[clang-tools-extra] Fix a link in ReleaseNotes.rst
[llvm-project.git] / clang-tools-extra / clangd / FindTarget.cpp
blob4085915890513040577254e3b4c439032a591542
1 //===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "FindTarget.h"
10 #include "AST.h"
11 #include "HeuristicResolver.h"
12 #include "support/Logger.h"
13 #include "clang/AST/ASTTypeTraits.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclBase.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/DeclVisitor.h"
19 #include "clang/AST/DeclarationName.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/NestedNameSpecifier.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/Type.h"
30 #include "clang/AST/TypeLoc.h"
31 #include "clang/AST/TypeLocVisitor.h"
32 #include "clang/AST/TypeVisitor.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <iterator>
44 #include <string>
45 #include <utility>
46 #include <vector>
48 namespace clang {
49 namespace clangd {
50 namespace {
52 LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
53 std::string S = std::string(N.getNodeKind().asStringRef());
55 llvm::raw_string_ostream OS(S);
56 OS << ": ";
57 N.print(OS, PrintingPolicy(LangOptions()));
59 std::replace(S.begin(), S.end(), '\n', ' ');
60 return S;
63 const NamedDecl *getTemplatePattern(const NamedDecl *D) {
64 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
65 if (const auto *Result = CRD->getTemplateInstantiationPattern())
66 return Result;
67 // getTemplateInstantiationPattern returns null if the Specialization is
68 // incomplete (e.g. the type didn't need to be complete), fall back to the
69 // primary template.
70 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
71 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
72 return Spec->getSpecializedTemplate()->getTemplatedDecl();
73 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74 return FD->getTemplateInstantiationPattern();
75 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
76 // Hmm: getTIP returns its arg if it's not an instantiation?!
77 VarDecl *T = VD->getTemplateInstantiationPattern();
78 return (T == D) ? nullptr : T;
79 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
80 return ED->getInstantiatedFromMemberEnum();
81 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
82 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
83 if (const DeclContext *ParentPat =
84 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
85 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
86 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
87 return BaseND;
88 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
89 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
90 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
91 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
92 return BaseECD;
96 return nullptr;
99 // Returns true if the `TypedefNameDecl` should not be reported.
100 bool shouldSkipTypedef(const TypedefNameDecl *TD) {
101 // These should be treated as keywords rather than decls - the typedef is an
102 // odd implementation detail.
103 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
104 TD == TD->getASTContext().getObjCIdDecl())
105 return true;
106 return false;
109 // TargetFinder locates the entities that an AST node refers to.
111 // Typically this is (possibly) one declaration and (possibly) one type, but
112 // may be more:
113 // - for ambiguous nodes like OverloadExpr
114 // - if we want to include e.g. both typedefs and the underlying type
116 // This is organized as a set of mutually recursive helpers for particular node
117 // types, but for most nodes this is a short walk rather than a deep traversal.
119 // It's tempting to do e.g. typedef resolution as a second normalization step,
120 // after finding the 'primary' decl etc. But we do this monolithically instead
121 // because:
122 // - normalization may require these traversals again (e.g. unwrapping a
123 // typedef reveals a decltype which must be traversed)
124 // - it doesn't simplify that much, e.g. the first stage must still be able
125 // to yield multiple decls to handle OverloadExpr
126 // - there are cases where it's required for correctness. e.g:
127 // template<class X> using pvec = vector<x*>; pvec<int> x;
128 // There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
129 // and both are lossy. We must know upfront what the caller ultimately wants.
130 struct TargetFinder {
131 using RelSet = DeclRelationSet;
132 using Rel = DeclRelation;
134 private:
135 const HeuristicResolver *Resolver;
136 llvm::SmallDenseMap<const NamedDecl *,
137 std::pair<RelSet, /*InsertionOrder*/ size_t>>
138 Decls;
139 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
140 RelSet Flags;
142 template <typename T> void debug(T &Node, RelSet Flags) {
143 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
146 void report(const NamedDecl *D, RelSet Flags) {
147 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
148 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
149 // If already exists, update the flags.
