Revert " [LoongArch][ISel] Check the number of sign bits in `PatGprGpr_32` (#107432)"
[llvm-project.git] / llvm / lib / Target / LoongArch / LoongArchISelLowering.cpp
blobd80509cf39849ecdf1d2353e77da3b34e43b880c
1 //=- LoongArchISelLowering.cpp - LoongArch DAG Lowering Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that LoongArch uses to lower LLVM code into
10 // a selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "LoongArchISelLowering.h"
15 #include "LoongArch.h"
16 #include "LoongArchMachineFunctionInfo.h"
17 #include "LoongArchRegisterInfo.h"
18 #include "LoongArchSubtarget.h"
19 #include "LoongArchTargetMachine.h"
20 #include "MCTargetDesc/LoongArchBaseInfo.h"
21 #include "MCTargetDesc/LoongArchMCTargetDesc.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/CodeGen/ISDOpcodes.h"
25 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/IntrinsicsLoongArch.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
37 #define DEBUG_TYPE "loongarch-isel-lowering"
39 STATISTIC(NumTailCalls, "Number of tail calls");
41 static cl::opt<bool> ZeroDivCheck("loongarch-check-zero-division", cl::Hidden,
42 cl::desc("Trap on integer division by zero."),
43 cl::init(false));
45 LoongArchTargetLowering::LoongArchTargetLowering(const TargetMachine &TM,
46 const LoongArchSubtarget &STI)
47 : TargetLowering(TM), Subtarget(STI) {
49 MVT GRLenVT = Subtarget.getGRLenVT();
51 // Set up the register classes.
53 addRegisterClass(GRLenVT, &LoongArch::GPRRegClass);
54 if (Subtarget.hasBasicF())
55 addRegisterClass(MVT::f32, &LoongArch::FPR32RegClass);
56 if (Subtarget.hasBasicD())
57 addRegisterClass(MVT::f64, &LoongArch::FPR64RegClass);
59 static const MVT::SimpleValueType LSXVTs[] = {
60 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
61 static const MVT::SimpleValueType LASXVTs[] = {
62 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
64 if (Subtarget.hasExtLSX())
65 for (MVT VT : LSXVTs)
66 addRegisterClass(VT, &LoongArch::LSX128RegClass);
68 if (Subtarget.hasExtLASX())
69 for (MVT VT : LASXVTs)
70 addRegisterClass(VT, &LoongArch::LASX256RegClass);
72 // Set operations for LA32 and LA64.
74 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, GRLenVT,
75 MVT::i1, Promote);
77 setOperationAction(ISD::SHL_PARTS, GRLenVT, Custom);
78 setOperationAction(ISD::SRA_PARTS, GRLenVT, Custom);
79 setOperationAction(ISD::SRL_PARTS, GRLenVT, Custom);
80 setOperationAction(ISD::FP_TO_SINT, GRLenVT, Custom);
81 setOperationAction(ISD::ROTL, GRLenVT, Expand);
82 setOperationAction(ISD::CTPOP, GRLenVT, Expand);
84 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
85 ISD::JumpTable, ISD::GlobalTLSAddress},
86 GRLenVT, Custom);
88 setOperationAction(ISD::EH_DWARF_CFA, GRLenVT, Custom);
90 setOperationAction(ISD::DYNAMIC_STACKALLOC, GRLenVT, Expand);
91 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
92 setOperationAction(ISD::VASTART, MVT::Other, Custom);
93 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
95 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
96 setOperationAction(ISD::TRAP, MVT::Other, Legal);
98 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
99 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
100 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
102 // Expand bitreverse.i16 with native-width bitrev and shift for now, before
103 // we get to know which of sll and revb.2h is faster.
104 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
105 setOperationAction(ISD::BITREVERSE, GRLenVT, Legal);
107 // LA32 does not have REVB.2W and REVB.D due to the 64-bit operands, and
108 // the narrower REVB.W does not exist. But LA32 does have REVB.2H, so i16
109 // and i32 could still be byte-swapped relatively cheaply.
110 setOperationAction(ISD::BSWAP, MVT::i16, Custom);
112 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
113 setOperationAction(ISD::BR_CC, GRLenVT, Expand);
114 setOperationAction(ISD::SELECT_CC, GRLenVT, Expand);
115 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
116 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, GRLenVT, Expand);
118 setOperationAction(ISD::FP_TO_UINT, GRLenVT, Custom);
119 setOperationAction(ISD::UINT_TO_FP, GRLenVT, Expand);
121 // Set operations for LA64 only.
123 if (Subtarget.is64Bit()) {
124 setOperationAction(ISD::ADD, MVT::i32, Custom);
125 setOperationAction(ISD::SUB, MVT::i32, Custom);
126 setOperationAction(ISD::SHL, MVT::i32, Custom);
127 setOperationAction(ISD::SRA, MVT::i32, Custom);
128 setOperationAction(ISD::SRL, MVT::i32, Custom);
129 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
130 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
131 setOperationAction(ISD::ROTR, MVT::i32, Custom);
132 setOperationAction(ISD::ROTL, MVT::i32, Custom);
133 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
134 setOperationAction(ISD::CTLZ, MVT::i32, Custom);
135 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
136 setOperationAction(ISD::READ_REGISTER, MVT::i32, Custom);
137 setOperationAction(ISD::WRITE_REGISTER, MVT::i32, Custom);
138 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
139 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
140 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
142 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
143 setOperationAction(ISD::BSWAP, MVT::i32, Custom);
144 setOperationAction({ISD::UDIV, ISD::UREM}, MVT::i32, Custom);
147 // Set operations for LA32 only.
149 if (!Subtarget.is64Bit()) {
150 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
151 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
152 setOperationAction(ISD::INTRINSIC_VOID, MVT::i64, Custom);
153 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
154 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
157 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
159 static const ISD::CondCode FPCCToExpand[] = {
160 ISD::SETOGT, ISD::SETOGE, ISD::SETUGT, ISD::SETUGE,
161 ISD::SETGE, ISD::SETNE, ISD::SETGT};
163 // Set operations for 'F' feature.
165 if (Subtarget.hasBasicF()) {
166 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
167 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
168 setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
170 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
171 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
172 setOperationAction(ISD::FMA, MVT::f32, Legal);
173 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
174 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
175 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
176 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
177 setOperationAction(ISD::IS_FPCLASS, MVT::f32, Legal);
178 setOperationAction(ISD::FSIN, MVT::f32, Expand);
179 setOperationAction(ISD::FCOS, MVT::f32, Expand);
180 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
181 setOperationAction(ISD::FPOW, MVT::f32, Expand);
182 setOperationAction(ISD::FREM, MVT::f32, Expand);
183 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
184 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
186 if (Subtarget.is64Bit())
187 setOperationAction(ISD::FRINT, MVT::f32, Legal);
189 if (!Subtarget.hasBasicD()) {
190 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
191 if (Subtarget.is64Bit()) {
192 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
193 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
198 // Set operations for 'D' feature.
200 if (Subtarget.hasBasicD()) {
201 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
202 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
203 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
204 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
205 setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
207 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
208 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
209 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
210 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
211 setOperationAction(ISD::FMA, MVT::f64, Legal);
212 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
213 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
214 setOperationAction(ISD::IS_FPCLASS, MVT::f64, Legal);
215 setOperationAction(ISD::FSIN, MVT::f64, Expand);
216 setOperationAction(ISD::FCOS, MVT::f64, Expand);
217 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
218 setOperationAction(ISD::FPOW, MVT::f64, Expand);
219 setOperationAction(ISD::FREM, MVT::f64, Expand);
220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
221 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
223 if (Subtarget.is64Bit())
224 setOperationAction(ISD::FRINT, MVT::f64, Legal);
227 // Set operations for 'LSX' feature.
229 if (Subtarget.hasExtLSX()) {
230 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
231 // Expand all truncating stores and extending loads.
232 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
233 setTruncStoreAction(VT, InnerVT, Expand);
234 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
235 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
236 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
238 // By default everything must be expanded. Then we will selectively turn
239 // on ones that can be effectively codegen'd.
240 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
241 setOperationAction(Op, VT, Expand);
244 for (MVT VT : LSXVTs) {
245 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Legal);
246 setOperationAction(ISD::BITCAST, VT, Legal);
247 setOperationAction(ISD::UNDEF, VT, Legal);
249 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
250 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
251 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
253 setOperationAction(ISD::SETCC, VT, Legal);
254 setOperationAction(ISD::VSELECT, VT, Legal);
255 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
257 for (MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
258 setOperationAction({ISD::ADD, ISD::SUB}, VT, Legal);
259 setOperationAction({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}, VT,
260 Legal);
261 setOperationAction({ISD::MUL, ISD::SDIV, ISD::SREM, ISD::UDIV, ISD::UREM},
262 VT, Legal);
263 setOperationAction({ISD::AND, ISD::OR, ISD::XOR}, VT, Legal);
264 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL}, VT, Legal);
265 setOperationAction({ISD::CTPOP, ISD::CTLZ}, VT, Legal);
266 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Legal);
267 setCondCodeAction(
268 {ISD::SETNE, ISD::SETGE, ISD::SETGT, ISD::SETUGE, ISD::SETUGT}, VT,
269 Expand);
271 for (MVT VT : {MVT::v4i32, MVT::v2i64}) {
272 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, VT, Legal);
273 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, VT, Legal);
275 for (MVT VT : {MVT::v4f32, MVT::v2f64}) {
276 setOperationAction({ISD::FADD, ISD::FSUB}, VT, Legal);
277 setOperationAction({ISD::FMUL, ISD::FDIV}, VT, Legal);
278 setOperationAction(ISD::FMA, VT, Legal);
279 setOperationAction(ISD::FSQRT, VT, Legal);
280 setOperationAction(ISD::FNEG, VT, Legal);
281 setCondCodeAction({ISD::SETGE, ISD::SETGT, ISD::SETOGE, ISD::SETOGT,
282 ISD::SETUGE, ISD::SETUGT},
283 VT, Expand);
287 // Set operations for 'LASX' feature.
289 if (Subtarget.hasExtLASX()) {
290 for (MVT VT : LASXVTs) {
291 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Legal);
292 setOperationAction(ISD::BITCAST, VT, Legal);
293 setOperationAction(ISD::UNDEF, VT, Legal);
295 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
296 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
297 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
299 setOperationAction(ISD::SETCC, VT, Legal);
300 setOperationAction(ISD::VSELECT, VT, Legal);
301 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
303 for (MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
304 setOperationAction({ISD::ADD, ISD::SUB}, VT, Legal);
305 setOperationAction({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}, VT,
306 Legal);
307 setOperationAction({ISD::MUL, ISD::SDIV, ISD::SREM, ISD::UDIV, ISD::UREM},
308 VT, Legal);
309 setOperationAction({ISD::AND, ISD::OR, ISD::XOR}, VT, Legal);
310 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL}, VT, Legal);
311 setOperationAction({ISD::CTPOP, ISD::CTLZ}, VT, Legal);
312 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Legal);
313 setCondCodeAction(
314 {ISD::SETNE, ISD::SETGE, ISD::SETGT, ISD::SETUGE, ISD::SETUGT}, VT,
315 Expand);
317 for (MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
318 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, VT, Legal);
319 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, VT, Legal);
321 for (MVT VT : {MVT::v8f32, MVT::v4f64}) {
322 setOperationAction({ISD::FADD, ISD::FSUB}, VT, Legal);
323 setOperationAction({ISD::FMUL, ISD::FDIV}, VT, Legal);
324 setOperationAction(ISD::FMA, VT, Legal);
325 setOperationAction(ISD::FSQRT, VT, Legal);
326 setOperationAction(ISD::FNEG, VT, Legal);
327 setCondCodeAction({ISD::SETGE, ISD::SETGT, ISD::SETOGE, ISD::SETOGT,
328 ISD::SETUGE, ISD::SETUGT},
329 VT, Expand);
333 // Set DAG combine for LA32 and LA64.
335 setTargetDAGCombine(ISD::AND);
336 setTargetDAGCombine(ISD::OR);
337 setTargetDAGCombine(ISD::SRL);
338 setTargetDAGCombine(ISD::SETCC);
340 // Set DAG combine for 'LSX' feature.
342 if (Subtarget.hasExtLSX())
343 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
345 // Compute derived properties from the register classes.
346 computeRegisterProperties(Subtarget.getRegisterInfo());
348 setStackPointerRegisterToSaveRestore(LoongArch::R3);
350 setBooleanContents(ZeroOrOneBooleanContent);
351 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
353 setMaxAtomicSizeInBitsSupported(Subtarget.getGRLen());
355 setMinCmpXchgSizeInBits(32);
357 // Function alignments.
358 setMinFunctionAlignment(Align(4));
359 // Set preferred alignments.
360 setPrefFunctionAlignment(Subtarget.getPrefFunctionAlignment());
361 setPrefLoopAlignment(Subtarget.getPrefLoopAlignment());
362 setMaxBytesForAlignment(Subtarget.getMaxBytesForAlignment());
365 bool LoongArchTargetLowering::isOffsetFoldingLegal(
366 const GlobalAddressSDNode *GA) const {
367 // In order to maximise the opportunity for common subexpression elimination,
368 // keep a separate ADD node for the global address offset instead of folding
369 // it in the global address node. Later peephole optimisations may choose to
370 // fold it back in when profitable.
371 return false;
374 SDValue LoongArchTargetLowering::LowerOperation(SDValue Op,
375 SelectionDAG &DAG) const {
376 switch (Op.getOpcode()) {
377 case ISD::ATOMIC_FENCE:
378 return lowerATOMIC_FENCE(Op, DAG);
379 case ISD::EH_DWARF_CFA:
380 return lowerEH_DWARF_CFA(Op, DAG);
381 case ISD::GlobalAddress:
382 return lowerGlobalAddress(Op, DAG);
383 case ISD::GlobalTLSAddress:
384 return lowerGlobalTLSAddress(Op, DAG);
385 case ISD::INTRINSIC_WO_CHAIN:
386 return lowerINTRINSIC_WO_CHAIN(Op, DAG);
387 case ISD::INTRINSIC_W_CHAIN:
388 return lowerINTRINSIC_W_CHAIN(Op, DAG);
389 case ISD::INTRINSIC_VOID:
390 return lowerINTRINSIC_VOID(Op, DAG);
391 case ISD::BlockAddress:
392 return lowerBlockAddress(Op, DAG);
393 case ISD::JumpTable:
394 return lowerJumpTable(Op, DAG);
395 case ISD::SHL_PARTS:
396 return lowerShiftLeftParts(Op, DAG);
397 case ISD::SRA_PARTS:
398 return lowerShiftRightParts(Op, DAG, true);
399 case ISD::SRL_PARTS:
400 return lowerShiftRightParts(Op, DAG, false);
401 case ISD::ConstantPool:
402 return lowerConstantPool(Op, DAG);
403 case ISD::FP_TO_SINT:
404 return lowerFP_TO_SINT(Op, DAG);
405 case ISD::BITCAST:
406 return lowerBITCAST(Op, DAG);
407 case ISD::UINT_TO_FP:
408 return lowerUINT_TO_FP(Op, DAG);
409 case ISD::SINT_TO_FP:
410 return lowerSINT_TO_FP(Op, DAG);
411 case ISD::VASTART:
412 return lowerVASTART(Op, DAG);
413 case ISD::FRAMEADDR:
414 return lowerFRAMEADDR(Op, DAG);
415 case ISD::RETURNADDR:
416 return lowerRETURNADDR(Op, DAG);
417 case ISD::WRITE_REGISTER:
418 return lowerWRITE_REGISTER(Op, DAG);
419 case ISD::INSERT_VECTOR_ELT:
420 return lowerINSERT_VECTOR_ELT(Op, DAG);
421 case ISD::EXTRACT_VECTOR_ELT:
422 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
423 case ISD::BUILD_VECTOR:
424 return lowerBUILD_VECTOR(Op, DAG);
425 case ISD::VECTOR_SHUFFLE:
426 return lowerVECTOR_SHUFFLE(Op, DAG);
428 return SDValue();
431 /// Determine whether a range fits a regular pattern of values.
432 /// This function accounts for the possibility of jumping over the End iterator.
433 template <typename ValType>
434 static bool
435 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
436 unsigned CheckStride,
437 typename SmallVectorImpl<ValType>::const_iterator End,
438 ValType ExpectedIndex, unsigned ExpectedIndexStride) {
439 auto &I = Begin;
441 while (I != End) {
442 if (*I != -1 && *I != ExpectedIndex)
443 return false;
444 ExpectedIndex += ExpectedIndexStride;
446 // Incrementing past End is undefined behaviour so we must increment one
447 // step at a time and check for End at each step.
448 for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
449 ; // Empty loop body.
451 return true;
454 /// Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
456 /// VREPLVEI performs vector broadcast based on an element specified by an
457 /// integer immediate, with its mask being similar to:
458 /// <x, x, x, ...>
459 /// where x is any valid index.
461 /// When undef's appear in the mask they are treated as if they were whatever
462 /// value is necessary in order to fit the above form.
463 static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef<int> Mask,
464 MVT VT, SDValue V1, SDValue V2,
465 SelectionDAG &DAG) {
466 int SplatIndex = -1;
467 for (const auto &M : Mask) {
468 if (M != -1) {
469 SplatIndex = M;
470 break;
474 if (SplatIndex == -1)
475 return DAG.getUNDEF(VT);
477 assert(SplatIndex < (int)Mask.size() && "Out of bounds mask index");
478 if (fitsRegularPattern<int>(Mask.begin(), 1, Mask.end(), SplatIndex, 0)) {
479 APInt Imm(64, SplatIndex);
480 return DAG.getNode(LoongArchISD::VREPLVEI, DL, VT, V1,
481 DAG.getConstant(Imm, DL, MVT::i64));
484 return SDValue();
487 /// Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
489 /// VSHUF4I splits the vector into blocks of four elements, then shuffles these
490 /// elements according to a <4 x i2> constant (encoded as an integer immediate).
492 /// It is therefore possible to lower into VSHUF4I when the mask takes the form:
493 /// <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
494 /// When undef's appear they are treated as if they were whatever value is
495 /// necessary in order to fit the above forms.
497 /// For example:
498 /// %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
499 /// <8 x i32> <i32 3, i32 2, i32 1, i32 0,
500 /// i32 7, i32 6, i32 5, i32 4>
501 /// is lowered to:
502 /// (VSHUF4I_H $v0, $v1, 27)
503 /// where the 27 comes from:
504 /// 3 + (2 << 2) + (1 << 4) + (0 << 6)
505 static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef<int> Mask,
506 MVT VT, SDValue V1, SDValue V2,
507 SelectionDAG &DAG) {
509 // When the size is less than 4, lower cost instructions may be used.
510 if (Mask.size() < 4)
511 return SDValue();
513 int SubMask[4] = {-1, -1, -1, -1};
514 for (unsigned i = 0; i < 4; ++i) {
515 for (unsigned j = i; j < Mask.size(); j += 4) {
516 int Idx = Mask[j];
518 // Convert from vector index to 4-element subvector index
519 // If an index refers to an element outside of the subvector then give up
520 if (Idx != -1) {
521 Idx -= 4 * (j / 4);
522 if (Idx < 0 || Idx >= 4)
523 return SDValue();
526 // If the mask has an undef, replace it with the current index.
527 // Note that it might still be undef if the current index is also undef
528 if (SubMask[i] == -1)
529 SubMask[i] = Idx;
530 // Check that non-undef values are the same as in the mask. If they
531 // aren't then give up
532 else if (Idx != -1 && Idx != SubMask[i])
533 return SDValue();
537 // Calculate the immediate. Replace any remaining undefs with zero
538 APInt Imm(64, 0);
539 for (int i = 3; i >= 0; --i) {
540 int Idx = SubMask[i];
542 if (Idx == -1)
543 Idx = 0;
545 Imm <<= 2;
546 Imm |= Idx & 0x3;
549 return DAG.getNode(LoongArchISD::VSHUF4I, DL, VT, V1,
550 DAG.getConstant(Imm, DL, MVT::i64));
553 /// Lower VECTOR_SHUFFLE into VPACKEV (if possible).
555 /// VPACKEV interleaves the even elements from each vector.
557 /// It is possible to lower into VPACKEV when the mask consists of two of the
558 /// following forms interleaved:
559 /// <0, 2, 4, ...>
560 /// <n, n+2, n+4, ...>
561 /// where n is the number of elements in the vector.
562 /// For example:
563 /// <0, 0, 2, 2, 4, 4, ...>
564 /// <0, n, 2, n+2, 4, n+4, ...>
566 /// When undef's appear in the mask they are treated as if they were whatever
567 /// value is necessary in order to fit the above forms.
568 static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef<int> Mask,
569 MVT VT, SDValue V1, SDValue V2,
570 SelectionDAG &DAG) {
572 const auto &Begin = Mask.begin();
573 const auto &End = Mask.end();
574 SDValue OriV1 = V1, OriV2 = V2;
576 if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
577 V1 = OriV1;
578 else if (fitsRegularPattern<int>(Begin, 2, End, Mask.size(), 2))
579 V1 = OriV2;
580 else
581 return SDValue();
583 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
584 V2 = OriV1;
585 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Mask.size(), 2))
586 V2 = OriV2;
587 else
588 return SDValue();
590 return DAG.getNode(LoongArchISD::VPACKEV, DL, VT, V2, V1);
593 /// Lower VECTOR_SHUFFLE into VPACKOD (if possible).
595 /// VPACKOD interleaves the odd elements from each vector.
597 /// It is possible to lower into VPACKOD when the mask consists of two of the
598 /// following forms interleaved:
599 /// <1, 3, 5, ...>
600 /// <n+1, n+3, n+5, ...>
601 /// where n is the number of elements in the vector.
602 /// For example:
603 /// <1, 1, 3, 3, 5, 5, ...>
604 /// <1, n+1, 3, n+3, 5, n+5, ...>
606 /// When undef's appear in the mask they are treated as if they were whatever
607 /// value is necessary in order to fit the above forms.
608 static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef<int> Mask,
609 MVT VT, SDValue V1, SDValue V2,
610 SelectionDAG &DAG) {
612 const auto &Begin = Mask.begin();
613 const auto &End = Mask.end();
614 SDValue OriV1 = V1, OriV2 = V2;
616 if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
617 V1 = OriV1;
618 else if (fitsRegularPattern<int>(Begin, 2, End, Mask.size() + 1, 2))
619 V1 = OriV2;
620 else
621 return SDValue();
623 if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
624 V2 = OriV1;
625 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Mask.size() + 1, 2))
626 V2 = OriV2;
627 else
628 return SDValue();
630 return DAG.getNode(LoongArchISD::VPACKOD, DL, VT, V2, V1);
633 /// Lower VECTOR_SHUFFLE into VILVH (if possible).
635 /// VILVH interleaves consecutive elements from the left (highest-indexed) half
636 /// of each vector.
638 /// It is possible to lower into VILVH when the mask consists of two of the
639 /// following forms interleaved:
640 /// <x, x+1, x+2, ...>
641 /// <n+x, n+x+1, n+x+2, ...>
642 /// where n is the number of elements in the vector and x is half n.
643 /// For example:
644 /// <x, x, x+1, x+1, x+2, x+2, ...>
645 /// <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
647 /// When undef's appear in the mask they are treated as if they were whatever
648 /// value is necessary in order to fit the above forms.
649 static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef<int> Mask,
650 MVT VT, SDValue V1, SDValue V2,
651 SelectionDAG &DAG) {
653 const auto &Begin = Mask.begin();
654 const auto &End = Mask.end();
655 unsigned HalfSize = Mask.size() / 2;
656 SDValue OriV1 = V1, OriV2 = V2;
658 if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
659 V1 = OriV1;
660 else if (fitsRegularPattern<int>(Begin, 2, End, Mask.size() + HalfSize, 1))
661 V1 = OriV2;
662 else
663 return SDValue();
665 if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
666 V2 = OriV1;
667 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Mask.size() + HalfSize,
669 V2 = OriV2;
670 else
671 return SDValue();
673 return DAG.getNode(LoongArchISD::VILVH, DL, VT, V2, V1);
676 /// Lower VECTOR_SHUFFLE into VILVL (if possible).
678 /// VILVL interleaves consecutive elements from the right (lowest-indexed) half
679 /// of each vector.
681 /// It is possible to lower into VILVL when the mask consists of two of the
682 /// following forms interleaved:
683 /// <0, 1, 2, ...>
684 /// <n, n+1, n+2, ...>
685 /// where n is the number of elements in the vector.
686 /// For example:
687 /// <0, 0, 1, 1, 2, 2, ...>
688 /// <0, n, 1, n+1, 2, n+2, ...>
690 /// When undef's appear in the mask they are treated as if they were whatever
691 /// value is necessary in order to fit the above forms.
692 static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef<int> Mask,
693 MVT VT, SDValue V1, SDValue V2,
694 SelectionDAG &DAG) {
696 const auto &Begin = Mask.begin();
697 const auto &End = Mask.end();
698 SDValue OriV1 = V1, OriV2 = V2;
700 if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
701 V1 = OriV1;
702 else if (fitsRegularPattern<int>(Begin, 2, End, Mask.size(), 1))
703 V1 = OriV2;
704 else
705 return SDValue();
707 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
708 V2 = OriV1;
709 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Mask.size(), 1))
710 V2 = OriV2;
711 else
712 return SDValue();
714 return DAG.getNode(LoongArchISD::VILVL, DL, VT, V2, V1);
717 /// Lower VECTOR_SHUFFLE into VPICKEV (if possible).
719 /// VPICKEV copies the even elements of each vector into the result vector.
721 /// It is possible to lower into VPICKEV when the mask consists of two of the
722 /// following forms concatenated:
723 /// <0, 2, 4, ...>
724 /// <n, n+2, n+4, ...>
725 /// where n is the number of elements in the vector.
726 /// For example:
727 /// <0, 2, 4, ..., 0, 2, 4, ...>
728 /// <0, 2, 4, ..., n, n+2, n+4, ...>
730 /// When undef's appear in the mask they are treated as if they were whatever
731 /// value is necessary in order to fit the above forms.
732 static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef<int> Mask,
733 MVT VT, SDValue V1, SDValue V2,
734 SelectionDAG &DAG) {
736 const auto &Begin = Mask.begin();
737 const auto &Mid = Mask.begin() + Mask.size() / 2;
738 const auto &End = Mask.end();
739 SDValue OriV1 = V1, OriV2 = V2;
741 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
742 V1 = OriV1;
743 else if (fitsRegularPattern<int>(Begin, 1, Mid, Mask.size(), 2))
744 V1 = OriV2;
745 else
746 return SDValue();
748 if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
749 V2 = OriV1;
750 else if (fitsRegularPattern<int>(Mid, 1, End, Mask.size(), 2))
751 V2 = OriV2;
753 else
754 return SDValue();
756 return DAG.getNode(LoongArchISD::VPICKEV, DL, VT, V2, V1);
759 /// Lower VECTOR_SHUFFLE into VPICKOD (if possible).
761 /// VPICKOD copies the odd elements of each vector into the result vector.
763 /// It is possible to lower into VPICKOD when the mask consists of two of the
764 /// following forms concatenated:
765 /// <1, 3, 5, ...>
766 /// <n+1, n+3, n+5, ...>
767 /// where n is the number of elements in the vector.
768 /// For example:
769 /// <1, 3, 5, ..., 1, 3, 5, ...>
770 /// <1, 3, 5, ..., n+1, n+3, n+5, ...>
772 /// When undef's appear in the mask they are treated as if they were whatever
773 /// value is necessary in order to fit the above forms.
774 static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef<int> Mask,
775 MVT VT, SDValue V1, SDValue V2,
776 SelectionDAG &DAG) {
778 const auto &Begin = Mask.begin();
779 const auto &Mid = Mask.begin() + Mask.size() / 2;
780 const auto &End = Mask.end();
781 SDValue OriV1 = V1, OriV2 = V2;
783 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
784 V1 = OriV1;
785 else if (fitsRegularPattern<int>(Begin, 1, Mid, Mask.size() + 1, 2))
786 V1 = OriV2;
787 else
788 return SDValue();
790 if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
791 V2 = OriV1;
792 else if (fitsRegularPattern<int>(Mid, 1, End, Mask.size() + 1, 2))
793 V2 = OriV2;
794 else
795 return SDValue();
797 return DAG.getNode(LoongArchISD::VPICKOD, DL, VT, V2, V1);
800 /// Lower VECTOR_SHUFFLE into VSHUF.
