1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Loops should be simplified before this analysis.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/Support/BlockFrequency.h"
21 #include "llvm/Support/BranchProbability.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm::bfi_detail
;
41 #define DEBUG_TYPE "block-freq"
44 cl::opt
<bool> CheckBFIUnknownBlockQueries(
45 "check-bfi-unknown-block-queries",
46 cl::init(false), cl::Hidden
,
47 cl::desc("Check if block frequency is queried for an unknown block "
48 "for debugging missed BFI updates"));
50 cl::opt
<bool> UseIterativeBFIInference(
51 "use-iterative-bfi-inference", cl::Hidden
,
52 cl::desc("Apply an iterative post-processing to infer correct BFI counts"));
54 cl::opt
<unsigned> IterativeBFIMaxIterationsPerBlock(
55 "iterative-bfi-max-iterations-per-block", cl::init(1000), cl::Hidden
,
56 cl::desc("Iterative inference: maximum number of update iterations "
59 cl::opt
<double> IterativeBFIPrecision(
60 "iterative-bfi-precision", cl::init(1e-12), cl::Hidden
,
61 cl::desc("Iterative inference: delta convergence precision; smaller values "
62 "typically lead to better results at the cost of worsen runtime"));
65 ScaledNumber
<uint64_t> BlockMass::toScaled() const {
67 return ScaledNumber
<uint64_t>(1, 0);
68 return ScaledNumber
<uint64_t>(getMass() + 1, -64);
71 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
72 LLVM_DUMP_METHOD
void BlockMass::dump() const { print(dbgs()); }
75 static char getHexDigit(int N
) {
82 raw_ostream
&BlockMass::print(raw_ostream
&OS
) const {
83 for (int Digits
= 0; Digits
< 16; ++Digits
)
84 OS
<< getHexDigit(Mass
>> (60 - Digits
* 4) & 0xf);
90 using BlockNode
= BlockFrequencyInfoImplBase::BlockNode
;
91 using Distribution
= BlockFrequencyInfoImplBase::Distribution
;
92 using WeightList
= BlockFrequencyInfoImplBase::Distribution::WeightList
;
93 using Scaled64
= BlockFrequencyInfoImplBase::Scaled64
;
94 using LoopData
= BlockFrequencyInfoImplBase::LoopData
;
95 using Weight
= BlockFrequencyInfoImplBase::Weight
;
96 using FrequencyData
= BlockFrequencyInfoImplBase::FrequencyData
;
98 /// Dithering mass distributer.
100 /// This class splits up a single mass into portions by weight, dithering to
101 /// spread out error. No mass is lost. The dithering precision depends on the
102 /// precision of the product of \a BlockMass and \a BranchProbability.
104 /// The distribution algorithm follows.
106 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
107 /// mass to distribute in \a RemMass.
109 /// 2. For each portion:
111 /// 1. Construct a branch probability, P, as the portion's weight divided
112 /// by the current value of \a RemWeight.
113 /// 2. Calculate the portion's mass as \a RemMass times P.
114 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
115 /// the current portion's weight and mass.
116 struct DitheringDistributer
{
120 DitheringDistributer(Distribution
&Dist
, const BlockMass
&Mass
);
122 BlockMass
takeMass(uint32_t Weight
);
125 } // end anonymous namespace
127 DitheringDistributer::DitheringDistributer(Distribution
&Dist
,
128 const BlockMass
&Mass
) {
130 RemWeight
= Dist
.Total
;
134 BlockMass
DitheringDistributer::takeMass(uint32_t Weight
) {
135 assert(Weight
&& "invalid weight");
136 assert(Weight
<= RemWeight
);
137 BlockMass Mass
= RemMass
* BranchProbability(Weight
, RemWeight
);
139 // Decrement totals (dither).
145 void Distribution::add(const BlockNode
&Node
, uint64_t Amount
,
146 Weight::DistType Type
) {
147 assert(Amount
&& "invalid weight of 0");
148 uint64_t NewTotal
= Total
+ Amount
;
150 // Check for overflow. It should be impossible to overflow twice.
