1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/PriorityWorklist.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
34 #define DEBUG_TYPE "cgscc"
38 // Explicit template instantiations and specialization definitions for core
41 static cl::opt
<bool> AbortOnMaxDevirtIterationsReached(
42 "abort-on-max-devirt-iterations-reached",
43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
46 AnalysisKey
ShouldNotRunFunctionPassesAnalysis::Key
;
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn
<LazyCallGraph::SCC
>;
50 template class AnalysisManager
<LazyCallGraph::SCC
, LazyCallGraph
&>;
51 template class PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
,
52 LazyCallGraph
&, CGSCCUpdateResult
&>;
53 template class InnerAnalysisManagerProxy
<CGSCCAnalysisManager
, Module
>;
54 template class OuterAnalysisManagerProxy
<ModuleAnalysisManager
,
55 LazyCallGraph::SCC
, LazyCallGraph
&>;
56 template class OuterAnalysisManagerProxy
<CGSCCAnalysisManager
, Function
>;
58 /// Explicitly specialize the pass manager run method to handle call graph
62 PassManager
<LazyCallGraph::SCC
, CGSCCAnalysisManager
, LazyCallGraph
&,
63 CGSCCUpdateResult
&>::run(LazyCallGraph::SCC
&InitialC
,
64 CGSCCAnalysisManager
&AM
,
65 LazyCallGraph
&G
, CGSCCUpdateResult
&UR
) {
66 // Request PassInstrumentation from analysis manager, will use it to run
67 // instrumenting callbacks for the passes later.
68 PassInstrumentation PI
=
69 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, G
);
71 PreservedAnalyses PA
= PreservedAnalyses::all();
73 // The SCC may be refined while we are running passes over it, so set up
74 // a pointer that we can update.
75 LazyCallGraph::SCC
*C
= &InitialC
;
77 // Get Function analysis manager from its proxy.
78 FunctionAnalysisManager
&FAM
=
79 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
)->getManager();
81 for (auto &Pass
: Passes
) {
82 // Check the PassInstrumentation's BeforePass callbacks before running the
83 // pass, skip its execution completely if asked to (callback returns false).
84 if (!PI
.runBeforePass(*Pass
, *C
))
87 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, G
, UR
);
89 // Update the SCC if necessary.
90 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
92 // If C is updated, also create a proxy and update FAM inside the result.
94 &AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
);
95 ResultFAMCP
->updateFAM(FAM
);
98 // Intersect the final preserved analyses to compute the aggregate
99 // preserved set for this pass manager.
100 PA
.intersect(PassPA
);
102 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
103 // current SCC may simply need to be skipped if invalid.
104 if (UR
.InvalidatedSCCs
.count(C
)) {
105 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
106 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
110 // Check that we didn't miss any update scenario.
111 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
113 // Update the analysis manager as each pass runs and potentially
114 // invalidates analyses.
115 AM
.invalidate(*C
, PassPA
);
117 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
120 // Before we mark all of *this* SCC's analyses as preserved below, intersect
121 // this with the cross-SCC preserved analysis set. This is used to allow
122 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
124 UR
.CrossSCCPA
.intersect(PA
);
126 // Invalidation was handled after each pass in the above loop for the current
127 // SCC. Therefore, the remaining analysis results in the AnalysisManager are
128 // preserved. We mark this with a set so that we don't need to inspect each
130 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
136 ModuleToPostOrderCGSCCPassAdaptor::run(Module
&M
, ModuleAnalysisManager
&AM
) {
137 // Setup the CGSCC analysis manager from its proxy.
138 CGSCCAnalysisManager
&CGAM
=
139 AM
.getResult
<CGSCCAnalysisManagerModuleProxy
>(M
).getManager();
141 // Get the call graph for this module.
142 LazyCallGraph
&CG
= AM
.getResult
<LazyCallGraphAnalysis
>(M
);
144 // Get Function analysis manager from its proxy.
145 FunctionAnalysisManager
&FAM
=
146 AM
.getCachedResult
<FunctionAnalysisManagerModuleProxy
>(M
)->getManager();
148 // We keep worklists to allow us to push more work onto the pass manager as
149 // the passes are run.
150 SmallPriorityWorklist
<LazyCallGraph::RefSCC
*, 1> RCWorklist
;
151 SmallPriorityWorklist
<LazyCallGraph::SCC
*, 1> CWorklist
;
153 // Keep sets for invalidated SCCs that should be skipped when
154 // iterating off the worklists.
155 SmallPtrSet
<LazyCallGraph::SCC
*, 4> InvalidSCCSet
;
157 SmallDenseSet
<std::pair
<LazyCallGraph::Node
*, LazyCallGraph::SCC
*>, 4>
158 InlinedInternalEdges
;
160 SmallVector
<Function
*, 4> DeadFunctions
;
162 CGSCCUpdateResult UR
= {CWorklist
,
165 PreservedAnalyses::all(),
166 InlinedInternalEdges
,
170 // Request PassInstrumentation from analysis manager, will use it to run
171 // instrumenting callbacks for the passes later.
172 PassInstrumentation PI
= AM
.getResult
<PassInstrumentationAnalysis
>(M
);
174 PreservedAnalyses PA
= PreservedAnalyses::all();
176 for (LazyCallGraph::RefSCC
&RC
:
177 llvm::make_early_inc_range(CG
.postorder_ref_sccs())) {
178 assert(RCWorklist
.empty() &&
179 "Should always start with an empty RefSCC worklist");
180 // The postorder_ref_sccs range we are walking is lazily constructed, so
181 // we only push the first one onto the worklist. The worklist allows us
182 // to capture *new* RefSCCs created during transformations.
