionDefinitionsBuilder(G_PTR_ADD)
159 .legalFor({{p0, s64}, {v2p0, v2s64}})
160 .clampScalar(1, s64, s64);
162 getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
164 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
165 .legalFor({s32, s64})
166 .libcallFor({s128})
167 .clampScalar(0, s32, s64)
168 .widenScalarToNextPow2(0)
169 .scalarize(0);
171 getActionDefinitionsBuilder({G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
172 .lowerFor({s1, s8, s16, s32, s64, v2s64, v4s32, v2s32})
173 .widenScalarOrEltToNextPow2(0)
174 .clampScalarOrElt(0, s32, s64)
175 .clampNumElements(0, v2s32, v4s32)
176 .clampNumElements(0, v2s64, v2s64)
177 .moreElementsToNextPow2(0);
180 getActionDefinitionsBuilder({G_SMULO, G_UMULO})
181 .widenScalarToNextPow2(0, /*Min = */ 32)
182 .clampScalar(0, s32, s64)
183 .lowerIf(typeIs(1, s1));
185 getActionDefinitionsBuilder({G_SMULH, G_UMULH})
186 .legalFor({s64, v8s16, v16s8, v4s32})
187 .lower();
189 getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
190 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
191 .clampNumElements(0, v8s8, v16s8)
192 .clampNumElements(0, v4s16, v8s16)
193 .clampNumElements(0, v2s32, v4s32)
194 // FIXME: This sholdn't be needed as v2s64 types are going to
195 // be expanded anyway, but G_ICMP doesn't support splitting vectors yet
196 .clampNumElements(0, v2s64, v2s64)
197 .lower();
199 getActionDefinitionsBuilder(
200 {G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
201 .legalFor({{s32, s1}, {s64, s1}})
202 .clampScalar(0, s32, s64)
203 .widenScalarToNextPow2(0);
205 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
206 .legalFor({MinFPScalar, s32, s64, v2s64, v4s32, v2s32})
207 .clampScalar(0, MinFPScalar, s64)
208 .clampNumElements(0, v2s32, v4s32)
209 .clampNumElements(0, v2s64, v2s64);
211 getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
213 getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
214 G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
215 G_FNEARBYINT, G_INTRINSIC_LRINT})
216 // If we don't have full FP16 support, then scalarize the elements of
217 // vectors containing fp16 types.
218 .fewerElementsIf(
219 [=, &ST](const LegalityQuery &Query) {
220 const auto &Ty = Query.Types[0];
221 return Ty.isVector() && Ty.getElementType() == s16 &&
222 !ST.hasFullFP16();
224 [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
225 // If we don't have full FP16 support, then widen s16 to s32 if we
226 // encounter it.
227 .widenScalarIf(
228 [=, &ST](const LegalityQuery &Query) {
229 return Query.Types[0] == s16 && !ST.hasFullFP16();
231 [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
232 .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
234 getActionDefinitionsBuilder(
235 {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
236 // We need a call for these, so we always need to scalarize.
237 .scalarize(0)
238 // Regardless of FP16 support, widen 16-bit elements to 32-bits.
239 .minScalar(0, s32)
240 .libcallFor({s32, s64, v2s32, v4s32, v2s64});
242 getActionDefinitionsBuilder(G_INSERT)
243 .legalIf(all(typeInSet(0, {s32, s64, p0}),
244 typeInSet(1, {s1, s8, s16, s32}), smallerThan(1, 0)))
245 .widenScalarToNextPow2(0)
246 .clampScalar(0, s32, s64)
247 .widenScalarToNextPow2(1)
248 .minScalar(1, s8)
249 .maxScalarIf(typeInSet(0, {s32}), 1, s16)
250 .maxScalarIf(typeInSet(0, {s64, p0}), 1, s32);
252 getActionDefinitionsBuilder(G_EXTRACT)
253 .legalIf(all(typeInSet(0, {s16, s32, s64, p0}),
254 typeInSet(1, {s32, s64, s128, p0}), smallerThan(0, 1)))
255 .widenScalarToNextPow2(1)
256 .clampScalar(1, s32, s128)
257 .widenScalarToNextPow2(0)
258 .minScalar(0, s16)
259 .maxScalarIf(typeInSet(1, {s32}), 0, s16)
260 .maxScalarIf(typeInSet(1, {s64, p0}), 0, s32)
261 .maxScalarIf(typeInSet(1, {s128}), 0, s64);
263 getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
264 .lowerIf(atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Unordered))
265 .legalForTypesWithMemDesc({{s32, p0, s8, 8},
266 {s32, p0, s16, 8},
267 {s32, p0, s32, 8},
268 {s64, p0, s8, 2},
269 {s64, p0, s16, 2},
270 {s64, p0, s32, 4},
271 {s64, p0, s64, 8},
272 {p0, p0, s64, 8},
273 {v2s32, p0, s64, 8}})
274 .widenScalarToNextPow2(0)
275 .clampScalar(0, s32, s64)
276 // TODO: We could support sum-of-pow2's but the lowering code doesn't know
277 // how to do that yet.
278 .unsupportedIfMemSizeNotPow2()
279 // Lower anything left over into G_*EXT and G_LOAD
280 .lower();
282 auto IsPtrVecPred = [=](const LegalityQuery &Query) {
283 const LLT &ValTy = Query.Types[0];
284 if (!ValTy.isVector())
285 return false;
286 const LLT EltTy = ValTy.getElementType();
287 return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
290 getActionDefinitionsBuilder(G_LOAD)
291 .customIf([=](const LegalityQuery &Query) {
292 return Query.Types[0] == s128 &&
293 Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic;
295 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
296 {s16, p0, s16, 8},
297 {s32, p0, s32, 8},
298 {s64, p0, s64, 8},
299 {p0, p0, s64, 8},
300 {s128, p0, s128, 8},
301 {v8s8, p0, s64, 8},
302 {v16s8, p0, s128, 8},
303 {v4s16, p0, s64, 8},
304 {v8s16, p0, s128, 8},
305 {v2s32, p0, s64, 8},
306 {v4s32, p0, s128, 8},
307 {v2s64, p0, s128, 8}})
308 // These extends are also legal
309 .legalForTypesWithMemDesc({{s32, p0, s8, 8}, {s32, p0, s16, 8}})
310 .widenScalarToNextPow2(0, /* MinSize = */8)
311 .lowerIfMemSizeNotPow2()
312 .clampScalar(0, s8, s64)
313 .narrowScalarIf([=](const LegalityQuery &Query) {
314 // Clamp extending load results to 32-bits.
