1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass identifies loops where we can generate the Hexagon hardware
10 // loop instruction. The hardware loop can perform loop branches with a
11 // zero-cycle overhead.
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 // The pattern detected by this phase is due to running Strength Reduction.
19 // Criteria for hardware loops:
20 // - Countable loops (w/ ind. var for a trip count)
21 // - Assumes loops are normalized by IndVarSimplify
22 // - Try inner-most loops first
23 // - No function calls in loops.
25 //===----------------------------------------------------------------------===//
27 #include "HexagonInstrInfo.h"
28 #include "HexagonSubtarget.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "hwloops"
69 static cl::opt
<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden
, cl::init(-1));
71 // Option to create preheader only for a specific function.
72 static cl::opt
<std::string
> PHFn("hexagon-hwloop-phfn", cl::Hidden
,
76 // Option to create a preheader if one doesn't exist.
77 static cl::opt
<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden
, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
81 // Turn it off by default. If a preheader block is not created here, the
82 // software pipeliner may be unable to find a block suitable to serve as
83 // a preheader. In that case SWP will not run.
84 static cl::opt
<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden
,
85 cl::desc("Allow speculation of preheader "
88 STATISTIC(NumHWLoops
, "Number of loops converted to hardware loops");
92 FunctionPass
*createHexagonHardwareLoops();
93 void initializeHexagonHardwareLoopsPass(PassRegistry
&);
95 } // end namespace llvm
101 struct HexagonHardwareLoops
: public MachineFunctionPass
{
102 MachineLoopInfo
*MLI
;
103 MachineRegisterInfo
*MRI
;
104 MachineDominatorTree
*MDT
;
105 const HexagonInstrInfo
*TII
;
106 const HexagonRegisterInfo
*TRI
;
114 HexagonHardwareLoops() : MachineFunctionPass(ID
) {}
116 bool runOnMachineFunction(MachineFunction
&MF
) override
;
118 StringRef
getPassName() const override
{ return "Hexagon Hardware Loops"; }
120 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
121 AU
.addRequired
<MachineDominatorTreeWrapperPass
>();
122 AU
.addRequired
<MachineLoopInfoWrapperPass
>();
123 MachineFunctionPass::getAnalysisUsage(AU
);
127 using LoopFeederMap
= std::map
<Register
, MachineInstr
*>;
129 /// Kinds of comparisons in the compare instructions.
147 static Kind
getSwappedComparison(Kind Cmp
) {
148 assert ((!((Cmp
& L
) && (Cmp
& G
))) && "Malformed comparison operator");
149 if ((Cmp
& L
) || (Cmp
& G
))
150 return (Kind
)(Cmp
^ (L
|G
));
154 static Kind
getNegatedComparison(Kind Cmp
) {
155 if ((Cmp
& L
) || (Cmp
& G
))
156 return (Kind
)((Cmp
^ (L
| G
)) ^ EQ
);
157 if ((Cmp
& NE
) || (Cmp
& EQ
))
158 return (Kind
)(Cmp
^ (EQ
| NE
));
162 static bool isSigned(Kind Cmp
) {
163 return (Cmp
& (L
| G
) && !(Cmp
& U
));
166 static bool isUnsigned(Kind Cmp
) {
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop
*L
, Register
&Reg
,
184 int64_t &IVBump
, MachineInstr
*&IVOp
) const;
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind
getComparisonKind(unsigned CondOpc
,
188 MachineOperand
*InitialValue
,
189 const MachineOperand
*Endvalue
,
190 int64_t IVBump
) const;
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue
*getLoopTripCount(MachineLoop
*L
,
196 SmallVectorImpl
<MachineInstr
*> &OldInsts
);
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue
*computeCount(MachineLoop
*Loop
, const MachineOperand
*Start
,
206 const MachineOperand
*End
, Register IVReg
,
207 int64_t IVBump
, Comparison::Kind Cmp
) const;
209 /// Return true if the instruction is not valid within a hardware
211 bool isInvalidLoopOperation(const MachineInstr
*MI
,
212 bool IsInnerHWLoop
) const;
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop
*L
, bool IsInnerHWLoop
) const;
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop
*L
, bool &L0used
, bool &L1used
);
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr
*MI
,
224 SmallVectorImpl
<MachineInstr
*> &DeadPhis
) const;
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr
*MI
);
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr
*BumpI
, MachineInstr
*CmpI
);
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
238 bool isLoopFeeder(MachineLoop
*L
, MachineBasicBlock
*A
, MachineInstr
*MI
,
239 const MachineOperand
*MO
,
240 LoopFeederMap
&LoopFeederPhi
) const;
242 /// Return true if the Phi may generate a value that may underflow,
244 bool phiMayWrapOrUnderflow(MachineInstr
*Phi
, const MachineOperand
*EndVal
,
245 MachineBasicBlock
*MBB
, MachineLoop
*L
,
246 LoopFeederMap
&LoopFeederPhi
) const;
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand
*InitVal
,
251 const MachineOperand
*EndVal
,
252 MachineBasicBlock
*MBB
, MachineLoop
*L
,
253 LoopFeederMap
&LoopFeederPhi
) const;
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand
&MO
, int64_t &Val
) const;
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand
&MO
) const {
263 return checkForImmediate(MO
, V
);
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand
&MO
) const {
269 if (!checkForImmediate(MO
, V
))
270 llvm_unreachable("Invalid operand");
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand
&MO
, int64_t Val
);
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
287 /// phi -+-> bump ---> back to phi
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop
*L
);
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock
*createPreheaderForLoop(MachineLoop
*L
);
305 char HexagonHardwareLoops::ID
= 0;
307 int HexagonHardwareLoops::Counter
= 0;
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
315 enum CountValueType
{
323 Values() : R
{Register(), 0} {}
324 Values(const Values
&) = default;
333 explicit CountValue(CountValueType t
, Register v
, unsigned u
= 0) {
335 if (Kind
== CV_Register
) {
343 bool isReg() const { return Kind
== CV_Register
; }
344 bool isImm() const { return Kind
== CV_Immediate
; }
346 Register
getReg() const {
347 assert(isReg() && "Wrong CountValue accessor");
348 return Contents
.R
.Reg
;
351 unsigned getSubReg() const {
352 assert(isReg() && "Wrong CountValue accessor");
353 return Contents
.R
.Sub
;
356 unsigned getImm() const {
357 assert(isImm() && "Wrong CountValue accessor");
358 return Contents
.ImmVal
;
361 void print(raw_ostream
&OS
, const TargetRegisterInfo
*TRI
= nullptr) const {
362 if (isReg()) { OS
<< printReg(Contents
.R
.Reg
, TRI
, Contents
.R
.Sub
); }
363 if (isImm()) { OS
<< Contents
.ImmVal
; }
367 } // end anonymous namespace
369 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops
, "hwloops",
370 "Hexagon Hardware Loops", false, false)
371 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass
)
372 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass
)
373 INITIALIZE_PASS_END(HexagonHardwareLoops
, "hwloops",
374 "Hexagon Hardware Loops", false, false)
376 FunctionPass
*llvm::createHexagonHardwareLoops() {
377 return new HexagonHardwareLoops();
380 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction
&MF
) {
381 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
382 if (skipFunction(MF
.getFunction()))
385 bool Changed
= false;
387 MLI
= &getAnalysis
<MachineLoopInfoWrapperPass
>().getLI();
388 MRI
= &MF
.getRegInfo();
389 MDT
= &getAnalysis
<MachineDominatorTreeWrapperPass
>().getDomTree();
390 const HexagonSubtarget
&HST
= MF
.getSubtarget
<HexagonSubtarget
>();
391 TII
= HST
.getInstrInfo();
392 TRI
= HST
.getRegisterInfo();
395 if (L
->isOutermost()) {
398 Changed
|= convertToHardwareLoop(L
, L0Used
, L1Used
);
404 bool HexagonHardwareLoops::findInductionRegister(MachineLoop
*L
,
409 MachineBasicBlock
*Header
= L
->getHeader();
410 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
411 MachineBasicBlock
*Latch
= L
->getLoopLatch();
412 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
413 if (!Header
|| !Preheader
|| !Latch
|| !ExitingBlock
)
416 // This pair represents an induction register together with an immediate
417 // value that will be added to it in each loop iteration.