802 /// This mostly consists of converting the shuffle mask into a BUILD_VECTOR and
803 /// adding it as an operand to the resulting VSHUF.
804 static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef<int> Mask,
805 MVT VT, SDValue V1, SDValue V2,
806 SelectionDAG &DAG) {
808 SmallVector<SDValue, 16> Ops;
809 for (auto M : Mask)
810 Ops.push_back(DAG.getConstant(M, DL, MVT::i64));
812 EVT MaskVecTy = VT.changeVectorElementTypeToInteger();
813 SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
815 // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
816 // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
817 // VSHF concatenates the vectors in a bitwise fashion:
818 // <0b00, 0b01> + <0b10, 0b11> ->
819 // 0b0100 + 0b1110 -> 0b01001110
820 // <0b10, 0b11, 0b00, 0b01>
821 // We must therefore swap the operands to get the correct result.
822 return DAG.getNode(LoongArchISD::VSHUF, DL, VT, MaskVec, V2, V1);
825 /// Dispatching routine to lower various 128-bit LoongArch vector shuffles.
827 /// This routine breaks down the specific type of 128-bit shuffle and
828 /// dispatches to the lowering routines accordingly.
829 static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef<int> Mask, MVT VT,
830 SDValue V1, SDValue V2, SelectionDAG &DAG) {
831 assert((VT.SimpleTy == MVT::v16i8 || VT.SimpleTy == MVT::v8i16 ||
832 VT.SimpleTy == MVT::v4i32 || VT.SimpleTy == MVT::v2i64 ||
833 VT.SimpleTy == MVT::v4f32 || VT.SimpleTy == MVT::v2f64) &&
834 "Vector type is unsupported for lsx!");
835 assert(V1.getSimpleValueType() == V2.getSimpleValueType() &&
836 "Two operands have different types!");
837 assert(VT.getVectorNumElements() == Mask.size() &&
838 "Unexpected mask size for shuffle!");
839 assert(Mask.size() % 2 == 0 && "Expected even mask size.");
841 SDValue Result;
842 // TODO: Add more comparison patterns.
843 if (V2.isUndef()) {
844 if ((Result = lowerVECTOR_SHUFFLE_VREPLVEI(DL, Mask, VT, V1, V2, DAG)))
845 return Result;
846 if ((Result = lowerVECTOR_SHUFFLE_VSHUF4I(DL, Mask, VT, V1, V2, DAG)))
847 return Result;
849 // TODO: This comment may be enabled in the future to better match the
850 // pattern for instruction selection.
851 /* V2 = V1; */
854 // It is recommended not to change the pattern comparison order for better
855 // performance.
856 if ((Result = lowerVECTOR_SHUFFLE_VPACKEV(DL, Mask, VT, V1, V2, DAG)))
857 return Result;
858 if ((Result = lowerVECTOR_SHUFFLE_VPACKOD(DL, Mask, VT, V1, V2, DAG)))
859 return Result;
860 if ((Result = lowerVECTOR_SHUFFLE_VILVH(DL, Mask, VT, V1, V2, DAG)))
861 return Result;
862 if ((Result = lowerVECTOR_SHUFFLE_VILVL(DL, Mask, VT, V1, V2, DAG)))
863 return Result;
864 if ((Result = lowerVECTOR_SHUFFLE_VPICKEV(DL, Mask, VT, V1, V2, DAG)))
865 return Result;
866 if ((Result = lowerVECTOR_SHUFFLE_VPICKOD(DL, Mask, VT, V1, V2, DAG)))
867 return Result;
868 if ((Result = lowerVECTOR_SHUFFLE_VSHUF(DL, Mask, VT, V1, V2, DAG)))
869 return Result;
871 return SDValue();
874 /// Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
876 /// It is a XVREPLVEI when the mask is:
877 /// <x, x, x, ..., x+n, x+n, x+n, ...>
878 /// where the number of x is equal to n and n is half the length of vector.
880 /// When undef's appear in the mask they are treated as if they were whatever
881 /// value is necessary in order to fit the above form.
882 static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL,
883 ArrayRef<int> Mask, MVT VT,
884 SDValue V1, SDValue V2,
885 SelectionDAG &DAG) {
886 int SplatIndex = -1;
887 for (const auto &M : Mask) {
888 if (M != -1) {
889 SplatIndex = M;
890 break;
894 if (SplatIndex == -1)
895 return DAG.getUNDEF(VT);
897 const auto &Begin = Mask.begin();
898 const auto &End = Mask.end();
899 unsigned HalfSize = Mask.size() / 2;
901 assert(SplatIndex < (int)Mask.size() && "Out of bounds mask index");
902 if (fitsRegularPattern<int>(Begin, 1, End - HalfSize, SplatIndex, 0) &&
903 fitsRegularPattern<int>(Begin + HalfSize, 1, End, SplatIndex + HalfSize,
904 0)) {
905 APInt Imm(64, SplatIndex);
906 return DAG.getNode(LoongArchISD::VREPLVEI, DL, VT, V1,
907 DAG.getConstant(Imm, DL, MVT::i64));
910 return SDValue();
913 /// Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
914 static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef<int> Mask,
915 MVT VT, SDValue V1, SDValue V2,
916 SelectionDAG &DAG) {
917 // When the size is less than or equal to 4, lower cost instructions may be
918 // used.
919 if (Mask.size() <= 4)
920 return SDValue();
921 return lowerVECTOR_SHUFFLE_VSHUF4I(DL, Mask, VT, V1, V2, DAG);
924 /// Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
925 static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef<int> Mask,
926 MVT VT, SDValue V1, SDValue V2,
927 SelectionDAG &DAG) {
928 return lowerVECTOR_SHUFFLE_VPACKEV(DL, Mask, VT, V1, V2, DAG);
931 /// Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
932 static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef<int> Mask,
933 MVT VT, SDValue V1, SDValue V2,
934 SelectionDAG &DAG) {
935 return lowerVECTOR_SHUFFLE_VPACKOD(DL, Mask, VT, V1, V2, DAG);
938 /// Lower VECTOR_SHUFFLE into XVILVH (if possible).
939 static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef<int> Mask,
940 MVT VT, SDValue V1, SDValue V2,
941 SelectionDAG &DAG) {
943 const auto &Begin = Mask.begin();
944 const auto &End = Mask.end();
945 unsigned HalfSize = Mask.size() / 2;
946 unsigned LeftSize = HalfSize / 2;
947 SDValue OriV1 = V1, OriV2 = V2;
949 if (fitsRegularPattern<int>(Begin, 2, End - HalfSize, HalfSize - LeftSize,
950 1) &&
951 fitsRegularPattern<int>(Begin + HalfSize, 2, End, HalfSize + LeftSize, 1))
952 V1 = OriV1;
953 else if (fitsRegularPattern<int>(Begin, 2, End - HalfSize,
954 Mask.size() + HalfSize - LeftSize, 1) &&
955 fitsRegularPattern<int>(Begin + HalfSize, 2, End,
956 Mask.size() + HalfSize + LeftSize, 1))
957 V1 = OriV2;
958 else
959 return SDValue();
961 if (fitsRegularPattern<int>(Begin + 1, 2, End - HalfSize, HalfSize - LeftSize,
962 1) &&
963 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2, End, HalfSize + LeftSize,
965 V2 = OriV1;
966 else if (fitsRegularPattern<int>(Begin + 1, 2, End - HalfSize,
967 Mask.size() + HalfSize - LeftSize, 1) &&
968 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2, End,
969 Mask.size() + HalfSize + LeftSize, 1))
970 V2 = OriV2;
971 else
972 return SDValue();
974 return DAG.getNode(LoongArchISD::VILVH, DL, VT, V2, V1);
977 /// Lower VECTOR_SHUFFLE into XVILVL (if possible).
978 static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef<int> Mask,
979 MVT VT, SDValue V1, SDValue V2,
980 SelectionDAG &DAG) {
982 const auto &Begin = Mask.begin();
983 const auto &End = Mask.end();
984 unsigned HalfSize = Mask.size() / 2;
985 SDValue OriV1 = V1, OriV2 = V2;
987 if (fitsRegularPattern<int>(Begin, 2, End - HalfSize, 0, 1) &&
988 fitsRegularPattern<int>(Begin + HalfSize, 2, End, HalfSize, 1))
989 V1 = OriV1;
990 else if (fitsRegularPattern<int>(Begin, 2, End - HalfSize, Mask.size(), 1) &&
991 fitsRegularPattern<int>(Begin + HalfSize, 2, End,
992 Mask.size() + HalfSize, 1))
993 V1 = OriV2;
994 else
995 return SDValue();
997 if (fitsRegularPattern<int>(Begin + 1, 2, End - HalfSize, 0, 1) &&
998 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2, End, HalfSize, 1))
999 V2 = OriV1;
1000 else if (fitsRegularPattern<int>(Begin + 1, 2, End - HalfSize, Mask.size(),
1001 1) &&
1002 fitsRegularPattern<int>(Begin + 1 + HalfSize, 2, End,
1003 Mask.size() + HalfSize, 1))
1004 V2 = OriV2;
1005 else
1006 return SDValue();
1008 return DAG.getNode(LoongArchISD::VILVL, DL, VT, V2, V1);
1011 /// Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
1012 static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef<int> Mask,
1013 MVT VT, SDValue V1, SDValue V2,
1014 SelectionDAG &DAG) {
1016 const auto &Begin = Mask.begin();
1017 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
1018 const auto &Mid = Mask.begin() + Mask.size() / 2;
1019 const auto &RightMid = Mask.end() - Mask.size() / 4;
1020 const auto &End = Mask.end();
1021 unsigned HalfSize = Mask.size() / 2;
1022 SDValue OriV1 = V1, OriV2 = V2;
1024 if (fitsRegularPattern<int>(Begin, 1, LeftMid, 0, 2) &&
1025 fitsRegularPattern<int>(Mid, 1, RightMid, HalfSize, 2))
1026 V1 = OriV1;
1027 else if (fitsRegularPattern<int>(Begin, 1, LeftMid, Mask.size(), 2) &&
1028 fitsRegularPattern<int>(Mid, 1, RightMid, Mask.size() + HalfSize, 2))
1029 V1 = OriV2;
1030 else
1031 return SDValue();
1033 if (fitsRegularPattern<int>(LeftMid, 1, Mid, 0, 2) &&
1034 fitsRegularPattern<int>(RightMid, 1, End, HalfSize, 2))
1035 V2 = OriV1;
1036 else if (fitsRegularPattern<int>(LeftMid, 1, Mid, Mask.size(), 2) &&
1037 fitsRegularPattern<int>(RightMid, 1, End, Mask.size() + HalfSize, 2))
1038 V2 = OriV2;
1040 else
1041 return SDValue();
1043 return DAG.getNode(LoongArchISD::VPICKEV, DL, VT, V2, V1);
1046 /// Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
1047 static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef<int> Mask,
1048 MVT VT, SDValue V1, SDValue V2,
1049 SelectionDAG &DAG) {
1051 const auto &Begin = Mask.begin();
1052 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
1053 const auto &Mid = Mask.begin() + Mask.size() / 2;
1054 const auto &RightMid = Mask.end() - Mask.size() / 4;
1055 const auto &End = Mask.end();
1056 unsigned HalfSize = Mask.size() / 2;
1057 SDValue OriV1 = V1, OriV2 = V2;
1059 if (fitsRegularPattern<int>(Begin, 1, LeftMid, 1, 2) &&
1060 fitsRegularPattern<int>(Mid, 1, RightMid, HalfSize + 1, 2))
1061 V1 = OriV1;
1062 else if (fitsRegularPattern<int>(Begin, 1, LeftMid, Mask.size() + 1, 2) &&
1063 fitsRegularPattern<int>(Mid, 1, RightMid, Mask.size() + HalfSize + 1,
1065 V1 = OriV2;
1066 else
1067 return SDValue();
1069 if (fitsRegularPattern<int>(LeftMid, 1, Mid, 1, 2) &&
1070 fitsRegularPattern<int>(RightMid, 1, End, HalfSize + 1, 2))
1071 V2 = OriV1;
1072 else if (fitsRegularPattern<int>(LeftMid, 1, Mid, Mask.size() + 1, 2) &&
1073 fitsRegularPattern<int>(RightMid, 1, End, Mask.size() + HalfSize + 1,
1075 V2 = OriV2;
1076 else
1077 return SDValue();
1079 return DAG.getNode(LoongArchISD::VPICKOD, DL, VT, V2, V1);
1082 /// Lower VECTOR_SHUFFLE into XVSHUF (if possible).
1083 static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef<int> Mask,
1084 MVT VT, SDValue V1, SDValue V2,
1085 SelectionDAG &DAG) {
1087 int MaskSize = Mask.size();
1088 int HalfSize = Mask.size() / 2;
1089 const auto &Begin = Mask.begin();
1090 const auto &Mid = Mask.begin() + HalfSize;
1091 const auto &End = Mask.end();
1093 // VECTOR_SHUFFLE concatenates the vectors:
1094 // <0, 1, 2, 3, 4, 5, 6, 7> + <8, 9, 10, 11, 12, 13, 14, 15>
1095 // shuffling ->
1096 // <0, 1, 2, 3, 8, 9, 10, 11> <4, 5, 6, 7, 12, 13, 14, 15>
1098 // XVSHUF concatenates the vectors:
1099 // <a0, a1, a2, a3, b0, b1, b2, b3> + <a4, a5, a6, a7, b4, b5, b6, b7>
1100 // shuffling ->
1101 // <a0, a1, a2, a3, a4, a5, a6, a7> + <b0, b1, b2, b3, b4, b5, b6, b7>
1102 SmallVector<SDValue, 8> MaskAlloc;
1103 for (auto it = Begin; it < Mid; it++) {
1104 if (*it < 0) // UNDEF
1105 MaskAlloc.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
1106 else if ((*it >= 0 && *it < HalfSize) ||
1107 (*it >= MaskSize && *it <= MaskSize + HalfSize)) {
1108 int M = *it < HalfSize ? *it : *it - HalfSize;
1109 MaskAlloc.push_back(DAG.getTargetConstant(M, DL, MVT::i64));
1110 } else
1111 return SDValue();
1113 assert((int)MaskAlloc.size() == HalfSize && "xvshuf convert failed!");
1115 for (auto it = Mid; it < End; it++) {
1116 if (*it < 0) // UNDEF
1117 MaskAlloc.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
1118 else if ((*it >= HalfSize && *it < MaskSize) ||
1119 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
1120 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
1121 MaskAlloc.push_back(DAG.getTargetConstant(M, DL, MVT::i64));
1122 } else
1123 return SDValue();
1125 assert((int)MaskAlloc.size() == MaskSize && "xvshuf convert failed!");
1127 EVT MaskVecTy = VT.changeVectorElementTypeToInteger();
1128 SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, MaskAlloc);
1129 return DAG.getNode(LoongArchISD::VSHUF, DL, VT, MaskVec, V2, V1);
1132 /// Shuffle vectors by lane to generate more optimized instructions.
1133 /// 256-bit shuffles are always considered as 2-lane 128-bit shuffles.
1135 /// Therefore, except for the following four cases, other cases are regarded
1136 /// as cross-lane shuffles, where optimization is relatively limited.
1138 /// - Shuffle high, low lanes of two inputs vector
1139 /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <0, 5, 3, 6>
1140 /// - Shuffle low, high lanes of two inputs vector
1141 /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <3, 6, 0, 5>
1142 /// - Shuffle low, low lanes of two inputs vector
1143 /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <3, 6, 3, 6>
1144 /// - Shuffle high, high lanes of two inputs vector
1145 /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <0, 5, 0, 5>
1147 /// The first case is the closest to LoongArch instructions and the other
1148 /// cases need to be converted to it for processing.
1150 /// This function may modify V1, V2 and Mask
1151 static void canonicalizeShuffleVectorByLane(const SDLoc &DL,
1152 MutableArrayRef<int> Mask, MVT VT,
1153 SDValue &V1, SDValue &V2,
1154 SelectionDAG &DAG) {
1156 enum HalfMaskType { HighLaneTy, LowLaneTy, None };
1158 int MaskSize = Mask.size();
1159 int HalfSize = Mask.size() / 2;
1161 HalfMaskType preMask = None, postMask = None;
1163 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](int M) {
1164 return M < 0 || (M >= 0 && M < HalfSize) ||
1165 (M >= MaskSize && M < MaskSize + HalfSize);
1167 preMask = HighLaneTy;
1168 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](int M) {
1169 return M < 0 || (M >= HalfSize && M < MaskSize) ||
1170 (M >= MaskSize + HalfSize && M < MaskSize * 2);
1172 preMask = LowLaneTy;
1174 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](int M) {
1175 return M < 0 || (M >= 0 && M < HalfSize) ||
1176 (M >= MaskSize && M < MaskSize + HalfSize);
1178 postMask = HighLaneTy;
1179 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](int M) {
1180 return M < 0 || (M >= HalfSize && M < MaskSize) ||
1181 (M >= MaskSize + HalfSize && M < MaskSize * 2);
1183 postMask = LowLaneTy;
1185 // The pre-half of mask is high lane type, and the post-half of mask
1186 // is low lane type, which is closest to the LoongArch instructions.
1188 // Note: In the LoongArch architecture, the high lane of mask corresponds
1189 // to the lower 128-bit of vector register, and the low lane of mask
1190 // corresponds the higher 128-bit of vector register.
1191 if (preMask == HighLaneTy && postMask == LowLaneTy) {
1192 return;
1194 if (preMask == LowLaneTy && postMask == HighLaneTy) {
1195 V1 = DAG.getBitcast(MVT::v4i64, V1);
1196 V1 = DAG.getNode(LoongArchISD::XVPERMI, DL, MVT::v4i64, V1,
1197 DAG.getConstant(0b01001110, DL, MVT::i64));
1198 V1 = DAG.getBitcast(VT, V1);
1200 if (!V2.isUndef()) {
1201 V2 = DAG.getBitcast(MVT::v4i64, V2);
1202 V2 = DAG.getNode(LoongArchISD::XVPERMI, DL, MVT::v4i64, V2,
1203 DAG.getConstant(0b01001110, DL, MVT::i64));
1204 V2 = DAG.getBitcast(VT, V2);
1207 for (auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
1208 *it = *it < 0 ? *it : *it - HalfSize;
1210 for (auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
1211 *it = *it < 0 ? *it : *it + HalfSize;
1213 } else if (preMask == LowLaneTy && postMask == LowLaneTy) {
1214 V1 = DAG.getBitcast(MVT::v4i64, V1);
1215 V1 = DAG.getNode(LoongArchISD::XVPERMI, DL, MVT::v4i64, V1,
1216 DAG.getConstant(0b11101110, DL, MVT::i64));
1217 V1 = DAG.getBitcast(VT, V1);
1219 if (!V2.isUndef()) {
1220 V2 = DAG.getBitcast(MVT::v4i64, V2);
1221 V2 = DAG.getNode(LoongArchISD::XVPERMI, DL, MVT::v4i64, V2,
1222 DAG.getConstant(0b11101110, DL, MVT::i64));
1223 V2 = DAG.getBitcast(VT, V2);
1226 for (auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
1227 *it = *it < 0 ? *it : *it - HalfSize;
1229 } else if (preMask == HighLaneTy && postMask == HighLaneTy) {
1230 V1 = DAG.getBitcast(MVT::v4i64, V1);
1231 V1 = DAG.getNode(LoongArchISD::XVPERMI, DL, MVT::v4i64, V1,
1232 DAG.getConstant(0b01000100, DL, MVT::i64));
1233 V1 = DAG.getBitcast(VT, V1);
1235 if (!V2.isUndef()) {
1236 V2 = DAG.getBitcast(MVT::v4i64, V2);
1237 V2 = DAG.getNode(LoongArchISD::XVPERMI, DL, MVT::v4i64, V2,
1238 DAG.getConstant(0b01000100, DL, MVT::i64));
1239 V2 = DAG.getBitcast(VT, V2);
1242 for (auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
1243 *it = *it < 0 ? *it : *it + HalfSize;
1245 } else { // cross-lane
1246 return;
1250 /// Dispatching routine to lower various 256-bit LoongArch vector shuffles.
1252 /// This routine breaks down the specific type of 256-bit shuffle and
1253 /// dispatches to the lowering routines accordingly.
1254 static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef<int> Mask, MVT VT,
1255 SDValue V1, SDValue V2, SelectionDAG &DAG) {
1256 assert((VT.SimpleTy == MVT::v32i8 || VT.SimpleTy == MVT::v16i16 ||
1257 VT.SimpleTy == MVT::v8i32 || VT.SimpleTy == MVT::v4i64 ||
1258 VT.SimpleTy == MVT::v8f32 || VT.SimpleTy == MVT::v4f64) &&
1259 "Vector type is unsupported for lasx!");
1260 assert(V1.getSimpleValueType() == V2.getSimpleValueType() &&
1261 "Two operands have different types!");
1262 assert(VT.getVectorNumElements() == Mask.size() &&
1263 "Unexpected mask size for shuffle!");
1264 assert(Mask.size() % 2 == 0 && "Expected even mask size.");
1265 assert(Mask.size() >= 4 && "Mask size is less than 4.");
1267 // canonicalize non cross-lane shuffle vector
1268 SmallVector<int> NewMask(Mask);
1269 canonicalizeShuffleVectorByLane(DL, NewMask, VT, V1, V2, DAG);
1271 SDValue Result;
1272 // TODO: Add more comparison patterns.
1273 if (V2.isUndef()) {
1274 if ((Result = lowerVECTOR_SHUFFLE_XVREPLVEI(DL, NewMask, VT, V1, V2, DAG)))
1275 return Result;
1276 if ((Result = lowerVECTOR_SHUFFLE_XVSHUF4I(DL, NewMask, VT, V1, V2, DAG)))
1277 return Result;
1279 // TODO: This comment may be enabled in the future to better match the
1280 // pattern for instruction selection.
1281 /* V2 = V1; */
1284 // It is recommended not to change the pattern comparison order for better
1285 // performance.
1286 if ((Result = lowerVECTOR_SHUFFLE_XVPACKEV(DL, NewMask, VT, V1, V2, DAG)))
1287 return Result;
1288 if ((Result = lowerVECTOR_SHUFFLE_XVPACKOD(DL, NewMask, VT, V1, V2, DAG)))
1289 return Result;
1290 if ((Result = lowerVECTOR_SHUFFLE_XVILVH(DL, NewMask, VT, V1, V2, DAG)))
1291 return Result;
1292 if ((Result = lowerVECTOR_SHUFFLE_XVILVL(DL, NewMask, VT, V1, V2, DAG)))
1293 return Result;
1294 if ((Result = lowerVECTOR_SHUFFLE_XVPICKEV(DL, NewMask, VT, V1, V2, DAG)))
1295 return Result;
1296 if ((Result = lowerVECTOR_SHUFFLE_XVPICKOD(DL, NewMask, VT, V1, V2, DAG)))
1297 return Result;
1298 if ((Result = lowerVECTOR_SHUFFLE_XVSHUF(DL, NewMask, VT, V1, V2, DAG)))
1299 return Result;
1301 return SDValue();
1304 SDValue LoongArchTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
1305 SelectionDAG &DAG) const {
1306 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
1307 ArrayRef<int> OrigMask = SVOp->getMask();
1308 SDValue V1 = Op.getOperand(0);
1309 SDValue V2 = Op.getOperand(1);
1310 MVT VT = Op.getSimpleValueType();
1311 int NumElements = VT.getVectorNumElements();
1312 SDLoc DL(Op);
1314 bool V1IsUndef = V1.isUndef();
1315 bool V2IsUndef = V2.isUndef();
1316 if (V1IsUndef && V2IsUndef)
1317 return DAG.getUNDEF(VT);
1319 // When we create a shuffle node we put the UNDEF node to second operand,
1320 // but in some cases the first operand may be transformed to UNDEF.
1321 // In this case we should just commute the node.
1322 if (V1IsUndef)
1323 return DAG.getCommutedVectorShuffle(*SVOp);
1325 // Check for non-undef masks pointing at an undef vector and make the masks
1326 // undef as well. This makes it easier to match the shuffle based solely on
1327 // the mask.
1328 if (V2IsUndef &&
1329 any_of(OrigMask, [NumElements](int M) { return M >= NumElements; })) {
1330 SmallVector<int, 8> NewMask(OrigMask);
1331 for (int &M : NewMask)
1332 if (M >= NumElements)
1333 M = -1;
1334 return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
1337 // Check for illegal shuffle mask element index values.
1338 int MaskUpperLimit = OrigMask.size() * (V2IsUndef ? 1 : 2);
1339 (void)MaskUpperLimit;
1340 assert(llvm::all_of(OrigMask,
1341 [&](int M) { return -1 <= M && M < MaskUpperLimit; }) &&
1342 "Out of bounds shuffle index");
1344 // For each vector width, delegate to a specialized lowering routine.
1345 if (VT.is128BitVector())
1346 return lower128BitShuffle(DL, OrigMask, VT, V1, V2, DAG);
1348 if (VT.is256BitVector())
1349 return lower256BitShuffle(DL, OrigMask, VT, V1, V2, DAG);
1351 return SDValue();
1354 static bool isConstantOrUndef(const SDValue Op) {
1355 if (Op->isUndef())
1356 return true;
1357 if (isa<ConstantSDNode>(Op))
1358 return true;
1359 if (isa<ConstantFPSDNode>(Op))
1360 return true;
1361 return false;
1364 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
1365 for (unsigned i = 0; i < Op->getNumOperands(); ++i)
1366 if (isConstantOrUndef(Op->getOperand(i)))
1367 return true;
1368 return false;
1371 SDValue LoongArchTargetLowering::lowerBUILD_VECTOR(SDValue Op,
1372 SelectionDAG &DAG) const {
1373 BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
1374 EVT ResTy = Op->getValueType(0);
1375 SDLoc DL(Op);
1376 APInt SplatValue, SplatUndef;
1377 unsigned SplatBitSize;
1378 bool HasAnyUndefs;
1379 bool Is128Vec = ResTy.is128BitVector();
1380 bool Is256Vec = ResTy.is256BitVector();
1382 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
1383 (!Subtarget.hasExtLASX() || !Is256Vec))
1384 return SDValue();
1386 if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
1387 /*MinSplatBits=*/8) &&
1388 SplatBitSize <= 64) {
1389 // We can only cope with 8, 16, 32, or 64-bit elements.
1390 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
1391 SplatBitSize != 64)
1392 return SDValue();
1394 EVT ViaVecTy;
1396 switch (SplatBitSize) {
1397 default:
1398 return SDValue();
1399 case 8:
1400 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
1401 break;
1402 case 16:
1403 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
1404 break;
1405 case 32:
1406 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
1407 break;
1408 case 64:
1409 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
1410 break;
1413 // SelectionDAG::getConstant will promote SplatValue appropriately.
1414 SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
1416 // Bitcast to the type we originally wanted.
1417 if (ViaVecTy != ResTy)
1418 Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
1420 return Result;
1423 if (DAG.isSplatValue(Op, /*AllowUndefs=*/false))
1424 return Op;
1426 if (!isConstantOrUndefBUILD_VECTOR(Node)) {
1427 // Use INSERT_VECTOR_ELT operations rather than expand to stores.
1428 // The resulting code is the same length as the expansion, but it doesn't
1429 // use memory operations.
