[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonLoopIdiomRecognition.cpp
blobccaf1aac1ce0129a957232fb4b7b3d2e602826f7
1 //===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonLoopIdiomRecognition.h"
10 #include "llvm/ADT/APInt.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SetVector.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopAnalysisManager.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsHexagon.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/User.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/KnownBits.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
63 #include <algorithm>
64 #include <array>
65 #include <cassert>
66 #include <cstdint>
67 #include <cstdlib>
68 #include <deque>
69 #include <functional>
70 #include <iterator>
71 #include <map>
72 #include <set>
73 #include <utility>
74 #include <vector>
76 #define DEBUG_TYPE "hexagon-lir"
78 using namespace llvm;
80 static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
81 cl::Hidden, cl::init(false),
82 cl::desc("Disable generation of memcpy in loop idiom recognition"));
84 static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
85 cl::Hidden, cl::init(false),
86 cl::desc("Disable generation of memmove in loop idiom recognition"));
88 static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
89 cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
90 "check guarding the memmove."));
92 static cl::opt<unsigned> CompileTimeMemSizeThreshold(
93 "compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
94 cl::desc("Threshold (in bytes) to perform the transformation, if the "
95 "runtime loop count (mem transfer size) is known at compile-time."));
97 static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
98 cl::Hidden, cl::init(true),
99 cl::desc("Only enable generating memmove in non-nested loops"));
101 static cl::opt<bool> HexagonVolatileMemcpy(
102 "disable-hexagon-volatile-memcpy", cl::Hidden, cl::init(false),
103 cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
105 static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
106 cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
108 static const char *HexagonVolatileMemcpyName
109 = "hexagon_memcpy_forward_vp4cp4n2";
112 namespace llvm {
114 void initializeHexagonLoopIdiomRecognizeLegacyPassPass(PassRegistry &);
115 Pass *createHexagonLoopIdiomPass();
117 } // end namespace llvm
119 namespace {
121 class HexagonLoopIdiomRecognize {
122 public:
123 explicit HexagonLoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
124 LoopInfo *LF, const TargetLibraryInfo *TLI,
125 ScalarEvolution *SE)
126 : AA(AA), DT(DT), LF(LF), TLI(TLI), SE(SE) {}
128 bool run(Loop *L);
130 private:
131 int getSCEVStride(const SCEVAddRecExpr *StoreEv);
132 bool isLegalStore(Loop *CurLoop, StoreInst *SI);
133 void collectStores(Loop *CurLoop, BasicBlock *BB,
134 SmallVectorImpl<StoreInst *> &Stores);
135 bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
136 bool coverLoop(Loop *L, SmallVectorImpl<Instruction *> &Insts) const;
137 bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
138 SmallVectorImpl<BasicBlock *> &ExitBlocks);
139 bool runOnCountableLoop(Loop *L);
141 AliasAnalysis *AA;
142 const DataLayout *DL;
143 DominatorTree *DT;
144 LoopInfo *LF;
145 const TargetLibraryInfo *TLI;
146 ScalarEvolution *SE;
147 bool HasMemcpy, HasMemmove;
150 class HexagonLoopIdiomRecognizeLegacyPass : public LoopPass {
151 public:
152 static char ID;
154 explicit HexagonLoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
155 initializeHexagonLoopIdiomRecognizeLegacyPassPass(
156 *PassRegistry::getPassRegistry());
159 StringRef getPassName() const override {
160 return "Recognize Hexagon-specific loop idioms";
163 void getAnalysisUsage(AnalysisUsage &AU) const override {
164 AU.addRequired<LoopInfoWrapperPass>();
165 AU.addRequiredID(LoopSimplifyID);
166 AU.addRequiredID(LCSSAID);
167 AU.addRequired<AAResultsWrapperPass>();
168 AU.addRequired<ScalarEvolutionWrapperPass>();
169 AU.addRequired<DominatorTreeWrapperPass>();
170 AU.addRequired<TargetLibraryInfoWrapperPass>();
171 AU.addPreserved<TargetLibraryInfoWrapperPass>();
174 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
177 struct Simplifier {
178 struct Rule {
179 using FuncType = std::function<Value *(Instruction *, LLVMContext &)>;
180 Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
181 StringRef Name; // For debugging.
182 FuncType Fn;
185 void addRule(StringRef N, const Rule::FuncType &F) {
186 Rules.push_back(Rule(N, F));
189 private:
190 struct WorkListType {
191 WorkListType() = default;
193 void push_back(Value *V) {
194 // Do not push back duplicates.
195 if (!S.count(V)) {
196 Q.push_back(V);
197 S.insert(V);
201 Value *pop_front_val() {
202 Value *V = Q.front();
203 Q.pop_front();
204 S.erase(V);
205 return V;
208 bool empty() const { return Q.empty(); }
210 private:
211 std::deque<Value *> Q;
212 std::set<Value *> S;
215 using ValueSetType = std::set<Value *>;
217 std::vector<Rule> Rules;
219 public:
220 struct Context {
221 using ValueMapType = DenseMap<Value *, Value *>;
223 Value *Root;
224 ValueSetType Used; // The set of all cloned values used by Root.
225 ValueSetType Clones; // The set of all cloned values.
226 LLVMContext &Ctx;
228 Context(Instruction *Exp)
229 : Ctx(Exp->getParent()->getParent()->getContext()) {
230 initialize(Exp);
233 ~Context() { cleanup(); }
235 void print(raw_ostream &OS, const Value *V) const;
236 Value *materialize(BasicBlock *B, BasicBlock::iterator At);
238 private:
239 friend struct Simplifier;
241 void initialize(Instruction *Exp);
242 void cleanup();
244 template <typename FuncT> void traverse(Value *V, FuncT F);
245 void record(Value *V);
246 void use(Value *V);
247 void unuse(Value *V);
249 bool equal(const Instruction *I, const Instruction *J) const;
250 Value *find(Value *Tree, Value *Sub) const;
251 Value *subst(Value *Tree, Value *OldV, Value *NewV);
252 void replace(Value *OldV, Value *NewV);
253 void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
256 Value *simplify(Context &C);
259 struct PE {
260 PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
262 const Simplifier::Context &C;
263 const Value *V;
266 LLVM_ATTRIBUTE_USED
267 raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
268 P.C.print(OS, P.V ? P.V : P.C.Root);
269 return OS;
272 } // end anonymous namespace
274 char HexagonLoopIdiomRecognizeLegacyPass::ID = 0;
276 INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognizeLegacyPass, "hexagon-loop-idiom",
277 "Recognize Hexagon-specific loop idioms", false, false)
278 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
279 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
280 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
281 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
284 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
285 INITIALIZE_PASS_END(HexagonLoopIdiomRecognizeLegacyPass, "hexagon-loop-idiom",
286 "Recognize Hexagon-specific loop idioms", false, false)
288 template <typename FuncT>
289 void Simplifier::Context::traverse(Value *V, FuncT F) {
290 WorkListType Q;
291 Q.push_back(V);
293 while (!Q.empty()) {
294 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
295 if (!U || U->getParent())
296 continue;
297 if (!F(U))
298 continue;
299 for (Value *Op : U->operands())
300 Q.push_back(Op);
304 void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
305 const auto *U = dyn_cast<const Instruction>(V);
306 if (!U) {
307 OS << V << '(' << *V << ')';
308 return;
311 if (U->getParent()) {
312 OS << U << '(';
313 U->printAsOperand(OS, true);
314 OS << ')';
315 return;
318 unsigned N = U->getNumOperands();
319 if (N != 0)
320 OS << U << '(';
321 OS << U->getOpcodeName();
322 for (const Value *Op : U->operands()) {
323 OS << ' ';
324 print(OS, Op);
326 if (N != 0)
327 OS << ')';
330 void Simplifier::Context::initialize(Instruction *Exp) {
331 // Perform a deep clone of the expression, set Root to the root
332 // of the clone, and build a map from the cloned values to the
333 // original ones.
334 ValueMapType M;
335 BasicBlock *Block = Exp->getParent();
336 WorkListType Q;
337 Q.push_back(Exp);
339 while (!Q.empty()) {
340 Value *V = Q.pop_front_val();
341 if (M.find(V) != M.end())
342 continue;
343 if (Instruction *U = dyn_cast<Instruction>(V)) {
344 if (isa<PHINode>(U) || U->getParent() != Block)
345 continue;
346 for (Value *Op : U->operands())
347 Q.push_back(Op);
348 M.insert({U, U->clone()});
352 for (std::pair<Value*,Value*> P : M) {
353 Instruction *U = cast<Instruction>(P.second);
354 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
355 auto F = M.find(U->getOperand(i));
356 if (F != M.end())
357 U->setOperand(i, F->second);
361 auto R = M.find(Exp);
362 assert(R != M.end());
363 Root = R->second;
365 record(Root);
366 use(Root);
369 void Simplifier::Context::record(Value *V) {
370 auto Record = [this](Instruction *U) -> bool {
371 Clones.insert(U);
372 return true;
374 traverse(V, Record);
377 void Simplifier::Context::use(Value *V) {
378 auto Use = [this](Instruction *U) -> bool {
379 Used.insert(U);
380 return true;
382 traverse(V, Use);
385 void Simplifier::Context::unuse(Value *V) {
386 if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
387 return;
389 auto Unuse = [this](Instruction *U) -> bool {
390 if (!U->use_empty())
391 return false;
392 Used.erase(U);
393 return true;
395 traverse(V, Unuse);
398 Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
399 if (Tree == OldV)
400 return NewV;
401 if (OldV == NewV)
402 return Tree;
404 WorkListType Q;
405 Q.push_back(Tree);
406 while (!Q.empty()) {
407 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
408 // If U is not an instruction, or it's not a clone, skip it.
