1 //===- BitTracker.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // SSA-based bit propagation.
11 // The purpose of this code is, for a given virtual register, to provide
12 // information about the value of each bit in the register. The values
13 // of bits are represented by the class BitValue, and take one of four
14 // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
15 // "ref" value means that the bit is a copy of another bit (which itself
16 // cannot be a copy of yet another bit---such chains are not allowed).
17 // A "ref" value is associated with a BitRef structure, which indicates
18 // which virtual register, and which bit in that register is the origin
19 // of the value. For example, given an instruction
21 // assuming that nothing is known about bits of %1, bit 1 of %2
22 // will be a "ref" to (%1, 0). If there is a subsequent instruction
24 // then bit 3 of %3 will be a "ref" to (%1, 0) as well.
25 // The "bottom" case means that the bit's value cannot be determined,
26 // and that this virtual register actually defines it. The "bottom" case
27 // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
28 // to self", so for the %1 above, the bit 0 of it will be a "ref" to
29 // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
31 // The tracker implements the Wegman-Zadeck algorithm, originally developed
32 // for SSA-based constant propagation. Each register is represented as
33 // a sequence of bits, with the convention that bit 0 is the least signi-
34 // ficant bit. Each bit is propagated individually. The class RegisterCell
35 // implements the register's representation, and is also the subject of
36 // the lattice operations in the tracker.
38 // The intended usage of the bit tracker is to create a target-specific
39 // machine instruction evaluator, pass the evaluator to the BitTracker
40 // object, and run the tracker. The tracker will then collect the bit
41 // value information for a given machine function. After that, it can be
42 // queried for the cells for each virtual register.
44 // const TargetSpecificEvaluator TSE(TRI, MRI);
45 // BitTracker BT(TSE, MF);
48 // unsigned Reg = interestingRegister();
49 // RegisterCell RC = BT.get(Reg);
53 // The code below is intended to be fully target-independent.
55 #include "BitTracker.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/BitVector.h"
58 #include "llvm/CodeGen/MachineBasicBlock.h"
59 #include "llvm/CodeGen/MachineFunction.h"
60 #include "llvm/CodeGen/MachineInstr.h"
61 #include "llvm/CodeGen/MachineOperand.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
73 using BT
= BitTracker
;
77 // Local trickery to pretty print a register (without the whole "%number"
80 printv(unsigned r
) : R(r
) {}
85 raw_ostream
&operator<< (raw_ostream
&OS
, const printv
&PV
) {
87 OS
<< 'v' << Register::virtReg2Index(PV
.R
);
93 } // end anonymous namespace
97 raw_ostream
&operator<<(raw_ostream
&OS
, const BT::BitValue
&BV
) {
99 case BT::BitValue::Top
:
102 case BT::BitValue::Zero
:
105 case BT::BitValue::One
:
108 case BT::BitValue::Ref
:
109 OS
<< printv(BV
.RefI
.Reg
) << '[' << BV
.RefI
.Pos
<< ']';
115 raw_ostream
&operator<<(raw_ostream
&OS
, const BT::RegisterCell
&RC
) {
116 unsigned n
= RC
.Bits
.size();
118 // Instead of printing each bit value individually, try to group them
119 // into logical segments, such as sequences of 0 or 1 bits or references
120 // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
121 // "Start" will be the index of the beginning of the most recent segment.
123 bool SeqRef
= false; // A sequence of refs to consecutive bits.
124 bool ConstRef
= false; // A sequence of refs to the same bit.
126 for (unsigned i
= 1, n
= RC
.Bits
.size(); i
< n
; ++i
) {
127 const BT::BitValue
&V
= RC
[i
];
128 const BT::BitValue
&SV
= RC
[Start
];
129 bool IsRef
= (V
.Type
== BT::BitValue::Ref
);
130 // If the current value is the same as Start, skip to the next one.
131 if (!IsRef
&& V
== SV
)
133 if (IsRef
&& SV
.Type
== BT::BitValue::Ref
&& V
.RefI
.Reg
== SV
.RefI
.Reg
) {
135 SeqRef
= (V
.RefI
.Pos
== SV
.RefI
.Pos
+1);
136 ConstRef
= (V
.RefI
.Pos
== SV
.RefI
.Pos
);
138 if (SeqRef
&& V
.RefI
.Pos
== SV
.RefI
.Pos
+(i
-Start
))
140 if (ConstRef
&& V
.RefI
.Pos
== SV
.RefI
.Pos
)
144 // The current value is different. Print the previous one and reset
147 unsigned Count
= i
- Start
;
151 OS
<< '-' << i
-1 << "]:";
152 if (SV
.Type
== BT::BitValue::Ref
&& SeqRef
)
153 OS
<< printv(SV
.RefI
.Reg
) << '[' << SV
.RefI
.Pos
<< '-'
154 << SV
.RefI
.Pos
+(Count
-1) << ']';
159 SeqRef
= ConstRef
= false;
163 unsigned Count
= n
- Start
;
165 OS
<< "]:" << RC
[Start
];
167 OS
<< '-' << n
-1 << "]:";
168 const BT::BitValue
&SV
= RC
[Start
];
169 if (SV
.Type
== BT::BitValue::Ref
&& SeqRef
)
170 OS
<< printv(SV
.RefI
.Reg
) << '[' << SV
.RefI
.Pos
<< '-'
171 << SV
.RefI
.Pos
+(Count
-1) << ']';
180 } // end namespace llvm
182 void BitTracker::print_cells(raw_ostream
&OS
) const {
183 for (const std::pair
<unsigned, RegisterCell
> P
: Map
)
184 dbgs() << printReg(P
.first
, &ME
.TRI
) << " -> " << P
.second
<< "\n";
187 BitTracker::BitTracker(const MachineEvaluator
&E
, MachineFunction
&F
)
188 : ME(E
), MF(F
), MRI(F
.getRegInfo()), Map(*new CellMapType
), Trace(false) {
191 BitTracker::~BitTracker() {
195 // If we were allowed to update a cell for a part of a register, the meet
196 // operation would need to be parametrized by the register number and the
197 // exact part of the register, so that the computer BitRefs correspond to
198 // the actual bits of the "self" register.
