Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonHardwareLoops.cpp
blobc435310c7f418dba41b98c987d00877eb7d68ab3
1 //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies loops where we can generate the Hexagon hardware
10 // loop instruction. The hardware loop can perform loop branches with a
11 // zero-cycle overhead.
13 // The pattern that defines the induction variable can changed depending on
14 // prior optimizations. For example, the IndVarSimplify phase run by 'opt'
15 // normalizes induction variables, and the Loop Strength Reduction pass
16 // run by 'llc' may also make changes to the induction variable.
17 // The pattern detected by this phase is due to running Strength Reduction.
19 // Criteria for hardware loops:
20 // - Countable loops (w/ ind. var for a trip count)
21 // - Assumes loops are normalized by IndVarSimplify
22 // - Try inner-most loops first
23 // - No function calls in loops.
25 //===----------------------------------------------------------------------===//
27 #include "HexagonInstrInfo.h"
28 #include "HexagonSubtarget.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineLoopInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include <cassert>
55 #include <cstdint>
56 #include <cstdlib>
57 #include <iterator>
58 #include <map>
59 #include <set>
60 #include <string>
61 #include <utility>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "hwloops"
68 #ifndef NDEBUG
69 static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
71 // Option to create preheader only for a specific function.
72 static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
73 cl::init(""));
74 #endif
76 // Option to create a preheader if one doesn't exist.
77 static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
78 cl::Hidden, cl::init(true),
79 cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
81 // Turn it off by default. If a preheader block is not created here, the
82 // software pipeliner may be unable to find a block suitable to serve as
83 // a preheader. In that case SWP will not run.
84 static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden,
85 cl::desc("Allow speculation of preheader "
86 "instructions"));
88 STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
90 namespace llvm {
92 FunctionPass *createHexagonHardwareLoops();
93 void initializeHexagonHardwareLoopsPass(PassRegistry&);
95 } // end namespace llvm
97 namespace {
99 class CountValue;
101 struct HexagonHardwareLoops : public MachineFunctionPass {
102 MachineLoopInfo *MLI;
103 MachineRegisterInfo *MRI;
104 MachineDominatorTree *MDT;
105 const HexagonInstrInfo *TII;
106 const HexagonRegisterInfo *TRI;
107 #ifndef NDEBUG
108 static int Counter;
109 #endif
111 public:
112 static char ID;
114 HexagonHardwareLoops() : MachineFunctionPass(ID) {}
116 bool runOnMachineFunction(MachineFunction &MF) override;
118 StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
120 void getAnalysisUsage(AnalysisUsage &AU) const override {
121 AU.addRequired<MachineDominatorTreeWrapperPass>();
122 AU.addRequired<MachineLoopInfoWrapperPass>();
123 MachineFunctionPass::getAnalysisUsage(AU);
126 private:
127 using LoopFeederMap = std::map<Register, MachineInstr *>;
129 /// Kinds of comparisons in the compare instructions.
130 struct Comparison {
131 enum Kind {
132 EQ = 0x01,
133 NE = 0x02,
134 L = 0x04,
135 G = 0x08,
136 U = 0x40,
137 LTs = L,
138 LEs = L | EQ,
139 GTs = G,
140 GEs = G | EQ,
141 LTu = L | U,
142 LEu = L | EQ | U,
143 GTu = G | U,
144 GEu = G | EQ | U
147 static Kind getSwappedComparison(Kind Cmp) {
148 assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
149 if ((Cmp & L) || (Cmp & G))
150 return (Kind)(Cmp ^ (L|G));
151 return Cmp;
154 static Kind getNegatedComparison(Kind Cmp) {
155 if ((Cmp & L) || (Cmp & G))
156 return (Kind)((Cmp ^ (L | G)) ^ EQ);
157 if ((Cmp & NE) || (Cmp & EQ))
158 return (Kind)(Cmp ^ (EQ | NE));
159 return (Kind)0;
162 static bool isSigned(Kind Cmp) {
163 return (Cmp & (L | G) && !(Cmp & U));
166 static bool isUnsigned(Kind Cmp) {
167 return (Cmp & U);
171 /// Find the register that contains the loop controlling
172 /// induction variable.
173 /// If successful, it will return true and set the \p Reg, \p IVBump
174 /// and \p IVOp arguments. Otherwise it will return false.
175 /// The returned induction register is the register R that follows the
176 /// following induction pattern:
177 /// loop:
178 /// R = phi ..., [ R.next, LatchBlock ]
179 /// R.next = R + #bump
180 /// if (R.next < #N) goto loop
181 /// IVBump is the immediate value added to R, and IVOp is the instruction
182 /// "R.next = R + #bump".
183 bool findInductionRegister(MachineLoop *L, Register &Reg,
184 int64_t &IVBump, MachineInstr *&IVOp) const;
186 /// Return the comparison kind for the specified opcode.
187 Comparison::Kind getComparisonKind(unsigned CondOpc,
188 MachineOperand *InitialValue,
189 const MachineOperand *Endvalue,
190 int64_t IVBump) const;
192 /// Analyze the statements in a loop to determine if the loop
193 /// has a computable trip count and, if so, return a value that represents
194 /// the trip count expression.
195 CountValue *getLoopTripCount(MachineLoop *L,
196 SmallVectorImpl<MachineInstr *> &OldInsts);
198 /// Return the expression that represents the number of times
199 /// a loop iterates. The function takes the operands that represent the
200 /// loop start value, loop end value, and induction value. Based upon
201 /// these operands, the function attempts to compute the trip count.
202 /// If the trip count is not directly available (as an immediate value,
203 /// or a register), the function will attempt to insert computation of it
204 /// to the loop's preheader.
205 CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206 const MachineOperand *End, Register IVReg,
207 int64_t IVBump, Comparison::Kind Cmp) const;
209 /// Return true if the instruction is not valid within a hardware
210 /// loop.
211 bool isInvalidLoopOperation(const MachineInstr *MI,
212 bool IsInnerHWLoop) const;
214 /// Return true if the loop contains an instruction that inhibits
215 /// using the hardware loop.
216 bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
218 /// Given a loop, check if we can convert it to a hardware loop.
219 /// If so, then perform the conversion and return true.
220 bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
222 /// Return true if the instruction is now dead.
223 bool isDead(const MachineInstr *MI,
224 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
226 /// Remove the instruction if it is now dead.
227 void removeIfDead(MachineInstr *MI);
229 /// Make sure that the "bump" instruction executes before the
230 /// compare. We need that for the IV fixup, so that the compare
231 /// instruction would not use a bumped value that has not yet been
232 /// defined. If the instructions are out of order, try to reorder them.
233 bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
235 /// Return true if MO and MI pair is visited only once. If visited
236 /// more than once, this indicates there is recursion. In such a case,
237 /// return false.
238 bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
239 const MachineOperand *MO,
240 LoopFeederMap &LoopFeederPhi) const;
242 /// Return true if the Phi may generate a value that may underflow,
243 /// or may wrap.
244 bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
245 MachineBasicBlock *MBB, MachineLoop *L,
246 LoopFeederMap &LoopFeederPhi) const;
248 /// Return true if the induction variable may underflow an unsigned
249 /// value in the first iteration.
250 bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
251 const MachineOperand *EndVal,
252 MachineBasicBlock *MBB, MachineLoop *L,
253 LoopFeederMap &LoopFeederPhi) const;
255 /// Check if the given operand has a compile-time known constant
256 /// value. Return true if yes, and false otherwise. When returning true, set
257 /// Val to the corresponding constant value.
258 bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
260 /// Check if the operand has a compile-time known constant value.
261 bool isImmediate(const MachineOperand &MO) const {
262 int64_t V;
263 return checkForImmediate(MO, V);
266 /// Return the immediate for the specified operand.
267 int64_t getImmediate(const MachineOperand &MO) const {
268 int64_t V;
269 if (!checkForImmediate(MO, V))
270 llvm_unreachable("Invalid operand");
271 return V;
274 /// Reset the given machine operand to now refer to a new immediate
275 /// value. Assumes that the operand was already referencing an immediate
276 /// value, either directly, or via a register.