150 if (!It.second)
151 It.first->second.first |= Flags;
154 public:
155 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
157 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
158 using ValTy = std::pair<const NamedDecl *, RelSet>;
159 llvm::SmallVector<ValTy, 1> Result;
160 Result.resize(Decls.size());
161 for (const auto &Elem : Decls)
162 Result[Elem.second.second] = {Elem.first, Elem.second.first};
163 return Result;
166 void add(const Decl *Dcl, RelSet Flags) {
167 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
168 if (!D)
169 return;
170 debug(*D, Flags);
172 // Avoid recursion (which can arise in the presence of heuristic
173 // resolution of dependent names) by exiting early if we have
174 // already seen this decl with all flags in Flags.
175 auto Res = Seen.try_emplace(D);
176 if (!Res.second && Res.first->second.contains(Flags))
177 return;
178 Res.first->second |= Flags;
180 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
181 D = UDD->getNominatedNamespaceAsWritten();
183 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
184 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
185 Flags |= Rel::Alias; // continue with the alias.
186 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
187 // no Underlying as this is a non-renaming alias.
188 for (const UsingShadowDecl *S : UD->shadows())
189 add(S->getUnderlyingDecl(), Flags);
190 Flags |= Rel::Alias; // continue with the alias.
191 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
192 add(UED->getEnumDecl(), Flags);
193 Flags |= Rel::Alias; // continue with the alias.
194 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
195 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
196 Flags |= Rel::Alias; // continue with the alias
197 } else if (const UnresolvedUsingValueDecl *UUVD =
198 dyn_cast<UnresolvedUsingValueDecl>(D)) {
199 if (Resolver) {
200 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
201 add(Target, Flags); // no Underlying as this is a non-renaming alias
204 Flags |= Rel::Alias; // continue with the alias
205 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
206 // FIXME: improve common dependent scope using name lookup in primary
207 // templates.
208 Flags |= Rel::Alias;
209 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
210 // Include the Introducing decl, but don't traverse it. This may end up
211 // including *all* shadows, which we don't want.
212 report(USD->getIntroducer(), Flags | Rel::Alias);
213 // Shadow decls are synthetic and not themselves interesting.
214 // Record the underlying decl instead, if allowed.
215 D = USD->getTargetDecl();
216 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
217 D = DG->getDeducedTemplate();
218 } else if (const ObjCImplementationDecl *IID =
219 dyn_cast<ObjCImplementationDecl>(D)) {
220 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
221 // pair as long as the interface isn't implicit.
222 if (const auto *CID = IID->getClassInterface())
223 if (const auto *DD = CID->getDefinition())
224 if (!DD->isImplicitInterfaceDecl())
225 D = DD;
226 } else if (const ObjCCategoryImplDecl *CID =
227 dyn_cast<ObjCCategoryImplDecl>(D)) {
228 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
229 D = CID->getCategoryDecl();
231 if (!D)
232 return;
234 if (const Decl *Pat = getTemplatePattern(D)) {
235 assert(Pat != D);
236 add(Pat, Flags | Rel::TemplatePattern);
237 // Now continue with the instantiation.
238 Flags |= Rel::TemplateInstantiation;
241 report(D, Flags);
244 void add(const Stmt *S, RelSet Flags) {
245 if (!S)
246 return;
247 debug(*S, Flags);
248 struct Visitor : public ConstStmtVisitor<Visitor> {
249 TargetFinder &Outer;
250 RelSet Flags;
251 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
253 void VisitCallExpr(const CallExpr *CE) {
254 Outer.add(CE->getCalleeDecl(), Flags);
256 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
257 Outer.add(E->getNamedConcept(), Flags);
259 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
260 const Decl *D = DRE->getDecl();
261 // UsingShadowDecl allows us to record the UsingDecl.
262 // getFoundDecl() returns the wrong thing in other cases (templates).
263 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
264 D = USD;
265 Outer.add(D, Flags);
267 void VisitMemberExpr(const MemberExpr *ME) {
268 const Decl *D = ME->getMemberDecl();
269 if (auto *USD =
270 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
271 D = USD;
272 Outer.add(D, Flags);
274 void VisitOverloadExpr(const OverloadExpr *OE) {
275 for (auto *D : OE->decls())
276 Outer.add(D, Flags);
278 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
279 Outer.add(SE->getPack(), Flags);
281 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
282 Outer.add(CCE->getConstructor(), Flags);
284 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
285 for (const DesignatedInitExpr::Designator &D :
286 llvm::reverse(DIE->designators()))
287 if (D.isFieldDesignator()) {
288 Outer.add(D.getField(), Flags);
289 // We don't know which designator was intended, we assume the outer.