199 // While this cannot happen in the current implementation, I'm not sure
200 // if this should be ruled out in the future.
201 bool BT::RegisterCell::meet(const RegisterCell
&RC
, Register SelfR
) {
202 // An example when "meet" can be invoked with SelfR == 0 is a phi node
203 // with a physical register as an operand.
204 assert(SelfR
== 0 || SelfR
.isVirtual());
205 bool Changed
= false;
206 for (uint16_t i
= 0, n
= Bits
.size(); i
< n
; ++i
) {
207 const BitValue
&RCV
= RC
[i
];
208 Changed
|= Bits
[i
].meet(RCV
, BitRef(SelfR
, i
));
213 // Insert the entire cell RC into the current cell at position given by M.
214 BT::RegisterCell
&BT::RegisterCell::insert(const BT::RegisterCell
&RC
,
216 uint16_t B
= M
.first(), E
= M
.last(), W
= width();
217 // M must be a valid mask for *this.
218 assert(B
< W
&& E
< W
);
219 // The masked part of *this must have the same number of bits
221 assert(B
> E
|| E
-B
+1 == RC
.width()); // B <= E => E-B+1 = |RC|.
222 assert(B
<= E
|| E
+(W
-B
)+1 == RC
.width()); // E < B => E+(W-B)+1 = |RC|.
224 for (uint16_t i
= 0; i
<= E
-B
; ++i
)
227 for (uint16_t i
= 0; i
< W
-B
; ++i
)
229 for (uint16_t i
= 0; i
<= E
; ++i
)
230 Bits
[i
] = RC
[i
+(W
-B
)];
235 BT::RegisterCell
BT::RegisterCell::extract(const BitMask
&M
) const {
236 uint16_t B
= M
.first(), E
= M
.last(), W
= width();
237 assert(B
< W
&& E
< W
);
239 RegisterCell
RC(E
-B
+1);
240 for (uint16_t i
= B
; i
<= E
; ++i
)
241 RC
.Bits
[i
-B
] = Bits
[i
];
245 RegisterCell
RC(E
+(W
-B
)+1);
246 for (uint16_t i
= 0; i
< W
-B
; ++i
)
247 RC
.Bits
[i
] = Bits
[i
+B
];
248 for (uint16_t i
= 0; i
<= E
; ++i
)
249 RC
.Bits
[i
+(W
-B
)] = Bits
[i
];
253 BT::RegisterCell
&BT::RegisterCell::rol(uint16_t Sh
) {
254 // Rotate left (i.e. towards increasing bit indices).
255 // Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
256 uint16_t W
= width();
261 RegisterCell
Tmp(W
-Sh
);
262 // Tmp = [0..W-Sh-1].
263 for (uint16_t i
= 0; i
< W
-Sh
; ++i
)
265 // Shift [W-Sh..W-1] to [0..Sh-1].
266 for (uint16_t i
= 0; i
< Sh
; ++i
)
267 Bits
[i
] = Bits
[W
-Sh
+i
];
268 // Copy Tmp to [Sh..W-1].
269 for (uint16_t i
= 0; i
< W
-Sh
; ++i
)
270 Bits
[i
+Sh
] = Tmp
.Bits
[i
];
274 BT::RegisterCell
&BT::RegisterCell::fill(uint16_t B
, uint16_t E
,
282 BT::RegisterCell
&BT::RegisterCell::cat(const RegisterCell
&RC
) {
283 // Append the cell given as the argument to the "this" cell.
284 // Bit 0 of RC becomes bit W of the result, where W is this->width().