315 return Query.Types[0].isScalar() &&
316 Query.Types[0] != Query.MMODescrs[0].MemoryTy &&
317 Query.Types[0].getSizeInBits() > 32;
319 changeTo(0, s32))
320 // Lower any any-extending loads left into G_ANYEXT and G_LOAD
321 .lowerIf([=](const LegalityQuery &Query) {
322 return Query.Types[0] != Query.MMODescrs[0].MemoryTy;
324 .clampMaxNumElements(0, s8, 16)
325 .clampMaxNumElements(0, s16, 8)
326 .clampMaxNumElements(0, s32, 4)
327 .clampMaxNumElements(0, s64, 2)
328 .clampMaxNumElements(0, p0, 2)
329 .customIf(IsPtrVecPred)
330 .scalarizeIf(typeIs(0, v2s16), 0);
332 getActionDefinitionsBuilder(G_STORE)
333 .customIf([=](const LegalityQuery &Query) {
334 return Query.Types[0] == s128 &&
335 Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic;
337 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
338 {s16, p0, s8, 8}, // truncstorei8 from s16
339 {s32, p0, s8, 8}, // truncstorei8 from s32
340 {s64, p0, s8, 8}, // truncstorei8 from s64
341 {s16, p0, s16, 8},
342 {s32, p0, s16, 8}, // truncstorei16 from s32
343 {s64, p0, s16, 8}, // truncstorei16 from s64
344 {s32, p0, s8, 8},
345 {s32, p0, s16, 8},
346 {s32, p0, s32, 8},
347 {s64, p0, s64, 8},
348 {s64, p0, s32, 8}, // truncstorei32 from s64
349 {p0, p0, s64, 8},
350 {s128, p0, s128, 8},
351 {v16s8, p0, s128, 8},
352 {v8s8, p0, s64, 8},
353 {v4s16, p0, s64, 8},
354 {v8s16, p0, s128, 8},
355 {v2s32, p0, s64, 8},
356 {v4s32, p0, s128, 8},
357 {v2s64, p0, s128, 8}})
358 .clampScalar(0, s8, s64)
359 .lowerIf([=](const LegalityQuery &Query) {
360 return Query.Types[0].isScalar() &&
361 Query.Types[0] != Query.MMODescrs[0].MemoryTy;
363 // Maximum: sN * k = 128
364 .clampMaxNumElements(0, s8, 16)
365 .clampMaxNumElements(0, s16, 8)
366 .clampMaxNumElements(0, s32, 4)
367 .clampMaxNumElements(0, s64, 2)
368 .clampMaxNumElements(0, p0, 2)
369 .lowerIfMemSizeNotPow2()
370 .customIf(IsPtrVecPred)
371 .scalarizeIf(typeIs(0, v2s16), 0);
373 // Constants
374 getActionDefinitionsBuilder(G_CONSTANT)
375 .legalFor({p0, s8, s16, s32, s64})
376 .widenScalarToNextPow2(0)
377 .clampScalar(0, s8, s64);
378 getActionDefinitionsBuilder(G_FCONSTANT)
379 .legalIf([=](const LegalityQuery &Query) {
380 const auto &Ty = Query.Types[0];
381 if (HasFP16 && Ty == s16)
382 return true;
383 return Ty == s32 || Ty == s64 || Ty == s128;
385 .clampScalar(0, MinFPScalar, s128);
387 getActionDefinitionsBuilder({G_ICMP, G_FCMP})
388 .legalFor({{s32, s32},
389 {s32, s64},
390 {s32, p0},
391 {v4s32, v4s32},
392 {v2s32, v2s32},
393 {v2s64, v2s64},
394 {v2s64, v2p0},
395 {v4s16, v4s16},
396 {v8s16, v8s16},
397 {v8s8, v8s8},
398 {v16s8, v16s8}})
399 .widenScalarOrEltToNextPow2(1)
400 .clampScalar(1, s32, s64)
401 .clampScalar(0, s32, s32)
402 .minScalarEltSameAsIf(
403 [=](const LegalityQuery &Query) {
404 const LLT &Ty = Query.Types[0];
405 const LLT &SrcTy = Query.Types[1];
406 return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
407 Ty.getElementType() != SrcTy.getElementType();
409 0, 1)
410 .minScalarOrEltIf(
411 [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
412 1, s32)
413 .minScalarOrEltIf(
414 [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
415 s64)
416 .clampNumElements(0, v2s32, v4s32);
418 // Extensions
419 auto ExtLegalFunc = [=](const LegalityQuery &Query) {
420 unsigned DstSize = Query.Types[0].getSizeInBits();
422 if (DstSize == 128 && !Query.Types[0].isVector())
423 return false; // Extending to a scalar s128 needs narrowing.
425 // Make sure that we have something that will fit in a register, and
426 // make sure it's a power of 2.
427 if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
428 return false;
430 const LLT &SrcTy = Query.Types[1];
432 // Special case for s1.
433 if (SrcTy == s1)
434 return true;
436 // Make sure we fit in a register otherwise. Don't bother checking that
437 // the source type is below 128 bits. We shouldn't be allowing anything
438 // through which is wider than the destination in the first place.
439 unsigned SrcSize = SrcTy.getSizeInBits();
440 if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
441 return false;
443 return true;
445 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
446 .legalIf(ExtLegalFunc)
447 .clampScalar(0, s64, s64); // Just for s128, others are handled above.