290 break;
293 void VisitGotoStmt(const GotoStmt *Goto) {
294 if (auto *LabelDecl = Goto->getLabel())
295 Outer.add(LabelDecl, Flags);
297 void VisitLabelStmt(const LabelStmt *Label) {
298 if (auto *LabelDecl = Label->getDecl())
299 Outer.add(LabelDecl, Flags);
301 void
302 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
303 if (Outer.Resolver) {
304 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
305 Outer.add(D, Flags);
309 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
310 if (Outer.Resolver) {
311 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
312 Outer.add(D, Flags);
316 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
317 Outer.add(OIRE->getDecl(), Flags);
319 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
320 Outer.add(OME->getMethodDecl(), Flags);
322 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
323 if (OPRE->isExplicitProperty())
324 Outer.add(OPRE->getExplicitProperty(), Flags);
325 else {
326 if (OPRE->isMessagingGetter())
327 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
328 if (OPRE->isMessagingSetter())
329 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
332 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
333 Outer.add(OPE->getProtocol(), Flags);
335 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
336 Outer.add(OVE->getSourceExpr(), Flags);
338 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
339 Outer.add(POE->getSyntacticForm(), Flags);
341 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
342 Outer.add(CNE->getOperatorNew(), Flags);
344 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
345 Outer.add(CDE->getOperatorDelete(), Flags);
348 Visitor(*this, Flags).Visit(S);
351 void add(QualType T, RelSet Flags) {
352 if (T.isNull())
353 return;
354 debug(T, Flags);
355 struct Visitor : public TypeVisitor<Visitor> {
356 TargetFinder &Outer;
357 RelSet Flags;
358 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
360 void VisitTagType(const TagType *TT) {
361 Outer.add(TT->getAsTagDecl(), Flags);
364 void VisitElaboratedType(const ElaboratedType *ET) {
365 Outer.add(ET->desugar(), Flags);
368 void VisitUsingType(const UsingType *ET) {
369 Outer.add(ET->getFoundDecl(), Flags);
372 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
373 Outer.add(ICNT->getDecl(), Flags);
376 void VisitDecltypeType(const DecltypeType *DTT) {
377 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
379 void VisitDeducedType(const DeducedType *DT) {
380 // FIXME: In practice this doesn't work: the AutoType you find inside
381 // TypeLoc never has a deduced type. https://llvm.org/PR42914
382 Outer.add(DT->getDeducedType(), Flags);
384 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
385 Outer.add(UUT->getDecl(), Flags);
387 void VisitDeducedTemplateSpecializationType(
388 const DeducedTemplateSpecializationType *DTST) {
389 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
390 Outer.add(USD, Flags);
392 // FIXME: This is a workaround for https://llvm.org/PR42914,
393 // which is causing DTST->getDeducedType() to be empty. We
394 // fall back to the template pattern and miss the instantiation
395 // even when it's known in principle. Once that bug is fixed,
396 // the following code can be removed (the existing handling in
397 // VisitDeducedType() is sufficient).
398 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
399 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
401 void VisitDependentNameType(const DependentNameType *DNT) {
402 if (Outer.Resolver) {
403 for (const NamedDecl *ND :
404 Outer.Resolver->resolveDependentNameType(DNT)) {
405 Outer.add(ND, Flags);
409 void VisitDependentTemplateSpecializationType(
410 const DependentTemplateSpecializationType *DTST) {
411 if (Outer.Resolver) {
412 for (const NamedDecl *ND :
413 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
414 Outer.add(ND, Flags);
418 void VisitTypedefType(const TypedefType *TT) {
419 if (shouldSkipTypedef(TT->getDecl()))
420 return;
421 Outer.add(TT->getDecl(), Flags);
423 void
424 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
425 // Have to handle these case-by-case.
427 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
428 Outer.add(UTN, Flags);
430 // templated type aliases: there's no specialized/instantiated using
431 // decl to point to. So try to find a decl for the underlying type
432 // (after substitution), and failing that point to the (templated) using
433 // decl.
434 if (TST->isTypeAlias()) {
435 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
436 // Don't *traverse* the alias, which would result in traversing the
437 // template of the underlying type.
438 Outer.report(
439 TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
440 Flags | Rel::Alias | Rel::TemplatePattern);
442 // specializations of template template parameters aren't instantiated
443 // into decls, so they must refer to the parameter itself.