409 if (!U || U->getParent())
410 continue;
411 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
412 Value *Op = U->getOperand(i);
413 if (Op == OldV) {
414 U->setOperand(i, NewV);
415 unuse(OldV);
416 } else {
417 Q.push_back(Op);
421 return Tree;
424 void Simplifier::Context::replace(Value *OldV, Value *NewV) {
425 if (Root == OldV) {
426 Root = NewV;
427 use(Root);
428 return;
431 // NewV may be a complex tree that has just been created by one of the
432 // transformation rules. We need to make sure that it is commoned with
433 // the existing Root to the maximum extent possible.
434 // Identify all subtrees of NewV (including NewV itself) that have
435 // equivalent counterparts in Root, and replace those subtrees with
436 // these counterparts.
437 WorkListType Q;
438 Q.push_back(NewV);
439 while (!Q.empty()) {
440 Value *V = Q.pop_front_val();
441 Instruction *U = dyn_cast<Instruction>(V);
442 if (!U || U->getParent())
443 continue;
444 if (Value *DupV = find(Root, V)) {
445 if (DupV != V)
446 NewV = subst(NewV, V, DupV);
447 } else {
448 for (Value *Op : U->operands())
449 Q.push_back(Op);
453 // Now, simply replace OldV with NewV in Root.
454 Root = subst(Root, OldV, NewV);
455 use(Root);
458 void Simplifier::Context::cleanup() {
459 for (Value *V : Clones) {
460 Instruction *U = cast<Instruction>(V);
461 if (!U->getParent())
462 U->dropAllReferences();
465 for (Value *V : Clones) {
466 Instruction *U = cast<Instruction>(V);
467 if (!U->getParent())
468 U->deleteValue();
472 bool Simplifier::Context::equal(const Instruction *I,
473 const Instruction *J) const {
474 if (I == J)
475 return true;
476 if (!I->isSameOperationAs(J))
477 return false;
478 if (isa<PHINode>(I))
479 return I->isIdenticalTo(J);
481 for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
482 Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
483 if (OpI == OpJ)
484 continue;
485 auto *InI = dyn_cast<const Instruction>(OpI);
486 auto *InJ = dyn_cast<const Instruction>(OpJ);
487 if (InI && InJ) {
488 if (!equal(InI, InJ))
489 return false;
490 } else if (InI != InJ || !InI)
491 return false;
493 return true;
496 Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
497 Instruction *SubI = dyn_cast<Instruction>(Sub);
498 WorkListType Q;
499 Q.push_back(Tree);
501 while (!Q.empty()) {
502 Value *V = Q.pop_front_val();
503 if (V == Sub)
504 return V;
505 Instruction *U = dyn_cast<Instruction>(V);
506 if (!U || U->getParent())
507 continue;
508 if (SubI && equal(SubI, U))
509 return U;
510 assert(!isa<PHINode>(U));
511 for (Value *Op : U->operands())
512 Q.push_back(Op);
514 return nullptr;
517 void Simplifier::Context::link(Instruction *I, BasicBlock *B,
518 BasicBlock::iterator At) {
519 if (I->getParent())
520 return;
522 for (Value *Op : I->operands()) {
523 if (Instruction *OpI = dyn_cast<Instruction>(Op))
524 link(OpI, B, At);
527 B->getInstList().insert(At, I);
530 Value *Simplifier::Context::materialize(BasicBlock *B,
531 BasicBlock::iterator At) {
532 if (Instruction *RootI = dyn_cast<Instruction>(Root))
533 link(RootI, B, At);
534 return Root;
537 Value *Simplifier::simplify(Context &C) {
538 WorkListType Q;
539 Q.push_back(C.Root);
540 unsigned Count = 0;
541 const unsigned Limit = SimplifyLimit;
543 while (!Q.empty()) {
544 if (Count++ >= Limit)
545 break;
546 Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
547 if (!U || U->getParent() || !C.Used.count(U))
548 continue;
549 bool Changed = false;
550 for (Rule &R : Rules) {
551 Value *W = R.Fn(U, C.Ctx);
552 if (!W)
553 continue;
554 Changed = true;
555 C.record(W);
556 C.replace(U, W);
557 Q.push_back(C.Root);
558 break;
560 if (!Changed) {
561 for (Value *Op : U->operands())
562 Q.push_back(Op);
565 return Count < Limit ? C.Root : nullptr;
568 //===----------------------------------------------------------------------===//
570 // Implementation of PolynomialMultiplyRecognize
572 //===----------------------------------------------------------------------===//
574 namespace {
576 class PolynomialMultiplyRecognize {
577 public:
578 explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
579 const DominatorTree &dt, const TargetLibraryInfo &tli,
580 ScalarEvolution &se)
581 : CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
583 bool recognize();
585 private:
586 using ValueSeq = SetVector<Value *>;
588 IntegerType *getPmpyType() const {
589 LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
590 return IntegerType::get(Ctx, 32);
593 bool isPromotableTo(Value *V, IntegerType *Ty);
594 void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
595 bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
597 Value *getCountIV(BasicBlock *BB);
598 bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
599 void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
600 ValueSeq &Late);
601 bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
602 bool commutesWithShift(Instruction *I);
603 bool highBitsAreZero(Value *V, unsigned IterCount);
604 bool keepsHighBitsZero(Value *V, unsigned IterCount);
605 bool isOperandShifted(Instruction *I, Value *Op);
606 bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
607 unsigned IterCount);
608 void cleanupLoopBody(BasicBlock *LoopB);
610 struct ParsedValues {
611 ParsedValues() = default;
613 Value *M = nullptr;
614 Value *P = nullptr;
615 Value *Q = nullptr;
616 Value *R = nullptr;
617 Value *X = nullptr;
618 Instruction *Res = nullptr;
619 unsigned IterCount = 0;
620 bool Left = false;
621 bool Inv = false;
624 bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
625 bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
626 bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
627 Value *CIV, ParsedValues &PV, bool PreScan);
628 unsigned getInverseMxN(unsigned QP);
629 Value *generate(BasicBlock::iterator At, ParsedValues &PV);
631 void setupPreSimplifier(Simplifier &S);
632 void setupPostSimplifier(Simplifier &S);
634 Loop *CurLoop;
635 const DataLayout &DL;
636 const DominatorTree &DT;
637 const TargetLibraryInfo &TLI;
638 ScalarEvolution &SE;
641 } // end anonymous namespace
643 Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
644 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
645 if (std::distance(PI, PE) != 2)
646 return nullptr;
647 BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
649 for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
650 auto *PN = cast<PHINode>(I);
651 Value *InitV = PN->getIncomingValueForBlock(PB);
652 if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
653 continue;
654 Value *IterV = PN->getIncomingValueForBlock(BB);
655 auto *BO = dyn_cast<BinaryOperator>(IterV);
656 if (!BO)
657 continue;
658 if (BO->getOpcode() != Instruction::Add)
659 continue;
660 Value *IncV = nullptr;
661 if (BO->getOperand(0) == PN)
662 IncV = BO->getOperand(1);
663 else if (BO->getOperand(1) == PN)
664 IncV = BO->getOperand(0);
665 if (IncV == nullptr)
666 continue;
668 if (auto *T = dyn_cast<ConstantInt>(IncV))
669 if (T->getZExtValue() == 1)
670 return PN;
672 return nullptr;
675 static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
676 for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
677 Use &TheUse = UI.getUse();
678 ++UI;
679 if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
680 if (BB == II->getParent())
681 II->replaceUsesOfWith(I, J);
685 bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
686 Value *CIV, ParsedValues &PV) {
687 // Match the following:
688 // select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
689 // select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
690 // The condition may also check for equality with the masked value, i.e
691 // select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
692 // select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
694 Value *CondV = SelI->getCondition();
695 Value *TrueV = SelI->getTrueValue();
696 Value *FalseV = SelI->getFalseValue();
698 using namespace PatternMatch;
700 CmpInst::Predicate P;
701 Value *A = nullptr, *B = nullptr, *C = nullptr;
703 if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
704 !match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
705 return false;
706 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
707 return false;
708 // Matched: select (A & B) == C ? ... : ...
709 // select (A & B) != C ? ... : ...
711 Value *X = nullptr, *Sh1 = nullptr;
712 // Check (A & B) for (X & (1 << i)):
713 if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
714 Sh1 = A;
715 X = B;
716 } else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
717 Sh1 = B;
718 X = A;
719 } else {
720 // TODO: Could also check for an induction variable containing single
721 // bit shifted left by 1 in each iteration.
722 return false;
725 bool TrueIfZero;
727 // Check C against the possible values for comparison: 0 and (1 << i):
728 if (match(C, m_Zero()))
729 TrueIfZero = (P == CmpInst::ICMP_EQ);
730 else if (C == Sh1)
731 TrueIfZero = (P == CmpInst::ICMP_NE);
732 else
733 return false;
735 // So far, matched:
736 // select (X & (1 << i)) ? ... : ...
737 // including variations of the check against zero/non-zero value.
