1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
34 using namespace llvm::PatternMatch
;
36 //===----------------------------------------------------------------------===//
37 // ConstantFold*Instruction Implementations
38 //===----------------------------------------------------------------------===//
40 /// This function determines which opcode to use to fold two constant cast
41 /// expressions together. It uses CastInst::isEliminableCastPair to determine
42 /// the opcode. Consequently its just a wrapper around that function.
43 /// Determine if it is valid to fold a cast of a cast
46 unsigned opc
, ///< opcode of the second cast constant expression
47 ConstantExpr
*Op
, ///< the first cast constant expression
48 Type
*DstTy
///< destination type of the first cast
50 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
51 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
52 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
54 // The types and opcodes for the two Cast constant expressions
55 Type
*SrcTy
= Op
->getOperand(0)->getType();
56 Type
*MidTy
= Op
->getType();
57 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
58 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
60 // Assume that pointers are never more than 64 bits wide, and only use this
61 // for the middle type. Otherwise we could end up folding away illegal
62 // bitcasts between address spaces with different sizes.
63 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
65 // Let CastInst::isEliminableCastPair do the heavy lifting.
66 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
67 nullptr, FakeIntPtrTy
, nullptr);
70 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
71 Type
*SrcTy
= V
->getType();
73 return V
; // no-op cast
75 // Handle casts from one vector constant to another. We know that the src
76 // and dest type have the same size (otherwise its an illegal cast).
77 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
78 if (V
->isAllOnesValue())
79 return Constant::getAllOnesValue(DestTy
);
81 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
82 // This allows for other simplifications (although some of them
83 // can only be handled by Analysis/ConstantFolding.cpp).
84 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
85 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
89 // Handle integral constant input.
90 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
91 // See note below regarding the PPC_FP128 restriction.
92 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
93 return ConstantFP::get(DestTy
->getContext(),
94 APFloat(DestTy
->getFltSemantics(),
97 // Otherwise, can't fold this (vector?)
101 // Handle ConstantFP input: FP -> Integral.
102 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
103 // PPC_FP128 is really the sum of two consecutive doubles, where the first
104 // double is always stored first in memory, regardless of the target
105 // endianness. The memory layout of i128, however, depends on the target
106 // endianness, and so we can't fold this without target endianness
107 // information. This should instead be handled by
108 // Analysis/ConstantFolding.cpp
109 if (FP
->getType()->isPPC_FP128Ty())
112 // Make sure dest type is compatible with the folded integer constant.
113 if (!DestTy
->isIntegerTy())
116 return ConstantInt::get(FP
->getContext(),
117 FP
->getValueAPF().bitcastToAPInt());
123 static Constant
*foldMaybeUndesirableCast(unsigned opc
, Constant
*V
,
125 return ConstantExpr::isDesirableCastOp(opc
)
126 ? ConstantExpr::getCast(opc
, V
, DestTy
)
127 : ConstantFoldCastInstruction(opc
, V
, DestTy
);
130 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
132 if (isa
<PoisonValue
>(V
))
133 return PoisonValue::get(DestTy
);
135 if (isa
<UndefValue
>(V
)) {
136 // zext(undef) = 0, because the top bits will be zero.
137 // sext(undef) = 0, because the top bits will all be the same.
138 // [us]itofp(undef) = 0, because the result value is bounded.
139 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
140 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
141 return Constant::getNullValue(DestTy
);
142 return UndefValue::get(DestTy
);
145 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() && !DestTy
->isX86_AMXTy() &&
146 opc
!= Instruction::AddrSpaceCast
)
147 return Constant::getNullValue(DestTy
);
149 // If the cast operand is a constant expression, there's a few things we can
150 // do to try to simplify it.
151 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
153 // Try hard to fold cast of cast because they are often eliminable.
154 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
155 return foldMaybeUndesirableCast(newOpc
, CE
->getOperand(0), DestTy
);
159 // If the cast operand is a constant vector, perform the cast by
160 // operating on each element. In the cast of bitcasts, the element
161 // count may be mismatched; don't attempt to handle that here.
162 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
163 DestTy
->isVectorTy() &&
164 cast
<FixedVectorType
>(DestTy
)->getNumElements() ==
165 cast
<FixedVectorType
>(V
->getType())->getNumElements()) {
166 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
167 Type
*DstEltTy
= DestVecTy
->getElementType();
168 // Fast path for splatted constants.
169 if (Constant
*Splat
= V
->getSplatValue()) {
170 Constant
*Res
= foldMaybeUndesirableCast(opc
, Splat
, DstEltTy
);
173 return ConstantVector::getSplat(
174 cast
<VectorType
>(DestTy
)->getElementCount(), Res
);
176 SmallVector
<Constant
*, 16> res
;
177 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
179 e
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
181 Constant
*C
= ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
182 Constant
*Casted
= foldMaybeUndesirableCast(opc
, C
, DstEltTy
);
185 res
.push_back(Casted
);
187 return ConstantVector::get(res
);
190 // We actually have to do a cast now. Perform the cast according to the
194 llvm_unreachable("Failed to cast constant expression");
195 case Instruction::FPTrunc
:
196 case Instruction::FPExt
:
197 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
199 APFloat Val
= FPC
->getValueAPF();
200 Val
.convert(DestTy
->getFltSemantics(), APFloat::rmNearestTiesToEven
,
202 return ConstantFP::get(V
->getContext(), Val
);
204 return nullptr; // Can't fold.