151 bool IsOverflow
= NewTotal
< Total
;
152 assert(!(DidOverflow
&& IsOverflow
) && "unexpected repeated overflow");
153 DidOverflow
|= IsOverflow
;
159 Weights
.push_back(Weight(Type
, Node
, Amount
));
162 static void combineWeight(Weight
&W
, const Weight
&OtherW
) {
163 assert(OtherW
.TargetNode
.isValid());
168 assert(W
.Type
== OtherW
.Type
);
169 assert(W
.TargetNode
== OtherW
.TargetNode
);
170 assert(OtherW
.Amount
&& "Expected non-zero weight");
171 if (W
.Amount
> W
.Amount
+ OtherW
.Amount
)
172 // Saturate on overflow.
173 W
.Amount
= UINT64_MAX
;
175 W
.Amount
+= OtherW
.Amount
;
178 static void combineWeightsBySorting(WeightList
&Weights
) {
179 // Sort so edges to the same node are adjacent.
180 llvm::sort(Weights
, [](const Weight
&L
, const Weight
&R
) {
181 return L
.TargetNode
< R
.TargetNode
;
184 // Combine adjacent edges.
185 WeightList::iterator O
= Weights
.begin();
186 for (WeightList::const_iterator I
= O
, L
= O
, E
= Weights
.end(); I
!= E
;
190 // Find the adjacent weights to the same node.
191 for (++L
; L
!= E
&& I
->TargetNode
== L
->TargetNode
; ++L
)
192 combineWeight(*O
, *L
);
195 // Erase extra entries.
196 Weights
.erase(O
, Weights
.end());
199 static void combineWeightsByHashing(WeightList
&Weights
) {
200 // Collect weights into a DenseMap.
201 using HashTable
= DenseMap
<BlockNode::IndexType
, Weight
>;
203 HashTable
Combined(NextPowerOf2(2 * Weights
.size()));
204 for (const Weight
&W
: Weights
)
205 combineWeight(Combined
[W
.TargetNode
.Index
], W
);
207 // Check whether anything changed.
208 if (Weights
.size() == Combined
.size())
211 // Fill in the new weights.
213 Weights
.reserve(Combined
.size());
214 for (const auto &I
: Combined
)
215 Weights
.push_back(I
.second
);
218 static void combineWeights(WeightList
&Weights
) {
219 // Use a hash table for many successors to keep this linear.
220 if (Weights
.size() > 128) {
221 combineWeightsByHashing(Weights
);
225 combineWeightsBySorting(Weights
);
228 static uint64_t shiftRightAndRound(uint64_t N
, int Shift
) {
233 return (N
>> Shift
) + (UINT64_C(1) & N
>> (Shift
- 1));
236 void Distribution::normalize() {
237 // Early exit for termination nodes.
241 // Only bother if there are multiple successors.
242 if (Weights
.size() > 1)
243 combineWeights(Weights
);
245 // Early exit when combined into a single successor.
246 if (Weights
.size() == 1) {
248 Weights
.front().Amount
= 1;
252 // Determine how much to shift right so that the total fits into 32-bits.
254 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
255 // for each weight can cause a 32-bit overflow.
259 else if (Total
> UINT32_MAX
)
260 Shift
= 33 - llvm::countl_zero(Total
);
262 // Early exit if nothing needs to be scaled.
264 // If we didn't overflow then combineWeights() shouldn't have changed the
265 // sum of the weights, but let's double-check.
266 assert(Total
== std::accumulate(Weights
.begin(), Weights
.end(), UINT64_C(0),
267 [](uint64_t Sum
, const Weight
&W
) {
268 return Sum
+ W
.Amount
;
270 "Expected total to be correct");
274 // Recompute the total through accumulation (rather than shifting it) so that
275 // it's accurate after shifting and any changes combineWeights() made above.
278 // Sum the weights to each node and shift right if necessary.
279 for (Weight
&W
: Weights
) {
280 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
281 // can round here without concern about overflow.
282 assert(W
.TargetNode
.isValid());
283 W
.Amount
= std::max(UINT64_C(1), shiftRightAndRound(W
.Amount
, Shift
));
284 assert(W
.Amount
<= UINT32_MAX
);
289 assert(Total
<= UINT32_MAX
);
292 void BlockFrequencyInfoImplBase::clear() {
293 // Swap with a default-constructed std::vector, since std::vector<>::clear()
294 // does not actually clear heap storage.
295 std::vector
<FrequencyData
>().swap(Freqs
);
296 IsIrrLoopHeader
.clear();
297 std::vector
<WorkingData
>().swap(Working
);
301 /// Clear all memory not needed downstream.