739 Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
740 if (TrueIfZero) {
741 ShouldSameV = TrueV;
742 ShouldXoredV = FalseV;
743 } else {
744 ShouldSameV = FalseV;
745 ShouldXoredV = TrueV;
748 Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
749 Value *T = nullptr;
750 if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
751 // Matched: select +++ ? ... : Y ^ Z
752 // select +++ ? Y ^ Z : ...
753 // where +++ denotes previously checked matches.
754 if (ShouldSameV == Y)
755 T = Z;
756 else if (ShouldSameV == Z)
757 T = Y;
758 else
759 return false;
760 R = ShouldSameV;
761 // Matched: select +++ ? R : R ^ T
762 // select +++ ? R ^ T : R
763 // depending on TrueIfZero.
765 } else if (match(ShouldSameV, m_Zero())) {
766 // Matched: select +++ ? 0 : ...
767 // select +++ ? ... : 0
768 if (!SelI->hasOneUse())
769 return false;
770 T = ShouldXoredV;
771 // Matched: select +++ ? 0 : T
772 // select +++ ? T : 0
774 Value *U = *SelI->user_begin();
775 if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
776 !match(U, m_Xor(m_Value(R), m_Specific(SelI))))
777 return false;
778 // Matched: xor (select +++ ? 0 : T), R
779 // xor (select +++ ? T : 0), R
780 } else
781 return false;
783 // The xor input value T is isolated into its own match so that it could
784 // be checked against an induction variable containing a shifted bit
785 // (todo).
786 // For now, check against (Q << i).
787 if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
788 !match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
789 return false;
790 // Matched: select +++ ? R : R ^ (Q << i)
791 // select +++ ? R ^ (Q << i) : R
793 PV.X = X;
794 PV.Q = Q;
795 PV.R = R;
796 PV.Left = true;
797 return true;
800 bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
801 ParsedValues &PV) {
802 // Match the following:
803 // select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
804 // select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
805 // The condition may also check for equality with the masked value, i.e
806 // select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
807 // select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
809 Value *CondV = SelI->getCondition();
810 Value *TrueV = SelI->getTrueValue();
811 Value *FalseV = SelI->getFalseValue();
813 using namespace PatternMatch;
815 Value *C = nullptr;
816 CmpInst::Predicate P;
817 bool TrueIfZero;
819 if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
820 match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
821 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
822 return false;
823 // Matched: select C == 0 ? ... : ...
824 // select C != 0 ? ... : ...
825 TrueIfZero = (P == CmpInst::ICMP_EQ);
826 } else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
827 match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
828 if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
829 return false;
830 // Matched: select C == 1 ? ... : ...
831 // select C != 1 ? ... : ...
832 TrueIfZero = (P == CmpInst::ICMP_NE);
833 } else
834 return false;
836 Value *X = nullptr;
837 if (!match(C, m_And(m_Value(X), m_One())) &&
838 !match(C, m_And(m_One(), m_Value(X))))
839 return false;
840 // Matched: select (X & 1) == +++ ? ... : ...
841 // select (X & 1) != +++ ? ... : ...
843 Value *R = nullptr, *Q = nullptr;
844 if (TrueIfZero) {
845 // The select's condition is true if the tested bit is 0.
846 // TrueV must be the shift, FalseV must be the xor.
847 if (!match(TrueV, m_LShr(m_Value(R), m_One())))
848 return false;
849 // Matched: select +++ ? (R >> 1) : ...
850 if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
851 !match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
852 return false;
853 // Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
854 // with commuting ^.
855 } else {
856 // The select's condition is true if the tested bit is 1.
857 // TrueV must be the xor, FalseV must be the shift.
858 if (!match(FalseV, m_LShr(m_Value(R), m_One())))
859 return false;
860 // Matched: select +++ ? ... : (R >> 1)
861 if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
862 !match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
863 return false;
864 // Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
865 // with commuting ^.
868 PV.X = X;
869 PV.Q = Q;
870 PV.R = R;
871 PV.Left = false;
872 return true;
875 bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
876 BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
877 bool PreScan) {
878 using namespace PatternMatch;
880 // The basic pattern for R = P.Q is:
881 // for i = 0..31
882 // R = phi (0, R')
883 // if (P & (1 << i)) ; test-bit(P, i)
884 // R' = R ^ (Q << i)
886 // Similarly, the basic pattern for R = (P/Q).Q - P
887 // for i = 0..31
888 // R = phi(P, R')
889 // if (R & (1 << i))
890 // R' = R ^ (Q << i)
892 // There exist idioms, where instead of Q being shifted left, P is shifted
893 // right. This produces a result that is shifted right by 32 bits (the
894 // non-shifted result is 64-bit).
896 // For R = P.Q, this would be:
897 // for i = 0..31
898 // R = phi (0, R')
899 // if ((P >> i) & 1)
900 // R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
901 // else ; be shifted by 1, not i.
902 // R' = R >> 1
904 // And for the inverse:
905 // for i = 0..31
906 // R = phi (P, R')
907 // if (R & 1)
908 // R' = (R >> 1) ^ Q
909 // else
910 // R' = R >> 1
912 // The left-shifting idioms share the same pattern:
913 // select (X & (1 << i)) ? R ^ (Q << i) : R
914 // Similarly for right-shifting idioms:
915 // select (X & 1) ? (R >> 1) ^ Q
917 if (matchLeftShift(SelI, CIV, PV)) {
918 // If this is a pre-scan, getting this far is sufficient.
919 if (PreScan)
920 return true;
922 // Need to make sure that the SelI goes back into R.
923 auto *RPhi = dyn_cast<PHINode>(PV.R);
924 if (!RPhi)
925 return false;
926 if (SelI != RPhi->getIncomingValueForBlock(LoopB))
927 return false;
928 PV.Res = SelI;
930 // If X is loop invariant, it must be the input polynomial, and the
931 // idiom is the basic polynomial multiply.
932 if (CurLoop->isLoopInvariant(PV.X)) {
933 PV.P = PV.X;
934 PV.Inv = false;
935 } else {
936 // X is not loop invariant. If X == R, this is the inverse pmpy.
937 // Otherwise, check for an xor with an invariant value. If the
938 // variable argument to the xor is R, then this is still a valid
939 // inverse pmpy.
940 PV.Inv = true;
941 if (PV.X != PV.R) {
942 Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
943 if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
944 return false;
945 auto *I1 = dyn_cast<Instruction>(X1);
946 auto *I2 = dyn_cast<Instruction>(X2);
947 if (!I1 || I1->getParent() != LoopB) {
948 Var = X2;
949 Inv = X1;
950 } else if (!I2 || I2->getParent() != LoopB) {
951 Var = X1;
952 Inv = X2;
953 } else
954 return false;
955 if (Var != PV.R)
956 return false;
957 PV.M = Inv;
959 // The input polynomial P still needs to be determined. It will be
960 // the entry value of R.
961 Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
962 PV.P = EntryP;
965 return true;
968 if (matchRightShift(SelI, PV)) {
969 // If this is an inverse pattern, the Q polynomial must be known at
970 // compile time.
971 if (PV.Inv && !isa<ConstantInt>(PV.Q))
972 return false;
973 if (PreScan)
974 return true;
975 // There is no exact matching of right-shift pmpy.
976 return false;
979 return false;
982 bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
983 IntegerType *DestTy) {
984 IntegerType *T = dyn_cast<IntegerType>(Val->getType());
985 if (!T || T->getBitWidth() > DestTy->getBitWidth())
986 return false;
987 if (T->getBitWidth() == DestTy->getBitWidth())
988 return true;
989 // Non-instructions are promotable. The reason why an instruction may not
990 // be promotable is that it may produce a different result if its operands
991 // and the result are promoted, for example, it may produce more non-zero
992 // bits. While it would still be possible to represent the proper result
993 // in a wider type, it may require adding additional instructions (which
994 // we don't want to do).
995 Instruction *In = dyn_cast<Instruction>(Val);
996 if (!In)
997 return true;
998 // The bitwidth of the source type is smaller than the destination.
999 // Check if the individual operation can be promoted.
1000 switch (In->getOpcode()) {
1001 case Instruction::PHI:
1002 case Instruction::ZExt:
1003 case Instruction::And:
1004 case Instruction::Or:
1005 case Instruction::Xor:
1006 case Instruction::LShr: // Shift right is ok.
1007 case Instruction::Select:
1008 case Instruction::Trunc:
1009 return true;
1010 case Instruction::ICmp:
1011 if (CmpInst *CI = cast<CmpInst>(In))
1012 return CI->isEquality() || CI->isUnsigned();
1013 llvm_unreachable("Cast failed unexpectedly");
1014 case Instruction::Add:
1015 return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
1017 return false;
1020 void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
1021 IntegerType *DestTy, BasicBlock *LoopB) {
1022 Type *OrigTy = In->getType();
1023 assert(!OrigTy->isVoidTy() && "Invalid instruction to promote");
1025 // Leave boolean values alone.
1026 if (!In->getType()->isIntegerTy(1))
1027 In->mutateType(DestTy);
1028 unsigned DestBW = DestTy->getBitWidth();
1030 // Handle PHIs.
1031 if (PHINode *P = dyn_cast<PHINode>(In)) {
1032 unsigned N = P->getNumIncomingValues();
1033 for (unsigned i = 0; i != N; ++i) {
1034 BasicBlock *InB = P->getIncomingBlock(i);
1035 if (InB == LoopB)
1036 continue;
1037 Value *InV = P->getIncomingValue(i);
1038 IntegerType *Ty = cast<IntegerType>(InV->getType());
1039 // Do not promote values in PHI nodes of type i1.