418 using RegisterBump
= std::pair
<Register
, int64_t>;
420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
421 // from an induction operation
423 // where bump is an immediate value.
424 using InductionMap
= std::map
<Register
, RegisterBump
>;
428 using instr_iterator
= MachineBasicBlock::instr_iterator
;
430 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
431 I
!= E
&& I
->isPHI(); ++I
) {
432 MachineInstr
*Phi
= &*I
;
434 // Have a PHI instruction. Get the operand that corresponds to the
435 // latch block, and see if is a result of an addition of form "reg+imm",
436 // where the "reg" is defined by the PHI node we are looking at.
437 for (unsigned i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2) {
438 if (Phi
->getOperand(i
+1).getMBB() != Latch
)
441 Register PhiOpReg
= Phi
->getOperand(i
).getReg();
442 MachineInstr
*DI
= MRI
->getVRegDef(PhiOpReg
);
444 if (DI
->getDesc().isAdd()) {
445 // If the register operand to the add is the PHI we're looking at, this
446 // meets the induction pattern.
447 Register IndReg
= DI
->getOperand(1).getReg();
448 MachineOperand
&Opnd2
= DI
->getOperand(2);
450 if (MRI
->getVRegDef(IndReg
) == Phi
&& checkForImmediate(Opnd2
, V
)) {
451 Register UpdReg
= DI
->getOperand(0).getReg();
452 IndMap
.insert(std::make_pair(UpdReg
, std::make_pair(IndReg
, V
)));
458 SmallVector
<MachineOperand
,2> Cond
;
459 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
460 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
465 unsigned PredPos
, PredRegFlags
;
466 if (!TII
->getPredReg(Cond
, PredR
, PredPos
, PredRegFlags
))
469 MachineInstr
*PredI
= MRI
->getVRegDef(PredR
);
470 if (!PredI
->isCompare())
473 Register CmpReg1
, CmpReg2
;
474 int64_t CmpImm
= 0, CmpMask
= 0;
476 TII
->analyzeCompare(*PredI
, CmpReg1
, CmpReg2
, CmpMask
, CmpImm
);
477 // Fail if the compare was not analyzed, or it's not comparing a register
478 // with an immediate value. Not checking the mask here, since we handle
479 // the individual compare opcodes (including A4_cmpb*) later on.
483 // Exactly one of the input registers to the comparison should be among
484 // the induction registers.
485 InductionMap::iterator IndMapEnd
= IndMap
.end();
486 InductionMap::iterator F
= IndMapEnd
;
488 InductionMap::iterator F1
= IndMap
.find(CmpReg1
);
493 InductionMap::iterator F2
= IndMap
.find(CmpReg2
);
494 if (F2
!= IndMapEnd
) {
503 Reg
= F
->second
.first
;
504 IVBump
= F
->second
.second
;
505 IVOp
= MRI
->getVRegDef(F
->first
);
509 // Return the comparison kind for the specified opcode.
510 HexagonHardwareLoops::Comparison::Kind
511 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc
,
512 MachineOperand
*InitialValue
,
513 const MachineOperand
*EndValue
,
514 int64_t IVBump
) const {
515 Comparison::Kind Cmp
= (Comparison::Kind
)0;
517 case Hexagon::C2_cmpeq
:
518 case Hexagon::C2_cmpeqi
:
519 case Hexagon::C2_cmpeqp
:
520 Cmp
= Comparison::EQ
;
522 case Hexagon::C4_cmpneq
:
523 case Hexagon::C4_cmpneqi
:
524 Cmp
= Comparison::NE
;
526 case Hexagon::C2_cmplt
:
527 Cmp
= Comparison::LTs
;
529 case Hexagon::C2_cmpltu
:
530 Cmp
= Comparison::LTu
;
532 case Hexagon::C4_cmplte
:
533 case Hexagon::C4_cmpltei
:
534 Cmp
= Comparison::LEs
;
536 case Hexagon::C4_cmplteu
:
537 case Hexagon::C4_cmplteui
:
538 Cmp
= Comparison::LEu
;
540 case Hexagon::C2_cmpgt
:
541 case Hexagon::C2_cmpgti
:
542 case Hexagon::C2_cmpgtp
:
543 Cmp
= Comparison::GTs
;
545 case Hexagon::C2_cmpgtu
:
546 case Hexagon::C2_cmpgtui
:
547 case Hexagon::C2_cmpgtup
:
548 Cmp
= Comparison::GTu
;
550 case Hexagon::C2_cmpgei
:
551 Cmp
= Comparison::GEs
;
553 case Hexagon::C2_cmpgeui
:
554 Cmp
= Comparison::GEs
;
557 return (Comparison::Kind
)0;
562 /// Analyze the statements in a loop to determine if the loop has
563 /// a computable trip count and, if so, return a value that represents
564 /// the trip count expression.
566 /// This function iterates over the phi nodes in the loop to check for
567 /// induction variable patterns that are used in the calculation for
568 /// the number of time the loop is executed.
569 CountValue
*HexagonHardwareLoops::getLoopTripCount(MachineLoop
*L
,
570 SmallVectorImpl
<MachineInstr
*> &OldInsts
) {
571 MachineBasicBlock
*TopMBB
= L
->getTopBlock();
572 MachineBasicBlock::pred_iterator PI
= TopMBB
->pred_begin();
573 assert(PI
!= TopMBB
->pred_end() &&
574 "Loop must have more than one incoming edge!");
575 MachineBasicBlock
*Backedge
= *PI
++;
576 if (PI
== TopMBB
->pred_end()) // dead loop?
578 MachineBasicBlock
*Incoming
= *PI
++;
579 if (PI
!= TopMBB
->pred_end()) // multiple backedges?
582 // Make sure there is one incoming and one backedge and determine which
584 if (L
->contains(Incoming
)) {
585 if (L
->contains(Backedge
))
587 std::swap(Incoming
, Backedge
);
588 } else if (!L
->contains(Backedge
))
591 // Look for the cmp instruction to determine if we can get a useful trip
592 // count. The trip count can be either a register or an immediate. The
593 // location of the value depends upon the type (reg or imm).
594 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
601 bool FoundIV
= findInductionRegister(L
, IVReg
, IVBump
, IVOp
);
605 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
607 MachineOperand
*InitialValue
= nullptr;
608 MachineInstr
*IV_Phi
= MRI
->getVRegDef(IVReg
);
609 MachineBasicBlock
*Latch
= L
->getLoopLatch();
610 for (unsigned i
= 1, n
= IV_Phi
->getNumOperands(); i
< n
; i
+= 2) {
611 MachineBasicBlock
*MBB
= IV_Phi
->getOperand(i
+1).getMBB();
612 if (MBB
== Preheader
)
613 InitialValue
= &IV_Phi
->getOperand(i
);
614 else if (MBB
== Latch
)
615 IVReg
= IV_Phi
->getOperand(i
).getReg(); // Want IV reg after bump.
620 SmallVector
<MachineOperand
,2> Cond
;
621 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
622 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
626 MachineBasicBlock
*Header
= L
->getHeader();
627 // TB must be non-null. If FB is also non-null, one of them must be
628 // the header. Otherwise, branch to TB could be exiting the loop, and
629 // the fall through can go to the header.
630 assert (TB
&& "Exit block without a branch?");
631 if (ExitingBlock
!= Latch
&& (TB
== Latch
|| FB
== Latch
)) {
632 MachineBasicBlock
*LTB
= nullptr, *LFB
= nullptr;
633 SmallVector
<MachineOperand
,2> LCond
;
634 bool NotAnalyzed
= TII
->analyzeBranch(*Latch
, LTB
, LFB
, LCond
, false);
638 TB
= (LTB
== Header
) ? LTB
: LFB
;
640 FB
= (LTB
== Header
) ? LTB
: LFB
;
642 assert ((!FB
|| TB
== Header
|| FB
== Header
) && "Branches not to header?");
643 if (!TB
|| (FB
&& TB
!= Header
&& FB
!= Header
))
646 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
647 // to put imm(0), followed by P in the vector Cond.