184 // We really want to form RefSCCs lazily because that makes them cheaper
185 // to update as the program is simplified and allows us to have greater
186 // cache locality as forming a RefSCC touches all the parts of all the
187 // functions within that RefSCC.
189 // We also eagerly increment the iterator to the next position because
190 // the CGSCC passes below may delete the current RefSCC.
191 RCWorklist
.insert(&RC
);
194 LazyCallGraph::RefSCC
*RC
= RCWorklist
.pop_back_val();
195 assert(CWorklist
.empty() &&
196 "Should always start with an empty SCC worklist");
198 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
201 // The top of the worklist may *also* be the same SCC we just ran over
202 // (and invalidated for). Keep track of that last SCC we processed due
203 // to SCC update to avoid redundant processing when an SCC is both just
204 // updated itself and at the top of the worklist.
205 LazyCallGraph::SCC
*LastUpdatedC
= nullptr;
207 // Push the initial SCCs in reverse post-order as we'll pop off the
208 // back and so see this in post-order.
209 for (LazyCallGraph::SCC
&C
: llvm::reverse(*RC
))
210 CWorklist
.insert(&C
);
213 LazyCallGraph::SCC
*C
= CWorklist
.pop_back_val();
214 // Due to call graph mutations, we may have invalid SCCs or SCCs from
215 // other RefSCCs in the worklist. The invalid ones are dead and the
216 // other RefSCCs should be queued above, so we just need to skip both
218 if (InvalidSCCSet
.count(C
)) {
219 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
222 if (LastUpdatedC
== C
) {
223 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C
<< "\n");
226 // We used to also check if the current SCC is part of the current
227 // RefSCC and bail if it wasn't, since it should be in RCWorklist.
228 // However, this can cause compile time explosions in some cases on
229 // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
230 // huge RefSCC can become their own child RefSCC, we create one child
231 // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
232 // the huge RefSCC, and repeat. By visiting all SCCs in the original
233 // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
234 // rather one pass of the RefSCC creating one child RefSCC at a time.
236 // Ensure we can proxy analysis updates from the CGSCC analysis manager
237 // into the Function analysis manager by getting a proxy here.
238 // This also needs to update the FunctionAnalysisManager, as this may be
239 // the first time we see this SCC.
240 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
243 // Each time we visit a new SCC pulled off the worklist,
244 // a transformation of a child SCC may have also modified this parent
245 // and invalidated analyses. So we invalidate using the update record's
246 // cross-SCC preserved set. This preserved set is intersected by any
247 // CGSCC pass that handles invalidation (primarily pass managers) prior
248 // to marking its SCC as preserved. That lets us track everything that
249 // might need invalidation across SCCs without excessive invalidations
252 // This essentially allows SCC passes to freely invalidate analyses
253 // of any ancestor SCC. If this becomes detrimental to successfully
254 // caching analyses, we could force each SCC pass to manually
255 // invalidate the analyses for any SCCs other than themselves which
256 // are mutated. However, that seems to lose the robustness of the
257 // pass-manager driven invalidation scheme.
258 CGAM
.invalidate(*C
, UR
.CrossSCCPA
);
261 // Check that we didn't miss any update scenario.
262 assert(!InvalidSCCSet
.count(C
) && "Processing an invalid SCC!");
263 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
265 LastUpdatedC
= UR
.UpdatedC
;
266 UR
.UpdatedC
= nullptr;
268 // Check the PassInstrumentation's BeforePass callbacks before
269 // running the pass, skip its execution completely if asked to
270 // (callback returns false).
271 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
274 PreservedAnalyses PassPA
= Pass
->run(*C
, CGAM
, CG
, UR
);
276 // Update the SCC and RefSCC if necessary.
277 C
= UR
.UpdatedC
? UR
.UpdatedC
: C
;
280 // If we're updating the SCC, also update the FAM inside the proxy's
282 CGAM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, CG
).updateFAM(
286 // Intersect with the cross-SCC preserved set to capture any
287 // cross-SCC invalidation.
288 UR
.CrossSCCPA
.intersect(PassPA
);
289 // Intersect the preserved set so that invalidation of module
290 // analyses will eventually occur when the module pass completes.
291 PA
.intersect(PassPA
);
293 // If the CGSCC pass wasn't able to provide a valid updated SCC,
294 // the current SCC may simply need to be skipped if invalid.
295 if (UR
.InvalidatedSCCs
.count(C
)) {
296 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
297 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
301 // Check that we didn't miss any update scenario.
302 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
304 // We handle invalidating the CGSCC analysis manager's information
305 // for the (potentially updated) SCC here. Note that any other SCCs
306 // whose structure has changed should have been invalidated by
307 // whatever was updating the call graph. This SCC gets invalidated
308 // late as it contains the nodes that were actively being
310 CGAM
.invalidate(*C
, PassPA
);
312 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
314 // The pass may have restructured the call graph and refined the
315 // current SCC and/or RefSCC. We need to update our current SCC and
316 // RefSCC pointers to follow these. Also, when the current SCC is
317 // refined, re-run the SCC pass over the newly refined SCC in order
318 // to observe the most precise SCC model available. This inherently
319 // cannot cycle excessively as it only happens when we split SCCs
320 // apart, at most converging on a DAG of single nodes.
321 // FIXME: If we ever start having RefSCC passes, we'll want to
322 // iterate there too.