277 void setImmediate(MachineOperand &MO, int64_t Val);
279 /// Fix the data flow of the induction variable.
280 /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
281 /// |
282 /// +-> back to phi
283 /// where "bump" is the increment of the induction variable:
284 /// iv = iv + #const.
285 /// Due to some prior code transformations, the actual flow may look
286 /// like this:
287 /// phi -+-> bump ---> back to phi
288 /// |
289 /// +-> comparison-in-latch (against upper_bound-bump),
290 /// i.e. the comparison that controls the loop execution may be using
291 /// the value of the induction variable from before the increment.
293 /// Return true if the loop's flow is the desired one (i.e. it's
294 /// either been fixed, or no fixing was necessary).
295 /// Otherwise, return false. This can happen if the induction variable
296 /// couldn't be identified, or if the value in the latch's comparison
297 /// cannot be adjusted to reflect the post-bump value.
298 bool fixupInductionVariable(MachineLoop *L);
300 /// Given a loop, if it does not have a preheader, create one.
301 /// Return the block that is the preheader.
302 MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
305 char HexagonHardwareLoops::ID = 0;
306 #ifndef NDEBUG
307 int HexagonHardwareLoops::Counter = 0;
308 #endif
310 /// Abstraction for a trip count of a loop. A smaller version
311 /// of the MachineOperand class without the concerns of changing the
312 /// operand representation.
313 class CountValue {
314 public:
315 enum CountValueType {
316 CV_Register,
317 CV_Immediate
320 private:
321 CountValueType Kind;
322 union Values {
323 Values() : R{Register(), 0} {}
324 Values(const Values&) = default;
325 struct {
326 Register Reg;
327 unsigned Sub;
328 } R;
329 unsigned ImmVal;
330 } Contents;
332 public:
333 explicit CountValue(CountValueType t, Register v, unsigned u = 0) {
334 Kind = t;
335 if (Kind == CV_Register) {
336 Contents.R.Reg = v;
337 Contents.R.Sub = u;
338 } else {
339 Contents.ImmVal = v;
343 bool isReg() const { return Kind == CV_Register; }
344 bool isImm() const { return Kind == CV_Immediate; }
346 Register getReg() const {
347 assert(isReg() && "Wrong CountValue accessor");
348 return Contents.R.Reg;
351 unsigned getSubReg() const {
352 assert(isReg() && "Wrong CountValue accessor");
353 return Contents.R.Sub;
356 unsigned getImm() const {
357 assert(isImm() && "Wrong CountValue accessor");
358 return Contents.ImmVal;
361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
362 if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
363 if (isImm()) { OS << Contents.ImmVal; }
367 } // end anonymous namespace
369 INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
370 "Hexagon Hardware Loops", false, false)
371 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
372 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
373 INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
374 "Hexagon Hardware Loops", false, false)
376 FunctionPass *llvm::createHexagonHardwareLoops() {
377 return new HexagonHardwareLoops();
380 bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
381 LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
382 if (skipFunction(MF.getFunction()))
383 return false;
385 bool Changed = false;
387 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
388 MRI = &MF.getRegInfo();
389 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
390 const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
391 TII = HST.getInstrInfo();
392 TRI = HST.getRegisterInfo();
394 for (auto &L : *MLI)
395 if (L->isOutermost()) {
396 bool L0Used = false;
397 bool L1Used = false;
398 Changed |= convertToHardwareLoop(L, L0Used, L1Used);
401 return Changed;
404 bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
405 Register &Reg,
406 int64_t &IVBump,
407 MachineInstr *&IVOp
408 ) const {
409 MachineBasicBlock *Header = L->getHeader();
410 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
411 MachineBasicBlock *Latch = L->getLoopLatch();
412 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
413 if (!Header || !Preheader || !Latch || !ExitingBlock)
414 return false;
416 // This pair represents an induction register together with an immediate
417 // value that will be added to it in each loop iteration.
418 using RegisterBump = std::pair<Register, int64_t>;
420 // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
421 // from an induction operation
422 // R.next = R + bump
423 // where bump is an immediate value.
424 using InductionMap = std::map<Register, RegisterBump>;
426 InductionMap IndMap;
428 using instr_iterator = MachineBasicBlock::instr_iterator;
430 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
431 I != E && I->isPHI(); ++I) {
432 MachineInstr *Phi = &*I;
434 // Have a PHI instruction. Get the operand that corresponds to the
435 // latch block, and see if is a result of an addition of form "reg+imm",
436 // where the "reg" is defined by the PHI node we are looking at.
437 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
438 if (Phi->getOperand(i+1).getMBB() != Latch)
439 continue;
441 Register PhiOpReg = Phi->getOperand(i).getReg();
442 MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
444 if (DI->getDesc().isAdd()) {
445 // If the register operand to the add is the PHI we're looking at, this
446 // meets the induction pattern.
447 Register IndReg = DI->getOperand(1).getReg();
448 MachineOperand &Opnd2 = DI->getOperand(2);
449 int64_t V;
450 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
451 Register UpdReg = DI->getOperand(0).getReg();
452 IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
455 } // for (i)
456 } // for (instr)
458 SmallVector<MachineOperand,2> Cond;
459 MachineBasicBlock *TB = nullptr, *FB = nullptr;
460 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
461 if (NotAnalyzed)
462 return false;
464 Register PredR;
465 unsigned PredPos, PredRegFlags;
466 if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
467 return false;
469 MachineInstr *PredI = MRI->getVRegDef(PredR);
470 if (!PredI->isCompare())
471 return false;
473 Register CmpReg1, CmpReg2;
474 int64_t CmpImm = 0, CmpMask = 0;
475 bool CmpAnalyzed =
476 TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
477 // Fail if the compare was not analyzed, or it's not comparing a register
478 // with an immediate value. Not checking the mask here, since we handle
479 // the individual compare opcodes (including A4_cmpb*) later on.
480 if (!CmpAnalyzed)
481 return false;
483 // Exactly one of the input registers to the comparison should be among
484 // the induction registers.
485 InductionMap::iterator IndMapEnd = IndMap.end();
486 InductionMap::iterator F = IndMapEnd;
487 if (CmpReg1 != 0) {
488 InductionMap::iterator F1 = IndMap.find(CmpReg1);
489 if (F1 != IndMapEnd)
490 F = F1;
492 if (CmpReg2 != 0) {
493 InductionMap::iterator F2 = IndMap.find(CmpReg2);
494 if (F2 != IndMapEnd) {
495 if (F != IndMapEnd)
496 return false;
497 F = F2;
500 if (F == IndMapEnd)
501 return false;
503 Reg = F->second.first;
504 IVBump = F->second.second;
505 IVOp = MRI->getVRegDef(F->first);
506 return true;
509 // Return the comparison kind for the specified opcode.
510 HexagonHardwareLoops::Comparison::Kind
511 HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
512 MachineOperand *InitialValue,
513 const MachineOperand *EndValue,
514 int64_t IVBump) const {
515 Comparison::Kind Cmp = (Comparison::Kind)0;
516 switch (CondOpc) {
517 case Hexagon::C2_cmpeq:
518 case Hexagon::C2_cmpeqi:
519 case Hexagon::C2_cmpeqp:
520 Cmp = Comparison::EQ;
521 break;
522 case Hexagon::C4_cmpneq:
523 case Hexagon::C4_cmpneqi:
524 Cmp = Comparison::NE;
525 break;
526 case Hexagon::C2_cmplt:
527 Cmp = Comparison::LTs;
528 break;
529 case Hexagon::C2_cmpltu:
530 Cmp = Comparison::LTu;
531 break;
532 case Hexagon::C4_cmplte:
533 case Hexagon::C4_cmpltei:
534 Cmp = Comparison::LEs;
535 break;
536 case Hexagon::C4_cmplteu:
537 case Hexagon::C4_cmplteui:
538 Cmp = Comparison::LEu;
539 break;
540 case Hexagon::C2_cmpgt:
541 case Hexagon::C2_cmpgti:
542 case Hexagon::C2_cmpgtp:
543 Cmp = Comparison::GTs;
544 break;
545 case Hexagon::C2_cmpgtu:
546 case Hexagon::C2_cmpgtui:
547 case Hexagon::C2_cmpgtup:
548 Cmp = Comparison::GTu;
549 break;
550 case Hexagon::C2_cmpgei:
551 Cmp = Comparison::GEs;
552 break;
553 case Hexagon::C2_cmpgeui:
554 Cmp = Comparison::GEs;
555 break;
556 default:
557 return (Comparison::Kind)0;
559 return Cmp;
562 /// Analyze the statements in a loop to determine if the loop has
563 /// a computable trip count and, if so, return a value that represents
564 /// the trip count expression.