205 case Instruction::FPToUI
:
206 case Instruction::FPToSI
:
207 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
208 const APFloat
&V
= FPC
->getValueAPF();
210 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
211 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
212 if (APFloat::opInvalidOp
==
213 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
214 // Undefined behavior invoked - the destination type can't represent
215 // the input constant.
216 return PoisonValue::get(DestTy
);
218 return ConstantInt::get(FPC
->getContext(), IntVal
);
220 return nullptr; // Can't fold.
221 case Instruction::UIToFP
:
222 case Instruction::SIToFP
:
223 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
224 const APInt
&api
= CI
->getValue();
225 APFloat
apf(DestTy
->getFltSemantics(),
226 APInt::getZero(DestTy
->getPrimitiveSizeInBits()));
227 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
228 APFloat::rmNearestTiesToEven
);
229 return ConstantFP::get(V
->getContext(), apf
);
232 case Instruction::ZExt
:
233 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
234 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
235 return ConstantInt::get(V
->getContext(),
236 CI
->getValue().zext(BitWidth
));
239 case Instruction::SExt
:
240 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
241 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
242 return ConstantInt::get(V
->getContext(),
243 CI
->getValue().sext(BitWidth
));
246 case Instruction::Trunc
: {
247 if (V
->getType()->isVectorTy())
250 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
251 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
252 return ConstantInt::get(V
->getContext(),
253 CI
->getValue().trunc(DestBitWidth
));
258 case Instruction::BitCast
:
259 return FoldBitCast(V
, DestTy
);
260 case Instruction::AddrSpaceCast
:
261 case Instruction::IntToPtr
:
262 case Instruction::PtrToInt
:
267 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
268 Constant
*V1
, Constant
*V2
) {
269 // Check for i1 and vector true/false conditions.
270 if (Cond
->isNullValue()) return V2
;
271 if (Cond
->isAllOnesValue()) return V1
;
273 // If the condition is a vector constant, fold the result elementwise.
274 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
275 auto *V1VTy
= CondV
->getType();
276 SmallVector
<Constant
*, 16> Result
;
277 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
278 for (unsigned i
= 0, e
= V1VTy
->getNumElements(); i
!= e
; ++i
) {
280 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
281 ConstantInt::get(Ty
, i
));
282 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
283 ConstantInt::get(Ty
, i
));
284 auto *Cond
= cast
<Constant
>(CondV
->getOperand(i
));
285 if (isa
<PoisonValue
>(Cond
)) {
286 V
= PoisonValue::get(V1Element
->getType());
287 } else if (V1Element
== V2Element
) {
289 } else if (isa
<UndefValue
>(Cond
)) {
290 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
292 if (!isa
<ConstantInt
>(Cond
)) break;
293 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
298 // If we were able to build the vector, return it.
299 if (Result
.size() == V1VTy
->getNumElements())
300 return ConstantVector::get(Result
);
303 if (isa
<PoisonValue
>(Cond
))
304 return PoisonValue::get(V1
->getType());
306 if (isa
<UndefValue
>(Cond
)) {
307 if (isa
<UndefValue
>(V1
)) return V1
;
311 if (V1
== V2
) return V1
;
313 if (isa
<PoisonValue
>(V1
))
315 if (isa
<PoisonValue
>(V2
))
318 // If the true or false value is undef, we can fold to the other value as
319 // long as the other value isn't poison.
320 auto NotPoison
= [](Constant
*C
) {
321 if (isa
<PoisonValue
>(C
))
324 // TODO: We can analyze ConstExpr by opcode to determine if there is any
325 // possibility of poison.
326 if (isa
<ConstantExpr
>(C
))
329 if (isa
<ConstantInt
>(C
) || isa
<GlobalVariable
>(C
) || isa
<ConstantFP
>(C
) ||
330 isa
<ConstantPointerNull
>(C
) || isa
<Function
>(C
))
333 if (C
->getType()->isVectorTy())
334 return !C
->containsPoisonElement() && !C
->containsConstantExpression();
336 // TODO: Recursively analyze aggregates or other constants.
