[AMDGPU] New gfx940 mfma instructions
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonSplitDouble.cpp
blobada78ca70559ecc0946ae51ae18152da7055e9b4
1 //===- HexagonSplitDouble.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonInstrInfo.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/CodeGen/MachineBasicBlock.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compiler.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <limits>
38 #include <map>
39 #include <set>
40 #include <utility>
41 #include <vector>
43 #define DEBUG_TYPE "hsdr"
45 using namespace llvm;
47 namespace llvm {
49 FunctionPass *createHexagonSplitDoubleRegs();
50 void initializeHexagonSplitDoubleRegsPass(PassRegistry&);
52 } // end namespace llvm
54 static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1),
55 cl::desc("Maximum number of split partitions"));
56 static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true),
57 cl::desc("Do not split loads or stores"));
58 static cl::opt<bool> SplitAll("hsdr-split-all", cl::Hidden, cl::init(false),
59 cl::desc("Split all partitions"));
61 namespace {
63 class HexagonSplitDoubleRegs : public MachineFunctionPass {
64 public:
65 static char ID;
67 HexagonSplitDoubleRegs() : MachineFunctionPass(ID) {}
69 StringRef getPassName() const override {
70 return "Hexagon Split Double Registers";
73 void getAnalysisUsage(AnalysisUsage &AU) const override {
74 AU.addRequired<MachineLoopInfo>();
75 AU.addPreserved<MachineLoopInfo>();
76 MachineFunctionPass::getAnalysisUsage(AU);
79 bool runOnMachineFunction(MachineFunction &MF) override;
81 private:
82 static const TargetRegisterClass *const DoubleRC;
84 const HexagonRegisterInfo *TRI = nullptr;
85 const HexagonInstrInfo *TII = nullptr;
86 const MachineLoopInfo *MLI;
87 MachineRegisterInfo *MRI;
89 using USet = std::set<unsigned>;
90 using UUSetMap = std::map<unsigned, USet>;
91 using UUPair = std::pair<unsigned, unsigned>;
92 using UUPairMap = std::map<unsigned, UUPair>;
93 using LoopRegMap = std::map<const MachineLoop *, USet>;
95 bool isInduction(unsigned Reg, LoopRegMap &IRM) const;
96 bool isVolatileInstr(const MachineInstr *MI) const;
97 bool isFixedInstr(const MachineInstr *MI) const;
98 void partitionRegisters(UUSetMap &P2Rs);
99 int32_t profit(const MachineInstr *MI) const;
100 int32_t profit(Register Reg) const;
101 bool isProfitable(const USet &Part, LoopRegMap &IRM) const;
103 void collectIndRegsForLoop(const MachineLoop *L, USet &Rs);
104 void collectIndRegs(LoopRegMap &IRM);
106 void createHalfInstr(unsigned Opc, MachineInstr *MI,
107 const UUPairMap &PairMap, unsigned SubR);
108 void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap);
109 void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap);
110 void splitCombine(MachineInstr *MI, const UUPairMap &PairMap);
111 void splitExt(MachineInstr *MI, const UUPairMap &PairMap);
112 void splitShift(MachineInstr *MI, const UUPairMap &PairMap);
113 void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap);
114 bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap);
115 void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap);
116 void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap);
117 bool splitPartition(const USet &Part);
119 static int Counter;
121 static void dump_partition(raw_ostream&, const USet&,
122 const TargetRegisterInfo&);
125 } // end anonymous namespace
127 char HexagonSplitDoubleRegs::ID;
128 int HexagonSplitDoubleRegs::Counter = 0;
129 const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC =
130 &Hexagon::DoubleRegsRegClass;
132 INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double",
133 "Hexagon Split Double Registers", false, false)
135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
136 LLVM_DUMP_METHOD void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os,
137 const USet &Part, const TargetRegisterInfo &TRI) {
138 dbgs() << '{';
139 for (auto I : Part)
140 dbgs() << ' ' << printReg(I, &TRI);
141 dbgs() << " }";
143 #endif
145 bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const {
146 for (auto I : IRM) {
147 const USet &Rs = I.second;
148 if (Rs.find(Reg) != Rs.end())
149 return true;
151 return false;
154 bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const {
155 for (auto &MO : MI->memoperands())
156 if (MO->isVolatile() || MO->isAtomic())
157 return true;
158 return false;
161 bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const {
162 if (MI->mayLoadOrStore())
163 if (MemRefsFixed || isVolatileInstr(MI))
164 return true;
165 if (MI->isDebugInstr())
166 return false;
168 unsigned Opc = MI->getOpcode();
169 switch (Opc) {
170 default:
171 return true;
173 case TargetOpcode::PHI:
174 case TargetOpcode::COPY:
175 break;
177 case Hexagon::L2_loadrd_io:
178 // Not handling stack stores (only reg-based addresses).
179 if (MI->getOperand(1).isReg())
180 break;
181 return true;
182 case Hexagon::S2_storerd_io:
183 // Not handling stack stores (only reg-based addresses).