566 /// This function iterates over the phi nodes in the loop to check for
567 /// induction variable patterns that are used in the calculation for
568 /// the number of time the loop is executed.
569 CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
570 SmallVectorImpl<MachineInstr *> &OldInsts) {
571 MachineBasicBlock *TopMBB = L->getTopBlock();
572 MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
573 assert(PI != TopMBB->pred_end() &&
574 "Loop must have more than one incoming edge!");
575 MachineBasicBlock *Backedge = *PI++;
576 if (PI == TopMBB->pred_end()) // dead loop?
577 return nullptr;
578 MachineBasicBlock *Incoming = *PI++;
579 if (PI != TopMBB->pred_end()) // multiple backedges?
580 return nullptr;
582 // Make sure there is one incoming and one backedge and determine which
583 // is which.
584 if (L->contains(Incoming)) {
585 if (L->contains(Backedge))
586 return nullptr;
587 std::swap(Incoming, Backedge);
588 } else if (!L->contains(Backedge))
589 return nullptr;
591 // Look for the cmp instruction to determine if we can get a useful trip
592 // count. The trip count can be either a register or an immediate. The
593 // location of the value depends upon the type (reg or imm).
594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
595 if (!ExitingBlock)
596 return nullptr;
598 Register IVReg = 0;
599 int64_t IVBump = 0;
600 MachineInstr *IVOp;
601 bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
602 if (!FoundIV)
603 return nullptr;
605 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
607 MachineOperand *InitialValue = nullptr;
608 MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
609 MachineBasicBlock *Latch = L->getLoopLatch();
610 for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
611 MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
612 if (MBB == Preheader)
613 InitialValue = &IV_Phi->getOperand(i);
614 else if (MBB == Latch)
615 IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
617 if (!InitialValue)
618 return nullptr;
620 SmallVector<MachineOperand,2> Cond;
621 MachineBasicBlock *TB = nullptr, *FB = nullptr;
622 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
623 if (NotAnalyzed)
624 return nullptr;
626 MachineBasicBlock *Header = L->getHeader();
627 // TB must be non-null. If FB is also non-null, one of them must be
628 // the header. Otherwise, branch to TB could be exiting the loop, and
629 // the fall through can go to the header.
630 assert (TB && "Exit block without a branch?");
631 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
632 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
633 SmallVector<MachineOperand,2> LCond;
634 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
635 if (NotAnalyzed)
636 return nullptr;
637 if (TB == Latch)
638 TB = (LTB == Header) ? LTB : LFB;
639 else
640 FB = (LTB == Header) ? LTB: LFB;
642 assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
643 if (!TB || (FB && TB != Header && FB != Header))
644 return nullptr;
646 // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
647 // to put imm(0), followed by P in the vector Cond.
648 // If TB is not the header, it means that the "not-taken" path must lead
649 // to the header.
650 bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
651 Register PredReg;
652 unsigned PredPos, PredRegFlags;
653 if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
654 return nullptr;
655 MachineInstr *CondI = MRI->getVRegDef(PredReg);
656 unsigned CondOpc = CondI->getOpcode();
658 Register CmpReg1, CmpReg2;
659 int64_t Mask = 0, ImmValue = 0;
660 bool AnalyzedCmp =
661 TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
662 if (!AnalyzedCmp)
663 return nullptr;
665 // The comparison operator type determines how we compute the loop
666 // trip count.
667 OldInsts.push_back(CondI);
668 OldInsts.push_back(IVOp);
670 // Sadly, the following code gets information based on the position
671 // of the operands in the compare instruction. This has to be done
672 // this way, because the comparisons check for a specific relationship
673 // between the operands (e.g. is-less-than), rather than to find out
674 // what relationship the operands are in (as on PPC).
675 Comparison::Kind Cmp;
676 bool isSwapped = false;
677 const MachineOperand &Op1 = CondI->getOperand(1);
678 const MachineOperand &Op2 = CondI->getOperand(2);
679 const MachineOperand *EndValue = nullptr;
681 if (Op1.isReg()) {
682 if (Op2.isImm() || Op1.getReg() == IVReg)
683 EndValue = &Op2;
684 else {
685 EndValue = &Op1;
686 isSwapped = true;
690 if (!EndValue)
691 return nullptr;
693 Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
694 if (!Cmp)
695 return nullptr;
696 if (Negated)
697 Cmp = Comparison::getNegatedComparison(Cmp);
698 if (isSwapped)
699 Cmp = Comparison::getSwappedComparison(Cmp);
701 if (InitialValue->isReg()) {
702 Register R = InitialValue->getReg();
703 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
704 if (!MDT->properlyDominates(DefBB, Header)) {
705 int64_t V;
706 if (!checkForImmediate(*InitialValue, V))
707 return nullptr;
709 OldInsts.push_back(MRI->getVRegDef(R));
711 if (EndValue->isReg()) {
712 Register R = EndValue->getReg();
713 MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
714 if (!MDT->properlyDominates(DefBB, Header)) {
715 int64_t V;
716 if (!checkForImmediate(*EndValue, V))
717 return nullptr;
719 OldInsts.push_back(MRI->getVRegDef(R));
722 return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
725 /// Helper function that returns the expression that represents the
726 /// number of times a loop iterates. The function takes the operands that
727 /// represent the loop start value, loop end value, and induction value.
728 /// Based upon these operands, the function attempts to compute the trip count.
729 CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
730 const MachineOperand *Start,
731 const MachineOperand *End,
732 Register IVReg,
733 int64_t IVBump,
734 Comparison::Kind Cmp) const {
735 // Cannot handle comparison EQ, i.e. while (A == B).
736 if (Cmp == Comparison::EQ)
737 return nullptr;
739 // Check if either the start or end values are an assignment of an immediate.
740 // If so, use the immediate value rather than the register.
741 if (Start->isReg()) {
742 const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
743 if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
744 StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
745 Start = &StartValInstr->getOperand(1);
747 if (End->isReg()) {
748 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
749 if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
750 EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
751 End = &EndValInstr->getOperand(1);
754 if (!Start->isReg() && !Start->isImm())
755 return nullptr;
756 if (!End->isReg() && !End->isImm())
757 return nullptr;
759 bool CmpLess = Cmp & Comparison::L;
760 bool CmpGreater = Cmp & Comparison::G;
761 bool CmpHasEqual = Cmp & Comparison::EQ;
763 // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
764 if (CmpLess && IVBump < 0)
765 // Loop going while iv is "less" with the iv value going down. Must wrap.
766 return nullptr;
768 if (CmpGreater && IVBump > 0)
769 // Loop going while iv is "greater" with the iv value going up. Must wrap.
770 return nullptr;
772 // Phis that may feed into the loop.
773 LoopFeederMap LoopFeederPhi;
775 // Check if the initial value may be zero and can be decremented in the first
776 // iteration. If the value is zero, the endloop instruction will not decrement
777 // the loop counter, so we shouldn't generate a hardware loop in this case.
778 if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
779 LoopFeederPhi))
780 return nullptr;
782 if (Start->isImm() && End->isImm()) {
783 // Both, start and end are immediates.