325 << "Re-running SCC passes after a refinement of the "
327 << *UR
.UpdatedC
<< "\n");
329 // Note that both `C` and `RC` may at this point refer to deleted,
330 // invalid SCC and RefSCCs respectively. But we will short circuit
331 // the processing when we check them in the loop above.
332 } while (UR
.UpdatedC
);
333 } while (!CWorklist
.empty());
335 // We only need to keep internal inlined edge information within
336 // a RefSCC, clear it to save on space and let the next time we visit
337 // any of these functions have a fresh start.
338 InlinedInternalEdges
.clear();
339 } while (!RCWorklist
.empty());
342 CG
.removeDeadFunctions(DeadFunctions
);
343 for (Function
*DeadF
: DeadFunctions
)
344 DeadF
->eraseFromParent();
346 #if defined(EXPENSIVE_CHECKS)
347 // Verify that the call graph is still valid.
351 // By definition we preserve the call garph, all SCC analyses, and the
352 // analysis proxies by handling them above and in any nested pass managers.
353 PA
.preserveSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
354 PA
.preserve
<LazyCallGraphAnalysis
>();
355 PA
.preserve
<CGSCCAnalysisManagerModuleProxy
>();
356 PA
.preserve
<FunctionAnalysisManagerModuleProxy
>();
360 PreservedAnalyses
DevirtSCCRepeatedPass::run(LazyCallGraph::SCC
&InitialC
,
361 CGSCCAnalysisManager
&AM
,
363 CGSCCUpdateResult
&UR
) {
364 PreservedAnalyses PA
= PreservedAnalyses::all();
365 PassInstrumentation PI
=
366 AM
.getResult
<PassInstrumentationAnalysis
>(InitialC
, CG
);
368 // The SCC may be refined while we are running passes over it, so set up
369 // a pointer that we can update.
370 LazyCallGraph::SCC
*C
= &InitialC
;
372 // Struct to track the counts of direct and indirect calls in each function
379 // Put value handles on all of the indirect calls and return the number of
380 // direct calls for each function in the SCC.
381 auto ScanSCC
= [](LazyCallGraph::SCC
&C
,
382 SmallMapVector
<Value
*, WeakTrackingVH
, 16> &CallHandles
) {
383 assert(CallHandles
.empty() && "Must start with a clear set of handles.");
385 SmallDenseMap
<Function
*, CallCount
> CallCounts
;
386 CallCount CountLocal
= {0, 0};
387 for (LazyCallGraph::Node
&N
: C
) {
389 CallCounts
.insert(std::make_pair(&N
.getFunction(), CountLocal
))
391 for (Instruction
&I
: instructions(N
.getFunction()))
392 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
393 if (CB
->getCalledFunction()) {
397 CallHandles
.insert({CB
, WeakTrackingVH(CB
)});
405 UR
.IndirectVHs
.clear();
406 // Populate the initial call handles and get the initial call counts.
407 auto CallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
409 for (int Iteration
= 0;; ++Iteration
) {
410 if (!PI
.runBeforePass
<LazyCallGraph::SCC
>(*Pass
, *C
))
413 PreservedAnalyses PassPA
= Pass
->run(*C
, AM
, CG
, UR
);
415 PA
.intersect(PassPA
);
417 // If the CGSCC pass wasn't able to provide a valid updated SCC, the
418 // current SCC may simply need to be skipped if invalid.
419 if (UR
.InvalidatedSCCs
.count(C
)) {
420 PI
.runAfterPassInvalidated
<LazyCallGraph::SCC
>(*Pass
, PassPA
);
421 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
425 // Update the analysis manager with each run and intersect the total set
426 // of preserved analyses so we're ready to iterate.
427 AM
.invalidate(*C
, PassPA
);
429 PI
.runAfterPass
<LazyCallGraph::SCC
>(*Pass
, *C
, PassPA
);
431 // If the SCC structure has changed, bail immediately and let the outer
432 // CGSCC layer handle any iteration to reflect the refined structure.
433 if (UR
.UpdatedC
&& UR
.UpdatedC
!= C
)
436 assert(C
->begin() != C
->end() && "Cannot have an empty SCC!");
438 // Check whether any of the handles were devirtualized.
439 bool Devirt
= llvm::any_of(UR
.IndirectVHs
, [](auto &P
) -> bool {
441 if (CallBase
*CB
= dyn_cast
<CallBase
>(P
.second
)) {
442 if (CB
->getCalledFunction()) {
443 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB
<< "\n");
451 // Rescan to build up a new set of handles and count how many direct
452 // calls remain. If we decide to iterate, this also sets up the input to
453 // the next iteration.
454 UR
.IndirectVHs
.clear();
455 auto NewCallCounts
= ScanSCC(*C
, UR
.IndirectVHs
);
457 // If we haven't found an explicit devirtualization already see if we
458 // have decreased the number of indirect calls and increased the number
459 // of direct calls for any function in the SCC. This can be fooled by all
460 // manner of transformations such as DCE and other things, but seems to
461 // work well in practice.
463 // Iterate over the keys in NewCallCounts, if Function also exists in
464 // CallCounts, make the check below.
465 for (auto &Pair
: NewCallCounts
) {
466 auto &CallCountNew
= Pair
.second
;
467 auto CountIt
= CallCounts
.find(Pair
.first
);
468 if (CountIt
!= CallCounts
.end()) {
469 const auto &CallCountOld
= CountIt
->second
;
470 if (CallCountOld
.Indirect
> CallCountNew
.Indirect
&&
471 CallCountOld
.Direct
< CallCountNew
.Direct
) {
482 // Otherwise, if we've already hit our max, we're done.