648 // If TB is not the header, it means that the "not-taken" path must lead
650 bool Negated
= TII
->predOpcodeHasNot(Cond
) ^ (TB
!= Header
);
652 unsigned PredPos
, PredRegFlags
;
653 if (!TII
->getPredReg(Cond
, PredReg
, PredPos
, PredRegFlags
))
655 MachineInstr
*CondI
= MRI
->getVRegDef(PredReg
);
656 unsigned CondOpc
= CondI
->getOpcode();
658 Register CmpReg1
, CmpReg2
;
659 int64_t Mask
= 0, ImmValue
= 0;
661 TII
->analyzeCompare(*CondI
, CmpReg1
, CmpReg2
, Mask
, ImmValue
);
665 // The comparison operator type determines how we compute the loop
667 OldInsts
.push_back(CondI
);
668 OldInsts
.push_back(IVOp
);
670 // Sadly, the following code gets information based on the position
671 // of the operands in the compare instruction. This has to be done
672 // this way, because the comparisons check for a specific relationship
673 // between the operands (e.g. is-less-than), rather than to find out
674 // what relationship the operands are in (as on PPC).
675 Comparison::Kind Cmp
;
676 bool isSwapped
= false;
677 const MachineOperand
&Op1
= CondI
->getOperand(1);
678 const MachineOperand
&Op2
= CondI
->getOperand(2);
679 const MachineOperand
*EndValue
= nullptr;
682 if (Op2
.isImm() || Op1
.getReg() == IVReg
)
693 Cmp
= getComparisonKind(CondOpc
, InitialValue
, EndValue
, IVBump
);
697 Cmp
= Comparison::getNegatedComparison(Cmp
);
699 Cmp
= Comparison::getSwappedComparison(Cmp
);
701 if (InitialValue
->isReg()) {
702 Register R
= InitialValue
->getReg();
703 MachineBasicBlock
*DefBB
= MRI
->getVRegDef(R
)->getParent();
704 if (!MDT
->properlyDominates(DefBB
, Header
)) {
706 if (!checkForImmediate(*InitialValue
, V
))
709 OldInsts
.push_back(MRI
->getVRegDef(R
));
711 if (EndValue
->isReg()) {
712 Register R
= EndValue
->getReg();
713 MachineBasicBlock
*DefBB
= MRI
->getVRegDef(R
)->getParent();
714 if (!MDT
->properlyDominates(DefBB
, Header
)) {
716 if (!checkForImmediate(*EndValue
, V
))
719 OldInsts
.push_back(MRI
->getVRegDef(R
));
722 return computeCount(L
, InitialValue
, EndValue
, IVReg
, IVBump
, Cmp
);
725 /// Helper function that returns the expression that represents the
726 /// number of times a loop iterates. The function takes the operands that
727 /// represent the loop start value, loop end value, and induction value.
728 /// Based upon these operands, the function attempts to compute the trip count.
729 CountValue
*HexagonHardwareLoops::computeCount(MachineLoop
*Loop
,
730 const MachineOperand
*Start
,
731 const MachineOperand
*End
,
734 Comparison::Kind Cmp
) const {
735 // Cannot handle comparison EQ, i.e. while (A == B).
736 if (Cmp
== Comparison::EQ
)
739 // Check if either the start or end values are an assignment of an immediate.
740 // If so, use the immediate value rather than the register.
741 if (Start
->isReg()) {
742 const MachineInstr
*StartValInstr
= MRI
->getVRegDef(Start
->getReg());
743 if (StartValInstr
&& (StartValInstr
->getOpcode() == Hexagon::A2_tfrsi
||
744 StartValInstr
->getOpcode() == Hexagon::A2_tfrpi
))
745 Start
= &StartValInstr
->getOperand(1);
748 const MachineInstr
*EndValInstr
= MRI
->getVRegDef(End
->getReg());
749 if (EndValInstr
&& (EndValInstr
->getOpcode() == Hexagon::A2_tfrsi
||
750 EndValInstr
->getOpcode() == Hexagon::A2_tfrpi
))
751 End
= &EndValInstr
->getOperand(1);
754 if (!Start
->isReg() && !Start
->isImm())
756 if (!End
->isReg() && !End
->isImm())
759 bool CmpLess
= Cmp
& Comparison::L
;
760 bool CmpGreater
= Cmp
& Comparison::G
;
761 bool CmpHasEqual
= Cmp
& Comparison::EQ
;
763 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
764 if (CmpLess
&& IVBump
< 0)
765 // Loop going while iv is "less" with the iv value going down. Must wrap.
768 if (CmpGreater
&& IVBump
> 0)
769 // Loop going while iv is "greater" with the iv value going up. Must wrap.
772 // Phis that may feed into the loop.
773 LoopFeederMap LoopFeederPhi
;
775 // Check if the initial value may be zero and can be decremented in the first
776 // iteration. If the value is zero, the endloop instruction will not decrement
777 // the loop counter, so we shouldn't generate a hardware loop in this case.
778 if (loopCountMayWrapOrUnderFlow(Start
, End
, Loop
->getLoopPreheader(), Loop
,
782 if (Start
->isImm() && End
->isImm()) {
783 // Both, start and end are immediates.
784 int64_t StartV
= Start
->getImm();
785 int64_t EndV
= End
->getImm();
786 int64_t Dist
= EndV
- StartV
;
790 bool Exact
= (Dist
% IVBump
) == 0;
792 if (Cmp
== Comparison::NE
) {
795 if ((Dist
< 0) ^ (IVBump
< 0))
799 // For comparisons that include the final value (i.e. include equality
800 // with the final value), we need to increase the distance by 1.
802 Dist
= Dist
> 0 ? Dist
+1 : Dist
-1;
804 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
805 // CmpGreater should imply Dist < 0. These conditions could actually
806 // fail, for example, in unreachable code (which may still appear to be
807 // reachable in the CFG).
808 if ((CmpLess
&& Dist
< 0) || (CmpGreater
&& Dist
> 0))
811 // "Normalized" distance, i.e. with the bump set to +-1.
812 int64_t Dist1
= (IVBump
> 0) ? (Dist
+ (IVBump
- 1)) / IVBump
813 : (-Dist
+ (-IVBump
- 1)) / (-IVBump
);
814 assert (Dist1
> 0 && "Fishy thing. Both operands have the same sign.");
816 uint64_t Count
= Dist1
;
818 if (Count
> 0xFFFFFFFFULL
)
821 return new CountValue(CountValue::CV_Immediate
, Count
);
824 // A general case: Start and End are some values, but the actual
825 // iteration count may not be available. If it is not, insert
826 // a computation of it into the preheader.
828 // If the induction variable bump is not a power of 2, quit.
829 // Othwerise we'd need a general integer division.
830 if (!isPowerOf2_64(std::abs(IVBump
)))
833 MachineBasicBlock
*PH
= MLI
->findLoopPreheader(Loop
, SpecPreheader
);
834 assert (PH
&& "Should have a preheader by now");
835 MachineBasicBlock::iterator InsertPos
= PH
->getFirstTerminator();
837 if (InsertPos
!= PH
->end())
838 DL
= InsertPos
->getDebugLoc();
840 // If Start is an immediate and End is a register, the trip count
841 // will be "reg - imm". Hexagon's "subtract immediate" instruction
842 // is actually "reg + -imm".
844 // If the loop IV is going downwards, i.e. if the bump is negative,
845 // then the iteration count (computed as End-Start) will need to be
846 // negated. To avoid the negation, just swap Start and End.
848 std::swap(Start
, End
);
851 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
852 // Signedness, and "including equality" are preserved.
854 bool RegToImm
= Start
->isReg() && End
->isImm(); // for (reg..imm)
855 bool RegToReg
= Start
->isReg() && End
->isReg(); // for (reg..reg)
857 int64_t StartV
= 0, EndV
= 0;
859 StartV
= Start
->getImm();
861 EndV
= End
->getImm();
864 // To compute the iteration count, we would need this computation:
865 // Count = (End - Start + (IVBump-1)) / IVBump
866 // or, when CmpHasEqual:
867 // Count = (End - Start + (IVBump-1)+1) / IVBump
868 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
869 // generating an instruction specifically to add it if we can adjust
870 // the immediate values for Start or End.