184 if (MI->getOperand(0).isReg())
185 break;
186 return true;
187 case Hexagon::L2_loadrd_pi:
188 case Hexagon::S2_storerd_pi:
190 case Hexagon::A2_tfrpi:
191 case Hexagon::A2_combineii:
192 case Hexagon::A4_combineir:
193 case Hexagon::A4_combineii:
194 case Hexagon::A4_combineri:
195 case Hexagon::A2_combinew:
196 case Hexagon::CONST64:
198 case Hexagon::A2_sxtw:
200 case Hexagon::A2_andp:
201 case Hexagon::A2_orp:
202 case Hexagon::A2_xorp:
203 case Hexagon::S2_asl_i_p_or:
204 case Hexagon::S2_asl_i_p:
205 case Hexagon::S2_asr_i_p:
206 case Hexagon::S2_lsr_i_p:
207 break;
210 for (auto &Op : MI->operands()) {
211 if (!Op.isReg())
212 continue;
213 Register R = Op.getReg();
214 if (!R.isVirtual())
215 return true;
217 return false;
220 void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) {
221 using UUMap = std::map<unsigned, unsigned>;
222 using UVect = std::vector<unsigned>;
224 unsigned NumRegs = MRI->getNumVirtRegs();
225 BitVector DoubleRegs(NumRegs);
226 for (unsigned i = 0; i < NumRegs; ++i) {
227 Register R = Register::index2VirtReg(i);
228 if (MRI->getRegClass(R) == DoubleRC)
229 DoubleRegs.set(i);
232 BitVector FixedRegs(NumRegs);
233 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
234 Register R = Register::index2VirtReg(x);
235 MachineInstr *DefI = MRI->getVRegDef(R);
236 // In some cases a register may exist, but never be defined or used.
237 // It should never appear anywhere, but mark it as "fixed", just to be
238 // safe.
239 if (!DefI || isFixedInstr(DefI))
240 FixedRegs.set(x);
243 UUSetMap AssocMap;
244 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
245 if (FixedRegs[x])
246 continue;
247 Register R = Register::index2VirtReg(x);
248 LLVM_DEBUG(dbgs() << printReg(R, TRI) << " ~~");
249 USet &Asc = AssocMap[R];
250 for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end();
251 U != Z; ++U) {
252 MachineOperand &Op = *U;
253 MachineInstr *UseI = Op.getParent();
254 if (isFixedInstr(UseI))
255 continue;
256 for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) {
257 MachineOperand &MO = UseI->getOperand(i);
258 // Skip non-registers or registers with subregisters.
259 if (&MO == &Op || !MO.isReg() || MO.getSubReg())
260 continue;
261 Register T = MO.getReg();
262 if (!T.isVirtual()) {
263 FixedRegs.set(x);
264 continue;
266 if (MRI->getRegClass(T) != DoubleRC)
267 continue;
268 unsigned u = Register::virtReg2Index(T);
269 if (FixedRegs[u])
270 continue;
271 LLVM_DEBUG(dbgs() << ' ' << printReg(T, TRI));
272 Asc.insert(T);
273 // Make it symmetric.
274 AssocMap[T].insert(R);
277 LLVM_DEBUG(dbgs() << '\n');
280 UUMap R2P;
281 unsigned NextP = 1;
282 USet Visited;
283 for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) {
284 Register R = Register::index2VirtReg(x);
285 if (Visited.count(R))
286 continue;
287 // Create a new partition for R.
288 unsigned ThisP = FixedRegs[x] ? 0 : NextP++;
289 UVect WorkQ;
290 WorkQ.push_back(R);
291 for (unsigned i = 0; i < WorkQ.size(); ++i) {
292 unsigned T = WorkQ[i];
293 if (Visited.count(T))
294 continue;
295 R2P[T] = ThisP;
296 Visited.insert(T);
297 // Add all registers associated with T.
298 USet &Asc = AssocMap[T];
299 append_range(WorkQ, Asc);
303 for (auto I : R2P)
304 P2Rs[I.second].insert(I.first);
307 static inline int32_t profitImm(unsigned Imm) {
308 int32_t P = 0;
309 if (Imm == 0 || Imm == 0xFFFFFFFF)
310 P += 10;
311 return P;
314 int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const {
315 unsigned ImmX = 0;
316 unsigned Opc = MI->getOpcode();
317 switch (Opc) {
318 case TargetOpcode::PHI:
319 for (const auto &Op : MI->operands())
320 if (!Op.getSubReg())
321 return 0;
322 return 10;
323 case TargetOpcode::COPY:
324 if (MI->getOperand(1).getSubReg() != 0)
325 return 10;
326 return 0;
328 case Hexagon::L2_loadrd_io:
329 case Hexagon::S2_storerd_io:
330 return -1;
331 case Hexagon::L2_loadrd_pi:
332 case Hexagon::S2_storerd_pi:
333 return 2;
335 case Hexagon::A2_tfrpi:
336 case Hexagon::CONST64: {
337 uint64_t D = MI->getOperand(1).getImm();
338 unsigned Lo = D & 0xFFFFFFFFULL;
339 unsigned Hi = D >> 32;
340 return profitImm(Lo) + profitImm(Hi);
342 case Hexagon::A2_combineii:
343 case Hexagon::A4_combineii: {
344 const MachineOperand &Op1 = MI->getOperand(1);
345 const MachineOperand &Op2 = MI->getOperand(2);
346 int32_t Prof1 = Op1.isImm() ? profitImm(Op1.getImm()) : 0;
347 int32_t Prof2 = Op2.isImm() ? profitImm(Op2.getImm()) : 0;
348 return Prof1 + Prof2;
350 case Hexagon::A4_combineri:
351 ImmX++;
352 // Fall through into A4_combineir.