483 if (Iteration
>= MaxIterations
) {
484 if (AbortOnMaxDevirtIterationsReached
)
485 report_fatal_error("Max devirtualization iterations reached");
487 dbgs() << "Found another devirtualization after hitting the max "
488 "number of repetitions ("
489 << MaxIterations
<< ") on SCC: " << *C
<< "\n");
494 dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
497 // Move over the new call counts in preparation for iterating.
498 CallCounts
= std::move(NewCallCounts
);
501 // Note that we don't add any preserved entries here unlike a more normal
502 // "pass manager" because we only handle invalidation *between* iterations,
503 // not after the last iteration.
507 PreservedAnalyses
CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC
&C
,
508 CGSCCAnalysisManager
&AM
,
510 CGSCCUpdateResult
&UR
) {
511 // Setup the function analysis manager from its proxy.
512 FunctionAnalysisManager
&FAM
=
513 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, CG
).getManager();
515 SmallVector
<LazyCallGraph::Node
*, 4> Nodes
;
516 for (LazyCallGraph::Node
&N
: C
)
519 // The SCC may get split while we are optimizing functions due to deleting
520 // edges. If this happens, the current SCC can shift, so keep track of
521 // a pointer we can overwrite.
522 LazyCallGraph::SCC
*CurrentC
= &C
;
524 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C
<< "\n");
526 PreservedAnalyses PA
= PreservedAnalyses::all();
527 for (LazyCallGraph::Node
*N
: Nodes
) {
528 // Skip nodes from other SCCs. These may have been split out during
529 // processing. We'll eventually visit those SCCs and pick up the nodes
531 if (CG
.lookupSCC(*N
) != CurrentC
)
534 Function
&F
= N
->getFunction();
536 if (NoRerun
&& FAM
.getCachedResult
<ShouldNotRunFunctionPassesAnalysis
>(F
))
539 PassInstrumentation PI
= FAM
.getResult
<PassInstrumentationAnalysis
>(F
);
540 if (!PI
.runBeforePass
<Function
>(*Pass
, F
))
543 PreservedAnalyses PassPA
= Pass
->run(F
, FAM
);
545 // We know that the function pass couldn't have invalidated any other
546 // function's analyses (that's the contract of a function pass), so
547 // directly handle the function analysis manager's invalidation here.
548 FAM
.invalidate(F
, EagerlyInvalidate
? PreservedAnalyses::none() : PassPA
);
550 PI
.runAfterPass
<Function
>(*Pass
, F
, PassPA
);
552 // Then intersect the preserved set so that invalidation of module
553 // analyses will eventually occur when the module pass completes.
554 PA
.intersect(std::move(PassPA
));
556 // If the call graph hasn't been preserved, update it based on this
557 // function pass. This may also update the current SCC to point to
558 // a smaller, more refined SCC.
559 auto PAC
= PA
.getChecker
<LazyCallGraphAnalysis
>();
560 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) {
561 CurrentC
= &updateCGAndAnalysisManagerForFunctionPass(CG
, *CurrentC
, *N
,
563 assert(CG
.lookupSCC(*N
) == CurrentC
&&
564 "Current SCC not updated to the SCC containing the current node!");
568 // By definition we preserve the proxy. And we preserve all analyses on
569 // Functions. This precludes *any* invalidation of function analyses by the
570 // proxy, but that's OK because we've taken care to invalidate analyses in
571 // the function analysis manager incrementally above.
572 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
573 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
575 // We've also ensured that we updated the call graph along the way.
576 PA
.preserve
<LazyCallGraphAnalysis
>();
581 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
582 Module
&M
, const PreservedAnalyses
&PA
,
583 ModuleAnalysisManager::Invalidator
&Inv
) {
584 // If literally everything is preserved, we're done.
585 if (PA
.areAllPreserved())
586 return false; // This is still a valid proxy.
588 // If this proxy or the call graph is going to be invalidated, we also need
589 // to clear all the keys coming from that analysis.
591 // We also directly invalidate the FAM's module proxy if necessary, and if
592 // that proxy isn't preserved we can't preserve this proxy either. We rely on
593 // it to handle module -> function analysis invalidation in the face of
594 // structural changes and so if it's unavailable we conservatively clear the
595 // entire SCC layer as well rather than trying to do invalidation ourselves.
596 auto PAC
= PA
.getChecker
<CGSCCAnalysisManagerModuleProxy
>();
597 if (!(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Module
>>()) ||
598 Inv
.invalidate
<LazyCallGraphAnalysis
>(M
, PA
) ||
599 Inv
.invalidate
<FunctionAnalysisManagerModuleProxy
>(M
, PA
)) {
602 // And the proxy itself should be marked as invalid so that we can observe
603 // the new call graph. This isn't strictly necessary because we cheat
604 // above, but is still useful.
608 // Directly check if the relevant set is preserved so we can short circuit
609 // invalidating SCCs below.
610 bool AreSCCAnalysesPreserved
=
611 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<LazyCallGraph::SCC
>>();
613 // Ok, we have a graph, so we can propagate the invalidation down into it.