1430 EVT ResTy = Node->getValueType(0);
1432 assert(ResTy.isVector());
1434 unsigned NumElts = ResTy.getVectorNumElements();
1435 SDValue Vector = DAG.getUNDEF(ResTy);
1436 for (unsigned i = 0; i < NumElts; ++i) {
1437 Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
1438 Node->getOperand(i),
1439 DAG.getConstant(i, DL, Subtarget.getGRLenVT()));
1441 return Vector;
1444 return SDValue();
1447 SDValue
1448 LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
1449 SelectionDAG &DAG) const {
1450 EVT VecTy = Op->getOperand(0)->getValueType(0);
1451 SDValue Idx = Op->getOperand(1);
1452 EVT EltTy = VecTy.getVectorElementType();
1453 unsigned NumElts = VecTy.getVectorNumElements();
1455 if (isa<ConstantSDNode>(Idx) &&
1456 (EltTy == MVT::i32 || EltTy == MVT::i64 || EltTy == MVT::f32 ||
1457 EltTy == MVT::f64 || Idx->getAsZExtVal() < NumElts / 2))
1458 return Op;
1460 return SDValue();
1463 SDValue
1464 LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
1465 SelectionDAG &DAG) const {
1466 if (isa<ConstantSDNode>(Op->getOperand(2)))
1467 return Op;
1468 return SDValue();
1471 SDValue LoongArchTargetLowering::lowerATOMIC_FENCE(SDValue Op,
1472 SelectionDAG &DAG) const {
1473 SDLoc DL(Op);
1474 SyncScope::ID FenceSSID =
1475 static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
1477 // singlethread fences only synchronize with signal handlers on the same
1478 // thread and thus only need to preserve instruction order, not actually
1479 // enforce memory ordering.
1480 if (FenceSSID == SyncScope::SingleThread)
1481 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
1482 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
1484 return Op;
1487 SDValue LoongArchTargetLowering::lowerWRITE_REGISTER(SDValue Op,
1488 SelectionDAG &DAG) const {
1490 if (Subtarget.is64Bit() && Op.getOperand(2).getValueType() == MVT::i32) {
1491 DAG.getContext()->emitError(
1492 "On LA64, only 64-bit registers can be written.");
1493 return Op.getOperand(0);
1496 if (!Subtarget.is64Bit() && Op.getOperand(2).getValueType() == MVT::i64) {
1497 DAG.getContext()->emitError(
1498 "On LA32, only 32-bit registers can be written.");
1499 return Op.getOperand(0);
1502 return Op;
1505 SDValue LoongArchTargetLowering::lowerFRAMEADDR(SDValue Op,
1506 SelectionDAG &DAG) const {
1507 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
1508 DAG.getContext()->emitError("argument to '__builtin_frame_address' must "
1509 "be a constant integer");
1510 return SDValue();
1513 MachineFunction &MF = DAG.getMachineFunction();
1514 MF.getFrameInfo().setFrameAddressIsTaken(true);
1515 Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
1516 EVT VT = Op.getValueType();
1517 SDLoc DL(Op);
1518 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
1519 unsigned Depth = Op.getConstantOperandVal(0);
1520 int GRLenInBytes = Subtarget.getGRLen() / 8;
1522 while (Depth--) {
1523 int Offset = -(GRLenInBytes * 2);
1524 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1525 DAG.getIntPtrConstant(Offset, DL));
1526 FrameAddr =
1527 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1529 return FrameAddr;
1532 SDValue LoongArchTargetLowering::lowerRETURNADDR(SDValue Op,
1533 SelectionDAG &DAG) const {
1534 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1535 return SDValue();
1537 // Currently only support lowering return address for current frame.
1538 if (Op.getConstantOperandVal(0) != 0) {
1539 DAG.getContext()->emitError(
1540 "return address can only be determined for the current frame");
1541 return SDValue();
1544 MachineFunction &MF = DAG.getMachineFunction();
1545 MF.getFrameInfo().setReturnAddressIsTaken(true);
1546 MVT GRLenVT = Subtarget.getGRLenVT();
1548 // Return the value of the return address register, marking it an implicit
1549 // live-in.
1550 Register Reg = MF.addLiveIn(Subtarget.getRegisterInfo()->getRARegister(),
1551 getRegClassFor(GRLenVT));
1552 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, GRLenVT);
1555 SDValue LoongArchTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
1556 SelectionDAG &DAG) const {
1557 MachineFunction &MF = DAG.getMachineFunction();
1558 auto Size = Subtarget.getGRLen() / 8;
1559 auto FI = MF.getFrameInfo().CreateFixedObject(Size, 0, false);
1560 return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1563 SDValue LoongArchTargetLowering::lowerVASTART(SDValue Op,
1564 SelectionDAG &DAG) const {
1565 MachineFunction &MF = DAG.getMachineFunction();
1566 auto *FuncInfo = MF.getInfo<LoongArchMachineFunctionInfo>();
1568 SDLoc DL(Op);
1569 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1570 getPointerTy(MF.getDataLayout()));
1572 // vastart just stores the address of the VarArgsFrameIndex slot into the
1573 // memory location argument.
1574 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1575 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1576 MachinePointerInfo(SV));
1579 SDValue LoongArchTargetLowering::lowerUINT_TO_FP(SDValue Op,
1580 SelectionDAG &DAG) const {
1581 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
1582 !Subtarget.hasBasicD() && "unexpected target features");
1584 SDLoc DL(Op);
1585 SDValue Op0 = Op.getOperand(0);
1586 if (Op0->getOpcode() == ISD::AND) {
1587 auto *C = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
1588 if (C && C->getZExtValue() < UINT64_C(0xFFFFFFFF))
1589 return Op;
1592 if (Op0->getOpcode() == LoongArchISD::BSTRPICK &&
1593 Op0.getConstantOperandVal(1) < UINT64_C(0X1F) &&
1594 Op0.getConstantOperandVal(2) == UINT64_C(0))
1595 return Op;
1597 if (Op0.getOpcode() == ISD::AssertZext &&
1598 dyn_cast<VTSDNode>(Op0.getOperand(1))->getVT().bitsLT(MVT::i32))
1599 return Op;
1601 EVT OpVT = Op0.getValueType();
1602 EVT RetVT = Op.getValueType();
1603 RTLIB::Libcall LC = RTLIB::getUINTTOFP(OpVT, RetVT);
1604 MakeLibCallOptions CallOptions;
1605 CallOptions.setTypeListBeforeSoften(OpVT, RetVT, true);
1606 SDValue Chain = SDValue();
1607 SDValue Result;
1608 std::tie(Result, Chain) =
1609 makeLibCall(DAG, LC, Op.getValueType(), Op0, CallOptions, DL, Chain);
1610 return Result;
1613 SDValue LoongArchTargetLowering::lowerSINT_TO_FP(SDValue Op,
1614 SelectionDAG &DAG) const {
1615 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
1616 !Subtarget.hasBasicD() && "unexpected target features");
1618 SDLoc DL(Op);
1619 SDValue Op0 = Op.getOperand(0);
1621 if ((Op0.getOpcode() == ISD::AssertSext ||
1622 Op0.getOpcode() == ISD::SIGN_EXTEND_INREG) &&
1623 dyn_cast<VTSDNode>(Op0.getOperand(1))->getVT().bitsLE(MVT::i32))
1624 return Op;
1626 EVT OpVT = Op0.getValueType();
1627 EVT RetVT = Op.getValueType();
1628 RTLIB::Libcall LC = RTLIB::getSINTTOFP(OpVT, RetVT);
1629 MakeLibCallOptions CallOptions;
1630 CallOptions.setTypeListBeforeSoften(OpVT, RetVT, true);
1631 SDValue Chain = SDValue();
1632 SDValue Result;
1633 std::tie(Result, Chain) =
1634 makeLibCall(DAG, LC, Op.getValueType(), Op0, CallOptions, DL, Chain);
1635 return Result;
1638 SDValue LoongArchTargetLowering::lowerBITCAST(SDValue Op,
1639 SelectionDAG &DAG) const {
1641 SDLoc DL(Op);
1642 SDValue Op0 = Op.getOperand(0);
1644 if (Op.getValueType() == MVT::f32 && Op0.getValueType() == MVT::i32 &&
1645 Subtarget.is64Bit() && Subtarget.hasBasicF()) {
1646 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
1647 return DAG.getNode(LoongArchISD::MOVGR2FR_W_LA64, DL, MVT::f32, NewOp0);
1649 return Op;
1652 SDValue LoongArchTargetLowering::lowerFP_TO_SINT(SDValue Op,
1653 SelectionDAG &DAG) const {
1655 SDLoc DL(Op);
1657 if (Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
1658 !Subtarget.hasBasicD()) {
1659 SDValue Dst =
1660 DAG.getNode(LoongArchISD::FTINT, DL, MVT::f32, Op.getOperand(0));
1661 return DAG.getNode(LoongArchISD::MOVFR2GR_S_LA64, DL, MVT::i64, Dst);
1664 EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
1665 SDValue Trunc = DAG.getNode(LoongArchISD::FTINT, DL, FPTy, Op.getOperand(0));
1666 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Trunc);
1669 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
1670 SelectionDAG &DAG, unsigned Flags) {
1671 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
1674 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
1675 SelectionDAG &DAG, unsigned Flags) {
1676 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
1677 Flags);
1680 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
1681 SelectionDAG &DAG, unsigned Flags) {
1682 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
1683 N->getOffset(), Flags);
1686 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
1687 SelectionDAG &DAG, unsigned Flags) {
1688 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
1691 template <class NodeTy>
1692 SDValue LoongArchTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
1693 CodeModel::Model M,
1694 bool IsLocal) const {
1695 SDLoc DL(N);
1696 EVT Ty = getPointerTy(DAG.getDataLayout());
1697 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
1698 SDValue Load;
1700 switch (M) {
1701 default:
1702 report_fatal_error("Unsupported code model");
1704 case CodeModel::Large: {
1705 assert(Subtarget.is64Bit() && "Large code model requires LA64");
1707 // This is not actually used, but is necessary for successfully matching
1708 // the PseudoLA_*_LARGE nodes.
1709 SDValue Tmp = DAG.getConstant(0, DL, Ty);
1710 if (IsLocal) {
1711 // This generates the pattern (PseudoLA_PCREL_LARGE tmp sym), that
1712 // eventually becomes the desired 5-insn code sequence.
1713 Load = SDValue(DAG.getMachineNode(LoongArch::PseudoLA_PCREL_LARGE, DL, Ty,
1714 Tmp, Addr),
1716 } else {
1717 // This generates the pattern (PseudoLA_GOT_LARGE tmp sym), that
1718 // eventually becomes the desired 5-insn code sequence.
1719 Load = SDValue(
1720 DAG.getMachineNode(LoongArch::PseudoLA_GOT_LARGE, DL, Ty, Tmp, Addr),
1723 break;
1726 case CodeModel::Small:
1727 case CodeModel::Medium:
1728 if (IsLocal) {
1729 // This generates the pattern (PseudoLA_PCREL sym), which expands to
1730 // (addi.w/d (pcalau12i %pc_hi20(sym)) %pc_lo12(sym)).
1731 Load = SDValue(
1732 DAG.getMachineNode(LoongArch::PseudoLA_PCREL, DL, Ty, Addr), 0);
1733 } else {
1734 // This generates the pattern (PseudoLA_GOT sym), which expands to (ld.w/d
1735 // (pcalau12i %got_pc_hi20(sym)) %got_pc_lo12(sym)).
1736 Load =
1737 SDValue(DAG.getMachineNode(LoongArch::PseudoLA_GOT, DL, Ty, Addr), 0);
1741 if (!IsLocal) {
1742 // Mark the load instruction as invariant to enable hoisting in MachineLICM.
1743 MachineFunction &MF = DAG.getMachineFunction();
1744 MachineMemOperand *MemOp = MF.getMachineMemOperand(
1745 MachinePointerInfo::getGOT(MF),
1746 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1747 MachineMemOperand::MOInvariant,
1748 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
1749 DAG.setNodeMemRefs(cast<MachineSDNode>(Load.getNode()), {MemOp});
1752 return Load;
1755 SDValue LoongArchTargetLowering::lowerBlockAddress(SDValue Op,
1756 SelectionDAG &DAG) const {
1757 return getAddr(cast<BlockAddressSDNode>(Op), DAG,
1758 DAG.getTarget().getCodeModel());
1761 SDValue LoongArchTargetLowering::lowerJumpTable(SDValue Op,
1762 SelectionDAG &DAG) const {
1763 return getAddr(cast<JumpTableSDNode>(Op), DAG,
1764 DAG.getTarget().getCodeModel());
1767 SDValue LoongArchTargetLowering::lowerConstantPool(SDValue Op,
1768 SelectionDAG &DAG) const {
1769 return getAddr(cast<ConstantPoolSDNode>(Op), DAG,
1770 DAG.getTarget().getCodeModel());
1773 SDValue LoongArchTargetLowering::lowerGlobalAddress(SDValue Op,
1774 SelectionDAG &DAG) const {
1775 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1776 assert(N->getOffset() == 0 && "unexpected offset in global node");
1777 auto CM = DAG.getTarget().getCodeModel();
1778 const GlobalValue *GV = N->getGlobal();
1780 if (GV->isDSOLocal() && isa<GlobalVariable>(GV)) {
1781 if (auto GCM = dyn_cast<GlobalVariable>(GV)->getCodeModel())
1782 CM = *GCM;
1785 return getAddr(N, DAG, CM, GV->isDSOLocal());
1788 SDValue LoongArchTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
1789 SelectionDAG &DAG,
1790 unsigned Opc, bool UseGOT,
1791 bool Large) const {
1792 SDLoc DL(N);
1793 EVT Ty = getPointerTy(DAG.getDataLayout());
1794 MVT GRLenVT = Subtarget.getGRLenVT();
1796 // This is not actually used, but is necessary for successfully matching the
1797 // PseudoLA_*_LARGE nodes.
1798 SDValue Tmp = DAG.getConstant(0, DL, Ty);
1799 SDValue Addr = DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, 0);
1800 SDValue Offset = Large
1801 ? SDValue(DAG.getMachineNode(Opc, DL, Ty, Tmp, Addr), 0)
1802 : SDValue(DAG.getMachineNode(Opc, DL, Ty, Addr), 0);
1803 if (UseGOT) {
1804 // Mark the load instruction as invariant to enable hoisting in MachineLICM.
1805 MachineFunction &MF = DAG.getMachineFunction();
1806 MachineMemOperand *MemOp = MF.getMachineMemOperand(
1807 MachinePointerInfo::getGOT(MF),
1808 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1809 MachineMemOperand::MOInvariant,
1810 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
1811 DAG.setNodeMemRefs(cast<MachineSDNode>(Offset.getNode()), {MemOp});
1814 // Add the thread pointer.
1815 return DAG.getNode(ISD::ADD, DL, Ty, Offset,
1816 DAG.getRegister(LoongArch::R2, GRLenVT));
1819 SDValue LoongArchTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
1820 SelectionDAG &DAG,
1821 unsigned Opc,
1822 bool Large) const {
1823 SDLoc DL(N);
1824 EVT Ty = getPointerTy(DAG.getDataLayout());
1825 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
1827 // This is not actually used, but is necessary for successfully matching the
1828 // PseudoLA_*_LARGE nodes.
1829 SDValue Tmp = DAG.getConstant(0, DL, Ty);
1831 // Use a PC-relative addressing mode to access the dynamic GOT address.
1832 SDValue Addr = DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, 0);
1833 SDValue Load = Large ? SDValue(DAG.getMachineNode(Opc, DL, Ty, Tmp, Addr), 0)
1834 : SDValue(DAG.getMachineNode(Opc, DL, Ty, Addr), 0);
1836 // Prepare argument list to generate call.
1837 ArgListTy Args;
1838 ArgListEntry Entry;
1839 Entry.Node = Load;
1840 Entry.Ty = CallTy;
1841 Args.push_back(Entry);
1843 // Setup call to __tls_get_addr.
1844 TargetLowering::CallLoweringInfo CLI(DAG);
1845 CLI.setDebugLoc(DL)
1846 .setChain(DAG.getEntryNode())
1847 .setLibCallee(CallingConv::C, CallTy,
1848 DAG.getExternalSymbol("__tls_get_addr", Ty),
1849 std::move(Args));
1851 return LowerCallTo(CLI).first;
1854 SDValue LoongArchTargetLowering::getTLSDescAddr(GlobalAddressSDNode *N,
1855 SelectionDAG &DAG, unsigned Opc,
1856 bool Large) const {
1857 SDLoc DL(N);
1858 EVT Ty = getPointerTy(DAG.getDataLayout());
1859 const GlobalValue *GV = N->getGlobal();
1861 // This is not actually used, but is necessary for successfully matching the
1862 // PseudoLA_*_LARGE nodes.
1863 SDValue Tmp = DAG.getConstant(0, DL, Ty);
1865 // Use a PC-relative addressing mode to access the global dynamic GOT address.
1866 // This generates the pattern (PseudoLA_TLS_DESC_PC{,LARGE} sym).
1867 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
1868 return Large ? SDValue(DAG.getMachineNode(Opc, DL, Ty, Tmp, Addr), 0)
1869 : SDValue(DAG.getMachineNode(Opc, DL, Ty, Addr), 0);
1872 SDValue
1873 LoongArchTargetLowering::lowerGlobalTLSAddress(SDValue Op,
1874 SelectionDAG &DAG) const {
1875 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
1876 CallingConv::GHC)
1877 report_fatal_error("In GHC calling convention TLS is not supported");
1879 bool Large = DAG.getTarget().getCodeModel() == CodeModel::Large;
1880 assert((!Large || Subtarget.is64Bit()) && "Large code model requires LA64");
1882 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
1883 assert(N->getOffset() == 0 && "unexpected offset in global node");
1885 if (DAG.getTarget().useEmulatedTLS())
1886 report_fatal_error("the emulated TLS is prohibited",
1887 /*GenCrashDiag=*/false);
1889 bool IsDesc = DAG.getTarget().useTLSDESC();
1891 switch (getTargetMachine().getTLSModel(N->getGlobal())) {
1892 case TLSModel::GeneralDynamic:
1893 // In this model, application code calls the dynamic linker function
1894 // __tls_get_addr to locate TLS offsets into the dynamic thread vector at
1895 // runtime.
1896 if (!IsDesc)
1897 return getDynamicTLSAddr(N, DAG,
1898 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
1899 : LoongArch::PseudoLA_TLS_GD,
1900 Large);
1901 break;
1902 case TLSModel::LocalDynamic:
1903 // Same as GeneralDynamic, except for assembly modifiers and relocation
1904 // records.
1905 if (!IsDesc)
1906 return getDynamicTLSAddr(N, DAG,
1907 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
1908 : LoongArch::PseudoLA_TLS_LD,
1909 Large);
1910 break;
1911 case TLSModel::InitialExec:
1912 // This model uses the GOT to resolve TLS offsets.
1913 return getStaticTLSAddr(N, DAG,
1914 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
1915 : LoongArch::PseudoLA_TLS_IE,
1916 /*UseGOT=*/true, Large);
1917 case TLSModel::LocalExec:
1918 // This model is used when static linking as the TLS offsets are resolved
1919 // during program linking.
1921 // This node doesn't need an extra argument for the large code model.
1922 return getStaticTLSAddr(N, DAG, LoongArch::PseudoLA_TLS_LE,
1923 /*UseGOT=*/false);
1926 return getTLSDescAddr(N, DAG,
1927 Large ? LoongArch::PseudoLA_TLS_DESC_PC_LARGE
1928 : LoongArch::PseudoLA_TLS_DESC_PC,
1929 Large);
1932 template <unsigned N>
1933 static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp,
1934 SelectionDAG &DAG, bool IsSigned = false) {
1935 auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1936 // Check the ImmArg.
1937 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
1938 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
1939 DAG.getContext()->emitError(Op->getOperationName(0) +
1940 ": argument out of range.");
1941 return DAG.getNode(ISD::UNDEF, SDLoc(Op), Op.getValueType());
1943 return SDValue();
1946 SDValue
1947 LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1948 SelectionDAG &DAG) const {
1949 SDLoc DL(Op);
1950 switch (Op.getConstantOperandVal(0)) {
1951 default:
1952 return SDValue(); // Don't custom lower most intrinsics.
1953 case Intrinsic::thread_pointer: {
1954 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1955 return DAG.getRegister(LoongArch::R2, PtrVT);
1957 case Intrinsic::loongarch_lsx_vpickve2gr_d:
1958 case Intrinsic::loongarch_lsx_vpickve2gr_du:
1959 case Intrinsic::loongarch_lsx_vreplvei_d:
1960 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
1961 return checkIntrinsicImmArg<1>(Op, 2, DAG);
1962 case Intrinsic::loongarch_lsx_vreplvei_w:
1963 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
1964 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
1965 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
1966 case Intrinsic::loongarch_lasx_xvpickve_d:
1967 case Intrinsic::loongarch_lasx_xvpickve_d_f:
1968 return checkIntrinsicImmArg<2>(Op, 2, DAG);
1969 case Intrinsic::loongarch_lasx_xvinsve0_d:
1970 return checkIntrinsicImmArg<2>(Op, 3, DAG);
1971 case Intrinsic::loongarch_lsx_vsat_b:
1972 case Intrinsic::loongarch_lsx_vsat_bu:
1973 case Intrinsic::loongarch_lsx_vrotri_b:
1974 case Intrinsic::loongarch_lsx_vsllwil_h_b:
1975 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
1976 case Intrinsic::loongarch_lsx_vsrlri_b:
1977 case Intrinsic::loongarch_lsx_vsrari_b:
1978 case Intrinsic::loongarch_lsx_vreplvei_h:
1979 case Intrinsic::loongarch_lasx_xvsat_b:
1980 case Intrinsic::loongarch_lasx_xvsat_bu:
1981 case Intrinsic::loongarch_lasx_xvrotri_b:
1982 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
1983 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
1984 case Intrinsic::loongarch_lasx_xvsrlri_b:
1985 case Intrinsic::loongarch_lasx_xvsrari_b:
1986 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
1987 case Intrinsic::loongarch_lasx_xvpickve_w:
1988 case Intrinsic::loongarch_lasx_xvpickve_w_f:
1989 return checkIntrinsicImmArg<3>(Op, 2, DAG);
1990 case Intrinsic::loongarch_lasx_xvinsve0_w:
1991 return checkIntrinsicImmArg<3>(Op, 3, DAG);
1992 case Intrinsic::loongarch_lsx_vsat_h:
1993 case Intrinsic::loongarch_lsx_vsat_hu:
1994 case Intrinsic::loongarch_lsx_vrotri_h:
1995 case Intrinsic::loongarch_lsx_vsllwil_w_h:
1996 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
1997 case Intrinsic::loongarch_lsx_vsrlri_h:
1998 case Intrinsic::loongarch_lsx_vsrari_h:
1999 case Intrinsic::loongarch_lsx_vreplvei_b:
2000 case Intrinsic::loongarch_lasx_xvsat_h:
2001 case Intrinsic::loongarch_lasx_xvsat_hu:
2002 case Intrinsic::loongarch_lasx_xvrotri_h:
2003 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
2004 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
2005 case Intrinsic::loongarch_lasx_xvsrlri_h:
2006 case Intrinsic::loongarch_lasx_xvsrari_h:
2007 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
2008 return checkIntrinsicImmArg<4>(Op, 2, DAG);
2009 case Intrinsic::loongarch_lsx_vsrlni_b_h:
2010 case Intrinsic::loongarch_lsx_vsrani_b_h:
2011 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
2012 case Intrinsic::loongarch_lsx_vsrarni_b_h:
2013 case Intrinsic::loongarch_lsx_vssrlni_b_h:
2014 case Intrinsic::loongarch_lsx_vssrani_b_h:
2015 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
2016 case Intrinsic::loongarch_lsx_vssrani_bu_h:
2017 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
2018 case Intrinsic::loongarch_lsx_vssrarni_b_h:
2019 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
2020 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
2021 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
2022 case Intrinsic::loongarch_lasx_xvsrani_b_h:
2023 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
2024 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
2025 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
2026 case Intrinsic::loongarch_lasx_xvssrani_b_h:
2027 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
2028 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
2029 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
2030 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
2031 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
2032 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
2033 return checkIntrinsicImmArg<4>(Op, 3, DAG);
2034 case Intrinsic::loongarch_lsx_vsat_w:
2035 case Intrinsic::loongarch_lsx_vsat_wu:
2036 case Intrinsic::loongarch_lsx_vrotri_w:
2037 case Intrinsic::loongarch_lsx_vsllwil_d_w:
2038 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
2039 case Intrinsic::loongarch_lsx_vsrlri_w:
2040 case Intrinsic::loongarch_lsx_vsrari_w:
2041 case Intrinsic::loongarch_lsx_vslei_bu:
2042 case Intrinsic::loongarch_lsx_vslei_hu:
2043 case Intrinsic::loongarch_lsx_vslei_wu:
2044 case Intrinsic::loongarch_lsx_vslei_du:
2045 case Intrinsic::loongarch_lsx_vslti_bu:
2046 case Intrinsic::loongarch_lsx_vslti_hu:
2047 case Intrinsic::loongarch_lsx_vslti_wu:
2048 case Intrinsic::loongarch_lsx_vslti_du:
2049 case Intrinsic::loongarch_lsx_vbsll_v:
2050 case Intrinsic::loongarch_lsx_vbsrl_v:
2051 case Intrinsic::loongarch_lasx_xvsat_w:
2052 case Intrinsic::loongarch_lasx_xvsat_wu:
2053 case Intrinsic::loongarch_lasx_xvrotri_w:
2054 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
2055 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
2056 case Intrinsic::loongarch_lasx_xvsrlri_w:
2057 case Intrinsic::loongarch_lasx_xvsrari_w:
2058 case Intrinsic::loongarch_lasx_xvslei_bu:
2059 case Intrinsic::loongarch_lasx_xvslei_hu:
2060 case Intrinsic::loongarch_lasx_xvslei_wu:
2061 case Intrinsic::loongarch_lasx_xvslei_du:
2062 case Intrinsic::loongarch_lasx_xvslti_bu:
2063 case Intrinsic::loongarch_lasx_xvslti_hu:
2064 case Intrinsic::loongarch_lasx_xvslti_wu:
2065 case Intrinsic::loongarch_lasx_xvslti_du:
2066 case Intrinsic::loongarch_lasx_xvbsll_v:
2067 case Intrinsic::loongarch_lasx_xvbsrl_v:
2068 return checkIntrinsicImmArg<5>(Op, 2, DAG);
2069 case Intrinsic::loongarch_lsx_vseqi_b:
2070 case Intrinsic::loongarch_lsx_vseqi_h:
2071 case Intrinsic::loongarch_lsx_vseqi_w:
2072 case Intrinsic::loongarch_lsx_vseqi_d:
2073 case Intrinsic::loongarch_lsx_vslei_b:
2074 case Intrinsic::loongarch_lsx_vslei_h:
2075 case Intrinsic::loongarch_lsx_vslei_w:
2076 case Intrinsic::loongarch_lsx_vslei_d:
2077 case Intrinsic::loongarch_lsx_vslti_b:
2078 case Intrinsic::loongarch_lsx_vslti_h:
2079 case Intrinsic::loongarch_lsx_vslti_w:
2080 case Intrinsic::loongarch_lsx_vslti_d:
2081 case Intrinsic::loongarch_lasx_xvseqi_b:
2082 case Intrinsic::loongarch_lasx_xvseqi_h:
2083 case Intrinsic::loongarch_lasx_xvseqi_w:
2084 case Intrinsic::loongarch_lasx_xvseqi_d:
2085 case Intrinsic::loongarch_lasx_xvslei_b:
2086 case Intrinsic::loongarch_lasx_xvslei_h:
2087 case Intrinsic::loongarch_lasx_xvslei_w:
2088 case Intrinsic::loongarch_lasx_xvslei_d:
2089 case Intrinsic::loongarch_lasx_xvslti_b:
2090 case Intrinsic::loongarch_lasx_xvslti_h:
2091 case Intrinsic::loongarch_lasx_xvslti_w:
2092 case Intrinsic::loongarch_lasx_xvslti_d:
2093 return checkIntrinsicImmArg<5>(Op, 2, DAG, /*IsSigned=*/true);
2094 case Intrinsic::loongarch_lsx_vsrlni_h_w:
2095 case Intrinsic::loongarch_lsx_vsrani_h_w:
2096 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
2097 case Intrinsic::loongarch_lsx_vsrarni_h_w:
2098 case Intrinsic::loongarch_lsx_vssrlni_h_w:
2099 case Intrinsic::loongarch_lsx_vssrani_h_w:
2100 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
2101 case Intrinsic::loongarch_lsx_vssrani_hu_w:
2102 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
2103 case Intrinsic::loongarch_lsx_vssrarni_h_w:
2104 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
2105 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
2106 case Intrinsic::loongarch_lsx_vfrstpi_b:
2107 case Intrinsic::loongarch_lsx_vfrstpi_h:
2108 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
2109 case Intrinsic::loongarch_lasx_xvsrani_h_w:
2110 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
2111 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
2112 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
2113 case Intrinsic::loongarch_lasx_xvssrani_h_w:
2114 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
2115 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
2116 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
2117 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
2118 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
2119 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
2120 case Intrinsic::loongarch_lasx_xvfrstpi_b:
2121 case Intrinsic::loongarch_lasx_xvfrstpi_h:
2122 return checkIntrinsicImmArg<5>(Op, 3, DAG);
2123 case Intrinsic::loongarch_lsx_vsat_d:
2124 case Intrinsic::loongarch_lsx_vsat_du:
2125 case Intrinsic::loongarch_lsx_vrotri_d:
2126 case Intrinsic::loongarch_lsx_vsrlri_d:
2127 case Intrinsic::loongarch_lsx_vsrari_d:
2128 case Intrinsic::loongarch_lasx_xvsat_d:
2129 case Intrinsic::loongarch_lasx_xvsat_du:
2130 case Intrinsic::loongarch_lasx_xvrotri_d:
2131 case Intrinsic::loongarch_lasx_xvsrlri_d:
2132 case Intrinsic::loongarch_lasx_xvsrari_d:
2133 return checkIntrinsicImmArg<6>(Op, 2, DAG);
2134 case Intrinsic::loongarch_lsx_vsrlni_w_d:
2135 case Intrinsic::loongarch_lsx_vsrani_w_d:
2136 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
2137 case Intrinsic::loongarch_lsx_vsrarni_w_d:
2138 case Intrinsic::loongarch_lsx_vssrlni_w_d:
2139 case Intrinsic::loongarch_lsx_vssrani_w_d:
2140 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
2141 case Intrinsic::loongarch_lsx_vssrani_wu_d:
2142 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
2143 case Intrinsic::loongarch_lsx_vssrarni_w_d:
2144 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
2145 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
2146 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
2147 case Intrinsic::loongarch_lasx_xvsrani_w_d:
2148 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
2149 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
2150 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
2151 case Intrinsic::loongarch_lasx_xvssrani_w_d:
2152 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
2153 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
2154 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
2155 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
2156 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
2157 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
2158 return checkIntrinsicImmArg<6>(Op, 3, DAG);
2159 case Intrinsic::loongarch_lsx_vsrlni_d_q:
2160 case Intrinsic::loongarch_lsx_vsrani_d_q:
2161 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
2162 case Intrinsic::loongarch_lsx_vsrarni_d_q:
2163 case Intrinsic::loongarch_lsx_vssrlni_d_q:
2164 case Intrinsic::loongarch_lsx_vssrani_d_q:
2165 case Intrinsic::loongarch_lsx_vssrlni_du_q:
2166 case Intrinsic::loongarch_lsx_vssrani_du_q:
2167 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
2168 case Intrinsic::loongarch_lsx_vssrarni_d_q:
2169 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
2170 case Intrinsic::loongarch_lsx_vssrarni_du_q:
2171 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
2172 case Intrinsic::loongarch_lasx_xvsrani_d_q:
2173 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
2174 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
2175 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
2176 case Intrinsic::loongarch_lasx_xvssrani_d_q:
2177 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
2178 case Intrinsic::loongarch_lasx_xvssrani_du_q:
2179 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
2180 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
2181 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
2182 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
2183 return checkIntrinsicImmArg<7>(Op, 3, DAG);
2184 case Intrinsic::loongarch_lsx_vnori_b:
2185 case Intrinsic::loongarch_lsx_vshuf4i_b:
2186 case Intrinsic::loongarch_lsx_vshuf4i_h:
2187 case Intrinsic::loongarch_lsx_vshuf4i_w:
2188 case Intrinsic::loongarch_lasx_xvnori_b:
2189 case Intrinsic::loongarch_lasx_xvshuf4i_b:
2190 case Intrinsic::loongarch_lasx_xvshuf4i_h:
2191 case Intrinsic::loongarch_lasx_xvshuf4i_w:
2192 case Intrinsic::loongarch_lasx_xvpermi_d:
2193 return checkIntrinsicImmArg<8>(Op, 2, DAG);
2194 case Intrinsic::loongarch_lsx_vshuf4i_d:
2195 case Intrinsic::loongarch_lsx_vpermi_w:
2196 case Intrinsic::loongarch_lsx_vbitseli_b:
2197 case Intrinsic::loongarch_lsx_vextrins_b:
2198 case Intrinsic::loongarch_lsx_vextrins_h:
2199 case Intrinsic::loongarch_lsx_vextrins_w:
2200 case Intrinsic::loongarch_lsx_vextrins_d:
2201 case Intrinsic::loongarch_lasx_xvshuf4i_d:
2202 case Intrinsic::loongarch_lasx_xvpermi_w:
2203 case Intrinsic::loongarch_lasx_xvpermi_q:
2204 case Intrinsic::loongarch_lasx_xvbitseli_b:
2205 case Intrinsic::loongarch_lasx_xvextrins_b:
2206 case Intrinsic::loongarch_lasx_xvextrins_h:
2207 case Intrinsic::loongarch_lasx_xvextrins_w:
2208 case Intrinsic::loongarch_lasx_xvextrins_d:
2209 return checkIntrinsicImmArg<8>(Op, 3, DAG);
2210 case Intrinsic::loongarch_lsx_vrepli_b:
2211 case Intrinsic::loongarch_lsx_vrepli_h:
2212 case Intrinsic::loongarch_lsx_vrepli_w:
2213 case Intrinsic::loongarch_lsx_vrepli_d:
2214 case Intrinsic::loongarch_lasx_xvrepli_b:
2215 case Intrinsic::loongarch_lasx_xvrepli_h:
2216 case Intrinsic::loongarch_lasx_xvrepli_w:
2217 case Intrinsic::loongarch_lasx_xvrepli_d:
2218 return checkIntrinsicImmArg<10>(Op, 1, DAG, /*IsSigned=*/true);
2219 case Intrinsic::loongarch_lsx_vldi:
2220 case Intrinsic::loongarch_lasx_xvldi:
2221 return checkIntrinsicImmArg<13>(Op, 1, DAG, /*IsSigned=*/true);
2225 // Helper function that emits error message for intrinsics with chain and return
2226 // merge values of a UNDEF and the chain.