449 getActionDefinitionsBuilder(G_TRUNC)
450 .minScalarOrEltIf(
451 [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
452 0, s8)
453 .customIf([=](const LegalityQuery &Query) {
454 LLT DstTy = Query.Types[0];
455 LLT SrcTy = Query.Types[1];
456 return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
458 .alwaysLegal();
460 getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
462 // FP conversions
463 getActionDefinitionsBuilder(G_FPTRUNC)
464 .legalFor(
465 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
466 .clampMaxNumElements(0, s32, 2);
467 getActionDefinitionsBuilder(G_FPEXT)
468 .legalFor(
469 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
470 .clampMaxNumElements(0, s64, 2);
472 // Conversions
473 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
474 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
475 .widenScalarToNextPow2(0)
476 .clampScalar(0, s32, s64)
477 .widenScalarToNextPow2(1)
478 .clampScalar(1, s32, s64);
480 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
481 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
482 .clampScalar(1, s32, s64)
483 .minScalarSameAs(1, 0)
484 .clampScalar(0, s32, s64)
485 .widenScalarToNextPow2(0);
487 // Control-flow
488 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
489 getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
491 getActionDefinitionsBuilder(G_SELECT)
492 .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
493 .widenScalarToNextPow2(0)
494 .clampScalar(0, s32, s64)
495 .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
496 .lowerIf(isVector(0));
498 // Pointer-handling
499 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
501 if (TM.getCodeModel() == CodeModel::Small)
502 getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
503 else
504 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
506 getActionDefinitionsBuilder(G_PTRTOINT)
507 .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
508 .legalFor({{v2s64, v2p0}})
509 .maxScalar(0, s64)
510 .widenScalarToNextPow2(0, /*Min*/ 8);
512 getActionDefinitionsBuilder(G_INTTOPTR)
513 .unsupportedIf([&](const LegalityQuery &Query) {
514 return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
516 .legalFor({{p0, s64}, {v2p0, v2s64}});
518 // Casts for 32 and 64-bit width type are just copies.
519 // Same for 128-bit width type, except they are on the FPR bank.
520 getActionDefinitionsBuilder(G_BITCAST)
521 // FIXME: This is wrong since G_BITCAST is not allowed to change the
522 // number of bits but it's what the previous code described and fixing
523 // it breaks tests.
524 .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
525 v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
526 v2p0});
528 getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
530 // va_list must be a pointer, but most sized types are pretty easy to handle
531 // as the destination.
532 getActionDefinitionsBuilder(G_VAARG)
533 .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
534 .clampScalar(0, s8, s64)
535 .widenScalarToNextPow2(0, /*Min*/ 8);
537 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
538 .lowerIf(
539 all(typeInSet(0, {s8, s16, s32, s64, s128}), typeIs(1, s1), typeIs(2, p0)));
541 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
542 .customIf([](const LegalityQuery &Query) {
543 return Query.Types[0].getSizeInBits() == 128;
545 .clampScalar(0, s32, s64)
546 .legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
548 getActionDefinitionsBuilder(
549 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
550 G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
551 G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
552 .clampScalar(0, s32, s64)
553 .legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
555 getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
557 // Merge/Unmerge
558 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
559 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
560 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
561 getActionDefinitionsBuilder(Op)
562 .widenScalarToNextPow2(LitTyIdx, 8)
563 .widenScalarToNextPow2(BigTyIdx, 32)
564 .clampScalar(LitTyIdx, s8, s64)
565 .clampScalar(BigTyIdx, s32, s128)
566 .legalIf([=](const LegalityQuery &Q) {
567 switch (Q.Types[BigTyIdx].getSizeInBits()) {
568 case 32:
569 case 64:
570 case 128:
571 break;
572 default:
573 return false;
575 switch (Q.Types[LitTyIdx].getSizeInBits()) {
576 case 8:
577 case 16:
578 case 32:
579 case 64:
580 return true;
581 default:
582 return false;
587 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
588 .unsupportedIf([=](const LegalityQuery &Query) {
589 const LLT &EltTy = Query.Types[1].getElementType();
590 return Query.Types[0] != EltTy;
592 .minScalar(2, s64)
593 .legalIf([=](const LegalityQuery &Query) {
594 const LLT &VecTy = Query.Types[1];
595 return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
596 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
597 VecTy == v8s8 || VecTy == v16s8 || VecTy == v2s32 ||
598 VecTy == v2p0;
600 .minScalarOrEltIf(
601 [=](const LegalityQuery &Query) {
602 // We want to promote to <M x s1> to <M x s64> if that wouldn't
603 // cause the total vec size to be > 128b.
604 return Query.Types[1].getNumElements() <= 2;
606 0, s64)
607 .minScalarOrEltIf(
608 [=](const LegalityQuery &Query) {
609 return Query.Types[1].getNumElements() <= 4;
611 0, s32)
612 .minScalarOrEltIf(
613 [=](const LegalityQuery &Query) {
614 return Query.Types[1].getNumElements() <= 8;
616 0, s16)
617 .minScalarOrEltIf(
618 [=](const LegalityQuery &Query) {
619 return Query.Types[1].getNumElements() <= 16;
621 0, s8)
622 .minScalarOrElt(0, s8) // Worst case, we need at least s8.
623 .clampMaxNumElements(1, s64, 2)
624 .clampMaxNumElements(1, s32, 4)
625 .clampMaxNumElements(1, s16, 8)
626 .clampMaxNumElements(1, p0, 2);
628 getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
629 .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
631 getActionDefinitionsBuilder(G_BUILD_VECTOR)
632 .legalFor({{v8s8, s8},
633 {v16s8, s8},
634 {v2s16, s16},
635 {v4s16, s16},
636 {v8s16, s16},
637 {v2s32, s32},
638 {v4s32, s32},
639 {v2p0, p0},
640 {v2s64, s64}})
641 .clampNumElements(0, v4s32, v4s32)
642 .clampNumElements(0, v2s64, v2s64)
643 .minScalarOrElt(0, s8)
644 .minScalarSameAs(1, 0);
646 getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC).lower();
648 getActionDefinitionsBuilder(G_CTLZ)
649 .legalForCartesianProduct(
650 {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
651 .scalarize(1);
652 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF).lower();
654 // TODO: Custom lowering for v2s32, v4s32, v2s64.
655 getActionDefinitionsBuilder(G_BITREVERSE)
656 .legalFor({s32, s64, v8s8, v16s8})
657 .widenScalarToNextPow2(0, /*Min = */ 32)
658 .clampScalar(0, s32, s64);
660 getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF).lower();
662 // TODO: Handle vector types.