615 for (auto &RC
: G
->postorder_ref_sccs())
617 std::optional
<PreservedAnalyses
> InnerPA
;
619 // Check to see whether the preserved set needs to be adjusted based on
620 // module-level analysis invalidation triggering deferred invalidation
622 if (auto *OuterProxy
=
623 InnerAM
->getCachedResult
<ModuleAnalysisManagerCGSCCProxy
>(C
))
624 for (const auto &OuterInvalidationPair
:
625 OuterProxy
->getOuterInvalidations()) {
626 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
627 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
628 if (Inv
.invalidate(OuterAnalysisID
, M
, PA
)) {
631 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
632 InnerPA
->abandon(InnerAnalysisID
);
636 // Check if we needed a custom PA set. If so we'll need to run the inner
639 InnerAM
->invalidate(C
, *InnerPA
);
643 // Otherwise we only need to do invalidation if the original PA set didn't
644 // preserve all SCC analyses.
645 if (!AreSCCAnalysesPreserved
)
646 InnerAM
->invalidate(C
, PA
);
649 // Return false to indicate that this result is still a valid proxy.
654 CGSCCAnalysisManagerModuleProxy::Result
655 CGSCCAnalysisManagerModuleProxy::run(Module
&M
, ModuleAnalysisManager
&AM
) {
656 // Force the Function analysis manager to also be available so that it can
657 // be accessed in an SCC analysis and proxied onward to function passes.
658 // FIXME: It is pretty awkward to just drop the result here and assert that
659 // we can find it again later.
660 (void)AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
);
662 return Result(*InnerAM
, AM
.getResult
<LazyCallGraphAnalysis
>(M
));
665 AnalysisKey
FunctionAnalysisManagerCGSCCProxy::Key
;
667 FunctionAnalysisManagerCGSCCProxy::Result
668 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC
&C
,
669 CGSCCAnalysisManager
&AM
,
671 // Note: unconditionally getting checking that the proxy exists may get it at
672 // this point. There are cases when this is being run unnecessarily, but
673 // it is cheap and having the assertion in place is more valuable.
674 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(C
, CG
);
675 Module
&M
= *C
.begin()->getFunction().getParent();
677 MAMProxy
.cachedResultExists
<FunctionAnalysisManagerModuleProxy
>(M
);
678 assert(ProxyExists
&&
679 "The CGSCC pass manager requires that the FAM module proxy is run "
680 "on the module prior to entering the CGSCC walk");
683 // We just return an empty result. The caller will use the updateFAM interface
684 // to correctly register the relevant FunctionAnalysisManager based on the
685 // context in which this proxy is run.
689 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
690 LazyCallGraph::SCC
&C
, const PreservedAnalyses
&PA
,
691 CGSCCAnalysisManager::Invalidator
&Inv
) {
692 // If literally everything is preserved, we're done.
693 if (PA
.areAllPreserved())
694 return false; // This is still a valid proxy.
696 // All updates to preserve valid results are done below, so we don't need to
697 // invalidate this proxy.
699 // Note that in order to preserve this proxy, a module pass must ensure that
700 // the FAM has been completely updated to handle the deletion of functions.
701 // Specifically, any FAM-cached results for those functions need to have been
702 // forcibly cleared. When preserved, this proxy will only invalidate results
703 // cached on functions *still in the module* at the end of the module pass.
704 auto PAC
= PA
.getChecker
<FunctionAnalysisManagerCGSCCProxy
>();
705 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<LazyCallGraph::SCC
>>()) {
706 for (LazyCallGraph::Node
&N
: C
)
707 FAM
->invalidate(N
.getFunction(), PA
);
712 // Directly check if the relevant set is preserved.
713 bool AreFunctionAnalysesPreserved
=
714 PA
.allAnalysesInSetPreserved
<AllAnalysesOn
<Function
>>();
716 // Now walk all the functions to see if any inner analysis invalidation is
718 for (LazyCallGraph::Node
&N
: C
) {
719 Function
&F
= N
.getFunction();
720 std::optional
<PreservedAnalyses
> FunctionPA
;
722 // Check to see whether the preserved set needs to be pruned based on
723 // SCC-level analysis invalidation that triggers deferred invalidation
724 // registered with the outer analysis manager proxy for this function.
725 if (auto *OuterProxy
=
726 FAM
->getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
))
727 for (const auto &OuterInvalidationPair
:
728 OuterProxy
->getOuterInvalidations()) {
729 AnalysisKey
*OuterAnalysisID
= OuterInvalidationPair
.first
;
730 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
731 if (Inv
.invalidate(OuterAnalysisID
, C
, PA
)) {
734 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
735 FunctionPA
->abandon(InnerAnalysisID
);
739 // Check if we needed a custom PA set, and if so we'll need to run the
740 // inner invalidation.
742 FAM
->invalidate(F
, *FunctionPA
);
746 // Otherwise we only need to do invalidation if the original PA set didn't
747 // preserve all function analyses.
748 if (!AreFunctionAnalysesPreserved
)
749 FAM
->invalidate(F
, PA
);
752 // Return false to indicate that this result is still a valid proxy.
756 } // end namespace llvm
758 /// When a new SCC is created for the graph we first update the
759 /// FunctionAnalysisManager in the Proxy's result.
760 /// As there might be function analysis results cached for the functions now in
761 /// that SCC, two forms of updates are required.
763 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
764 /// created so that any subsequent invalidation events to the SCC are
765 /// propagated to the function analysis results cached for functions within it.
767 /// Second, if any of the functions within the SCC have analysis results with
768 /// outer analysis dependencies, then those dependencies would point to the
769 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
770 /// function analyses so that they don't retain stale handles.
771 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC
&C
,
773 CGSCCAnalysisManager
&AM
,
774 FunctionAnalysisManager
&FAM
) {
775 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(C
, G
).updateFAM(FAM
);
777 // Now walk the functions in this SCC and invalidate any function analysis
778 // results that might have outer dependencies on an SCC analysis.