2227 static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op,
2228 StringRef ErrorMsg,
2229 SelectionDAG &DAG) {
2230 DAG.getContext()->emitError(Op->getOperationName(0) + ": " + ErrorMsg + ".");
2231 return DAG.getMergeValues({DAG.getUNDEF(Op.getValueType()), Op.getOperand(0)},
2232 SDLoc(Op));
2235 SDValue
2236 LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2237 SelectionDAG &DAG) const {
2238 SDLoc DL(Op);
2239 MVT GRLenVT = Subtarget.getGRLenVT();
2240 EVT VT = Op.getValueType();
2241 SDValue Chain = Op.getOperand(0);
2242 const StringRef ErrorMsgOOR = "argument out of range";
2243 const StringRef ErrorMsgReqLA64 = "requires loongarch64";
2244 const StringRef ErrorMsgReqF = "requires basic 'f' target feature";
2246 switch (Op.getConstantOperandVal(1)) {
2247 default:
2248 return Op;
2249 case Intrinsic::loongarch_crc_w_b_w:
2250 case Intrinsic::loongarch_crc_w_h_w:
2251 case Intrinsic::loongarch_crc_w_w_w:
2252 case Intrinsic::loongarch_crc_w_d_w:
2253 case Intrinsic::loongarch_crcc_w_b_w:
2254 case Intrinsic::loongarch_crcc_w_h_w:
2255 case Intrinsic::loongarch_crcc_w_w_w:
2256 case Intrinsic::loongarch_crcc_w_d_w:
2257 return emitIntrinsicWithChainErrorMessage(Op, ErrorMsgReqLA64, DAG);
2258 case Intrinsic::loongarch_csrrd_w:
2259 case Intrinsic::loongarch_csrrd_d: {
2260 unsigned Imm = Op.getConstantOperandVal(2);
2261 return !isUInt<14>(Imm)
2262 ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG)
2263 : DAG.getNode(LoongArchISD::CSRRD, DL, {GRLenVT, MVT::Other},
2264 {Chain, DAG.getConstant(Imm, DL, GRLenVT)});
2266 case Intrinsic::loongarch_csrwr_w:
2267 case Intrinsic::loongarch_csrwr_d: {
2268 unsigned Imm = Op.getConstantOperandVal(3);
2269 return !isUInt<14>(Imm)
2270 ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG)
2271 : DAG.getNode(LoongArchISD::CSRWR, DL, {GRLenVT, MVT::Other},
2272 {Chain, Op.getOperand(2),
2273 DAG.getConstant(Imm, DL, GRLenVT)});
2275 case Intrinsic::loongarch_csrxchg_w:
2276 case Intrinsic::loongarch_csrxchg_d: {
2277 unsigned Imm = Op.getConstantOperandVal(4);
2278 return !isUInt<14>(Imm)
2279 ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG)
2280 : DAG.getNode(LoongArchISD::CSRXCHG, DL, {GRLenVT, MVT::Other},
2281 {Chain, Op.getOperand(2), Op.getOperand(3),
2282 DAG.getConstant(Imm, DL, GRLenVT)});
2284 case Intrinsic::loongarch_iocsrrd_d: {
2285 return DAG.getNode(
2286 LoongArchISD::IOCSRRD_D, DL, {GRLenVT, MVT::Other},
2287 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op.getOperand(2))});
2289 #define IOCSRRD_CASE(NAME, NODE) \
2290 case Intrinsic::loongarch_##NAME: { \
2291 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
2292 {Chain, Op.getOperand(2)}); \
2294 IOCSRRD_CASE(iocsrrd_b, IOCSRRD_B);
2295 IOCSRRD_CASE(iocsrrd_h, IOCSRRD_H);
2296 IOCSRRD_CASE(iocsrrd_w, IOCSRRD_W);
2297 #undef IOCSRRD_CASE
2298 case Intrinsic::loongarch_cpucfg: {
2299 return DAG.getNode(LoongArchISD::CPUCFG, DL, {GRLenVT, MVT::Other},
2300 {Chain, Op.getOperand(2)});
2302 case Intrinsic::loongarch_lddir_d: {
2303 unsigned Imm = Op.getConstantOperandVal(3);
2304 return !isUInt<8>(Imm)
2305 ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG)
2306 : Op;
2308 case Intrinsic::loongarch_movfcsr2gr: {
2309 if (!Subtarget.hasBasicF())
2310 return emitIntrinsicWithChainErrorMessage(Op, ErrorMsgReqF, DAG);
2311 unsigned Imm = Op.getConstantOperandVal(2);
2312 return !isUInt<2>(Imm)
2313 ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG)
2314 : DAG.getNode(LoongArchISD::MOVFCSR2GR, DL, {VT, MVT::Other},
2315 {Chain, DAG.getConstant(Imm, DL, GRLenVT)});
2317 case Intrinsic::loongarch_lsx_vld:
2318 case Intrinsic::loongarch_lsx_vldrepl_b:
2319 case Intrinsic::loongarch_lasx_xvld:
2320 case Intrinsic::loongarch_lasx_xvldrepl_b:
2321 return !isInt<12>(cast<ConstantSDNode>(Op.getOperand(3))->getSExtValue())
2322 ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsgOOR, DAG)
2323 : SDValue();
2324 case Intrinsic::loongarch_lsx_vldrepl_h:
2325 case Intrinsic::loongarch_lasx_xvldrepl_h:
2326 return !isShiftedInt<11, 1>(
2327 cast<ConstantSDNode>(Op.getOperand(3))->getSExtValue())
2328 ? emitIntrinsicWithChainErrorMessage(
2329 Op, "argument out of range or not a multiple of 2", DAG)
2330 : SDValue();
2331 case Intrinsic::loongarch_lsx_vldrepl_w:
2332 case Intrinsic::loongarch_lasx_xvldrepl_w:
2333 return !isShiftedInt<10, 2>(
2334 cast<ConstantSDNode>(Op.getOperand(3))->getSExtValue())
2335 ? emitIntrinsicWithChainErrorMessage(
2336 Op, "argument out of range or not a multiple of 4", DAG)
2337 : SDValue();
2338 case Intrinsic::loongarch_lsx_vldrepl_d:
2339 case Intrinsic::loongarch_lasx_xvldrepl_d:
2340 return !isShiftedInt<9, 3>(
2341 cast<ConstantSDNode>(Op.getOperand(3))->getSExtValue())
2342 ? emitIntrinsicWithChainErrorMessage(
2343 Op, "argument out of range or not a multiple of 8", DAG)
2344 : SDValue();
2348 // Helper function that emits error message for intrinsics with void return
2349 // value and return the chain.
2350 static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg,
2351 SelectionDAG &DAG) {
2353 DAG.getContext()->emitError(Op->getOperationName(0) + ": " + ErrorMsg + ".");
2354 return Op.getOperand(0);
2357 SDValue LoongArchTargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2358 SelectionDAG &DAG) const {
2359 SDLoc DL(Op);
2360 MVT GRLenVT = Subtarget.getGRLenVT();
2361 SDValue Chain = Op.getOperand(0);
2362 uint64_t IntrinsicEnum = Op.getConstantOperandVal(1);
2363 SDValue Op2 = Op.getOperand(2);
2364 const StringRef ErrorMsgOOR = "argument out of range";
2365 const StringRef ErrorMsgReqLA64 = "requires loongarch64";
2366 const StringRef ErrorMsgReqLA32 = "requires loongarch32";
2367 const StringRef ErrorMsgReqF = "requires basic 'f' target feature";
2369 switch (IntrinsicEnum) {
2370 default:
2371 // TODO: Add more Intrinsics.
2372 return SDValue();
2373 case Intrinsic::loongarch_cacop_d:
2374 case Intrinsic::loongarch_cacop_w: {
2375 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit())
2376 return emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG);
2377 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit())
2378 return emitIntrinsicErrorMessage(Op, ErrorMsgReqLA32, DAG);
2379 // call void @llvm.loongarch.cacop.[d/w](uimm5, rj, simm12)
2380 unsigned Imm1 = Op2->getAsZExtVal();
2381 int Imm2 = cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue();
2382 if (!isUInt<5>(Imm1) || !isInt<12>(Imm2))
2383 return emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG);
2384 return Op;
2386 case Intrinsic::loongarch_dbar: {
2387 unsigned Imm = Op2->getAsZExtVal();
2388 return !isUInt<15>(Imm)
2389 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2390 : DAG.getNode(LoongArchISD::DBAR, DL, MVT::Other, Chain,
2391 DAG.getConstant(Imm, DL, GRLenVT));
2393 case Intrinsic::loongarch_ibar: {
2394 unsigned Imm = Op2->getAsZExtVal();
2395 return !isUInt<15>(Imm)
2396 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2397 : DAG.getNode(LoongArchISD::IBAR, DL, MVT::Other, Chain,
2398 DAG.getConstant(Imm, DL, GRLenVT));
2400 case Intrinsic::loongarch_break: {
2401 unsigned Imm = Op2->getAsZExtVal();
2402 return !isUInt<15>(Imm)
2403 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2404 : DAG.getNode(LoongArchISD::BREAK, DL, MVT::Other, Chain,
2405 DAG.getConstant(Imm, DL, GRLenVT));
2407 case Intrinsic::loongarch_movgr2fcsr: {
2408 if (!Subtarget.hasBasicF())
2409 return emitIntrinsicErrorMessage(Op, ErrorMsgReqF, DAG);
2410 unsigned Imm = Op2->getAsZExtVal();
2411 return !isUInt<2>(Imm)
2412 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2413 : DAG.getNode(LoongArchISD::MOVGR2FCSR, DL, MVT::Other, Chain,
2414 DAG.getConstant(Imm, DL, GRLenVT),
2415 DAG.getNode(ISD::ANY_EXTEND, DL, GRLenVT,
2416 Op.getOperand(3)));
2418 case Intrinsic::loongarch_syscall: {
2419 unsigned Imm = Op2->getAsZExtVal();
2420 return !isUInt<15>(Imm)
2421 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2422 : DAG.getNode(LoongArchISD::SYSCALL, DL, MVT::Other, Chain,
2423 DAG.getConstant(Imm, DL, GRLenVT));
2425 #define IOCSRWR_CASE(NAME, NODE) \
2426 case Intrinsic::loongarch_##NAME: { \
2427 SDValue Op3 = Op.getOperand(3); \
2428 return Subtarget.is64Bit() \
2429 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
2430 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
2431 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
2432 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
2433 Op3); \
2435 IOCSRWR_CASE(iocsrwr_b, IOCSRWR_B);
2436 IOCSRWR_CASE(iocsrwr_h, IOCSRWR_H);
2437 IOCSRWR_CASE(iocsrwr_w, IOCSRWR_W);
2438 #undef IOCSRWR_CASE
2439 case Intrinsic::loongarch_iocsrwr_d: {
2440 return !Subtarget.is64Bit()
2441 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG)
2442 : DAG.getNode(LoongArchISD::IOCSRWR_D, DL, MVT::Other, Chain,
2443 Op2,
2444 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
2445 Op.getOperand(3)));
2447 #define ASRT_LE_GT_CASE(NAME) \
2448 case Intrinsic::loongarch_##NAME: { \
2449 return !Subtarget.is64Bit() \
2450 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
2451 : Op; \
2453 ASRT_LE_GT_CASE(asrtle_d)
2454 ASRT_LE_GT_CASE(asrtgt_d)
2455 #undef ASRT_LE_GT_CASE
2456 case Intrinsic::loongarch_ldpte_d: {
2457 unsigned Imm = Op.getConstantOperandVal(3);
2458 return !Subtarget.is64Bit()
2459 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG)
2460 : !isUInt<8>(Imm) ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2461 : Op;
2463 case Intrinsic::loongarch_lsx_vst:
2464 case Intrinsic::loongarch_lasx_xvst:
2465 return !isInt<12>(cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue())
2466 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2467 : SDValue();
2468 case Intrinsic::loongarch_lasx_xvstelm_b:
2469 return (!isInt<8>(cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2470 !isUInt<5>(Op.getConstantOperandVal(5)))
2471 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2472 : SDValue();
2473 case Intrinsic::loongarch_lsx_vstelm_b:
2474 return (!isInt<8>(cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2475 !isUInt<4>(Op.getConstantOperandVal(5)))
2476 ? emitIntrinsicErrorMessage(Op, ErrorMsgOOR, DAG)
2477 : SDValue();
2478 case Intrinsic::loongarch_lasx_xvstelm_h:
2479 return (!isShiftedInt<8, 1>(
2480 cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2481 !isUInt<4>(Op.getConstantOperandVal(5)))
2482 ? emitIntrinsicErrorMessage(
2483 Op, "argument out of range or not a multiple of 2", DAG)
2484 : SDValue();
2485 case Intrinsic::loongarch_lsx_vstelm_h:
2486 return (!isShiftedInt<8, 1>(
2487 cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2488 !isUInt<3>(Op.getConstantOperandVal(5)))
2489 ? emitIntrinsicErrorMessage(
2490 Op, "argument out of range or not a multiple of 2", DAG)
2491 : SDValue();
2492 case Intrinsic::loongarch_lasx_xvstelm_w:
2493 return (!isShiftedInt<8, 2>(
2494 cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2495 !isUInt<3>(Op.getConstantOperandVal(5)))
2496 ? emitIntrinsicErrorMessage(
2497 Op, "argument out of range or not a multiple of 4", DAG)
2498 : SDValue();
2499 case Intrinsic::loongarch_lsx_vstelm_w:
2500 return (!isShiftedInt<8, 2>(
2501 cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2502 !isUInt<2>(Op.getConstantOperandVal(5)))
2503 ? emitIntrinsicErrorMessage(
2504 Op, "argument out of range or not a multiple of 4", DAG)
2505 : SDValue();
2506 case Intrinsic::loongarch_lasx_xvstelm_d:
2507 return (!isShiftedInt<8, 3>(
2508 cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2509 !isUInt<2>(Op.getConstantOperandVal(5)))
2510 ? emitIntrinsicErrorMessage(
2511 Op, "argument out of range or not a multiple of 8", DAG)
2512 : SDValue();
2513 case Intrinsic::loongarch_lsx_vstelm_d:
2514 return (!isShiftedInt<8, 3>(
2515 cast<ConstantSDNode>(Op.getOperand(4))->getSExtValue()) ||
2516 !isUInt<1>(Op.getConstantOperandVal(5)))
2517 ? emitIntrinsicErrorMessage(
2518 Op, "argument out of range or not a multiple of 8", DAG)
2519 : SDValue();
2523 SDValue LoongArchTargetLowering::lowerShiftLeftParts(SDValue Op,
2524 SelectionDAG &DAG) const {
2525 SDLoc DL(Op);
2526 SDValue Lo = Op.getOperand(0);
2527 SDValue Hi = Op.getOperand(1);
2528 SDValue Shamt = Op.getOperand(2);
2529 EVT VT = Lo.getValueType();
2531 // if Shamt-GRLen < 0: // Shamt < GRLen
2532 // Lo = Lo << Shamt
2533 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (GRLen-1 ^ Shamt))
2534 // else:
2535 // Lo = 0
2536 // Hi = Lo << (Shamt-GRLen)
2538 SDValue Zero = DAG.getConstant(0, DL, VT);
2539 SDValue One = DAG.getConstant(1, DL, VT);
2540 SDValue MinusGRLen = DAG.getConstant(-(int)Subtarget.getGRLen(), DL, VT);
2541 SDValue GRLenMinus1 = DAG.getConstant(Subtarget.getGRLen() - 1, DL, VT);
2542 SDValue ShamtMinusGRLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusGRLen);
2543 SDValue GRLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, GRLenMinus1);
2545 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2546 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
2547 SDValue ShiftRightLo =
2548 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, GRLenMinus1Shamt);
2549 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2550 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2551 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusGRLen);
2553 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusGRLen, Zero, ISD::SETLT);
2555 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
2556 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2558 SDValue Parts[2] = {Lo, Hi};
2559 return DAG.getMergeValues(Parts, DL);
2562 SDValue LoongArchTargetLowering::lowerShiftRightParts(SDValue Op,
2563 SelectionDAG &DAG,
2564 bool IsSRA) const {
2565 SDLoc DL(Op);
2566 SDValue Lo = Op.getOperand(0);
2567 SDValue Hi = Op.getOperand(1);
2568 SDValue Shamt = Op.getOperand(2);
2569 EVT VT = Lo.getValueType();
2571 // SRA expansion:
2572 // if Shamt-GRLen < 0: // Shamt < GRLen
2573 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ GRLen-1))
2574 // Hi = Hi >>s Shamt
2575 // else:
2576 // Lo = Hi >>s (Shamt-GRLen);
2577 // Hi = Hi >>s (GRLen-1)
2579 // SRL expansion:
2580 // if Shamt-GRLen < 0: // Shamt < GRLen
2581 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ GRLen-1))
2582 // Hi = Hi >>u Shamt
2583 // else:
2584 // Lo = Hi >>u (Shamt-GRLen);
2585 // Hi = 0;
2587 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
2589 SDValue Zero = DAG.getConstant(0, DL, VT);
2590 SDValue One = DAG.getConstant(1, DL, VT);
2591 SDValue MinusGRLen = DAG.getConstant(-(int)Subtarget.getGRLen(), DL, VT);
2592 SDValue GRLenMinus1 = DAG.getConstant(Subtarget.getGRLen() - 1, DL, VT);
2593 SDValue ShamtMinusGRLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusGRLen);
2594 SDValue GRLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, GRLenMinus1);
2596 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2597 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
2598 SDValue ShiftLeftHi =
2599 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, GRLenMinus1Shamt);
2600 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
2601 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
2602 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusGRLen);
2603 SDValue HiFalse =
2604 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, GRLenMinus1) : Zero;
2606 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusGRLen, Zero, ISD::SETLT);
2608 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
2609 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
2611 SDValue Parts[2] = {Lo, Hi};
2612 return DAG.getMergeValues(Parts, DL);
2615 // Returns the opcode of the target-specific SDNode that implements the 32-bit
2616 // form of the given Opcode.
2617 static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode) {
2618 switch (Opcode) {
2619 default:
2620 llvm_unreachable("Unexpected opcode");
2621 case ISD::UDIV:
2622 return LoongArchISD::DIV_WU;
2623 case ISD::UREM:
2624 return LoongArchISD::MOD_WU;
2625 case ISD::SHL:
2626 return LoongArchISD::SLL_W;
2627 case ISD::SRA:
2628 return LoongArchISD::SRA_W;
2629 case ISD::SRL:
2630 return LoongArchISD::SRL_W;
2631 case ISD::ROTL:
2632 case ISD::ROTR:
2633 return LoongArchISD::ROTR_W;
2634 case ISD::CTTZ:
2635 return LoongArchISD::CTZ_W;
2636 case ISD::CTLZ:
2637 return LoongArchISD::CLZ_W;
2641 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
2642 // node. Because i8/i16/i32 isn't a legal type for LA64, these operations would
2643 // otherwise be promoted to i64, making it difficult to select the
2644 // SLL_W/.../*W later one because the fact the operation was originally of
2645 // type i8/i16/i32 is lost.
2646 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp,
2647 unsigned ExtOpc = ISD::ANY_EXTEND) {
2648 SDLoc DL(N);
2649 LoongArchISD::NodeType WOpcode = getLoongArchWOpcode(N->getOpcode());
2650 SDValue NewOp0, NewRes;
2652 switch (NumOp) {
2653 default:
2654 llvm_unreachable("Unexpected NumOp");
2655 case 1: {
2656 NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
2657 NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0);
2658 break;
2660 case 2: {
2661 NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
2662 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
2663 if (N->getOpcode() == ISD::ROTL) {
2664 SDValue TmpOp = DAG.getConstant(32, DL, MVT::i64);
2665 NewOp1 = DAG.getNode(ISD::SUB, DL, MVT::i64, TmpOp, NewOp1);
2667 NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
2668 break;
2670 // TODO:Handle more NumOp.
2673 // ReplaceNodeResults requires we maintain the same type for the return
2674 // value.
2675 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
2678 // Converts the given 32-bit operation to a i64 operation with signed extension
2679 // semantic to reduce the signed extension instructions.
2680 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
2681 SDLoc DL(N);
2682 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
2683 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
2684 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
2685 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
2686 DAG.getValueType(MVT::i32));
2687 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
2690 // Helper function that emits error message for intrinsics with/without chain
2691 // and return a UNDEF or and the chain as the results.