353 LLVM_FALLTHROUGH;
354 case Hexagon::A4_combineir: {
355 ImmX++;
356 const MachineOperand &OpX = MI->getOperand(ImmX);
357 if (OpX.isImm()) {
358 int64_t V = OpX.getImm();
359 if (V == 0 || V == -1)
360 return 10;
362 // Fall through into A2_combinew.
363 LLVM_FALLTHROUGH;
365 case Hexagon::A2_combinew:
366 return 2;
368 case Hexagon::A2_sxtw:
369 return 3;
371 case Hexagon::A2_andp:
372 case Hexagon::A2_orp:
373 case Hexagon::A2_xorp: {
374 Register Rs = MI->getOperand(1).getReg();
375 Register Rt = MI->getOperand(2).getReg();
376 return profit(Rs) + profit(Rt);
379 case Hexagon::S2_asl_i_p_or: {
380 unsigned S = MI->getOperand(3).getImm();
381 if (S == 0 || S == 32)
382 return 10;
383 return -1;
385 case Hexagon::S2_asl_i_p:
386 case Hexagon::S2_asr_i_p:
387 case Hexagon::S2_lsr_i_p:
388 unsigned S = MI->getOperand(2).getImm();
389 if (S == 0 || S == 32)
390 return 10;
391 if (S == 16)
392 return 5;
393 if (S == 48)
394 return 7;
395 return -10;
398 return 0;
401 int32_t HexagonSplitDoubleRegs::profit(Register Reg) const {
402 assert(Reg.isVirtual());
404 const MachineInstr *DefI = MRI->getVRegDef(Reg);
405 switch (DefI->getOpcode()) {
406 case Hexagon::A2_tfrpi:
407 case Hexagon::CONST64:
408 case Hexagon::A2_combineii:
409 case Hexagon::A4_combineii:
410 case Hexagon::A4_combineri:
411 case Hexagon::A4_combineir:
412 case Hexagon::A2_combinew:
413 return profit(DefI);
414 default:
415 break;
417 return 0;
420 bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM)
421 const {
422 unsigned FixedNum = 0, LoopPhiNum = 0;
423 int32_t TotalP = 0;
425 for (unsigned DR : Part) {
426 MachineInstr *DefI = MRI->getVRegDef(DR);
427 int32_t P = profit(DefI);
428 if (P == std::numeric_limits<int>::min())
429 return false;
430 TotalP += P;
431 // Reduce the profitability of splitting induction registers.
432 if (isInduction(DR, IRM))
433 TotalP -= 30;
435 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
436 U != W; ++U) {
437 MachineInstr *UseI = U->getParent();
438 if (isFixedInstr(UseI)) {
439 FixedNum++;
440 // Calculate the cost of generating REG_SEQUENCE instructions.
441 for (auto &Op : UseI->operands()) {
442 if (Op.isReg() && Part.count(Op.getReg()))
443 if (Op.getSubReg())
444 TotalP -= 2;
446 continue;
448 // If a register from this partition is used in a fixed instruction,
449 // and there is also a register in this partition that is used in
450 // a loop phi node, then decrease the splitting profit as this can
451 // confuse the modulo scheduler.
452 if (UseI->isPHI()) {
453 const MachineBasicBlock *PB = UseI->getParent();
454 const MachineLoop *L = MLI->getLoopFor(PB);
455 if (L && L->getHeader() == PB)
456 LoopPhiNum++;
458 // Splittable instruction.
459 int32_t P = profit(UseI);
460 if (P == std::numeric_limits<int>::min())
461 return false;
462 TotalP += P;
466 if (FixedNum > 0 && LoopPhiNum > 0)
467 TotalP -= 20*LoopPhiNum;
469 LLVM_DEBUG(dbgs() << "Partition profit: " << TotalP << '\n');
470 if (SplitAll)
471 return true;
472 return TotalP > 0;
475 void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L,
476 USet &Rs) {
477 const MachineBasicBlock *HB = L->getHeader();
478 const MachineBasicBlock *LB = L->getLoopLatch();
479 if (!HB || !LB)
480 return;
482 // Examine the latch branch. Expect it to be a conditional branch to
483 // the header (either "br-cond header" or "br-cond exit; br header").