779 for (LazyCallGraph::Node
&N
: C
) {
780 Function
&F
= N
.getFunction();
783 FAM
.getCachedResult
<CGSCCAnalysisManagerFunctionProxy
>(F
);
785 // No outer analyses were queried, nothing to do.
788 // Forcibly abandon all the inner analyses with dependencies, but
789 // invalidate nothing else.
790 auto PA
= PreservedAnalyses::all();
791 for (const auto &OuterInvalidationPair
:
792 OuterProxy
->getOuterInvalidations()) {
793 const auto &InnerAnalysisIDs
= OuterInvalidationPair
.second
;
794 for (AnalysisKey
*InnerAnalysisID
: InnerAnalysisIDs
)
795 PA
.abandon(InnerAnalysisID
);
798 // Now invalidate anything we found.
799 FAM
.invalidate(F
, PA
);
803 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
804 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
807 /// The range of new SCCs must be in postorder already. The SCC they were split
808 /// out of must be provided as \p C. The current node being mutated and
809 /// triggering updates must be passed as \p N.
811 /// This function returns the SCC containing \p N. This will be either \p C if
812 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
813 template <typename SCCRangeT
>
814 static LazyCallGraph::SCC
*
815 incorporateNewSCCRange(const SCCRangeT
&NewSCCRange
, LazyCallGraph
&G
,
816 LazyCallGraph::Node
&N
, LazyCallGraph::SCC
*C
,
817 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
) {
818 using SCC
= LazyCallGraph::SCC
;
820 if (NewSCCRange
.empty())
823 // Add the current SCC to the worklist as its shape has changed.
824 UR
.CWorklist
.insert(C
);
825 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
830 // Update the current SCC. Note that if we have new SCCs, this must actually
832 assert(C
!= &*NewSCCRange
.begin() &&
833 "Cannot insert new SCCs without changing current SCC!");
834 C
= &*NewSCCRange
.begin();
835 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
837 // If we had a cached FAM proxy originally, we will want to create more of
838 // them for each SCC that was split off.
839 FunctionAnalysisManager
*FAM
= nullptr;
841 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(*OldC
))
842 FAM
= &FAMProxy
->getManager();
844 // We need to propagate an invalidation call to all but the newly current SCC
845 // because the outer pass manager won't do that for us after splitting them.
846 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
847 // there are preserved analysis we can avoid invalidating them here for
849 // We know however that this will preserve any FAM proxy so go ahead and mark
851 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
852 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
853 AM
.invalidate(*OldC
, PA
);
855 // Ensure the now-current SCC's function analyses are updated.
857 updateNewSCCFunctionAnalyses(*C
, G
, AM
, *FAM
);
859 for (SCC
&NewC
: llvm::reverse(llvm::drop_begin(NewSCCRange
))) {
860 assert(C
!= &NewC
&& "No need to re-visit the current SCC!");
861 assert(OldC
!= &NewC
&& "Already handled the original SCC!");
862 UR
.CWorklist
.insert(&NewC
);
863 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC
<< "\n");
865 // Ensure new SCCs' function analyses are updated.
867 updateNewSCCFunctionAnalyses(NewC
, G
, AM
, *FAM
);
869 // Also propagate a normal invalidation to the new SCC as only the current
870 // will get one from the pass manager infrastructure.
871 AM
.invalidate(NewC
, PA
);
876 static LazyCallGraph::SCC
&updateCGAndAnalysisManagerForPass(
877 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
878 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
879 FunctionAnalysisManager
&FAM
, bool FunctionPass
) {
880 using Node
= LazyCallGraph::Node
;
881 using Edge
= LazyCallGraph::Edge
;
882 using SCC
= LazyCallGraph::SCC
;
883 using RefSCC
= LazyCallGraph::RefSCC
;
885 RefSCC
&InitialRC
= InitialC
.getOuterRefSCC();
887 RefSCC
*RC
= &InitialRC
;
888 Function
&F
= N
.getFunction();
890 // Walk the function body and build up the set of retained, promoted, and
892 SmallVector
<Constant
*, 16> Worklist
;
893 SmallPtrSet
<Constant
*, 16> Visited
;
894 SmallPtrSet
<Node
*, 16> RetainedEdges
;
895 SmallSetVector
<Node
*, 4> PromotedRefTargets
;
896 SmallSetVector
<Node
*, 4> DemotedCallTargets
;
897 SmallSetVector
<Node
*, 4> NewCallEdges
;
898 SmallSetVector
<Node
*, 4> NewRefEdges
;
900 // First walk the function and handle all called functions. We do this first
901 // because if there is a single call edge, whether there are ref edges is
903 for (Instruction
&I
: instructions(F
)) {
904 if (auto *CB
= dyn_cast
<CallBase
>(&I
)) {
905 if (Function
*Callee
= CB
->getCalledFunction()) {
906 if (Visited
.insert(Callee
).second
&& !Callee
->isDeclaration()) {
907 Node
*CalleeN
= G
.lookup(*Callee
);
909 "Visited function should already have an associated node");
910 Edge
*E
= N
->lookup(*CalleeN
);
911 assert((E
|| !FunctionPass
) &&
912 "No function transformations should introduce *new* "
913 "call edges! Any new calls should be modeled as "
914 "promoted existing ref edges!");
915 bool Inserted
= RetainedEdges
.insert(CalleeN
).second
;
917 assert(Inserted
&& "We should never visit a function twice.");
919 NewCallEdges
.insert(CalleeN
);
920 else if (!E
->isCall())
921 PromotedRefTargets
.insert(CalleeN
);
924 // We can miss devirtualization if an indirect call is created then
925 // promoted before updateCGAndAnalysisManagerForPass runs.