303 /// Releases all memory not used downstream. In particular, saves Freqs.
304 static void cleanup(BlockFrequencyInfoImplBase
&BFI
) {
305 std::vector
<FrequencyData
> SavedFreqs(std::move(BFI
.Freqs
));
306 SparseBitVector
<> SavedIsIrrLoopHeader(std::move(BFI
.IsIrrLoopHeader
));
308 BFI
.Freqs
= std::move(SavedFreqs
);
309 BFI
.IsIrrLoopHeader
= std::move(SavedIsIrrLoopHeader
);
312 bool BlockFrequencyInfoImplBase::addToDist(Distribution
&Dist
,
313 const LoopData
*OuterLoop
,
314 const BlockNode
&Pred
,
315 const BlockNode
&Succ
,
320 auto isLoopHeader
= [&OuterLoop
](const BlockNode
&Node
) {
321 return OuterLoop
&& OuterLoop
->isHeader(Node
);
324 BlockNode Resolved
= Working
[Succ
.Index
].getResolvedNode();
327 auto debugSuccessor
= [&](const char *Type
) {
329 << " [" << Type
<< "] weight = " << Weight
;
330 if (!isLoopHeader(Resolved
))
331 dbgs() << ", succ = " << getBlockName(Succ
);
332 if (Resolved
!= Succ
)
333 dbgs() << ", resolved = " << getBlockName(Resolved
);
336 (void)debugSuccessor
;
339 if (isLoopHeader(Resolved
)) {
340 LLVM_DEBUG(debugSuccessor("backedge"));
341 Dist
.addBackedge(Resolved
, Weight
);
345 if (Working
[Resolved
.Index
].getContainingLoop() != OuterLoop
) {
346 LLVM_DEBUG(debugSuccessor(" exit "));
347 Dist
.addExit(Resolved
, Weight
);
351 if (Resolved
< Pred
) {
352 if (!isLoopHeader(Pred
)) {
353 // If OuterLoop is an irreducible loop, we can't actually handle this.
354 assert((!OuterLoop
|| !OuterLoop
->isIrreducible()) &&
355 "unhandled irreducible control flow");
357 // Irreducible backedge. Abort.
358 LLVM_DEBUG(debugSuccessor("abort!!!"));
362 // If "Pred" is a loop header, then this isn't really a backedge; rather,
363 // OuterLoop must be irreducible. These false backedges can come only from
364 // secondary loop headers.
365 assert(OuterLoop
&& OuterLoop
->isIrreducible() && !isLoopHeader(Resolved
) &&
366 "unhandled irreducible control flow");
369 LLVM_DEBUG(debugSuccessor(" local "));
370 Dist
.addLocal(Resolved
, Weight
);
374 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
375 const LoopData
*OuterLoop
, LoopData
&Loop
, Distribution
&Dist
) {
376 // Copy the exit map into Dist.
377 for (const auto &I
: Loop
.Exits
)
378 if (!addToDist(Dist
, OuterLoop
, Loop
.getHeader(), I
.first
,
380 // Irreducible backedge.
386 /// Compute the loop scale for a loop.
387 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData
&Loop
) {
388 // Compute loop scale.
389 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop
) << "\n");
391 // Infinite loops need special handling. If we give the back edge an infinite
392 // mass, they may saturate all the other scales in the function down to 1,
393 // making all the other region temperatures look exactly the same. Choose an
394 // arbitrary scale to avoid these issues.
396 // FIXME: An alternate way would be to select a symbolic scale which is later
397 // replaced to be the maximum of all computed scales plus 1. This would
398 // appropriately describe the loop as having a large scale, without skewing
399 // the final frequency computation.
400 const Scaled64
InfiniteLoopScale(1, 12);
402 // LoopScale == 1 / ExitMass
403 // ExitMass == HeadMass - BackedgeMass
404 BlockMass TotalBackedgeMass
;
405 for (auto &Mass
: Loop
.BackedgeMass
)
406 TotalBackedgeMass
+= Mass
;
407 BlockMass ExitMass
= BlockMass::getFull() - TotalBackedgeMass
;
409 // Block scale stores the inverse of the scale. If this is an infinite loop,
410 // its exit mass will be zero. In this case, use an arbitrary scale for the
413 ExitMass
.isEmpty() ? InfiniteLoopScale
: ExitMass
.toScaled().inverse();
415 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass
<< " ("
416 << BlockMass::getFull() << " - " << TotalBackedgeMass
418 << " - scale = " << Loop
.Scale
<< "\n");
421 /// Package up a loop.
