1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a configuration header for soft-float routines in compiler-rt.
10 // This file does not provide any part of the compiler-rt interface, but defines
11 // many useful constants and utility routines that are used in the
12 // implementation of the soft-float routines in compiler-rt.
14 // Assumes that float, double and long double correspond to the IEEE-754
15 // binary32, binary64 and binary 128 types, respectively, and that integer
16 // endianness matches floating point endianness on the target platform.
18 //===----------------------------------------------------------------------===//
29 // x86_64 FreeBSD prior v9.3 define fixed-width types incorrectly in
31 #if defined(__FreeBSD__) && defined(__i386__)
32 #include <sys/param.h>
33 #if __FreeBSD_version < 903000 // v9.3
34 #define uint64_t unsigned long long
35 #define int64_t long long
37 #define UINT64_C(c) (c##ULL)
41 #if defined SINGLE_PRECISION
43 typedef uint16_t half_rep_t
;
44 typedef uint32_t rep_t
;
45 typedef uint64_t twice_rep_t
;
46 typedef int32_t srep_t
;
48 #define HALF_REP_C UINT16_C
49 #define REP_C UINT32_C
50 #define significandBits 23
52 static __inline
int rep_clz(rep_t a
) { return clzsi(a
); }
54 // 32x32 --> 64 bit multiply
55 static __inline
void wideMultiply(rep_t a
, rep_t b
, rep_t
*hi
, rep_t
*lo
) {
56 const uint64_t product
= (uint64_t)a
* b
;
60 COMPILER_RT_ABI fp_t
__addsf3(fp_t a
, fp_t b
);
62 #elif defined DOUBLE_PRECISION
64 typedef uint32_t half_rep_t
;
65 typedef uint64_t rep_t
;
66 typedef int64_t srep_t
;
68 #define HALF_REP_C UINT32_C
69 #define REP_C UINT64_C
70 #define significandBits 52
72 static __inline
int rep_clz(rep_t a
) {
74 return __builtin_clzl(a
);
76 if (a
& REP_C(0xffffffff00000000))
77 return clzsi(a
>> 32);
79 return 32 + clzsi(a
& REP_C(0xffffffff));
83 #define loWord(a) (a & 0xffffffffU)
84 #define hiWord(a) (a >> 32)
86 // 64x64 -> 128 wide multiply for platforms that don't have such an operation;
87 // many 64-bit platforms have this operation, but they tend to have hardware
88 // floating-point, so we don't bother with a special case for them here.
89 static __inline
void wideMultiply(rep_t a
, rep_t b
, rep_t
*hi
, rep_t
*lo
) {
90 // Each of the component 32x32 -> 64 products
91 const uint64_t plolo
= loWord(a
) * loWord(b
);
92 const uint64_t plohi
= loWord(a
) * hiWord(b
);
93 const uint64_t philo
= hiWord(a
) * loWord(b
);
94 const uint64_t phihi
= hiWord(a
) * hiWord(b
);
95 // Sum terms that contribute to lo in a way that allows us to get the carry
96 const uint64_t r0
= loWord(plolo
);
97 const uint64_t r1
= hiWord(plolo
) + loWord(plohi
) + loWord(philo
);
98 *lo
= r0
+ (r1
<< 32);
99 // Sum terms contributing to hi with the carry from lo
100 *hi
= hiWord(plohi
) + hiWord(philo
) + hiWord(r1
) + phihi
;
105 COMPILER_RT_ABI fp_t
__adddf3(fp_t a
, fp_t b
);
107 #elif defined QUAD_PRECISION
108 #if __LDBL_MANT_DIG__ == 113 && defined(__SIZEOF_INT128__)
109 #define CRT_LDBL_128BIT
110 typedef uint64_t half_rep_t
;
111 typedef __uint128_t rep_t
;
112 typedef __int128_t srep_t
;
113 typedef long double fp_t
;
114 #define HALF_REP_C UINT64_C
115 #define REP_C (__uint128_t)
116 // Note: Since there is no explicit way to tell compiler the constant is a
117 // 128-bit integer, we let the constant be casted to 128-bit integer
118 #define significandBits 112
120 static __inline
int rep_clz(rep_t a
) {
144 return __builtin_clzll(word
) + add
;
147 #define Word_LoMask UINT64_C(0x00000000ffffffff)
148 #define Word_HiMask UINT64_C(0xffffffff00000000)
149 #define Word_FullMask UINT64_C(0xffffffffffffffff)
150 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
151 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
152 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
153 #define Word_4(a) (uint64_t)(a & Word_LoMask)
155 // 128x128 -> 256 wide multiply for platforms that don't have such an operation;
156 // many 64-bit platforms have this operation, but they tend to have hardware
157 // floating-point, so we don't bother with a special case for them here.