784 int64_t StartV = Start->getImm();
785 int64_t EndV = End->getImm();
786 int64_t Dist = EndV - StartV;
787 if (Dist == 0)
788 return nullptr;
790 bool Exact = (Dist % IVBump) == 0;
792 if (Cmp == Comparison::NE) {
793 if (!Exact)
794 return nullptr;
795 if ((Dist < 0) ^ (IVBump < 0))
796 return nullptr;
799 // For comparisons that include the final value (i.e. include equality
800 // with the final value), we need to increase the distance by 1.
801 if (CmpHasEqual)
802 Dist = Dist > 0 ? Dist+1 : Dist-1;
804 // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
805 // CmpGreater should imply Dist < 0. These conditions could actually
806 // fail, for example, in unreachable code (which may still appear to be
807 // reachable in the CFG).
808 if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
809 return nullptr;
811 // "Normalized" distance, i.e. with the bump set to +-1.
812 int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
813 : (-Dist + (-IVBump - 1)) / (-IVBump);
814 assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
816 uint64_t Count = Dist1;
818 if (Count > 0xFFFFFFFFULL)
819 return nullptr;
821 return new CountValue(CountValue::CV_Immediate, Count);
824 // A general case: Start and End are some values, but the actual
825 // iteration count may not be available. If it is not, insert
826 // a computation of it into the preheader.
828 // If the induction variable bump is not a power of 2, quit.
829 // Othwerise we'd need a general integer division.
830 if (!isPowerOf2_64(std::abs(IVBump)))
831 return nullptr;
833 MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
834 assert (PH && "Should have a preheader by now");
835 MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
836 DebugLoc DL;
837 if (InsertPos != PH->end())
838 DL = InsertPos->getDebugLoc();
840 // If Start is an immediate and End is a register, the trip count
841 // will be "reg - imm". Hexagon's "subtract immediate" instruction
842 // is actually "reg + -imm".
844 // If the loop IV is going downwards, i.e. if the bump is negative,
845 // then the iteration count (computed as End-Start) will need to be
846 // negated. To avoid the negation, just swap Start and End.
847 if (IVBump < 0) {
848 std::swap(Start, End);
849 IVBump = -IVBump;
851 // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
852 // Signedness, and "including equality" are preserved.
854 bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
855 bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
857 int64_t StartV = 0, EndV = 0;
858 if (Start->isImm())
859 StartV = Start->getImm();
860 if (End->isImm())
861 EndV = End->getImm();
863 int64_t AdjV = 0;
864 // To compute the iteration count, we would need this computation:
865 // Count = (End - Start + (IVBump-1)) / IVBump
866 // or, when CmpHasEqual:
867 // Count = (End - Start + (IVBump-1)+1) / IVBump
868 // The "IVBump-1" part is the adjustment (AdjV). We can avoid
869 // generating an instruction specifically to add it if we can adjust
870 // the immediate values for Start or End.
872 if (CmpHasEqual) {
873 // Need to add 1 to the total iteration count.
874 if (Start->isImm())
875 StartV--;
876 else if (End->isImm())
877 EndV++;
878 else
879 AdjV += 1;
882 if (Cmp != Comparison::NE) {
883 if (Start->isImm())
884 StartV -= (IVBump-1);
885 else if (End->isImm())
886 EndV += (IVBump-1);
887 else
888 AdjV += (IVBump-1);
891 Register R = 0;
892 unsigned SR = 0;
893 if (Start->isReg()) {
894 R = Start->getReg();
895 SR = Start->getSubReg();
896 } else {
897 R = End->getReg();
898 SR = End->getSubReg();
900 const TargetRegisterClass *RC = MRI->getRegClass(R);
901 // Hardware loops cannot handle 64-bit registers. If it's a double
902 // register, it has to have a subregister.
903 if (!SR && RC == &Hexagon::DoubleRegsRegClass)
904 return nullptr;
905 const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
907 // Compute DistR (register with the distance between Start and End).
908 Register DistR;
909 unsigned DistSR;
911 // Avoid special case, where the start value is an imm(0).
912 if (Start->isImm() && StartV == 0) {
913 DistR = End->getReg();
914 DistSR = End->getSubReg();
915 } else {
916 const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
917 (RegToImm ? TII->get(Hexagon::A2_subri) :
918 TII->get(Hexagon::A2_addi));
919 if (RegToReg || RegToImm) {
920 Register SubR = MRI->createVirtualRegister(IntRC);
921 MachineInstrBuilder SubIB =
922 BuildMI(*PH, InsertPos, DL, SubD, SubR);
924 if (RegToReg)
925 SubIB.addReg(End->getReg(), 0, End->getSubReg())
926 .addReg(Start->getReg(), 0, Start->getSubReg());
927 else
928 SubIB.addImm(EndV)
929 .addReg(Start->getReg(), 0, Start->getSubReg());
930 DistR = SubR;
931 } else {
932 // If the loop has been unrolled, we should use the original loop count
933 // instead of recalculating the value. This will avoid additional
934 // 'Add' instruction.
935 const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
936 if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
937 EndValInstr->getOperand(1).getSubReg() == 0 &&
938 EndValInstr->getOperand(2).getImm() == StartV) {
939 DistR = EndValInstr->getOperand(1).getReg();
940 } else {
941 Register SubR = MRI->createVirtualRegister(IntRC);
942 MachineInstrBuilder SubIB =
943 BuildMI(*PH, InsertPos, DL, SubD, SubR);
944 SubIB.addReg(End->getReg(), 0, End->getSubReg())
945 .addImm(-StartV);
946 DistR = SubR;
949 DistSR = 0;
952 // From DistR, compute AdjR (register with the adjusted distance).
953 Register AdjR;
954 unsigned AdjSR;
956 if (AdjV == 0) {
957 AdjR = DistR;
958 AdjSR = DistSR;
959 } else {
960 // Generate CountR = ADD DistR, AdjVal
961 Register AddR = MRI->createVirtualRegister(IntRC);
962 MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
963 BuildMI(*PH, InsertPos, DL, AddD, AddR)
964 .addReg(DistR, 0, DistSR)
965 .addImm(AdjV);
967 AdjR = AddR;
968 AdjSR = 0;
971 // From AdjR, compute CountR (register with the final count).
972 Register CountR;
973 unsigned CountSR;
975 if (IVBump == 1) {
976 CountR = AdjR;
977 CountSR = AdjSR;
978 } else {
979 // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
980 unsigned Shift = Log2_32(IVBump);
982 // Generate NormR = LSR DistR, Shift.
983 Register LsrR = MRI->createVirtualRegister(IntRC);
984 const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
985 BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
986 .addReg(AdjR, 0, AdjSR)
987 .addImm(Shift);
989 CountR = LsrR;
990 CountSR = 0;
993 return new CountValue(CountValue::CV_Register, CountR, CountSR);
996 /// Return true if the operation is invalid within hardware loop.
997 bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
998 bool IsInnerHWLoop) const {
999 // Call is not allowed because the callee may use a hardware loop except for
1000 // the case when the call never returns.
1001 if (MI->getDesc().isCall())
1002 return !TII->doesNotReturn(*MI);
1004 // Check if the instruction defines a hardware loop register.
1005 using namespace Hexagon;
1007 static const Register Regs01[] = { LC0, SA0, LC1, SA1 };
1008 static const Register Regs1[] = { LC1, SA1 };
1009 auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1);
1010 for (Register R : CheckRegs)
1011 if (MI->modifiesRegister(R, TRI))
1012 return true;
1014 return false;
1017 /// Return true if the loop contains an instruction that inhibits
1018 /// the use of the hardware loop instruction.
1019 bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
1020 bool IsInnerHWLoop) const {
1021 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1022 << printMBBReference(**L->block_begin()));
1023 for (MachineBasicBlock *MBB : L->getBlocks()) {
1024 for (const MachineInstr &MI : *MBB) {
1025 if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) {
1026 LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
1027 MI.dump(););
1028 return true;
1032 return false;
1035 /// Returns true if the instruction is dead. This was essentially
1036 /// copied from DeadMachineInstructionElim::isDead, but with special cases
1037 /// for inline asm, physical registers and instructions with side effects
1038 /// removed.
