1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators. Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed. Forward dominators are
12 // needed to support the Verifier pass.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/PassRegistry.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/GenericDomTreeConstruction.h"
29 #include "llvm/Support/raw_ostream.h"
40 bool llvm::VerifyDomInfo
= false;
41 static cl::opt
<bool, true>
42 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo
), cl::Hidden
,
43 cl::desc("Verify dominator info (time consuming)"));
45 #ifdef EXPENSIVE_CHECKS
46 static constexpr bool ExpensiveChecksEnabled
= true;
48 static constexpr bool ExpensiveChecksEnabled
= false;
51 bool BasicBlockEdge::isSingleEdge() const {
52 unsigned NumEdgesToEnd
= 0;
53 for (const BasicBlock
*Succ
: successors(Start
)) {
56 if (NumEdgesToEnd
>= 2)
59 assert(NumEdgesToEnd
== 1);
63 //===----------------------------------------------------------------------===//
64 // DominatorTree Implementation
65 //===----------------------------------------------------------------------===//
67 // Provide public access to DominatorTree information. Implementation details
68 // can be found in Dominators.h, GenericDomTree.h, and
69 // GenericDomTreeConstruction.h.
71 //===----------------------------------------------------------------------===//
73 template class llvm::DomTreeNodeBase
<BasicBlock
>;
74 template class llvm::DominatorTreeBase
<BasicBlock
, false>; // DomTreeBase
75 template class llvm::DominatorTreeBase
<BasicBlock
, true>; // PostDomTreeBase
77 template class llvm::cfg::Update
<BasicBlock
*>;
79 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBDomTree
>(
80 DomTreeBuilder::BBDomTree
&DT
);
82 llvm::DomTreeBuilder::CalculateWithUpdates
<DomTreeBuilder::BBDomTree
>(
83 DomTreeBuilder::BBDomTree
&DT
, BBUpdates U
);
85 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBPostDomTree
>(
86 DomTreeBuilder::BBPostDomTree
&DT
);
87 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
89 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBDomTree
>(
90 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
91 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBPostDomTree
>(
92 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
94 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBDomTree
>(
95 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
96 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBPostDomTree
>(
97 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
99 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBDomTree
>(
100 DomTreeBuilder::BBDomTree
&DT
, DomTreeBuilder::BBDomTreeGraphDiff
&,
101 DomTreeBuilder::BBDomTreeGraphDiff
*);
102 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBPostDomTree
>(
103 DomTreeBuilder::BBPostDomTree
&DT
, DomTreeBuilder::BBPostDomTreeGraphDiff
&,
104 DomTreeBuilder::BBPostDomTreeGraphDiff
*);
106 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBDomTree
>(
107 const DomTreeBuilder::BBDomTree
&DT
,
108 DomTreeBuilder::BBDomTree::VerificationLevel VL
);
109 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBPostDomTree
>(
110 const DomTreeBuilder::BBPostDomTree
&DT
,
111 DomTreeBuilder::BBPostDomTree::VerificationLevel VL
);
113 bool DominatorTree::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
114 FunctionAnalysisManager::Invalidator
&) {
115 // Check whether the analysis, all analyses on functions, or the function's
116 // CFG have been preserved.
117 auto PAC
= PA
.getChecker
<DominatorTreeAnalysis
>();
118 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
119 PAC
.preservedSet
<CFGAnalyses
>());
122 bool DominatorTree::dominates(const BasicBlock
*BB
, const Use
&U
) const {
123 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
124 if (auto *PN
= dyn_cast
<PHINode
>(UserInst
))
125 // A phi use using a value from a block is dominated by the end of that
126 // block. Note that the phi's parent block may not be.
127 return dominates(BB
, PN
->getIncomingBlock(U
));
129 return properlyDominates(BB
, UserInst
->getParent());
132 // dominates - Return true if Def dominates a use in User. This performs
133 // the special checks necessary if Def and User are in the same basic block.
134 // Note that Def doesn't dominate a use in Def itself!
135 bool DominatorTree::dominates(const Value
*DefV
,
136 const Instruction
*User
) const {
137 const Instruction
*Def
= dyn_cast
<Instruction
>(DefV
);
139 assert((isa
<Argument
>(DefV
) || isa
<Constant
>(DefV
)) &&
140 "Should be called with an instruction, argument or constant");
141 return true; // Arguments and constants dominate everything.