158 static __inline
void wideMultiply(rep_t a
, rep_t b
, rep_t
*hi
, rep_t
*lo
) {
160 const uint64_t product11
= Word_1(a
) * Word_1(b
);
161 const uint64_t product12
= Word_1(a
) * Word_2(b
);
162 const uint64_t product13
= Word_1(a
) * Word_3(b
);
163 const uint64_t product14
= Word_1(a
) * Word_4(b
);
164 const uint64_t product21
= Word_2(a
) * Word_1(b
);
165 const uint64_t product22
= Word_2(a
) * Word_2(b
);
166 const uint64_t product23
= Word_2(a
) * Word_3(b
);
167 const uint64_t product24
= Word_2(a
) * Word_4(b
);
168 const uint64_t product31
= Word_3(a
) * Word_1(b
);
169 const uint64_t product32
= Word_3(a
) * Word_2(b
);
170 const uint64_t product33
= Word_3(a
) * Word_3(b
);
171 const uint64_t product34
= Word_3(a
) * Word_4(b
);
172 const uint64_t product41
= Word_4(a
) * Word_1(b
);
173 const uint64_t product42
= Word_4(a
) * Word_2(b
);
174 const uint64_t product43
= Word_4(a
) * Word_3(b
);
175 const uint64_t product44
= Word_4(a
) * Word_4(b
);
177 const __uint128_t sum0
= (__uint128_t
)product44
;
178 const __uint128_t sum1
= (__uint128_t
)product34
+ (__uint128_t
)product43
;
179 const __uint128_t sum2
=
180 (__uint128_t
)product24
+ (__uint128_t
)product33
+ (__uint128_t
)product42
;
181 const __uint128_t sum3
= (__uint128_t
)product14
+ (__uint128_t
)product23
+
182 (__uint128_t
)product32
+ (__uint128_t
)product41
;
183 const __uint128_t sum4
=
184 (__uint128_t
)product13
+ (__uint128_t
)product22
+ (__uint128_t
)product31
;
185 const __uint128_t sum5
= (__uint128_t
)product12
+ (__uint128_t
)product21
;
186 const __uint128_t sum6
= (__uint128_t
)product11
;
188 const __uint128_t r0
= (sum0
& Word_FullMask
) + ((sum1
& Word_LoMask
) << 32);
189 const __uint128_t r1
= (sum0
>> 64) + ((sum1
>> 32) & Word_FullMask
) +
190 (sum2
& Word_FullMask
) + ((sum3
<< 32) & Word_HiMask
);
192 *lo
= r0
+ (r1
<< 64);
193 *hi
= (r1
>> 64) + (sum1
>> 96) + (sum2
>> 64) + (sum3
>> 32) + sum4
+
194 (sum5
<< 32) + (sum6
<< 64);
203 #endif // __LDBL_MANT_DIG__ == 113 && __SIZEOF_INT128__
205 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
208 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || \
209 defined(CRT_LDBL_128BIT)
210 #define typeWidth (sizeof(rep_t) * CHAR_BIT)
211 #define exponentBits (typeWidth - significandBits - 1)
212 #define maxExponent ((1 << exponentBits) - 1)
213 #define exponentBias (maxExponent >> 1)
215 #define implicitBit (REP_C(1) << significandBits)
216 #define significandMask (implicitBit - 1U)
217 #define signBit (REP_C(1) << (significandBits + exponentBits))
218 #define absMask (signBit - 1U)
219 #define exponentMask (absMask ^ significandMask)
220 #define oneRep ((rep_t)exponentBias << significandBits)
221 #define infRep exponentMask
222 #define quietBit (implicitBit >> 1)
223 #define qnanRep (exponentMask | quietBit)
225 static __inline rep_t
toRep(fp_t x
) {
233 static __inline fp_t
fromRep(rep_t x
) {
241 static __inline
int normalize(rep_t
*significand
) {
242 const int shift
= rep_clz(*significand
) - rep_clz(implicitBit
);
243 *significand
<<= shift
;
247 static __inline
void wideLeftShift(rep_t
*hi
, rep_t
*lo
, int count
) {
248 *hi
= *hi
<< count
| *lo
>> (typeWidth
- count
);
252 static __inline
void wideRightShiftWithSticky(rep_t
*hi
, rep_t
*lo
,
253 unsigned int count
) {
254 if (count
< typeWidth
) {
255 const bool sticky
= (*lo
<< (typeWidth
- count
)) != 0;
256 *lo
= *hi
<< (typeWidth
- count
) | *lo
>> count
| sticky
;
258 } else if (count
< 2 * typeWidth
) {
259 const bool sticky
= *hi
<< (2 * typeWidth
- count
) | *lo
;
260 *lo
= *hi
>> (count
- typeWidth
) | sticky
;
263 const bool sticky
= *hi
| *lo
;
269 // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids
270 // pulling in a libm dependency from compiler-rt, but is not meant to replace
271 // it (i.e. code calling logb() should get the one from libm, not this), hence
272 // the __compiler_rt prefix.