1040 if (Ty != P->getType()) {
1041 // If the value type does not match the PHI type, the PHI type
1042 // must have been promoted.
1043 assert(Ty->getBitWidth() < DestBW);
1044 InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
1045 P->setIncomingValue(i, InV);
1048 } else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
1049 Value *Op = Z->getOperand(0);
1050 if (Op->getType() == Z->getType())
1051 Z->replaceAllUsesWith(Op);
1052 Z->eraseFromParent();
1053 return;
1055 if (TruncInst *T = dyn_cast<TruncInst>(In)) {
1056 IntegerType *TruncTy = cast<IntegerType>(OrigTy);
1057 Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
1058 Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
1059 T->replaceAllUsesWith(And);
1060 T->eraseFromParent();
1061 return;
1064 // Promote immediates.
1065 for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
1066 if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
1067 if (CI->getType()->getBitWidth() < DestBW)
1068 In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
1072 bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
1073 BasicBlock *ExitB) {
1074 assert(LoopB);
1075 // Skip loops where the exit block has more than one predecessor. The values
1076 // coming from the loop block will be promoted to another type, and so the
1077 // values coming into the exit block from other predecessors would also have
1078 // to be promoted.
1079 if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
1080 return false;
1081 IntegerType *DestTy = getPmpyType();
1082 // Check if the exit values have types that are no wider than the type
1083 // that we want to promote to.
1084 unsigned DestBW = DestTy->getBitWidth();
1085 for (PHINode &P : ExitB->phis()) {
1086 if (P.getNumIncomingValues() != 1)
1087 return false;
1088 assert(P.getIncomingBlock(0) == LoopB);
1089 IntegerType *T = dyn_cast<IntegerType>(P.getType());
1090 if (!T || T->getBitWidth() > DestBW)
1091 return false;
1094 // Check all instructions in the loop.
1095 for (Instruction &In : *LoopB)
1096 if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
1097 return false;
1099 // Perform the promotion.
1100 std::vector<Instruction*> LoopIns;
1101 std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
1102 [](Instruction &In) { return &In; });
1103 for (Instruction *In : LoopIns)
1104 if (!In->isTerminator())
1105 promoteTo(In, DestTy, LoopB);
1107 // Fix up the PHI nodes in the exit block.
1108 Instruction *EndI = ExitB->getFirstNonPHI();
1109 BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
1110 for (auto I = ExitB->begin(); I != End; ++I) {
1111 PHINode *P = dyn_cast<PHINode>(I);
1112 if (!P)
1113 break;
1114 Type *Ty0 = P->getIncomingValue(0)->getType();
1115 Type *PTy = P->getType();
1116 if (PTy != Ty0) {
1117 assert(Ty0 == DestTy);
1118 // In order to create the trunc, P must have the promoted type.
1119 P->mutateType(Ty0);
1120 Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
1121 // In order for the RAUW to work, the types of P and T must match.
1122 P->mutateType(PTy);
1123 P->replaceAllUsesWith(T);
1124 // Final update of the P's type.
1125 P->mutateType(Ty0);
1126 cast<Instruction>(T)->setOperand(0, P);
1130 return true;
1133 bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
1134 ValueSeq &Cycle) {
1135 // Out = ..., In, ...
1136 if (Out == In)
1137 return true;
1139 auto *BB = cast<Instruction>(Out)->getParent();
1140 bool HadPhi = false;
1142 for (auto U : Out->users()) {
1143 auto *I = dyn_cast<Instruction>(&*U);
1144 if (I == nullptr || I->getParent() != BB)
1145 continue;
1146 // Make sure that there are no multi-iteration cycles, e.g.
1147 // p1 = phi(p2)
1148 // p2 = phi(p1)
1149 // The cycle p1->p2->p1 would span two loop iterations.
1150 // Check that there is only one phi in the cycle.
1151 bool IsPhi = isa<PHINode>(I);
1152 if (IsPhi && HadPhi)
1153 return false;
1154 HadPhi |= IsPhi;
1155 if (Cycle.count(I))
1156 return false;
1157 Cycle.insert(I);
1158 if (findCycle(I, In, Cycle))
1159 break;
1160 Cycle.remove(I);
1162 return !Cycle.empty();
1165 void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
1166 ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
1167 // All the values in the cycle that are between the phi node and the
1168 // divider instruction will be classified as "early", all other values
1169 // will be "late".
1171 bool IsE = true;
1172 unsigned I, N = Cycle.size();
1173 for (I = 0; I < N; ++I) {
1174 Value *V = Cycle[I];
1175 if (DivI == V)
1176 IsE = false;
1177 else if (!isa<PHINode>(V))
1178 continue;
1179 // Stop if found either.
1180 break;
1182 // "I" is the index of either DivI or the phi node, whichever was first.
1183 // "E" is "false" or "true" respectively.
1184 ValueSeq &First = !IsE ? Early : Late;
1185 for (unsigned J = 0; J < I; ++J)
1186 First.insert(Cycle[J]);
1188 ValueSeq &Second = IsE ? Early : Late;
1189 Second.insert(Cycle[I]);
1190 for (++I; I < N; ++I) {
1191 Value *V = Cycle[I];
1192 if (DivI == V || isa<PHINode>(V))
1193 break;
1194 Second.insert(V);
1197 for (; I < N; ++I)
1198 First.insert(Cycle[I]);
1201 bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
1202 ValueSeq &Early, ValueSeq &Late) {
1203 // Select is an exception, since the condition value does not have to be
1204 // classified in the same way as the true/false values. The true/false
1205 // values do have to be both early or both late.
1206 if (UseI->getOpcode() == Instruction::Select) {
1207 Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
1208 if (Early.count(TV) || Early.count(FV)) {
1209 if (Late.count(TV) || Late.count(FV))
1210 return false;
1211 Early.insert(UseI);
1212 } else if (Late.count(TV) || Late.count(FV)) {
1213 if (Early.count(TV) || Early.count(FV))
1214 return false;
1215 Late.insert(UseI);
1217 return true;
1220 // Not sure what would be the example of this, but the code below relies
1221 // on having at least one operand.
1222 if (UseI->getNumOperands() == 0)
1223 return true;
1225 bool AE = true, AL = true;
1226 for (auto &I : UseI->operands()) {
1227 if (Early.count(&*I))
1228 AL = false;
1229 else if (Late.count(&*I))
1230 AE = false;
1232 // If the operands appear "all early" and "all late" at the same time,
1233 // then it means that none of them are actually classified as either.
1234 // This is harmless.
1235 if (AE && AL)
1236 return true;
1237 // Conversely, if they are neither "all early" nor "all late", then
1238 // we have a mixture of early and late operands that is not a known
1239 // exception.
1240 if (!AE && !AL)
1241 return false;
1243 // Check that we have covered the two special cases.
1244 assert(AE != AL);
1246 if (AE)
1247 Early.insert(UseI);
1248 else
1249 Late.insert(UseI);
1250 return true;
1253 bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
1254 switch (I->getOpcode()) {
1255 case Instruction::And:
1256 case Instruction::Or:
1257 case Instruction::Xor:
1258 case Instruction::LShr:
1259 case Instruction::Shl:
1260 case Instruction::Select:
1261 case Instruction::ICmp:
1262 case Instruction::PHI:
1263 break;
1264 default:
1265 return false;
1267 return true;
1270 bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
1271 unsigned IterCount) {
1272 auto *T = dyn_cast<IntegerType>(V->getType());
1273 if (!T)
1274 return false;
1276 KnownBits Known(T->getBitWidth());
1277 computeKnownBits(V, Known, DL);
1278 return Known.countMinLeadingZeros() >= IterCount;
1281 bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
1282 unsigned IterCount) {
1283 // Assume that all inputs to the value have the high bits zero.
1284 // Check if the value itself preserves the zeros in the high bits.
1285 if (auto *C = dyn_cast<ConstantInt>(V))
1286 return C->getValue().countLeadingZeros() >= IterCount;
1288 if (auto *I = dyn_cast<Instruction>(V)) {
1289 switch (I->getOpcode()) {
1290 case Instruction::And:
1291 case Instruction::Or:
1292 case Instruction::Xor:
1293 case Instruction::LShr:
1294 case Instruction::Select:
1295 case Instruction::ICmp:
1296 case Instruction::PHI:
1297 case Instruction::ZExt:
1298 return true;
1302 return false;
1305 bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
1306 unsigned Opc = I->getOpcode();
1307 if (Opc == Instruction::Shl || Opc == Instruction::LShr)
1308 return Op != I->getOperand(1);
1309 return true;
1312 bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
1313 BasicBlock *ExitB, unsigned IterCount) {
1314 Value *CIV = getCountIV(LoopB);
1315 if (CIV == nullptr)
1316 return false;
1317 auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
1318 if (CIVTy == nullptr)
1319 return false;
1321 ValueSeq RShifts;
1322 ValueSeq Early, Late, Cycled;
1324 // Find all value cycles that contain logical right shifts by 1.
1325 for (Instruction &I : *LoopB) {
1326 using namespace PatternMatch;
1328 Value *V = nullptr;
1329 if (!match(&I, m_LShr(m_Value(V), m_One())))
1330 continue;
1331 ValueSeq C;
1332 if (!findCycle(&I, V, C))
1333 continue;
1335 // Found a cycle.
