[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / AArch64 / MCTargetDesc / AArch64AsmBackend.cpp
blob85b221286ecd0d11b3535a5eb4f35690ffe83567
1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/AArch64FixupKinds.h"
10 #include "MCTargetDesc/AArch64MCExpr.h"
11 #include "MCTargetDesc/AArch64MCTargetDesc.h"
12 #include "Utils/AArch64BaseInfo.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSectionELF.h"
24 #include "llvm/MC/MCSectionMachO.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/MC/MCTargetOptions.h"
27 #include "llvm/MC/MCValue.h"
28 #include "llvm/MC/TargetRegistry.h"
29 #include "llvm/Support/EndianStream.h"
30 #include "llvm/Support/ErrorHandling.h"
31 using namespace llvm;
33 namespace {
35 class AArch64AsmBackend : public MCAsmBackend {
36 static const unsigned PCRelFlagVal =
37 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
38 protected:
39 Triple TheTriple;
41 public:
42 AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
43 : MCAsmBackend(IsLittleEndian ? support::little : support::big),
44 TheTriple(TT) {}
46 unsigned getNumFixupKinds() const override {
47 return AArch64::NumTargetFixupKinds;
50 Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
52 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
53 const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
54 // This table *must* be in the order that the fixup_* kinds are defined
55 // in AArch64FixupKinds.h.
57 // Name Offset (bits) Size (bits) Flags
58 {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
59 {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
60 {"fixup_aarch64_add_imm12", 10, 12, 0},
61 {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
62 {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
63 {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
64 {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
65 {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
66 {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
67 {"fixup_aarch64_movw", 5, 16, 0},
68 {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
69 {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
70 {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
71 {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}};
73 // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not
74 // require any extra processing.
75 if (Kind >= FirstLiteralRelocationKind)
76 return MCAsmBackend::getFixupKindInfo(FK_NONE);
78 if (Kind < FirstTargetFixupKind)
79 return MCAsmBackend::getFixupKindInfo(Kind);
81 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
82 "Invalid kind!");
83 return Infos[Kind - FirstTargetFixupKind];
86 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
87 const MCValue &Target, MutableArrayRef<char> Data,
88 uint64_t Value, bool IsResolved,
89 const MCSubtargetInfo *STI) const override;
91 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
92 const MCRelaxableFragment *DF,
93 const MCAsmLayout &Layout) const override;
94 void relaxInstruction(MCInst &Inst,
95 const MCSubtargetInfo &STI) const override;
96 bool writeNopData(raw_ostream &OS, uint64_t Count,
97 const MCSubtargetInfo *STI) const override;
99 unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
101 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
102 const MCValue &Target) override;
105 } // end anonymous namespace
107 /// The number of bytes the fixup may change.
108 static unsigned getFixupKindNumBytes(unsigned Kind) {
109 switch (Kind) {
110 default:
111 llvm_unreachable("Unknown fixup kind!");
113 case FK_Data_1:
114 return 1;
116 case FK_Data_2:
117 case FK_SecRel_2:
118 return 2;
120 case AArch64::fixup_aarch64_movw:
121 case AArch64::fixup_aarch64_pcrel_branch14:
122 case AArch64::fixup_aarch64_add_imm12:
123 case AArch64::fixup_aarch64_ldst_imm12_scale1:
124 case AArch64::fixup_aarch64_ldst_imm12_scale2:
125 case AArch64::fixup_aarch64_ldst_imm12_scale4:
126 case AArch64::fixup_aarch64_ldst_imm12_scale8:
127 case AArch64::fixup_aarch64_ldst_imm12_scale16:
128 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
129 case AArch64::fixup_aarch64_pcrel_branch19:
130 return 3;
132 case AArch64::fixup_aarch64_pcrel_adr_imm21:
133 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
134 case AArch64::fixup_aarch64_pcrel_branch26:
135 case AArch64::fixup_aarch64_pcrel_call26:
136 case FK_Data_4:
137 case FK_SecRel_4:
138 return 4;
140 case FK_Data_8:
141 return 8;
145 static unsigned AdrImmBits(unsigned Value) {
146 unsigned lo2 = Value & 0x3;
147 unsigned hi19 = (Value & 0x1ffffc) >> 2;
148 return (hi19 << 5) | (lo2 << 29);
151 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
152 uint64_t Value, MCContext &Ctx,
153 const Triple &TheTriple, bool IsResolved) {
154 int64_t SignedValue = static_cast<int64_t>(Value);
155 switch (Fixup.getTargetKind()) {
156 default:
157 llvm_unreachable("Unknown fixup kind!");
158 case AArch64::fixup_aarch64_pcrel_adr_imm21:
159 if (SignedValue > 2097151 || SignedValue < -2097152)
160 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
161 return AdrImmBits(Value & 0x1fffffULL);
162 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
163 assert(!IsResolved);
164 if (TheTriple.isOSBinFormatCOFF()) {
165 if (!isInt<21>(SignedValue))
166 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
167 return AdrImmBits(Value & 0x1fffffULL);
169 return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
170 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
171 case AArch64::fixup_aarch64_pcrel_branch19:
172 // Signed 21-bit immediate
173 if (SignedValue > 2097151 || SignedValue < -2097152)
174 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
175 if (Value & 0x3)
176 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
177 // Low two bits are not encoded.
178 return (Value >> 2) & 0x7ffff;
179 case AArch64::fixup_aarch64_add_imm12:
180 case AArch64::fixup_aarch64_ldst_imm12_scale1:
181 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
182 Value &= 0xfff;
183 // Unsigned 12-bit immediate
184 if (Value >= 0x1000)
185 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
186 return Value;
187 case AArch64::fixup_aarch64_ldst_imm12_scale2:
188 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
189 Value &= 0xfff;
190 // Unsigned 12-bit immediate which gets multiplied by 2
191 if (Value >= 0x2000)
192 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
193 if (Value & 0x1)
194 Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
195 return Value >> 1;
196 case AArch64::fixup_aarch64_ldst_imm12_scale4:
197 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
198 Value &= 0xfff;
199 // Unsigned 12-bit immediate which gets multiplied by 4
200 if (Value >= 0x4000)
201 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
202 if (Value & 0x3)
203 Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
204 return Value >> 2;
205 case AArch64::fixup_aarch64_ldst_imm12_scale8:
206 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
207 Value &= 0xfff;
208 // Unsigned 12-bit immediate which gets multiplied by 8
209 if (Value >= 0x8000)
210 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
211 if (Value & 0x7)
212 Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
213 return Value >> 3;
214 case AArch64::fixup_aarch64_ldst_imm12_scale16:
215 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
216 Value &= 0xfff;
217 // Unsigned 12-bit immediate which gets multiplied by 16
218 if (Value >= 0x10000)
219 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
220 if (Value & 0xf)
221 Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
222 return Value >> 4;
223 case AArch64::fixup_aarch64_movw: {
224 AArch64MCExpr::VariantKind RefKind =
225 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
226 if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
227 AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
228 if (!RefKind) {
229 // The fixup is an expression
230 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
231 Ctx.reportError(Fixup.getLoc(),
232 "fixup value out of range [-0xFFFF, 0xFFFF]");
234 // Invert the negative immediate because it will feed into a MOVN.
235 if (SignedValue < 0)
236 SignedValue = ~SignedValue;
237 Value = static_cast<uint64_t>(SignedValue);
238 } else
239 // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
240 // ever be resolved in the assembler.
241 Ctx.reportError(Fixup.getLoc(),
242 "relocation for a thread-local variable points to an "
243 "absolute symbol");
244 return Value;
247 if (!IsResolved) {
248 // FIXME: Figure out when this can actually happen, and verify our
249 // behavior.