663 getActionDefinitionsBuilder(G_CTTZ)
664 .clampScalar(0, s32, s64)
665 .scalarSameSizeAs(1, 0)
666 .customFor({s32, s64});
668 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
669 .legalIf([=](const LegalityQuery &Query) {
670 const LLT &DstTy = Query.Types[0];
671 const LLT &SrcTy = Query.Types[1];
672 // For now just support the TBL2 variant which needs the source vectors
673 // to be the same size as the dest.
674 if (DstTy != SrcTy)
675 return false;
676 for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
677 if (DstTy == Ty)
678 return true;
680 return false;
682 // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
683 // just want those lowered into G_BUILD_VECTOR
684 .lowerIf([=](const LegalityQuery &Query) {
685 return !Query.Types[1].isVector();
687 .moreElementsToNextPow2(0)
688 .clampNumElements(0, v4s32, v4s32)
689 .clampNumElements(0, v2s64, v2s64);
691 getActionDefinitionsBuilder(G_CONCAT_VECTORS)
692 .legalFor({{v4s32, v2s32}, {v8s16, v4s16}, {v16s8, v8s8}});
694 getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
696 getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
697 return Query.Types[0] == p0 && Query.Types[1] == s64;
700 getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
702 if (ST.hasMOPS()) {
703 // G_BZERO is not supported. Currently it is only emitted by
704 // PreLegalizerCombiner for G_MEMSET with zero constant.
705 getActionDefinitionsBuilder(G_BZERO).unsupported();
707 getActionDefinitionsBuilder(G_MEMSET)
708 .legalForCartesianProduct({p0}, {s64}, {s64})
709 .customForCartesianProduct({p0}, {s8}, {s64})
710 .immIdx(0); // Inform verifier imm idx 0 is handled.
712 getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE})
713 .legalForCartesianProduct({p0}, {p0}, {s64})
714 .immIdx(0); // Inform verifier imm idx 0 is handled.
716 // G_MEMCPY_INLINE does not have a tailcall immediate
717 getActionDefinitionsBuilder(G_MEMCPY_INLINE)
718 .legalForCartesianProduct({p0}, {p0}, {s64});
720 } else {
721 getActionDefinitionsBuilder({G_BZERO, G_MEMCPY, G_MEMMOVE, G_MEMSET})
722 .libcall();
725 // FIXME: Legal types are only legal with NEON.
726 getActionDefinitionsBuilder(G_ABS)
727 .lowerIf(isScalar(0))
728 .legalFor(PackedVectorAllTypeList);
730 getActionDefinitionsBuilder(G_VECREDUCE_FADD)
731 // We only have FADDP to do reduction-like operations. Lower the rest.
732 .legalFor({{s32, v2s32}, {s64, v2s64}})
733 .clampMaxNumElements(1, s64, 2)
734 .clampMaxNumElements(1, s32, 2)
735 .lower();
737 getActionDefinitionsBuilder(G_VECREDUCE_ADD)
738 .legalFor(
739 {{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s32, v2s32}, {s64, v2s64}})
740 .clampMaxNumElements(1, s64, 2)
741 .clampMaxNumElements(1, s32, 4)
742 .lower();
744 getActionDefinitionsBuilder(
745 {G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
746 // Try to break down into smaller vectors as long as they're at least 64
747 // bits. This lets us use vector operations for some parts of the
748 // reduction.
749 .fewerElementsIf(
750 [=](const LegalityQuery &Q) {
751 LLT SrcTy = Q.Types[1];
752 if (SrcTy.isScalar())
753 return false;
754 if (!isPowerOf2_32(SrcTy.getNumElements()))
755 return false;
756 // We can usually perform 64b vector operations.
757 return SrcTy.getSizeInBits() > 64;
759 [=](const LegalityQuery &Q) {
760 LLT SrcTy = Q.Types[1];
761 return std::make_pair(1, SrcTy.divide(2));
763 .scalarize(1)
764 .lower();
766 getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
767 .lowerIf([=](const LegalityQuery &Q) { return Q.Types[0].isScalar(); });
769 getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
771 getActionDefinitionsBuilder(G_ROTR)
772 .legalFor({{s32, s64}, {s64, s64}})
773 .customIf([=](const LegalityQuery &Q) {
774 return Q.Types[0].isScalar() && Q.Types[1].getScalarSizeInBits() < 64;
776 .lower();
777 getActionDefinitionsBuilder(G_ROTL).lower();
779 getActionDefinitionsBuilder({G_SBFX, G_UBFX})
780 .customFor({{s32, s32}, {s64, s64}});
782 // TODO: Use generic lowering when custom lowering is not possible.
783 auto always = [=](const LegalityQuery &Q) { return true; };
784 getActionDefinitionsBuilder(G_CTPOP)
785 .legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
786 .clampScalar(0, s32, s128)
787 .widenScalarToNextPow2(0)
788 .minScalarEltSameAsIf(always, 1, 0)
789 .maxScalarEltSameAsIf(always, 1, 0)
790 .customFor({{s32, s32},
791 {s64, s64},
792 {s128, s128},
793 {v2s64, v2s64},
794 {v2s32, v2s32},
795 {v4s32, v4s32},
796 {v4s16, v4s16},
797 {v8s16, v8s16}});
799 // TODO: Vector types.
800 getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT}).lowerIf(isScalar(0));
802 // TODO: Vector types.
803 getActionDefinitionsBuilder({G_FMAXNUM, G_FMINNUM})
804 .legalFor({MinFPScalar, s32, s64})
805 .libcallFor({s128})
806 .minScalar(0, MinFPScalar);
808 // TODO: Vector types.
809 getActionDefinitionsBuilder({G_FMAXIMUM, G_FMINIMUM})
810 .legalFor({MinFPScalar, s32, s64})
811 .minScalar(0, MinFPScalar);
813 // TODO: Libcall support for s128.
814 // TODO: s16 should be legal with full FP16 support.