2692 static void emitErrorAndReplaceIntrinsicResults(
2693 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG,
2694 StringRef ErrorMsg, bool WithChain = true) {
2695 DAG.getContext()->emitError(N->getOperationName(0) + ": " + ErrorMsg + ".");
2696 Results.push_back(DAG.getUNDEF(N->getValueType(0)));
2697 if (!WithChain)
2698 return;
2699 Results.push_back(N->getOperand(0));
2702 template <unsigned N>
2703 static void
2704 replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl<SDValue> &Results,
2705 SelectionDAG &DAG, const LoongArchSubtarget &Subtarget,
2706 unsigned ResOp) {
2707 const StringRef ErrorMsgOOR = "argument out of range";
2708 unsigned Imm = Node->getConstantOperandVal(2);
2709 if (!isUInt<N>(Imm)) {
2710 emitErrorAndReplaceIntrinsicResults(Node, Results, DAG, ErrorMsgOOR,
2711 /*WithChain=*/false);
2712 return;
2714 SDLoc DL(Node);
2715 SDValue Vec = Node->getOperand(1);
2717 SDValue PickElt =
2718 DAG.getNode(ResOp, DL, Subtarget.getGRLenVT(), Vec,
2719 DAG.getConstant(Imm, DL, Subtarget.getGRLenVT()),
2720 DAG.getValueType(Vec.getValueType().getVectorElementType()));
2721 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, Node->getValueType(0),
2722 PickElt.getValue(0)));
2725 static void replaceVecCondBranchResults(SDNode *N,
2726 SmallVectorImpl<SDValue> &Results,
2727 SelectionDAG &DAG,
2728 const LoongArchSubtarget &Subtarget,
2729 unsigned ResOp) {
2730 SDLoc DL(N);
2731 SDValue Vec = N->getOperand(1);
2733 SDValue CB = DAG.getNode(ResOp, DL, Subtarget.getGRLenVT(), Vec);
2734 Results.push_back(
2735 DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), CB.getValue(0)));
2738 static void
2739 replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
2740 SelectionDAG &DAG,
2741 const LoongArchSubtarget &Subtarget) {
2742 switch (N->getConstantOperandVal(0)) {
2743 default:
2744 llvm_unreachable("Unexpected Intrinsic.");
2745 case Intrinsic::loongarch_lsx_vpickve2gr_b:
2746 replaceVPICKVE2GRResults<4>(N, Results, DAG, Subtarget,
2747 LoongArchISD::VPICK_SEXT_ELT);
2748 break;
2749 case Intrinsic::loongarch_lsx_vpickve2gr_h:
2750 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
2751 replaceVPICKVE2GRResults<3>(N, Results, DAG, Subtarget,
2752 LoongArchISD::VPICK_SEXT_ELT);
2753 break;
2754 case Intrinsic::loongarch_lsx_vpickve2gr_w:
2755 replaceVPICKVE2GRResults<2>(N, Results, DAG, Subtarget,
2756 LoongArchISD::VPICK_SEXT_ELT);
2757 break;
2758 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
2759 replaceVPICKVE2GRResults<4>(N, Results, DAG, Subtarget,
2760 LoongArchISD::VPICK_ZEXT_ELT);
2761 break;
2762 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
2763 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
2764 replaceVPICKVE2GRResults<3>(N, Results, DAG, Subtarget,
2765 LoongArchISD::VPICK_ZEXT_ELT);
2766 break;
2767 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
2768 replaceVPICKVE2GRResults<2>(N, Results, DAG, Subtarget,
2769 LoongArchISD::VPICK_ZEXT_ELT);
2770 break;
2771 case Intrinsic::loongarch_lsx_bz_b:
2772 case Intrinsic::loongarch_lsx_bz_h:
2773 case Intrinsic::loongarch_lsx_bz_w:
2774 case Intrinsic::loongarch_lsx_bz_d:
2775 case Intrinsic::loongarch_lasx_xbz_b:
2776 case Intrinsic::loongarch_lasx_xbz_h:
2777 case Intrinsic::loongarch_lasx_xbz_w:
2778 case Intrinsic::loongarch_lasx_xbz_d:
2779 replaceVecCondBranchResults(N, Results, DAG, Subtarget,
2780 LoongArchISD::VALL_ZERO);
2781 break;
2782 case Intrinsic::loongarch_lsx_bz_v:
2783 case Intrinsic::loongarch_lasx_xbz_v:
2784 replaceVecCondBranchResults(N, Results, DAG, Subtarget,
2785 LoongArchISD::VANY_ZERO);
2786 break;
2787 case Intrinsic::loongarch_lsx_bnz_b:
2788 case Intrinsic::loongarch_lsx_bnz_h:
2789 case Intrinsic::loongarch_lsx_bnz_w:
2790 case Intrinsic::loongarch_lsx_bnz_d:
2791 case Intrinsic::loongarch_lasx_xbnz_b:
2792 case Intrinsic::loongarch_lasx_xbnz_h:
2793 case Intrinsic::loongarch_lasx_xbnz_w:
2794 case Intrinsic::loongarch_lasx_xbnz_d:
2795 replaceVecCondBranchResults(N, Results, DAG, Subtarget,
2796 LoongArchISD::VALL_NONZERO);
2797 break;
2798 case Intrinsic::loongarch_lsx_bnz_v:
2799 case Intrinsic::loongarch_lasx_xbnz_v:
2800 replaceVecCondBranchResults(N, Results, DAG, Subtarget,
2801 LoongArchISD::VANY_NONZERO);
2802 break;
2806 void LoongArchTargetLowering::ReplaceNodeResults(
2807 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
2808 SDLoc DL(N);
2809 EVT VT = N->getValueType(0);
2810 switch (N->getOpcode()) {
2811 default:
2812 llvm_unreachable("Don't know how to legalize this operation");
2813 case ISD::ADD:
2814 case ISD::SUB:
2815 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
2816 "Unexpected custom legalisation");
2817 Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
2818 break;
2819 case ISD::UDIV:
2820 case ISD::UREM:
2821 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
2822 "Unexpected custom legalisation");
2823 Results.push_back(customLegalizeToWOp(N, DAG, 2, ISD::SIGN_EXTEND));
2824 break;
2825 case ISD::SHL:
2826 case ISD::SRA:
2827 case ISD::SRL:
2828 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
2829 "Unexpected custom legalisation");
2830 if (N->getOperand(1).getOpcode() != ISD::Constant) {
2831 Results.push_back(customLegalizeToWOp(N, DAG, 2));
2832 break;
2834 break;
2835 case ISD::ROTL:
2836 case ISD::ROTR:
2837 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
2838 "Unexpected custom legalisation");
2839 Results.push_back(customLegalizeToWOp(N, DAG, 2));
2840 break;
2841 case ISD::FP_TO_SINT: {
2842 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
2843 "Unexpected custom legalisation");
2844 SDValue Src = N->getOperand(0);
2845 EVT FVT = EVT::getFloatingPointVT(N->getValueSizeInBits(0));
2846 if (getTypeAction(*DAG.getContext(), Src.getValueType()) !=
2847 TargetLowering::TypeSoftenFloat) {
2848 SDValue Dst = DAG.getNode(LoongArchISD::FTINT, DL, FVT, Src);
2849 Results.push_back(DAG.getNode(ISD::BITCAST, DL, VT, Dst));
2850 return;
2852 // If the FP type needs to be softened, emit a library call using the 'si'
2853 // version. If we left it to default legalization we'd end up with 'di'.
2854 RTLIB::Libcall LC;
2855 LC = RTLIB::getFPTOSINT(Src.getValueType(), VT);
2856 MakeLibCallOptions CallOptions;
2857 EVT OpVT = Src.getValueType();
2858 CallOptions.setTypeListBeforeSoften(OpVT, VT, true);
2859 SDValue Chain = SDValue();
2860 SDValue Result;
2861 std::tie(Result, Chain) =
2862 makeLibCall(DAG, LC, VT, Src, CallOptions, DL, Chain);
2863 Results.push_back(Result);
2864 break;
2866 case ISD::BITCAST: {
2867 SDValue Src = N->getOperand(0);
2868 EVT SrcVT = Src.getValueType();
2869 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
2870 Subtarget.hasBasicF()) {
2871 SDValue Dst =
2872 DAG.getNode(LoongArchISD::MOVFR2GR_S_LA64, DL, MVT::i64, Src);
2873 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Dst));
2875 break;
2877 case ISD::FP_TO_UINT: {
2878 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
2879 "Unexpected custom legalisation");
2880 auto &TLI = DAG.getTargetLoweringInfo();
2881 SDValue Tmp1, Tmp2;
2882 TLI.expandFP_TO_UINT(N, Tmp1, Tmp2, DAG);
2883 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Tmp1));
2884 break;
2886 case ISD::BSWAP: {
2887 SDValue Src = N->getOperand(0);
2888 assert((VT == MVT::i16 || VT == MVT::i32) &&
2889 "Unexpected custom legalization");
2890 MVT GRLenVT = Subtarget.getGRLenVT();
2891 SDValue NewSrc = DAG.getNode(ISD::ANY_EXTEND, DL, GRLenVT, Src);
2892 SDValue Tmp;
2893 switch (VT.getSizeInBits()) {
2894 default:
2895 llvm_unreachable("Unexpected operand width");
2896 case 16:
2897 Tmp = DAG.getNode(LoongArchISD::REVB_2H, DL, GRLenVT, NewSrc);
2898 break;
2899 case 32:
2900 // Only LA64 will get to here due to the size mismatch between VT and
2901 // GRLenVT, LA32 lowering is directly defined in LoongArchInstrInfo.
2902 Tmp = DAG.getNode(LoongArchISD::REVB_2W, DL, GRLenVT, NewSrc);
2903 break;
2905 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Tmp));
2906 break;
2908 case ISD::BITREVERSE: {
2909 SDValue Src = N->getOperand(0);
2910 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
2911 "Unexpected custom legalization");
2912 MVT GRLenVT = Subtarget.getGRLenVT();
2913 SDValue NewSrc = DAG.getNode(ISD::ANY_EXTEND, DL, GRLenVT, Src);
2914 SDValue Tmp;
2915 switch (VT.getSizeInBits()) {
2916 default:
2917 llvm_unreachable("Unexpected operand width");
2918 case 8:
2919 Tmp = DAG.getNode(LoongArchISD::BITREV_4B, DL, GRLenVT, NewSrc);
2920 break;
2921 case 32:
2922 Tmp = DAG.getNode(LoongArchISD::BITREV_W, DL, GRLenVT, NewSrc);
2923 break;
2925 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Tmp));
2926 break;
2928 case ISD::CTLZ:
2929 case ISD::CTTZ: {
2930 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
2931 "Unexpected custom legalisation");
2932 Results.push_back(customLegalizeToWOp(N, DAG, 1));
2933 break;
2935 case ISD::INTRINSIC_W_CHAIN: {
2936 SDValue Chain = N->getOperand(0);
2937 SDValue Op2 = N->getOperand(2);
2938 MVT GRLenVT = Subtarget.getGRLenVT();
2939 const StringRef ErrorMsgOOR = "argument out of range";
2940 const StringRef ErrorMsgReqLA64 = "requires loongarch64";
2941 const StringRef ErrorMsgReqF = "requires basic 'f' target feature";
2943 switch (N->getConstantOperandVal(1)) {
2944 default:
2945 llvm_unreachable("Unexpected Intrinsic.");
2946 case Intrinsic::loongarch_movfcsr2gr: {
2947 if (!Subtarget.hasBasicF()) {
2948 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqF);
2949 return;
2951 unsigned Imm = Op2->getAsZExtVal();
2952 if (!isUInt<2>(Imm)) {
2953 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgOOR);
2954 return;
2956 SDValue MOVFCSR2GRResults = DAG.getNode(
2957 LoongArchISD::MOVFCSR2GR, SDLoc(N), {MVT::i64, MVT::Other},
2958 {Chain, DAG.getConstant(Imm, DL, GRLenVT)});
2959 Results.push_back(
2960 DAG.getNode(ISD::TRUNCATE, DL, VT, MOVFCSR2GRResults.getValue(0)));
2961 Results.push_back(MOVFCSR2GRResults.getValue(1));
2962 break;
2964 #define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
2965 case Intrinsic::loongarch_##NAME: { \
2966 SDValue NODE = DAG.getNode( \
2967 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
2968 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
2969 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
2970 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
2971 Results.push_back(NODE.getValue(1)); \
2972 break; \
2974 CRC_CASE_EXT_BINARYOP(crc_w_b_w, CRC_W_B_W)
2975 CRC_CASE_EXT_BINARYOP(crc_w_h_w, CRC_W_H_W)
2976 CRC_CASE_EXT_BINARYOP(crc_w_w_w, CRC_W_W_W)
2977 CRC_CASE_EXT_BINARYOP(crcc_w_b_w, CRCC_W_B_W)
2978 CRC_CASE_EXT_BINARYOP(crcc_w_h_w, CRCC_W_H_W)
2979 CRC_CASE_EXT_BINARYOP(crcc_w_w_w, CRCC_W_W_W)
2980 #undef CRC_CASE_EXT_BINARYOP
2982 #define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
2983 case Intrinsic::loongarch_##NAME: { \
2984 SDValue NODE = DAG.getNode( \
2985 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
2986 {Chain, Op2, \
2987 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
2988 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
2989 Results.push_back(NODE.getValue(1)); \
2990 break; \
2992 CRC_CASE_EXT_UNARYOP(crc_w_d_w, CRC_W_D_W)
2993 CRC_CASE_EXT_UNARYOP(crcc_w_d_w, CRCC_W_D_W)
2994 #undef CRC_CASE_EXT_UNARYOP
2995 #define CSR_CASE(ID) \
2996 case Intrinsic::loongarch_##ID: { \
2997 if (!Subtarget.is64Bit()) \
2998 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
2999 break; \
3001 CSR_CASE(csrrd_d);
3002 CSR_CASE(csrwr_d);
3003 CSR_CASE(csrxchg_d);
3004 CSR_CASE(iocsrrd_d);
3005 #undef CSR_CASE
3006 case Intrinsic::loongarch_csrrd_w: {
3007 unsigned Imm = Op2->getAsZExtVal();
3008 if (!isUInt<14>(Imm)) {
3009 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgOOR);
3010 return;
3012 SDValue CSRRDResults =
3013 DAG.getNode(LoongArchISD::CSRRD, DL, {GRLenVT, MVT::Other},
3014 {Chain, DAG.getConstant(Imm, DL, GRLenVT)});
3015 Results.push_back(
3016 DAG.getNode(ISD::TRUNCATE, DL, VT, CSRRDResults.getValue(0)));
3017 Results.push_back(CSRRDResults.getValue(1));
3018 break;
3020 case Intrinsic::loongarch_csrwr_w: {
3021 unsigned Imm = N->getConstantOperandVal(3);
3022 if (!isUInt<14>(Imm)) {
3023 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgOOR);
3024 return;
3026 SDValue CSRWRResults =
3027 DAG.getNode(LoongArchISD::CSRWR, DL, {GRLenVT, MVT::Other},
3028 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2),
3029 DAG.getConstant(Imm, DL, GRLenVT)});
3030 Results.push_back(
3031 DAG.getNode(ISD::TRUNCATE, DL, VT, CSRWRResults.getValue(0)));
3032 Results.push_back(CSRWRResults.getValue(1));
3033 break;
3035 case Intrinsic::loongarch_csrxchg_w: {
3036 unsigned Imm = N->getConstantOperandVal(4);
3037 if (!isUInt<14>(Imm)) {
3038 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgOOR);
3039 return;
3041 SDValue CSRXCHGResults = DAG.getNode(
3042 LoongArchISD::CSRXCHG, DL, {GRLenVT, MVT::Other},
3043 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2),
3044 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3)),
3045 DAG.getConstant(Imm, DL, GRLenVT)});
3046 Results.push_back(
3047 DAG.getNode(ISD::TRUNCATE, DL, VT, CSRXCHGResults.getValue(0)));
3048 Results.push_back(CSRXCHGResults.getValue(1));
3049 break;
3051 #define IOCSRRD_CASE(NAME, NODE) \
3052 case Intrinsic::loongarch_##NAME: { \
3053 SDValue IOCSRRDResults = \
3054 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
3055 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
3056 Results.push_back( \
3057 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
3058 Results.push_back(IOCSRRDResults.getValue(1)); \
3059 break; \
3061 IOCSRRD_CASE(iocsrrd_b, IOCSRRD_B);
3062 IOCSRRD_CASE(iocsrrd_h, IOCSRRD_H);
3063 IOCSRRD_CASE(iocsrrd_w, IOCSRRD_W);
3064 #undef IOCSRRD_CASE
3065 case Intrinsic::loongarch_cpucfg: {
3066 SDValue CPUCFGResults =
3067 DAG.getNode(LoongArchISD::CPUCFG, DL, {GRLenVT, MVT::Other},
3068 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)});
3069 Results.push_back(
3070 DAG.getNode(ISD::TRUNCATE, DL, VT, CPUCFGResults.getValue(0)));
3071 Results.push_back(CPUCFGResults.getValue(1));
3072 break;
3074 case Intrinsic::loongarch_lddir_d: {
3075 if (!Subtarget.is64Bit()) {
3076 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64);
3077 return;
3079 break;
3082 break;
3084 case ISD::READ_REGISTER: {
3085 if (Subtarget.is64Bit())
3086 DAG.getContext()->emitError(
3087 "On LA64, only 64-bit registers can be read.");
3088 else
3089 DAG.getContext()->emitError(
3090 "On LA32, only 32-bit registers can be read.");
3091 Results.push_back(DAG.getUNDEF(VT));
3092 Results.push_back(N->getOperand(0));
3093 break;
3095 case ISD::INTRINSIC_WO_CHAIN: {
3096 replaceINTRINSIC_WO_CHAINResults(N, Results, DAG, Subtarget);
3097 break;
3102 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
3103 TargetLowering::DAGCombinerInfo &DCI,
3104 const LoongArchSubtarget &Subtarget) {
3105 if (DCI.isBeforeLegalizeOps())
3106 return SDValue();
3108 SDValue FirstOperand = N->getOperand(0);
3109 SDValue SecondOperand = N->getOperand(1);
3110 unsigned FirstOperandOpc = FirstOperand.getOpcode();
3111 EVT ValTy = N->getValueType(0);
3112 SDLoc DL(N);
3113 uint64_t lsb, msb;
3114 unsigned SMIdx, SMLen;
3115 ConstantSDNode *CN;
3116 SDValue NewOperand;
3117 MVT GRLenVT = Subtarget.getGRLenVT();
3119 // Op's second operand must be a shifted mask.
3120 if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)) ||
3121 !isShiftedMask_64(CN->getZExtValue(), SMIdx, SMLen))
3122 return SDValue();
3124 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
3125 // Pattern match BSTRPICK.
3126 // $dst = and ((sra or srl) $src , lsb), (2**len - 1)
3127 // => BSTRPICK $dst, $src, msb, lsb
3128 // where msb = lsb + len - 1
3130 // The second operand of the shift must be an immediate.
3131 if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
3132 return SDValue();
3134 lsb = CN->getZExtValue();
3136 // Return if the shifted mask does not start at bit 0 or the sum of its
3137 // length and lsb exceeds the word's size.
3138 if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
3139 return SDValue();
3141 NewOperand = FirstOperand.getOperand(0);
3142 } else {
3143 // Pattern match BSTRPICK.
3144 // $dst = and $src, (2**len- 1) , if len > 12
3145 // => BSTRPICK $dst, $src, msb, lsb
3146 // where lsb = 0 and msb = len - 1
3148 // If the mask is <= 0xfff, andi can be used instead.
3149 if (CN->getZExtValue() <= 0xfff)
3150 return SDValue();
3152 // Return if the MSB exceeds.
3153 if (SMIdx + SMLen > ValTy.getSizeInBits())
3154 return SDValue();
3156 if (SMIdx > 0) {
3157 // Omit if the constant has more than 2 uses. This a conservative
3158 // decision. Whether it is a win depends on the HW microarchitecture.
3159 // However it should always be better for 1 and 2 uses.
3160 if (CN->use_size() > 2)
3161 return SDValue();
3162 // Return if the constant can be composed by a single LU12I.W.
3163 if ((CN->getZExtValue() & 0xfff) == 0)
3164 return SDValue();
3165 // Return if the constand can be composed by a single ADDI with
3166 // the zero register.
3167 if (CN->getSExtValue() >= -2048 && CN->getSExtValue() < 0)
3168 return SDValue();
3171 lsb = SMIdx;
3172 NewOperand = FirstOperand;
3175 msb = lsb + SMLen - 1;
3176 SDValue NR0 = DAG.getNode(LoongArchISD::BSTRPICK, DL, ValTy, NewOperand,
3177 DAG.getConstant(msb, DL, GRLenVT),
3178 DAG.getConstant(lsb, DL, GRLenVT));
3179 if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL || lsb == 0)
3180 return NR0;
3181 // Try to optimize to
3182 // bstrpick $Rd, $Rs, msb, lsb
3183 // slli $Rd, $Rd, lsb
3184 return DAG.getNode(ISD::SHL, DL, ValTy, NR0,
3185 DAG.getConstant(lsb, DL, GRLenVT));
3188 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
3189 TargetLowering::DAGCombinerInfo &DCI,
3190 const LoongArchSubtarget &Subtarget) {
3191 if (DCI.isBeforeLegalizeOps())
3192 return SDValue();
3194 // $dst = srl (and $src, Mask), Shamt
3195 // =>
3196 // BSTRPICK $dst, $src, MaskIdx+MaskLen-1, Shamt
3197 // when Mask is a shifted mask, and MaskIdx <= Shamt <= MaskIdx+MaskLen-1
3200 SDValue FirstOperand = N->getOperand(0);
3201 ConstantSDNode *CN;
3202 EVT ValTy = N->getValueType(0);
3203 SDLoc DL(N);
3204 MVT GRLenVT = Subtarget.getGRLenVT();
3205 unsigned MaskIdx, MaskLen;
3206 uint64_t Shamt;
3208 // The first operand must be an AND and the second operand of the AND must be
3209 // a shifted mask.
3210 if (FirstOperand.getOpcode() != ISD::AND ||
3211 !(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
3212 !isShiftedMask_64(CN->getZExtValue(), MaskIdx, MaskLen))
3213 return SDValue();
3215 // The second operand (shift amount) must be an immediate.
3216 if (!(CN = dyn_cast<ConstantSDNode>(N->getOperand(1))))
3217 return SDValue();
3219 Shamt = CN->getZExtValue();
3220 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
3221 return DAG.getNode(LoongArchISD::BSTRPICK, DL, ValTy,
3222 FirstOperand->getOperand(0),
3223 DAG.getConstant(MaskIdx + MaskLen - 1, DL, GRLenVT),
3224 DAG.getConstant(Shamt, DL, GRLenVT));
3226 return SDValue();
3229 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
3230 TargetLowering::DAGCombinerInfo &DCI,
3231 const LoongArchSubtarget &Subtarget) {
3232 MVT GRLenVT = Subtarget.getGRLenVT();
3233 EVT ValTy = N->getValueType(0);
3234 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3235 ConstantSDNode *CN0, *CN1;
3236 SDLoc DL(N);
3237 unsigned ValBits = ValTy.getSizeInBits();
3238 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
3239 unsigned Shamt;
3240 bool SwapAndRetried = false;
3242 if (DCI.isBeforeLegalizeOps())
3243 return SDValue();
3245 if (ValBits != 32 && ValBits != 64)
3246 return SDValue();
3248 Retry:
3249 // 1st pattern to match BSTRINS:
3250 // R = or (and X, mask0), (and (shl Y, lsb), mask1)
3251 // where mask1 = (2**size - 1) << lsb, mask0 = ~mask1
3252 // =>
3253 // R = BSTRINS X, Y, msb, lsb (where msb = lsb + size - 1)
3254 if (N0.getOpcode() == ISD::AND &&
3255 (CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
3256 isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
3257 N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL &&
3258 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3259 isShiftedMask_64(CN1->getZExtValue(), MaskIdx1, MaskLen1) &&
3260 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
3261 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3262 (Shamt = CN1->getZExtValue()) == MaskIdx0 &&
3263 (MaskIdx0 + MaskLen0 <= ValBits)) {
3264 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 1\n");
3265 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
3266 N1.getOperand(0).getOperand(0),
3267 DAG.getConstant((MaskIdx0 + MaskLen0 - 1), DL, GRLenVT),
3268 DAG.getConstant(MaskIdx0, DL, GRLenVT));
3271 // 2nd pattern to match BSTRINS:
3272 // R = or (and X, mask0), (shl (and Y, mask1), lsb)
3273 // where mask1 = (2**size - 1), mask0 = ~(mask1 << lsb)
3274 // =>
3275 // R = BSTRINS X, Y, msb, lsb (where msb = lsb + size - 1)
3276 if (N0.getOpcode() == ISD::AND &&
3277 (CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
3278 isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
3279 N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::AND &&
3280 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3281 (Shamt = CN1->getZExtValue()) == MaskIdx0 &&
3282 (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3283 isShiftedMask_64(CN1->getZExtValue(), MaskIdx1, MaskLen1) &&
3284 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
3285 (MaskIdx0 + MaskLen0 <= ValBits)) {
3286 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 2\n");
3287 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
3288 N1.getOperand(0).getOperand(0),
3289 DAG.getConstant((MaskIdx0 + MaskLen0 - 1), DL, GRLenVT),
3290 DAG.getConstant(MaskIdx0, DL, GRLenVT));
3293 // 3rd pattern to match BSTRINS:
3294 // R = or (and X, mask0), (and Y, mask1)
3295 // where ~mask0 = (2**size - 1) << lsb, mask0 & mask1 = 0
3296 // =>
3297 // R = BSTRINS X, (shr (and Y, mask1), lsb), msb, lsb
3298 // where msb = lsb + size - 1
3299 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
3300 (CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
3301 isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
3302 (MaskIdx0 + MaskLen0 <= 64) &&
3303 (CN1 = dyn_cast<ConstantSDNode>(N1->getOperand(1))) &&
3304 (CN1->getSExtValue() & CN0->getSExtValue()) == 0) {
3305 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 3\n");
3306 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
3307 DAG.getNode(ISD::SRL, DL, N1->getValueType(0), N1,
3308 DAG.getConstant(MaskIdx0, DL, GRLenVT)),
3309 DAG.getConstant(ValBits == 32
3310 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
3311 : (MaskIdx0 + MaskLen0 - 1),
3312 DL, GRLenVT),
3313 DAG.getConstant(MaskIdx0, DL, GRLenVT));
3316 // 4th pattern to match BSTRINS:
3317 // R = or (and X, mask), (shl Y, shamt)
3318 // where mask = (2**shamt - 1)
3319 // =>
3320 // R = BSTRINS X, Y, ValBits - 1, shamt
3321 // where ValBits = 32 or 64
3322 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::SHL &&
3323 (CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
3324 isShiftedMask_64(CN0->getZExtValue(), MaskIdx0, MaskLen0) &&
3325 MaskIdx0 == 0 && (CN1 = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3326 (Shamt = CN1->getZExtValue()) == MaskLen0 &&
3327 (MaskIdx0 + MaskLen0 <= ValBits)) {
3328 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 4\n");
3329 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
3330 N1.getOperand(0),
3331 DAG.getConstant((ValBits - 1), DL, GRLenVT),
3332 DAG.getConstant(Shamt, DL, GRLenVT));
3335 // 5th pattern to match BSTRINS:
3336 // R = or (and X, mask), const
3337 // where ~mask = (2**size - 1) << lsb, mask & const = 0
3338 // =>
3339 // R = BSTRINS X, (const >> lsb), msb, lsb
3340 // where msb = lsb + size - 1
3341 if (N0.getOpcode() == ISD::AND &&
3342 (CN0 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) &&
3343 isShiftedMask_64(~CN0->getSExtValue(), MaskIdx0, MaskLen0) &&
3344 (CN1 = dyn_cast<ConstantSDNode>(N1)) &&
3345 (CN1->getSExtValue() & CN0->getSExtValue()) == 0) {
3346 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 5\n");
3347 return DAG.getNode(
3348 LoongArchISD::BSTRINS, DL, ValTy, N0.getOperand(0),
3349 DAG.getConstant(CN1->getSExtValue() >> MaskIdx0, DL, ValTy),
3350 DAG.getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
3351 : (MaskIdx0 + MaskLen0 - 1),
3352 DL, GRLenVT),
3353 DAG.getConstant(MaskIdx0, DL, GRLenVT));
3356 // 6th pattern.
3357 // a = b | ((c & mask) << shamt), where all positions in b to be overwritten
3358 // by the incoming bits are known to be zero.
3359 // =>
3360 // a = BSTRINS b, c, shamt + MaskLen - 1, shamt
3362 // Note that the 1st pattern is a special situation of the 6th, i.e. the 6th
3363 // pattern is more common than the 1st. So we put the 1st before the 6th in
3364 // order to match as many nodes as possible.
3365 ConstantSDNode *CNMask, *CNShamt;
3366 unsigned MaskIdx, MaskLen;
3367 if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::AND &&
3368 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3369 isShiftedMask_64(CNMask->getZExtValue(), MaskIdx, MaskLen) &&
3370 MaskIdx == 0 && (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3371 CNShamt->getZExtValue() + MaskLen <= ValBits) {
3372 Shamt = CNShamt->getZExtValue();
3373 APInt ShMask(ValBits, CNMask->getZExtValue() << Shamt);
3374 if (ShMask.isSubsetOf(DAG.computeKnownBits(N0).Zero)) {
3375 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 6\n");
3376 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0,
3377 N1.getOperand(0).getOperand(0),
3378 DAG.getConstant(Shamt + MaskLen - 1, DL, GRLenVT),
3379 DAG.getConstant(Shamt, DL, GRLenVT));
3383 // 7th pattern.