285 uint16_t W
= width(), WRC
= RC
.width();
287 for (uint16_t i
= 0; i
< WRC
; ++i
)
288 Bits
[i
+W
] = RC
.Bits
[i
];
292 uint16_t BT::RegisterCell::ct(bool B
) const {
293 uint16_t W
= width();
296 while (C
< W
&& Bits
[C
] == V
)
301 uint16_t BT::RegisterCell::cl(bool B
) const {
302 uint16_t W
= width();
305 while (C
< W
&& Bits
[W
-(C
+1)] == V
)
310 bool BT::RegisterCell::operator== (const RegisterCell
&RC
) const {
311 uint16_t W
= Bits
.size();
312 if (RC
.Bits
.size() != W
)
314 for (uint16_t i
= 0; i
< W
; ++i
)
315 if (Bits
[i
] != RC
[i
])
320 BT::RegisterCell
&BT::RegisterCell::regify(unsigned R
) {
321 for (unsigned i
= 0, n
= width(); i
< n
; ++i
) {
322 const BitValue
&V
= Bits
[i
];
323 if (V
.Type
== BitValue::Ref
&& V
.RefI
.Reg
== 0)
324 Bits
[i
].RefI
= BitRef(R
, i
);
329 uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef
&RR
) const {
330 // The general problem is with finding a register class that corresponds
331 // to a given reference reg:sub. There can be several such classes, and
332 // since we only care about the register size, it does not matter which
333 // such class we would find.
334 // The easiest way to accomplish what we want is to
335 // 1. find a physical register PhysR from the same class as RR.Reg,
336 // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
337 // 3. find a register class that contains PhysS.
338 if (RR
.Reg
.isVirtual()) {
339 const auto &VC
= composeWithSubRegIndex(*MRI
.getRegClass(RR
.Reg
), RR
.Sub
);
340 return TRI
.getRegSizeInBits(VC
);
342 assert(RR
.Reg
.isPhysical());
344 (RR
.Sub
== 0) ? RR
.Reg
.asMCReg() : TRI
.getSubReg(RR
.Reg
, RR
.Sub
);
345 return getPhysRegBitWidth(PhysR
);
348 BT::RegisterCell
BT::MachineEvaluator::getCell(const RegisterRef
&RR
,
349 const CellMapType
&M
) const {
350 uint16_t BW
= getRegBitWidth(RR
);
352 // Physical registers are assumed to be present in the map with an unknown
353 // value. Don't actually insert anything in the map, just return the cell.
354 if (RR
.Reg
.isPhysical())
355 return RegisterCell::self(0, BW
);
357 assert(RR
.Reg
.isVirtual());
358 // For virtual registers that belong to a class that is not tracked,
359 // generate an "unknown" value as well.
360 const TargetRegisterClass
*C
= MRI
.getRegClass(RR
.Reg
);
362 return RegisterCell::self(0, BW
);
364 CellMapType::const_iterator F
= M
.find(RR
.Reg
);
368 BitMask M
= mask(RR
.Reg
, RR
.Sub
);
369 return F
->second
.extract(M
);
371 // If not found, create a "top" entry, but do not insert it in the map.
372 return RegisterCell::top(BW
);
375 void BT::MachineEvaluator::putCell(const RegisterRef
&RR
, RegisterCell RC
,
376 CellMapType
&M
) const {
377 // While updating the cell map can be done in a meaningful way for
378 // a part of a register, it makes little sense to implement it as the
379 // SSA representation would never contain such "partial definitions".
380 if (!RR
.Reg
.isVirtual())
382 assert(RR
.Sub
== 0 && "Unexpected sub-register in definition");
383 // Eliminate all ref-to-reg-0 bit values: replace them with "self".
384 M
[RR
.Reg
] = RC
.regify(RR
.Reg
);
387 // Check if the cell represents a compile-time integer value.
388 bool BT::MachineEvaluator::isInt(const RegisterCell
&A
) const {
389 uint16_t W
= A
.width();
390 for (uint16_t i
= 0; i
< W
; ++i
)
391 if (!A
[i
].is(0) && !A
[i
].is(1))
396 // Convert a cell to the integer value. The result must fit in uint64_t.
397 uint64_t BT::MachineEvaluator::toInt(const RegisterCell
&A
) const {
400 uint16_t W
= A
.width();
401 for (uint16_t i
= 0; i
< W
; ++i
) {
408 // Evaluator helper functions. These implement some common operation on
409 // register cells that can be used to implement target-specific instructions
410 // in a target-specific evaluator.
412 BT::RegisterCell
BT::MachineEvaluator::eIMM(int64_t V
, uint16_t W
) const {
414 // For bits beyond the 63rd, this will generate the sign bit of V.
415 for (uint16_t i
= 0; i
< W
; ++i
) {
416 Res
[i
] = BitValue(V
& 1);
422 BT::RegisterCell
BT::MachineEvaluator::eIMM(const ConstantInt
*CI
) const {
423 const APInt
&A
= CI
->getValue();
424 uint16_t BW
= A
.getBitWidth();
425 assert((unsigned)BW
== A
.getBitWidth() && "BitWidth overflow");
426 RegisterCell
Res(BW
);
427 for (uint16_t i
= 0; i
< BW
; ++i
)
432 BT::RegisterCell
BT::MachineEvaluator::eADD(const RegisterCell
&A1
,
433 const RegisterCell
&A2
) const {
434 uint16_t W
= A1
.width();
435 assert(W
== A2
.width());
439 for (I
= 0; I
< W
; ++I
) {
440 const BitValue
&V1
= A1
[I
];
441 const BitValue
&V2
= A2
[I
];
442 if (!V1
.num() || !V2
.num())
444 unsigned S
= bool(V1
) + bool(V2
) + Carry
;
445 Res
[I
] = BitValue(S
& 1);
449 const BitValue
&V1
= A1
[I
];
450 const BitValue
&V2
= A2
[I
];
451 // If the next bit is same as Carry, the result will be 0 plus the
452 // other bit. The Carry bit will remain unchanged.