873 // Need to add 1 to the total iteration count.
876 else if (End
->isImm())
882 if (Cmp
!= Comparison::NE
) {
884 StartV
-= (IVBump
-1);
885 else if (End
->isImm())
893 if (Start
->isReg()) {
895 SR
= Start
->getSubReg();
898 SR
= End
->getSubReg();
900 const TargetRegisterClass
*RC
= MRI
->getRegClass(R
);
901 // Hardware loops cannot handle 64-bit registers. If it's a double
902 // register, it has to have a subregister.
903 if (!SR
&& RC
== &Hexagon::DoubleRegsRegClass
)
905 const TargetRegisterClass
*IntRC
= &Hexagon::IntRegsRegClass
;
907 // Compute DistR (register with the distance between Start and End).
911 // Avoid special case, where the start value is an imm(0).
912 if (Start
->isImm() && StartV
== 0) {
913 DistR
= End
->getReg();
914 DistSR
= End
->getSubReg();
916 const MCInstrDesc
&SubD
= RegToReg
? TII
->get(Hexagon::A2_sub
) :
917 (RegToImm
? TII
->get(Hexagon::A2_subri
) :
918 TII
->get(Hexagon::A2_addi
));
919 if (RegToReg
|| RegToImm
) {
920 Register SubR
= MRI
->createVirtualRegister(IntRC
);
921 MachineInstrBuilder SubIB
=
922 BuildMI(*PH
, InsertPos
, DL
, SubD
, SubR
);
925 SubIB
.addReg(End
->getReg(), 0, End
->getSubReg())
926 .addReg(Start
->getReg(), 0, Start
->getSubReg());
929 .addReg(Start
->getReg(), 0, Start
->getSubReg());
932 // If the loop has been unrolled, we should use the original loop count
933 // instead of recalculating the value. This will avoid additional
934 // 'Add' instruction.
935 const MachineInstr
*EndValInstr
= MRI
->getVRegDef(End
->getReg());
936 if (EndValInstr
->getOpcode() == Hexagon::A2_addi
&&
937 EndValInstr
->getOperand(1).getSubReg() == 0 &&
938 EndValInstr
->getOperand(2).getImm() == StartV
) {
939 DistR
= EndValInstr
->getOperand(1).getReg();
941 Register SubR
= MRI
->createVirtualRegister(IntRC
);
942 MachineInstrBuilder SubIB
=
943 BuildMI(*PH
, InsertPos
, DL
, SubD
, SubR
);
944 SubIB
.addReg(End
->getReg(), 0, End
->getSubReg())
952 // From DistR, compute AdjR (register with the adjusted distance).
960 // Generate CountR = ADD DistR, AdjVal
961 Register AddR
= MRI
->createVirtualRegister(IntRC
);
962 MCInstrDesc
const &AddD
= TII
->get(Hexagon::A2_addi
);
963 BuildMI(*PH
, InsertPos
, DL
, AddD
, AddR
)
964 .addReg(DistR
, 0, DistSR
)
971 // From AdjR, compute CountR (register with the final count).
979 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
980 unsigned Shift
= Log2_32(IVBump
);
982 // Generate NormR = LSR DistR, Shift.
983 Register LsrR
= MRI
->createVirtualRegister(IntRC
);
984 const MCInstrDesc
&LsrD
= TII
->get(Hexagon::S2_lsr_i_r
);
985 BuildMI(*PH
, InsertPos
, DL
, LsrD
, LsrR
)
986 .addReg(AdjR
, 0, AdjSR
)
993 return new CountValue(CountValue::CV_Register
, CountR
, CountSR
);
996 /// Return true if the operation is invalid within hardware loop.
997 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr
*MI
,
998 bool IsInnerHWLoop
) const {
999 // Call is not allowed because the callee may use a hardware loop except for
1000 // the case when the call never returns.
1001 if (MI
->getDesc().isCall())
1002 return !TII
->doesNotReturn(*MI
);
1004 // Check if the instruction defines a hardware loop register.
1005 using namespace Hexagon
;
1007 static const Register Regs01
[] = { LC0
, SA0
, LC1
, SA1
};
1008 static const Register Regs1
[] = { LC1
, SA1
};
1009 auto CheckRegs
= IsInnerHWLoop
? ArrayRef(Regs01
) : ArrayRef(Regs1
);
1010 for (Register R
: CheckRegs
)
1011 if (MI
->modifiesRegister(R
, TRI
))
1017 /// Return true if the loop contains an instruction that inhibits
1018 /// the use of the hardware loop instruction.
1019 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop
*L
,
1020 bool IsInnerHWLoop
) const {
1021 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1022 << printMBBReference(**L
->block_begin()));
1023 for (MachineBasicBlock
*MBB
: L
->getBlocks()) {
1024 for (const MachineInstr
&MI
: *MBB
) {
1025 if (isInvalidLoopOperation(&MI
, IsInnerHWLoop
)) {
1026 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1035 /// Returns true if the instruction is dead. This was essentially
1036 /// copied from DeadMachineInstructionElim::isDead, but with special cases
1037 /// for inline asm, physical registers and instructions with side effects
1039 bool HexagonHardwareLoops::isDead(const MachineInstr
*MI
,
1040 SmallVectorImpl
<MachineInstr
*> &DeadPhis
) const {
1041 // Examine each operand.
1042 for (const MachineOperand
&MO
: MI
->operands()) {
1043 if (!MO
.isReg() || !MO
.isDef())
1046 Register Reg
= MO
.getReg();
1047 if (MRI
->use_nodbg_empty(Reg
))
1050 using use_nodbg_iterator
= MachineRegisterInfo::use_nodbg_iterator
;
1052 // This instruction has users, but if the only user is the phi node for the
1053 // parent block, and the only use of that phi node is this instruction, then
1054 // this instruction is dead: both it (and the phi node) can be removed.
1055 use_nodbg_iterator I
= MRI
->use_nodbg_begin(Reg
);
1056 use_nodbg_iterator End
= MRI
->use_nodbg_end();
1057 if (std::next(I
) != End
|| !I
->getParent()->isPHI())
1060 MachineInstr
*OnePhi
= I
->getParent();
1061 for (const MachineOperand
&OPO
: OnePhi
->operands()) {
1062 if (!OPO
.isReg() || !OPO
.isDef())
1065 Register OPReg
= OPO
.getReg();
1066 use_nodbg_iterator nextJ
;
1067 for (use_nodbg_iterator J
= MRI
->use_nodbg_begin(OPReg
);
1068 J
!= End
; J
= nextJ
) {
1069 nextJ
= std::next(J
);
1070 MachineOperand
&Use
= *J
;
1071 MachineInstr
*UseMI
= Use
.getParent();
1073 // If the phi node has a user that is not MI, bail.
1078 DeadPhis
.push_back(OnePhi
);
1081 // If there are no defs with uses, the instruction is dead.
1085 void HexagonHardwareLoops::removeIfDead(MachineInstr
*MI
) {
1086 // This procedure was essentially copied from DeadMachineInstructionElim.
1088 SmallVector
<MachineInstr
*, 1> DeadPhis
;
1089 if (isDead(MI
, DeadPhis
)) {
1090 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI
);
1092 // It is possible that some DBG_VALUE instructions refer to this
1093 // instruction. Examine each def operand for such references;
1094 // if found, mark the DBG_VALUE as undef (but don't delete it).
1095 for (const MachineOperand
&MO
: MI
->operands()) {
1096 if (!MO
.isReg() || !MO
.isDef())
1098 Register Reg
= MO
.getReg();
1099 // We use make_early_inc_range here because setReg below invalidates the
1101 for (MachineOperand
&MO
:
1102 llvm::make_early_inc_range(MRI
->use_operands(Reg
))) {
1103 MachineInstr
*UseMI
= MO
.getParent();
1111 MI
->eraseFromParent();
1112 for (unsigned i
= 0; i
< DeadPhis
.size(); ++i
)
1113 DeadPhis
[i
]->eraseFromParent();
1117 /// Check if the loop is a candidate for converting to a hardware
1118 /// loop. If so, then perform the transformation.
1120 /// This function works on innermost loops first. A loop can be converted
1121 /// if it is a counting loop; either a register value or an immediate.