3384 // a = b | ((c << shamt) & shifted_mask), where all positions in b to be
3385 // overwritten by the incoming bits are known to be zero.
3386 // =>
3387 // a = BSTRINS b, c, MaskIdx + MaskLen - 1, MaskIdx
3389 // Similarly, the 7th pattern is more common than the 2nd. So we put the 2nd
3390 // before the 7th in order to match as many nodes as possible.
3391 if (N1.getOpcode() == ISD::AND &&
3392 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3393 isShiftedMask_64(CNMask->getZExtValue(), MaskIdx, MaskLen) &&
3394 N1.getOperand(0).getOpcode() == ISD::SHL &&
3395 (CNShamt = dyn_cast<ConstantSDNode>(N1.getOperand(0).getOperand(1))) &&
3396 CNShamt->getZExtValue() == MaskIdx) {
3397 APInt ShMask(ValBits, CNMask->getZExtValue());
3398 if (ShMask.isSubsetOf(DAG.computeKnownBits(N0).Zero)) {
3399 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 7\n");
3400 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0,
3401 N1.getOperand(0).getOperand(0),
3402 DAG.getConstant(MaskIdx + MaskLen - 1, DL, GRLenVT),
3403 DAG.getConstant(MaskIdx, DL, GRLenVT));
3407 // (or a, b) and (or b, a) are equivalent, so swap the operands and retry.
3408 if (!SwapAndRetried) {
3409 std::swap(N0, N1);
3410 SwapAndRetried = true;
3411 goto Retry;
3414 SwapAndRetried = false;
3415 Retry2:
3416 // 8th pattern.
3417 // a = b | (c & shifted_mask), where all positions in b to be overwritten by
3418 // the incoming bits are known to be zero.
3419 // =>
3420 // a = BSTRINS b, c >> MaskIdx, MaskIdx + MaskLen - 1, MaskIdx
3422 // Similarly, the 8th pattern is more common than the 4th and 5th patterns. So
3423 // we put it here in order to match as many nodes as possible or generate less
3424 // instructions.
3425 if (N1.getOpcode() == ISD::AND &&
3426 (CNMask = dyn_cast<ConstantSDNode>(N1.getOperand(1))) &&
3427 isShiftedMask_64(CNMask->getZExtValue(), MaskIdx, MaskLen)) {
3428 APInt ShMask(ValBits, CNMask->getZExtValue());
3429 if (ShMask.isSubsetOf(DAG.computeKnownBits(N0).Zero)) {
3430 LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 8\n");
3431 return DAG.getNode(LoongArchISD::BSTRINS, DL, ValTy, N0,
3432 DAG.getNode(ISD::SRL, DL, N1->getValueType(0),
3433 N1->getOperand(0),
3434 DAG.getConstant(MaskIdx, DL, GRLenVT)),
3435 DAG.getConstant(MaskIdx + MaskLen - 1, DL, GRLenVT),
3436 DAG.getConstant(MaskIdx, DL, GRLenVT));
3439 // Swap N0/N1 and retry.
3440 if (!SwapAndRetried) {
3441 std::swap(N0, N1);
3442 SwapAndRetried = true;
3443 goto Retry2;
3446 return SDValue();
3449 static bool checkValueWidth(SDValue V, ISD::LoadExtType &ExtType) {
3450 ExtType = ISD::NON_EXTLOAD;
3452 switch (V.getNode()->getOpcode()) {
3453 case ISD::LOAD: {
3454 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
3455 if ((LoadNode->getMemoryVT() == MVT::i8) ||
3456 (LoadNode->getMemoryVT() == MVT::i16)) {
3457 ExtType = LoadNode->getExtensionType();
3458 return true;
3460 return false;
3462 case ISD::AssertSext: {
3463 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
3464 if ((TypeNode->getVT() == MVT::i8) || (TypeNode->getVT() == MVT::i16)) {
3465 ExtType = ISD::SEXTLOAD;
3466 return true;
3468 return false;
3470 case ISD::AssertZext: {
3471 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
3472 if ((TypeNode->getVT() == MVT::i8) || (TypeNode->getVT() == MVT::i16)) {
3473 ExtType = ISD::ZEXTLOAD;
3474 return true;
3476 return false;
3478 default:
3479 return false;
3482 return false;
3485 // Eliminate redundant truncation and zero-extension nodes.
3486 // * Case 1:
3487 // +------------+ +------------+ +------------+
3488 // | Input1 | | Input2 | | CC |
3489 // +------------+ +------------+ +------------+
3490 // | | |
3491 // V V +----+
3492 // +------------+ +------------+ |
3493 // | TRUNCATE | | TRUNCATE | |
3494 // +------------+ +------------+ |
3495 // | | |
3496 // V V |
3497 // +------------+ +------------+ |
3498 // | ZERO_EXT | | ZERO_EXT | |
3499 // +------------+ +------------+ |
3500 // | | |
3501 // | +-------------+ |
3502 // V V | |
3503 // +----------------+ | |
3504 // | AND | | |
3505 // +----------------+ | |
3506 // | | |
3507 // +---------------+ | |
3508 // | | |
3509 // V V V
3510 // +-------------+
3511 // | CMP |
3512 // +-------------+
3513 // * Case 2:
3514 // +------------+ +------------+ +-------------+ +------------+ +------------+
3515 // | Input1 | | Input2 | | Constant -1 | | Constant 0 | | CC |
3516 // +------------+ +------------+ +-------------+ +------------+ +------------+
3517 // | | | | |
3518 // V | | | |
3519 // +------------+ | | | |
3520 // | XOR |<---------------------+ | |
3521 // +------------+ | | |
3522 // | | | |
3523 // V V +---------------+ |
3524 // +------------+ +------------+ | |
3525 // | TRUNCATE | | TRUNCATE | | +-------------------------+
3526 // +------------+ +------------+ | |
3527 // | | | |
3528 // V V | |
3529 // +------------+ +------------+ | |
3530 // | ZERO_EXT | | ZERO_EXT | | |
3531 // +------------+ +------------+ | |
3532 // | | | |
3533 // V V | |
3534 // +----------------+ | |
3535 // | AND | | |
3536 // +----------------+ | |
3537 // | | |
3538 // +---------------+ | |
3539 // | | |
3540 // V V V
3541 // +-------------+
3542 // | CMP |
3543 // +-------------+
3544 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
3545 TargetLowering::DAGCombinerInfo &DCI,
3546 const LoongArchSubtarget &Subtarget) {
3547 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
3549 SDNode *AndNode = N->getOperand(0).getNode();
3550 if (AndNode->getOpcode() != ISD::AND)
3551 return SDValue();
3553 SDValue AndInputValue2 = AndNode->getOperand(1);
3554 if (AndInputValue2.getOpcode() != ISD::ZERO_EXTEND)
3555 return SDValue();
3557 SDValue CmpInputValue = N->getOperand(1);
3558 SDValue AndInputValue1 = AndNode->getOperand(0);
3559 if (AndInputValue1.getOpcode() == ISD::XOR) {
3560 if (CC != ISD::SETEQ && CC != ISD::SETNE)
3561 return SDValue();
3562 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndInputValue1.getOperand(1));
3563 if (!CN || CN->getSExtValue() != -1)
3564 return SDValue();
3565 CN = dyn_cast<ConstantSDNode>(CmpInputValue);
3566 if (!CN || CN->getSExtValue() != 0)
3567 return SDValue();
3568 AndInputValue1 = AndInputValue1.getOperand(0);
3569 if (AndInputValue1.getOpcode() != ISD::ZERO_EXTEND)
3570 return SDValue();
3571 } else if (AndInputValue1.getOpcode() == ISD::ZERO_EXTEND) {
3572 if (AndInputValue2 != CmpInputValue)
3573 return SDValue();
3574 } else {
3575 return SDValue();
3578 SDValue TruncValue1 = AndInputValue1.getNode()->getOperand(0);
3579 if (TruncValue1.getOpcode() != ISD::TRUNCATE)
3580 return SDValue();
3582 SDValue TruncValue2 = AndInputValue2.getNode()->getOperand(0);
3583 if (TruncValue2.getOpcode() != ISD::TRUNCATE)
3584 return SDValue();
3586 SDValue TruncInputValue1 = TruncValue1.getNode()->getOperand(0);
3587 SDValue TruncInputValue2 = TruncValue2.getNode()->getOperand(0);
3588 ISD::LoadExtType ExtType1;
3589 ISD::LoadExtType ExtType2;
3591 if (!checkValueWidth(TruncInputValue1, ExtType1) ||
3592 !checkValueWidth(TruncInputValue2, ExtType2))
3593 return SDValue();
3595 if (TruncInputValue1->getValueType(0) != TruncInputValue2->getValueType(0) ||
3596 AndNode->getValueType(0) != TruncInputValue1->getValueType(0))
3597 return SDValue();
3599 if ((ExtType2 != ISD::ZEXTLOAD) &&
3600 ((ExtType2 != ISD::SEXTLOAD) && (ExtType1 != ISD::SEXTLOAD)))
3601 return SDValue();
3603 // These truncation and zero-extension nodes are not necessary, remove them.
3604 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N), AndNode->getValueType(0),
3605 TruncInputValue1, TruncInputValue2);
3606 SDValue NewSetCC =
3607 DAG.getSetCC(SDLoc(N), N->getValueType(0), NewAnd, TruncInputValue2, CC);
3608 DAG.ReplaceAllUsesWith(N, NewSetCC.getNode());
3609 return SDValue(N, 0);
3612 // Combine (loongarch_bitrev_w (loongarch_revb_2w X)) to loongarch_bitrev_4b.
3613 static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG,
3614 TargetLowering::DAGCombinerInfo &DCI,
3615 const LoongArchSubtarget &Subtarget) {
3616 if (DCI.isBeforeLegalizeOps())
3617 return SDValue();
3619 SDValue Src = N->getOperand(0);
3620 if (Src.getOpcode() != LoongArchISD::REVB_2W)
3621 return SDValue();
3623 return DAG.getNode(LoongArchISD::BITREV_4B, SDLoc(N), N->getValueType(0),
3624 Src.getOperand(0));
3627 template <unsigned N>
3628 static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp,
3629 SelectionDAG &DAG,
3630 const LoongArchSubtarget &Subtarget,
3631 bool IsSigned = false) {
3632 SDLoc DL(Node);
3633 auto *CImm = cast<ConstantSDNode>(Node->getOperand(ImmOp));
3634 // Check the ImmArg.
3635 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
3636 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
3637 DAG.getContext()->emitError(Node->getOperationName(0) +
3638 ": argument out of range.");
3639 return DAG.getNode(ISD::UNDEF, DL, Subtarget.getGRLenVT());
3641 return DAG.getConstant(CImm->getZExtValue(), DL, Subtarget.getGRLenVT());
3644 template <unsigned N>
3645 static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp,
3646 SelectionDAG &DAG, bool IsSigned = false) {
3647 SDLoc DL(Node);
3648 EVT ResTy = Node->getValueType(0);
3649 auto *CImm = cast<ConstantSDNode>(Node->getOperand(ImmOp));
3651 // Check the ImmArg.
3652 if ((IsSigned && !isInt<N>(CImm->getSExtValue())) ||
3653 (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) {
3654 DAG.getContext()->emitError(Node->getOperationName(0) +
3655 ": argument out of range.");
3656 return DAG.getNode(ISD::UNDEF, DL, ResTy);
3658 return DAG.getConstant(
3659 APInt(ResTy.getScalarType().getSizeInBits(),
3660 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
3661 DL, ResTy);
3664 static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG) {
3665 SDLoc DL(Node);
3666 EVT ResTy = Node->getValueType(0);
3667 SDValue Vec = Node->getOperand(2);
3668 SDValue Mask = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1, DL, ResTy);
3669 return DAG.getNode(ISD::AND, DL, ResTy, Vec, Mask);
3672 static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG) {
3673 SDLoc DL(Node);
3674 EVT ResTy = Node->getValueType(0);
3675 SDValue One = DAG.getConstant(1, DL, ResTy);
3676 SDValue Bit =
3677 DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Node, DAG));
3679 return DAG.getNode(ISD::AND, DL, ResTy, Node->getOperand(1),
3680 DAG.getNOT(DL, Bit, ResTy));
3683 template <unsigned N>
3684 static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG) {
3685 SDLoc DL(Node);
3686 EVT ResTy = Node->getValueType(0);
3687 auto *CImm = cast<ConstantSDNode>(Node->getOperand(2));
3688 // Check the unsigned ImmArg.
3689 if (!isUInt<N>(CImm->getZExtValue())) {
3690 DAG.getContext()->emitError(Node->getOperationName(0) +
3691 ": argument out of range.");
3692 return DAG.getNode(ISD::UNDEF, DL, ResTy);
3695 APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1) << CImm->getAPIntValue();
3696 SDValue Mask = DAG.getConstant(~BitImm, DL, ResTy);
3698 return DAG.getNode(ISD::AND, DL, ResTy, Node->getOperand(1), Mask);
3701 template <unsigned N>
3702 static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG) {
3703 SDLoc DL(Node);
3704 EVT ResTy = Node->getValueType(0);
3705 auto *CImm = cast<ConstantSDNode>(Node->getOperand(2));
3706 // Check the unsigned ImmArg.
3707 if (!isUInt<N>(CImm->getZExtValue())) {
3708 DAG.getContext()->emitError(Node->getOperationName(0) +
3709 ": argument out of range.");
3710 return DAG.getNode(ISD::UNDEF, DL, ResTy);
3713 APInt Imm = APInt(ResTy.getScalarSizeInBits(), 1) << CImm->getAPIntValue();
3714 SDValue BitImm = DAG.getConstant(Imm, DL, ResTy);
3715 return DAG.getNode(ISD::OR, DL, ResTy, Node->getOperand(1), BitImm);
3718 template <unsigned N>
3719 static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG) {
3720 SDLoc DL(Node);
3721 EVT ResTy = Node->getValueType(0);
3722 auto *CImm = cast<ConstantSDNode>(Node->getOperand(2));
3723 // Check the unsigned ImmArg.
3724 if (!isUInt<N>(CImm->getZExtValue())) {
3725 DAG.getContext()->emitError(Node->getOperationName(0) +
3726 ": argument out of range.");
3727 return DAG.getNode(ISD::UNDEF, DL, ResTy);
3730 APInt Imm = APInt(ResTy.getScalarSizeInBits(), 1) << CImm->getAPIntValue();
3731 SDValue BitImm = DAG.getConstant(Imm, DL, ResTy);
3732 return DAG.getNode(ISD::XOR, DL, ResTy, Node->getOperand(1), BitImm);
3735 static SDValue
3736 performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG,
3737 TargetLowering::DAGCombinerInfo &DCI,
3738 const LoongArchSubtarget &Subtarget) {
3739 SDLoc DL(N);
3740 switch (N->getConstantOperandVal(0)) {
3741 default:
3742 break;
3743 case Intrinsic::loongarch_lsx_vadd_b:
3744 case Intrinsic::loongarch_lsx_vadd_h:
3745 case Intrinsic::loongarch_lsx_vadd_w:
3746 case Intrinsic::loongarch_lsx_vadd_d:
3747 case Intrinsic::loongarch_lasx_xvadd_b:
3748 case Intrinsic::loongarch_lasx_xvadd_h:
3749 case Intrinsic::loongarch_lasx_xvadd_w:
3750 case Intrinsic::loongarch_lasx_xvadd_d:
3751 return DAG.getNode(ISD::ADD, DL, N->getValueType(0), N->getOperand(1),
3752 N->getOperand(2));
3753 case Intrinsic::loongarch_lsx_vaddi_bu:
3754 case Intrinsic::loongarch_lsx_vaddi_hu:
3755 case Intrinsic::loongarch_lsx_vaddi_wu:
3756 case Intrinsic::loongarch_lsx_vaddi_du:
3757 case Intrinsic::loongarch_lasx_xvaddi_bu:
3758 case Intrinsic::loongarch_lasx_xvaddi_hu:
3759 case Intrinsic::loongarch_lasx_xvaddi_wu:
3760 case Intrinsic::loongarch_lasx_xvaddi_du:
3761 return DAG.getNode(ISD::ADD, DL, N->getValueType(0), N->getOperand(1),
3762 lowerVectorSplatImm<5>(N, 2, DAG));
3763 case Intrinsic::loongarch_lsx_vsub_b:
3764 case Intrinsic::loongarch_lsx_vsub_h:
3765 case Intrinsic::loongarch_lsx_vsub_w:
3766 case Intrinsic::loongarch_lsx_vsub_d:
3767 case Intrinsic::loongarch_lasx_xvsub_b:
3768 case Intrinsic::loongarch_lasx_xvsub_h:
3769 case Intrinsic::loongarch_lasx_xvsub_w:
3770 case Intrinsic::loongarch_lasx_xvsub_d:
3771 return DAG.getNode(ISD::SUB, DL, N->getValueType(0), N->getOperand(1),
3772 N->getOperand(2));
3773 case Intrinsic::loongarch_lsx_vsubi_bu:
3774 case Intrinsic::loongarch_lsx_vsubi_hu:
3775 case Intrinsic::loongarch_lsx_vsubi_wu:
3776 case Intrinsic::loongarch_lsx_vsubi_du:
3777 case Intrinsic::loongarch_lasx_xvsubi_bu:
3778 case Intrinsic::loongarch_lasx_xvsubi_hu:
3779 case Intrinsic::loongarch_lasx_xvsubi_wu:
3780 case Intrinsic::loongarch_lasx_xvsubi_du:
3781 return DAG.getNode(ISD::SUB, DL, N->getValueType(0), N->getOperand(1),
3782 lowerVectorSplatImm<5>(N, 2, DAG));
3783 case Intrinsic::loongarch_lsx_vneg_b:
3784 case Intrinsic::loongarch_lsx_vneg_h:
3785 case Intrinsic::loongarch_lsx_vneg_w:
3786 case Intrinsic::loongarch_lsx_vneg_d:
3787 case Intrinsic::loongarch_lasx_xvneg_b:
3788 case Intrinsic::loongarch_lasx_xvneg_h:
3789 case Intrinsic::loongarch_lasx_xvneg_w:
3790 case Intrinsic::loongarch_lasx_xvneg_d:
3791 return DAG.getNode(
3792 ISD::SUB, DL, N->getValueType(0),
3793 DAG.getConstant(
3794 APInt(N->getValueType(0).getScalarType().getSizeInBits(), 0,
3795 /*isSigned=*/true),
3796 SDLoc(N), N->getValueType(0)),
3797 N->getOperand(1));
3798 case Intrinsic::loongarch_lsx_vmax_b:
3799 case Intrinsic::loongarch_lsx_vmax_h:
3800 case Intrinsic::loongarch_lsx_vmax_w:
3801 case Intrinsic::loongarch_lsx_vmax_d:
3802 case Intrinsic::loongarch_lasx_xvmax_b:
3803 case Intrinsic::loongarch_lasx_xvmax_h:
3804 case Intrinsic::loongarch_lasx_xvmax_w:
3805 case Intrinsic::loongarch_lasx_xvmax_d:
3806 return DAG.getNode(ISD::SMAX, DL, N->getValueType(0), N->getOperand(1),
3807 N->getOperand(2));
3808 case Intrinsic::loongarch_lsx_vmax_bu:
3809 case Intrinsic::loongarch_lsx_vmax_hu:
3810 case Intrinsic::loongarch_lsx_vmax_wu:
3811 case Intrinsic::loongarch_lsx_vmax_du:
3812 case Intrinsic::loongarch_lasx_xvmax_bu:
3813 case Intrinsic::loongarch_lasx_xvmax_hu:
3814 case Intrinsic::loongarch_lasx_xvmax_wu:
3815 case Intrinsic::loongarch_lasx_xvmax_du:
3816 return DAG.getNode(ISD::UMAX, DL, N->getValueType(0), N->getOperand(1),
3817 N->getOperand(2));
3818 case Intrinsic::loongarch_lsx_vmaxi_b:
3819 case Intrinsic::loongarch_lsx_vmaxi_h:
3820 case Intrinsic::loongarch_lsx_vmaxi_w:
3821 case Intrinsic::loongarch_lsx_vmaxi_d:
3822 case Intrinsic::loongarch_lasx_xvmaxi_b:
3823 case Intrinsic::loongarch_lasx_xvmaxi_h:
3824 case Intrinsic::loongarch_lasx_xvmaxi_w:
3825 case Intrinsic::loongarch_lasx_xvmaxi_d:
3826 return DAG.getNode(ISD::SMAX, DL, N->getValueType(0), N->getOperand(1),
3827 lowerVectorSplatImm<5>(N, 2, DAG, /*IsSigned=*/true));
3828 case Intrinsic::loongarch_lsx_vmaxi_bu:
3829 case Intrinsic::loongarch_lsx_vmaxi_hu:
3830 case Intrinsic::loongarch_lsx_vmaxi_wu:
3831 case Intrinsic::loongarch_lsx_vmaxi_du:
3832 case Intrinsic::loongarch_lasx_xvmaxi_bu:
3833 case Intrinsic::loongarch_lasx_xvmaxi_hu:
3834 case Intrinsic::loongarch_lasx_xvmaxi_wu:
3835 case Intrinsic::loongarch_lasx_xvmaxi_du:
3836 return DAG.getNode(ISD::UMAX, DL, N->getValueType(0), N->getOperand(1),
3837 lowerVectorSplatImm<5>(N, 2, DAG));
3838 case Intrinsic::loongarch_lsx_vmin_b:
3839 case Intrinsic::loongarch_lsx_vmin_h:
3840 case Intrinsic::loongarch_lsx_vmin_w:
3841 case Intrinsic::loongarch_lsx_vmin_d:
3842 case Intrinsic::loongarch_lasx_xvmin_b:
3843 case Intrinsic::loongarch_lasx_xvmin_h:
3844 case Intrinsic::loongarch_lasx_xvmin_w:
3845 case Intrinsic::loongarch_lasx_xvmin_d:
3846 return DAG.getNode(ISD::SMIN, DL, N->getValueType(0), N->getOperand(1),
3847 N->getOperand(2));
3848 case Intrinsic::loongarch_lsx_vmin_bu:
3849 case Intrinsic::loongarch_lsx_vmin_hu:
3850 case Intrinsic::loongarch_lsx_vmin_wu:
3851 case Intrinsic::loongarch_lsx_vmin_du:
3852 case Intrinsic::loongarch_lasx_xvmin_bu:
3853 case Intrinsic::loongarch_lasx_xvmin_hu:
3854 case Intrinsic::loongarch_lasx_xvmin_wu:
3855 case Intrinsic::loongarch_lasx_xvmin_du:
3856 return DAG.getNode(ISD::UMIN, DL, N->getValueType(0), N->getOperand(1),
3857 N->getOperand(2));
3858 case Intrinsic::loongarch_lsx_vmini_b:
3859 case Intrinsic::loongarch_lsx_vmini_h:
3860 case Intrinsic::loongarch_lsx_vmini_w:
3861 case Intrinsic::loongarch_lsx_vmini_d:
3862 case Intrinsic::loongarch_lasx_xvmini_b:
3863 case Intrinsic::loongarch_lasx_xvmini_h:
3864 case Intrinsic::loongarch_lasx_xvmini_w:
3865 case Intrinsic::loongarch_lasx_xvmini_d:
3866 return DAG.getNode(ISD::SMIN, DL, N->getValueType(0), N->getOperand(1),
3867 lowerVectorSplatImm<5>(N, 2, DAG, /*IsSigned=*/true));
3868 case Intrinsic::loongarch_lsx_vmini_bu:
3869 case Intrinsic::loongarch_lsx_vmini_hu:
3870 case Intrinsic::loongarch_lsx_vmini_wu:
3871 case Intrinsic::loongarch_lsx_vmini_du:
3872 case Intrinsic::loongarch_lasx_xvmini_bu:
3873 case Intrinsic::loongarch_lasx_xvmini_hu:
3874 case Intrinsic::loongarch_lasx_xvmini_wu:
3875 case Intrinsic::loongarch_lasx_xvmini_du:
3876 return DAG.getNode(ISD::UMIN, DL, N->getValueType(0), N->getOperand(1),
3877 lowerVectorSplatImm<5>(N, 2, DAG));
3878 case Intrinsic::loongarch_lsx_vmul_b:
3879 case Intrinsic::loongarch_lsx_vmul_h:
3880 case Intrinsic::loongarch_lsx_vmul_w:
3881 case Intrinsic::loongarch_lsx_vmul_d:
3882 case Intrinsic::loongarch_lasx_xvmul_b:
3883 case Intrinsic::loongarch_lasx_xvmul_h:
3884 case Intrinsic::loongarch_lasx_xvmul_w:
3885 case Intrinsic::loongarch_lasx_xvmul_d:
3886 return DAG.getNode(ISD::MUL, DL, N->getValueType(0), N->getOperand(1),
3887 N->getOperand(2));
3888 case Intrinsic::loongarch_lsx_vmadd_b:
3889 case Intrinsic::loongarch_lsx_vmadd_h:
3890 case Intrinsic::loongarch_lsx_vmadd_w:
3891 case Intrinsic::loongarch_lsx_vmadd_d:
3892 case Intrinsic::loongarch_lasx_xvmadd_b:
3893 case Intrinsic::loongarch_lasx_xvmadd_h:
3894 case Intrinsic::loongarch_lasx_xvmadd_w:
3895 case Intrinsic::loongarch_lasx_xvmadd_d: {
3896 EVT ResTy = N->getValueType(0);
3897 return DAG.getNode(ISD::ADD, SDLoc(N), ResTy, N->getOperand(1),
3898 DAG.getNode(ISD::MUL, SDLoc(N), ResTy, N->getOperand(2),
3899 N->getOperand(3)));
3901 case Intrinsic::loongarch_lsx_vmsub_b:
3902 case Intrinsic::loongarch_lsx_vmsub_h:
3903 case Intrinsic::loongarch_lsx_vmsub_w:
3904 case Intrinsic::loongarch_lsx_vmsub_d:
3905 case Intrinsic::loongarch_lasx_xvmsub_b:
3906 case Intrinsic::loongarch_lasx_xvmsub_h:
3907 case Intrinsic::loongarch_lasx_xvmsub_w:
3908 case Intrinsic::loongarch_lasx_xvmsub_d: {
3909 EVT ResTy = N->getValueType(0);
3910 return DAG.getNode(ISD::SUB, SDLoc(N), ResTy, N->getOperand(1),
3911 DAG.getNode(ISD::MUL, SDLoc(N), ResTy, N->getOperand(2),
3912 N->getOperand(3)));
3914 case Intrinsic::loongarch_lsx_vdiv_b:
3915 case Intrinsic::loongarch_lsx_vdiv_h:
3916 case Intrinsic::loongarch_lsx_vdiv_w:
3917 case Intrinsic::loongarch_lsx_vdiv_d:
3918 case Intrinsic::loongarch_lasx_xvdiv_b:
3919 case Intrinsic::loongarch_lasx_xvdiv_h:
3920 case Intrinsic::loongarch_lasx_xvdiv_w:
3921 case Intrinsic::loongarch_lasx_xvdiv_d:
3922 return DAG.getNode(ISD::SDIV, DL, N->getValueType(0), N->getOperand(1),
3923 N->getOperand(2));