484 MachineBasicBlock *TB = nullptr, *FB = nullptr;
485 MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB);
486 SmallVector<MachineOperand,2> Cond;
487 bool BadLB = TII->analyzeBranch(*TmpLB, TB, FB, Cond, false);
488 // Only analyzable conditional branches. HII::analyzeBranch will put
489 // the branch opcode as the first element of Cond, and the predicate
490 // operand as the second.
491 if (BadLB || Cond.size() != 2)
492 return;
493 // Only simple jump-conditional (with or without negation).
494 if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm()))
495 return;
496 // Must go to the header.
497 if (TB != HB && FB != HB)
498 return;
499 assert(Cond[1].isReg() && "Unexpected Cond vector from analyzeBranch");
500 // Expect a predicate register.
501 Register PR = Cond[1].getReg();
502 assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass);
504 // Get the registers on which the loop controlling compare instruction
505 // depends.
506 Register CmpR1, CmpR2;
507 const MachineInstr *CmpI = MRI->getVRegDef(PR);
508 while (CmpI->getOpcode() == Hexagon::C2_not)
509 CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg());
511 int64_t Mask = 0, Val = 0;
512 bool OkCI = TII->analyzeCompare(*CmpI, CmpR1, CmpR2, Mask, Val);
513 if (!OkCI)
514 return;
515 // Eliminate non-double input registers.
516 if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC)
517 CmpR1 = 0;
518 if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC)
519 CmpR2 = 0;
520 if (!CmpR1 && !CmpR2)
521 return;
523 // Now examine the top of the loop: the phi nodes that could poten-
524 // tially define loop induction registers. The registers defined by
525 // such a phi node would be used in a 64-bit add, which then would
526 // be used in the loop compare instruction.
528 // Get the set of all double registers defined by phi nodes in the
529 // loop header.
530 using UVect = std::vector<unsigned>;
532 UVect DP;
533 for (auto &MI : *HB) {
534 if (!MI.isPHI())
535 break;
536 const MachineOperand &MD = MI.getOperand(0);
537 Register R = MD.getReg();
538 if (MRI->getRegClass(R) == DoubleRC)
539 DP.push_back(R);
541 if (DP.empty())
542 return;
544 auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool {
545 for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end();
546 I != E; ++I) {
547 const MachineInstr *UseI = I->getParent();
548 if (UseI->getOpcode() != Hexagon::A2_addp)
549 continue;
550 // Get the output from the add. If it is one of the inputs to the
551 // loop-controlling compare instruction, then R is likely an induc-
552 // tion register.
553 Register T = UseI->getOperand(0).getReg();
554 if (T == CmpR1 || T == CmpR2)
555 return false;
557 return true;
559 UVect::iterator End = llvm::remove_if(DP, NoIndOp);
560 Rs.insert(DP.begin(), End);
561 Rs.insert(CmpR1);
562 Rs.insert(CmpR2);
564 LLVM_DEBUG({
565 dbgs() << "For loop at " << printMBBReference(*HB) << " ind regs: ";
566 dump_partition(dbgs(), Rs, *TRI);
567 dbgs() << '\n';
571 void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) {
572 using LoopVector = std::vector<MachineLoop *>;
574 LoopVector WorkQ;
576 append_range(WorkQ, *MLI);
577 for (unsigned i = 0; i < WorkQ.size(); ++i)
578 append_range(WorkQ, *WorkQ[i]);
580 USet Rs;
581 for (MachineLoop *L : WorkQ) {
582 Rs.clear();
583 collectIndRegsForLoop(L, Rs);
584 if (!Rs.empty())
585 IRM.insert(std::make_pair(L, Rs));
589 void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI,
590 const UUPairMap &PairMap, unsigned SubR) {
591 MachineBasicBlock &B = *MI->getParent();
592 DebugLoc DL = MI->getDebugLoc();
593 MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc));
595 for (auto &Op : MI->operands()) {
596 if (!Op.isReg()) {
597 NewI->addOperand(Op);
598 continue;
600 // For register operands, set the subregister.
601 Register R = Op.getReg();
602 unsigned SR = Op.getSubReg();
603 bool isVirtReg = R.isVirtual();
604 bool isKill = Op.isKill();
605 if (isVirtReg && MRI->getRegClass(R) == DoubleRC) {
606 isKill = false;
607 UUPairMap::const_iterator F = PairMap.find(R);
608 if (F == PairMap.end()) {
609 SR = SubR;
610 } else {
611 const UUPair &P = F->second;
612 R = (SubR == Hexagon::isub_lo) ? P.first : P.second;
613 SR = 0;
616 auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill,
617 Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(),
618 Op.isInternalRead());
619 NewI->addOperand(CO);
623 void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI,
624 const UUPairMap &PairMap) {
625 bool Load = MI->mayLoad();
626 unsigned OrigOpc = MI->getOpcode();
627 bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi ||
628 OrigOpc == Hexagon::S2_storerd_pi);
629 MachineInstr *LowI, *HighI;
630 MachineBasicBlock &B = *MI->getParent();
631 DebugLoc DL = MI->getDebugLoc();
633 // Index of the base-address-register operand.