926 auto *Entry
= UR
.IndirectVHs
.find(CB
);
927 if (Entry
== UR
.IndirectVHs
.end())
928 UR
.IndirectVHs
.insert({CB
, WeakTrackingVH(CB
)});
929 else if (!Entry
->second
)
930 Entry
->second
= WeakTrackingVH(CB
);
935 // Now walk all references.
936 for (Instruction
&I
: instructions(F
))
937 for (Value
*Op
: I
.operand_values())
938 if (auto *OpC
= dyn_cast
<Constant
>(Op
))
939 if (Visited
.insert(OpC
).second
)
940 Worklist
.push_back(OpC
);
942 auto VisitRef
= [&](Function
&Referee
) {
943 Node
*RefereeN
= G
.lookup(Referee
);
945 "Visited function should already have an associated node");
946 Edge
*E
= N
->lookup(*RefereeN
);
947 assert((E
|| !FunctionPass
) &&
948 "No function transformations should introduce *new* ref "
949 "edges! Any new ref edges would require IPO which "
950 "function passes aren't allowed to do!");
951 bool Inserted
= RetainedEdges
.insert(RefereeN
).second
;
953 assert(Inserted
&& "We should never visit a function twice.");
955 NewRefEdges
.insert(RefereeN
);
956 else if (E
->isCall())
957 DemotedCallTargets
.insert(RefereeN
);
959 LazyCallGraph::visitReferences(Worklist
, Visited
, VisitRef
);
961 // Handle new ref edges.
962 for (Node
*RefTarget
: NewRefEdges
) {
963 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
964 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
966 // TODO: This only allows trivial edges to be added for now.
967 #ifdef EXPENSIVE_CHECKS
968 assert((RC
== &TargetRC
||
969 RC
->isAncestorOf(TargetRC
)) && "New ref edge is not trivial!");
971 RC
->insertTrivialRefEdge(N
, *RefTarget
);
974 // Handle new call edges.
975 for (Node
*CallTarget
: NewCallEdges
) {
976 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
977 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
979 // TODO: This only allows trivial edges to be added for now.
980 #ifdef EXPENSIVE_CHECKS
981 assert((RC
== &TargetRC
||
982 RC
->isAncestorOf(TargetRC
)) && "New call edge is not trivial!");
984 // Add a trivial ref edge to be promoted later on alongside
985 // PromotedRefTargets.
986 RC
->insertTrivialRefEdge(N
, *CallTarget
);
989 // Include synthetic reference edges to known, defined lib functions.
990 for (auto *LibFn
: G
.getLibFunctions())
991 // While the list of lib functions doesn't have repeats, don't re-visit
992 // anything handled above.
993 if (!Visited
.count(LibFn
))
996 // First remove all of the edges that are no longer present in this function.
997 // The first step makes these edges uniformly ref edges and accumulates them
998 // into a separate data structure so removal doesn't invalidate anything.
999 SmallVector
<Node
*, 4> DeadTargets
;
1000 for (Edge
&E
: *N
) {
1001 if (RetainedEdges
.count(&E
.getNode()))
1004 SCC
&TargetC
= *G
.lookupSCC(E
.getNode());
1005 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1006 if (&TargetRC
== RC
&& E
.isCall()) {
1007 if (C
!= &TargetC
) {
1008 // For separate SCCs this is trivial.
1009 RC
->switchTrivialInternalEdgeToRef(N
, E
.getNode());
1011 // Now update the call graph.
1012 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, E
.getNode()),
1017 // Now that this is ready for actual removal, put it into our list.
1018 DeadTargets
.push_back(&E
.getNode());
1020 // Remove the easy cases quickly and actually pull them out of our list.
1021 llvm::erase_if(DeadTargets
, [&](Node
*TargetN
) {
1022 SCC
&TargetC
= *G
.lookupSCC(*TargetN
);
1023 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1025 // We can't trivially remove internal targets, so skip
1027 if (&TargetRC
== RC
)
1030 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N
<< "' to '"
1031 << *TargetN
<< "'\n");
1032 RC
->removeOutgoingEdge(N
, *TargetN
);
1036 // Next demote all the call edges that are now ref edges. This helps make
1037 // the SCCs small which should minimize the work below as we don't want to
1038 // form cycles that this would break.
1039 for (Node
*RefTarget
: DemotedCallTargets
) {
1040 SCC
&TargetC
= *G
.lookupSCC(*RefTarget
);
1041 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1043 // The easy case is when the target RefSCC is not this RefSCC. This is
1044 // only supported when the target RefSCC is a child of this RefSCC.
1045 if (&TargetRC
!= RC
) {
1046 #ifdef EXPENSIVE_CHECKS
1047 assert(RC
->isAncestorOf(TargetRC
) &&
1048 "Cannot potentially form RefSCC cycles here!");
1050 RC
->switchOutgoingEdgeToRef(N
, *RefTarget
);
1051 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1052 << "' to '" << *RefTarget
<< "'\n");
1056 // We are switching an internal call edge to a ref edge. This may split up
1058 if (C
!= &TargetC
) {
1059 // For separate SCCs this is trivial.
1060 RC
->switchTrivialInternalEdgeToRef(N
, *RefTarget
);
1064 // Now update the call graph.