422 void BlockFrequencyInfoImplBase::packageLoop(LoopData
&Loop
) {
423 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop
) << "\n");
425 // Clear the subloop exits to prevent quadratic memory usage.
426 for (const BlockNode
&M
: Loop
.Nodes
) {
427 if (auto *Loop
= Working
[M
.Index
].getPackagedLoop())
429 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M
.Index
) << "\n");
431 Loop
.IsPackaged
= true;
435 static void debugAssign(const BlockFrequencyInfoImplBase
&BFI
,
436 const DitheringDistributer
&D
, const BlockNode
&T
,
437 const BlockMass
&M
, const char *Desc
) {
438 dbgs() << " => assign " << M
<< " (" << D
.RemMass
<< ")";
440 dbgs() << " [" << Desc
<< "]";
442 dbgs() << " to " << BFI
.getBlockName(T
);
447 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode
&Source
,
449 Distribution
&Dist
) {
450 BlockMass Mass
= Working
[Source
.Index
].getMass();
451 LLVM_DEBUG(dbgs() << " => mass: " << Mass
<< "\n");
453 // Distribute mass to successors as laid out in Dist.
454 DitheringDistributer
D(Dist
, Mass
);
456 for (const Weight
&W
: Dist
.Weights
) {
457 // Check for a local edge (non-backedge and non-exit).
458 BlockMass Taken
= D
.takeMass(W
.Amount
);
459 if (W
.Type
== Weight::Local
) {
460 Working
[W
.TargetNode
.Index
].getMass() += Taken
;
461 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));
465 // Backedges and exits only make sense if we're processing a loop.
466 assert(OuterLoop
&& "backedge or exit outside of loop");
468 // Check for a backedge.
469 if (W
.Type
== Weight::Backedge
) {
470 OuterLoop
->BackedgeMass
[OuterLoop
->getHeaderIndex(W
.TargetNode
)] += Taken
;
471 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, "back"));
475 // This must be an exit.
476 assert(W
.Type
== Weight::Exit
);
477 OuterLoop
->Exits
.push_back(std::make_pair(W
.TargetNode
, Taken
));
478 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, "exit"));
482 static void convertFloatingToInteger(BlockFrequencyInfoImplBase
&BFI
,
483 const Scaled64
&Min
, const Scaled64
&Max
) {
484 // Scale the Factor to a size that creates integers. If possible scale
485 // integers so that Max == UINT64_MAX so that they can be best differentiated.
486 // Is is possible that the range between min and max cannot be accurately
487 // represented in a 64bit integer without either loosing precision for small
488 // values (so small unequal numbers all map to 1) or saturaturing big numbers
489 // loosing precision for big numbers (so unequal big numbers may map to
490 // UINT64_MAX). We choose to loose precision for small numbers.
491 const unsigned MaxBits
= sizeof(Scaled64::DigitsType
) * CHAR_BIT
;
492 // Users often add up multiple BlockFrequency values or multiply them with
493 // things like instruction costs. Leave some room to avoid saturating
494 // operations reaching UIN64_MAX too early.
495 const unsigned Slack
= 10;
496 Scaled64 ScalingFactor
= Scaled64(1, MaxBits
- Slack
) / Max
;
498 // Translate the floats to integers.
499 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min
<< ", max = " << Max
500 << ", factor = " << ScalingFactor
<< "\n");
502 for (size_t Index
= 0; Index
< BFI
.Freqs
.size(); ++Index
) {
503 Scaled64 Scaled
= BFI
.Freqs
[Index
].Scaled
* ScalingFactor
;
504 BFI
.Freqs
[Index
].Integer
= std::max(UINT64_C(1), Scaled
.toInt
<uint64_t>());
505 LLVM_DEBUG(dbgs() << " - " << BFI
.getBlockName(Index
) << ": float = "
506 << BFI
.Freqs
[Index
].Scaled
<< ", scaled = " << Scaled
507 << ", int = " << BFI
.Freqs
[Index
].Integer
<< "\n");
511 /// Unwrap a loop package.