250 Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
251 "implemented");
252 return Value;
255 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
256 switch (AArch64MCExpr::getAddressFrag(RefKind)) {
257 case AArch64MCExpr::VK_G0:
258 break;
259 case AArch64MCExpr::VK_G1:
260 SignedValue = SignedValue >> 16;
261 break;
262 case AArch64MCExpr::VK_G2:
263 SignedValue = SignedValue >> 32;
264 break;
265 case AArch64MCExpr::VK_G3:
266 SignedValue = SignedValue >> 48;
267 break;
268 default:
269 llvm_unreachable("Variant kind doesn't correspond to fixup");
272 } else {
273 switch (AArch64MCExpr::getAddressFrag(RefKind)) {
274 case AArch64MCExpr::VK_G0:
275 break;
276 case AArch64MCExpr::VK_G1:
277 Value = Value >> 16;
278 break;
279 case AArch64MCExpr::VK_G2:
280 Value = Value >> 32;
281 break;
282 case AArch64MCExpr::VK_G3:
283 Value = Value >> 48;
284 break;
285 default:
286 llvm_unreachable("Variant kind doesn't correspond to fixup");
290 if (RefKind & AArch64MCExpr::VK_NC) {
291 Value &= 0xFFFF;
293 else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
294 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
295 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
297 // Invert the negative immediate because it will feed into a MOVN.
298 if (SignedValue < 0)
299 SignedValue = ~SignedValue;
300 Value = static_cast<uint64_t>(SignedValue);
302 else if (Value > 0xFFFF) {
303 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
305 return Value;
307 case AArch64::fixup_aarch64_pcrel_branch14:
308 // Signed 16-bit immediate
309 if (SignedValue > 32767 || SignedValue < -32768)
310 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
311 // Low two bits are not encoded (4-byte alignment assumed).
312 if (Value & 0x3)
313 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
314 return (Value >> 2) & 0x3fff;
315 case AArch64::fixup_aarch64_pcrel_branch26:
316 case AArch64::fixup_aarch64_pcrel_call26:
317 // Signed 28-bit immediate
318 if (SignedValue > 134217727 || SignedValue < -134217728)
319 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
320 // Low two bits are not encoded (4-byte alignment assumed).
321 if (Value & 0x3)
322 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
323 return (Value >> 2) & 0x3ffffff;
324 case FK_Data_1:
325 case FK_Data_2:
326 case FK_Data_4:
327 case FK_Data_8:
328 case FK_SecRel_2:
329 case FK_SecRel_4:
330 return Value;
334 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const {
335 if (!TheTriple.isOSBinFormatELF())
336 return None;
338 unsigned Type = llvm::StringSwitch<unsigned>(Name)
339 #define ELF_RELOC(X, Y) .Case(#X, Y)
340 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
341 #undef ELF_RELOC
342 .Case("BFD_RELOC_NONE", ELF::R_AARCH64_NONE)
343 .Case("BFD_RELOC_16", ELF::R_AARCH64_ABS16)
344 .Case("BFD_RELOC_32", ELF::R_AARCH64_ABS32)
345 .Case("BFD_RELOC_64", ELF::R_AARCH64_ABS64)
346 .Default(-1u);
347 if (Type == -1u)
348 return None;
349 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
352 /// getFixupKindContainereSizeInBytes - The number of bytes of the
353 /// container involved in big endian or 0 if the item is little endian
354 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
355 if (Endian == support::little)
356 return 0;
358 switch (Kind) {
359 default:
360 llvm_unreachable("Unknown fixup kind!");
362 case FK_Data_1:
363 return 1;
364 case FK_Data_2:
365 return 2;
366 case FK_Data_4:
367 return 4;
368 case FK_Data_8:
369 return 8;
371 case AArch64::fixup_aarch64_movw:
372 case AArch64::fixup_aarch64_pcrel_branch14:
373 case AArch64::fixup_aarch64_add_imm12:
374 case AArch64::fixup_aarch64_ldst_imm12_scale1:
375 case AArch64::fixup_aarch64_ldst_imm12_scale2:
376 case AArch64::fixup_aarch64_ldst_imm12_scale4:
377 case AArch64::fixup_aarch64_ldst_imm12_scale8:
378 case AArch64::fixup_aarch64_ldst_imm12_scale16:
379 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
380 case AArch64::fixup_aarch64_pcrel_branch19:
381 case AArch64::fixup_aarch64_pcrel_adr_imm21:
382 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
383 case AArch64::fixup_aarch64_pcrel_branch26:
384 case AArch64::fixup_aarch64_pcrel_call26:
385 // Instructions are always little endian
386 return 0;
390 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
391 const MCValue &Target,
392 MutableArrayRef<char> Data, uint64_t Value,
393 bool IsResolved,
394 const MCSubtargetInfo *STI) const {
395 if (!Value)
396 return; // Doesn't change encoding.