339 if (isa
<UndefValue
>(V1
) && NotPoison(V2
)) return V2
;
340 if (isa
<UndefValue
>(V2
) && NotPoison(V1
)) return V1
;
345 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
347 auto *ValVTy
= cast
<VectorType
>(Val
->getType());
349 // extractelt poison, C -> poison
350 // extractelt C, undef -> poison
351 if (isa
<PoisonValue
>(Val
) || isa
<UndefValue
>(Idx
))
352 return PoisonValue::get(ValVTy
->getElementType());
354 // extractelt undef, C -> undef
355 if (isa
<UndefValue
>(Val
))
356 return UndefValue::get(ValVTy
->getElementType());
358 auto *CIdx
= dyn_cast
<ConstantInt
>(Idx
);
362 if (auto *ValFVTy
= dyn_cast
<FixedVectorType
>(Val
->getType())) {
363 // ee({w,x,y,z}, wrong_value) -> poison
364 if (CIdx
->uge(ValFVTy
->getNumElements()))
365 return PoisonValue::get(ValFVTy
->getElementType());
368 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
369 if (auto *CE
= dyn_cast
<ConstantExpr
>(Val
)) {
370 if (auto *GEP
= dyn_cast
<GEPOperator
>(CE
)) {
371 SmallVector
<Constant
*, 8> Ops
;
372 Ops
.reserve(CE
->getNumOperands());
373 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
374 Constant
*Op
= CE
->getOperand(i
);
375 if (Op
->getType()->isVectorTy()) {
376 Constant
*ScalarOp
= ConstantExpr::getExtractElement(Op
, Idx
);
379 Ops
.push_back(ScalarOp
);
383 return CE
->getWithOperands(Ops
, ValVTy
->getElementType(), false,
384 GEP
->getSourceElementType());
385 } else if (CE
->getOpcode() == Instruction::InsertElement
) {
386 if (const auto *IEIdx
= dyn_cast
<ConstantInt
>(CE
->getOperand(2))) {
387 if (APSInt::isSameValue(APSInt(IEIdx
->getValue()),
388 APSInt(CIdx
->getValue()))) {
389 return CE
->getOperand(1);
391 return ConstantExpr::getExtractElement(CE
->getOperand(0), CIdx
);
397 if (Constant
*C
= Val
->getAggregateElement(CIdx
))
400 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
401 if (CIdx
->getValue().ult(ValVTy
->getElementCount().getKnownMinValue())) {
402 if (Constant
*SplatVal
= Val
->getSplatValue())
409 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
412 if (isa
<UndefValue
>(Idx
))
413 return PoisonValue::get(Val
->getType());
415 // Inserting null into all zeros is still all zeros.
416 // TODO: This is true for undef and poison splats too.
417 if (isa
<ConstantAggregateZero
>(Val
) && Elt
->isNullValue())
420 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
421 if (!CIdx
) return nullptr;
423 // Do not iterate on scalable vector. The num of elements is unknown at
425 if (isa
<ScalableVectorType
>(Val
->getType()))
428 auto *ValTy
= cast
<FixedVectorType
>(Val
->getType());
430 unsigned NumElts
= ValTy
->getNumElements();
431 if (CIdx
->uge(NumElts
))
432 return PoisonValue::get(Val
->getType());
434 SmallVector
<Constant
*, 16> Result
;
435 Result
.reserve(NumElts
);
436 auto *Ty
= Type::getInt32Ty(Val
->getContext());
437 uint64_t IdxVal
= CIdx
->getZExtValue();
438 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
440 Result
.push_back(Elt
);
444 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
448 return ConstantVector::get(Result
);
451 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
, Constant
*V2
,
452 ArrayRef
<int> Mask
) {
453 auto *V1VTy
= cast
<VectorType
>(V1
->getType());
454 unsigned MaskNumElts
= Mask
.size();
456 ElementCount::get(MaskNumElts
, isa
<ScalableVectorType
>(V1VTy
));
457 Type
*EltTy
= V1VTy
->getElementType();
459 // Poison shuffle mask -> poison value.
460 if (all_of(Mask
, [](int Elt
) { return Elt
== PoisonMaskElem
; })) {
461 return PoisonValue::get(VectorType::get(EltTy
, MaskEltCount
));
464 // If the mask is all zeros this is a splat, no need to go through all
466 if (all_of(Mask
, [](int Elt
) { return Elt
== 0; })) {
467 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
469 ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, 0));
471 if (Elt
->isNullValue()) {
472 auto *VTy
= VectorType::get(EltTy
, MaskEltCount
);
473 return ConstantAggregateZero::get(VTy
);
474 } else if (!MaskEltCount
.isScalable())
475 return ConstantVector::getSplat(MaskEltCount
, Elt
);
478 // Do not iterate on scalable vector. The num of elements is unknown at
480 if (isa
<ScalableVectorType
>(V1VTy
))
483 unsigned SrcNumElts
= V1VTy
->getElementCount().getKnownMinValue();
485 // Loop over the shuffle mask, evaluating each element.
486 SmallVector
<Constant
*, 32> Result
;
487 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
490 Result
.push_back(UndefValue::get(EltTy
));
494 if (unsigned(Elt
) >= SrcNumElts
*2)
495 InElt
= UndefValue::get(EltTy
);
496 else if (unsigned(Elt
) >= SrcNumElts
) {
497 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
499 ConstantExpr::getExtractElement(V2
,
500 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
502 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
503 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
505 Result
.push_back(InElt
);
508 return ConstantVector::get(Result
);
511 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
512 ArrayRef
<unsigned> Idxs
) {
513 // Base case: no indices, so return the entire value.
517 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
518 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
523 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
525 ArrayRef
<unsigned> Idxs
) {
526 // Base case: no indices, so replace the entire value.
531 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
532 NumElts
= ST
->getNumElements();
534 NumElts
= cast
<ArrayType
>(Agg
->getType())->getNumElements();
536 SmallVector
<Constant
*, 32> Result
;
537 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
538 Constant
*C
= Agg
->getAggregateElement(i
);
539 if (!C
) return nullptr;
542 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
547 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
548 return ConstantStruct::get(ST
, Result
);
549 return ConstantArray::get(cast
<ArrayType
>(Agg
->getType()), Result
);
552 Constant
*llvm::ConstantFoldUnaryInstruction(unsigned Opcode
, Constant
*C
) {
553 assert(Instruction::isUnaryOp(Opcode
) && "Non-unary instruction detected");
555 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
556 // vectors are always evaluated per element.