444 else if (const auto *Parm =
445 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
446 TST->getTemplateName().getAsTemplateDecl()))
447 Outer.add(Parm, Flags);
448 // class template specializations have a (specialized) CXXRecordDecl.
449 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
450 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
451 else {
452 // fallback: the (un-specialized) declaration from primary template.
453 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
454 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
457 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
458 Outer.add(TTPT->getDecl(), Flags);
460 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
461 Outer.add(OIT->getDecl(), Flags);
464 Visitor(*this, Flags).Visit(T.getTypePtr());
467 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
468 if (!NNS)
469 return;
470 debug(*NNS, Flags);
471 switch (NNS->getKind()) {
472 case NestedNameSpecifier::Namespace:
473 add(NNS->getAsNamespace(), Flags);
474 return;
475 case NestedNameSpecifier::NamespaceAlias:
476 add(NNS->getAsNamespaceAlias(), Flags);
477 return;
478 case NestedNameSpecifier::Identifier:
479 if (Resolver) {
480 add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
481 Flags);
483 return;
484 case NestedNameSpecifier::TypeSpec:
485 case NestedNameSpecifier::TypeSpecWithTemplate:
486 add(QualType(NNS->getAsType(), 0), Flags);
487 return;
488 case NestedNameSpecifier::Global:
489 // This should be TUDecl, but we can't get a pointer to it!
490 return;
491 case NestedNameSpecifier::Super:
492 add(NNS->getAsRecordDecl(), Flags);
493 return;
495 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
498 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
499 if (!CCI)
500 return;
501 debug(*CCI, Flags);
503 if (CCI->isAnyMemberInitializer())
504 add(CCI->getAnyMember(), Flags);
505 // Constructor calls contain a TypeLoc node, so we don't handle them here.
508 void add(const TemplateArgument &Arg, RelSet Flags) {
509 // Only used for template template arguments.
510 // For type and non-type template arguments, SelectionTree
511 // will hit a more specific node (e.g. a TypeLoc or a
512 // DeclRefExpr).
513 if (Arg.getKind() == TemplateArgument::Template ||
514 Arg.getKind() == TemplateArgument::TemplateExpansion) {
515 if (TemplateDecl *TD =
516 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
517 report(TD, Flags);
519 if (const auto *USD =
520 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
521 add(USD, Flags);
526 } // namespace
528 llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
529 allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
530 dlog("allTargetDecls({0})", nodeToString(N));
531 TargetFinder Finder(Resolver);
532 DeclRelationSet Flags;
533 if (const Decl *D = N.get<Decl>())
534 Finder.add(D, Flags);
535 else if (const Stmt *S = N.get<Stmt>())
536 Finder.add(S, Flags);
537 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
538 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
539 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
540 Finder.add(NNS, Flags);
541 else if (const TypeLoc *TL = N.get<TypeLoc>())
542 Finder.add(TL->getType(), Flags);
543 else if (const QualType *QT = N.get<QualType>())
544 Finder.add(*QT, Flags);
545 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
546 Finder.add(CCI, Flags);
547 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
548 Finder.add(TAL->getArgument(), Flags);
549 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
550 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
551 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
552 Finder.add(PL->getProtocol(), Flags);
553 return Finder.takeDecls();
556 llvm::SmallVector<const NamedDecl *, 1>
557 targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
558 const HeuristicResolver *Resolver) {
559 llvm::SmallVector<const NamedDecl *, 1> Result;
560 for (const auto &Entry : allTargetDecls(N, Resolver)) {
561 if (!(Entry.second & ~Mask))
562 Result.push_back(Entry.first);
564 return Result;
567 llvm::SmallVector<const NamedDecl *, 1>
568 explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
569 const HeuristicResolver *Resolver) {
570 assert(!(Mask & (DeclRelation::TemplatePattern |
571 DeclRelation::TemplateInstantiation)) &&
572 "explicitReferenceTargets handles templates on its own");
573 auto Decls = allTargetDecls(N, Resolver);
575 // We prefer to return template instantiation, but fallback to template
576 // pattern if instantiation is not available.