273 static __inline fp_t
__compiler_rt_logbX(fp_t x
) {
274 rep_t rep
= toRep(x
);
275 int exp
= (rep
& exponentMask
) >> significandBits
;
278 // 1) +/- inf returns +inf; NaN returns NaN
279 // 2) 0.0 returns -inf
280 if (exp
== maxExponent
) {
281 if (((rep
& signBit
) == 0) || (x
!= x
)) {
282 return x
; // NaN or +inf: return x
284 return -x
; // -inf: return -x
286 } else if (x
== 0.0) {
288 return fromRep(infRep
| signBit
);
293 return exp
- exponentBias
; // Unbias exponent
295 // Subnormal number; normalize and repeat
297 const int shift
= 1 - normalize(&rep
);
298 exp
= (rep
& exponentMask
) >> significandBits
;
299 return exp
- exponentBias
- shift
; // Unbias exponent
303 // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never
304 // sets errno on underflow/overflow.
305 static __inline fp_t
__compiler_rt_scalbnX(fp_t x
, int y
) {
306 const rep_t rep
= toRep(x
);
307 int exp
= (rep
& exponentMask
) >> significandBits
;
309 if (x
== 0.0 || exp
== maxExponent
)
310 return x
; // +/- 0.0, NaN, or inf: return x
312 // Normalize subnormal input.
313 rep_t sig
= rep
& significandMask
;
315 exp
+= normalize(&sig
);
316 sig
&= ~implicitBit
; // clear the implicit bit again
319 if (__builtin_sadd_overflow(exp
, y
, &exp
)) {
320 // Saturate the exponent, which will guarantee an underflow/overflow below.
321 exp
= (y
>= 0) ? INT_MAX
: INT_MIN
;
324 // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias).
325 const rep_t sign
= rep
& signBit
;
326 if (exp
>= maxExponent
) {
327 // Overflow, which could produce infinity or the largest-magnitude value,
328 // depending on the rounding mode.
329 return fromRep(sign
| ((rep_t
)(maxExponent
- 1) << significandBits
)) * 2.0f
;
330 } else if (exp
<= 0) {
331 // Subnormal or underflow. Use floating-point multiply to handle truncation
333 fp_t tmp
= fromRep(sign
| (REP_C(1) << significandBits
) | sig
);
334 exp
+= exponentBias
- 1;
337 tmp
*= fromRep((rep_t
)exp
<< significandBits
);
340 return fromRep(sign
| ((rep_t
)exp
<< significandBits
) | sig
);
343 // Avoid using fmax from libm.
344 static __inline fp_t
__compiler_rt_fmaxX(fp_t x
, fp_t y
) {
345 // If either argument is NaN, return the other argument. If both are NaN,
346 // arbitrarily return the second one. Otherwise, if both arguments are +/-0,
347 // arbitrarily return the first one.
348 return (crt_isnan(x
) || x
< y
) ? y
: x
;
353 #if defined(SINGLE_PRECISION)
355 static __inline fp_t
__compiler_rt_logbf(fp_t x
) {
356 return __compiler_rt_logbX(x
);
358 static __inline fp_t
__compiler_rt_scalbnf(fp_t x
, int y
) {
359 return __compiler_rt_scalbnX(x
, y
);
361 static __inline fp_t
__compiler_rt_fmaxf(fp_t x
, fp_t y
) {
362 #if defined(__aarch64__)
363 // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64.
364 return __builtin_fmaxf(x
, y
);
366 // __builtin_fmaxf frequently turns into a libm call, so inline the function.
367 return __compiler_rt_fmaxX(x
, y
);
371 #elif defined(DOUBLE_PRECISION)
373 static __inline fp_t
__compiler_rt_logb(fp_t x
) {
374 return __compiler_rt_logbX(x
);
376 static __inline fp_t
__compiler_rt_scalbn(fp_t x
, int y
) {
377 return __compiler_rt_scalbnX(x
, y
);
379 static __inline fp_t
__compiler_rt_fmax(fp_t x
, fp_t y
) {
380 #if defined(__aarch64__)
381 // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64.
382 return __builtin_fmax(x
, y
);
384 // __builtin_fmax frequently turns into a libm call, so inline the function.
385 return __compiler_rt_fmaxX(x
, y
);
389 #elif defined(QUAD_PRECISION)
391 #if defined(CRT_LDBL_128BIT)
392 static __inline fp_t
__compiler_rt_logbl(fp_t x
) {
393 return __compiler_rt_logbX(x
);
395 static __inline fp_t
__compiler_rt_scalbnl(fp_t x
, int y
) {
396 return __compiler_rt_scalbnX(x
, y
);
398 static __inline fp_t
__compiler_rt_fmaxl(fp_t x
, fp_t y
) {
399 return __compiler_rt_fmaxX(x
, y
);
402 // The generic implementation only works for ieee754 floating point. For other
403 // floating point types, continue to rely on the libm implementation for now.
404 static __inline
long double __compiler_rt_logbl(long double x
) {
407 static __inline
long double __compiler_rt_scalbnl(long double x
, int y
) {
408 return crt_scalbnl(x
, y
);
410 static __inline
long double __compiler_rt_fmaxl(long double x
, long double y
) {
411 return crt_fmaxl(x
, y
);
413 #endif // CRT_LDBL_128BIT
415 #endif // *_PRECISION
417 #endif // FP_LIB_HEADER