397 unsigned Kind = Fixup.getKind();
398 if (Kind >= FirstLiteralRelocationKind)
399 return;
400 unsigned NumBytes = getFixupKindNumBytes(Kind);
401 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
402 MCContext &Ctx = Asm.getContext();
403 int64_t SignedValue = static_cast<int64_t>(Value);
404 // Apply any target-specific value adjustments.
405 Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
407 // Shift the value into position.
408 Value <<= Info.TargetOffset;
410 unsigned Offset = Fixup.getOffset();
411 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
413 // Used to point to big endian bytes.
414 unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
416 // For each byte of the fragment that the fixup touches, mask in the
417 // bits from the fixup value.
418 if (FulleSizeInBytes == 0) {
419 // Handle as little-endian
420 for (unsigned i = 0; i != NumBytes; ++i) {
421 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
423 } else {
424 // Handle as big-endian
425 assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
426 assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
427 for (unsigned i = 0; i != NumBytes; ++i) {
428 unsigned Idx = FulleSizeInBytes - 1 - i;
429 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
433 // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
434 // handle this more cleanly. This may affect the output of -show-mc-encoding.
435 AArch64MCExpr::VariantKind RefKind =
436 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
437 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS ||
438 (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) {
439 // If the immediate is negative, generate MOVN else MOVZ.
440 // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
441 if (SignedValue < 0)
442 Data[Offset + 3] &= ~(1 << 6);
443 else
444 Data[Offset + 3] |= (1 << 6);
448 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
449 uint64_t Value,
450 const MCRelaxableFragment *DF,
451 const MCAsmLayout &Layout) const {
452 // FIXME: This isn't correct for AArch64. Just moving the "generic" logic
453 // into the targets for now.
455 // Relax if the value is too big for a (signed) i8.
456 return int64_t(Value) != int64_t(int8_t(Value));
459 void AArch64AsmBackend::relaxInstruction(MCInst &Inst,
460 const MCSubtargetInfo &STI) const {
461 llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
464 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
465 const MCSubtargetInfo *STI) const {
466 // If the count is not 4-byte aligned, we must be writing data into the text
467 // section (otherwise we have unaligned instructions, and thus have far
468 // bigger problems), so just write zeros instead.
469 OS.write_zeros(Count % 4);
471 // We are properly aligned, so write NOPs as requested.
472 Count /= 4;
473 for (uint64_t i = 0; i != Count; ++i)
474 support::endian::write<uint32_t>(OS, 0xd503201f, Endian);
475 return true;
478 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
479 const MCFixup &Fixup,
480 const MCValue &Target) {
481 unsigned Kind = Fixup.getKind();
482 if (Kind >= FirstLiteralRelocationKind)
483 return true;
485 // The ADRP instruction adds some multiple of 0x1000 to the current PC &
486 // ~0xfff. This means that the required offset to reach a symbol can vary by
487 // up to one step depending on where the ADRP is in memory. For example:
489 // ADRP x0, there
490 // there:
492 // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
493 // we'll need that as an offset. At any other address "there" will be in the
494 // same page as the ADRP and the instruction should encode 0x0. Assuming the
495 // section isn't 0x1000-aligned, we therefore need to delegate this decision
496 // to the linker -- a relocation!
497 if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
498 return true;
500 return false;
503 namespace {
505 namespace CU {
507 /// Compact unwind encoding values.
508 enum CompactUnwindEncodings {
509 /// A "frameless" leaf function, where no non-volatile registers are
510 /// saved. The return remains in LR throughout the function.
511 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
513 /// No compact unwind encoding available. Instead the low 23-bits of
514 /// the compact unwind encoding is the offset of the DWARF FDE in the
515 /// __eh_frame section. This mode is never used in object files. It is only
516 /// generated by the linker in final linked images, which have only DWARF info
517 /// for a function.