557 bool IsScalableVector
= isa
<ScalableVectorType
>(C
->getType());
558 bool HasScalarUndefOrScalableVectorUndef
=
559 (!C
->getType()->isVectorTy() || IsScalableVector
) && isa
<UndefValue
>(C
);
561 if (HasScalarUndefOrScalableVectorUndef
) {
562 switch (static_cast<Instruction::UnaryOps
>(Opcode
)) {
563 case Instruction::FNeg
:
564 return C
; // -undef -> undef
565 case Instruction::UnaryOpsEnd
:
566 llvm_unreachable("Invalid UnaryOp");
570 // Constant should not be UndefValue, unless these are vector constants.
571 assert(!HasScalarUndefOrScalableVectorUndef
&& "Unexpected UndefValue");
572 // We only have FP UnaryOps right now.
573 assert(!isa
<ConstantInt
>(C
) && "Unexpected Integer UnaryOp");
575 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
576 const APFloat
&CV
= CFP
->getValueAPF();
580 case Instruction::FNeg
:
581 return ConstantFP::get(C
->getContext(), neg(CV
));
583 } else if (auto *VTy
= dyn_cast
<FixedVectorType
>(C
->getType())) {
585 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
586 // Fast path for splatted constants.
587 if (Constant
*Splat
= C
->getSplatValue())
588 if (Constant
*Elt
= ConstantFoldUnaryInstruction(Opcode
, Splat
))
589 return ConstantVector::getSplat(VTy
->getElementCount(), Elt
);
591 // Fold each element and create a vector constant from those constants.
592 SmallVector
<Constant
*, 16> Result
;
593 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
594 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
595 Constant
*Elt
= ConstantExpr::getExtractElement(C
, ExtractIdx
);
596 Constant
*Res
= ConstantFoldUnaryInstruction(Opcode
, Elt
);
599 Result
.push_back(Res
);
602 return ConstantVector::get(Result
);
605 // We don't know how to fold this.
609 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
, Constant
*C1
,
611 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
613 // Simplify BinOps with their identity values first. They are no-ops and we
614 // can always return the other value, including undef or poison values.
615 if (Constant
*Identity
= ConstantExpr::getBinOpIdentity(
616 Opcode
, C1
->getType(), /*AllowRHSIdentity*/ false)) {
621 } else if (Constant
*Identity
= ConstantExpr::getBinOpIdentity(
622 Opcode
, C1
->getType(), /*AllowRHSIdentity*/ true)) {
627 // Binary operations propagate poison.
628 if (isa
<PoisonValue
>(C1
) || isa
<PoisonValue
>(C2
))
629 return PoisonValue::get(C1
->getType());
631 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
632 // vectors are always evaluated per element.
633 bool IsScalableVector
= isa
<ScalableVectorType
>(C1
->getType());
634 bool HasScalarUndefOrScalableVectorUndef
=
635 (!C1
->getType()->isVectorTy() || IsScalableVector
) &&
636 (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
));
637 if (HasScalarUndefOrScalableVectorUndef
) {
638 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
639 case Instruction::Xor
:
640 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
641 // Handle undef ^ undef -> 0 special case. This is a common
643 return Constant::getNullValue(C1
->getType());
645 case Instruction::Add
:
646 case Instruction::Sub
:
647 return UndefValue::get(C1
->getType());
648 case Instruction::And
:
649 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
651 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
652 case Instruction::Mul
: {
653 // undef * undef -> undef
654 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
657 // X * undef -> undef if X is odd
658 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
660 return UndefValue::get(C1
->getType());
662 // X * undef -> 0 otherwise
663 return Constant::getNullValue(C1
->getType());
665 case Instruction::SDiv
:
666 case Instruction::UDiv
:
667 // X / undef -> poison
669 if (match(C2
, m_CombineOr(m_Undef(), m_Zero())))
670 return PoisonValue::get(C2
->getType());
671 // undef / X -> 0 otherwise
672 return Constant::getNullValue(C1
->getType());
673 case Instruction::URem
:
674 case Instruction::SRem
:
675 // X % undef -> poison
677 if (match(C2
, m_CombineOr(m_Undef(), m_Zero())))
678 return PoisonValue::get(C2
->getType());
679 // undef % X -> 0 otherwise
680 return Constant::getNullValue(C1
->getType());
681 case Instruction::Or
: // X | undef -> -1
682 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
684 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
685 case Instruction::LShr
:
686 // X >>l undef -> poison
687 if (isa
<UndefValue
>(C2
))
688 return PoisonValue::get(C2
->getType());
690 return Constant::getNullValue(C1
->getType());
691 case Instruction::AShr
:
692 // X >>a undef -> poison
693 if (isa
<UndefValue
>(C2
))
694 return PoisonValue::get(C2
->getType());
695 // TODO: undef >>a X -> poison if the shift is exact
697 return Constant::getNullValue(C1
->getType());
698 case Instruction::Shl
:
699 // X << undef -> undef
700 if (isa
<UndefValue
>(C2
))
701 return PoisonValue::get(C2
->getType());
703 return Constant::getNullValue(C1
->getType());
704 case Instruction::FSub
:
705 // -0.0 - undef --> undef (consistent with "fneg undef")
706 if (match(C1
, m_NegZeroFP()) && isa
<UndefValue
>(C2
))
709 case Instruction::FAdd
:
710 case Instruction::FMul
:
711 case Instruction::FDiv
:
712 case Instruction::FRem
:
713 // [any flop] undef, undef -> undef
714 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
716 // [any flop] C, undef -> NaN
717 // [any flop] undef, C -> NaN
718 // We could potentially specialize NaN/Inf constants vs. 'normal'
719 // constants (possibly differently depending on opcode and operand). This
720 // would allow returning undef sometimes. But it is always safe to fold to
721 // NaN because we can choose the undef operand as NaN, and any FP opcode
722 // with a NaN operand will propagate NaN.