634 unsigned AdrX = PostInc ? (Load ? 2 : 1)
635 : (Load ? 1 : 0);
636 MachineOperand &AdrOp = MI->getOperand(AdrX);
637 unsigned RSA = getRegState(AdrOp);
638 MachineOperand &ValOp = Load ? MI->getOperand(0)
639 : (PostInc ? MI->getOperand(3)
640 : MI->getOperand(2));
641 UUPairMap::const_iterator F = PairMap.find(ValOp.getReg());
642 assert(F != PairMap.end());
644 if (Load) {
645 const UUPair &P = F->second;
646 int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm();
647 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first)
648 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
649 .addImm(Off);
650 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second)
651 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
652 .addImm(Off+4);
653 } else {
654 const UUPair &P = F->second;
655 int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm();
656 LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
657 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
658 .addImm(Off)
659 .addReg(P.first);
660 HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io))
661 .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg())
662 .addImm(Off+4)
663 .addReg(P.second);
666 if (PostInc) {
667 // Create the increment of the address register.
668 int64_t Inc = Load ? MI->getOperand(3).getImm()
669 : MI->getOperand(2).getImm();
670 MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0);
671 const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg());
672 Register NewR = MRI->createVirtualRegister(RC);
673 assert(!UpdOp.getSubReg() && "Def operand with subreg");
674 BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR)
675 .addReg(AdrOp.getReg(), RSA)
676 .addImm(Inc);
677 MRI->replaceRegWith(UpdOp.getReg(), NewR);
678 // The original instruction will be deleted later.
681 // Generate a new pair of memory-operands.
682 MachineFunction &MF = *B.getParent();
683 for (auto &MO : MI->memoperands()) {
684 const MachinePointerInfo &Ptr = MO->getPointerInfo();
685 MachineMemOperand::Flags F = MO->getFlags();
686 Align A = MO->getAlign();
688 auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4 /*size*/, A);
689 LowI->addMemOperand(MF, Tmp1);
690 auto *Tmp2 =
691 MF.getMachineMemOperand(Ptr, F, 4 /*size*/, std::min(A, Align(4)));
692 HighI->addMemOperand(MF, Tmp2);
696 void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI,
697 const UUPairMap &PairMap) {
698 MachineOperand &Op0 = MI->getOperand(0);
699 MachineOperand &Op1 = MI->getOperand(1);
700 assert(Op0.isReg() && Op1.isImm());
701 uint64_t V = Op1.getImm();
703 MachineBasicBlock &B = *MI->getParent();
704 DebugLoc DL = MI->getDebugLoc();
705 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
706 assert(F != PairMap.end());
707 const UUPair &P = F->second;
709 // The operand to A2_tfrsi can only have 32 significant bits. Immediate
710 // values in MachineOperand are stored as 64-bit integers, and so the
711 // value -1 may be represented either as 64-bit -1, or 4294967295. Both
712 // will have the 32 higher bits truncated in the end, but -1 will remain
713 // as -1, while the latter may appear to be a large unsigned value
714 // requiring a constant extender. The casting to int32_t will select the
715 // former representation. (The same reasoning applies to all 32-bit
716 // values.)
717 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
718 .addImm(int32_t(V & 0xFFFFFFFFULL));
719 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
720 .addImm(int32_t(V >> 32));
723 void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI,
724 const UUPairMap &PairMap) {
725 MachineOperand &Op0 = MI->getOperand(0);
726 MachineOperand &Op1 = MI->getOperand(1);
727 MachineOperand &Op2 = MI->getOperand(2);
728 assert(Op0.isReg());
730 MachineBasicBlock &B = *MI->getParent();
731 DebugLoc DL = MI->getDebugLoc();
732 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
733 assert(F != PairMap.end());
734 const UUPair &P = F->second;
736 if (!Op1.isReg()) {
737 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second)
738 .add(Op1);
739 } else {
740 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second)
741 .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg());
744 if (!Op2.isReg()) {
745 BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first)
746 .add(Op2);
747 } else {
748 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
749 .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg());
753 void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI,
754 const UUPairMap &PairMap) {
755 MachineOperand &Op0 = MI->getOperand(0);
756 MachineOperand &Op1 = MI->getOperand(1);
757 assert(Op0.isReg() && Op1.isReg());
759 MachineBasicBlock &B = *MI->getParent();
760 DebugLoc DL = MI->getDebugLoc();
761 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
762 assert(F != PairMap.end());
763 const UUPair &P = F->second;
764 unsigned RS = getRegState(Op1);
766 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first)
767 .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg());
768 BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second)
769 .addReg(Op1.getReg(), RS, Op1.getSubReg())
770 .addImm(31);
773 void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI,
774 const UUPairMap &PairMap) {
775 using namespace Hexagon;
777 MachineOperand &Op0 = MI->getOperand(0);
778 MachineOperand &Op1 = MI->getOperand(1);
779 MachineOperand &Op2 = MI->getOperand(2);
780 assert(Op0.isReg() && Op1.isReg() && Op2.isImm());
781 int64_t Sh64 = Op2.getImm();
782 assert(Sh64 >= 0 && Sh64 < 64);
783 unsigned S = Sh64;
785 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
786 assert(F != PairMap.end());
787 const UUPair &P = F->second;
788 Register LoR = P.first;
789 Register HiR = P.second;
791 unsigned Opc = MI->getOpcode();
792 bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p);
793 bool Left = !Right;
794 bool Signed = (Opc == S2_asr_i_p);
796 MachineBasicBlock &B = *MI->getParent();
797 DebugLoc DL = MI->getDebugLoc();
798 unsigned RS = getRegState(Op1);
799 unsigned ShiftOpc = Left ? S2_asl_i_r
800 : (Signed ? S2_asr_i_r : S2_lsr_i_r);
801 unsigned LoSR = isub_lo;
802 unsigned HiSR = isub_hi;
804 if (S == 0) {
805 // No shift, subregister copy.