1336 C.insert(&I);
1337 classifyCycle(&I, C, Early, Late);
1338 Cycled.insert(C.begin(), C.end());
1339 RShifts.insert(&I);
1342 // Find the set of all values affected by the shift cycles, i.e. all
1343 // cycled values, and (recursively) all their users.
1344 ValueSeq Users(Cycled.begin(), Cycled.end());
1345 for (unsigned i = 0; i < Users.size(); ++i) {
1346 Value *V = Users[i];
1347 if (!isa<IntegerType>(V->getType()))
1348 return false;
1349 auto *R = cast<Instruction>(V);
1350 // If the instruction does not commute with shifts, the loop cannot
1351 // be unshifted.
1352 if (!commutesWithShift(R))
1353 return false;
1354 for (User *U : R->users()) {
1355 auto *T = cast<Instruction>(U);
1356 // Skip users from outside of the loop. They will be handled later.
1357 // Also, skip the right-shifts and phi nodes, since they mix early
1358 // and late values.
1359 if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
1360 continue;
1362 Users.insert(T);
1363 if (!classifyInst(T, Early, Late))
1364 return false;
1368 if (Users.empty())
1369 return false;
1371 // Verify that high bits remain zero.
1372 ValueSeq Internal(Users.begin(), Users.end());
1373 ValueSeq Inputs;
1374 for (unsigned i = 0; i < Internal.size(); ++i) {
1375 auto *R = dyn_cast<Instruction>(Internal[i]);
1376 if (!R)
1377 continue;
1378 for (Value *Op : R->operands()) {
1379 auto *T = dyn_cast<Instruction>(Op);
1380 if (T && T->getParent() != LoopB)
1381 Inputs.insert(Op);
1382 else
1383 Internal.insert(Op);
1386 for (Value *V : Inputs)
1387 if (!highBitsAreZero(V, IterCount))
1388 return false;
1389 for (Value *V : Internal)
1390 if (!keepsHighBitsZero(V, IterCount))
1391 return false;
1393 // Finally, the work can be done. Unshift each user.
1394 IRBuilder<> IRB(LoopB);
1395 std::map<Value*,Value*> ShiftMap;
1397 using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
1399 CastMapType CastMap;
1401 auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
1402 IntegerType *Ty) -> Value* {
1403 auto H = CM.find(std::make_pair(V, Ty));
1404 if (H != CM.end())
1405 return H->second;
1406 Value *CV = IRB.CreateIntCast(V, Ty, false);
1407 CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
1408 return CV;
1411 for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
1412 using namespace PatternMatch;
1414 if (isa<PHINode>(I) || !Users.count(&*I))
1415 continue;
1417 // Match lshr x, 1.
1418 Value *V = nullptr;
1419 if (match(&*I, m_LShr(m_Value(V), m_One()))) {
1420 replaceAllUsesOfWithIn(&*I, V, LoopB);
1421 continue;
1423 // For each non-cycled operand, replace it with the corresponding
1424 // value shifted left.
1425 for (auto &J : I->operands()) {
1426 Value *Op = J.get();
1427 if (!isOperandShifted(&*I, Op))
1428 continue;
1429 if (Users.count(Op))
1430 continue;
1431 // Skip shifting zeros.
1432 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
1433 continue;
1434 // Check if we have already generated a shift for this value.
1435 auto F = ShiftMap.find(Op);
1436 Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
1437 if (W == nullptr) {
1438 IRB.SetInsertPoint(&*I);
1439 // First, the shift amount will be CIV or CIV+1, depending on
1440 // whether the value is early or late. Instead of creating CIV+1,
1441 // do a single shift of the value.
1442 Value *ShAmt = CIV, *ShVal = Op;
1443 auto *VTy = cast<IntegerType>(ShVal->getType());
1444 auto *ATy = cast<IntegerType>(ShAmt->getType());
1445 if (Late.count(&*I))
1446 ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
1447 // Second, the types of the shifted value and the shift amount
1448 // must match.
1449 if (VTy != ATy) {
1450 if (VTy->getBitWidth() < ATy->getBitWidth())
1451 ShVal = upcast(CastMap, IRB, ShVal, ATy);
1452 else
1453 ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
1455 // Ready to generate the shift and memoize it.
1456 W = IRB.CreateShl(ShVal, ShAmt);
1457 ShiftMap.insert(std::make_pair(Op, W));
1459 I->replaceUsesOfWith(Op, W);
1463 // Update the users outside of the loop to account for having left
1464 // shifts. They would normally be shifted right in the loop, so shift
1465 // them right after the loop exit.
1466 // Take advantage of the loop-closed SSA form, which has all the post-
1467 // loop values in phi nodes.
1468 IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
1469 for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
1470 if (!isa<PHINode>(P))
1471 break;
1472 auto *PN = cast<PHINode>(P);
1473 Value *U = PN->getIncomingValueForBlock(LoopB);
1474 if (!Users.count(U))
1475 continue;
1476 Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
1477 PN->replaceAllUsesWith(S);
1478 // The above RAUW will create
1479 // S = lshr S, IterCount
1480 // so we need to fix it back into
1481 // S = lshr PN, IterCount
1482 cast<User>(S)->replaceUsesOfWith(S, PN);
1485 return true;
1488 void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
1489 for (auto &I : *LoopB)
1490 if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
1491 I.replaceAllUsesWith(SV);
1493 for (Instruction &I : llvm::make_early_inc_range(*LoopB))
1494 RecursivelyDeleteTriviallyDeadInstructions(&I, &TLI);
1497 unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
1498 // Arrays of coefficients of Q and the inverse, C.
1499 // Q[i] = coefficient at x^i.
1500 std::array<char,32> Q, C;
1502 for (unsigned i = 0; i < 32; ++i) {
1503 Q[i] = QP & 1;
1504 QP >>= 1;
1506 assert(Q[0] == 1);
1508 // Find C, such that
1509 // (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
1511 // For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
1512 // operations * and + are & and ^ respectively.
1514 // Find C[i] recursively, by comparing i-th coefficient in the product
1515 // with 0 (or 1 for i=0).
1517 // C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
1518 C[0] = 1;
1519 for (unsigned i = 1; i < 32; ++i) {
1520 // Solve for C[i] in:
1521 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
1522 // This is equivalent to
1523 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
1524 // which is
1525 // C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
1526 unsigned T = 0;
1527 for (unsigned j = 0; j < i; ++j)
1528 T = T ^ (C[j] & Q[i-j]);
1529 C[i] = T;
1532 unsigned QV = 0;
1533 for (unsigned i = 0; i < 32; ++i)
1534 if (C[i])
1535 QV |= (1 << i);
1537 return QV;
1540 Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
1541 ParsedValues &PV) {
1542 IRBuilder<> B(&*At);
1543 Module *M = At->getParent()->getParent()->getParent();
1544 Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
1546 Value *P = PV.P, *Q = PV.Q, *P0 = P;
1547 unsigned IC = PV.IterCount;
1549 if (PV.M != nullptr)
1550 P0 = P = B.CreateXor(P, PV.M);
1552 // Create a bit mask to clear the high bits beyond IterCount.
1553 auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
1555 if (PV.IterCount != 32)
1556 P = B.CreateAnd(P, BMI);
1558 if (PV.Inv) {
1559 auto *QI = dyn_cast<ConstantInt>(PV.Q);
1560 assert(QI && QI->getBitWidth() <= 32);
1562 // Again, clearing bits beyond IterCount.
1563 unsigned M = (1 << PV.IterCount) - 1;
1564 unsigned Tmp = (QI->getZExtValue() | 1) & M;
1565 unsigned QV = getInverseMxN(Tmp) & M;
1566 auto *QVI = ConstantInt::get(QI->getType(), QV);
1567 P = B.CreateCall(PMF, {P, QVI});
1568 P = B.CreateTrunc(P, QI->getType());
1569 if (IC != 32)
1570 P = B.CreateAnd(P, BMI);
1573 Value *R = B.CreateCall(PMF, {P, Q});
1575 if (PV.M != nullptr)
1576 R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
1578 return R;
1581 static bool hasZeroSignBit(const Value *V) {
1582 if (const auto *CI = dyn_cast<const ConstantInt>(V))
1583 return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
1584 const Instruction *I = dyn_cast<const Instruction>(V);
1585 if (!I)
1586 return false;
1587 switch (I->getOpcode()) {
1588 case Instruction::LShr:
1589 if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
1590 return SI->getZExtValue() > 0;
1591 return false;
1592 case Instruction::Or:
1593 case Instruction::Xor:
1594 return hasZeroSignBit(I->getOperand(0)) &&
1595 hasZeroSignBit(I->getOperand(1));
1596 case Instruction::And:
1597 return hasZeroSignBit(I->getOperand(0)) ||
1598 hasZeroSignBit(I->getOperand(1));
1600 return false;
1603 void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
1604 S.addRule("sink-zext",
1605 // Sink zext past bitwise operations.