723 return ConstantFP::getNaN(C1
->getType());
724 case Instruction::BinaryOpsEnd
:
725 llvm_unreachable("Invalid BinaryOp");
729 // Neither constant should be UndefValue, unless these are vector constants.
730 assert((!HasScalarUndefOrScalableVectorUndef
) && "Unexpected UndefValue");
732 // Handle simplifications when the RHS is a constant int.
733 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
735 case Instruction::Mul
:
737 return C2
; // X * 0 == 0
739 case Instruction::UDiv
:
740 case Instruction::SDiv
:
742 return PoisonValue::get(CI2
->getType()); // X / 0 == poison
744 case Instruction::URem
:
745 case Instruction::SRem
:
747 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
749 return PoisonValue::get(CI2
->getType()); // X % 0 == poison
751 case Instruction::And
:
753 return C2
; // X & 0 == 0
755 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
756 // If and'ing the address of a global with a constant, fold it.
757 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
758 isa
<GlobalValue
>(CE1
->getOperand(0))) {
759 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
761 Align GVAlign
; // defaults to 1
763 if (Module
*TheModule
= GV
->getParent()) {
764 const DataLayout
&DL
= TheModule
->getDataLayout();
765 GVAlign
= GV
->getPointerAlignment(DL
);
767 // If the function alignment is not specified then assume that it
769 // This is dangerous; on x86, the alignment of the pointer
770 // corresponds to the alignment of the function, but might be less
771 // than 4 if it isn't explicitly specified.
772 // However, a fix for this behaviour was reverted because it
773 // increased code size (see https://reviews.llvm.org/D55115)
774 // FIXME: This code should be deleted once existing targets have
775 // appropriate defaults
776 if (isa
<Function
>(GV
) && !DL
.getFunctionPtrAlign())
778 } else if (isa
<GlobalVariable
>(GV
)) {
779 GVAlign
= cast
<GlobalVariable
>(GV
)->getAlign().valueOrOne();
783 unsigned DstWidth
= CI2
->getBitWidth();
784 unsigned SrcWidth
= std::min(DstWidth
, Log2(GVAlign
));
785 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
787 // If checking bits we know are clear, return zero.
788 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
789 return Constant::getNullValue(CI2
->getType());
794 case Instruction::Or
:
795 if (CI2
->isMinusOne())
796 return C2
; // X | -1 == -1
799 } else if (isa
<ConstantInt
>(C1
)) {
800 // If C1 is a ConstantInt and C2 is not, swap the operands.
801 if (Instruction::isCommutative(Opcode
))
802 return ConstantExpr::isDesirableBinOp(Opcode
)
803 ? ConstantExpr::get(Opcode
, C2
, C1
)
804 : ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
807 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
808 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
809 const APInt
&C1V
= CI1
->getValue();
810 const APInt
&C2V
= CI2
->getValue();
814 case Instruction::Add
:
815 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
816 case Instruction::Sub
:
817 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
818 case Instruction::Mul
:
819 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
820 case Instruction::UDiv
:
821 assert(!CI2
->isZero() && "Div by zero handled above");
822 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
823 case Instruction::SDiv
:
824 assert(!CI2
->isZero() && "Div by zero handled above");
825 if (C2V
.isAllOnes() && C1V
.isMinSignedValue())
826 return PoisonValue::get(CI1
->getType()); // MIN_INT / -1 -> poison
827 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
828 case Instruction::URem
:
829 assert(!CI2
->isZero() && "Div by zero handled above");
830 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
831 case Instruction::SRem
:
832 assert(!CI2
->isZero() && "Div by zero handled above");
833 if (C2V
.isAllOnes() && C1V
.isMinSignedValue())
834 return PoisonValue::get(CI1
->getType()); // MIN_INT % -1 -> poison
835 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
836 case Instruction::And
:
837 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
838 case Instruction::Or
:
839 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
840 case Instruction::Xor
:
841 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
842 case Instruction::Shl
:
843 if (C2V
.ult(C1V
.getBitWidth()))
844 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
845 return PoisonValue::get(C1
->getType()); // too big shift is poison
846 case Instruction::LShr
:
847 if (C2V
.ult(C1V
.getBitWidth()))
848 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
849 return PoisonValue::get(C1
->getType()); // too big shift is poison
850 case Instruction::AShr
:
851 if (C2V
.ult(C1V
.getBitWidth()))
852 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
853 return PoisonValue::get(C1
->getType()); // too big shift is poison
858 case Instruction::SDiv
:
859 case Instruction::UDiv
:
860 case Instruction::URem
:
861 case Instruction::SRem
:
862 case Instruction::LShr
:
863 case Instruction::AShr
:
864 case Instruction::Shl
:
865 if (CI1
->isZero()) return C1
;
870 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
871 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
872 const APFloat
&C1V
= CFP1
->getValueAPF();
873 const APFloat
&C2V
= CFP2
->getValueAPF();
874 APFloat C3V
= C1V
; // copy for modification
878 case Instruction::FAdd
:
879 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
880 return ConstantFP::get(C1
->getContext(), C3V
);
881 case Instruction::FSub
:
882 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
883 return ConstantFP::get(C1
->getContext(), C3V
);
884 case Instruction::FMul
:
885 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
886 return ConstantFP::get(C1
->getContext(), C3V
);
887 case Instruction::FDiv
:
888 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
889 return ConstantFP::get(C1
->getContext(), C3V
);
890 case Instruction::FRem
:
892 return ConstantFP::get(C1
->getContext(), C3V
);
895 } else if (auto *VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
896 // Fast path for splatted constants.