513 /// Visits all the members of a loop, adjusting their BlockData according to
514 /// the loop's pseudo-node.
515 static void unwrapLoop(BlockFrequencyInfoImplBase
&BFI
, LoopData
&Loop
) {
516 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI
.getLoopName(Loop
)
517 << ": mass = " << Loop
.Mass
<< ", scale = " << Loop
.Scale
519 Loop
.Scale
*= Loop
.Mass
.toScaled();
520 Loop
.IsPackaged
= false;
521 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop
.Scale
<< "\n");
523 // Propagate the head scale through the loop. Since members are visited in
524 // RPO, the head scale will be updated by the loop scale first, and then the
525 // final head scale will be used for updated the rest of the members.
526 for (const BlockNode
&N
: Loop
.Nodes
) {
527 const auto &Working
= BFI
.Working
[N
.Index
];
528 Scaled64
&F
= Working
.isAPackage() ? Working
.getPackagedLoop()->Scale
529 : BFI
.Freqs
[N
.Index
].Scaled
;
530 Scaled64 New
= Loop
.Scale
* F
;
531 LLVM_DEBUG(dbgs() << " - " << BFI
.getBlockName(N
) << ": " << F
<< " => "
537 void BlockFrequencyInfoImplBase::unwrapLoops() {
538 // Set initial frequencies from loop-local masses.
539 for (size_t Index
= 0; Index
< Working
.size(); ++Index
)
540 Freqs
[Index
].Scaled
= Working
[Index
].Mass
.toScaled();
542 for (LoopData
&Loop
: Loops
)
543 unwrapLoop(*this, Loop
);
546 void BlockFrequencyInfoImplBase::finalizeMetrics() {
547 // Unwrap loop packages in reverse post-order, tracking min and max
549 auto Min
= Scaled64::getLargest();
550 auto Max
= Scaled64::getZero();
551 for (size_t Index
= 0; Index
< Working
.size(); ++Index
) {
552 // Update min/max scale.
553 Min
= std::min(Min
, Freqs
[Index
].Scaled
);
554 Max
= std::max(Max
, Freqs
[Index
].Scaled
);
557 // Convert to integers.
558 convertFloatingToInteger(*this, Min
, Max
);
560 // Clean up data structures.
563 // Print out the final stats.
568 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode
&Node
) const {
569 if (!Node
.isValid()) {
571 if (CheckBFIUnknownBlockQueries
) {
572 SmallString
<256> Msg
;
573 raw_svector_ostream
OS(Msg
);
574 OS
<< "*** Detected BFI query for unknown block " << getBlockName(Node
);
575 report_fatal_error(OS
.str());
578 return BlockFrequency(0);
580 return BlockFrequency(Freqs
[Node
.Index
].Integer
);
583 std::optional
<uint64_t>
584 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function
&F
,
585 const BlockNode
&Node
,
586 bool AllowSynthetic
) const {
587 return getProfileCountFromFreq(F
, getBlockFreq(Node
), AllowSynthetic
);
590 std::optional
<uint64_t> BlockFrequencyInfoImplBase::getProfileCountFromFreq(
591 const Function
&F
, BlockFrequency Freq
, bool AllowSynthetic
) const {
592 auto EntryCount
= F
.getEntryCount(AllowSynthetic
);
595 // Use 128 bit APInt to do the arithmetic to avoid overflow.
596 APInt
BlockCount(128, EntryCount
->getCount());
597 APInt
BlockFreq(128, Freq
.getFrequency());
598 APInt
EntryFreq(128, getEntryFreq().getFrequency());
599 BlockCount
*= BlockFreq
;
600 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
601 // lshr by 1 gives EntryFreq/2.