1606 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1607 if (I->getOpcode() != Instruction::ZExt)
1608 return nullptr;
1609 Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
1610 if (!T)
1611 return nullptr;
1612 switch (T->getOpcode()) {
1613 case Instruction::And:
1614 case Instruction::Or:
1615 case Instruction::Xor:
1616 break;
1617 default:
1618 return nullptr;
1620 IRBuilder<> B(Ctx);
1621 return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
1622 B.CreateZExt(T->getOperand(0), I->getType()),
1623 B.CreateZExt(T->getOperand(1), I->getType()));
1625 S.addRule("xor/and -> and/xor",
1626 // (xor (and x a) (and y a)) -> (and (xor x y) a)
1627 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1628 if (I->getOpcode() != Instruction::Xor)
1629 return nullptr;
1630 Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
1631 Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
1632 if (!And0 || !And1)
1633 return nullptr;
1634 if (And0->getOpcode() != Instruction::And ||
1635 And1->getOpcode() != Instruction::And)
1636 return nullptr;
1637 if (And0->getOperand(1) != And1->getOperand(1))
1638 return nullptr;
1639 IRBuilder<> B(Ctx);
1640 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
1641 And0->getOperand(1));
1643 S.addRule("sink binop into select",
1644 // (Op (select c x y) z) -> (select c (Op x z) (Op y z))
1645 // (Op x (select c y z)) -> (select c (Op x y) (Op x z))
1646 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1647 BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
1648 if (!BO)
1649 return nullptr;
1650 Instruction::BinaryOps Op = BO->getOpcode();
1651 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
1652 IRBuilder<> B(Ctx);
1653 Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
1654 Value *Z = BO->getOperand(1);
1655 return B.CreateSelect(Sel->getCondition(),
1656 B.CreateBinOp(Op, X, Z),
1657 B.CreateBinOp(Op, Y, Z));
1659 if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
1660 IRBuilder<> B(Ctx);
1661 Value *X = BO->getOperand(0);
1662 Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
1663 return B.CreateSelect(Sel->getCondition(),
1664 B.CreateBinOp(Op, X, Y),
1665 B.CreateBinOp(Op, X, Z));
1667 return nullptr;
1669 S.addRule("fold select-select",
1670 // (select c (select c x y) z) -> (select c x z)
1671 // (select c x (select c y z)) -> (select c x z)
1672 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1673 SelectInst *Sel = dyn_cast<SelectInst>(I);
1674 if (!Sel)
1675 return nullptr;
1676 IRBuilder<> B(Ctx);
1677 Value *C = Sel->getCondition();
1678 if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
1679 if (Sel0->getCondition() == C)
1680 return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
1682 if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
1683 if (Sel1->getCondition() == C)
1684 return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
1686 return nullptr;
1688 S.addRule("or-signbit -> xor-signbit",
1689 // (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
1690 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1691 if (I->getOpcode() != Instruction::Or)
1692 return nullptr;
1693 ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
1694 if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
1695 return nullptr;
1696 if (!hasZeroSignBit(I->getOperand(0)))
1697 return nullptr;
1698 return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
1700 S.addRule("sink lshr into binop",
1701 // (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
1702 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1703 if (I->getOpcode() != Instruction::LShr)
1704 return nullptr;
1705 BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
1706 if (!BitOp)
1707 return nullptr;
1708 switch (BitOp->getOpcode()) {
1709 case Instruction::And:
1710 case Instruction::Or:
1711 case Instruction::Xor:
1712 break;
1713 default:
1714 return nullptr;
1716 IRBuilder<> B(Ctx);
1717 Value *S = I->getOperand(1);
1718 return B.CreateBinOp(BitOp->getOpcode(),
1719 B.CreateLShr(BitOp->getOperand(0), S),
1720 B.CreateLShr(BitOp->getOperand(1), S));
1722 S.addRule("expose bitop-const",
1723 // (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
1724 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1725 auto IsBitOp = [](unsigned Op) -> bool {
1726 switch (Op) {
1727 case Instruction::And:
1728 case Instruction::Or:
1729 case Instruction::Xor:
1730 return true;
1732 return false;
1734 BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
1735 if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
1736 return nullptr;
1737 BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
1738 if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
1739 return nullptr;
1740 ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
1741 ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
1742 if (!CA || !CB)
1743 return nullptr;
1744 IRBuilder<> B(Ctx);
1745 Value *X = BitOp2->getOperand(0);
1746 return B.CreateBinOp(BitOp2->getOpcode(), X,
1747 B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
1751 void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
1752 S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
1753 [](Instruction *I, LLVMContext &Ctx) -> Value* {
1754 if (I->getOpcode() != Instruction::And)
1755 return nullptr;
1756 Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
1757 ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
1758 if (!Xor || !C0)
1759 return nullptr;
1760 if (Xor->getOpcode() != Instruction::Xor)
1761 return nullptr;
1762 Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
1763 Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
1764 // Pick the first non-null and.
1765 if (!And0 || And0->getOpcode() != Instruction::And)
1766 std::swap(And0, And1);
1767 ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
1768 if (!C1)
1769 return nullptr;
1770 uint32_t V0 = C0->getZExtValue();
1771 uint32_t V1 = C1->getZExtValue();
1772 if (V0 != (V0 & V1))
1773 return nullptr;
1774 IRBuilder<> B(Ctx);
1775 return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
1779 bool PolynomialMultiplyRecognize::recognize() {
1780 LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
1781 << *CurLoop << '\n');
1782 // Restrictions:
1783 // - The loop must consist of a single block.
1784 // - The iteration count must be known at compile-time.
1785 // - The loop must have an induction variable starting from 0, and
1786 // incremented in each iteration of the loop.
1787 BasicBlock *LoopB = CurLoop->getHeader();
1788 LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
1790 if (LoopB != CurLoop->getLoopLatch())
1791 return false;
1792 BasicBlock *ExitB = CurLoop->getExitBlock();
1793 if (ExitB == nullptr)
1794 return false;
1795 BasicBlock *EntryB = CurLoop->getLoopPreheader();
1796 if (EntryB == nullptr)
1797 return false;
1799 unsigned IterCount = 0;
1800 const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
1801 if (isa<SCEVCouldNotCompute>(CT))
1802 return false;
1803 if (auto *CV = dyn_cast<SCEVConstant>(CT))
1804 IterCount = CV->getValue()->getZExtValue() + 1;
1806 Value *CIV = getCountIV(LoopB);
1807 ParsedValues PV;
1808 Simplifier PreSimp;
1809 PV.IterCount = IterCount;
1810 LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
1811 << '\n');
1813 setupPreSimplifier(PreSimp);
1815 // Perform a preliminary scan of select instructions to see if any of them
1816 // looks like a generator of the polynomial multiply steps. Assume that a
1817 // loop can only contain a single transformable operation, so stop the
1818 // traversal after the first reasonable candidate was found.
1819 // XXX: Currently this approach can modify the loop before being 100% sure
1820 // that the transformation can be carried out.
1821 bool FoundPreScan = false;
1822 auto FeedsPHI = [LoopB](const Value *V) -> bool {
1823 for (const Value *U : V->users()) {
1824 if (const auto *P = dyn_cast<const PHINode>(U))
1825 if (P->getParent() == LoopB)
1826 return true;
1828 return false;
1830 for (Instruction &In : *LoopB) {
1831 SelectInst *SI = dyn_cast<SelectInst>(&In);
1832 if (!SI || !FeedsPHI(SI))
1833 continue;
1835 Simplifier::Context C(SI);
1836 Value *T = PreSimp.simplify(C);
1837 SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
1838 LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
1839 if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
1840 FoundPreScan = true;
1841 if (SelI != SI) {
1842 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1843 SI->replaceAllUsesWith(NewSel);
1844 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1846 break;
1850 if (!FoundPreScan) {
1851 LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
1852 return false;
1855 if (!PV.Left) {
1856 // The right shift version actually only returns the higher bits of
1857 // the result (each iteration discards the LSB). If we want to convert it
1858 // to a left-shifting loop, the working data type must be at least as
1859 // wide as the target's pmpy instruction.
1860 if (!promoteTypes(LoopB, ExitB))
1861 return false;
1862 // Run post-promotion simplifications.
1863 Simplifier PostSimp;
1864 setupPostSimplifier(PostSimp);
1865 for (Instruction &In : *LoopB) {
1866 SelectInst *SI = dyn_cast<SelectInst>(&In);
1867 if (!SI || !FeedsPHI(SI))
1868 continue;
1869 Simplifier::Context C(SI);
1870 Value *T = PostSimp.simplify(C);
1871 SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
1872 if (SelI != SI) {
1873 Value *NewSel = C.materialize(LoopB, SI->getIterator());
1874 SI->replaceAllUsesWith(NewSel);
1875 RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
1877 break;
1880 if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
1881 return false;
1882 cleanupLoopBody(LoopB);
1885 // Scan the loop again, find the generating select instruction.
1886 bool FoundScan = false;
1887 for (Instruction &In : *LoopB) {
1888 SelectInst *SelI = dyn_cast<SelectInst>(&In);
1889 if (!SelI)
1890 continue;
1891 LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
1892 FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
1893 if (FoundScan)
1894 break;
1896 assert(FoundScan);
1898 LLVM_DEBUG({
1899 StringRef PP = (PV.M ? "(P+M)" : "P");
1900 if (!PV.Inv)
1901 dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
1902 else
1903 dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
1904 << PP << "\n";
1905 dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
1906 if (PV.M)
1907 dbgs() << " M:" << *PV.M << "\n";
1908 dbgs() << " Q:" << *PV.Q << "\n";
1909 dbgs() << " Iteration count:" << PV.IterCount << "\n";
1912 BasicBlock::iterator At(EntryB->getTerminator());
1913 Value *PM = generate(At, PV);
1914 if (PM == nullptr)
1915 return false;
1917 if (PM->getType() != PV.Res->getType())
1918 PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
1920 PV.Res->replaceAllUsesWith(PM);
1921 PV.Res->eraseFromParent();
1922 return true;
1925 int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
1926 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1927 return SC->getAPInt().getSExtValue();
1928 return 0;
1931 bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
1932 // Allow volatile stores if HexagonVolatileMemcpy is enabled.