454 Res
[I
] = BitValue::ref(V2
);
455 else if (V2
.is(Carry
))
456 Res
[I
] = BitValue::ref(V1
);
461 Res
[I
] = BitValue::self();
465 BT::RegisterCell
BT::MachineEvaluator::eSUB(const RegisterCell
&A1
,
466 const RegisterCell
&A2
) const {
467 uint16_t W
= A1
.width();
468 assert(W
== A2
.width());
472 for (I
= 0; I
< W
; ++I
) {
473 const BitValue
&V1
= A1
[I
];
474 const BitValue
&V2
= A2
[I
];
475 if (!V1
.num() || !V2
.num())
477 unsigned S
= bool(V1
) - bool(V2
) - Borrow
;
478 Res
[I
] = BitValue(S
& 1);
482 const BitValue
&V1
= A1
[I
];
483 const BitValue
&V2
= A2
[I
];
485 Res
[I
] = BitValue::ref(V2
);
489 Res
[I
] = BitValue::ref(V1
);
494 Res
[I
] = BitValue::self();
498 BT::RegisterCell
BT::MachineEvaluator::eMLS(const RegisterCell
&A1
,
499 const RegisterCell
&A2
) const {
500 uint16_t W
= A1
.width() + A2
.width();
501 uint16_t Z
= A1
.ct(false) + A2
.ct(false);
503 Res
.fill(0, Z
, BitValue::Zero
);
504 Res
.fill(Z
, W
, BitValue::self());
508 BT::RegisterCell
BT::MachineEvaluator::eMLU(const RegisterCell
&A1
,
509 const RegisterCell
&A2
) const {
510 uint16_t W
= A1
.width() + A2
.width();
511 uint16_t Z
= A1
.ct(false) + A2
.ct(false);
513 Res
.fill(0, Z
, BitValue::Zero
);
514 Res
.fill(Z
, W
, BitValue::self());
518 BT::RegisterCell
BT::MachineEvaluator::eASL(const RegisterCell
&A1
,
520 assert(Sh
<= A1
.width());
521 RegisterCell Res
= RegisterCell::ref(A1
);
523 Res
.fill(0, Sh
, BitValue::Zero
);
527 BT::RegisterCell
BT::MachineEvaluator::eLSR(const RegisterCell
&A1
,
529 uint16_t W
= A1
.width();
531 RegisterCell Res
= RegisterCell::ref(A1
);
533 Res
.fill(W
-Sh
, W
, BitValue::Zero
);
537 BT::RegisterCell
BT::MachineEvaluator::eASR(const RegisterCell
&A1
,
539 uint16_t W
= A1
.width();
541 RegisterCell Res
= RegisterCell::ref(A1
);
542 BitValue Sign
= Res
[W
-1];
544 Res
.fill(W
-Sh
, W
, Sign
);
548 BT::RegisterCell
BT::MachineEvaluator::eAND(const RegisterCell
&A1
,
549 const RegisterCell
&A2
) const {
550 uint16_t W
= A1
.width();
551 assert(W
== A2
.width());
553 for (uint16_t i
= 0; i
< W
; ++i
) {
554 const BitValue
&V1
= A1
[i
];
555 const BitValue
&V2
= A2
[i
];
557 Res
[i
] = BitValue::ref(V2
);
559 Res
[i
] = BitValue::ref(V1
);
560 else if (V1
.is(0) || V2
.is(0))
561 Res
[i
] = BitValue::Zero
;
565 Res
[i
] = BitValue::self();
570 BT::RegisterCell
BT::MachineEvaluator::eORL(const RegisterCell
&A1
,
571 const RegisterCell
&A2
) const {
572 uint16_t W
= A1
.width();
573 assert(W
== A2
.width());
575 for (uint16_t i
= 0; i
< W
; ++i
) {
576 const BitValue
&V1
= A1
[i
];
577 const BitValue
&V2
= A2
[i
];
578 if (V1
.is(1) || V2
.is(1))
579 Res
[i
] = BitValue::One
;
581 Res
[i
] = BitValue::ref(V2
);
583 Res
[i
] = BitValue::ref(V1
);
587 Res
[i
] = BitValue::self();
592 BT::RegisterCell
BT::MachineEvaluator::eXOR(const RegisterCell
&A1
,
593 const RegisterCell
&A2
) const {
594 uint16_t W
= A1
.width();
595 assert(W
== A2
.width());
597 for (uint16_t i
= 0; i
< W
; ++i
) {
598 const BitValue
&V1
= A1
[i
];
599 const BitValue
&V2
= A2
[i
];
601 Res
[i
] = BitValue::ref(V2
);
603 Res
[i
] = BitValue::ref(V1
);
605 Res
[i
] = BitValue::Zero
;
607 Res
[i
] = BitValue::self();
612 BT::RegisterCell
BT::MachineEvaluator::eNOT(const RegisterCell
&A1
) const {
613 uint16_t W
= A1
.width();
615 for (uint16_t i
= 0; i
< W
; ++i
) {
616 const BitValue
&V
= A1
[i
];
618 Res
[i
] = BitValue::One
;
620 Res
[i
] = BitValue::Zero
;
622 Res
[i
] = BitValue::self();
627 BT::RegisterCell