1039 bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
1040 SmallVectorImpl<MachineInstr *> &DeadPhis) const {
1041 // Examine each operand.
1042 for (const MachineOperand &MO : MI->operands()) {
1043 if (!MO.isReg() || !MO.isDef())
1044 continue;
1046 Register Reg = MO.getReg();
1047 if (MRI->use_nodbg_empty(Reg))
1048 continue;
1050 using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
1052 // This instruction has users, but if the only user is the phi node for the
1053 // parent block, and the only use of that phi node is this instruction, then
1054 // this instruction is dead: both it (and the phi node) can be removed.
1055 use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
1056 use_nodbg_iterator End = MRI->use_nodbg_end();
1057 if (std::next(I) != End || !I->getParent()->isPHI())
1058 return false;
1060 MachineInstr *OnePhi = I->getParent();
1061 for (const MachineOperand &OPO : OnePhi->operands()) {
1062 if (!OPO.isReg() || !OPO.isDef())
1063 continue;
1065 Register OPReg = OPO.getReg();
1066 use_nodbg_iterator nextJ;
1067 for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
1068 J != End; J = nextJ) {
1069 nextJ = std::next(J);
1070 MachineOperand &Use = *J;
1071 MachineInstr *UseMI = Use.getParent();
1073 // If the phi node has a user that is not MI, bail.
1074 if (MI != UseMI)
1075 return false;
1078 DeadPhis.push_back(OnePhi);
1081 // If there are no defs with uses, the instruction is dead.
1082 return true;
1085 void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
1086 // This procedure was essentially copied from DeadMachineInstructionElim.
1088 SmallVector<MachineInstr*, 1> DeadPhis;
1089 if (isDead(MI, DeadPhis)) {
1090 LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);
1092 // It is possible that some DBG_VALUE instructions refer to this
1093 // instruction. Examine each def operand for such references;
1094 // if found, mark the DBG_VALUE as undef (but don't delete it).
1095 for (const MachineOperand &MO : MI->operands()) {
1096 if (!MO.isReg() || !MO.isDef())
1097 continue;
1098 Register Reg = MO.getReg();
1099 // We use make_early_inc_range here because setReg below invalidates the
1100 // iterator.
1101 for (MachineOperand &MO :
1102 llvm::make_early_inc_range(MRI->use_operands(Reg))) {
1103 MachineInstr *UseMI = MO.getParent();
1104 if (UseMI == MI)
1105 continue;
1106 if (MO.isDebug())
1107 MO.setReg(0U);
1111 MI->eraseFromParent();
1112 for (unsigned i = 0; i < DeadPhis.size(); ++i)
1113 DeadPhis[i]->eraseFromParent();
1117 /// Check if the loop is a candidate for converting to a hardware
1118 /// loop. If so, then perform the transformation.
1120 /// This function works on innermost loops first. A loop can be converted
1121 /// if it is a counting loop; either a register value or an immediate.
1123 /// The code makes several assumptions about the representation of the loop
1124 /// in llvm.
1125 bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
1126 bool &RecL0used,
1127 bool &RecL1used) {
1128 // This is just to confirm basic correctness.
1129 assert(L->getHeader() && "Loop without a header?");
1131 bool Changed = false;
1132 bool L0Used = false;
1133 bool L1Used = false;
1135 // Process nested loops first.
1136 for (MachineLoop *I : *L) {
1137 Changed |= convertToHardwareLoop(I, RecL0used, RecL1used);
1138 L0Used |= RecL0used;
1139 L1Used |= RecL1used;
1142 // If a nested loop has been converted, then we can't convert this loop.
1143 if (Changed && L0Used && L1Used)
1144 return Changed;
1146 unsigned LOOP_i;
1147 unsigned LOOP_r;
1148 unsigned ENDLOOP;
1150 // Flag used to track loopN instruction:
1151 // 1 - Hardware loop is being generated for the inner most loop.
1152 // 0 - Hardware loop is being generated for the outer loop.
1153 unsigned IsInnerHWLoop = 1;
1155 if (L0Used) {
1156 LOOP_i = Hexagon::J2_loop1i;
1157 LOOP_r = Hexagon::J2_loop1r;
1158 ENDLOOP = Hexagon::ENDLOOP1;
1159 IsInnerHWLoop = 0;
1160 } else {
1161 LOOP_i = Hexagon::J2_loop0i;
1162 LOOP_r = Hexagon::J2_loop0r;
1163 ENDLOOP = Hexagon::ENDLOOP0;
1166 #ifndef NDEBUG
1167 // Stop trying after reaching the limit (if any).
1168 int Limit = HWLoopLimit;
1169 if (Limit >= 0) {
1170 if (Counter >= HWLoopLimit)
1171 return false;
1172 Counter++;
1174 #endif
1176 // Does the loop contain any invalid instructions?
1177 if (containsInvalidInstruction(L, IsInnerHWLoop))
1178 return false;
1180 MachineBasicBlock *LastMBB = L->findLoopControlBlock();
1181 // Don't generate hw loop if the loop has more than one exit.
1182 if (!LastMBB)
1183 return false;
1185 MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
1186 if (LastI == LastMBB->end())
1187 return false;
1189 // Is the induction variable bump feeding the latch condition?
1190 if (!fixupInductionVariable(L))
1191 return false;
1193 // Ensure the loop has a preheader: the loop instruction will be
1194 // placed there.
1195 MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
1196 if (!Preheader) {
1197 Preheader = createPreheaderForLoop(L);
1198 if (!Preheader)
1199 return false;
1202 MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
1204 SmallVector<MachineInstr*, 2> OldInsts;
1205 // Are we able to determine the trip count for the loop?
1206 CountValue *TripCount = getLoopTripCount(L, OldInsts);
1207 if (!TripCount)
1208 return false;
1210 // Is the trip count available in the preheader?
1211 if (TripCount->isReg()) {
1212 // There will be a use of the register inserted into the preheader,
1213 // so make sure that the register is actually defined at that point.
1214 MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
1215 MachineBasicBlock *BBDef = TCDef->getParent();
1216 if (!MDT->dominates(BBDef, Preheader))
1217 return false;
1220 // Determine the loop start.
1221 MachineBasicBlock *TopBlock = L->getTopBlock();
1222 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1223 MachineBasicBlock *LoopStart = nullptr;
1224 if (ExitingBlock != L->getLoopLatch()) {
1225 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1226 SmallVector<MachineOperand, 2> Cond;
1228 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
1229 return false;
1231 if (L->contains(TB))
1232 LoopStart = TB;
1233 else if (L->contains(FB))
1234 LoopStart = FB;
1235 else
1236 return false;
1238 else
1239 LoopStart = TopBlock;
1241 // Convert the loop to a hardware loop.
1242 LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
1243 DebugLoc DL;
1244 if (InsertPos != Preheader->end())
1245 DL = InsertPos->getDebugLoc();
1247 if (TripCount->isReg()) {
1248 // Create a copy of the loop count register.
1249 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1250 BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
1251 .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
1252 // Add the Loop instruction to the beginning of the loop.
1253 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
1254 .addReg(CountReg);
1255 } else {
1256 assert(TripCount->isImm() && "Expecting immediate value for trip count");
1257 // Add the Loop immediate instruction to the beginning of the loop,
1258 // if the immediate fits in the instructions. Otherwise, we need to
1259 // create a new virtual register.
1260 int64_t CountImm = TripCount->getImm();
1261 if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
1262 Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1263 BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
1264 .addImm(CountImm);
1265 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
1266 .addMBB(LoopStart).addReg(CountReg);
1267 } else
1268 BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
1269 .addMBB(LoopStart).addImm(CountImm);
1272 // Make sure the loop start always has a reference in the CFG.
1273 LoopStart->setMachineBlockAddressTaken();
1275 // Replace the loop branch with an endloop instruction.
1276 DebugLoc LastIDL = LastI->getDebugLoc();
1277 BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
1279 // The loop ends with either:
1280 // - a conditional branch followed by an unconditional branch, or
1281 // - a conditional branch to the loop start.