1933 if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
1934 return false;
1936 Value *StoredVal = SI->getValueOperand();
1937 Value *StorePtr = SI->getPointerOperand();
1939 // Reject stores that are so large that they overflow an unsigned.
1940 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
1941 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
1942 return false;
1944 // See if the pointer expression is an AddRec like {base,+,1} on the current
1945 // loop, which indicates a strided store. If we have something else, it's a
1946 // random store we can't handle.
1947 auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1948 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
1949 return false;
1951 // Check to see if the stride matches the size of the store. If so, then we
1952 // know that every byte is touched in the loop.
1953 int Stride = getSCEVStride(StoreEv);
1954 if (Stride == 0)
1955 return false;
1956 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1957 if (StoreSize != unsigned(std::abs(Stride)))
1958 return false;
1960 // The store must be feeding a non-volatile load.
1961 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
1962 if (!LI || !LI->isSimple())
1963 return false;
1965 // See if the pointer expression is an AddRec like {base,+,1} on the current
1966 // loop, which indicates a strided load. If we have something else, it's a
1967 // random load we can't handle.
1968 Value *LoadPtr = LI->getPointerOperand();
1969 auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1970 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
1971 return false;
1973 // The store and load must share the same stride.
1974 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
1975 return false;
1977 // Success. This store can be converted into a memcpy.
1978 return true;
1981 /// mayLoopAccessLocation - Return true if the specified loop might access the
1982 /// specified pointer location, which is a loop-strided access. The 'Access'
1983 /// argument specifies what the verboten forms of access are (read or write).
1984 static bool
1985 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1986 const SCEV *BECount, unsigned StoreSize,
1987 AliasAnalysis &AA,
1988 SmallPtrSetImpl<Instruction *> &Ignored) {
1989 // Get the location that may be stored across the loop. Since the access
1990 // is strided positively through memory, we say that the modified location
1991 // starts at the pointer and has infinite size.
1992 LocationSize AccessSize = LocationSize::afterPointer();
1994 // If the loop iterates a fixed number of times, we can refine the access
1995 // size to be exactly the size of the memset, which is (BECount+1)*StoreSize
1996 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
1997 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1998 StoreSize);
2000 // TODO: For this to be really effective, we have to dive into the pointer
2001 // operand in the store. Store to &A[i] of 100 will always return may alias
2002 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
2003 // which will then no-alias a store to &A[100].
2004 MemoryLocation StoreLoc(Ptr, AccessSize);
2006 for (auto *B : L->blocks())
2007 for (auto &I : *B)
2008 if (Ignored.count(&I) == 0 &&
2009 isModOrRefSet(
2010 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
2011 return true;
2013 return false;
2016 void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
2017 SmallVectorImpl<StoreInst*> &Stores) {
2018 Stores.clear();
2019 for (Instruction &I : *BB)
2020 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
2021 if (isLegalStore(CurLoop, SI))
2022 Stores.push_back(SI);
2025 bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
2026 StoreInst *SI, const SCEV *BECount) {
2027 assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
2028 "Expected only non-volatile stores, or Hexagon-specific memcpy"
2029 "to volatile destination.");
2031 Value *StorePtr = SI->getPointerOperand();
2032 auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
2033 unsigned Stride = getSCEVStride(StoreEv);
2034 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
2035 if (Stride != StoreSize)
2036 return false;
2038 // See if the pointer expression is an AddRec like {base,+,1} on the current
2039 // loop, which indicates a strided load. If we have something else, it's a
2040 // random load we can't handle.
2041 auto *LI = cast<LoadInst>(SI->getValueOperand());
2042 auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
2044 // The trip count of the loop and the base pointer of the addrec SCEV is
2045 // guaranteed to be loop invariant, which means that it should dominate the
2046 // header. This allows us to insert code for it in the preheader.
2047 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2048 Instruction *ExpPt = Preheader->getTerminator();
2049 IRBuilder<> Builder(ExpPt);
2050 SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
2052 Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
2054 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
2055 // this into a memcpy/memmove in the loop preheader now if we want. However,
2056 // this would be unsafe to do if there is anything else in the loop that may
2057 // read or write the memory region we're storing to. For memcpy, this
2058 // includes the load that feeds the stores. Check for an alias by generating
2059 // the base address and checking everything.
2060 Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
2061 Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
2062 Value *LoadBasePtr = nullptr;
2064 bool Overlap = false;
2065 bool DestVolatile = SI->isVolatile();
2066 Type *BECountTy = BECount->getType();
2068 if (DestVolatile) {
2069 // The trip count must fit in i32, since it is the type of the "num_words"
2070 // argument to hexagon_memcpy_forward_vp4cp4n2.
2071 if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
2072 CleanupAndExit:
2073 // If we generated new code for the base pointer, clean up.
2074 Expander.clear();
2075 if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
2076 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
2077 StoreBasePtr = nullptr;
2079 if (LoadBasePtr) {
2080 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
2081 LoadBasePtr = nullptr;
2083 return false;
2087 SmallPtrSet<Instruction*, 2> Ignore1;
2088 Ignore1.insert(SI);
2089 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
2090 StoreSize, *AA, Ignore1)) {
2091 // Check if the load is the offending instruction.
2092 Ignore1.insert(LI);
2093 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
2094 BECount, StoreSize, *AA, Ignore1)) {
2095 // Still bad. Nothing we can do.
2096 goto CleanupAndExit;
2098 // It worked with the load ignored.
2099 Overlap = true;
2102 if (!Overlap) {
2103 if (DisableMemcpyIdiom || !HasMemcpy)
2104 goto CleanupAndExit;
2105 } else {
2106 // Don't generate memmove if this function will be inlined. This is
2107 // because the caller will undergo this transformation after inlining.
2108 Function *Func = CurLoop->getHeader()->getParent();
2109 if (Func->hasFnAttribute(Attribute::AlwaysInline))
2110 goto CleanupAndExit;
2112 // In case of a memmove, the call to memmove will be executed instead
2113 // of the loop, so we need to make sure that there is nothing else in
2114 // the loop than the load, store and instructions that these two depend
2115 // on.
2116 SmallVector<Instruction*,2> Insts;
2117 Insts.push_back(SI);
2118 Insts.push_back(LI);
2119 if (!coverLoop(CurLoop, Insts))
2120 goto CleanupAndExit;
2122 if (DisableMemmoveIdiom || !HasMemmove)
2123 goto CleanupAndExit;
2124 bool IsNested = CurLoop->getParentLoop() != nullptr;
2125 if (IsNested && OnlyNonNestedMemmove)
2126 goto CleanupAndExit;
2129 // For a memcpy, we have to make sure that the input array is not being
2130 // mutated by the loop.
2131 LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
2132 Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
2134 SmallPtrSet<Instruction*, 2> Ignore2;
2135 Ignore2.insert(SI);
2136 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
2137 StoreSize, *AA, Ignore2))
2138 goto CleanupAndExit;
2140 // Check the stride.
2141 bool StridePos = getSCEVStride(LoadEv) >= 0;
2143 // Currently, the volatile memcpy only emulates traversing memory forward.
2144 if (!StridePos && DestVolatile)
2145 goto CleanupAndExit;
2147 bool RuntimeCheck = (Overlap || DestVolatile);
2149 BasicBlock *ExitB;
2150 if (RuntimeCheck) {
2151 // The runtime check needs a single exit block.
2152 SmallVector<BasicBlock*, 8> ExitBlocks;
2153 CurLoop->getUniqueExitBlocks(ExitBlocks);
2154 if (ExitBlocks.size() != 1)
2155 goto CleanupAndExit;
2156 ExitB = ExitBlocks[0];
2159 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
2160 // pointer size if it isn't already.
2161 LLVMContext &Ctx = SI->getContext();
2162 BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
2163 DebugLoc DLoc = SI->getDebugLoc();
2165 const SCEV *NumBytesS =
2166 SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
2167 if (StoreSize != 1)
2168 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
2169 SCEV::FlagNUW);
2170 Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
2171 if (Instruction *In = dyn_cast<Instruction>(NumBytes))
2172 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2173 NumBytes = Simp;
2175 CallInst *NewCall;
2177 if (RuntimeCheck) {
2178 unsigned Threshold = RuntimeMemSizeThreshold;
2179 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
2180 uint64_t C = CI->getZExtValue();
2181 if (Threshold != 0 && C < Threshold)
2182 goto CleanupAndExit;
2183 if (C < CompileTimeMemSizeThreshold)
2184 goto CleanupAndExit;
2187 BasicBlock *Header = CurLoop->getHeader();
2188 Function *Func = Header->getParent();
2189 Loop *ParentL = LF->getLoopFor(Preheader);
2190 StringRef HeaderName = Header->getName();
2192 // Create a new (empty) preheader, and update the PHI nodes in the
2193 // header to use the new preheader.
2194 BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
2195 Func, Header);
2196 if (ParentL)
2197 ParentL->addBasicBlockToLoop(NewPreheader, *LF);
2198 IRBuilder<>(NewPreheader).CreateBr(Header);
2199 for (auto &In : *Header) {
2200 PHINode *PN = dyn_cast<PHINode>(&In);
2201 if (!PN)
2202 break;
2203 int bx = PN->getBasicBlockIndex(Preheader);
2204 if (bx >= 0)
2205 PN->setIncomingBlock(bx, NewPreheader);
2207 DT->addNewBlock(NewPreheader, Preheader);
2208 DT->changeImmediateDominator(Header, NewPreheader);
2210 // Check for safe conditions to execute memmove.