3924 case Intrinsic::loongarch_lsx_vdiv_bu:
3925 case Intrinsic::loongarch_lsx_vdiv_hu:
3926 case Intrinsic::loongarch_lsx_vdiv_wu:
3927 case Intrinsic::loongarch_lsx_vdiv_du:
3928 case Intrinsic::loongarch_lasx_xvdiv_bu:
3929 case Intrinsic::loongarch_lasx_xvdiv_hu:
3930 case Intrinsic::loongarch_lasx_xvdiv_wu:
3931 case Intrinsic::loongarch_lasx_xvdiv_du:
3932 return DAG.getNode(ISD::UDIV, DL, N->getValueType(0), N->getOperand(1),
3933 N->getOperand(2));
3934 case Intrinsic::loongarch_lsx_vmod_b:
3935 case Intrinsic::loongarch_lsx_vmod_h:
3936 case Intrinsic::loongarch_lsx_vmod_w:
3937 case Intrinsic::loongarch_lsx_vmod_d:
3938 case Intrinsic::loongarch_lasx_xvmod_b:
3939 case Intrinsic::loongarch_lasx_xvmod_h:
3940 case Intrinsic::loongarch_lasx_xvmod_w:
3941 case Intrinsic::loongarch_lasx_xvmod_d:
3942 return DAG.getNode(ISD::SREM, DL, N->getValueType(0), N->getOperand(1),
3943 N->getOperand(2));
3944 case Intrinsic::loongarch_lsx_vmod_bu:
3945 case Intrinsic::loongarch_lsx_vmod_hu:
3946 case Intrinsic::loongarch_lsx_vmod_wu:
3947 case Intrinsic::loongarch_lsx_vmod_du:
3948 case Intrinsic::loongarch_lasx_xvmod_bu:
3949 case Intrinsic::loongarch_lasx_xvmod_hu:
3950 case Intrinsic::loongarch_lasx_xvmod_wu:
3951 case Intrinsic::loongarch_lasx_xvmod_du:
3952 return DAG.getNode(ISD::UREM, DL, N->getValueType(0), N->getOperand(1),
3953 N->getOperand(2));
3954 case Intrinsic::loongarch_lsx_vand_v:
3955 case Intrinsic::loongarch_lasx_xvand_v:
3956 return DAG.getNode(ISD::AND, DL, N->getValueType(0), N->getOperand(1),
3957 N->getOperand(2));
3958 case Intrinsic::loongarch_lsx_vor_v:
3959 case Intrinsic::loongarch_lasx_xvor_v:
3960 return DAG.getNode(ISD::OR, DL, N->getValueType(0), N->getOperand(1),
3961 N->getOperand(2));
3962 case Intrinsic::loongarch_lsx_vxor_v:
3963 case Intrinsic::loongarch_lasx_xvxor_v:
3964 return DAG.getNode(ISD::XOR, DL, N->getValueType(0), N->getOperand(1),
3965 N->getOperand(2));
3966 case Intrinsic::loongarch_lsx_vnor_v:
3967 case Intrinsic::loongarch_lasx_xvnor_v: {
3968 SDValue Res = DAG.getNode(ISD::OR, DL, N->getValueType(0), N->getOperand(1),
3969 N->getOperand(2));
3970 return DAG.getNOT(DL, Res, Res->getValueType(0));
3972 case Intrinsic::loongarch_lsx_vandi_b:
3973 case Intrinsic::loongarch_lasx_xvandi_b:
3974 return DAG.getNode(ISD::AND, DL, N->getValueType(0), N->getOperand(1),
3975 lowerVectorSplatImm<8>(N, 2, DAG));
3976 case Intrinsic::loongarch_lsx_vori_b:
3977 case Intrinsic::loongarch_lasx_xvori_b:
3978 return DAG.getNode(ISD::OR, DL, N->getValueType(0), N->getOperand(1),
3979 lowerVectorSplatImm<8>(N, 2, DAG));
3980 case Intrinsic::loongarch_lsx_vxori_b:
3981 case Intrinsic::loongarch_lasx_xvxori_b:
3982 return DAG.getNode(ISD::XOR, DL, N->getValueType(0), N->getOperand(1),
3983 lowerVectorSplatImm<8>(N, 2, DAG));
3984 case Intrinsic::loongarch_lsx_vsll_b:
3985 case Intrinsic::loongarch_lsx_vsll_h:
3986 case Intrinsic::loongarch_lsx_vsll_w:
3987 case Intrinsic::loongarch_lsx_vsll_d:
3988 case Intrinsic::loongarch_lasx_xvsll_b:
3989 case Intrinsic::loongarch_lasx_xvsll_h:
3990 case Intrinsic::loongarch_lasx_xvsll_w:
3991 case Intrinsic::loongarch_lasx_xvsll_d:
3992 return DAG.getNode(ISD::SHL, DL, N->getValueType(0), N->getOperand(1),
3993 truncateVecElts(N, DAG));
3994 case Intrinsic::loongarch_lsx_vslli_b:
3995 case Intrinsic::loongarch_lasx_xvslli_b:
3996 return DAG.getNode(ISD::SHL, DL, N->getValueType(0), N->getOperand(1),
3997 lowerVectorSplatImm<3>(N, 2, DAG));
3998 case Intrinsic::loongarch_lsx_vslli_h:
3999 case Intrinsic::loongarch_lasx_xvslli_h:
4000 return DAG.getNode(ISD::SHL, DL, N->getValueType(0), N->getOperand(1),
4001 lowerVectorSplatImm<4>(N, 2, DAG));
4002 case Intrinsic::loongarch_lsx_vslli_w:
4003 case Intrinsic::loongarch_lasx_xvslli_w:
4004 return DAG.getNode(ISD::SHL, DL, N->getValueType(0), N->getOperand(1),
4005 lowerVectorSplatImm<5>(N, 2, DAG));
4006 case Intrinsic::loongarch_lsx_vslli_d:
4007 case Intrinsic::loongarch_lasx_xvslli_d:
4008 return DAG.getNode(ISD::SHL, DL, N->getValueType(0), N->getOperand(1),
4009 lowerVectorSplatImm<6>(N, 2, DAG));
4010 case Intrinsic::loongarch_lsx_vsrl_b:
4011 case Intrinsic::loongarch_lsx_vsrl_h:
4012 case Intrinsic::loongarch_lsx_vsrl_w:
4013 case Intrinsic::loongarch_lsx_vsrl_d:
4014 case Intrinsic::loongarch_lasx_xvsrl_b:
4015 case Intrinsic::loongarch_lasx_xvsrl_h:
4016 case Intrinsic::loongarch_lasx_xvsrl_w:
4017 case Intrinsic::loongarch_lasx_xvsrl_d:
4018 return DAG.getNode(ISD::SRL, DL, N->getValueType(0), N->getOperand(1),
4019 truncateVecElts(N, DAG));
4020 case Intrinsic::loongarch_lsx_vsrli_b:
4021 case Intrinsic::loongarch_lasx_xvsrli_b:
4022 return DAG.getNode(ISD::SRL, DL, N->getValueType(0), N->getOperand(1),
4023 lowerVectorSplatImm<3>(N, 2, DAG));
4024 case Intrinsic::loongarch_lsx_vsrli_h:
4025 case Intrinsic::loongarch_lasx_xvsrli_h:
4026 return DAG.getNode(ISD::SRL, DL, N->getValueType(0), N->getOperand(1),
4027 lowerVectorSplatImm<4>(N, 2, DAG));
4028 case Intrinsic::loongarch_lsx_vsrli_w:
4029 case Intrinsic::loongarch_lasx_xvsrli_w:
4030 return DAG.getNode(ISD::SRL, DL, N->getValueType(0), N->getOperand(1),
4031 lowerVectorSplatImm<5>(N, 2, DAG));
4032 case Intrinsic::loongarch_lsx_vsrli_d:
4033 case Intrinsic::loongarch_lasx_xvsrli_d:
4034 return DAG.getNode(ISD::SRL, DL, N->getValueType(0), N->getOperand(1),
4035 lowerVectorSplatImm<6>(N, 2, DAG));
4036 case Intrinsic::loongarch_lsx_vsra_b:
4037 case Intrinsic::loongarch_lsx_vsra_h:
4038 case Intrinsic::loongarch_lsx_vsra_w:
4039 case Intrinsic::loongarch_lsx_vsra_d:
4040 case Intrinsic::loongarch_lasx_xvsra_b:
4041 case Intrinsic::loongarch_lasx_xvsra_h:
4042 case Intrinsic::loongarch_lasx_xvsra_w:
4043 case Intrinsic::loongarch_lasx_xvsra_d:
4044 return DAG.getNode(ISD::SRA, DL, N->getValueType(0), N->getOperand(1),
4045 truncateVecElts(N, DAG));
4046 case Intrinsic::loongarch_lsx_vsrai_b:
4047 case Intrinsic::loongarch_lasx_xvsrai_b:
4048 return DAG.getNode(ISD::SRA, DL, N->getValueType(0), N->getOperand(1),
4049 lowerVectorSplatImm<3>(N, 2, DAG));
4050 case Intrinsic::loongarch_lsx_vsrai_h:
4051 case Intrinsic::loongarch_lasx_xvsrai_h:
4052 return DAG.getNode(ISD::SRA, DL, N->getValueType(0), N->getOperand(1),
4053 lowerVectorSplatImm<4>(N, 2, DAG));
4054 case Intrinsic::loongarch_lsx_vsrai_w:
4055 case Intrinsic::loongarch_lasx_xvsrai_w:
4056 return DAG.getNode(ISD::SRA, DL, N->getValueType(0), N->getOperand(1),
4057 lowerVectorSplatImm<5>(N, 2, DAG));
4058 case Intrinsic::loongarch_lsx_vsrai_d:
4059 case Intrinsic::loongarch_lasx_xvsrai_d:
4060 return DAG.getNode(ISD::SRA, DL, N->getValueType(0), N->getOperand(1),
4061 lowerVectorSplatImm<6>(N, 2, DAG));
4062 case Intrinsic::loongarch_lsx_vclz_b:
4063 case Intrinsic::loongarch_lsx_vclz_h:
4064 case Intrinsic::loongarch_lsx_vclz_w:
4065 case Intrinsic::loongarch_lsx_vclz_d:
4066 case Intrinsic::loongarch_lasx_xvclz_b:
4067 case Intrinsic::loongarch_lasx_xvclz_h:
4068 case Intrinsic::loongarch_lasx_xvclz_w:
4069 case Intrinsic::loongarch_lasx_xvclz_d:
4070 return DAG.getNode(ISD::CTLZ, DL, N->getValueType(0), N->getOperand(1));
4071 case Intrinsic::loongarch_lsx_vpcnt_b:
4072 case Intrinsic::loongarch_lsx_vpcnt_h:
4073 case Intrinsic::loongarch_lsx_vpcnt_w:
4074 case Intrinsic::loongarch_lsx_vpcnt_d:
4075 case Intrinsic::loongarch_lasx_xvpcnt_b:
4076 case Intrinsic::loongarch_lasx_xvpcnt_h:
4077 case Intrinsic::loongarch_lasx_xvpcnt_w:
4078 case Intrinsic::loongarch_lasx_xvpcnt_d:
4079 return DAG.getNode(ISD::CTPOP, DL, N->getValueType(0), N->getOperand(1));
4080 case Intrinsic::loongarch_lsx_vbitclr_b:
4081 case Intrinsic::loongarch_lsx_vbitclr_h:
4082 case Intrinsic::loongarch_lsx_vbitclr_w:
4083 case Intrinsic::loongarch_lsx_vbitclr_d:
4084 case Intrinsic::loongarch_lasx_xvbitclr_b:
4085 case Intrinsic::loongarch_lasx_xvbitclr_h:
4086 case Intrinsic::loongarch_lasx_xvbitclr_w:
4087 case Intrinsic::loongarch_lasx_xvbitclr_d:
4088 return lowerVectorBitClear(N, DAG);
4089 case Intrinsic::loongarch_lsx_vbitclri_b:
4090 case Intrinsic::loongarch_lasx_xvbitclri_b:
4091 return lowerVectorBitClearImm<3>(N, DAG);
4092 case Intrinsic::loongarch_lsx_vbitclri_h:
4093 case Intrinsic::loongarch_lasx_xvbitclri_h:
4094 return lowerVectorBitClearImm<4>(N, DAG);
4095 case Intrinsic::loongarch_lsx_vbitclri_w:
4096 case Intrinsic::loongarch_lasx_xvbitclri_w:
4097 return lowerVectorBitClearImm<5>(N, DAG);
4098 case Intrinsic::loongarch_lsx_vbitclri_d:
4099 case Intrinsic::loongarch_lasx_xvbitclri_d:
4100 return lowerVectorBitClearImm<6>(N, DAG);
4101 case Intrinsic::loongarch_lsx_vbitset_b:
4102 case Intrinsic::loongarch_lsx_vbitset_h:
4103 case Intrinsic::loongarch_lsx_vbitset_w:
4104 case Intrinsic::loongarch_lsx_vbitset_d:
4105 case Intrinsic::loongarch_lasx_xvbitset_b:
4106 case Intrinsic::loongarch_lasx_xvbitset_h:
4107 case Intrinsic::loongarch_lasx_xvbitset_w:
4108 case Intrinsic::loongarch_lasx_xvbitset_d: {
4109 EVT VecTy = N->getValueType(0);
4110 SDValue One = DAG.getConstant(1, DL, VecTy);
4111 return DAG.getNode(
4112 ISD::OR, DL, VecTy, N->getOperand(1),
4113 DAG.getNode(ISD::SHL, DL, VecTy, One, truncateVecElts(N, DAG)));
4115 case Intrinsic::loongarch_lsx_vbitseti_b:
4116 case Intrinsic::loongarch_lasx_xvbitseti_b:
4117 return lowerVectorBitSetImm<3>(N, DAG);
4118 case Intrinsic::loongarch_lsx_vbitseti_h:
4119 case Intrinsic::loongarch_lasx_xvbitseti_h:
4120 return lowerVectorBitSetImm<4>(N, DAG);
4121 case Intrinsic::loongarch_lsx_vbitseti_w:
4122 case Intrinsic::loongarch_lasx_xvbitseti_w:
4123 return lowerVectorBitSetImm<5>(N, DAG);
4124 case Intrinsic::loongarch_lsx_vbitseti_d:
4125 case Intrinsic::loongarch_lasx_xvbitseti_d:
4126 return lowerVectorBitSetImm<6>(N, DAG);
4127 case Intrinsic::loongarch_lsx_vbitrev_b:
4128 case Intrinsic::loongarch_lsx_vbitrev_h:
4129 case Intrinsic::loongarch_lsx_vbitrev_w:
4130 case Intrinsic::loongarch_lsx_vbitrev_d:
4131 case Intrinsic::loongarch_lasx_xvbitrev_b:
4132 case Intrinsic::loongarch_lasx_xvbitrev_h:
4133 case Intrinsic::loongarch_lasx_xvbitrev_w:
4134 case Intrinsic::loongarch_lasx_xvbitrev_d: {
4135 EVT VecTy = N->getValueType(0);
4136 SDValue One = DAG.getConstant(1, DL, VecTy);
4137 return DAG.getNode(
4138 ISD::XOR, DL, VecTy, N->getOperand(1),
4139 DAG.getNode(ISD::SHL, DL, VecTy, One, truncateVecElts(N, DAG)));
4141 case Intrinsic::loongarch_lsx_vbitrevi_b:
4142 case Intrinsic::loongarch_lasx_xvbitrevi_b:
4143 return lowerVectorBitRevImm<3>(N, DAG);
4144 case Intrinsic::loongarch_lsx_vbitrevi_h:
4145 case Intrinsic::loongarch_lasx_xvbitrevi_h:
4146 return lowerVectorBitRevImm<4>(N, DAG);
4147 case Intrinsic::loongarch_lsx_vbitrevi_w:
4148 case Intrinsic::loongarch_lasx_xvbitrevi_w:
4149 return lowerVectorBitRevImm<5>(N, DAG);
4150 case Intrinsic::loongarch_lsx_vbitrevi_d:
4151 case Intrinsic::loongarch_lasx_xvbitrevi_d:
4152 return lowerVectorBitRevImm<6>(N, DAG);
4153 case Intrinsic::loongarch_lsx_vfadd_s:
4154 case Intrinsic::loongarch_lsx_vfadd_d:
4155 case Intrinsic::loongarch_lasx_xvfadd_s:
4156 case Intrinsic::loongarch_lasx_xvfadd_d:
4157 return DAG.getNode(ISD::FADD, DL, N->getValueType(0), N->getOperand(1),
4158 N->getOperand(2));
4159 case Intrinsic::loongarch_lsx_vfsub_s:
4160 case Intrinsic::loongarch_lsx_vfsub_d:
4161 case Intrinsic::loongarch_lasx_xvfsub_s:
4162 case Intrinsic::loongarch_lasx_xvfsub_d:
4163 return DAG.getNode(ISD::FSUB, DL, N->getValueType(0), N->getOperand(1),
4164 N->getOperand(2));
4165 case Intrinsic::loongarch_lsx_vfmul_s:
4166 case Intrinsic::loongarch_lsx_vfmul_d:
4167 case Intrinsic::loongarch_lasx_xvfmul_s:
4168 case Intrinsic::loongarch_lasx_xvfmul_d:
4169 return DAG.getNode(ISD::FMUL, DL, N->getValueType(0), N->getOperand(1),
4170 N->getOperand(2));
4171 case Intrinsic::loongarch_lsx_vfdiv_s:
4172 case Intrinsic::loongarch_lsx_vfdiv_d:
4173 case Intrinsic::loongarch_lasx_xvfdiv_s:
4174 case Intrinsic::loongarch_lasx_xvfdiv_d:
4175 return DAG.getNode(ISD::FDIV, DL, N->getValueType(0), N->getOperand(1),
4176 N->getOperand(2));
4177 case Intrinsic::loongarch_lsx_vfmadd_s:
4178 case Intrinsic::loongarch_lsx_vfmadd_d:
4179 case Intrinsic::loongarch_lasx_xvfmadd_s:
4180 case Intrinsic::loongarch_lasx_xvfmadd_d:
4181 return DAG.getNode(ISD::FMA, DL, N->getValueType(0), N->getOperand(1),
4182 N->getOperand(2), N->getOperand(3));
4183 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
4184 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), N->getValueType(0),
4185 N->getOperand(1), N->getOperand(2),
4186 legalizeIntrinsicImmArg<4>(N, 3, DAG, Subtarget));
4187 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
4188 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
4189 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), N->getValueType(0),
4190 N->getOperand(1), N->getOperand(2),
4191 legalizeIntrinsicImmArg<3>(N, 3, DAG, Subtarget));
4192 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
4193 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
4194 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), N->getValueType(0),
4195 N->getOperand(1), N->getOperand(2),
4196 legalizeIntrinsicImmArg<2>(N, 3, DAG, Subtarget));
4197 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
4198 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), N->getValueType(0),
4199 N->getOperand(1), N->getOperand(2),
4200 legalizeIntrinsicImmArg<1>(N, 3, DAG, Subtarget));
4201 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
4202 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
4203 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
4204 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
4205 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
4206 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
4207 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
4208 case Intrinsic::loongarch_lasx_xvreplgr2vr_d: {
4209 EVT ResTy = N->getValueType(0);
4210 SmallVector<SDValue> Ops(ResTy.getVectorNumElements(), N->getOperand(1));
4211 return DAG.getBuildVector(ResTy, DL, Ops);
4213 case Intrinsic::loongarch_lsx_vreplve_b:
4214 case Intrinsic::loongarch_lsx_vreplve_h:
4215 case Intrinsic::loongarch_lsx_vreplve_w:
4216 case Intrinsic::loongarch_lsx_vreplve_d:
4217 case Intrinsic::loongarch_lasx_xvreplve_b:
4218 case Intrinsic::loongarch_lasx_xvreplve_h:
4219 case Intrinsic::loongarch_lasx_xvreplve_w:
4220 case Intrinsic::loongarch_lasx_xvreplve_d:
4221 return DAG.getNode(LoongArchISD::VREPLVE, DL, N->getValueType(0),
4222 N->getOperand(1),
4223 DAG.getNode(ISD::ANY_EXTEND, DL, Subtarget.getGRLenVT(),
4224 N->getOperand(2)));
4226 return SDValue();
4229 SDValue LoongArchTargetLowering::PerformDAGCombine(SDNode *N,
4230 DAGCombinerInfo &DCI) const {
4231 SelectionDAG &DAG = DCI.DAG;
4232 switch (N->getOpcode()) {
4233 default:
4234 break;
4235 case ISD::AND:
4236 return performANDCombine(N, DAG, DCI, Subtarget);
4237 case ISD::OR:
4238 return performORCombine(N, DAG, DCI, Subtarget);
4239 case ISD::SETCC:
4240 return performSETCCCombine(N, DAG, DCI, Subtarget);
4241 case ISD::SRL:
4242 return performSRLCombine(N, DAG, DCI, Subtarget);
4243 case LoongArchISD::BITREV_W:
4244 return performBITREV_WCombine(N, DAG, DCI, Subtarget);
4245 case ISD::INTRINSIC_WO_CHAIN:
4246 return performINTRINSIC_WO_CHAINCombine(N, DAG, DCI, Subtarget);
4248 return SDValue();
4251 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
4252 MachineBasicBlock *MBB) {
4253 if (!ZeroDivCheck)
4254 return MBB;
4256 // Build instructions:
4257 // MBB:
4258 // div(or mod) $dst, $dividend, $divisor
4259 // bnez $divisor, SinkMBB
4260 // BreakMBB:
4261 // break 7 // BRK_DIVZERO
4262 // SinkMBB:
4263 // fallthrough
4264 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
4265 MachineFunction::iterator It = ++MBB->getIterator();
4266 MachineFunction *MF = MBB->getParent();
4267 auto BreakMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4268 auto SinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4269 MF->insert(It, BreakMBB);
4270 MF->insert(It, SinkMBB);
4272 // Transfer the remainder of MBB and its successor edges to SinkMBB.
4273 SinkMBB->splice(SinkMBB->end(), MBB, std::next(MI.getIterator()), MBB->end());
4274 SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
4276 const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
4277 DebugLoc DL = MI.getDebugLoc();
4278 MachineOperand &Divisor = MI.getOperand(2);
4279 Register DivisorReg = Divisor.getReg();
4281 // MBB:
4282 BuildMI(MBB, DL, TII.get(LoongArch::BNEZ))
4283 .addReg(DivisorReg, getKillRegState(Divisor.isKill()))
4284 .addMBB(SinkMBB);
4285 MBB->addSuccessor(BreakMBB);
4286 MBB->addSuccessor(SinkMBB);
4288 // BreakMBB:
4289 // See linux header file arch/loongarch/include/uapi/asm/break.h for the
4290 // definition of BRK_DIVZERO.
4291 BuildMI(BreakMBB, DL, TII.get(LoongArch::BREAK)).addImm(7 /*BRK_DIVZERO*/);
4292 BreakMBB->addSuccessor(SinkMBB);
4294 // Clear Divisor's kill flag.
4295 Divisor.setIsKill(false);
4297 return SinkMBB;
4300 static MachineBasicBlock *
4301 emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB,
4302 const LoongArchSubtarget &Subtarget) {
4303 unsigned CondOpc;
4304 switch (MI.getOpcode()) {
4305 default:
4306 llvm_unreachable("Unexpected opcode");
4307 case LoongArch::PseudoVBZ:
4308 CondOpc = LoongArch::VSETEQZ_V;
4309 break;
4310 case LoongArch::PseudoVBZ_B:
4311 CondOpc = LoongArch::VSETANYEQZ_B;
4312 break;
4313 case LoongArch::PseudoVBZ_H:
4314 CondOpc = LoongArch::VSETANYEQZ_H;
4315 break;
4316 case LoongArch::PseudoVBZ_W:
4317 CondOpc = LoongArch::VSETANYEQZ_W;
4318 break;
4319 case LoongArch::PseudoVBZ_D:
4320 CondOpc = LoongArch::VSETANYEQZ_D;
4321 break;
4322 case LoongArch::PseudoVBNZ:
4323 CondOpc = LoongArch::VSETNEZ_V;
4324 break;
4325 case LoongArch::PseudoVBNZ_B:
4326 CondOpc = LoongArch::VSETALLNEZ_B;
4327 break;
4328 case LoongArch::PseudoVBNZ_H:
4329 CondOpc = LoongArch::VSETALLNEZ_H;
4330 break;
4331 case LoongArch::PseudoVBNZ_W:
4332 CondOpc = LoongArch::VSETALLNEZ_W;
4333 break;
4334 case LoongArch::PseudoVBNZ_D:
4335 CondOpc = LoongArch::VSETALLNEZ_D;
4336 break;
4337 case LoongArch::PseudoXVBZ:
4338 CondOpc = LoongArch::XVSETEQZ_V;
4339 break;
4340 case LoongArch::PseudoXVBZ_B:
4341 CondOpc = LoongArch::XVSETANYEQZ_B;
4342 break;
4343 case LoongArch::PseudoXVBZ_H:
4344 CondOpc = LoongArch::XVSETANYEQZ_H;
4345 break;
4346 case LoongArch::PseudoXVBZ_W:
4347 CondOpc = LoongArch::XVSETANYEQZ_W;
4348 break;
4349 case LoongArch::PseudoXVBZ_D:
4350 CondOpc = LoongArch::XVSETANYEQZ_D;
4351 break;
4352 case LoongArch::PseudoXVBNZ:
4353 CondOpc = LoongArch::XVSETNEZ_V;
4354 break;
4355 case LoongArch::PseudoXVBNZ_B:
4356 CondOpc = LoongArch::XVSETALLNEZ_B;
4357 break;
4358 case LoongArch::PseudoXVBNZ_H:
4359 CondOpc = LoongArch::XVSETALLNEZ_H;
4360 break;
4361 case LoongArch::PseudoXVBNZ_W:
4362 CondOpc = LoongArch::XVSETALLNEZ_W;
4363 break;
4364 case LoongArch::PseudoXVBNZ_D:
4365 CondOpc = LoongArch::XVSETALLNEZ_D;
4366 break;
4369 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4370 const BasicBlock *LLVM_BB = BB->getBasicBlock();
4371 DebugLoc DL = MI.getDebugLoc();
4372 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4373 MachineFunction::iterator It = ++BB->getIterator();
4375 MachineFunction *F = BB->getParent();
4376 MachineBasicBlock *FalseBB = F->CreateMachineBasicBlock(LLVM_BB);
4377 MachineBasicBlock *TrueBB = F->CreateMachineBasicBlock(LLVM_BB);
4378 MachineBasicBlock *SinkBB = F->CreateMachineBasicBlock(LLVM_BB);
4380 F->insert(It, FalseBB);
4381 F->insert(It, TrueBB);
4382 F->insert(It, SinkBB);
4384 // Transfer the remainder of MBB and its successor edges to Sink.
4385 SinkBB->splice(SinkBB->end(), BB, std::next(MI.getIterator()), BB->end());
4386 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
4388 // Insert the real instruction to BB.
4389 Register FCC = MRI.createVirtualRegister(&LoongArch::CFRRegClass);
4390 BuildMI(BB, DL, TII->get(CondOpc), FCC).addReg(MI.getOperand(1).getReg());
4392 // Insert branch.
4393 BuildMI(BB, DL, TII->get(LoongArch::BCNEZ)).addReg(FCC).addMBB(TrueBB);
4394 BB->addSuccessor(FalseBB);
4395 BB->addSuccessor(TrueBB);
4397 // FalseBB.
4398 Register RD1 = MRI.createVirtualRegister(&LoongArch::GPRRegClass);
4399 BuildMI(FalseBB, DL, TII->get(LoongArch::ADDI_W), RD1)
4400 .addReg(LoongArch::R0)
4401 .addImm(0);
4402 BuildMI(FalseBB, DL, TII->get(LoongArch::PseudoBR)).addMBB(SinkBB);
4403 FalseBB->addSuccessor(SinkBB);
4405 // TrueBB.
4406 Register RD2 = MRI.createVirtualRegister(&LoongArch::GPRRegClass);
4407 BuildMI(TrueBB, DL, TII->get(LoongArch::ADDI_W), RD2)
4408 .addReg(LoongArch::R0)
4409 .addImm(1);
4410 TrueBB->addSuccessor(SinkBB);
4412 // SinkBB: merge the results.
4413 BuildMI(*SinkBB, SinkBB->begin(), DL, TII->get(LoongArch::PHI),
4414 MI.getOperand(0).getReg())
4415 .addReg(RD1)
4416 .addMBB(FalseBB)
4417 .addReg(RD2)
4418 .addMBB(TrueBB);
4420 // The pseudo instruction is gone now.
