[flang][driver] Add -fno-fortran-main (link time) option to remove Fortran_main from...
[llvm-project.git] / polly / lib / Support / VirtualInstruction.cpp
blobe570d8d5464948f245c65d5a0184ea9831d072b3
1 //===------ VirtualInstruction.cpp ------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Tools for determining which instructions are within a statement and the
10 // nature of their operands.
12 //===----------------------------------------------------------------------===//
14 #include "polly/Support/VirtualInstruction.h"
16 using namespace polly;
17 using namespace llvm;
19 VirtualUse VirtualUse::create(Scop *S, const Use &U, LoopInfo *LI,
20 bool Virtual) {
21 auto *UserBB = getUseBlock(U);
22 Loop *UserScope = LI->getLoopFor(UserBB);
23 Instruction *UI = dyn_cast<Instruction>(U.getUser());
24 ScopStmt *UserStmt = S->getStmtFor(UI);
26 // Uses by PHI nodes are always reading values written by other statements,
27 // except it is within a region statement.
28 if (PHINode *PHI = dyn_cast<PHINode>(UI)) {
29 // Handle PHI in exit block.
30 if (S->getRegion().getExit() == PHI->getParent())
31 return VirtualUse(UserStmt, U.get(), Inter, nullptr, nullptr);
33 if (UserStmt->getEntryBlock() != PHI->getParent())
34 return VirtualUse(UserStmt, U.get(), Intra, nullptr, nullptr);
36 // The MemoryAccess is expected to be set if @p Virtual is true.
37 MemoryAccess *IncomingMA = nullptr;
38 if (Virtual) {
39 if (const ScopArrayInfo *SAI =
40 S->getScopArrayInfoOrNull(PHI, MemoryKind::PHI)) {
41 IncomingMA = S->getPHIRead(SAI);
42 assert(IncomingMA->getStatement() == UserStmt);
46 return VirtualUse(UserStmt, U.get(), Inter, nullptr, IncomingMA);
49 return create(S, UserStmt, UserScope, U.get(), Virtual);
52 VirtualUse VirtualUse::create(Scop *S, ScopStmt *UserStmt, Loop *UserScope,
53 Value *Val, bool Virtual) {
54 assert(!isa<StoreInst>(Val) && "a StoreInst cannot be used");
56 if (isa<BasicBlock>(Val))
57 return VirtualUse(UserStmt, Val, Block, nullptr, nullptr);
59 if (isa<llvm::Constant>(Val) || isa<MetadataAsValue>(Val) ||
60 isa<InlineAsm>(Val))
61 return VirtualUse(UserStmt, Val, Constant, nullptr, nullptr);
63 // Is the value synthesizable? If the user has been pruned
64 // (UserStmt == nullptr), it is either not used anywhere or is synthesizable.
65 // We assume synthesizable which practically should have the same effect.
66 auto *SE = S->getSE();
67 if (SE->isSCEVable(Val->getType())) {
68 auto *ScevExpr = SE->getSCEVAtScope(Val, UserScope);
69 if (!UserStmt || canSynthesize(Val, *UserStmt->getParent(), SE, UserScope))
70 return VirtualUse(UserStmt, Val, Synthesizable, ScevExpr, nullptr);
73 // FIXME: Inconsistency between lookupInvariantEquivClass and
74 // getRequiredInvariantLoads. Querying one of them should be enough.
75 auto &RIL = S->getRequiredInvariantLoads();
76 if (S->lookupInvariantEquivClass(Val) || RIL.count(dyn_cast<LoadInst>(Val)))
77 return VirtualUse(UserStmt, Val, Hoisted, nullptr, nullptr);
79 // ReadOnly uses may have MemoryAccesses that we want to associate with the
80 // use. This is why we look for a MemoryAccess here already.
81 MemoryAccess *InputMA = nullptr;
82 if (UserStmt && Virtual)
83 InputMA = UserStmt->lookupValueReadOf(Val);
85 // Uses are read-only if they have been defined before the SCoP, i.e., they
86 // cannot be written to inside the SCoP. Arguments are defined before any
87 // instructions, hence also before the SCoP. If the user has been pruned
88 // (UserStmt == nullptr) and is not SCEVable, assume it is read-only as it is
89 // neither an intra- nor an inter-use.