897 if (Constant
*C2Splat
= C2
->getSplatValue()) {
898 if (Instruction::isIntDivRem(Opcode
) && C2Splat
->isNullValue())
899 return PoisonValue::get(VTy
);
900 if (Constant
*C1Splat
= C1
->getSplatValue()) {
902 ConstantExpr::isDesirableBinOp(Opcode
)
903 ? ConstantExpr::get(Opcode
, C1Splat
, C2Splat
)
904 : ConstantFoldBinaryInstruction(Opcode
, C1Splat
, C2Splat
);
907 return ConstantVector::getSplat(VTy
->getElementCount(), Res
);
911 if (auto *FVTy
= dyn_cast
<FixedVectorType
>(VTy
)) {
912 // Fold each element and create a vector constant from those constants.
913 SmallVector
<Constant
*, 16> Result
;
914 Type
*Ty
= IntegerType::get(FVTy
->getContext(), 32);
915 for (unsigned i
= 0, e
= FVTy
->getNumElements(); i
!= e
; ++i
) {
916 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
917 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
918 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
920 // If any element of a divisor vector is zero, the whole op is poison.
921 if (Instruction::isIntDivRem(Opcode
) && RHS
->isNullValue())
922 return PoisonValue::get(VTy
);
924 Constant
*Res
= ConstantExpr::isDesirableBinOp(Opcode
)
925 ? ConstantExpr::get(Opcode
, LHS
, RHS
)
926 : ConstantFoldBinaryInstruction(Opcode
, LHS
, RHS
);
929 Result
.push_back(Res
);
932 return ConstantVector::get(Result
);
936 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
937 // There are many possible foldings we could do here. We should probably
938 // at least fold add of a pointer with an integer into the appropriate
939 // getelementptr. This will improve alias analysis a bit.
941 // Given ((a + b) + c), if (b + c) folds to something interesting, return
943 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
944 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
945 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
946 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
948 } else if (isa
<ConstantExpr
>(C2
)) {
949 // If C2 is a constant expr and C1 isn't, flop them around and fold the
950 // other way if possible.
951 if (Instruction::isCommutative(Opcode
))
952 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
955 // i1 can be simplified in many cases.
956 if (C1
->getType()->isIntegerTy(1)) {
958 case Instruction::Add
:
959 case Instruction::Sub
:
960 return ConstantExpr::getXor(C1
, C2
);
961 case Instruction::Shl
:
962 case Instruction::LShr
:
963 case Instruction::AShr
:
964 // We can assume that C2 == 0. If it were one the result would be
965 // undefined because the shift value is as large as the bitwidth.
967 case Instruction::SDiv
:
968 case Instruction::UDiv
:
969 // We can assume that C2 == 1. If it were zero the result would be
970 // undefined through division by zero.
972 case Instruction::URem
:
973 case Instruction::SRem
:
974 // We can assume that C2 == 1. If it were zero the result would be
975 // undefined through division by zero.
976 return ConstantInt::getFalse(C1
->getContext());
982 // We don't know how to fold this.
986 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
987 const GlobalValue
*GV2
) {
988 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
989 if (GV
->isInterposable() || GV
->hasGlobalUnnamedAddr())
991 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
992 Type
*Ty
= GVar
->getValueType();
993 // A global with opaque type might end up being zero sized.
996 // A global with an empty type might lie at the address of any other
1003 // Don't try to decide equality of aliases.
1004 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1005 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1006 return ICmpInst::ICMP_NE
;
1007 return ICmpInst::BAD_ICMP_PREDICATE
;
1010 /// This function determines if there is anything we can decide about the two
1011 /// constants provided. This doesn't need to handle simple things like integer
1012 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1013 /// If we can determine that the two constants have a particular relation to
1014 /// each other, we should return the corresponding ICmp predicate, otherwise
1015 /// return ICmpInst::BAD_ICMP_PREDICATE.
1016 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
) {
1017 assert(V1
->getType() == V2
->getType() &&
1018 "Cannot compare different types of values!");
1019 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1021 // The following folds only apply to pointers.
1022 if (!V1
->getType()->isPointerTy())
1023 return ICmpInst::BAD_ICMP_PREDICATE
;
1025 // To simplify this code we canonicalize the relation so that the first
1026 // operand is always the most "complex" of the two. We consider simple
1027 // constants (like ConstantPointerNull) to be the simplest, followed by
1028 // BlockAddress, GlobalValues, and ConstantExpr's (the most complex).