BT::MachineEvaluator::eSET(const RegisterCell
&A1
,
628 uint16_t BitN
) const {
629 assert(BitN
< A1
.width());
630 RegisterCell Res
= RegisterCell::ref(A1
);
631 Res
[BitN
] = BitValue::One
;
635 BT::RegisterCell
BT::MachineEvaluator::eCLR(const RegisterCell
&A1
,
636 uint16_t BitN
) const {
637 assert(BitN
< A1
.width());
638 RegisterCell Res
= RegisterCell::ref(A1
);
639 Res
[BitN
] = BitValue::Zero
;
643 BT::RegisterCell
BT::MachineEvaluator::eCLB(const RegisterCell
&A1
, bool B
,
645 uint16_t C
= A1
.cl(B
), AW
= A1
.width();
646 // If the last leading non-B bit is not a constant, then we don't know
648 if ((C
< AW
&& A1
[AW
-1-C
].num()) || C
== AW
)
650 return RegisterCell::self(0, W
);
653 BT::RegisterCell
BT::MachineEvaluator::eCTB(const RegisterCell
&A1
, bool B
,
655 uint16_t C
= A1
.ct(B
), AW
= A1
.width();
656 // If the last trailing non-B bit is not a constant, then we don't know
658 if ((C
< AW
&& A1
[C
].num()) || C
== AW
)
660 return RegisterCell::self(0, W
);
663 BT::RegisterCell
BT::MachineEvaluator::eSXT(const RegisterCell
&A1
,
664 uint16_t FromN
) const {
665 uint16_t W
= A1
.width();
667 RegisterCell Res
= RegisterCell::ref(A1
);
668 BitValue Sign
= Res
[FromN
-1];
669 // Sign-extend "inreg".
670 Res
.fill(FromN
, W
, Sign
);
674 BT::RegisterCell
BT::MachineEvaluator::eZXT(const RegisterCell
&A1
,
675 uint16_t FromN
) const {
676 uint16_t W
= A1
.width();
678 RegisterCell Res
= RegisterCell::ref(A1
);
679 Res
.fill(FromN
, W
, BitValue::Zero
);
683 BT::RegisterCell
BT::MachineEvaluator::eXTR(const RegisterCell
&A1
,
684 uint16_t B
, uint16_t E
) const {
685 uint16_t W
= A1
.width();
686 assert(B
< W
&& E
<= W
);
688 return RegisterCell(0);
689 uint16_t Last
= (E
> 0) ? E
-1 : W
-1;
690 RegisterCell Res
= RegisterCell::ref(A1
).extract(BT::BitMask(B
, Last
));
691 // Return shorter cell.
695 BT::RegisterCell
BT::MachineEvaluator::eINS(const RegisterCell
&A1
,
696 const RegisterCell
&A2
, uint16_t AtN
) const {
697 uint16_t W1
= A1
.width(), W2
= A2
.width();
699 assert(AtN
< W1
&& AtN
+W2
<= W1
);
700 // Copy bits from A1, insert A2 at position AtN.
701 RegisterCell Res
= RegisterCell::ref(A1
);
703 Res
.insert(RegisterCell::ref(A2
), BT::BitMask(AtN
, AtN
+W2
-1));
707 BT::BitMask
BT::MachineEvaluator::mask(Register Reg
, unsigned Sub
) const {
708 assert(Sub
== 0 && "Generic BitTracker::mask called for Sub != 0");
709 uint16_t W
= getRegBitWidth(Reg
);
710 assert(W
> 0 && "Cannot generate mask for empty register");
711 return BitMask(0, W
-1);
714 uint16_t BT::MachineEvaluator::getPhysRegBitWidth(MCRegister Reg
) const {
715 const TargetRegisterClass
&PC
= *TRI
.getMinimalPhysRegClass(Reg
);
716 return TRI
.getRegSizeInBits(PC
);
719 bool BT::MachineEvaluator::evaluate(const MachineInstr
&MI
,
720 const CellMapType
&Inputs
,
721 CellMapType
&Outputs
) const {
722 unsigned Opc
= MI
.getOpcode();
724 case TargetOpcode::REG_SEQUENCE
: {
725 RegisterRef RD
= MI
.getOperand(0);
727 RegisterRef RS
= MI
.getOperand(1);
728 unsigned SS
= MI
.getOperand(2).getImm();
729 RegisterRef RT
= MI
.getOperand(3);
730 unsigned ST
= MI
.getOperand(4).getImm();
733 uint16_t W
= getRegBitWidth(RD
);
735 Res
.insert(RegisterCell::ref(getCell(RS
, Inputs
)), mask(RD
.Reg
, SS
));
736 Res
.insert(RegisterCell::ref(getCell(RT
, Inputs
)), mask(RD
.Reg
, ST
));
737 putCell(RD
, Res
, Outputs
);
741 case TargetOpcode::COPY
: {
742 // COPY can transfer a smaller register into a wider one.