90 if (!UserStmt || isa<Argument>(Val))
91 return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA);
93 auto Inst = cast<Instruction>(Val);
94 if (!S->contains(Inst))
95 return VirtualUse(UserStmt, Val, ReadOnly, nullptr, InputMA);
97 // A use is inter-statement if either it is defined in another statement, or
98 // there is a MemoryAccess that reads its value that has been written by
99 // another statement.
100 if (InputMA || (!Virtual && UserStmt != S->getStmtFor(Inst)))
101 return VirtualUse(UserStmt, Val, Inter, nullptr, InputMA);
103 return VirtualUse(UserStmt, Val, Intra, nullptr, nullptr);
106 void VirtualUse::print(raw_ostream &OS, bool Reproducible) const {
107 OS << "User: [" << User->getBaseName() << "] ";
108 switch (Kind) {
109 case VirtualUse::Constant:
110 OS << "Constant Op:";
111 break;
112 case VirtualUse::Block:
113 OS << "BasicBlock Op:";
114 break;
115 case VirtualUse::Synthesizable:
116 OS << "Synthesizable Op:";
117 break;
118 case VirtualUse::Hoisted:
119 OS << "Hoisted load Op:";
120 break;
121 case VirtualUse::ReadOnly:
122 OS << "Read-Only Op:";
123 break;
124 case VirtualUse::Intra:
125 OS << "Intra Op:";
126 break;
127 case VirtualUse::Inter:
128 OS << "Inter Op:";
129 break;
132 if (Val) {
133 OS << ' ';
134 if (Reproducible)
135 OS << '"' << Val->getName() << '"';
136 else
137 Val->print(OS, true);
139 if (ScevExpr) {
140 OS << ' ';
141 ScevExpr->print(OS);
143 if (InputMA && !Reproducible)
144 OS << ' ' << InputMA;
147 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
148 LLVM_DUMP_METHOD void VirtualUse::dump() const {
149 print(errs(), false);
150 errs() << '\n';
152 #endif
154 void VirtualInstruction::print(raw_ostream &OS, bool Reproducible) const {
155 if (!Stmt || !Inst) {
156 OS << "[null VirtualInstruction]";
157 return;
160 OS << "[" << Stmt->getBaseName() << "]";
161 Inst->print(OS, !Reproducible);
164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
165 LLVM_DUMP_METHOD void VirtualInstruction::dump() const {
166 print(errs(), false);
167 errs() << '\n';
169 #endif
171 /// Return true if @p Inst cannot be removed, even if it is nowhere referenced.
172 static bool isRoot(const Instruction *Inst) {
173 // The store is handled by its MemoryAccess. The load must be reached from the
174 // roots in order to be marked as used.
175 if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
176 return false;
178 // Terminator instructions (in region statements) are required for control
179 // flow.
180 if (Inst->isTerminator())
181 return true;
183 // Writes to memory must be honored.
184 if (Inst->mayWriteToMemory())
185 return true;
187 return false;
190 /// Return true for MemoryAccesses that cannot be removed because it represents
191 /// an llvm::Value that is used after the SCoP.
192 static bool isEscaping(MemoryAccess *MA) {
193 assert(MA->isOriginalValueKind());
194 Scop *S = MA->getStatement()->getParent();
195 return S->isEscaping(cast<Instruction>(MA->getAccessValue()));
198 /// Add non-removable virtual instructions in @p Stmt to @p RootInsts.
199 static void
200 addInstructionRoots(ScopStmt *Stmt,
201 SmallVectorImpl<VirtualInstruction> &RootInsts) {
202 if (!Stmt->isBlockStmt()) {
203 // In region statements the terminator statement and all statements that
204 // are not in the entry block cannot be eliminated and consequently must
205 // be roots.