1123 /// The code makes several assumptions about the representation of the loop
1125 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop
*L
,
1128 // This is just to confirm basic correctness.
1129 assert(L
->getHeader() && "Loop without a header?");
1131 bool Changed
= false;
1132 bool L0Used
= false;
1133 bool L1Used
= false;
1135 // Process nested loops first.
1136 for (MachineLoop
*I
: *L
) {
1137 Changed
|= convertToHardwareLoop(I
, RecL0used
, RecL1used
);
1138 L0Used
|= RecL0used
;
1139 L1Used
|= RecL1used
;
1142 // If a nested loop has been converted, then we can't convert this loop.
1143 if (Changed
&& L0Used
&& L1Used
)
1150 // Flag used to track loopN instruction:
1151 // 1 - Hardware loop is being generated for the inner most loop.
1152 // 0 - Hardware loop is being generated for the outer loop.
1153 unsigned IsInnerHWLoop
= 1;
1156 LOOP_i
= Hexagon::J2_loop1i
;
1157 LOOP_r
= Hexagon::J2_loop1r
;
1158 ENDLOOP
= Hexagon::ENDLOOP1
;
1161 LOOP_i
= Hexagon::J2_loop0i
;
1162 LOOP_r
= Hexagon::J2_loop0r
;
1163 ENDLOOP
= Hexagon::ENDLOOP0
;
1167 // Stop trying after reaching the limit (if any).
1168 int Limit
= HWLoopLimit
;
1170 if (Counter
>= HWLoopLimit
)
1176 // Does the loop contain any invalid instructions?
1177 if (containsInvalidInstruction(L
, IsInnerHWLoop
))
1180 MachineBasicBlock
*LastMBB
= L
->findLoopControlBlock();
1181 // Don't generate hw loop if the loop has more than one exit.
1185 MachineBasicBlock::iterator LastI
= LastMBB
->getFirstTerminator();
1186 if (LastI
== LastMBB
->end())
1189 // Is the induction variable bump feeding the latch condition?
1190 if (!fixupInductionVariable(L
))
1193 // Ensure the loop has a preheader: the loop instruction will be
1195 MachineBasicBlock
*Preheader
= MLI
->findLoopPreheader(L
, SpecPreheader
);
1197 Preheader
= createPreheaderForLoop(L
);
1202 MachineBasicBlock::iterator InsertPos
= Preheader
->getFirstTerminator();
1204 SmallVector
<MachineInstr
*, 2> OldInsts
;
1205 // Are we able to determine the trip count for the loop?
1206 CountValue
*TripCount
= getLoopTripCount(L
, OldInsts
);
1210 // Is the trip count available in the preheader?
1211 if (TripCount
->isReg()) {
1212 // There will be a use of the register inserted into the preheader,
1213 // so make sure that the register is actually defined at that point.
1214 MachineInstr
*TCDef
= MRI
->getVRegDef(TripCount
->getReg());
1215 MachineBasicBlock
*BBDef
= TCDef
->getParent();
1216 if (!MDT
->dominates(BBDef
, Preheader
))
1220 // Determine the loop start.
1221 MachineBasicBlock
*TopBlock
= L
->getTopBlock();
1222 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1223 MachineBasicBlock
*LoopStart
= nullptr;
1224 if (ExitingBlock
!= L
->getLoopLatch()) {
1225 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1226 SmallVector
<MachineOperand
, 2> Cond
;
1228 if (TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false))
1231 if (L
->contains(TB
))
1233 else if (L
->contains(FB
))
1239 LoopStart
= TopBlock
;
1241 // Convert the loop to a hardware loop.
1242 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L
->dump());
1244 if (InsertPos
!= Preheader
->end())
1245 DL
= InsertPos
->getDebugLoc();
1247 if (TripCount
->isReg()) {
1248 // Create a copy of the loop count register.
1249 Register CountReg
= MRI
->createVirtualRegister(&Hexagon::IntRegsRegClass
);
1250 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(TargetOpcode::COPY
), CountReg
)
1251 .addReg(TripCount
->getReg(), 0, TripCount
->getSubReg());
1252 // Add the Loop instruction to the beginning of the loop.
1253 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_r
)).addMBB(LoopStart
)
1256 assert(TripCount
->isImm() && "Expecting immediate value for trip count");
1257 // Add the Loop immediate instruction to the beginning of the loop,
1258 // if the immediate fits in the instructions. Otherwise, we need to
1259 // create a new virtual register.
1260 int64_t CountImm
= TripCount
->getImm();
1261 if (!TII
->isValidOffset(LOOP_i
, CountImm
, TRI
)) {
1262 Register CountReg
= MRI
->createVirtualRegister(&Hexagon::IntRegsRegClass
);
1263 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(Hexagon::A2_tfrsi
), CountReg
)
1265 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_r
))
1266 .addMBB(LoopStart
).addReg(CountReg
);
1268 BuildMI(*Preheader
, InsertPos
, DL
, TII
->get(LOOP_i
))
1269 .addMBB(LoopStart
).addImm(CountImm
);
1272 // Make sure the loop start always has a reference in the CFG.
1273 LoopStart
->setMachineBlockAddressTaken();
1275 // Replace the loop branch with an endloop instruction.
1276 DebugLoc LastIDL
= LastI
->getDebugLoc();
1277 BuildMI(*LastMBB
, LastI
, LastIDL
, TII
->get(ENDLOOP
)).addMBB(LoopStart
);
1279 // The loop ends with either:
1280 // - a conditional branch followed by an unconditional branch, or
1281 // - a conditional branch to the loop start.
1282 if (LastI
->getOpcode() == Hexagon::J2_jumpt
||
1283 LastI
->getOpcode() == Hexagon::J2_jumpf
) {
1284 // Delete one and change/add an uncond. branch to out of the loop.
1285 MachineBasicBlock
*BranchTarget
= LastI
->getOperand(1).getMBB();
1286 LastI
= LastMBB
->erase(LastI
);
1287 if (!L
->contains(BranchTarget
)) {
1288 if (LastI
!= LastMBB
->end())
1289 LastI
= LastMBB
->erase(LastI
);
1290 SmallVector
<MachineOperand
, 0> Cond
;
1291 TII
->insertBranch(*LastMBB
, BranchTarget
, nullptr, Cond
, LastIDL
);
1294 // Conditional branch to loop start; just delete it.
1295 LastMBB
->erase(LastI
);
1299 // The induction operation and the comparison may now be
1300 // unneeded. If these are unneeded, then remove them.
1301 for (unsigned i
= 0; i
< OldInsts
.size(); ++i
)
1302 removeIfDead(OldInsts
[i
]);
1306 // Set RecL1used and RecL0used only after hardware loop has been
1307 // successfully generated. Doing it earlier can cause wrong loop instruction
1309 if (L0Used
) // Loop0 was already used. So, the correct loop must be loop1.
1317 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr
*BumpI
,
1318 MachineInstr
*CmpI
) {
1319 assert (BumpI
!= CmpI
&& "Bump and compare in the same instruction?");
1321 MachineBasicBlock
*BB
= BumpI
->getParent();
1322 if (CmpI
->getParent() != BB
)
1325 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1327 // Check if things are in order to begin with.
1328 for (instr_iterator
I(BumpI
), E
= BB
->instr_end(); I
!= E
; ++I
)
1333 Register PredR
= CmpI
->getOperand(0).getReg();
1334 bool FoundBump
= false;
1335 instr_iterator CmpIt
= CmpI
->getIterator(), NextIt
= std::next(CmpIt
);
1336 for (instr_iterator I
= NextIt
, E
= BB
->instr_end(); I
!= E
; ++I
) {
1337 MachineInstr
*In
= &*I
;
1338 for (unsigned i
= 0, n
= In
->getNumOperands(); i
< n
; ++i
) {
1339 MachineOperand
&MO
= In
->getOperand(i
);
1340 if (MO
.isReg() && MO
.isUse()) {
1341 if (MO
.getReg() == PredR
) // Found an intervening use of PredR.