1065 C
= incorporateNewSCCRange(RC
->switchInternalEdgeToRef(N
, *RefTarget
), G
, N
,
1069 // We added a ref edge earlier for new call edges, promote those to call edges
1070 // alongside PromotedRefTargets.
1071 for (Node
*E
: NewCallEdges
)
1072 PromotedRefTargets
.insert(E
);
1074 // Now promote ref edges into call edges.
1075 for (Node
*CallTarget
: PromotedRefTargets
) {
1076 SCC
&TargetC
= *G
.lookupSCC(*CallTarget
);
1077 RefSCC
&TargetRC
= TargetC
.getOuterRefSCC();
1079 // The easy case is when the target RefSCC is not this RefSCC. This is
1080 // only supported when the target RefSCC is a child of this RefSCC.
1081 if (&TargetRC
!= RC
) {
1082 #ifdef EXPENSIVE_CHECKS
1083 assert(RC
->isAncestorOf(TargetRC
) &&
1084 "Cannot potentially form RefSCC cycles here!");
1086 RC
->switchOutgoingEdgeToCall(N
, *CallTarget
);
1087 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1088 << "' to '" << *CallTarget
<< "'\n");
1091 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1092 << N
<< "' to '" << *CallTarget
<< "'\n");
1094 // Otherwise we are switching an internal ref edge to a call edge. This
1095 // may merge away some SCCs, and we add those to the UpdateResult. We also
1096 // need to make sure to update the worklist in the event SCCs have moved
1097 // before the current one in the post-order sequence
1098 bool HasFunctionAnalysisProxy
= false;
1099 auto InitialSCCIndex
= RC
->find(*C
) - RC
->begin();
1100 bool FormedCycle
= RC
->switchInternalEdgeToCall(
1101 N
, *CallTarget
, [&](ArrayRef
<SCC
*> MergedSCCs
) {
1102 for (SCC
*MergedC
: MergedSCCs
) {
1103 assert(MergedC
!= &TargetC
&& "Cannot merge away the target SCC!");
1105 HasFunctionAnalysisProxy
|=
1106 AM
.getCachedResult
<FunctionAnalysisManagerCGSCCProxy
>(
1107 *MergedC
) != nullptr;
1109 // Mark that this SCC will no longer be valid.
1110 UR
.InvalidatedSCCs
.insert(MergedC
);
1112 // FIXME: We should really do a 'clear' here to forcibly release
1113 // memory, but we don't have a good way of doing that and
1114 // preserving the function analyses.
1115 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1116 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1117 AM
.invalidate(*MergedC
, PA
);
1121 // If we formed a cycle by creating this call, we need to update more data
1125 assert(G
.lookupSCC(N
) == C
&& "Failed to update current SCC!");
1127 // If one of the invalidated SCCs had a cached proxy to a function
1128 // analysis manager, we need to create a proxy in the new current SCC as
1129 // the invalidated SCCs had their functions moved.
1130 if (HasFunctionAnalysisProxy
)
1131 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(*C
, G
).updateFAM(FAM
);
1133 // Any analyses cached for this SCC are no longer precise as the shape
1134 // has changed by introducing this cycle. However, we have taken care to
1135 // update the proxies so it remains valide.
1136 auto PA
= PreservedAnalyses::allInSet
<AllAnalysesOn
<Function
>>();
1137 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1138 AM
.invalidate(*C
, PA
);
1140 auto NewSCCIndex
= RC
->find(*C
) - RC
->begin();
1141 // If we have actually moved an SCC to be topologically "below" the current
1142 // one due to merging, we will need to revisit the current SCC after
1143 // visiting those moved SCCs.
1145 // It is critical that we *do not* revisit the current SCC unless we
1146 // actually move SCCs in the process of merging because otherwise we may
1147 // form a cycle where an SCC is split apart, merged, split, merged and so
1149 if (InitialSCCIndex
< NewSCCIndex
) {
1150 // Put our current SCC back onto the worklist as we'll visit other SCCs
1151 // that are now definitively ordered prior to the current one in the
1152 // post-order sequence, and may end up observing more precise context to
1153 // optimize the current SCC.
1154 UR
.CWorklist
.insert(C
);
1155 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1157 // Enqueue in reverse order as we pop off the back of the worklist.
1158 for (SCC
&MovedC
: llvm::reverse(make_range(RC
->begin() + InitialSCCIndex
,
1159 RC
->begin() + NewSCCIndex
))) {
1160 UR
.CWorklist
.insert(&MovedC
);
1161 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1167 assert(!UR
.InvalidatedSCCs
.count(C
) && "Invalidated the current SCC!");
1168 assert(&C
->getOuterRefSCC() == RC
&& "Current SCC not in current RefSCC!");
1170 // Record the current SCC for higher layers of the CGSCC pass manager now that
1171 // all the updates have been applied.
1178 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForFunctionPass(
1179 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1180 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1181 FunctionAnalysisManager
&FAM
) {
1182 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1183 /* FunctionPass */ true);
1185 LazyCallGraph::SCC
&llvm::updateCGAndAnalysisManagerForCGSCCPass(
1186 LazyCallGraph
&G
, LazyCallGraph::SCC
&InitialC
, LazyCallGraph::Node
&N
,
1187 CGSCCAnalysisManager
&AM
, CGSCCUpdateResult
&UR
,
1188 FunctionAnalysisManager
&FAM
) {
1189 return updateCGAndAnalysisManagerForPass(G
, InitialC
, N
, AM
, UR
, FAM
,
1190 /* FunctionPass */ false);