743 // If that is the case, fill the remaining high bits with 0.
744 RegisterRef RD
= MI
.getOperand(0);
745 RegisterRef RS
= MI
.getOperand(1);
747 uint16_t WD
= getRegBitWidth(RD
);
748 uint16_t WS
= getRegBitWidth(RS
);
750 RegisterCell Src
= getCell(RS
, Inputs
);
751 RegisterCell
Res(WD
);
752 Res
.insert(Src
, BitMask(0, WS
-1));
753 Res
.fill(WS
, WD
, BitValue::Zero
);
754 putCell(RD
, Res
, Outputs
);
765 bool BT::UseQueueType::Cmp::operator()(const MachineInstr
*InstA
,
766 const MachineInstr
*InstB
) const {
767 // This is a comparison function for a priority queue: give higher priority
768 // to earlier instructions.
769 // This operator is used as "less", so returning "true" gives InstB higher
770 // priority (because then InstA < InstB).
773 const MachineBasicBlock
*BA
= InstA
->getParent();
774 const MachineBasicBlock
*BB
= InstB
->getParent();
776 // If the blocks are different, ideally the dominating block would
777 // have a higher priority, but it may be too expensive to check.
778 return BA
->getNumber() > BB
->getNumber();
781 auto getDist
= [this] (const MachineInstr
*MI
) {
782 auto F
= Dist
.find(MI
);
785 MachineBasicBlock::const_iterator I
= MI
->getParent()->begin();
786 MachineBasicBlock::const_iterator E
= MI
->getIterator();
787 unsigned D
= std::distance(I
, E
);
788 Dist
.insert(std::make_pair(MI
, D
));
792 return getDist(InstA
) > getDist(InstB
);
795 // Main W-Z implementation.
797 void BT::visitPHI(const MachineInstr
&PI
) {
798 int ThisN
= PI
.getParent()->getNumber();
800 dbgs() << "Visit FI(" << printMBBReference(*PI
.getParent()) << "): " << PI
;
802 const MachineOperand
&MD
= PI
.getOperand(0);
803 assert(MD
.getSubReg() == 0 && "Unexpected sub-register in definition");
804 RegisterRef
DefRR(MD
);
805 uint16_t DefBW
= ME
.getRegBitWidth(DefRR
);
807 RegisterCell DefC
= ME
.getCell(DefRR
, Map
);
808 if (DefC
== RegisterCell::self(DefRR
.Reg
, DefBW
)) // XXX slow
811 bool Changed
= false;
813 for (unsigned i
= 1, n
= PI
.getNumOperands(); i
< n
; i
+= 2) {
814 const MachineBasicBlock
*PB
= PI
.getOperand(i
+ 1).getMBB();
815 int PredN
= PB
->getNumber();
817 dbgs() << " edge " << printMBBReference(*PB
) << "->"
818 << printMBBReference(*PI
.getParent());
819 if (!EdgeExec
.count(CFGEdge(PredN
, ThisN
))) {
821 dbgs() << " not executable\n";
825 RegisterRef RU
= PI
.getOperand(i
);
826 RegisterCell ResC
= ME
.getCell(RU
, Map
);
828 dbgs() << " input reg: " << printReg(RU
.Reg
, &ME
.TRI
, RU
.Sub
)
829 << " cell: " << ResC
<< "\n";
830 Changed
|= DefC
.meet(ResC
, DefRR
.Reg
);
835 dbgs() << "Output: " << printReg(DefRR
.Reg
, &ME
.TRI
, DefRR
.Sub
)
836 << " cell: " << DefC
<< "\n";
837 ME
.putCell(DefRR
, DefC
, Map
);
838 visitUsesOf(DefRR
.Reg
);
842 void BT::visitNonBranch(const MachineInstr
&MI
) {
844 dbgs() << "Visit MI(" << printMBBReference(*MI
.getParent()) << "): " << MI
;
845 if (MI
.isDebugInstr())
847 assert(!MI
.isBranch() && "Unexpected branch instruction");
850 bool Eval
= ME
.evaluate(MI
, Map
, ResMap
);
853 for (const MachineOperand
&MO
: MI
.operands()) {
854 if (!MO
.isReg() || !MO
.isUse())
857 dbgs() << " input reg: " << printReg(RU
.Reg
, &ME
.TRI
, RU
.Sub
)
858 << " cell: " << ME
.getCell(RU
, Map
) << "\n";
860 dbgs() << "Outputs:\n";
861 for (const std::pair
<const unsigned, RegisterCell
> &P
: ResMap
) {
862 RegisterRef
RD(P
.first
);
863 dbgs() << " " << printReg(P
.first
, &ME
.TRI
) << " cell: "
864 << ME
.getCell(RD
, ResMap
) << "\n";
868 // Iterate over all definitions of the instruction, and update the
869 // cells accordingly.