1282 if (LastI->getOpcode() == Hexagon::J2_jumpt ||
1283 LastI->getOpcode() == Hexagon::J2_jumpf) {
1284 // Delete one and change/add an uncond. branch to out of the loop.
1285 MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
1286 LastI = LastMBB->erase(LastI);
1287 if (!L->contains(BranchTarget)) {
1288 if (LastI != LastMBB->end())
1289 LastI = LastMBB->erase(LastI);
1290 SmallVector<MachineOperand, 0> Cond;
1291 TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
1293 } else {
1294 // Conditional branch to loop start; just delete it.
1295 LastMBB->erase(LastI);
1297 delete TripCount;
1299 // The induction operation and the comparison may now be
1300 // unneeded. If these are unneeded, then remove them.
1301 for (unsigned i = 0; i < OldInsts.size(); ++i)
1302 removeIfDead(OldInsts[i]);
1304 ++NumHWLoops;
1306 // Set RecL1used and RecL0used only after hardware loop has been
1307 // successfully generated. Doing it earlier can cause wrong loop instruction
1308 // to be used.
1309 if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
1310 RecL1used = true;
1311 else
1312 RecL0used = true;
1314 return true;
1317 bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
1318 MachineInstr *CmpI) {
1319 assert (BumpI != CmpI && "Bump and compare in the same instruction?");
1321 MachineBasicBlock *BB = BumpI->getParent();
1322 if (CmpI->getParent() != BB)
1323 return false;
1325 using instr_iterator = MachineBasicBlock::instr_iterator;
1327 // Check if things are in order to begin with.
1328 for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
1329 if (&*I == CmpI)
1330 return true;
1332 // Out of order.
1333 Register PredR = CmpI->getOperand(0).getReg();
1334 bool FoundBump = false;
1335 instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
1336 for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
1337 MachineInstr *In = &*I;
1338 for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
1339 MachineOperand &MO = In->getOperand(i);
1340 if (MO.isReg() && MO.isUse()) {
1341 if (MO.getReg() == PredR) // Found an intervening use of PredR.
1342 return false;
1346 if (In == BumpI) {
1347 BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
1348 FoundBump = true;
1349 break;
1352 assert (FoundBump && "Cannot determine instruction order");
1353 return FoundBump;
1356 /// This function is required to break recursion. Visiting phis in a loop may
1357 /// result in recursion during compilation. We break the recursion by making
1358 /// sure that we visit a MachineOperand and its definition in a
1359 /// MachineInstruction only once. If we attempt to visit more than once, then
1360 /// there is recursion, and will return false.
1361 bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
1362 MachineInstr *MI,
1363 const MachineOperand *MO,
1364 LoopFeederMap &LoopFeederPhi) const {
1365 if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
1366 LLVM_DEBUG(dbgs() << "\nhw_loop head, "
1367 << printMBBReference(**L->block_begin()));
1368 // Ignore all BBs that form Loop.
1369 if (llvm::is_contained(L->getBlocks(), A))
1370 return false;
1371 MachineInstr *Def = MRI->getVRegDef(MO->getReg());
1372 LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
1373 return true;
1374 } else
1375 // Already visited node.
1376 return false;
1379 /// Return true if a Phi may generate a value that can underflow.
1380 /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
1381 bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
1382 MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
1383 MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
1384 assert(Phi->isPHI() && "Expecting a Phi.");
1385 // Walk through each Phi, and its used operands. Make sure that
1386 // if there is recursion in Phi, we won't generate hardware loops.
1387 for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
1388 if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
1389 if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
1390 Phi->getParent(), L, LoopFeederPhi))
1391 return true;
1392 return false;
1395 /// Return true if the induction variable can underflow in the first iteration.
1396 /// An example, is an initial unsigned value that is 0 and is decrement in the
1397 /// first itertion of a do-while loop. In this case, we cannot generate a
1398 /// hardware loop because the endloop instruction does not decrement the loop
1399 /// counter if it is <= 1. We only need to perform this analysis if the
1400 /// initial value is a register.
1402 /// This function assumes the initial value may underfow unless proven
1403 /// otherwise. If the type is signed, then we don't care because signed
1404 /// underflow is undefined. We attempt to prove the initial value is not
1405 /// zero by perfoming a crude analysis of the loop counter. This function
1406 /// checks if the initial value is used in any comparison prior to the loop
1407 /// and, if so, assumes the comparison is a range check. This is inexact,
1408 /// but will catch the simple cases.
1409 bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
1410 const MachineOperand *InitVal, const MachineOperand *EndVal,
1411 MachineBasicBlock *MBB, MachineLoop *L,
1412 LoopFeederMap &LoopFeederPhi) const {
1413 // Only check register values since they are unknown.
1414 if (!InitVal->isReg())
1415 return false;
1417 if (!EndVal->isImm())
1418 return false;
1420 // A register value that is assigned an immediate is a known value, and it
1421 // won't underflow in the first iteration.
1422 int64_t Imm;
1423 if (checkForImmediate(*InitVal, Imm))
1424 return (EndVal->getImm() == Imm);
1426 Register Reg = InitVal->getReg();
1428 // We don't know the value of a physical register.
1429 if (!Reg.isVirtual())
1430 return true;
1432 MachineInstr *Def = MRI->getVRegDef(Reg);
1433 if (!Def)
1434 return true;
1436 // If the initial value is a Phi or copy and the operands may not underflow,
1437 // then the definition cannot be underflow either.
1438 if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
1439 L, LoopFeederPhi))
1440 return false;
1441 if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
1442 EndVal, Def->getParent(),
1443 L, LoopFeederPhi))
1444 return false;
1446 // Iterate over the uses of the initial value. If the initial value is used
1447 // in a compare, then we assume this is a range check that ensures the loop
1448 // doesn't underflow. This is not an exact test and should be improved.
1449 for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
1450 E = MRI->use_instr_nodbg_end(); I != E; ++I) {
1451 MachineInstr *MI = &*I;
1452 Register CmpReg1, CmpReg2;
1453 int64_t CmpMask = 0, CmpValue = 0;
1455 if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
1456 continue;
1458 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1459 SmallVector<MachineOperand, 2> Cond;
1460 if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
1461 continue;
1463 Comparison::Kind Cmp =
1464 getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
1465 if (Cmp == 0)
1466 continue;
1467 if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
1468 Cmp = Comparison::getNegatedComparison(Cmp);
1469 if (CmpReg2 != 0 && CmpReg2 == Reg)
1470 Cmp = Comparison::getSwappedComparison(Cmp);
1472 // Signed underflow is undefined.
1473 if (Comparison::isSigned(Cmp))
1474 return false;
1476 // Check if there is a comparison of the initial value. If the initial value
1477 // is greater than or not equal to another value, then assume this is a
1478 // range check.
1479 if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
1480 return false;
1483 // OK - this is a hack that needs to be improved. We really need to analyze
1484 // the instructions performed on the initial value. This works on the simplest
1485 // cases only.
1486 if (!Def->isCopy() && !Def->isPHI())
1487 return false;
1489 return true;
1492 bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
1493 int64_t &Val) const {
1494 if (MO.isImm()) {
1495 Val = MO.getImm();
1496 return true;
1498 if (!MO.isReg())
1499 return false;
1501 // MO is a register. Check whether it is defined as an immediate value,
1502 // and if so, get the value of it in TV. That value will then need to be
1503 // processed to handle potential subregisters in MO.
1504 int64_t TV;
1506 Register R = MO.getReg();
1507 if (!R.isVirtual())
1508 return false;
1509 MachineInstr *DI = MRI->getVRegDef(R);
1510 unsigned DOpc = DI->getOpcode();
1511 switch (DOpc) {
1512 case TargetOpcode::COPY:
1513 case Hexagon::A2_tfrsi:
1514 case Hexagon::A2_tfrpi:
1515 case Hexagon::CONST32:
1516 case Hexagon::CONST64:
1517 // Call recursively to avoid an extra check whether operand(1) is
1518 // indeed an immediate (it could be a global address, for example),
1519 // plus we can handle COPY at the same time.