815 getActionDefinitionsBuilder({G_LROUND, G_LLROUND})
816 .legalFor({{s64, s32}, {s64, s64}});
818 getLegacyLegalizerInfo().computeTables();
819 verify(*ST.getInstrInfo());
822 bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
823 MachineInstr &MI) const {
824 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
825 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
826 GISelChangeObserver &Observer = Helper.Observer;
827 switch (MI.getOpcode()) {
828 default:
829 // No idea what to do.
830 return false;
831 case TargetOpcode::G_VAARG:
832 return legalizeVaArg(MI, MRI, MIRBuilder);
833 case TargetOpcode::G_LOAD:
834 case TargetOpcode::G_STORE:
835 return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
836 case TargetOpcode::G_SHL:
837 case TargetOpcode::G_ASHR:
838 case TargetOpcode::G_LSHR:
839 return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
840 case TargetOpcode::G_GLOBAL_VALUE:
841 return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
842 case TargetOpcode::G_TRUNC:
843 return legalizeVectorTrunc(MI, Helper);
844 case TargetOpcode::G_SBFX:
845 case TargetOpcode::G_UBFX:
846 return legalizeBitfieldExtract(MI, MRI, Helper);
847 case TargetOpcode::G_ROTR:
848 return legalizeRotate(MI, MRI, Helper);
849 case TargetOpcode::G_CTPOP:
850 return legalizeCTPOP(MI, MRI, Helper);
851 case TargetOpcode::G_ATOMIC_CMPXCHG:
852 return legalizeAtomicCmpxchg128(MI, MRI, Helper);
853 case TargetOpcode::G_CTTZ:
854 return legalizeCTTZ(MI, Helper);
855 case TargetOpcode::G_BZERO:
856 case TargetOpcode::G_MEMCPY:
857 case TargetOpcode::G_MEMMOVE:
858 case TargetOpcode::G_MEMSET:
859 return legalizeMemOps(MI, Helper);
862 llvm_unreachable("expected switch to return");
865 bool AArch64LegalizerInfo::legalizeRotate(MachineInstr &MI,
866 MachineRegisterInfo &MRI,
867 LegalizerHelper &Helper) const {
868 // To allow for imported patterns to match, we ensure that the rotate amount
869 // is 64b with an extension.
870 Register AmtReg = MI.getOperand(2).getReg();
871 LLT AmtTy = MRI.getType(AmtReg);
872 (void)AmtTy;
873 assert(AmtTy.isScalar() && "Expected a scalar rotate");
874 assert(AmtTy.getSizeInBits() < 64 && "Expected this rotate to be legal");
875 auto NewAmt = Helper.MIRBuilder.buildSExt(LLT::scalar(64), AmtReg);
876 Helper.Observer.changingInstr(MI);
877 MI.getOperand(2).setReg(NewAmt.getReg(0));
878 Helper.Observer.changedInstr(MI);
879 return true;
882 static void extractParts(Register Reg, MachineRegisterInfo &MRI,
883 MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
884 SmallVectorImpl<Register> &VRegs) {
885 for (int I = 0; I < NumParts; ++I)
886 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
887 MIRBuilder.buildUnmerge(VRegs, Reg);
890 bool AArch64LegalizerInfo::legalizeVectorTrunc(
891 MachineInstr &MI, LegalizerHelper &Helper) const {
892 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
893 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
894 // Similar to how operand splitting is done in SelectiondDAG, we can handle
895 // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
896 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
897 // %lo16(<4 x s16>) = G_TRUNC %inlo
898 // %hi16(<4 x s16>) = G_TRUNC %inhi
899 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
900 // %res(<8 x s8>) = G_TRUNC %in16
902 Register DstReg = MI.getOperand(0).getReg();
903 Register SrcReg = MI.getOperand(1).getReg();
904 LLT DstTy = MRI.getType(DstReg);
905 LLT SrcTy = MRI.getType(SrcReg);
906 assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
907 isPowerOf2_32(SrcTy.getSizeInBits()));
909 // Split input type.
910 LLT SplitSrcTy =
911 SrcTy.changeElementCount(SrcTy.getElementCount().divideCoefficientBy(2));
912 // First, split the source into two smaller vectors.
913 SmallVector<Register, 2> SplitSrcs;
914 extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
916 // Truncate the splits into intermediate narrower elements.
917 LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
918 for (unsigned I = 0; I < SplitSrcs.size(); ++I)
919 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
921 auto Concat = MIRBuilder.buildConcatVectors(
922 DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
924 Helper.Observer.changingInstr(MI);
925 MI.getOperand(1).setReg(Concat.getReg(0));
926 Helper.Observer.changedInstr(MI);
927 return true;
930 bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
931 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
932 GISelChangeObserver &Observer) const {
933 assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
934 // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
935 // G_ADD_LOW instructions.
936 // By splitting this here, we can optimize accesses in the small code model by
937 // folding in the G_ADD_LOW into the load/store offset.
938 auto &GlobalOp = MI.getOperand(1);
939 const auto* GV = GlobalOp.getGlobal();
940 if (GV->isThreadLocal())
941 return true; // Don't want to modify TLS vars.
943 auto &TM = ST->getTargetLowering()->getTargetMachine();
944 unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
946 if (OpFlags & AArch64II::MO_GOT)
947 return true;
949 auto Offset = GlobalOp.getOffset();
950 Register DstReg = MI.getOperand(0).getReg();
951 auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
952 .addGlobalAddress(GV, Offset, OpFlags | AArch64II::MO_PAGE);
953 // Set the regclass on the dest reg too.
954 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
956 // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
957 // by creating a MOVK that sets bits 48-63 of the register to (global address
958 // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
959 // prevent an incorrect tag being generated during relocation when the the
960 // global appears before the code section. Without the offset, a global at
961 // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
962 // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
963 // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
964 // instead of `0xf`.
965 // This assumes that we're in the small code model so we can assume a binary
966 // size of <= 4GB, which makes the untagged PC relative offset positive. The
967 // binary must also be loaded into address range [0, 2^48). Both of these
968 // properties need to be ensured at runtime when using tagged addresses.