870 for (const MachineOperand
&MO
: MI
.operands()) {
871 // Visit register defs only.
872 if (!MO
.isReg() || !MO
.isDef())
875 assert(RD
.Sub
== 0 && "Unexpected sub-register in definition");
876 if (!RD
.Reg
.isVirtual())
879 bool Changed
= false;
880 if (!Eval
|| ResMap
.count(RD
.Reg
) == 0) {
881 // Set to "ref" (aka "bottom").
882 uint16_t DefBW
= ME
.getRegBitWidth(RD
);
883 RegisterCell RefC
= RegisterCell::self(RD
.Reg
, DefBW
);
884 if (RefC
!= ME
.getCell(RD
, Map
)) {
885 ME
.putCell(RD
, RefC
, Map
);
889 RegisterCell DefC
= ME
.getCell(RD
, Map
);
890 RegisterCell ResC
= ME
.getCell(RD
, ResMap
);
891 // This is a non-phi instruction, so the values of the inputs come
892 // from the same registers each time this instruction is evaluated.
893 // During the propagation, the values of the inputs can become lowered
894 // in the sense of the lattice operation, which may cause different
895 // results to be calculated in subsequent evaluations. This should
896 // not cause the bottoming of the result in the map, since the new
897 // result is already reflecting the lowered inputs.
898 for (uint16_t i
= 0, w
= DefC
.width(); i
< w
; ++i
) {
899 BitValue
&V
= DefC
[i
];
900 // Bits that are already "bottom" should not be updated.
901 if (V
.Type
== BitValue::Ref
&& V
.RefI
.Reg
== RD
.Reg
)
903 // Same for those that are identical in DefC and ResC.
910 ME
.putCell(RD
, DefC
, Map
);
917 void BT::visitBranchesFrom(const MachineInstr
&BI
) {
918 const MachineBasicBlock
&B
= *BI
.getParent();
919 MachineBasicBlock::const_iterator It
= BI
, End
= B
.end();
920 BranchTargetList Targets
, BTs
;
921 bool FallsThrough
= true, DefaultToAll
= false;
922 int ThisN
= B
.getNumber();
926 const MachineInstr
&MI
= *It
;
928 dbgs() << "Visit BR(" << printMBBReference(B
) << "): " << MI
;
929 assert(MI
.isBranch() && "Expecting branch instruction");
930 InstrExec
.insert(&MI
);
931 bool Eval
= ME
.evaluate(MI
, Map
, BTs
, FallsThrough
);
933 // If the evaluation failed, we will add all targets. Keep going in
934 // the loop to mark all executable branches as such.
938 dbgs() << " failed to evaluate: will add all CFG successors\n";
939 } else if (!DefaultToAll
) {
940 // If evaluated successfully add the targets to the cumulative list.
942 dbgs() << " adding targets:";
943 for (const MachineBasicBlock
*BT
: BTs
)
944 dbgs() << " " << printMBBReference(*BT
);
946 dbgs() << "\n falls through\n";
948 dbgs() << "\n does not fall through\n";
950 Targets
.insert(BTs
.begin(), BTs
.end());
953 } while (FallsThrough
&& It
!= End
);
955 if (B
.mayHaveInlineAsmBr())
959 // Need to add all CFG successors that lead to EH landing pads.
960 // There won't be explicit branches to these blocks, but they must
962 for (const MachineBasicBlock
*SB
: B
.successors()) {
967 MachineFunction::const_iterator BIt
= B
.getIterator();
968 MachineFunction::const_iterator Next
= std::next(BIt
);
969 if (Next
!= MF
.end())
970 Targets
.insert(&*Next
);
973 for (const MachineBasicBlock
*SB
: B
.successors())
977 for (const MachineBasicBlock
*TB
: Targets
)
978 FlowQ
.push(CFGEdge(ThisN
, TB
->getNumber()));
981 void BT::visitUsesOf(Register Reg
) {
983 dbgs() << "queuing uses of modified reg " << printReg(Reg
, &ME
.TRI
)
984 << " cell: " << ME
.getCell(Reg
, Map
) << '\n';
986 for (MachineInstr
&UseI
: MRI
.use_nodbg_instructions(Reg
))
990 BT::RegisterCell
BT::get(RegisterRef RR
) const {
991 return ME
.getCell(RR
, Map
);
994 void BT::put(RegisterRef RR
, const RegisterCell
&RC
) {
995 ME
.putCell(RR
, RC
, Map
);
998 // Replace all references to bits from OldRR with the corresponding bits
1000 void BT::subst(RegisterRef OldRR
, RegisterRef NewRR
) {
1001 assert(Map
.count(OldRR
.Reg
) > 0 && "OldRR not present in map");
1002 BitMask OM
= ME
.mask(OldRR
.Reg
, OldRR
.Sub
);
1003 BitMask NM
= ME
.mask(NewRR
.Reg
, NewRR
.Sub
);
1004 uint16_t OMB
= OM
.first(), OME
= OM
.last();
1005 uint16_t NMB
= NM
.first(), NME
= NM
.last();
1007 assert((OME
-OMB
== NME
-NMB
) &&
1008 "Substituting registers of different lengths");
1009 for (std::pair
<const unsigned, RegisterCell
> &P
: Map
) {
1010 RegisterCell
&RC
= P
.second
;
1011 for (uint16_t i
= 0, w
= RC
.width(); i
< w
; ++i
) {
1012 BitValue
&V
= RC
[i
];
1013 if (V
.Type
!= BitValue::Ref
|| V
.RefI
.Reg
!= OldRR
.Reg
)
1015 if (V
.RefI
.Pos
< OMB
|| V
.RefI
.Pos
> OME
)
1017 V
.RefI
.Reg
= NewRR
.Reg
;
1018 V
.RefI
.Pos
+= NMB
-OMB
;
1023 // Check if the block has been "executed" during propagation. (If not, the
1024 // block is dead, but it may still appear to be reachable.)