518 UNWIND_ARM64_MODE_DWARF = 0x03000000,
520 /// This is a standard arm64 prologue where FP/LR are immediately
521 /// pushed on the stack, then SP is copied to FP. If there are any
522 /// non-volatile register saved, they are copied into the stack fame in pairs
523 /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
524 /// five X pairs and four D pairs can be saved, but the memory layout must be
525 /// in register number order.
526 UNWIND_ARM64_MODE_FRAME = 0x04000000,
528 /// Frame register pair encodings.
529 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
530 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
531 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
532 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
533 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
534 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
535 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
536 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
537 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
540 } // end CU namespace
542 // FIXME: This should be in a separate file.
543 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
544 const MCRegisterInfo &MRI;
546 /// Encode compact unwind stack adjustment for frameless functions.
547 /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
548 /// The stack size always needs to be 16 byte aligned.
549 uint32_t encodeStackAdjustment(uint32_t StackSize) const {
550 return (StackSize / 16) << 12;
553 public:
554 DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
555 const MCRegisterInfo &MRI)
556 : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {}
558 std::unique_ptr<MCObjectTargetWriter>
559 createObjectTargetWriter() const override {
560 uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple));
561 uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple));
562 return createAArch64MachObjectWriter(CPUType, CPUSubType,
563 TheTriple.isArch32Bit());
566 /// Generate the compact unwind encoding from the CFI directives.
567 uint32_t generateCompactUnwindEncoding(
568 ArrayRef<MCCFIInstruction> Instrs) const override {
569 if (Instrs.empty())
570 return CU::UNWIND_ARM64_MODE_FRAMELESS;
572 bool HasFP = false;
573 unsigned StackSize = 0;
575 uint32_t CompactUnwindEncoding = 0;
576 int CurOffset = 0;
577 for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
578 const MCCFIInstruction &Inst = Instrs[i];
580 switch (Inst.getOperation()) {
581 default:
582 // Cannot handle this directive: bail out.
583 return CU::UNWIND_ARM64_MODE_DWARF;
584 case MCCFIInstruction::OpDefCfa: {
585 // Defines a frame pointer.
586 unsigned XReg =
587 getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true));
589 // Other CFA registers than FP are not supported by compact unwind.
590 // Fallback on DWARF.
591 // FIXME: When opt-remarks are supported in MC, add a remark to notify
592 // the user.
593 if (XReg != AArch64::FP)
594 return CU::UNWIND_ARM64_MODE_DWARF;
596 assert(XReg == AArch64::FP && "Invalid frame pointer!");
597 assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
599 const MCCFIInstruction &LRPush = Instrs[++i];
600 assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
601 "Link register not pushed!");
602 const MCCFIInstruction &FPPush = Instrs[++i];
603 assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
604 "Frame pointer not pushed!");
606 assert(FPPush.getOffset() + 8 == LRPush.getOffset());
607 CurOffset = FPPush.getOffset();
609 unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true);
610 unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true);
612 LRReg = getXRegFromWReg(LRReg);
613 FPReg = getXRegFromWReg(FPReg);
615 assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
616 "Pushing invalid registers for frame!");
618 // Indicate that the function has a frame.
619 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
620 HasFP = true;
621 break;
623 case MCCFIInstruction::OpDefCfaOffset: {
624 if (StackSize != 0)
625 return CU::UNWIND_ARM64_MODE_DWARF;
626 StackSize = std::abs(Inst.getOffset());
627 break;
629 case MCCFIInstruction::OpOffset: {
630 // Registers are saved in pairs. We expect there to be two consecutive
631 // `.cfi_offset' instructions with the appropriate registers specified.