1029 auto GetComplexity
= [](Constant
*V
) {
1030 if (isa
<ConstantExpr
>(V
))
1032 if (isa
<GlobalValue
>(V
))
1034 if (isa
<BlockAddress
>(V
))
1038 if (GetComplexity(V1
) < GetComplexity(V2
)) {
1039 ICmpInst::Predicate SwappedRelation
= evaluateICmpRelation(V2
, V1
);
1040 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1041 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1042 return ICmpInst::BAD_ICMP_PREDICATE
;
1045 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1046 // Now we know that the RHS is a BlockAddress or simple constant.
1047 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1048 // Block address in another function can't equal this one, but block
1049 // addresses in the current function might be the same if blocks are
1051 if (BA2
->getFunction() != BA
->getFunction())
1052 return ICmpInst::ICMP_NE
;
1053 } else if (isa
<ConstantPointerNull
>(V2
)) {
1054 return ICmpInst::ICMP_NE
;
1056 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1057 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1059 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1060 return areGlobalsPotentiallyEqual(GV
, GV2
);
1061 } else if (isa
<BlockAddress
>(V2
)) {
1062 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1063 } else if (isa
<ConstantPointerNull
>(V2
)) {
1064 // GlobalVals can never be null unless they have external weak linkage.
1065 // We don't try to evaluate aliases here.
1066 // NOTE: We should not be doing this constant folding if null pointer
1067 // is considered valid for the function. But currently there is no way to
1068 // query it from the Constant type.
1069 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
) &&
1070 !NullPointerIsDefined(nullptr /* F */,
1071 GV
->getType()->getAddressSpace()))
1072 return ICmpInst::ICMP_UGT
;
1074 } else if (auto *CE1
= dyn_cast
<ConstantExpr
>(V1
)) {
1075 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1076 // constantexpr, a global, block address, or a simple constant.
1077 Constant
*CE1Op0
= CE1
->getOperand(0);
1079 switch (CE1
->getOpcode()) {
1080 case Instruction::GetElementPtr
: {
1081 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1082 // Ok, since this is a getelementptr, we know that the constant has a
1083 // pointer type. Check the various cases.
1084 if (isa
<ConstantPointerNull
>(V2
)) {
1085 // If we are comparing a GEP to a null pointer, check to see if the base
1086 // of the GEP equals the null pointer.
1087 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1088 // If its not weak linkage, the GVal must have a non-zero address
1089 // so the result is greater-than
1090 if (!GV
->hasExternalWeakLinkage() && CE1GEP
->isInBounds())
1091 return ICmpInst::ICMP_UGT
;
1093 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1094 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1096 if (CE1GEP
->hasAllZeroIndices())
1097 return areGlobalsPotentiallyEqual(GV
, GV2
);
1098 return ICmpInst::BAD_ICMP_PREDICATE
;
1101 } else if (const auto *CE2GEP
= dyn_cast
<GEPOperator
>(V2
)) {
1102 // By far the most common case to handle is when the base pointers are
1103 // obviously to the same global.
1104 const Constant
*CE2Op0
= cast
<Constant
>(CE2GEP
->getPointerOperand());
1105 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1106 // Don't know relative ordering, but check for inequality.
1107 if (CE1Op0
!= CE2Op0
) {
1108 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1109 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1110 cast
<GlobalValue
>(CE2Op0
));
1111 return ICmpInst::BAD_ICMP_PREDICATE
;
1122 return ICmpInst::BAD_ICMP_PREDICATE
;
1125 Constant
*llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate
,
1126 Constant
*C1
, Constant
*C2
) {
1128 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1129 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1130 VT
->getElementCount());
1132 ResultTy
= Type::getInt1Ty(C1
->getContext());
1134 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1135 if (Predicate
== FCmpInst::FCMP_FALSE
)
1136 return Constant::getNullValue(ResultTy
);
1138 if (Predicate
== FCmpInst::FCMP_TRUE
)
1139 return Constant::getAllOnesValue(ResultTy
);
1141 // Handle some degenerate cases first
1142 if (isa
<PoisonValue
>(C1
) || isa
<PoisonValue
>(C2
))
1143 return PoisonValue::get(ResultTy
);
1145 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1146 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1147 // For EQ and NE, we can always pick a value for the undef to make the
1148 // predicate pass or fail, so we can return undef.
1149 // Also, if both operands are undef, we can return undef for int comparison.
1150 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1151 return UndefValue::get(ResultTy
);
1153 // Otherwise, for integer compare, pick the same value as the non-undef
1154 // operand, and fold it to true or false.
1155 if (isIntegerPredicate
)
1156 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1158 // Choosing NaN for the undef will always make unordered comparison succeed
1159 // and ordered comparison fails.
1160 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1163 if (C2
->isNullValue()) {
1164 // The caller is expected to commute the operands if the constant expression
1167 if (Predicate
== ICmpInst::ICMP_UGE
)
1168 return Constant::getAllOnesValue(ResultTy
);
1170 if (Predicate
== ICmpInst::ICMP_ULT
)
1171 return Constant::getNullValue(ResultTy
);
1174 // If the comparison is a comparison between two i1's, simplify it.
1175 if (C1
->getType()->isIntegerTy(1)) {
1176 switch (Predicate
) {
1177 case ICmpInst::ICMP_EQ
:
1178 if (isa
<ConstantInt
>(C2
))
1179 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1180 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1181 case ICmpInst::ICMP_NE
:
1182 return ConstantExpr::getXor(C1
, C2
);
1188 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1189 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1190 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1191 return ConstantInt::get(ResultTy
, ICmpInst::compare(V1
, V2
, Predicate
));
1192 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1193 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1194 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1195 return ConstantInt::get(ResultTy
, FCmpInst::compare(C1V
, C2V
, Predicate
));
1196 } else if (auto *C1VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1198 // Fast path for splatted constants.