206 RootInsts.emplace_back(Stmt,
207 Stmt->getRegion()->getEntry()->getTerminator());
208 for (BasicBlock *BB : Stmt->getRegion()->blocks())
209 if (Stmt->getRegion()->getEntry() != BB)
210 for (Instruction &Inst : *BB)
211 RootInsts.emplace_back(Stmt, &Inst);
212 return;
215 for (Instruction *Inst : Stmt->getInstructions())
216 if (isRoot(Inst))
217 RootInsts.emplace_back(Stmt, Inst);
220 /// Add non-removable memory accesses in @p Stmt to @p RootInsts.
222 /// @param Local If true, all writes are assumed to escape. markAndSweep
223 /// algorithms can use this to be applicable to a single ScopStmt only without
224 /// the risk of removing definitions required by other statements.
225 /// If false, only writes for SCoP-escaping values are roots. This
226 /// is global mode, where such writes must be marked by theirs uses
227 /// in order to be reachable.
228 static void addAccessRoots(ScopStmt *Stmt,
229 SmallVectorImpl<MemoryAccess *> &RootAccs,
230 bool Local) {
231 for (auto *MA : *Stmt) {
232 if (!MA->isWrite())
233 continue;
235 // Writes to arrays are always used.
236 if (MA->isLatestArrayKind())
237 RootAccs.push_back(MA);
239 // Values are roots if they are escaping.
240 else if (MA->isLatestValueKind()) {
241 if (Local || isEscaping(MA))
242 RootAccs.push_back(MA);
245 // Exit phis are, by definition, escaping.
246 else if (MA->isLatestExitPHIKind())
247 RootAccs.push_back(MA);
249 // phi writes are only roots if we are not visiting the statement
250 // containing the PHINode.
251 else if (Local && MA->isLatestPHIKind())
252 RootAccs.push_back(MA);
256 /// Determine all instruction and access roots.
257 static void addRoots(ScopStmt *Stmt,
258 SmallVectorImpl<VirtualInstruction> &RootInsts,
259 SmallVectorImpl<MemoryAccess *> &RootAccs, bool Local) {
260 addInstructionRoots(Stmt, RootInsts);
261 addAccessRoots(Stmt, RootAccs, Local);
264 /// Mark accesses and instructions as used if they are reachable from a root,
265 /// walking the operand trees.
267 /// @param S The SCoP to walk.
268 /// @param LI The LoopInfo Analysis.
269 /// @param RootInsts List of root instructions.
270 /// @param RootAccs List of root accesses.
271 /// @param UsesInsts[out] Receives all reachable instructions, including the
272 /// roots.
273 /// @param UsedAccs[out] Receives all reachable accesses, including the roots.
274 /// @param OnlyLocal If non-nullptr, restricts walking to a single
275 /// statement.
276 static void walkReachable(Scop *S, LoopInfo *LI,
277 ArrayRef<VirtualInstruction> RootInsts,
278 ArrayRef<MemoryAccess *> RootAccs,
279 DenseSet<VirtualInstruction> &UsedInsts,
280 DenseSet<MemoryAccess *> &UsedAccs,
281 ScopStmt *OnlyLocal = nullptr) {
282 UsedInsts.clear();
283 UsedAccs.clear();
285 SmallVector<VirtualInstruction, 32> WorklistInsts;
286 SmallVector<MemoryAccess *, 32> WorklistAccs;
288 WorklistInsts.append(RootInsts.begin(), RootInsts.end());
289 WorklistAccs.append(RootAccs.begin(), RootAccs.end());
291 auto AddToWorklist = [&](VirtualUse VUse) {
292 switch (VUse.getKind()) {
293 case VirtualUse::Block:
294 case VirtualUse::Constant:
295 case VirtualUse::Synthesizable:
296 case VirtualUse::Hoisted:
297 break;
298 case VirtualUse::ReadOnly:
299 // Read-only scalars only have MemoryAccesses if ModelReadOnlyScalars is
300 // enabled.
301 if (!VUse.getMemoryAccess())
302 break;
303 [[fallthrough]];
304 case VirtualUse::Inter:
305 assert(VUse.getMemoryAccess());
306 WorklistAccs.push_back(VUse.getMemoryAccess());
307 break;
308 case VirtualUse::Intra:
309 WorklistInsts.emplace_back(VUse.getUser(),
310 cast<Instruction>(VUse.getValue()));
311 break;
315 while (true) {
316 // We have two worklists to process: Only when the MemoryAccess worklist is
317 // empty, we process the instruction worklist.