602 BlockCount
= (BlockCount
+ EntryFreq
.lshr(1)).udiv(EntryFreq
);
603 return BlockCount
.getLimitedValue();
607 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode
&Node
) {
610 return IsIrrLoopHeader
.test(Node
.Index
);
614 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode
&Node
) const {
616 return Scaled64::getZero();
617 return Freqs
[Node
.Index
].Scaled
;
620 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode
&Node
,
621 BlockFrequency Freq
) {
622 assert(Node
.isValid() && "Expected valid node");
623 assert(Node
.Index
< Freqs
.size() && "Expected legal index");
624 Freqs
[Node
.Index
].Integer
= Freq
.getFrequency();
628 BlockFrequencyInfoImplBase::getBlockName(const BlockNode
&Node
) const {
633 BlockFrequencyInfoImplBase::getLoopName(const LoopData
&Loop
) const {
634 return getBlockName(Loop
.getHeader()) + (Loop
.isIrreducible() ? "**" : "*");
637 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData
&OuterLoop
) {
638 Start
= OuterLoop
.getHeader();
639 Nodes
.reserve(OuterLoop
.Nodes
.size());
640 for (auto N
: OuterLoop
.Nodes
)
645 void IrreducibleGraph::addNodesInFunction() {
647 for (uint32_t Index
= 0; Index
< BFI
.Working
.size(); ++Index
)
648 if (!BFI
.Working
[Index
].isPackaged())
653 void IrreducibleGraph::indexNodes() {
654 for (auto &I
: Nodes
)
655 Lookup
[I
.Node
.Index
] = &I
;
658 void IrreducibleGraph::addEdge(IrrNode
&Irr
, const BlockNode
&Succ
,
659 const BFIBase::LoopData
*OuterLoop
) {
660 if (OuterLoop
&& OuterLoop
->isHeader(Succ
))
662 auto L
= Lookup
.find(Succ
.Index
);
663 if (L
== Lookup
.end())
665 IrrNode
&SuccIrr
= *L
->second
;
666 Irr
.Edges
.push_back(&SuccIrr
);
667 SuccIrr
.Edges
.push_front(&Irr
);
673 template <> struct GraphTraits
<IrreducibleGraph
> {
674 using GraphT
= bfi_detail::IrreducibleGraph
;
675 using NodeRef
= const GraphT::IrrNode
*;
676 using ChildIteratorType
= GraphT::IrrNode::iterator
;
678 static NodeRef
getEntryNode(const GraphT
&G
) { return G
.StartIrr
; }
679 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
680 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
683 } // end namespace llvm
685 /// Find extra irreducible headers.
687 /// Find entry blocks and other blocks with backedges, which exist when \c G
688 /// contains irreducible sub-SCCs.
689 static void findIrreducibleHeaders(
690 const BlockFrequencyInfoImplBase
&BFI
,
691 const IrreducibleGraph
&G
,
692 const std::vector
<const IrreducibleGraph::IrrNode
*> &SCC
,
693 LoopData::NodeList
&Headers
, LoopData::NodeList
&Others
) {
694 // Map from nodes in the SCC to whether it's an entry block.
695 SmallDenseMap
<const IrreducibleGraph::IrrNode
*, bool, 8> InSCC
;
697 // InSCC also acts the set of nodes in the graph. Seed it.
698 for (const auto *I
: SCC
)
701 for (auto I
= InSCC
.begin(), E
= InSCC
.end(); I
!= E
; ++I
) {
702 auto &Irr
= *I
->first
;
703 for (const auto *P
: make_range(Irr
.pred_begin(), Irr
.pred_end())) {
707 // This is an entry block.
709 Headers
.push_back(Irr
.Node
);
710 LLVM_DEBUG(dbgs() << " => entry = " << BFI
.getBlockName(Irr
.Node
)
715 assert(Headers
.size() >= 2 &&
716 "Expected irreducible CFG; -loop-info is likely invalid");
717 if (Headers
.size() == InSCC
.size()) {
718 // Every block is a header.
723 // Look for extra headers from irreducible sub-SCCs.
724 for (const auto &I
: InSCC
) {
725 // Entry blocks are already headers.
729 auto &Irr
= *I
.first
;
730 for (const auto *P
: make_range(Irr
.pred_begin(), Irr
.pred_end())) {
731 // Skip forward edges.
732 if (P
->Node
< Irr
.Node
)
735 // Skip predecessors from entry blocks. These can have inverted
740 // Store the extra header.
741 Headers
.push_back(Irr
.Node
);
742 LLVM_DEBUG(dbgs() << " => extra = " << BFI
.getBlockName(Irr
.Node
)
746 if (Headers
.back() == Irr
.Node
)
747 // Added this as a header.
750 // This is not a header.