144 const BasicBlock
*UseBB
= User
->getParent();
145 const BasicBlock
*DefBB
= Def
->getParent();
147 // Any unreachable use is dominated, even if Def == User.
148 if (!isReachableFromEntry(UseBB
))
151 // Unreachable definitions don't dominate anything.
152 if (!isReachableFromEntry(DefBB
))
155 // An instruction doesn't dominate a use in itself.
159 // The value defined by an invoke dominates an instruction only if it
160 // dominates every instruction in UseBB.
161 // A PHI is dominated only if the instruction dominates every possible use in
163 if (isa
<InvokeInst
>(Def
) || isa
<CallBrInst
>(Def
) || isa
<PHINode
>(User
))
164 return dominates(Def
, UseBB
);
167 return dominates(DefBB
, UseBB
);
169 return Def
->comesBefore(User
);
172 // true if Def would dominate a use in any instruction in UseBB.
173 // note that dominates(Def, Def->getParent()) is false.
174 bool DominatorTree::dominates(const Instruction
*Def
,
175 const BasicBlock
*UseBB
) const {
176 const BasicBlock
*DefBB
= Def
->getParent();
178 // Any unreachable use is dominated, even if DefBB == UseBB.
179 if (!isReachableFromEntry(UseBB
))
182 // Unreachable definitions don't dominate anything.
183 if (!isReachableFromEntry(DefBB
))
189 // Invoke results are only usable in the normal destination, not in the
190 // exceptional destination.
191 if (const auto *II
= dyn_cast
<InvokeInst
>(Def
)) {
192 BasicBlock
*NormalDest
= II
->getNormalDest();
193 BasicBlockEdge
E(DefBB
, NormalDest
);
194 return dominates(E
, UseBB
);
197 return dominates(DefBB
, UseBB
);
200 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
,
201 const BasicBlock
*UseBB
) const {
202 // If the BB the edge ends in doesn't dominate the use BB, then the
203 // edge also doesn't.
204 const BasicBlock
*Start
= BBE
.getStart();
205 const BasicBlock
*End
= BBE
.getEnd();
206 if (!dominates(End
, UseBB
))
209 // Simple case: if the end BB has a single predecessor, the fact that it
210 // dominates the use block implies that the edge also does.
211 if (End
->getSinglePredecessor())
214 // The normal edge from the invoke is critical. Conceptually, what we would
215 // like to do is split it and check if the new block dominates the use.
216 // With X being the new block, the graph would look like:
229 // Given the definition of dominance, NormalDest is dominated by X iff X
230 // dominates all of NormalDest's predecessors (X, B, C in the example). X
231 // trivially dominates itself, so we only have to find if it dominates the
232 // other predecessors. Since the only way out of X is via NormalDest, X can
233 // only properly dominate a node if NormalDest dominates that node too.
234 int IsDuplicateEdge
= 0;
235 for (const BasicBlock
*BB
: predecessors(End
)) {
237 // If there are multiple edges between Start and End, by definition they
238 // can't dominate anything.
239 if (IsDuplicateEdge
++)
244 if (!dominates(End
, BB
))
250 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
, const Use
&U
) const {
251 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
252 // A PHI in the end of the edge is dominated by it.
253 PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
);
254 if (PN
&& PN
->getParent() == BBE
.getEnd() &&
255 PN
->getIncomingBlock(U
) == BBE
.getStart())
258 // Otherwise use the edge-dominates-block query, which
259 // handles the crazy critical edge cases properly.
260 const BasicBlock
*UseBB
;
262 UseBB
= PN
->getIncomingBlock(U
);
264 UseBB
= UserInst
->getParent();
265 return dominates(BBE
, UseBB
);
268 bool DominatorTree::dominates(const Value
*DefV
, const Use
&U
) const {
269 const Instruction
*Def
= dyn_cast
<Instruction
>(DefV
);
271 assert((isa
<Argument
>(DefV
) || isa
<Constant
>(DefV
)) &&
272 "Should be called with an instruction, argument or constant");
273 return true; // Arguments and constants dominate everything.
276 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
277 const BasicBlock
*DefBB
= Def
->getParent();
279 // Determine the block in which the use happens. PHI nodes use
280 // their operands on edges; simulate this by thinking of the use
281 // happening at the end of the predecessor block.
282 const BasicBlock
*UseBB
;
283 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
284 UseBB
= PN
->getIncomingBlock(U
);
286 UseBB
= UserInst
->getParent();
288 // Any unreachable use is dominated, even if Def == User.