577 Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
579 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
580 llvm::SmallVector<const NamedDecl *, 1> Targets;
581 bool SeenTemplateInstantiations = false;
582 for (auto &D : Decls) {
583 if (D.second & ~Mask)
584 continue;
585 if (D.second & DeclRelation::TemplatePattern) {
586 TemplatePatterns.push_back(D.first);
587 continue;
589 if (D.second & DeclRelation::TemplateInstantiation)
590 SeenTemplateInstantiations = true;
591 Targets.push_back(D.first);
593 if (!SeenTemplateInstantiations)
594 Targets.insert(Targets.end(), TemplatePatterns.begin(),
595 TemplatePatterns.end());
596 return Targets;
599 namespace {
600 llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
601 const HeuristicResolver *Resolver) {
602 struct Visitor : ConstDeclVisitor<Visitor> {
603 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
605 const HeuristicResolver *Resolver;
606 llvm::SmallVector<ReferenceLoc> Refs;
608 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
609 // We want to keep it as non-declaration references, as the
610 // "using namespace" declaration doesn't have a name.
611 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
612 D->getIdentLocation(),
613 /*IsDecl=*/false,
614 {D->getNominatedNamespaceAsWritten()}});
617 void VisitUsingDecl(const UsingDecl *D) {
618 // "using ns::identifier;" is a non-declaration reference.
619 Refs.push_back(ReferenceLoc{
620 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
621 explicitReferenceTargets(DynTypedNode::create(*D),
622 DeclRelation::Underlying, Resolver)});
625 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
626 // For namespace alias, "namespace Foo = Target;", we add two references.
627 // Add a declaration reference for Foo.
628 VisitNamedDecl(D);
629 // Add a non-declaration reference for Target.
630 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
631 D->getTargetNameLoc(),
632 /*IsDecl=*/false,
633 {D->getAliasedNamespace()}});
636 void VisitNamedDecl(const NamedDecl *ND) {
637 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
638 // as their underlying decls, covering the same range, will be visited.
639 if (llvm::isa<ClassTemplateDecl>(ND) ||
640 llvm::isa<FunctionTemplateDecl>(ND) ||
641 llvm::isa<VarTemplateDecl>(ND) ||
642 llvm::isa<TypeAliasTemplateDecl>(ND))
643 return;
644 // FIXME: decide on how to surface destructors when we need them.
645 if (llvm::isa<CXXDestructorDecl>(ND))
646 return;
647 // Filter anonymous decls, name location will point outside the name token
648 // and the clients are not prepared to handle that.
649 if (ND->getDeclName().isIdentifier() &&
650 !ND->getDeclName().getAsIdentifierInfo())
651 return;
652 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
653 ND->getLocation(),
654 /*IsDecl=*/true,
655 {ND}});
658 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
659 // The class template name in a deduction guide targets the class
660 // template.
661 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
662 DG->getNameInfo().getLoc(),
663 /*IsDecl=*/false,
664 {DG->getDeducedTemplate()}});
667 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
668 // The name may have several tokens, we can only report the first.
669 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
670 OMD->getSelectorStartLoc(),
671 /*IsDecl=*/true,
672 {OMD}});
675 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
676 // getLocation is the extended class's location, not the category's.
677 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
678 OCD->getLocation(),
679 /*IsDecl=*/false,
680 {OCD->getClassInterface()}});
681 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
682 OCD->getCategoryNameLoc(),
683 /*IsDecl=*/true,
684 {OCD}});
687 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
688 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
689 OCID->getLocation(),
690 /*IsDecl=*/false,
691 {OCID->getClassInterface()}});
692 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
693 OCID->getCategoryNameLoc(),
694 /*IsDecl=*/true,
695 {OCID->getCategoryDecl()}});
699 Visitor V{Resolver};
700 V.Visit(D);
701 return V.Refs;
704 llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
705 const HeuristicResolver *Resolver) {
706 struct Visitor : ConstStmtVisitor<Visitor> {
707 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
709 const HeuristicResolver *Resolver;
710 // FIXME: handle more complicated cases: more ObjC, designated initializers.
711 llvm::SmallVector<ReferenceLoc> Refs;
713 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
714 Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
715 E->getConceptNameLoc(),
716 /*IsDecl=*/false,
717 {E->getNamedConcept()}});
720 void VisitDeclRefExpr(const DeclRefExpr *E) {
721 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
722 E->getNameInfo().getLoc(),
723 /*IsDecl=*/false,
724 {E->getFoundDecl()}});
727 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
728 Refs.push_back(ReferenceLoc{
729 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
730 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
733 void VisitMemberExpr(const MemberExpr *E) {
734 // Skip destructor calls to avoid duplication: TypeLoc within will be
735 // visited separately.