1199 if (Constant
*C1Splat
= C1
->getSplatValue())
1200 if (Constant
*C2Splat
= C2
->getSplatValue())
1202 ConstantFoldCompareInstruction(Predicate
, C1Splat
, C2Splat
))
1203 return ConstantVector::getSplat(C1VTy
->getElementCount(), Elt
);
1205 // Do not iterate on scalable vector. The number of elements is unknown at
1207 if (isa
<ScalableVectorType
>(C1VTy
))
1210 // If we can constant fold the comparison of each element, constant fold
1211 // the whole vector comparison.
1212 SmallVector
<Constant
*, 4> ResElts
;
1213 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1214 // Compare the elements, producing an i1 result or constant expr.
1215 for (unsigned I
= 0, E
= C1VTy
->getElementCount().getKnownMinValue();
1218 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, I
));
1220 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, I
));
1221 Constant
*Elt
= ConstantFoldCompareInstruction(Predicate
, C1E
, C2E
);
1225 ResElts
.push_back(Elt
);
1228 return ConstantVector::get(ResElts
);
1231 if (C1
->getType()->isFPOrFPVectorTy()) {
1233 // We know that C1 == C2 || isUnordered(C1, C2).
1234 if (Predicate
== FCmpInst::FCMP_ONE
)
1235 return ConstantInt::getFalse(ResultTy
);
1236 else if (Predicate
== FCmpInst::FCMP_UEQ
)
1237 return ConstantInt::getTrue(ResultTy
);
1240 // Evaluate the relation between the two constants, per the predicate.
1241 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1242 switch (evaluateICmpRelation(C1
, C2
)) {
1243 default: llvm_unreachable("Unknown relational!");
1244 case ICmpInst::BAD_ICMP_PREDICATE
:
1245 break; // Couldn't determine anything about these constants.
1246 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1247 // If we know the constants are equal, we can decide the result of this
1248 // computation precisely.
1249 Result
= ICmpInst::isTrueWhenEqual(Predicate
);
1251 case ICmpInst::ICMP_ULT
:
1252 switch (Predicate
) {
1253 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
1255 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
1261 case ICmpInst::ICMP_SLT
:
1262 switch (Predicate
) {
1263 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
1265 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
1271 case ICmpInst::ICMP_UGT
:
1272 switch (Predicate
) {
1273 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
1275 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
1281 case ICmpInst::ICMP_SGT
:
1282 switch (Predicate
) {
1283 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
1285 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
1291 case ICmpInst::ICMP_ULE
:
1292 if (Predicate
== ICmpInst::ICMP_UGT
)
1294 if (Predicate
== ICmpInst::ICMP_ULT
|| Predicate
== ICmpInst::ICMP_ULE
)
1297 case ICmpInst::ICMP_SLE
:
1298 if (Predicate
== ICmpInst::ICMP_SGT
)
1300 if (Predicate
== ICmpInst::ICMP_SLT
|| Predicate
== ICmpInst::ICMP_SLE
)
1303 case ICmpInst::ICMP_UGE
:
1304 if (Predicate
== ICmpInst::ICMP_ULT
)
1306 if (Predicate
== ICmpInst::ICMP_UGT
|| Predicate
== ICmpInst::ICMP_UGE
)
1309 case ICmpInst::ICMP_SGE
:
1310 if (Predicate
== ICmpInst::ICMP_SLT
)
1312 if (Predicate
== ICmpInst::ICMP_SGT
|| Predicate
== ICmpInst::ICMP_SGE
)
1315 case ICmpInst::ICMP_NE
:
1316 if (Predicate
== ICmpInst::ICMP_EQ
)
1318 if (Predicate
== ICmpInst::ICMP_NE
)
1323 // If we evaluated the result, return it now.
1325 return ConstantInt::get(ResultTy
, Result
);
1327 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
1328 (C1
->isNullValue() && !C2
->isNullValue())) {
1329 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1330 // other way if possible.
1331 // Also, if C1 is null and C2 isn't, flip them around.
1332 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1333 return ConstantFoldCompareInstruction(Predicate
, C2
, C1
);
1339 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
1340 std::optional
<ConstantRange
> InRange
,
1341 ArrayRef
<Value
*> Idxs
) {
1342 if (Idxs
.empty()) return C
;
1344 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
1345 C
, ArrayRef((Value
*const *)Idxs
.data(), Idxs
.size()));
1347 if (isa
<PoisonValue
>(C
))
1348 return PoisonValue::get(GEPTy
);
1350 if (isa
<UndefValue
>(C
))
1351 return UndefValue::get(GEPTy
);
1353 auto IsNoOp
= [&]() {
1354 // Avoid losing inrange information.
1358 return all_of(Idxs
, [](Value
*Idx
) {
1359 Constant
*IdxC
= cast
<Constant
>(Idx
);
1360 return IdxC
->isNullValue() || isa
<UndefValue
>(IdxC
);
1364 return GEPTy
->isVectorTy() && !C
->getType()->isVectorTy()
1365 ? ConstantVector::getSplat(
1366 cast
<VectorType
>(GEPTy
)->getElementCount(), C
)