806 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
807 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
808 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR)
809 .addReg(Op1.getReg(), RS, HiSR);
810 } else if (S < 32) {
811 const TargetRegisterClass *IntRC = &IntRegsRegClass;
812 Register TmpR = MRI->createVirtualRegister(IntRC);
813 // Expansion:
814 // Shift left: DR = shl R, #s
815 // LoR = shl R.lo, #s
816 // TmpR = extractu R.lo, #s, #32-s
817 // HiR = or (TmpR, asl(R.hi, #s))
818 // Shift right: DR = shr R, #s
819 // HiR = shr R.hi, #s
820 // TmpR = shr R.lo, #s
821 // LoR = insert TmpR, R.hi, #s, #32-s
823 // Shift left:
824 // LoR = shl R.lo, #s
825 // Shift right:
826 // TmpR = shr R.lo, #s
828 // Make a special case for A2_aslh and A2_asrh (they are predicable as
829 // opposed to S2_asl_i_r/S2_asr_i_r).
830 if (S == 16 && Left)
831 BuildMI(B, MI, DL, TII->get(A2_aslh), LoR)
832 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
833 else if (S == 16 && Signed)
834 BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR)
835 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
836 else
837 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR))
838 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
839 .addImm(S);
841 if (Left) {
842 // TmpR = extractu R.lo, #s, #32-s
843 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR)
844 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR)
845 .addImm(S)
846 .addImm(32-S);
847 // HiR = or (TmpR, asl(R.hi, #s))
848 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
849 .addReg(TmpR)
850 .addReg(Op1.getReg(), RS, HiSR)
851 .addImm(S);
852 } else {
853 // HiR = shr R.hi, #s
854 BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR)
855 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR)
856 .addImm(S);
857 // LoR = insert TmpR, R.hi, #s, #32-s
858 BuildMI(B, MI, DL, TII->get(S2_insert), LoR)
859 .addReg(TmpR)
860 .addReg(Op1.getReg(), RS, HiSR)
861 .addImm(S)
862 .addImm(32-S);
864 } else if (S == 32) {
865 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR))
866 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR));
867 if (!Signed)
868 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
869 .addImm(0);
870 else // Must be right shift.
871 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
872 .addReg(Op1.getReg(), RS, HiSR)
873 .addImm(31);
874 } else if (S < 64) {
875 S -= 32;
876 if (S == 16 && Left)
877 BuildMI(B, MI, DL, TII->get(A2_aslh), HiR)
878 .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR);
879 else if (S == 16 && Signed)
880 BuildMI(B, MI, DL, TII->get(A2_asrh), LoR)
881 .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR);
882 else
883 BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR))
884 .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR))
885 .addImm(S);
887 if (Signed)
888 BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR)
889 .addReg(Op1.getReg(), RS, HiSR)
890 .addImm(31);
891 else
892 BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR))
893 .addImm(0);
897 void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI,
898 const UUPairMap &PairMap) {
899 using namespace Hexagon;
901 MachineOperand &Op0 = MI->getOperand(0);
902 MachineOperand &Op1 = MI->getOperand(1);
903 MachineOperand &Op2 = MI->getOperand(2);
904 MachineOperand &Op3 = MI->getOperand(3);
905 assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm());
906 int64_t Sh64 = Op3.getImm();
907 assert(Sh64 >= 0 && Sh64 < 64);
908 unsigned S = Sh64;
910 UUPairMap::const_iterator F = PairMap.find(Op0.getReg());
911 assert(F != PairMap.end());
912 const UUPair &P = F->second;
913 unsigned LoR = P.first;
914 unsigned HiR = P.second;
916 MachineBasicBlock &B = *MI->getParent();
917 DebugLoc DL = MI->getDebugLoc();
918 unsigned RS1 = getRegState(Op1);
919 unsigned RS2 = getRegState(Op2);
920 const TargetRegisterClass *IntRC = &IntRegsRegClass;
922 unsigned LoSR = isub_lo;
923 unsigned HiSR = isub_hi;
925 // Op0 = S2_asl_i_p_or Op1, Op2, Op3
926 // means: Op0 = or (Op1, asl(Op2, Op3))
928 // Expansion of
929 // DR = or (R1, asl(R2, #s))
931 // LoR = or (R1.lo, asl(R2.lo, #s))
932 // Tmp1 = extractu R2.lo, #s, #32-s