1347 BB
->splice(++BumpI
->getIterator(), BB
, CmpI
->getIterator());
1352 assert (FoundBump
&& "Cannot determine instruction order");
1356 /// This function is required to break recursion. Visiting phis in a loop may
1357 /// result in recursion during compilation. We break the recursion by making
1358 /// sure that we visit a MachineOperand and its definition in a
1359 /// MachineInstruction only once. If we attempt to visit more than once, then
1360 /// there is recursion, and will return false.
1361 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop
*L
, MachineBasicBlock
*A
,
1363 const MachineOperand
*MO
,
1364 LoopFeederMap
&LoopFeederPhi
) const {
1365 if (LoopFeederPhi
.find(MO
->getReg()) == LoopFeederPhi
.end()) {
1366 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1367 << printMBBReference(**L
->block_begin()));
1368 // Ignore all BBs that form Loop.
1369 if (llvm::is_contained(L
->getBlocks(), A
))
1371 MachineInstr
*Def
= MRI
->getVRegDef(MO
->getReg());
1372 LoopFeederPhi
.insert(std::make_pair(MO
->getReg(), Def
));
1375 // Already visited node.
1379 /// Return true if a Phi may generate a value that can underflow.
1380 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1381 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1382 MachineInstr
*Phi
, const MachineOperand
*EndVal
, MachineBasicBlock
*MBB
,
1383 MachineLoop
*L
, LoopFeederMap
&LoopFeederPhi
) const {
1384 assert(Phi
->isPHI() && "Expecting a Phi.");
1385 // Walk through each Phi, and its used operands. Make sure that
1386 // if there is recursion in Phi, we won't generate hardware loops.
1387 for (int i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2)
1388 if (isLoopFeeder(L
, MBB
, Phi
, &(Phi
->getOperand(i
)), LoopFeederPhi
))
1389 if (loopCountMayWrapOrUnderFlow(&(Phi
->getOperand(i
)), EndVal
,
1390 Phi
->getParent(), L
, LoopFeederPhi
))
1395 /// Return true if the induction variable can underflow in the first iteration.
1396 /// An example, is an initial unsigned value that is 0 and is decrement in the
1397 /// first itertion of a do-while loop. In this case, we cannot generate a
1398 /// hardware loop because the endloop instruction does not decrement the loop
1399 /// counter if it is <= 1. We only need to perform this analysis if the
1400 /// initial value is a register.
1402 /// This function assumes the initial value may underfow unless proven
1403 /// otherwise. If the type is signed, then we don't care because signed
1404 /// underflow is undefined. We attempt to prove the initial value is not
1405 /// zero by perfoming a crude analysis of the loop counter. This function
1406 /// checks if the initial value is used in any comparison prior to the loop
1407 /// and, if so, assumes the comparison is a range check. This is inexact,
1408 /// but will catch the simple cases.
1409 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1410 const MachineOperand
*InitVal
, const MachineOperand
*EndVal
,
1411 MachineBasicBlock
*MBB
, MachineLoop
*L
,
1412 LoopFeederMap
&LoopFeederPhi
) const {
1413 // Only check register values since they are unknown.
1414 if (!InitVal
->isReg())
1417 if (!EndVal
->isImm())
1420 // A register value that is assigned an immediate is a known value, and it
1421 // won't underflow in the first iteration.
1423 if (checkForImmediate(*InitVal
, Imm
))
1424 return (EndVal
->getImm() == Imm
);
1426 Register Reg
= InitVal
->getReg();
1428 // We don't know the value of a physical register.
1429 if (!Reg
.isVirtual())
1432 MachineInstr
*Def
= MRI
->getVRegDef(Reg
);
1436 // If the initial value is a Phi or copy and the operands may not underflow,
1437 // then the definition cannot be underflow either.
1438 if (Def
->isPHI() && !phiMayWrapOrUnderflow(Def
, EndVal
, Def
->getParent(),
1441 if (Def
->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def
->getOperand(1)),
1442 EndVal
, Def
->getParent(),
1446 // Iterate over the uses of the initial value. If the initial value is used
1447 // in a compare, then we assume this is a range check that ensures the loop
1448 // doesn't underflow. This is not an exact test and should be improved.
1449 for (MachineRegisterInfo::use_instr_nodbg_iterator I
= MRI
->use_instr_nodbg_begin(Reg
),
1450 E
= MRI
->use_instr_nodbg_end(); I
!= E
; ++I
) {
1451 MachineInstr
*MI
= &*I
;
1452 Register CmpReg1
, CmpReg2
;
1453 int64_t CmpMask
= 0, CmpValue
= 0;
1455 if (!TII
->analyzeCompare(*MI
, CmpReg1
, CmpReg2
, CmpMask
, CmpValue
))
1458 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1459 SmallVector
<MachineOperand
, 2> Cond
;
1460 if (TII
->analyzeBranch(*MI
->getParent(), TBB
, FBB
, Cond
, false))
1463 Comparison::Kind Cmp
=
1464 getComparisonKind(MI
->getOpcode(), nullptr, nullptr, 0);
1467 if (TII
->predOpcodeHasNot(Cond
) ^ (TBB
!= MBB
))
1468 Cmp
= Comparison::getNegatedComparison(Cmp
);
1469 if (CmpReg2
!= 0 && CmpReg2
== Reg
)
1470 Cmp
= Comparison::getSwappedComparison(Cmp
);
1472 // Signed underflow is undefined.
1473 if (Comparison::isSigned(Cmp
))
1476 // Check if there is a comparison of the initial value. If the initial value
1477 // is greater than or not equal to another value, then assume this is a
1479 if ((Cmp
& Comparison::G
) || Cmp
== Comparison::NE
)
1483 // OK - this is a hack that needs to be improved. We really need to analyze
1484 // the instructions performed on the initial value. This works on the simplest
1486 if (!Def
->isCopy() && !Def
->isPHI())
1492 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand
&MO
,
1493 int64_t &Val
) const {
1501 // MO is a register. Check whether it is defined as an immediate value,
1502 // and if so, get the value of it in TV. That value will then need to be
1503 // processed to handle potential subregisters in MO.
1506 Register R
= MO
.getReg();
1509 MachineInstr
*DI
= MRI
->getVRegDef(R
);
1510 unsigned DOpc
= DI
->getOpcode();
1512 case TargetOpcode::COPY
:
1513 case Hexagon::A2_tfrsi
:
1514 case Hexagon::A2_tfrpi
:
1515 case Hexagon::CONST32
:
1516 case Hexagon::CONST64
:
1517 // Call recursively to avoid an extra check whether operand(1) is
1518 // indeed an immediate (it could be a global address, for example),
1519 // plus we can handle COPY at the same time.
1520 if (!checkForImmediate(DI
->getOperand(1), TV
))
1523 case Hexagon::A2_combineii
:
1524 case Hexagon::A4_combineir
:
1525 case Hexagon::A4_combineii
:
1526 case Hexagon::A4_combineri
:
1527 case Hexagon::A2_combinew
: {
1528 const MachineOperand
&S1
= DI
->getOperand(1);
1529 const MachineOperand
&S2
= DI
->getOperand(2);
1531 if (!checkForImmediate(S1
, V1
) || !checkForImmediate(S2
, V2
))
1533 TV
= V2
| (static_cast<uint64_t>(V1
) << 32);
1536 case TargetOpcode::REG_SEQUENCE
: {
1537 const MachineOperand
&S1
= DI
->getOperand(1);
1538 const MachineOperand
&S3
= DI
->getOperand(3);
1540 if (!checkForImmediate(S1
, V1
) || !checkForImmediate(S3
, V3
))
1542 unsigned Sub2
= DI
->getOperand(2).getImm();
1543 unsigned Sub4
= DI
->getOperand(4).getImm();
1544 if (Sub2
== Hexagon::isub_lo
&& Sub4
== Hexagon::isub_hi
)
1545 TV
= V1
| (V3
<< 32);
1546 else if (Sub2
== Hexagon::isub_hi
&& Sub4
== Hexagon::isub_lo
)
1547 TV
= V3
| (V1
<< 32);
1549 llvm_unreachable("Unexpected form of REG_SEQUENCE");
1557 // By now, we should have successfully obtained the immediate value defining
1558 // the register referenced in MO. Handle a potential use of a subregister.