969 if (OpFlags & AArch64II::MO_TAGGED) {
970 assert(!Offset &&
971 "Should not have folded in an offset for a tagged global!");
972 ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
973 .addGlobalAddress(GV, 0x100000000,
974 AArch64II::MO_PREL | AArch64II::MO_G3)
975 .addImm(48);
976 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
979 MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
980 .addGlobalAddress(GV, Offset,
981 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
982 MI.eraseFromParent();
983 return true;
986 bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
987 MachineInstr &MI) const {
988 switch (MI.getIntrinsicID()) {
989 case Intrinsic::vacopy: {
990 unsigned PtrSize = ST->isTargetILP32() ? 4 : 8;
991 unsigned VaListSize =
992 (ST->isTargetDarwin() || ST->isTargetWindows())
993 ? PtrSize
994 : ST->isTargetILP32() ? 20 : 32;
996 MachineFunction &MF = *MI.getMF();
997 auto Val = MF.getRegInfo().createGenericVirtualRegister(
998 LLT::scalar(VaListSize * 8));
999 MachineIRBuilder MIB(MI);
1000 MIB.buildLoad(Val, MI.getOperand(2),
1001 *MF.getMachineMemOperand(MachinePointerInfo(),
1002 MachineMemOperand::MOLoad,
1003 VaListSize, Align(PtrSize)));
1004 MIB.buildStore(Val, MI.getOperand(1),
1005 *MF.getMachineMemOperand(MachinePointerInfo(),
1006 MachineMemOperand::MOStore,
1007 VaListSize, Align(PtrSize)));
1008 MI.eraseFromParent();
1009 return true;
1011 case Intrinsic::get_dynamic_area_offset: {
1012 MachineIRBuilder &MIB = Helper.MIRBuilder;
1013 MIB.buildConstant(MI.getOperand(0).getReg(), 0);
1014 MI.eraseFromParent();
1015 return true;
1017 case Intrinsic::aarch64_mops_memset_tag: {
1018 assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1019 // Zext the value to 64 bit
1020 MachineIRBuilder MIB(MI);
1021 auto &Value = MI.getOperand(3);
1022 Register ZExtValueReg = MIB.buildAnyExt(LLT::scalar(64), Value).getReg(0);
1023 Value.setReg(ZExtValueReg);
1024 return true;
1028 return true;
1031 bool AArch64LegalizerInfo::legalizeShlAshrLshr(
1032 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
1033 GISelChangeObserver &Observer) const {
1034 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
1035 MI.getOpcode() == TargetOpcode::G_LSHR ||
1036 MI.getOpcode() == TargetOpcode::G_SHL);
1037 // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
1038 // imported patterns can select it later. Either way, it will be legal.
1039 Register AmtReg = MI.getOperand(2).getReg();
1040 auto VRegAndVal = getIConstantVRegValWithLookThrough(AmtReg, MRI);
1041 if (!VRegAndVal)
1042 return true;
1043 // Check the shift amount is in range for an immediate form.
1044 int64_t Amount = VRegAndVal->Value.getSExtValue();
1045 if (Amount > 31)
1046 return true; // This will have to remain a register variant.
1047 auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
1048 Observer.changingInstr(MI);
1049 MI.getOperand(2).setReg(ExtCst.getReg(0));
1050 Observer.changedInstr(MI);
1051 return true;
1054 static void matchLDPSTPAddrMode(Register Root, Register &Base, int &Offset,
1055 MachineRegisterInfo &MRI) {
1056 Base = Root;
1057 Offset = 0;
1059 Register NewBase;
1060 int64_t NewOffset;
1061 if (mi_match(Root, MRI, m_GPtrAdd(m_Reg(NewBase), m_ICst(NewOffset))) &&
1062 isShiftedInt<7, 3>(NewOffset)) {
1063 Base = NewBase;
1064 Offset = NewOffset;
1068 // FIXME: This should be removed and replaced with the generic bitcast legalize
1069 // action.
1070 bool AArch64LegalizerInfo::legalizeLoadStore(
1071 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
1072 GISelChangeObserver &Observer) const {
1073 assert(MI.getOpcode() == TargetOpcode::G_STORE ||
1074 MI.getOpcode() == TargetOpcode::G_LOAD);
1075 // Here we just try to handle vector loads/stores where our value type might
1076 // have pointer elements, which the SelectionDAG importer can't handle. To
1077 // allow the existing patterns for s64 to fire for p0, we just try to bitcast
1078 // the value to use s64 types.
1080 // Custom legalization requires the instruction, if not deleted, must be fully
1081 // legalized. In order to allow further legalization of the inst, we create
1082 // a new instruction and erase the existing one.
1084 Register ValReg = MI.getOperand(0).getReg();
1085 const LLT ValTy = MRI.getType(ValReg);
1087 if (ValTy == LLT::scalar(128)) {
1088 assert((*MI.memoperands_begin())->getSuccessOrdering() ==
1089 AtomicOrdering::Monotonic ||
1090 (*MI.memoperands_begin())->getSuccessOrdering() ==
1091 AtomicOrdering::Unordered);
1092 assert(ST->hasLSE2() && "ldp/stp not single copy atomic without +lse2");
1093 LLT s64 = LLT::scalar(64);
1094 MachineInstrBuilder NewI;
1095 if (MI.getOpcode() == TargetOpcode::G_LOAD) {
1096 NewI = MIRBuilder.buildInstr(AArch64::LDPXi, {s64, s64}, {});
1097 MIRBuilder.buildMerge(ValReg, {NewI->getOperand(0), NewI->getOperand(1)});
1098 } else {
1099 auto Split = MIRBuilder.buildUnmerge(s64, MI.getOperand(0));
1100 NewI = MIRBuilder.buildInstr(
1101 AArch64::STPXi, {}, {Split->getOperand(0), Split->getOperand(1)});
1103 Register Base;
1104 int Offset;
1105 matchLDPSTPAddrMode(MI.getOperand(1).getReg(), Base, Offset, MRI);
1106 NewI.addUse(Base);
1107 NewI.addImm(Offset / 8);
1109 NewI.cloneMemRefs(MI);
1110 constrainSelectedInstRegOperands(*NewI, *ST->getInstrInfo(),
1111 *MRI.getTargetRegisterInfo(),
1112 *ST->getRegBankInfo());
1113 MI.eraseFromParent();
1114 return true;
1117 if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
1118 ValTy.getElementType().getAddressSpace() != 0) {
1119 LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
1120 return false;
1123 unsigned PtrSize = ValTy.getElementType().getSizeInBits();
1124 const LLT NewTy = LLT::vector(ValTy.getElementCount(), PtrSize);
1125 auto &MMO = **MI.memoperands_begin();
1126 MMO.setType(NewTy);
1128 if (MI.getOpcode() == TargetOpcode::G_STORE) {
1129 auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
1130 MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
1131 } else {
1132 auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
1133 MIRBuilder.buildBitcast(ValReg, NewLoad);
1135 MI.eraseFromParent();
1136 return true;
1139 bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
1140 MachineRegisterInfo &MRI,
1141 MachineIRBuilder &MIRBuilder) const {
1142 MachineFunction &MF = MIRBuilder.getMF();
1143 Align Alignment(MI.getOperand(2).getImm());
1144 Register Dst = MI.getOperand(0).getReg();
1145 Register ListPtr = MI.getOperand(1).getReg();
1147 LLT PtrTy = MRI.getType(ListPtr);
1148 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
1150 const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
1151 const Align PtrAlign = Align(PtrSize);
1152 auto List = MIRBuilder.buildLoad(
1153 PtrTy, ListPtr,
1154 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
1155 PtrTy, PtrAlign));
1157 MachineInstrBuilder DstPtr;
1158 if (Alignment > PtrAlign) {
1159 // Realign the list to the actual required alignment.