1025 bool BT::reached(const MachineBasicBlock
*B
) const {
1026 int BN
= B
->getNumber();
1028 return ReachedBB
.count(BN
);
1031 // Visit an individual instruction. This could be a newly added instruction,
1032 // or one that has been modified by an optimization.
1033 void BT::visit(const MachineInstr
&MI
) {
1034 assert(!MI
.isBranch() && "Only non-branches are allowed");
1035 InstrExec
.insert(&MI
);
1037 // Make sure to flush all the pending use updates.
1039 // The call to visitNonBranch could propagate the changes until a branch
1040 // is actually visited. This could result in adding CFG edges to the flow
1041 // queue. Since the queue won't be processed, clear it.
1042 while (!FlowQ
.empty())
1051 ReachedBB
.reserve(MF
.size());
1054 void BT::runEdgeQueue(BitVector
&BlockScanned
) {
1055 while (!FlowQ
.empty()) {
1056 CFGEdge Edge
= FlowQ
.front();
1059 if (!EdgeExec
.insert(Edge
).second
)
1061 ReachedBB
.insert(Edge
.second
);
1063 const MachineBasicBlock
&B
= *MF
.getBlockNumbered(Edge
.second
);
1064 MachineBasicBlock::const_iterator It
= B
.begin(), End
= B
.end();
1065 // Visit PHI nodes first.
1066 while (It
!= End
&& It
->isPHI()) {
1067 const MachineInstr
&PI
= *It
++;
1068 InstrExec
.insert(&PI
);
1072 // If this block has already been visited through a flow graph edge,
1073 // then the instructions have already been processed. Any updates to
1074 // the cells would now only happen through visitUsesOf...
1075 if (BlockScanned
[Edge
.second
])
1077 BlockScanned
[Edge
.second
] = true;
1079 // Visit non-branch instructions.
1080 while (It
!= End
&& !It
->isBranch()) {
1081 const MachineInstr
&MI
= *It
++;
1082 InstrExec
.insert(&MI
);
1085 // If block end has been reached, add the fall-through edge to the queue.
1087 MachineFunction::const_iterator BIt
= B
.getIterator();
1088 MachineFunction::const_iterator Next
= std::next(BIt
);
1089 if (Next
!= MF
.end() && B
.isSuccessor(&*Next
)) {
1090 int ThisN
= B
.getNumber();
1091 int NextN
= Next
->getNumber();
1092 FlowQ
.push(CFGEdge(ThisN
, NextN
));
1095 // Handle the remaining sequence of branches. This function will update
1097 visitBranchesFrom(*It
);
1099 } // while (!FlowQ->empty())
1102 void BT::runUseQueue() {
1103 while (!UseQ
.empty()) {
1104 MachineInstr
&UseI
= *UseQ
.front();
1107 if (!InstrExec
.count(&UseI
))
1111 else if (!UseI
.isBranch())
1112 visitNonBranch(UseI
);
1114 visitBranchesFrom(UseI
);
1120 assert(FlowQ
.empty());
1122 using MachineFlowGraphTraits
= GraphTraits
<const MachineFunction
*>;
1123 const MachineBasicBlock
*Entry
= MachineFlowGraphTraits::getEntryNode(&MF
);
1126 for (const MachineBasicBlock
&B
: MF
) {
1127 assert(B
.getNumber() >= 0 && "Disconnected block");
1128 unsigned BN
= B
.getNumber();
1133 // Keep track of visited blocks.
1134 BitVector
BlockScanned(MaxBN
+1);
1136 int EntryN
= Entry
->getNumber();
1137 // Generate a fake edge to get something to start with.
1138 FlowQ
.push(CFGEdge(-1, EntryN
));
1140 while (!FlowQ
.empty() || !UseQ
.empty()) {
1141 runEdgeQueue(BlockScanned
);
1147 print_cells(dbgs() << "Cells after propagation:\n");