632 unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true);
633 if (i + 1 == e)
634 return CU::UNWIND_ARM64_MODE_DWARF;
636 if (CurOffset != 0 && Inst.getOffset() != CurOffset - 8)
637 return CU::UNWIND_ARM64_MODE_DWARF;
638 CurOffset = Inst.getOffset();
640 const MCCFIInstruction &Inst2 = Instrs[++i];
641 if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
642 return CU::UNWIND_ARM64_MODE_DWARF;
643 unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true);
645 if (Inst2.getOffset() != CurOffset - 8)
646 return CU::UNWIND_ARM64_MODE_DWARF;
647 CurOffset = Inst2.getOffset();
649 // N.B. The encodings must be in register number order, and the X
650 // registers before the D registers.
652 // X19/X20 pair = 0x00000001,
653 // X21/X22 pair = 0x00000002,
654 // X23/X24 pair = 0x00000004,
655 // X25/X26 pair = 0x00000008,
656 // X27/X28 pair = 0x00000010
657 Reg1 = getXRegFromWReg(Reg1);
658 Reg2 = getXRegFromWReg(Reg2);
660 if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
661 (CompactUnwindEncoding & 0xF1E) == 0)
662 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
663 else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
664 (CompactUnwindEncoding & 0xF1C) == 0)
665 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
666 else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
667 (CompactUnwindEncoding & 0xF18) == 0)
668 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
669 else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
670 (CompactUnwindEncoding & 0xF10) == 0)
671 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
672 else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
673 (CompactUnwindEncoding & 0xF00) == 0)
674 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
675 else {
676 Reg1 = getDRegFromBReg(Reg1);
677 Reg2 = getDRegFromBReg(Reg2);
679 // D8/D9 pair = 0x00000100,
680 // D10/D11 pair = 0x00000200,
681 // D12/D13 pair = 0x00000400,
682 // D14/D15 pair = 0x00000800
683 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
684 (CompactUnwindEncoding & 0xE00) == 0)
685 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
686 else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
687 (CompactUnwindEncoding & 0xC00) == 0)
688 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
689 else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
690 (CompactUnwindEncoding & 0x800) == 0)
691 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
692 else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
693 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
694 else
695 // A pair was pushed which we cannot handle.
696 return CU::UNWIND_ARM64_MODE_DWARF;
699 break;
704 if (!HasFP) {
705 // With compact unwind info we can only represent stack adjustments of up
706 // to 65520 bytes.
707 if (StackSize > 65520)
708 return CU::UNWIND_ARM64_MODE_DWARF;
710 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
711 CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
714 return CompactUnwindEncoding;
718 } // end anonymous namespace
720 namespace {
722 class ELFAArch64AsmBackend : public AArch64AsmBackend {
723 public:
724 uint8_t OSABI;
725 bool IsILP32;
727 ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
728 bool IsLittleEndian, bool IsILP32)
729 : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
730 IsILP32(IsILP32) {}
732 std::unique_ptr<MCObjectTargetWriter>
733 createObjectTargetWriter() const override {
734 return createAArch64ELFObjectWriter(OSABI, IsILP32);
740 namespace {
741 class COFFAArch64AsmBackend : public AArch64AsmBackend {
742 public:
743 COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
744 : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
746 std::unique_ptr<MCObjectTargetWriter>
747 createObjectTargetWriter() const override {
748 return createAArch64WinCOFFObjectWriter();
753 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
754 const MCSubtargetInfo &STI,
755 const MCRegisterInfo &MRI,
756 const MCTargetOptions &Options) {
757 const Triple &TheTriple = STI.getTargetTriple();
758 if (TheTriple.isOSBinFormatMachO()) {
759 return new DarwinAArch64AsmBackend(T, TheTriple, MRI);
762 if (TheTriple.isOSBinFormatCOFF())
763 return new COFFAArch64AsmBackend(T, TheTriple);
765 assert(TheTriple.isOSBinFormatELF() && "Invalid target");
767 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
768 bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32;
769 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
770 IsILP32);
773 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
774 const MCSubtargetInfo &STI,
775 const MCRegisterInfo &MRI,
776 const MCTargetOptions &Options) {
777 const Triple &TheTriple = STI.getTargetTriple();
778 assert(TheTriple.isOSBinFormatELF() &&
779 "Big endian is only supported for ELF targets!");
780 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
781 bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32;
782 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
783 IsILP32);