751 Others
.push_back(Irr
.Node
);
752 LLVM_DEBUG(dbgs() << " => other = " << BFI
.getBlockName(Irr
.Node
) << "\n");
758 static void createIrreducibleLoop(
759 BlockFrequencyInfoImplBase
&BFI
, const IrreducibleGraph
&G
,
760 LoopData
*OuterLoop
, std::list
<LoopData
>::iterator Insert
,
761 const std::vector
<const IrreducibleGraph::IrrNode
*> &SCC
) {
762 // Translate the SCC into RPO.
763 LLVM_DEBUG(dbgs() << " - found-scc\n");
765 LoopData::NodeList Headers
;
766 LoopData::NodeList Others
;
767 findIrreducibleHeaders(BFI
, G
, SCC
, Headers
, Others
);
769 auto Loop
= BFI
.Loops
.emplace(Insert
, OuterLoop
, Headers
.begin(),
770 Headers
.end(), Others
.begin(), Others
.end());
772 // Update loop hierarchy.
773 for (const auto &N
: Loop
->Nodes
)
774 if (BFI
.Working
[N
.Index
].isLoopHeader())
775 BFI
.Working
[N
.Index
].Loop
->Parent
= &*Loop
;
777 BFI
.Working
[N
.Index
].Loop
= &*Loop
;
780 iterator_range
<std::list
<LoopData
>::iterator
>
781 BlockFrequencyInfoImplBase::analyzeIrreducible(
782 const IrreducibleGraph
&G
, LoopData
*OuterLoop
,
783 std::list
<LoopData
>::iterator Insert
) {
784 assert((OuterLoop
== nullptr) == (Insert
== Loops
.begin()));
785 auto Prev
= OuterLoop
? std::prev(Insert
) : Loops
.end();
787 for (auto I
= scc_begin(G
); !I
.isAtEnd(); ++I
) {
791 // Translate the SCC into RPO.
792 createIrreducibleLoop(*this, G
, OuterLoop
, Insert
, *I
);
796 return make_range(std::next(Prev
), Insert
);
797 return make_range(Loops
.begin(), Insert
);
801 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData
&OuterLoop
) {
802 OuterLoop
.Exits
.clear();
803 for (auto &Mass
: OuterLoop
.BackedgeMass
)
804 Mass
= BlockMass::getEmpty();
805 auto O
= OuterLoop
.Nodes
.begin() + 1;
806 for (auto I
= O
, E
= OuterLoop
.Nodes
.end(); I
!= E
; ++I
)
807 if (!Working
[I
->Index
].isPackaged())
809 OuterLoop
.Nodes
.erase(O
, OuterLoop
.Nodes
.end());
812 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData
&Loop
) {
813 assert(Loop
.isIrreducible() && "this only makes sense on irreducible loops");
815 // Since the loop has more than one header block, the mass flowing back into
816 // each header will be different. Adjust the mass in each header loop to
817 // reflect the masses flowing through back edges.
819 // To do this, we distribute the initial mass using the backedge masses
820 // as weights for the distribution.
821 BlockMass LoopMass
= BlockMass::getFull();
824 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
825 for (uint32_t H
= 0; H
< Loop
.NumHeaders
; ++H
) {
826 auto &HeaderNode
= Loop
.Nodes
[H
];
827 auto &BackedgeMass
= Loop
.BackedgeMass
[Loop
.getHeaderIndex(HeaderNode
)];
828 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
829 << getBlockName(HeaderNode
) << ": " << BackedgeMass
831 if (BackedgeMass
.getMass() > 0)
832 Dist
.addLocal(HeaderNode
, BackedgeMass
.getMass());
834 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
837 DitheringDistributer
D(Dist
, LoopMass
);
839 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
840 << " to headers using above weights\n");
841 for (const Weight
&W
: Dist
.Weights
) {
842 BlockMass Taken
= D
.takeMass(W
.Amount
);
843 assert(W
.Type
== Weight::Local
&& "all weights should be local");
844 Working
[W
.TargetNode
.Index
].getMass() = Taken
;
845 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));
849 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution
&Dist
) {
850 BlockMass LoopMass
= BlockMass::getFull();
851 DitheringDistributer
D(Dist
, LoopMass
);
852 for (const Weight
&W
: Dist
.Weights
) {
853 BlockMass Taken
= D
.takeMass(W
.Amount
);
854 assert(W
.Type
== Weight::Local
&& "all weights should be local");
855 Working
[W
.TargetNode
.Index
].getMass() = Taken
;
856 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));