289 if (!isReachableFromEntry(UseBB
))
292 // Unreachable definitions don't dominate anything.
293 if (!isReachableFromEntry(DefBB
))
296 // Invoke instructions define their return values on the edges to their normal
297 // successors, so we have to handle them specially.
298 // Among other things, this means they don't dominate anything in
299 // their own block, except possibly a phi, so we don't need to
300 // walk the block in any case.
301 if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(Def
)) {
302 BasicBlock
*NormalDest
= II
->getNormalDest();
303 BasicBlockEdge
E(DefBB
, NormalDest
);
304 return dominates(E
, U
);
307 // If the def and use are in different blocks, do a simple CFG dominator
310 return dominates(DefBB
, UseBB
);
312 // Ok, def and use are in the same block. If the def is an invoke, it
313 // doesn't dominate anything in the block. If it's a PHI, it dominates
314 // everything in the block.
315 if (isa
<PHINode
>(UserInst
))
318 return Def
->comesBefore(UserInst
);
321 bool DominatorTree::isReachableFromEntry(const Use
&U
) const {
322 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
324 // ConstantExprs aren't really reachable from the entry block, but they
325 // don't need to be treated like unreachable code either.
328 // PHI nodes use their operands on their incoming edges.
329 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
330 return isReachableFromEntry(PN
->getIncomingBlock(U
));
332 // Everything else uses their operands in their own block.
333 return isReachableFromEntry(I
->getParent());
336 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2.
337 bool DominatorTree::dominates(const BasicBlockEdge
&BBE1
,
338 const BasicBlockEdge
&BBE2
) const {
339 if (BBE1
.getStart() == BBE2
.getStart() && BBE1
.getEnd() == BBE2
.getEnd())
341 return dominates(BBE1
, BBE2
.getStart());
344 Instruction
*DominatorTree::findNearestCommonDominator(Instruction
*I1
,
345 Instruction
*I2
) const {
346 BasicBlock
*BB1
= I1
->getParent();
347 BasicBlock
*BB2
= I2
->getParent();
349 return I1
->comesBefore(I2
) ? I1
: I2
;
350 if (!isReachableFromEntry(BB2
))
352 if (!isReachableFromEntry(BB1
))
354 BasicBlock
*DomBB
= findNearestCommonDominator(BB1
, BB2
);
359 return DomBB
->getTerminator();
362 //===----------------------------------------------------------------------===//
363 // DominatorTreeAnalysis and related pass implementations
364 //===----------------------------------------------------------------------===//
366 // This implements the DominatorTreeAnalysis which is used with the new pass
367 // manager. It also implements some methods from utility passes.
369 //===----------------------------------------------------------------------===//
371 DominatorTree
DominatorTreeAnalysis::run(Function
&F
,
372 FunctionAnalysisManager
&) {
378 AnalysisKey
DominatorTreeAnalysis::Key
;
380 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream
&OS
) : OS(OS
) {}
382 PreservedAnalyses
DominatorTreePrinterPass::run(Function
&F
,
383 FunctionAnalysisManager
&AM
) {
384 OS
<< "DominatorTree for function: " << F
.getName() << "\n";
385 AM
.getResult
<DominatorTreeAnalysis
>(F
).print(OS
);
387 return PreservedAnalyses::all();
390 PreservedAnalyses
DominatorTreeVerifierPass::run(Function
&F
,
391 FunctionAnalysisManager
&AM
) {
392 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
395 return PreservedAnalyses::all();
398 //===----------------------------------------------------------------------===//
399 // DominatorTreeWrapperPass Implementation
400 //===----------------------------------------------------------------------===//
402 // The implementation details of the wrapper pass that holds a DominatorTree
403 // suitable for use with the legacy pass manager.
405 //===----------------------------------------------------------------------===//
407 char DominatorTreeWrapperPass::ID
= 0;
409 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID
) {
410 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
413 INITIALIZE_PASS(DominatorTreeWrapperPass
, "domtree",
414 "Dominator Tree Construction", true, true)
416 bool DominatorTreeWrapperPass::runOnFunction(Function
&F
) {
421 void DominatorTreeWrapperPass::verifyAnalysis() const {
423 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
424 else if (ExpensiveChecksEnabled
)
425 assert(DT
.verify(DominatorTree::VerificationLevel::Basic
));
428 void DominatorTreeWrapperPass::print(raw_ostream
&OS
, const Module
*) const {