736 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
737 return;
738 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
739 E->getMemberNameInfo().getLoc(),
740 /*IsDecl=*/false,
741 {E->getFoundDecl()}});
744 void
745 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
746 Refs.push_back(ReferenceLoc{
747 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
748 /*IsDecl=*/false,
749 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
752 void VisitOverloadExpr(const OverloadExpr *E) {
753 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
754 E->getNameInfo().getLoc(),
755 /*IsDecl=*/false,
756 llvm::SmallVector<const NamedDecl *, 1>(
757 E->decls().begin(), E->decls().end())});
760 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
761 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
762 E->getPackLoc(),
763 /*IsDecl=*/false,
764 {E->getPack()}});
767 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
768 Refs.push_back(ReferenceLoc{
769 NestedNameSpecifierLoc(), E->getLocation(),
770 /*IsDecl=*/false,
771 // Select the getter, setter, or @property depending on the call.
772 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
775 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
776 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
777 OIRE->getLocation(),
778 /*IsDecl=*/false,
779 {OIRE->getDecl()}});
782 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
783 // The name may have several tokens, we can only report the first.
784 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
785 E->getSelectorStartLoc(),
786 /*IsDecl=*/false,
787 {E->getMethodDecl()}});
790 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
791 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
792 if (!D.isFieldDesignator())
793 continue;
795 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
796 D.getFieldLoc(),
797 /*IsDecl=*/false,
798 {D.getField()}});
802 void VisitGotoStmt(const GotoStmt *GS) {
803 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
804 GS->getLabelLoc(),
805 /*IsDecl=*/false,
806 {GS->getLabel()}});
809 void VisitLabelStmt(const LabelStmt *LS) {
810 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
811 LS->getIdentLoc(),
812 /*IsDecl=*/true,
813 {LS->getDecl()}});
817 Visitor V{Resolver};
818 V.Visit(S);
819 return V.Refs;
822 llvm::SmallVector<ReferenceLoc>
823 refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
824 struct Visitor : TypeLocVisitor<Visitor> {
825 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
827 const HeuristicResolver *Resolver;
828 llvm::SmallVector<ReferenceLoc> Refs;
830 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
831 // We only know about qualifier, rest if filled by inner locations.
832 size_t InitialSize = Refs.size();
833 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
834 size_t NewSize = Refs.size();
835 // Add qualifier for the newly-added refs.
836 for (unsigned I = InitialSize; I < NewSize; ++I) {
837 ReferenceLoc *Ref = &Refs[I];
838 // Fill in the qualifier.
839 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
840 Ref->Qualifier = L.getQualifierLoc();
844 void VisitUsingTypeLoc(UsingTypeLoc L) {
845 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
846 L.getLocalSourceRange().getBegin(),
847 /*IsDecl=*/false,
848 {L.getFoundDecl()}});
851 void VisitTagTypeLoc(TagTypeLoc L) {
852 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
853 L.getNameLoc(),
854 /*IsDecl=*/false,
855 {L.getDecl()}});
858 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
859 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
860 L.getNameLoc(),
861 /*IsDecl=*/false,
862 {L.getDecl()}});
865 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
866 // We must ensure template type aliases are included in results if they
867 // were written in the source code, e.g. in
868 // template <class T> using valias = vector<T>;
869 // ^valias<int> x;
870 // 'explicitReferenceTargets' will return:
871 // 1. valias with mask 'Alias'.
872 // 2. 'vector<int>' with mask 'Underlying'.
873 // we want to return only #1 in this case.