1559 switch (MO
.getSubReg()) {
1560 case Hexagon::isub_lo
:
1561 Val
= TV
& 0xFFFFFFFFULL
;
1563 case Hexagon::isub_hi
:
1564 Val
= (TV
>> 32) & 0xFFFFFFFFULL
;
1573 void HexagonHardwareLoops::setImmediate(MachineOperand
&MO
, int64_t Val
) {
1580 Register R
= MO
.getReg();
1581 MachineInstr
*DI
= MRI
->getVRegDef(R
);
1583 const TargetRegisterClass
*RC
= MRI
->getRegClass(R
);
1584 Register NewR
= MRI
->createVirtualRegister(RC
);
1585 MachineBasicBlock
&B
= *DI
->getParent();
1586 DebugLoc DL
= DI
->getDebugLoc();
1587 BuildMI(B
, DI
, DL
, TII
->get(DI
->getOpcode()), NewR
).addImm(Val
);
1591 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop
*L
) {
1592 MachineBasicBlock
*Header
= L
->getHeader();
1593 MachineBasicBlock
*Latch
= L
->getLoopLatch();
1594 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1596 if (!(Header
&& Latch
&& ExitingBlock
))
1599 // These data structures follow the same concept as the corresponding
1600 // ones in findInductionRegister (where some comments are).
1601 using RegisterBump
= std::pair
<Register
, int64_t>;
1602 using RegisterInduction
= std::pair
<Register
, RegisterBump
>;
1603 using RegisterInductionSet
= std::set
<RegisterInduction
>;
1605 // Register candidates for induction variables, with their associated bumps.
1606 RegisterInductionSet IndRegs
;
1608 // Look for induction patterns:
1609 // %1 = PHI ..., [ latch, %2 ]
1611 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1613 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1614 I
!= E
&& I
->isPHI(); ++I
) {
1615 MachineInstr
*Phi
= &*I
;
1617 // Have a PHI instruction.
1618 for (unsigned i
= 1, n
= Phi
->getNumOperands(); i
< n
; i
+= 2) {
1619 if (Phi
->getOperand(i
+1).getMBB() != Latch
)
1622 Register PhiReg
= Phi
->getOperand(i
).getReg();
1623 MachineInstr
*DI
= MRI
->getVRegDef(PhiReg
);
1625 if (DI
->getDesc().isAdd()) {
1626 // If the register operand to the add/sub is the PHI we are looking
1627 // at, this meets the induction pattern.
1628 Register IndReg
= DI
->getOperand(1).getReg();
1629 MachineOperand
&Opnd2
= DI
->getOperand(2);
1631 if (MRI
->getVRegDef(IndReg
) == Phi
&& checkForImmediate(Opnd2
, V
)) {
1632 Register UpdReg
= DI
->getOperand(0).getReg();
1633 IndRegs
.insert(std::make_pair(UpdReg
, std::make_pair(IndReg
, V
)));
1639 if (IndRegs
.empty())
1642 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1643 SmallVector
<MachineOperand
,2> Cond
;
1644 // analyzeBranch returns true if it fails to analyze branch.
1645 bool NotAnalyzed
= TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Cond
, false);
1646 if (NotAnalyzed
|| Cond
.empty())
1649 if (ExitingBlock
!= Latch
&& (TB
== Latch
|| FB
== Latch
)) {
1650 MachineBasicBlock
*LTB
= nullptr, *LFB
= nullptr;
1651 SmallVector
<MachineOperand
,2> LCond
;
1652 bool NotAnalyzed
= TII
->analyzeBranch(*Latch
, LTB
, LFB
, LCond
, false);
1656 // Since latch is not the exiting block, the latch branch should be an
1657 // unconditional branch to the loop header.
1659 TB
= (LTB
== Header
) ? LTB
: LFB
;
1661 FB
= (LTB
== Header
) ? LTB
: LFB
;
1665 // The latch/exit block does not go back to the header.
1668 // FB is the header (i.e., uncond. jump to branch header)
1669 // In this case, the LoopBody -> TB should not be a back edge otherwise
1670 // it could result in an infinite loop after conversion to hw_loop.
1671 // This case can happen when the Latch has two jumps like this:
1672 // Jmp_c OuterLoopHeader <-- TB
1673 // Jmp InnerLoopHeader <-- FB
1674 if (MDT
->dominates(TB
, FB
))
1678 // Expecting a predicate register as a condition. It won't be a hardware
1679 // predicate register at this point yet, just a vreg.
1680 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1681 // into Cond, followed by the predicate register. For non-negated branches
1682 // it's just the register.
1683 unsigned CSz
= Cond
.size();
1684 if (CSz
!= 1 && CSz
!= 2)
1687 if (!Cond
[CSz
-1].isReg())
1690 Register P
= Cond
[CSz
- 1].getReg();
1691 MachineInstr
*PredDef
= MRI
->getVRegDef(P
);
1693 if (!PredDef
->isCompare())
1696 SmallSet
<Register
,2> CmpRegs
;
1697 MachineOperand
*CmpImmOp
= nullptr;
1699 // Go over all operands to the compare and look for immediate and register
1700 // operands. Assume that if the compare has a single register use and a
1701 // single immediate operand, then the register is being compared with the
1703 for (MachineOperand
&MO
: PredDef
->operands()) {
1705 // Skip all implicit references. In one case there was:
1706 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1707 if (MO
.isImplicit())
1710 if (!isImmediate(MO
)) {
1711 CmpRegs
.insert(MO
.getReg());
1714 // Consider the register to be the "immediate" operand.
1719 } else if (MO
.isImm()) {
1720 if (CmpImmOp
) // A second immediate argument? Confusing. Bail out.
1726 if (CmpRegs
.empty())
1729 // Check if the compared register follows the order we want. Fix if needed.
1730 for (RegisterInductionSet::iterator I
= IndRegs
.begin(), E
= IndRegs
.end();
1732 // This is a success. If the register used in the comparison is one that
1733 // we have identified as a bumped (updated) induction register, there is
1735 if (CmpRegs
.count(I
->first
))
1738 // Otherwise, if the register being compared comes out of a PHI node,
1739 // and has been recognized as following the induction pattern, and is
1740 // compared against an immediate, we can fix it.
1741 const RegisterBump
&RB
= I
->second
;
1742 if (CmpRegs
.count(RB
.first
)) {
1744 // If both operands to the compare instruction are registers, see if
1745 // it can be changed to use induction register as one of the operands.
1746 MachineInstr
*IndI
= nullptr;
1747 MachineInstr
*nonIndI
= nullptr;
1748 MachineOperand
*IndMO
= nullptr;
1749 MachineOperand
*nonIndMO
= nullptr;
1751 for (unsigned i
= 1, n
= PredDef
->getNumOperands(); i
< n
; ++i
) {
1752 MachineOperand
&MO
= PredDef
->getOperand(i
);
1753 if (MO
.isReg() && MO
.getReg() == RB
.first
) {
1754 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1755 << ") = " << *(MRI
->getVRegDef(I
->first
)));
1759 IndI
= MRI
->getVRegDef(I
->first
);
1761 } else if (MO
.isReg()) {
1762 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1763 << ") = " << *(MRI
->getVRegDef(MO
.getReg())));
1767 nonIndI
= MRI
->getVRegDef(MO
.getReg());
1771 if (IndI
&& nonIndI
&&
1772 nonIndI
->getOpcode() == Hexagon::A2_addi
&&
1773 nonIndI
->getOperand(2).isImm() &&
1774 nonIndI
->getOperand(2).getImm() == - RB
.second
) {
1775 bool Order
= orderBumpCompare(IndI
, PredDef
);
1777 IndMO
->setReg(I
->first
);
1778 nonIndMO
->setReg(nonIndI
->getOperand(1).getReg());
1785 // It is not valid to do this transformation on an unsigned comparison
1786 // because it may underflow.
1787 Comparison::Kind Cmp
=
1788 getComparisonKind(PredDef
->getOpcode(), nullptr, nullptr, 0);
1789 if (!Cmp
|| Comparison::isUnsigned(Cmp
))
1792 // If the register is being compared against an immediate, try changing
1793 // the compare instruction to use induction register and adjust the
1794 // immediate operand.
1795 int64_t CmpImm
= getImmediate(*CmpImmOp
);
1796 int64_t V
= RB
.second
;
1797 // Handle Overflow (64-bit).