319 while (!WorklistAccs.empty()) {
320 auto *Acc = WorklistAccs.pop_back_val();
322 ScopStmt *Stmt = Acc->getStatement();
323 if (OnlyLocal && Stmt != OnlyLocal)
324 continue;
326 auto Inserted = UsedAccs.insert(Acc);
327 if (!Inserted.second)
328 continue;
330 if (Acc->isRead()) {
331 const ScopArrayInfo *SAI = Acc->getScopArrayInfo();
333 if (Acc->isLatestValueKind()) {
334 MemoryAccess *DefAcc = S->getValueDef(SAI);
336 // Accesses to read-only values do not have a definition.
337 if (DefAcc)
338 WorklistAccs.push_back(S->getValueDef(SAI));
341 if (Acc->isLatestAnyPHIKind()) {
342 auto IncomingMAs = S->getPHIIncomings(SAI);
343 WorklistAccs.append(IncomingMAs.begin(), IncomingMAs.end());
347 if (Acc->isWrite()) {
348 if (Acc->isOriginalValueKind() ||
349 (Acc->isOriginalArrayKind() && Acc->getAccessValue())) {
350 Loop *Scope = Stmt->getSurroundingLoop();
351 VirtualUse VUse =
352 VirtualUse::create(S, Stmt, Scope, Acc->getAccessValue(), true);
353 AddToWorklist(VUse);
356 if (Acc->isOriginalAnyPHIKind()) {
357 for (auto Incoming : Acc->getIncoming()) {
358 VirtualUse VUse = VirtualUse::create(
359 S, Stmt, LI->getLoopFor(Incoming.first), Incoming.second, true);
360 AddToWorklist(VUse);
364 if (Acc->isOriginalArrayKind())
365 WorklistInsts.emplace_back(Stmt, Acc->getAccessInstruction());
369 // If both worklists are empty, stop walking.
370 if (WorklistInsts.empty())
371 break;
373 VirtualInstruction VInst = WorklistInsts.pop_back_val();
374 ScopStmt *Stmt = VInst.getStmt();
375 Instruction *Inst = VInst.getInstruction();
377 // Do not process statements other than the local.
378 if (OnlyLocal && Stmt != OnlyLocal)
379 continue;
381 auto InsertResult = UsedInsts.insert(VInst);
382 if (!InsertResult.second)
383 continue;
385 // Add all operands to the worklists.
386 PHINode *PHI = dyn_cast<PHINode>(Inst);
387 if (PHI && PHI->getParent() == Stmt->getEntryBlock()) {
388 if (MemoryAccess *PHIRead = Stmt->lookupPHIReadOf(PHI))
389 WorklistAccs.push_back(PHIRead);
390 } else {
391 for (VirtualUse VUse : VInst.operands())
392 AddToWorklist(VUse);
395 // If there is an array access, also add its MemoryAccesses to the worklist.
396 const MemoryAccessList *Accs = Stmt->lookupArrayAccessesFor(Inst);
397 if (!Accs)
398 continue;
400 for (MemoryAccess *Acc : *Accs)
401 WorklistAccs.push_back(Acc);
405 void polly::markReachable(Scop *S, LoopInfo *LI,
406 DenseSet<VirtualInstruction> &UsedInsts,
407 DenseSet<MemoryAccess *> &UsedAccs,
408 ScopStmt *OnlyLocal) {
409 SmallVector<VirtualInstruction, 32> RootInsts;
410 SmallVector<MemoryAccess *, 32> RootAccs;
412 if (OnlyLocal) {
413 addRoots(OnlyLocal, RootInsts, RootAccs, true);
414 } else {
415 for (auto &Stmt : *S)
416 addRoots(&Stmt, RootInsts, RootAccs, false);
419 walkReachable(S, LI, RootInsts, RootAccs, UsedInsts, UsedAccs, OnlyLocal);