933 // Tmp2 = or R1.hi, Tmp1
934 // HiR = or (Tmp2, asl(R2.hi, #s))
936 if (S == 0) {
937 // DR = or (R1, asl(R2, #0))
938 // -> or (R1, R2)
939 // i.e. LoR = or R1.lo, R2.lo
940 // HiR = or R1.hi, R2.hi
941 BuildMI(B, MI, DL, TII->get(A2_or), LoR)
942 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
943 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR);
944 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
945 .addReg(Op1.getReg(), RS1, HiSR)
946 .addReg(Op2.getReg(), RS2, HiSR);
947 } else if (S < 32) {
948 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR)
949 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR)
950 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
951 .addImm(S);
952 Register TmpR1 = MRI->createVirtualRegister(IntRC);
953 BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1)
954 .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR)
955 .addImm(S)
956 .addImm(32-S);
957 Register TmpR2 = MRI->createVirtualRegister(IntRC);
958 BuildMI(B, MI, DL, TII->get(A2_or), TmpR2)
959 .addReg(Op1.getReg(), RS1, HiSR)
960 .addReg(TmpR1);
961 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
962 .addReg(TmpR2)
963 .addReg(Op2.getReg(), RS2, HiSR)
964 .addImm(S);
965 } else if (S == 32) {
966 // DR = or (R1, asl(R2, #32))
967 // -> or R1, R2.lo
968 // LoR = R1.lo
969 // HiR = or R1.hi, R2.lo
970 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
971 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
972 BuildMI(B, MI, DL, TII->get(A2_or), HiR)
973 .addReg(Op1.getReg(), RS1, HiSR)
974 .addReg(Op2.getReg(), RS2, LoSR);
975 } else if (S < 64) {
976 // DR = or (R1, asl(R2, #s))
978 // LoR = R1:lo
979 // HiR = or (R1:hi, asl(R2:lo, #s-32))
980 S -= 32;
981 BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR)
982 .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR);
983 BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR)
984 .addReg(Op1.getReg(), RS1, HiSR)
985 .addReg(Op2.getReg(), RS2, LoSR)
986 .addImm(S);
990 bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI,
991 const UUPairMap &PairMap) {
992 using namespace Hexagon;
994 LLVM_DEBUG(dbgs() << "Splitting: " << *MI);
995 bool Split = false;
996 unsigned Opc = MI->getOpcode();
998 switch (Opc) {
999 case TargetOpcode::PHI:
1000 case TargetOpcode::COPY: {
1001 Register DstR = MI->getOperand(0).getReg();
1002 if (MRI->getRegClass(DstR) == DoubleRC) {
1003 createHalfInstr(Opc, MI, PairMap, isub_lo);
1004 createHalfInstr(Opc, MI, PairMap, isub_hi);
1005 Split = true;
1007 break;
1009 case A2_andp:
1010 createHalfInstr(A2_and, MI, PairMap, isub_lo);
1011 createHalfInstr(A2_and, MI, PairMap, isub_hi);
1012 Split = true;
1013 break;
1014 case A2_orp:
1015 createHalfInstr(A2_or, MI, PairMap, isub_lo);
1016 createHalfInstr(A2_or, MI, PairMap, isub_hi);
1017 Split = true;
1018 break;
1019 case A2_xorp:
1020 createHalfInstr(A2_xor, MI, PairMap, isub_lo);
1021 createHalfInstr(A2_xor, MI, PairMap, isub_hi);
1022 Split = true;
1023 break;
1025 case L2_loadrd_io:
1026 case L2_loadrd_pi:
1027 case S2_storerd_io:
1028 case S2_storerd_pi:
1029 splitMemRef(MI, PairMap);
1030 Split = true;
1031 break;
1033 case A2_tfrpi:
1034 case CONST64:
1035 splitImmediate(MI, PairMap);
1036 Split = true;
1037 break;
1039 case A2_combineii:
1040 case A4_combineir:
1041 case A4_combineii:
1042 case A4_combineri:
1043 case A2_combinew:
1044 splitCombine(MI, PairMap);
1045 Split = true;
1046 break;
1048 case A2_sxtw:
1049 splitExt(MI, PairMap);
1050 Split = true;
1051 break;
1053 case S2_asl_i_p:
1054 case S2_asr_i_p:
1055 case S2_lsr_i_p:
1056 splitShift(MI, PairMap);
1057 Split = true;
1058 break;
1060 case S2_asl_i_p_or:
1061 splitAslOr(MI, PairMap);
1062 Split = true;
1063 break;
1065 default:
1066 llvm_unreachable("Instruction not splitable");
1067 return false;
1070 return Split;
1073 void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI,
1074 const UUPairMap &PairMap) {
1075 for (auto &Op : MI->operands()) {
1076 if (!Op.isReg() || !Op.isUse() || !Op.getSubReg())
1077 continue;
1078 Register R = Op.getReg();
1079 UUPairMap::const_iterator F = PairMap.find(R);
1080 if (F == PairMap.end())
1081 continue;