1160 auto AlignMinus1 =
1161 MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
1162 auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
1163 DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
1164 } else
1165 DstPtr = List;
1167 LLT ValTy = MRI.getType(Dst);
1168 uint64_t ValSize = ValTy.getSizeInBits() / 8;
1169 MIRBuilder.buildLoad(
1170 Dst, DstPtr,
1171 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
1172 ValTy, std::max(Alignment, PtrAlign)));
1174 auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
1176 auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
1178 MIRBuilder.buildStore(NewList, ListPtr,
1179 *MF.getMachineMemOperand(MachinePointerInfo(),
1180 MachineMemOperand::MOStore,
1181 PtrTy, PtrAlign));
1183 MI.eraseFromParent();
1184 return true;
1187 bool AArch64LegalizerInfo::legalizeBitfieldExtract(
1188 MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
1189 // Only legal if we can select immediate forms.
1190 // TODO: Lower this otherwise.
1191 return getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI) &&
1192 getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
1195 bool AArch64LegalizerInfo::legalizeCTPOP(MachineInstr &MI,
1196 MachineRegisterInfo &MRI,
1197 LegalizerHelper &Helper) const {
1198 // While there is no integer popcount instruction, it can
1199 // be more efficiently lowered to the following sequence that uses
1200 // AdvSIMD registers/instructions as long as the copies to/from
1201 // the AdvSIMD registers are cheap.
1202 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
1203 // CNT V0.8B, V0.8B // 8xbyte pop-counts
1204 // ADDV B0, V0.8B // sum 8xbyte pop-counts
1205 // UMOV X0, V0.B[0] // copy byte result back to integer reg
1207 // For 128 bit vector popcounts, we lower to the following sequence:
1208 // cnt.16b v0, v0 // v8s16, v4s32, v2s64
1209 // uaddlp.8h v0, v0 // v8s16, v4s32, v2s64
1210 // uaddlp.4s v0, v0 // v4s32, v2s64
1211 // uaddlp.2d v0, v0 // v2s64
1213 // For 64 bit vector popcounts, we lower to the following sequence:
1214 // cnt.8b v0, v0 // v4s16, v2s32
1215 // uaddlp.4h v0, v0 // v4s16, v2s32
1216 // uaddlp.2s v0, v0 // v2s32
1218 if (!ST->hasNEON() ||
1219 MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat))
1220 return false;
1221 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1222 Register Dst = MI.getOperand(0).getReg();
1223 Register Val = MI.getOperand(1).getReg();
1224 LLT Ty = MRI.getType(Val);
1226 assert(Ty == MRI.getType(Dst) &&
1227 "Expected src and dst to have the same type!");
1228 unsigned Size = Ty.getSizeInBits();
1230 // Pre-conditioning: widen Val up to the nearest vector type.
1231 // s32,s64,v4s16,v2s32 -> v8i8
1232 // v8s16,v4s32,v2s64 -> v16i8
1233 LLT VTy = Size == 128 ? LLT::fixed_vector(16, 8) : LLT::fixed_vector(8, 8);
1234 if (Ty.isScalar()) {
1235 assert((Size == 32 || Size == 64 || Size == 128) && "Expected only 32, 64, or 128 bit scalars!");
1236 if (Size == 32) {
1237 Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
1240 Val = MIRBuilder.buildBitcast(VTy, Val).getReg(0);
1242 // Count bits in each byte-sized lane.
1243 auto CTPOP = MIRBuilder.buildCTPOP(VTy, Val);
1245 // Sum across lanes.
1246 Register HSum = CTPOP.getReg(0);
1247 unsigned Opc;
1248 SmallVector<LLT> HAddTys;
1249 if (Ty.isScalar()) {
1250 Opc = Intrinsic::aarch64_neon_uaddlv;
1251 HAddTys.push_back(LLT::scalar(32));
1252 } else if (Ty == LLT::fixed_vector(8, 16)) {
1253 Opc = Intrinsic::aarch64_neon_uaddlp;
1254 HAddTys.push_back(LLT::fixed_vector(8, 16));
1255 } else if (Ty == LLT::fixed_vector(4, 32)) {
1256 Opc = Intrinsic::aarch64_neon_uaddlp;
1257 HAddTys.push_back(LLT::fixed_vector(8, 16));
1258 HAddTys.push_back(LLT::fixed_vector(4, 32));
1259 } else if (Ty == LLT::fixed_vector(2, 64)) {
1260 Opc = Intrinsic::aarch64_neon_uaddlp;
1261 HAddTys.push_back(LLT::fixed_vector(8, 16));
1262 HAddTys.push_back(LLT::fixed_vector(4, 32));
1263 HAddTys.push_back(LLT::fixed_vector(2, 64));
1264 } else if (Ty == LLT::fixed_vector(4, 16)) {
1265 Opc = Intrinsic::aarch64_neon_uaddlp;
1266 HAddTys.push_back(LLT::fixed_vector(4, 16));
1267 } else if (Ty == LLT::fixed_vector(2, 32)) {
1268 Opc = Intrinsic::aarch64_neon_uaddlp;
1269 HAddTys.push_back(LLT::fixed_vector(4, 16));
1270 HAddTys.push_back(LLT::fixed_vector(2, 32));
1271 } else
1272 llvm_unreachable("unexpected vector shape");
1273 MachineInstrBuilder UADD;
1274 for (LLT HTy : HAddTys) {
1275 UADD = MIRBuilder.buildIntrinsic(Opc, {HTy}, /*HasSideEffects =*/false)
1276 .addUse(HSum);
1277 HSum = UADD.getReg(0);
1280 // Post-conditioning.