1798 if (((V
> 0) && (CmpImm
> INT64_MAX
- V
)) ||
1799 ((V
< 0) && (CmpImm
< INT64_MIN
- V
)))
1802 // Most comparisons of register against an immediate value allow
1803 // the immediate to be constant-extended. There are some exceptions
1804 // though. Make sure the new combination will work.
1805 if (CmpImmOp
->isImm() && !TII
->isExtendable(*PredDef
) &&
1806 !TII
->isValidOffset(PredDef
->getOpcode(), CmpImm
, TRI
, false))
1809 // Make sure that the compare happens after the bump. Otherwise,
1810 // after the fixup, the compare would use a yet-undefined register.
1811 MachineInstr
*BumpI
= MRI
->getVRegDef(I
->first
);
1812 bool Order
= orderBumpCompare(BumpI
, PredDef
);
1816 // Finally, fix the compare instruction.
1817 setImmediate(*CmpImmOp
, CmpImm
);
1818 for (MachineOperand
&MO
: PredDef
->operands()) {
1819 if (MO
.isReg() && MO
.getReg() == RB
.first
) {
1820 MO
.setReg(I
->first
);
1830 /// createPreheaderForLoop - Create a preheader for a given loop.
1831 MachineBasicBlock
*HexagonHardwareLoops::createPreheaderForLoop(
1833 if (MachineBasicBlock
*TmpPH
= MLI
->findLoopPreheader(L
, SpecPreheader
))
1835 if (!HWCreatePreheader
)
1838 MachineBasicBlock
*Header
= L
->getHeader();
1839 MachineBasicBlock
*Latch
= L
->getLoopLatch();
1840 MachineBasicBlock
*ExitingBlock
= L
->findLoopControlBlock();
1841 MachineFunction
*MF
= Header
->getParent();
1845 if ((!PHFn
.empty()) && (PHFn
!= MF
->getName()))
1849 if (!Latch
|| !ExitingBlock
|| Header
->hasAddressTaken())
1852 using instr_iterator
= MachineBasicBlock::instr_iterator
;
1854 // Verify that all existing predecessors have analyzable branches
1855 // (or no branches at all).
1856 using MBBVector
= std::vector
<MachineBasicBlock
*>;
1858 MBBVector
Preds(Header
->pred_begin(), Header
->pred_end());
1859 SmallVector
<MachineOperand
,2> Tmp1
;
1860 MachineBasicBlock
*TB
= nullptr, *FB
= nullptr;
1862 if (TII
->analyzeBranch(*ExitingBlock
, TB
, FB
, Tmp1
, false))
1865 for (MachineBasicBlock
*PB
: Preds
) {
1866 bool NotAnalyzed
= TII
->analyzeBranch(*PB
, TB
, FB
, Tmp1
, false);
1871 MachineBasicBlock
*NewPH
= MF
->CreateMachineBasicBlock();
1872 MF
->insert(Header
->getIterator(), NewPH
);
1874 if (Header
->pred_size() > 2) {
1875 // Ensure that the header has only two predecessors: the preheader and
1876 // the loop latch. Any additional predecessors of the header should
1877 // join at the newly created preheader. Inspect all PHI nodes from the
1878 // header and create appropriate corresponding PHI nodes in the preheader.
1880 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1881 I
!= E
&& I
->isPHI(); ++I
) {
1882 MachineInstr
*PN
= &*I
;
1884 const MCInstrDesc
&PD
= TII
->get(TargetOpcode::PHI
);
1885 MachineInstr
*NewPN
= MF
->CreateMachineInstr(PD
, DL
);
1886 NewPH
->insert(NewPH
->end(), NewPN
);
1888 Register PR
= PN
->getOperand(0).getReg();
1889 const TargetRegisterClass
*RC
= MRI
->getRegClass(PR
);
1890 Register NewPR
= MRI
->createVirtualRegister(RC
);
1891 NewPN
->addOperand(MachineOperand::CreateReg(NewPR
, true));
1893 // Copy all non-latch operands of a header's PHI node to the newly
1894 // created PHI node in the preheader.
1895 for (unsigned i
= 1, n
= PN
->getNumOperands(); i
< n
; i
+= 2) {
1896 Register PredR
= PN
->getOperand(i
).getReg();
1897 unsigned PredRSub
= PN
->getOperand(i
).getSubReg();
1898 MachineBasicBlock
*PredB
= PN
->getOperand(i
+1).getMBB();
1902 MachineOperand MO
= MachineOperand::CreateReg(PredR
, false);
1903 MO
.setSubReg(PredRSub
);
1904 NewPN
->addOperand(MO
);
1905 NewPN
->addOperand(MachineOperand::CreateMBB(PredB
));
1908 // Remove copied operands from the old PHI node and add the value
1909 // coming from the preheader's PHI.
1910 for (int i
= PN
->getNumOperands()-2; i
> 0; i
-= 2) {
1911 MachineBasicBlock
*PredB
= PN
->getOperand(i
+1).getMBB();
1912 if (PredB
!= Latch
) {
1913 PN
->removeOperand(i
+1);
1914 PN
->removeOperand(i
);
1917 PN
->addOperand(MachineOperand::CreateReg(NewPR
, false));
1918 PN
->addOperand(MachineOperand::CreateMBB(NewPH
));
1921 assert(Header
->pred_size() == 2);
1923 // The header has only two predecessors, but the non-latch predecessor
1924 // is not a preheader (e.g. it has other successors, etc.)
1925 // In such a case we don't need any extra PHI nodes in the new preheader,
1926 // all we need is to adjust existing PHIs in the header to now refer to
1927 // the new preheader.
1928 for (instr_iterator I
= Header
->instr_begin(), E
= Header
->instr_end();
1929 I
!= E
&& I
->isPHI(); ++I
) {
1930 MachineInstr
*PN
= &*I
;
1931 for (unsigned i
= 1, n
= PN
->getNumOperands(); i
< n
; i
+= 2) {
1932 MachineOperand
&MO
= PN
->getOperand(i
+1);
1933 if (MO
.getMBB() != Latch
)
1939 // "Reroute" the CFG edges to link in the new preheader.
1940 // If any of the predecessors falls through to the header, insert a branch
1941 // to the new preheader in that place.
1942 SmallVector
<MachineOperand
,1> Tmp2
;
1943 SmallVector
<MachineOperand
,1> EmptyCond
;
1947 for (MachineBasicBlock
*PB
: Preds
) {
1950 bool NotAnalyzed
= TII
->analyzeBranch(*PB
, TB
, FB
, Tmp2
, false);
1951 (void)NotAnalyzed
; // suppress compiler warning
1952 assert (!NotAnalyzed
&& "Should be analyzable!");
1953 if (TB
!= Header
&& (Tmp2
.empty() || FB
!= Header
))
1954 TII
->insertBranch(*PB
, NewPH
, nullptr, EmptyCond
, DL
);
1955 PB
->ReplaceUsesOfBlockWith(Header
, NewPH
);
1959 // It can happen that the latch block will fall through into the header.
1960 // Insert an unconditional branch to the header.
1962 bool LatchNotAnalyzed
= TII
->analyzeBranch(*Latch
, TB
, FB
, Tmp2
, false);
1963 (void)LatchNotAnalyzed
; // suppress compiler warning
1964 assert (!LatchNotAnalyzed
&& "Should be analyzable!");
1966 TII
->insertBranch(*Latch
, Header
, nullptr, EmptyCond
, DL
);
1968 // Finally, the branch from the preheader to the header.
1969 TII
->insertBranch(*NewPH
, Header
, nullptr, EmptyCond
, DL
);
1970 NewPH
->addSuccessor(Header
);
1972 MachineLoop
*ParentLoop
= L
->getParentLoop();
1974 ParentLoop
->addBasicBlockToLoop(NewPH
, *MLI
);
1976 // Update the dominator information with the new preheader.
1978 if (MachineDomTreeNode
*HN
= MDT
->getNode(Header
)) {
1979 if (MachineDomTreeNode
*DHN
= HN
->getIDom()) {
1980 MDT
->addNewBlock(NewPH
, DHN
->getBlock());
1981 MDT
->changeImmediateDominator(Header
, NewPH
);