1082 const UUPair &P = F->second;
1083 switch (Op.getSubReg()) {
1084 case Hexagon::isub_lo:
1085 Op.setReg(P.first);
1086 break;
1087 case Hexagon::isub_hi:
1088 Op.setReg(P.second);
1089 break;
1091 Op.setSubReg(0);
1095 void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI,
1096 const UUPairMap &PairMap) {
1097 MachineBasicBlock &B = *MI->getParent();
1098 DebugLoc DL = MI->getDebugLoc();
1100 for (auto &Op : MI->operands()) {
1101 if (!Op.isReg() || !Op.isUse())
1102 continue;
1103 Register R = Op.getReg();
1104 if (!R.isVirtual())
1105 continue;
1106 if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg())
1107 continue;
1108 UUPairMap::const_iterator F = PairMap.find(R);
1109 if (F == PairMap.end())
1110 continue;
1111 const UUPair &Pr = F->second;
1112 Register NewDR = MRI->createVirtualRegister(DoubleRC);
1113 BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR)
1114 .addReg(Pr.first)
1115 .addImm(Hexagon::isub_lo)
1116 .addReg(Pr.second)
1117 .addImm(Hexagon::isub_hi);
1118 Op.setReg(NewDR);
1122 bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) {
1123 using MISet = std::set<MachineInstr *>;
1125 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
1126 bool Changed = false;
1128 LLVM_DEBUG(dbgs() << "Splitting partition: ";
1129 dump_partition(dbgs(), Part, *TRI); dbgs() << '\n');
1131 UUPairMap PairMap;
1133 MISet SplitIns;
1134 for (unsigned DR : Part) {
1135 MachineInstr *DefI = MRI->getVRegDef(DR);
1136 SplitIns.insert(DefI);
1138 // Collect all instructions, including fixed ones. We won't split them,
1139 // but we need to visit them again to insert the REG_SEQUENCE instructions.
1140 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1141 U != W; ++U)
1142 SplitIns.insert(U->getParent());
1144 Register LoR = MRI->createVirtualRegister(IntRC);
1145 Register HiR = MRI->createVirtualRegister(IntRC);
1146 LLVM_DEBUG(dbgs() << "Created mapping: " << printReg(DR, TRI) << " -> "
1147 << printReg(HiR, TRI) << ':' << printReg(LoR, TRI)
1148 << '\n');
1149 PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR)));
1152 MISet Erase;
1153 for (auto MI : SplitIns) {
1154 if (isFixedInstr(MI)) {
1155 collapseRegPairs(MI, PairMap);
1156 } else {
1157 bool Done = splitInstr(MI, PairMap);
1158 if (Done)
1159 Erase.insert(MI);
1160 Changed |= Done;
1164 for (unsigned DR : Part) {
1165 // Before erasing "double" instructions, revisit all uses of the double
1166 // registers in this partition, and replace all uses of them with subre-
1167 // gisters, with the corresponding single registers.
1168 MISet Uses;
1169 for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end();
1170 U != W; ++U)
1171 Uses.insert(U->getParent());
1172 for (auto M : Uses)
1173 replaceSubregUses(M, PairMap);
1176 for (auto MI : Erase) {
1177 MachineBasicBlock *B = MI->getParent();
1178 B->erase(MI);
1181 return Changed;
1184 bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) {
1185 if (skipFunction(MF.getFunction()))
1186 return false;
1188 LLVM_DEBUG(dbgs() << "Splitting double registers in function: "
1189 << MF.getName() << '\n');
1191 auto &ST = MF.getSubtarget<HexagonSubtarget>();
1192 TRI = ST.getRegisterInfo();
1193 TII = ST.getInstrInfo();
1194 MRI = &MF.getRegInfo();
1195 MLI = &getAnalysis<MachineLoopInfo>();
1197 UUSetMap P2Rs;
1198 LoopRegMap IRM;
1200 collectIndRegs(IRM);
1201 partitionRegisters(P2Rs);
1203 LLVM_DEBUG({
1204 dbgs() << "Register partitioning: (partition #0 is fixed)\n";
1205 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1206 dbgs() << '#' << I->first << " -> ";
1207 dump_partition(dbgs(), I->second, *TRI);
1208 dbgs() << '\n';
1212 bool Changed = false;
1213 int Limit = MaxHSDR;
1215 for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) {
1216 if (I->first == 0)
1217 continue;
1218 if (Limit >= 0 && Counter >= Limit)
1219 break;
1220 USet &Part = I->second;
1221 LLVM_DEBUG(dbgs() << "Calculating profit for partition #" << I->first
1222 << '\n');
1223 if (!isProfitable(Part, IRM))
1224 continue;
1225 Counter++;
1226 Changed |= splitPartition(Part);
1229 return Changed;
1232 FunctionPass *llvm::createHexagonSplitDoubleRegs() {
1233 return new HexagonSplitDoubleRegs();