1281 if (Ty.isScalar() && (Size == 64 || Size == 128))
1282 MIRBuilder.buildZExt(Dst, UADD);
1283 else
1284 UADD->getOperand(0).setReg(Dst);
1285 MI.eraseFromParent();
1286 return true;
1289 bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
1290 MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
1291 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1292 LLT s64 = LLT::scalar(64);
1293 auto Addr = MI.getOperand(1).getReg();
1294 auto DesiredI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(2));
1295 auto NewI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(3));
1296 auto DstLo = MRI.createGenericVirtualRegister(s64);
1297 auto DstHi = MRI.createGenericVirtualRegister(s64);
1299 MachineInstrBuilder CAS;
1300 if (ST->hasLSE()) {
1301 // We have 128-bit CASP instructions taking XSeqPair registers, which are
1302 // s128. We need the merge/unmerge to bracket the expansion and pair up with
1303 // the rest of the MIR so we must reassemble the extracted registers into a
1304 // 128-bit known-regclass one with code like this:
1306 // %in1 = REG_SEQUENCE Lo, Hi ; One for each input
1307 // %out = CASP %in1, ...
1308 // %OldLo = G_EXTRACT %out, 0
1309 // %OldHi = G_EXTRACT %out, 64
1310 auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
1311 unsigned Opcode;
1312 switch (Ordering) {
1313 case AtomicOrdering::Acquire:
1314 Opcode = AArch64::CASPAX;
1315 break;
1316 case AtomicOrdering::Release:
1317 Opcode = AArch64::CASPLX;
1318 break;
1319 case AtomicOrdering::AcquireRelease:
1320 case AtomicOrdering::SequentiallyConsistent:
1321 Opcode = AArch64::CASPALX;
1322 break;
1323 default:
1324 Opcode = AArch64::CASPX;
1325 break;
1328 LLT s128 = LLT::scalar(128);
1329 auto CASDst = MRI.createGenericVirtualRegister(s128);
1330 auto CASDesired = MRI.createGenericVirtualRegister(s128);
1331 auto CASNew = MRI.createGenericVirtualRegister(s128);
1332 MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
1333 .addUse(DesiredI->getOperand(0).getReg())
1334 .addImm(AArch64::sube64)
1335 .addUse(DesiredI->getOperand(1).getReg())
1336 .addImm(AArch64::subo64);
1337 MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
1338 .addUse(NewI->getOperand(0).getReg())
1339 .addImm(AArch64::sube64)
1340 .addUse(NewI->getOperand(1).getReg())
1341 .addImm(AArch64::subo64);
1343 CAS = MIRBuilder.buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
1345 MIRBuilder.buildExtract({DstLo}, {CASDst}, 0);
1346 MIRBuilder.buildExtract({DstHi}, {CASDst}, 64);
1347 } else {
1348 // The -O0 CMP_SWAP_128 is friendlier to generate code for because LDXP/STXP
1349 // can take arbitrary registers so it just has the normal GPR64 operands the
1350 // rest of AArch64 is expecting.
1351 auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
1352 unsigned Opcode;
1353 switch (Ordering) {
1354 case AtomicOrdering::Acquire:
1355 Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
1356 break;
1357 case AtomicOrdering::Release:
1358 Opcode = AArch64::CMP_SWAP_128_RELEASE;
1359 break;
1360 case AtomicOrdering::AcquireRelease:
1361 case AtomicOrdering::SequentiallyConsistent:
1362 Opcode = AArch64::CMP_SWAP_128;
1363 break;
1364 default:
1365 Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
1366 break;
1369 auto Scratch = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1370 CAS = MIRBuilder.buildInstr(Opcode, {DstLo, DstHi, Scratch},
1371 {Addr, DesiredI->getOperand(0),
1372 DesiredI->getOperand(1), NewI->getOperand(0),
1373 NewI->getOperand(1)});
1376 CAS.cloneMemRefs(MI);
1377 constrainSelectedInstRegOperands(*CAS, *ST->getInstrInfo(),
1378 *MRI.getTargetRegisterInfo(),
1379 *ST->getRegBankInfo());
1381 MIRBuilder.buildMerge(MI.getOperand(0), {DstLo, DstHi});
1382 MI.eraseFromParent();
1383 return true;
1386 bool AArch64LegalizerInfo::legalizeCTTZ(MachineInstr &MI,
1387 LegalizerHelper &Helper) const {
1388 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1389 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
1390 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1391 auto BitReverse = MIRBuilder.buildBitReverse(Ty, MI.getOperand(1));
1392 MIRBuilder.buildCTLZ(MI.getOperand(0).getReg(), BitReverse);
1393 MI.eraseFromParent();
1394 return true;
1397 bool AArch64LegalizerInfo::legalizeMemOps(MachineInstr &MI,
1398 LegalizerHelper &Helper) const {
1399 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1401 // Tagged version MOPSMemorySetTagged is legalised in legalizeIntrinsic
1402 if (MI.getOpcode() == TargetOpcode::G_MEMSET) {
1403 // Zext the value operand to 64 bit
1404 auto &Value = MI.getOperand(1);
1405 Register ZExtValueReg =
1406 MIRBuilder.buildAnyExt(LLT::scalar(64), Value).getReg(0);
1407 Value.setReg(ZExtValueReg);
1408 return true;
1411 return false;