874 Refs.push_back(ReferenceLoc{
875 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
876 explicitReferenceTargets(DynTypedNode::create(L.getType()),
877 DeclRelation::Alias, Resolver)});
879 void VisitDeducedTemplateSpecializationTypeLoc(
880 DeducedTemplateSpecializationTypeLoc L) {
881 Refs.push_back(ReferenceLoc{
882 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
883 explicitReferenceTargets(DynTypedNode::create(L.getType()),
884 DeclRelation::Alias, Resolver)});
887 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
888 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
889 TL.getNameLoc(),
890 /*IsDecl=*/false,
891 {TL.getDecl()}});
894 void VisitDependentTemplateSpecializationTypeLoc(
895 DependentTemplateSpecializationTypeLoc L) {
896 Refs.push_back(
897 ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
898 /*IsDecl=*/false,
899 explicitReferenceTargets(
900 DynTypedNode::create(L.getType()), {}, Resolver)});
903 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
904 Refs.push_back(
905 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
906 /*IsDecl=*/false,
907 explicitReferenceTargets(
908 DynTypedNode::create(L.getType()), {}, Resolver)});
911 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
912 if (shouldSkipTypedef(L.getTypedefNameDecl()))
913 return;
914 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
915 L.getNameLoc(),
916 /*IsDecl=*/false,
917 {L.getTypedefNameDecl()}});
920 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
921 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
922 L.getNameLoc(),
923 /*IsDecl=*/false,
924 {L.getIFaceDecl()}});
928 Visitor V{Resolver};
929 V.Visit(L.getUnqualifiedLoc());
930 return V.Refs;
933 class ExplicitReferenceCollector
934 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
935 public:
936 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
937 const HeuristicResolver *Resolver)
938 : Out(Out), Resolver(Resolver) {
939 assert(Out);
942 bool VisitTypeLoc(TypeLoc TTL) {
943 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
944 return true;
945 visitNode(DynTypedNode::create(TTL));
946 return true;
949 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
950 // ElaboratedTypeLoc will reports information for its inner type loc.
951 // Otherwise we loose information about inner types loc's qualifier.
952 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
953 TypeLocsToSkip.insert(Inner.getBeginLoc());
954 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
957 bool VisitStmt(Stmt *S) {
958 visitNode(DynTypedNode::create(*S));
959 return true;
962 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
963 visitNode(DynTypedNode::create(*OVE));
964 // Not clear why the source expression is skipped by default...
965 // FIXME: can we just make RecursiveASTVisitor do this?
966 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
969 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
970 visitNode(DynTypedNode::create(*POE));
971 // Traverse only the syntactic form to find the *written* references.
972 // (The semantic form also contains lots of duplication)
973 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
976 // We re-define Traverse*, since there's no corresponding Visit*.
977 // TemplateArgumentLoc is the only way to get locations for references to
978 // template template parameters.
979 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
980 switch (A.getArgument().getKind()) {
981 case TemplateArgument::Template:
982 case TemplateArgument::TemplateExpansion:
983 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
984 A.getTemplateNameLoc(),
985 /*IsDecl=*/false,
986 {A.getArgument()
987 .getAsTemplateOrTemplatePattern()
988 .getAsTemplateDecl()}},
989 DynTypedNode::create(A.getArgument()));
990 break;
991 case TemplateArgument::Declaration:
992 break; // FIXME: can this actually happen in TemplateArgumentLoc?
993 case TemplateArgument::Integral:
994 case TemplateArgument::Null:
995 case TemplateArgument::NullPtr:
996 break; // no references.
997 case TemplateArgument::Pack:
998 case TemplateArgument::Type:
999 case TemplateArgument::Expression:
1000 break; // Handled by VisitType and VisitExpression.
1002 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
1005 bool VisitDecl(Decl *D) {
1006 visitNode(DynTypedNode::create(*D));
1007 return true;
1010 // We have to use Traverse* because there is no corresponding Visit*.
1011 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
1012 if (!L.getNestedNameSpecifier())
1013 return true;
1014 visitNode(DynTypedNode::create(L));
1015 // Inner type is missing information about its qualifier, skip it.
1016 if (auto TL = L.getTypeLoc())
1017 TypeLocsToSkip.insert(TL.getBeginLoc());
1018 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
1021 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
1022 visitNode(DynTypedNode::create(ProtocolLoc));
1023 return true;
1026 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1027 visitNode(DynTypedNode::create(*Init));
1028 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1031 private:
1032 /// Obtain information about a reference directly defined in \p N. Does not
1033 /// recurse into child nodes, e.g. do not expect references for constructor
1034 /// initializers
1036 /// Any of the fields in the returned structure can be empty, but not all of
1037 /// them, e.g.
1038 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1039 /// source location information may be missing,
1040 /// - for dependent code, targets may be empty.
1042 /// (!) For the purposes of this function declarations are not considered to
1043 /// be references. However, declarations can have references inside them,
1044 /// e.g. 'namespace foo = std' references namespace 'std' and this
1045 /// function will return the corresponding reference.