1520 if (!checkForImmediate(DI->getOperand(1), TV))
1521 return false;
1522 break;
1523 case Hexagon::A2_combineii:
1524 case Hexagon::A4_combineir:
1525 case Hexagon::A4_combineii:
1526 case Hexagon::A4_combineri:
1527 case Hexagon::A2_combinew: {
1528 const MachineOperand &S1 = DI->getOperand(1);
1529 const MachineOperand &S2 = DI->getOperand(2);
1530 int64_t V1, V2;
1531 if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
1532 return false;
1533 TV = V2 | (static_cast<uint64_t>(V1) << 32);
1534 break;
1536 case TargetOpcode::REG_SEQUENCE: {
1537 const MachineOperand &S1 = DI->getOperand(1);
1538 const MachineOperand &S3 = DI->getOperand(3);
1539 int64_t V1, V3;
1540 if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
1541 return false;
1542 unsigned Sub2 = DI->getOperand(2).getImm();
1543 unsigned Sub4 = DI->getOperand(4).getImm();
1544 if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
1545 TV = V1 | (V3 << 32);
1546 else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
1547 TV = V3 | (V1 << 32);
1548 else
1549 llvm_unreachable("Unexpected form of REG_SEQUENCE");
1550 break;
1553 default:
1554 return false;
1557 // By now, we should have successfully obtained the immediate value defining
1558 // the register referenced in MO. Handle a potential use of a subregister.
1559 switch (MO.getSubReg()) {
1560 case Hexagon::isub_lo:
1561 Val = TV & 0xFFFFFFFFULL;
1562 break;
1563 case Hexagon::isub_hi:
1564 Val = (TV >> 32) & 0xFFFFFFFFULL;
1565 break;
1566 default:
1567 Val = TV;
1568 break;
1570 return true;
1573 void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
1574 if (MO.isImm()) {
1575 MO.setImm(Val);
1576 return;
1579 assert(MO.isReg());
1580 Register R = MO.getReg();
1581 MachineInstr *DI = MRI->getVRegDef(R);
1583 const TargetRegisterClass *RC = MRI->getRegClass(R);
1584 Register NewR = MRI->createVirtualRegister(RC);
1585 MachineBasicBlock &B = *DI->getParent();
1586 DebugLoc DL = DI->getDebugLoc();
1587 BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
1588 MO.setReg(NewR);
1591 bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
1592 MachineBasicBlock *Header = L->getHeader();
1593 MachineBasicBlock *Latch = L->getLoopLatch();
1594 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1596 if (!(Header && Latch && ExitingBlock))
1597 return false;
1599 // These data structures follow the same concept as the corresponding
1600 // ones in findInductionRegister (where some comments are).
1601 using RegisterBump = std::pair<Register, int64_t>;
1602 using RegisterInduction = std::pair<Register, RegisterBump>;
1603 using RegisterInductionSet = std::set<RegisterInduction>;
1605 // Register candidates for induction variables, with their associated bumps.
1606 RegisterInductionSet IndRegs;
1608 // Look for induction patterns:
1609 // %1 = PHI ..., [ latch, %2 ]
1610 // %2 = ADD %1, imm
1611 using instr_iterator = MachineBasicBlock::instr_iterator;
1613 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1614 I != E && I->isPHI(); ++I) {
1615 MachineInstr *Phi = &*I;
1617 // Have a PHI instruction.
1618 for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
1619 if (Phi->getOperand(i+1).getMBB() != Latch)
1620 continue;
1622 Register PhiReg = Phi->getOperand(i).getReg();
1623 MachineInstr *DI = MRI->getVRegDef(PhiReg);
1625 if (DI->getDesc().isAdd()) {
1626 // If the register operand to the add/sub is the PHI we are looking
1627 // at, this meets the induction pattern.
1628 Register IndReg = DI->getOperand(1).getReg();
1629 MachineOperand &Opnd2 = DI->getOperand(2);
1630 int64_t V;
1631 if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
1632 Register UpdReg = DI->getOperand(0).getReg();
1633 IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
1636 } // for (i)
1637 } // for (instr)
1639 if (IndRegs.empty())
1640 return false;
1642 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1643 SmallVector<MachineOperand,2> Cond;
1644 // analyzeBranch returns true if it fails to analyze branch.
1645 bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
1646 if (NotAnalyzed || Cond.empty())
1647 return false;
1649 if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
1650 MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
1651 SmallVector<MachineOperand,2> LCond;
1652 bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
1653 if (NotAnalyzed)
1654 return false;
1656 // Since latch is not the exiting block, the latch branch should be an
1657 // unconditional branch to the loop header.
1658 if (TB == Latch)
1659 TB = (LTB == Header) ? LTB : LFB;
1660 else
1661 FB = (LTB == Header) ? LTB : LFB;
1663 if (TB != Header) {
1664 if (FB != Header) {
1665 // The latch/exit block does not go back to the header.
1666 return false;
1668 // FB is the header (i.e., uncond. jump to branch header)
1669 // In this case, the LoopBody -> TB should not be a back edge otherwise
1670 // it could result in an infinite loop after conversion to hw_loop.
1671 // This case can happen when the Latch has two jumps like this:
1672 // Jmp_c OuterLoopHeader <-- TB
1673 // Jmp InnerLoopHeader <-- FB
1674 if (MDT->dominates(TB, FB))
1675 return false;
1678 // Expecting a predicate register as a condition. It won't be a hardware
1679 // predicate register at this point yet, just a vreg.
1680 // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
1681 // into Cond, followed by the predicate register. For non-negated branches
1682 // it's just the register.
1683 unsigned CSz = Cond.size();
1684 if (CSz != 1 && CSz != 2)
1685 return false;
1687 if (!Cond[CSz-1].isReg())
1688 return false;
1690 Register P = Cond[CSz - 1].getReg();
1691 MachineInstr *PredDef = MRI->getVRegDef(P);
1693 if (!PredDef->isCompare())
1694 return false;
1696 SmallSet<Register,2> CmpRegs;
1697 MachineOperand *CmpImmOp = nullptr;
1699 // Go over all operands to the compare and look for immediate and register
1700 // operands. Assume that if the compare has a single register use and a
1701 // single immediate operand, then the register is being compared with the
1702 // immediate value.
1703 for (MachineOperand &MO : PredDef->operands()) {
1704 if (MO.isReg()) {
1705 // Skip all implicit references. In one case there was:
1706 // %140 = FCMPUGT32_rr %138, %139, implicit %usr
1707 if (MO.isImplicit())
1708 continue;
1709 if (MO.isUse()) {
1710 if (!isImmediate(MO)) {
1711 CmpRegs.insert(MO.getReg());
1712 continue;
1714 // Consider the register to be the "immediate" operand.
1715 if (CmpImmOp)
1716 return false;
1717 CmpImmOp = &MO;
1719 } else if (MO.isImm()) {
1720 if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
1721 return false;
1722 CmpImmOp = &MO;
1726 if (CmpRegs.empty())
1727 return false;
1729 // Check if the compared register follows the order we want. Fix if needed.
1730 for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
1731 I != E; ++I) {
1732 // This is a success. If the register used in the comparison is one that
1733 // we have identified as a bumped (updated) induction register, there is
1734 // nothing to do.
1735 if (CmpRegs.count(I->first))
1736 return true;
1738 // Otherwise, if the register being compared comes out of a PHI node,
1739 // and has been recognized as following the induction pattern, and is
1740 // compared against an immediate, we can fix it.
1741 const RegisterBump &RB = I->second;
1742 if (CmpRegs.count(RB.first)) {
1743 if (!CmpImmOp) {
1744 // If both operands to the compare instruction are registers, see if
1745 // it can be changed to use induction register as one of the operands.