2211 // If stride is positive, copying things from higher to lower addresses
2212 // is equivalent to memmove. For negative stride, it's the other way
2213 // around. Copying forward in memory with positive stride may not be
2214 // same as memmove since we may be copying values that we just stored
2215 // in some previous iteration.
2216 Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
2217 Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
2218 Value *LowA = StridePos ? SA : LA;
2219 Value *HighA = StridePos ? LA : SA;
2220 Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
2221 Value *Cond = CmpA;
2223 // Check for distance between pointers. Since the case LowA < HighA
2224 // is checked for above, assume LowA >= HighA.
2225 Value *Dist = Builder.CreateSub(LowA, HighA);
2226 Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
2227 Value *CmpEither = Builder.CreateOr(Cond, CmpD);
2228 Cond = CmpEither;
2230 if (Threshold != 0) {
2231 Type *Ty = NumBytes->getType();
2232 Value *Thr = ConstantInt::get(Ty, Threshold);
2233 Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
2234 Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
2235 Cond = CmpBoth;
2237 BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
2238 Func, NewPreheader);
2239 if (ParentL)
2240 ParentL->addBasicBlockToLoop(MemmoveB, *LF);
2241 Instruction *OldT = Preheader->getTerminator();
2242 Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
2243 OldT->eraseFromParent();
2244 Preheader->setName(Preheader->getName()+".old");
2245 DT->addNewBlock(MemmoveB, Preheader);
2246 // Find the new immediate dominator of the exit block.
2247 BasicBlock *ExitD = Preheader;
2248 for (BasicBlock *PB : predecessors(ExitB)) {
2249 ExitD = DT->findNearestCommonDominator(ExitD, PB);
2250 if (!ExitD)
2251 break;
2253 // If the prior immediate dominator of ExitB was dominated by the
2254 // old preheader, then the old preheader becomes the new immediate
2255 // dominator. Otherwise don't change anything (because the newly
2256 // added blocks are dominated by the old preheader).
2257 if (ExitD && DT->dominates(Preheader, ExitD)) {
2258 DomTreeNode *BN = DT->getNode(ExitB);
2259 DomTreeNode *DN = DT->getNode(ExitD);
2260 BN->setIDom(DN);
2263 // Add a call to memmove to the conditional block.
2264 IRBuilder<> CondBuilder(MemmoveB);
2265 CondBuilder.CreateBr(ExitB);
2266 CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
2268 if (DestVolatile) {
2269 Type *Int32Ty = Type::getInt32Ty(Ctx);
2270 Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
2271 Type *VoidTy = Type::getVoidTy(Ctx);
2272 Module *M = Func->getParent();
2273 FunctionCallee Fn = M->getOrInsertFunction(
2274 HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty);
2276 const SCEV *OneS = SE->getConstant(Int32Ty, 1);
2277 const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
2278 const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
2279 Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
2280 MemmoveB->getTerminator());
2281 if (Instruction *In = dyn_cast<Instruction>(NumWords))
2282 if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
2283 NumWords = Simp;
2285 Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
2286 ? StoreBasePtr
2287 : CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
2288 Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
2289 ? LoadBasePtr
2290 : CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
2291 NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
2292 } else {
2293 NewCall = CondBuilder.CreateMemMove(
2294 StoreBasePtr, SI->getAlign(), LoadBasePtr, LI->getAlign(), NumBytes);
2296 } else {
2297 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
2298 LI->getAlign(), NumBytes);
2299 // Okay, the memcpy has been formed. Zap the original store and
2300 // anything that feeds into it.
2301 RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
2304 NewCall->setDebugLoc(DLoc);
2306 LLVM_DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
2307 << *NewCall << "\n"
2308 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
2309 << " from store ptr=" << *StoreEv << " at: " << *SI
2310 << "\n");
2312 return true;
2315 // Check if the instructions in Insts, together with their dependencies
2316 // cover the loop in the sense that the loop could be safely eliminated once
2317 // the instructions in Insts are removed.
2318 bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
2319 SmallVectorImpl<Instruction*> &Insts) const {
2320 SmallSet<BasicBlock*,8> LoopBlocks;
2321 for (auto *B : L->blocks())
2322 LoopBlocks.insert(B);
2324 SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
2326 // Collect all instructions from the loop that the instructions in Insts
2327 // depend on (plus their dependencies, etc.). These instructions will
2328 // constitute the expression trees that feed those in Insts, but the trees
2329 // will be limited only to instructions contained in the loop.
2330 for (unsigned i = 0; i < Worklist.size(); ++i) {
2331 Instruction *In = Worklist[i];
2332 for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
2333 Instruction *OpI = dyn_cast<Instruction>(I);
2334 if (!OpI)
2335 continue;
2336 BasicBlock *PB = OpI->getParent();
2337 if (!LoopBlocks.count(PB))
2338 continue;
2339 Worklist.insert(OpI);
2343 // Scan all instructions in the loop, if any of them have a user outside
2344 // of the loop, or outside of the expressions collected above, then either
2345 // the loop has a side-effect visible outside of it, or there are
2346 // instructions in it that are not involved in the original set Insts.
2347 for (auto *B : L->blocks()) {
2348 for (auto &In : *B) {
2349 if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
2350 continue;
2351 if (!Worklist.count(&In) && In.mayHaveSideEffects())
2352 return false;
2353 for (auto K : In.users()) {
2354 Instruction *UseI = dyn_cast<Instruction>(K);
2355 if (!UseI)
2356 continue;
2357 BasicBlock *UseB = UseI->getParent();
2358 if (LF->getLoopFor(UseB) != L)
2359 return false;
2364 return true;
2367 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
2368 /// with the specified backedge count. This block is known to be in the current
2369 /// loop and not in any subloops.
2370 bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
2371 const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
2372 // We can only promote stores in this block if they are unconditionally
2373 // executed in the loop. For a block to be unconditionally executed, it has
2374 // to dominate all the exit blocks of the loop. Verify this now.
2375 auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
2376 return DT->dominates(BB, EB);
2378 if (!all_of(ExitBlocks, DominatedByBB))
2379 return false;
2381 bool MadeChange = false;
2382 // Look for store instructions, which may be optimized to memset/memcpy.
2383 SmallVector<StoreInst*,8> Stores;
2384 collectStores(CurLoop, BB, Stores);
2386 // Optimize the store into a memcpy, if it feeds an similarly strided load.
2387 for (auto &SI : Stores)
2388 MadeChange |= processCopyingStore(CurLoop, SI, BECount);
2390 return MadeChange;
2393 bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
2394 PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
2395 if (PMR.recognize())
2396 return true;
2398 if (!HasMemcpy && !HasMemmove)
2399 return false;
2401 const SCEV *BECount = SE->getBackedgeTakenCount(L);
2402 assert(!isa<SCEVCouldNotCompute>(BECount) &&
2403 "runOnCountableLoop() called on a loop without a predictable"
2404 "backedge-taken count");
2406 SmallVector<BasicBlock *, 8> ExitBlocks;
2407 L->getUniqueExitBlocks(ExitBlocks);
2409 bool Changed = false;
2411 // Scan all the blocks in the loop that are not in subloops.
2412 for (auto *BB : L->getBlocks()) {
2413 // Ignore blocks in subloops.
2414 if (LF->getLoopFor(BB) != L)
2415 continue;
2416 Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
2419 return Changed;
2422 bool HexagonLoopIdiomRecognize::run(Loop *L) {
2423 const Module &M = *L->getHeader()->getParent()->getParent();
2424 if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
2425 return false;
2427 // If the loop could not be converted to canonical form, it must have an
2428 // indirectbr in it, just give up.
2429 if (!L->getLoopPreheader())
2430 return false;
2432 // Disable loop idiom recognition if the function's name is a common idiom.
2433 StringRef Name = L->getHeader()->getParent()->getName();
2434 if (Name == "memset" || Name == "memcpy" || Name == "memmove")
2435 return false;
2437 DL = &L->getHeader()->getModule()->getDataLayout();
2439 HasMemcpy = TLI->has(LibFunc_memcpy);
2440 HasMemmove = TLI->has(LibFunc_memmove);
2442 if (SE->hasLoopInvariantBackedgeTakenCount(L))
2443 return runOnCountableLoop(L);
2444 return false;
2447 bool HexagonLoopIdiomRecognizeLegacyPass::runOnLoop(Loop *L,
2448 LPPassManager &LPM) {
2449 if (skipLoop(L))
2450 return false;
2452 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2453 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2454 auto *LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2455 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
2456 *L->getHeader()->getParent());
2457 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2458 return HexagonLoopIdiomRecognize(AA, DT, LF, TLI, SE).run(L);
2461 Pass *llvm::createHexagonLoopIdiomPass() {
2462 return new HexagonLoopIdiomRecognizeLegacyPass();
2465 PreservedAnalyses
2466 HexagonLoopIdiomRecognitionPass::run(Loop &L, LoopAnalysisManager &AM,
2467 LoopStandardAnalysisResults &AR,
2468 LPMUpdater &U) {
2469 return HexagonLoopIdiomRecognize(&AR.AA, &AR.DT, &AR.LI, &AR.TLI, &AR.SE)
2470 .run(&L)
2471 ? getLoopPassPreservedAnalyses()
2472 : PreservedAnalyses::all();