1046 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
1047 if (auto *D = N.get<Decl>())
1048 return refInDecl(D, Resolver);
1049 if (auto *S = N.get<Stmt>())
1050 return refInStmt(S, Resolver);
1051 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1052 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
1053 return {ReferenceLoc{
1054 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
1055 explicitReferenceTargets(
1056 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
1057 DeclRelation::Alias, Resolver)}};
1059 if (const TypeLoc *TL = N.get<TypeLoc>())
1060 return refInTypeLoc(*TL, Resolver);
1061 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1062 // Other type initializers (e.g. base initializer) are handled by visiting
1063 // the typeLoc.
1064 if (CCI->isAnyMemberInitializer()) {
1065 return {ReferenceLoc{NestedNameSpecifierLoc(),
1066 CCI->getMemberLocation(),
1067 /*IsDecl=*/false,
1068 {CCI->getAnyMember()}}};
1071 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
1072 return {ReferenceLoc{NestedNameSpecifierLoc(),
1073 PL->getLocation(),
1074 /*IsDecl=*/false,
1075 {PL->getProtocol()}}};
1077 // We do not have location information for other nodes (QualType, etc)
1078 return {};
1081 void visitNode(DynTypedNode N) {
1082 for (auto &R : explicitReference(N))
1083 reportReference(std::move(R), N);
1086 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
1087 // Strip null targets that can arise from invalid code.
1088 // (This avoids having to check for null everywhere we insert)
1089 llvm::erase_value(Ref.Targets, nullptr);
1090 // Our promise is to return only references from the source code. If we lack
1091 // location information, skip these nodes.
1092 // Normally this should not happen in practice, unless there are bugs in the
1093 // traversals or users started the traversal at an implicit node.
1094 if (Ref.NameLoc.isInvalid()) {
1095 dlog("invalid location at node {0}", nodeToString(N));
1096 return;
1098 Out(Ref);
1101 llvm::function_ref<void(ReferenceLoc)> Out;
1102 const HeuristicResolver *Resolver;
1103 /// TypeLocs starting at these locations must be skipped, see
1104 /// TraverseElaboratedTypeSpecifierLoc for details.
1105 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1107 } // namespace
1109 void findExplicitReferences(const Stmt *S,
1110 llvm::function_ref<void(ReferenceLoc)> Out,
1111 const HeuristicResolver *Resolver) {
1112 assert(S);
1113 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
1115 void findExplicitReferences(const Decl *D,
1116 llvm::function_ref<void(ReferenceLoc)> Out,
1117 const HeuristicResolver *Resolver) {
1118 assert(D);
1119 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
1121 void findExplicitReferences(const ASTContext &AST,
1122 llvm::function_ref<void(ReferenceLoc)> Out,
1123 const HeuristicResolver *Resolver) {
1124 ExplicitReferenceCollector(Out, Resolver)
1125 .TraverseAST(const_cast<ASTContext &>(AST));
1128 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1129 switch (R) {
1130 #define REL_CASE(X) \
1131 case DeclRelation::X: \
1132 return OS << #X;
1133 REL_CASE(Alias);
1134 REL_CASE(Underlying);
1135 REL_CASE(TemplateInstantiation);
1136 REL_CASE(TemplatePattern);
1137 #undef REL_CASE
1139 llvm_unreachable("Unhandled DeclRelation enum");
1141 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1142 const char *Sep = "";
1143 for (unsigned I = 0; I < RS.S.size(); ++I) {
1144 if (RS.S.test(I)) {
1145 OS << Sep << static_cast<DeclRelation>(I);
1146 Sep = "|";
1149 return OS;
1152 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1153 // note we cannot print R.NameLoc without a source manager.
1154 OS << "targets = {";
1155 llvm::SmallVector<std::string> Targets;
1156 for (const NamedDecl *T : R.Targets) {
1157 llvm::raw_string_ostream Target(Targets.emplace_back());
1158 Target << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
1160 llvm::sort(Targets);
1161 OS << llvm::join(Targets, ", ");
1162 OS << "}";
1163 if (R.Qualifier) {
1164 OS << ", qualifier = '";
1165 R.Qualifier.getNestedNameSpecifier()->print(OS,
1166 PrintingPolicy(LangOptions()));
1167 OS << "'";
1169 if (R.IsDecl)
1170 OS << ", decl";
1171 return OS;
1174 } // namespace clangd
1175 } // namespace clang