1746 MachineInstr *IndI = nullptr;
1747 MachineInstr *nonIndI = nullptr;
1748 MachineOperand *IndMO = nullptr;
1749 MachineOperand *nonIndMO = nullptr;
1751 for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
1752 MachineOperand &MO = PredDef->getOperand(i);
1753 if (MO.isReg() && MO.getReg() == RB.first) {
1754 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1755 << ") = " << *(MRI->getVRegDef(I->first)));
1756 if (IndI)
1757 return false;
1759 IndI = MRI->getVRegDef(I->first);
1760 IndMO = &MO;
1761 } else if (MO.isReg()) {
1762 LLVM_DEBUG(dbgs() << "\n DefMI(" << i
1763 << ") = " << *(MRI->getVRegDef(MO.getReg())));
1764 if (nonIndI)
1765 return false;
1767 nonIndI = MRI->getVRegDef(MO.getReg());
1768 nonIndMO = &MO;
1771 if (IndI && nonIndI &&
1772 nonIndI->getOpcode() == Hexagon::A2_addi &&
1773 nonIndI->getOperand(2).isImm() &&
1774 nonIndI->getOperand(2).getImm() == - RB.second) {
1775 bool Order = orderBumpCompare(IndI, PredDef);
1776 if (Order) {
1777 IndMO->setReg(I->first);
1778 nonIndMO->setReg(nonIndI->getOperand(1).getReg());
1779 return true;
1782 return false;
1785 // It is not valid to do this transformation on an unsigned comparison
1786 // because it may underflow.
1787 Comparison::Kind Cmp =
1788 getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
1789 if (!Cmp || Comparison::isUnsigned(Cmp))
1790 return false;
1792 // If the register is being compared against an immediate, try changing
1793 // the compare instruction to use induction register and adjust the
1794 // immediate operand.
1795 int64_t CmpImm = getImmediate(*CmpImmOp);
1796 int64_t V = RB.second;
1797 // Handle Overflow (64-bit).
1798 if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
1799 ((V < 0) && (CmpImm < INT64_MIN - V)))
1800 return false;
1801 CmpImm += V;
1802 // Most comparisons of register against an immediate value allow
1803 // the immediate to be constant-extended. There are some exceptions
1804 // though. Make sure the new combination will work.
1805 if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) &&
1806 !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false))
1807 return false;
1809 // Make sure that the compare happens after the bump. Otherwise,
1810 // after the fixup, the compare would use a yet-undefined register.
1811 MachineInstr *BumpI = MRI->getVRegDef(I->first);
1812 bool Order = orderBumpCompare(BumpI, PredDef);
1813 if (!Order)
1814 return false;
1816 // Finally, fix the compare instruction.
1817 setImmediate(*CmpImmOp, CmpImm);
1818 for (MachineOperand &MO : PredDef->operands()) {
1819 if (MO.isReg() && MO.getReg() == RB.first) {
1820 MO.setReg(I->first);
1821 return true;
1827 return false;
1830 /// createPreheaderForLoop - Create a preheader for a given loop.
1831 MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
1832 MachineLoop *L) {
1833 if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
1834 return TmpPH;
1835 if (!HWCreatePreheader)
1836 return nullptr;
1838 MachineBasicBlock *Header = L->getHeader();
1839 MachineBasicBlock *Latch = L->getLoopLatch();
1840 MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
1841 MachineFunction *MF = Header->getParent();
1842 DebugLoc DL;
1844 #ifndef NDEBUG
1845 if ((!PHFn.empty()) && (PHFn != MF->getName()))
1846 return nullptr;
1847 #endif
1849 if (!Latch || !ExitingBlock || Header->hasAddressTaken())
1850 return nullptr;
1852 using instr_iterator = MachineBasicBlock::instr_iterator;
1854 // Verify that all existing predecessors have analyzable branches
1855 // (or no branches at all).
1856 using MBBVector = std::vector<MachineBasicBlock *>;
1858 MBBVector Preds(Header->pred_begin(), Header->pred_end());
1859 SmallVector<MachineOperand,2> Tmp1;
1860 MachineBasicBlock *TB = nullptr, *FB = nullptr;
1862 if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
1863 return nullptr;
1865 for (MachineBasicBlock *PB : Preds) {
1866 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
1867 if (NotAnalyzed)
1868 return nullptr;
1871 MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
1872 MF->insert(Header->getIterator(), NewPH);
1874 if (Header->pred_size() > 2) {
1875 // Ensure that the header has only two predecessors: the preheader and
1876 // the loop latch. Any additional predecessors of the header should
1877 // join at the newly created preheader. Inspect all PHI nodes from the
1878 // header and create appropriate corresponding PHI nodes in the preheader.
1880 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1881 I != E && I->isPHI(); ++I) {
1882 MachineInstr *PN = &*I;
1884 const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
1885 MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
1886 NewPH->insert(NewPH->end(), NewPN);
1888 Register PR = PN->getOperand(0).getReg();
1889 const TargetRegisterClass *RC = MRI->getRegClass(PR);
1890 Register NewPR = MRI->createVirtualRegister(RC);
1891 NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
1893 // Copy all non-latch operands of a header's PHI node to the newly
1894 // created PHI node in the preheader.
1895 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1896 Register PredR = PN->getOperand(i).getReg();
1897 unsigned PredRSub = PN->getOperand(i).getSubReg();
1898 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1899 if (PredB == Latch)
1900 continue;
1902 MachineOperand MO = MachineOperand::CreateReg(PredR, false);
1903 MO.setSubReg(PredRSub);
1904 NewPN->addOperand(MO);
1905 NewPN->addOperand(MachineOperand::CreateMBB(PredB));
1908 // Remove copied operands from the old PHI node and add the value
1909 // coming from the preheader's PHI.
1910 for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
1911 MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
1912 if (PredB != Latch) {
1913 PN->removeOperand(i+1);
1914 PN->removeOperand(i);
1917 PN->addOperand(MachineOperand::CreateReg(NewPR, false));
1918 PN->addOperand(MachineOperand::CreateMBB(NewPH));
1920 } else {
1921 assert(Header->pred_size() == 2);
1923 // The header has only two predecessors, but the non-latch predecessor
1924 // is not a preheader (e.g. it has other successors, etc.)
1925 // In such a case we don't need any extra PHI nodes in the new preheader,
1926 // all we need is to adjust existing PHIs in the header to now refer to
1927 // the new preheader.
1928 for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
1929 I != E && I->isPHI(); ++I) {
1930 MachineInstr *PN = &*I;
1931 for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
1932 MachineOperand &MO = PN->getOperand(i+1);
1933 if (MO.getMBB() != Latch)
1934 MO.setMBB(NewPH);
1939 // "Reroute" the CFG edges to link in the new preheader.
1940 // If any of the predecessors falls through to the header, insert a branch
1941 // to the new preheader in that place.
1942 SmallVector<MachineOperand,1> Tmp2;
1943 SmallVector<MachineOperand,1> EmptyCond;
1945 TB = FB = nullptr;
1947 for (MachineBasicBlock *PB : Preds) {
1948 if (PB != Latch) {
1949 Tmp2.clear();
1950 bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
1951 (void)NotAnalyzed; // suppress compiler warning
1952 assert (!NotAnalyzed && "Should be analyzable!");
1953 if (TB != Header && (Tmp2.empty() || FB != Header))
1954 TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
1955 PB->ReplaceUsesOfBlockWith(Header, NewPH);
1959 // It can happen that the latch block will fall through into the header.
1960 // Insert an unconditional branch to the header.
1961 TB = FB = nullptr;
1962 bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
1963 (void)LatchNotAnalyzed; // suppress compiler warning
1964 assert (!LatchNotAnalyzed && "Should be analyzable!");
1965 if (!TB && !FB)
1966 TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
1968 // Finally, the branch from the preheader to the header.
1969 TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
1970 NewPH->addSuccessor(Header);
1972 MachineLoop *ParentLoop = L->getParentLoop();
1973 if (ParentLoop)
1974 ParentLoop->addBasicBlockToLoop(NewPH, *MLI);
1976 // Update the dominator information with the new preheader.
1977 if (MDT) {
1978 if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
1979 if (MachineDomTreeNode *DHN = HN->getIDom()) {
1980 MDT->addNewBlock(NewPH, DHN->getBlock());
1981 MDT->changeImmediateDominator(Header, NewPH);
1986 return NewPH;