4421 MI.eraseFromParent();
4422 return SinkBB;
4425 static MachineBasicBlock *
4426 emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB,
4427 const LoongArchSubtarget &Subtarget) {
4428 unsigned InsOp;
4429 unsigned HalfSize;
4430 switch (MI.getOpcode()) {
4431 default:
4432 llvm_unreachable("Unexpected opcode");
4433 case LoongArch::PseudoXVINSGR2VR_B:
4434 HalfSize = 16;
4435 InsOp = LoongArch::VINSGR2VR_B;
4436 break;
4437 case LoongArch::PseudoXVINSGR2VR_H:
4438 HalfSize = 8;
4439 InsOp = LoongArch::VINSGR2VR_H;
4440 break;
4442 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4443 const TargetRegisterClass *RC = &LoongArch::LASX256RegClass;
4444 const TargetRegisterClass *SubRC = &LoongArch::LSX128RegClass;
4445 DebugLoc DL = MI.getDebugLoc();
4446 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4447 // XDst = vector_insert XSrc, Elt, Idx
4448 Register XDst = MI.getOperand(0).getReg();
4449 Register XSrc = MI.getOperand(1).getReg();
4450 Register Elt = MI.getOperand(2).getReg();
4451 unsigned Idx = MI.getOperand(3).getImm();
4453 Register ScratchReg1 = XSrc;
4454 if (Idx >= HalfSize) {
4455 ScratchReg1 = MRI.createVirtualRegister(RC);
4456 BuildMI(*BB, MI, DL, TII->get(LoongArch::XVPERMI_Q), ScratchReg1)
4457 .addReg(XSrc)
4458 .addReg(XSrc)
4459 .addImm(1);
4462 Register ScratchSubReg1 = MRI.createVirtualRegister(SubRC);
4463 Register ScratchSubReg2 = MRI.createVirtualRegister(SubRC);
4464 BuildMI(*BB, MI, DL, TII->get(LoongArch::COPY), ScratchSubReg1)
4465 .addReg(ScratchReg1, 0, LoongArch::sub_128);
4466 BuildMI(*BB, MI, DL, TII->get(InsOp), ScratchSubReg2)
4467 .addReg(ScratchSubReg1)
4468 .addReg(Elt)
4469 .addImm(Idx >= HalfSize ? Idx - HalfSize : Idx);
4471 Register ScratchReg2 = XDst;
4472 if (Idx >= HalfSize)
4473 ScratchReg2 = MRI.createVirtualRegister(RC);
4475 BuildMI(*BB, MI, DL, TII->get(LoongArch::SUBREG_TO_REG), ScratchReg2)
4476 .addImm(0)
4477 .addReg(ScratchSubReg2)
4478 .addImm(LoongArch::sub_128);
4480 if (Idx >= HalfSize)
4481 BuildMI(*BB, MI, DL, TII->get(LoongArch::XVPERMI_Q), XDst)
4482 .addReg(XSrc)
4483 .addReg(ScratchReg2)
4484 .addImm(2);
4486 MI.eraseFromParent();
4487 return BB;
4490 MachineBasicBlock *LoongArchTargetLowering::EmitInstrWithCustomInserter(
4491 MachineInstr &MI, MachineBasicBlock *BB) const {
4492 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4493 DebugLoc DL = MI.getDebugLoc();
4495 switch (MI.getOpcode()) {
4496 default:
4497 llvm_unreachable("Unexpected instr type to insert");
4498 case LoongArch::DIV_W:
4499 case LoongArch::DIV_WU:
4500 case LoongArch::MOD_W:
4501 case LoongArch::MOD_WU:
4502 case LoongArch::DIV_D:
4503 case LoongArch::DIV_DU:
4504 case LoongArch::MOD_D:
4505 case LoongArch::MOD_DU:
4506 return insertDivByZeroTrap(MI, BB);
4507 break;
4508 case LoongArch::WRFCSR: {
4509 BuildMI(*BB, MI, DL, TII->get(LoongArch::MOVGR2FCSR),
4510 LoongArch::FCSR0 + MI.getOperand(0).getImm())
4511 .addReg(MI.getOperand(1).getReg());
4512 MI.eraseFromParent();
4513 return BB;
4515 case LoongArch::RDFCSR: {
4516 MachineInstr *ReadFCSR =
4517 BuildMI(*BB, MI, DL, TII->get(LoongArch::MOVFCSR2GR),
4518 MI.getOperand(0).getReg())
4519 .addReg(LoongArch::FCSR0 + MI.getOperand(1).getImm());
4520 ReadFCSR->getOperand(1).setIsUndef();
4521 MI.eraseFromParent();
4522 return BB;
4524 case LoongArch::PseudoVBZ:
4525 case LoongArch::PseudoVBZ_B:
4526 case LoongArch::PseudoVBZ_H:
4527 case LoongArch::PseudoVBZ_W:
4528 case LoongArch::PseudoVBZ_D:
4529 case LoongArch::PseudoVBNZ:
4530 case LoongArch::PseudoVBNZ_B:
4531 case LoongArch::PseudoVBNZ_H:
4532 case LoongArch::PseudoVBNZ_W:
4533 case LoongArch::PseudoVBNZ_D:
4534 case LoongArch::PseudoXVBZ:
4535 case LoongArch::PseudoXVBZ_B:
4536 case LoongArch::PseudoXVBZ_H:
4537 case LoongArch::PseudoXVBZ_W:
4538 case LoongArch::PseudoXVBZ_D:
4539 case LoongArch::PseudoXVBNZ:
4540 case LoongArch::PseudoXVBNZ_B:
4541 case LoongArch::PseudoXVBNZ_H:
4542 case LoongArch::PseudoXVBNZ_W:
4543 case LoongArch::PseudoXVBNZ_D:
4544 return emitVecCondBranchPseudo(MI, BB, Subtarget);
4545 case LoongArch::PseudoXVINSGR2VR_B:
4546 case LoongArch::PseudoXVINSGR2VR_H:
4547 return emitPseudoXVINSGR2VR(MI, BB, Subtarget);
4551 bool LoongArchTargetLowering::allowsMisalignedMemoryAccesses(
4552 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
4553 unsigned *Fast) const {
4554 if (!Subtarget.hasUAL())
4555 return false;
4557 // TODO: set reasonable speed number.
4558 if (Fast)
4559 *Fast = 1;
4560 return true;
4563 const char *LoongArchTargetLowering::getTargetNodeName(unsigned Opcode) const {
4564 switch ((LoongArchISD::NodeType)Opcode) {
4565 case LoongArchISD::FIRST_NUMBER:
4566 break;
4568 #define NODE_NAME_CASE(node) \
4569 case LoongArchISD::node: \
4570 return "LoongArchISD::" #node;
4572 // TODO: Add more target-dependent nodes later.
4573 NODE_NAME_CASE(CALL)
4574 NODE_NAME_CASE(CALL_MEDIUM)
4575 NODE_NAME_CASE(CALL_LARGE)
4576 NODE_NAME_CASE(RET)
4577 NODE_NAME_CASE(TAIL)
4578 NODE_NAME_CASE(TAIL_MEDIUM)
4579 NODE_NAME_CASE(TAIL_LARGE)
4580 NODE_NAME_CASE(SLL_W)
4581 NODE_NAME_CASE(SRA_W)
4582 NODE_NAME_CASE(SRL_W)
4583 NODE_NAME_CASE(BSTRINS)
4584 NODE_NAME_CASE(BSTRPICK)
4585 NODE_NAME_CASE(MOVGR2FR_W_LA64)
4586 NODE_NAME_CASE(MOVFR2GR_S_LA64)
4587 NODE_NAME_CASE(FTINT)
4588 NODE_NAME_CASE(REVB_2H)
4589 NODE_NAME_CASE(REVB_2W)
4590 NODE_NAME_CASE(BITREV_4B)
4591 NODE_NAME_CASE(BITREV_W)
4592 NODE_NAME_CASE(ROTR_W)
4593 NODE_NAME_CASE(ROTL_W)
4594 NODE_NAME_CASE(DIV_WU)
4595 NODE_NAME_CASE(MOD_WU)
4596 NODE_NAME_CASE(CLZ_W)
4597 NODE_NAME_CASE(CTZ_W)
4598 NODE_NAME_CASE(DBAR)
4599 NODE_NAME_CASE(IBAR)
4600 NODE_NAME_CASE(BREAK)
4601 NODE_NAME_CASE(SYSCALL)
4602 NODE_NAME_CASE(CRC_W_B_W)
4603 NODE_NAME_CASE(CRC_W_H_W)
4604 NODE_NAME_CASE(CRC_W_W_W)
4605 NODE_NAME_CASE(CRC_W_D_W)
4606 NODE_NAME_CASE(CRCC_W_B_W)
4607 NODE_NAME_CASE(CRCC_W_H_W)
4608 NODE_NAME_CASE(CRCC_W_W_W)
4609 NODE_NAME_CASE(CRCC_W_D_W)
4610 NODE_NAME_CASE(CSRRD)
4611 NODE_NAME_CASE(CSRWR)
4612 NODE_NAME_CASE(CSRXCHG)
4613 NODE_NAME_CASE(IOCSRRD_B)
4614 NODE_NAME_CASE(IOCSRRD_H)
4615 NODE_NAME_CASE(IOCSRRD_W)
4616 NODE_NAME_CASE(IOCSRRD_D)
4617 NODE_NAME_CASE(IOCSRWR_B)
4618 NODE_NAME_CASE(IOCSRWR_H)
4619 NODE_NAME_CASE(IOCSRWR_W)
4620 NODE_NAME_CASE(IOCSRWR_D)
4621 NODE_NAME_CASE(CPUCFG)
4622 NODE_NAME_CASE(MOVGR2FCSR)
4623 NODE_NAME_CASE(MOVFCSR2GR)
4624 NODE_NAME_CASE(CACOP_D)
4625 NODE_NAME_CASE(CACOP_W)
4626 NODE_NAME_CASE(VSHUF)
4627 NODE_NAME_CASE(VPICKEV)
4628 NODE_NAME_CASE(VPICKOD)
4629 NODE_NAME_CASE(VPACKEV)
4630 NODE_NAME_CASE(VPACKOD)
4631 NODE_NAME_CASE(VILVL)
4632 NODE_NAME_CASE(VILVH)
4633 NODE_NAME_CASE(VSHUF4I)
4634 NODE_NAME_CASE(VREPLVEI)
4635 NODE_NAME_CASE(XVPERMI)
4636 NODE_NAME_CASE(VPICK_SEXT_ELT)
4637 NODE_NAME_CASE(VPICK_ZEXT_ELT)
4638 NODE_NAME_CASE(VREPLVE)
4639 NODE_NAME_CASE(VALL_ZERO)
4640 NODE_NAME_CASE(VANY_ZERO)
4641 NODE_NAME_CASE(VALL_NONZERO)
4642 NODE_NAME_CASE(VANY_NONZERO)
4644 #undef NODE_NAME_CASE
4645 return nullptr;
4648 //===----------------------------------------------------------------------===//
4649 // Calling Convention Implementation
4650 //===----------------------------------------------------------------------===//
4652 // Eight general-purpose registers a0-a7 used for passing integer arguments,
4653 // with a0-a1 reused to return values. Generally, the GPRs are used to pass
4654 // fixed-point arguments, and floating-point arguments when no FPR is available
4655 // or with soft float ABI.
4656 const MCPhysReg ArgGPRs[] = {LoongArch::R4, LoongArch::R5, LoongArch::R6,
4657 LoongArch::R7, LoongArch::R8, LoongArch::R9,
4658 LoongArch::R10, LoongArch::R11};
4659 // Eight floating-point registers fa0-fa7 used for passing floating-point
4660 // arguments, and fa0-fa1 are also used to return values.
4661 const MCPhysReg ArgFPR32s[] = {LoongArch::F0, LoongArch::F1, LoongArch::F2,
4662 LoongArch::F3, LoongArch::F4, LoongArch::F5,
4663 LoongArch::F6, LoongArch::F7};
4664 // FPR32 and FPR64 alias each other.
4665 const MCPhysReg ArgFPR64s[] = {
4666 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
4667 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
4669 const MCPhysReg ArgVRs[] = {LoongArch::VR0, LoongArch::VR1, LoongArch::VR2,
4670 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
4671 LoongArch::VR6, LoongArch::VR7};
4673 const MCPhysReg ArgXRs[] = {LoongArch::XR0, LoongArch::XR1, LoongArch::XR2,
4674 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
4675 LoongArch::XR6, LoongArch::XR7};
4677 // Pass a 2*GRLen argument that has been split into two GRLen values through
4678 // registers or the stack as necessary.
4679 static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State,
4680 CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1,
4681 unsigned ValNo2, MVT ValVT2, MVT LocVT2,
4682 ISD::ArgFlagsTy ArgFlags2) {
4683 unsigned GRLenInBytes = GRLen / 8;
4684 if (Register Reg = State.AllocateReg(ArgGPRs)) {
4685 // At least one half can be passed via register.
4686 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
4687 VA1.getLocVT(), CCValAssign::Full));
4688 } else {
4689 // Both halves must be passed on the stack, with proper alignment.
4690 Align StackAlign =
4691 std::max(Align(GRLenInBytes), ArgFlags1.getNonZeroOrigAlign());
4692 State.addLoc(
4693 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
4694 State.AllocateStack(GRLenInBytes, StackAlign),
4695 VA1.getLocVT(), CCValAssign::Full));
4696 State.addLoc(CCValAssign::getMem(
4697 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes, Align(GRLenInBytes)),
4698 LocVT2, CCValAssign::Full));
4699 return false;
4701 if (Register Reg = State.AllocateReg(ArgGPRs)) {
4702 // The second half can also be passed via register.
4703 State.addLoc(
4704 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
4705 } else {
4706 // The second half is passed via the stack, without additional alignment.
4707 State.addLoc(CCValAssign::getMem(
4708 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes, Align(GRLenInBytes)),
4709 LocVT2, CCValAssign::Full));
4711 return false;
4714 // Implements the LoongArch calling convention. Returns true upon failure.
4715 static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI,
4716 unsigned ValNo, MVT ValVT,
4717 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
4718 CCState &State, bool IsFixed, bool IsRet,
4719 Type *OrigTy) {
4720 unsigned GRLen = DL.getLargestLegalIntTypeSizeInBits();
4721 assert((GRLen == 32 || GRLen == 64) && "Unspport GRLen");
4722 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
4723 MVT LocVT = ValVT;
4725 // Any return value split into more than two values can't be returned
4726 // directly.
4727 if (IsRet && ValNo > 1)
4728 return true;
4730 // If passing a variadic argument, or if no FPR is available.
4731 bool UseGPRForFloat = true;
4733 switch (ABI) {
4734 default:
4735 llvm_unreachable("Unexpected ABI");
4736 break;
4737 case LoongArchABI::ABI_ILP32F:
4738 case LoongArchABI::ABI_LP64F:
4739 case LoongArchABI::ABI_ILP32D:
4740 case LoongArchABI::ABI_LP64D:
4741 UseGPRForFloat = !IsFixed;
4742 break;
4743 case LoongArchABI::ABI_ILP32S:
4744 case LoongArchABI::ABI_LP64S:
4745 break;
4748 // FPR32 and FPR64 alias each other.
4749 if (State.getFirstUnallocated(ArgFPR32s) == std::size(ArgFPR32s))
4750 UseGPRForFloat = true;
4752 if (UseGPRForFloat && ValVT == MVT::f32) {
4753 LocVT = GRLenVT;
4754 LocInfo = CCValAssign::BCvt;
4755 } else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
4756 LocVT = MVT::i64;
4757 LocInfo = CCValAssign::BCvt;
4758 } else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
4759 // TODO: Handle passing f64 on LA32 with D feature.
4760 report_fatal_error("Passing f64 with GPR on LA32 is undefined");
4763 // If this is a variadic argument, the LoongArch calling convention requires
4764 // that it is assigned an 'even' or 'aligned' register if it has (2*GRLen)/8
4765 // byte alignment. An aligned register should be used regardless of whether
4766 // the original argument was split during legalisation or not. The argument
4767 // will not be passed by registers if the original type is larger than
4768 // 2*GRLen, so the register alignment rule does not apply.
4769 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
4770 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoGRLenInBytes &&
4771 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
4772 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
4773 // Skip 'odd' register if necessary.
4774 if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1)
4775 State.AllocateReg(ArgGPRs);
4778 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
4779 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
4780 State.getPendingArgFlags();
4782 assert(PendingLocs.size() == PendingArgFlags.size() &&
4783 "PendingLocs and PendingArgFlags out of sync");
4785 // Split arguments might be passed indirectly, so keep track of the pending
4786 // values.
4787 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
4788 LocVT = GRLenVT;
4789 LocInfo = CCValAssign::Indirect;
4790 PendingLocs.push_back(
4791 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
4792 PendingArgFlags.push_back(ArgFlags);
4793 if (!ArgFlags.isSplitEnd()) {
4794 return false;
4798 // If the split argument only had two elements, it should be passed directly
4799 // in registers or on the stack.
4800 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
4801 PendingLocs.size() <= 2) {
4802 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
4803 // Apply the normal calling convention rules to the first half of the
4804 // split argument.
4805 CCValAssign VA = PendingLocs[0];
4806 ISD::ArgFlagsTy AF = PendingArgFlags[0];
4807 PendingLocs.clear();
4808 PendingArgFlags.clear();
4809 return CC_LoongArchAssign2GRLen(GRLen, State, VA, AF, ValNo, ValVT, LocVT,
4810 ArgFlags);
4813 // Allocate to a register if possible, or else a stack slot.
4814 Register Reg;
4815 unsigned StoreSizeBytes = GRLen / 8;
4816 Align StackAlign = Align(GRLen / 8);
4818 if (ValVT == MVT::f32 && !UseGPRForFloat)
4819 Reg = State.AllocateReg(ArgFPR32s);
4820 else if (ValVT == MVT::f64 && !UseGPRForFloat)
4821 Reg = State.AllocateReg(ArgFPR64s);
4822 else if (ValVT.is128BitVector())
4823 Reg = State.AllocateReg(ArgVRs);
4824 else if (ValVT.is256BitVector())
4825 Reg = State.AllocateReg(ArgXRs);
4826 else
4827 Reg = State.AllocateReg(ArgGPRs);
4829 unsigned StackOffset =
4830 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
4832 // If we reach this point and PendingLocs is non-empty, we must be at the
4833 // end of a split argument that must be passed indirectly.
4834 if (!PendingLocs.empty()) {
4835 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
4836 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
4837 for (auto &It : PendingLocs) {
4838 if (Reg)
4839 It.convertToReg(Reg);
4840 else
4841 It.convertToMem(StackOffset);
4842 State.addLoc(It);
4844 PendingLocs.clear();
4845 PendingArgFlags.clear();
4846 return false;
4848 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
4849 "Expected an GRLenVT at this stage");
4851 if (Reg) {
4852 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
4853 return false;
4856 // When a floating-point value is passed on the stack, no bit-cast is needed.
4857 if (ValVT.isFloatingPoint()) {
4858 LocVT = ValVT;
4859 LocInfo = CCValAssign::Full;
4862 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
4863 return false;
4866 void LoongArchTargetLowering::analyzeInputArgs(
4867 MachineFunction &MF, CCState &CCInfo,
4868 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
4869 LoongArchCCAssignFn Fn) const {
4870 FunctionType *FType = MF.getFunction().getFunctionType();
4871 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4872 MVT ArgVT = Ins[i].VT;
4873 Type *ArgTy = nullptr;
4874 if (IsRet)
4875 ArgTy = FType->getReturnType();
4876 else if (Ins[i].isOrigArg())
4877 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
4878 LoongArchABI::ABI ABI =
4879 MF.getSubtarget<LoongArchSubtarget>().getTargetABI();
4880 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, CCValAssign::Full, Ins[i].Flags,
4881 CCInfo, /*IsFixed=*/true, IsRet, ArgTy)) {
4882 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " << ArgVT
4883 << '\n');
4884 llvm_unreachable("");
4889 void LoongArchTargetLowering::analyzeOutputArgs(
4890 MachineFunction &MF, CCState &CCInfo,
4891 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
4892 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn) const {
4893 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
4894 MVT ArgVT = Outs[i].VT;
4895 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
4896 LoongArchABI::ABI ABI =
4897 MF.getSubtarget<LoongArchSubtarget>().getTargetABI();
4898 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, CCValAssign::Full, Outs[i].Flags,
4899 CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
4900 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " << ArgVT
4901 << "\n");
4902 llvm_unreachable("");
4907 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
4908 // values.
4909 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
4910 const CCValAssign &VA, const SDLoc &DL) {
4911 switch (VA.getLocInfo()) {
4912 default:
4913 llvm_unreachable("Unexpected CCValAssign::LocInfo");
4914 case CCValAssign::Full:
4915 case CCValAssign::Indirect:
4916 break;
4917 case CCValAssign::BCvt:
4918 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
4919 Val = DAG.getNode(LoongArchISD::MOVGR2FR_W_LA64, DL, MVT::f32, Val);
4920 else
4921 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
4922 break;
4924 return Val;
4927 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
4928 const CCValAssign &VA, const SDLoc &DL,
4929 const ISD::InputArg &In,
4930 const LoongArchTargetLowering &TLI) {
4931 MachineFunction &MF = DAG.getMachineFunction();
4932 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4933 EVT LocVT = VA.getLocVT();
4934 SDValue Val;
4935 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
4936 Register VReg = RegInfo.createVirtualRegister(RC);
4937 RegInfo.addLiveIn(VA.getLocReg(), VReg);
4938 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
4940 // If input is sign extended from 32 bits, note it for the OptW pass.
4941 if (In.isOrigArg()) {
4942 Argument *OrigArg = MF.getFunction().getArg(In.getOrigArgIndex());
4943 if (OrigArg->getType()->isIntegerTy()) {
4944 unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth();
4945 // An input zero extended from i31 can also be considered sign extended.
4946 if ((BitWidth <= 32 && In.Flags.isSExt()) ||
4947 (BitWidth < 32 && In.Flags.isZExt())) {
4948 LoongArchMachineFunctionInfo *LAFI =
4949 MF.getInfo<LoongArchMachineFunctionInfo>();
4950 LAFI->addSExt32Register(VReg);
4955 return convertLocVTToValVT(DAG, Val, VA, DL);
4958 // The caller is responsible for loading the full value if the argument is
4959 // passed with CCValAssign::Indirect.
4960 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
4961 const CCValAssign &VA, const SDLoc &DL) {
4962 MachineFunction &MF = DAG.getMachineFunction();
4963 MachineFrameInfo &MFI = MF.getFrameInfo();
4964 EVT ValVT = VA.getValVT();
4965 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
4966 /*IsImmutable=*/true);
4967 SDValue FIN = DAG.getFrameIndex(
4968 FI, MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0)));
4970 ISD::LoadExtType ExtType;
4971 switch (VA.getLocInfo()) {
4972 default:
4973 llvm_unreachable("Unexpected CCValAssign::LocInfo");
4974 case CCValAssign::Full:
4975 case CCValAssign::Indirect:
4976 case CCValAssign::BCvt:
4977 ExtType = ISD::NON_EXTLOAD;
4978 break;
4980 return DAG.getExtLoad(
4981 ExtType, DL, VA.getLocVT(), Chain, FIN,
4982 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
4985 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
4986 const CCValAssign &VA, const SDLoc &DL) {
4987 EVT LocVT = VA.getLocVT();
4989 switch (VA.getLocInfo()) {
4990 default:
4991 llvm_unreachable("Unexpected CCValAssign::LocInfo");
4992 case CCValAssign::Full:
4993 break;
4994 case CCValAssign::BCvt:
4995 if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
4996 Val = DAG.getNode(LoongArchISD::MOVFR2GR_S_LA64, DL, MVT::i64, Val);
4997 else
4998 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
4999 break;
5001 return Val;
5004 static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
5005 CCValAssign::LocInfo LocInfo,
5006 ISD::ArgFlagsTy ArgFlags, CCState &State) {
5007 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
5008 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, SpLim
5009 // s0 s1 s2 s3 s4 s5 s6 s7 s8
5010 static const MCPhysReg GPRList[] = {
5011 LoongArch::R23, LoongArch::R24, LoongArch::R25,
5012 LoongArch::R26, LoongArch::R27, LoongArch::R28,
5013 LoongArch::R29, LoongArch::R30, LoongArch::R31};
5014 if (unsigned Reg = State.AllocateReg(GPRList)) {
5015 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5016 return false;
5020 if (LocVT == MVT::f32) {
5021 // Pass in STG registers: F1, F2, F3, F4
5022 // fs0,fs1,fs2,fs3
5023 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
5024 LoongArch::F26, LoongArch::F27};
5025 if (unsigned Reg = State.AllocateReg(FPR32List)) {
5026 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5027 return false;
5031 if (LocVT == MVT::f64) {
5032 // Pass in STG registers: D1, D2, D3, D4
5033 // fs4,fs5,fs6,fs7
5034 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
5035 LoongArch::F30_64, LoongArch::F31_64};
5036 if (unsigned Reg = State.AllocateReg(FPR64List)) {
5037 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
5038 return false;
5042 report_fatal_error("No registers left in GHC calling convention");
5043 return true;
5046 // Transform physical registers into virtual registers.
5047 SDValue LoongArchTargetLowering::LowerFormalArguments(
5048 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
5049 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
5050 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5052 MachineFunction &MF = DAG.getMachineFunction();
5054 switch (CallConv) {
5055 default:
5056 llvm_unreachable("Unsupported calling convention");
5057 case CallingConv::C:
5058 case CallingConv::Fast:
5059 break;
5060 case CallingConv::GHC:
5061 if (!MF.getSubtarget().hasFeature(LoongArch::FeatureBasicF) ||
5062 !MF.getSubtarget().hasFeature(LoongArch::FeatureBasicD))
5063 report_fatal_error(
5064 "GHC calling convention requires the F and D extensions");
5067 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5068 MVT GRLenVT = Subtarget.getGRLenVT();
5069 unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
5070 // Used with varargs to acumulate store chains.
5071 std::vector<SDValue> OutChains;
5073 // Assign locations to all of the incoming arguments.
5074 SmallVector<CCValAssign> ArgLocs;
5075 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5077 if (CallConv == CallingConv::GHC)
5078 CCInfo.AnalyzeFormalArguments(Ins, CC_LoongArch_GHC);
5079 else
5080 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, CC_LoongArch);
5082 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
5083 CCValAssign &VA = ArgLocs[i];
5084 SDValue ArgValue;
5085 if (VA.isRegLoc())
5086 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, Ins[i], *this);
5087 else
5088 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
5089 if (VA.getLocInfo() == CCValAssign::Indirect) {
5090 // If the original argument was split and passed by reference, we need to
5091 // load all parts of it here (using the same address).
5092 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
5093 MachinePointerInfo()));
5094 unsigned ArgIndex = Ins[i].OrigArgIndex;
5095 unsigned ArgPartOffset = Ins[i].PartOffset;
5096 assert(ArgPartOffset == 0);
5097 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
5098 CCValAssign &PartVA = ArgLocs[i + 1];
5099 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
5100 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
5101 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
5102 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
5103 MachinePointerInfo()));
5104 ++i;
5106 continue;
5108 InVals.push_back(ArgValue);
5111 if (IsVarArg) {
5112 ArrayRef<MCPhysReg> ArgRegs = ArrayRef(ArgGPRs);
5113 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
5114 const TargetRegisterClass *RC = &LoongArch::GPRRegClass;
5115 MachineFrameInfo &MFI = MF.getFrameInfo();
5116 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5117 auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>();
5119 // Offset of the first variable argument from stack pointer, and size of
5120 // the vararg save area. For now, the varargs save area is either zero or
5121 // large enough to hold a0-a7.
5122 int VaArgOffset, VarArgsSaveSize;
5124 // If all registers are allocated, then all varargs must be passed on the
5125 // stack and we don't need to save any argregs.
5126 if (ArgRegs.size() == Idx) {
5127 VaArgOffset = CCInfo.getStackSize();
5128 VarArgsSaveSize = 0;
5129 } else {
5130 VarArgsSaveSize = GRLenInBytes * (ArgRegs.size() - Idx);
5131 VaArgOffset = -VarArgsSaveSize;
5134 // Record the frame index of the first variable argument
5135 // which is a value necessary to VASTART.
5136 int FI = MFI.CreateFixedObject(GRLenInBytes, VaArgOffset, true);
5137 LoongArchFI->setVarArgsFrameIndex(FI);
5139 // If saving an odd number of registers then create an extra stack slot to
5140 // ensure that the frame pointer is 2*GRLen-aligned, which in turn ensures
5141 // offsets to even-numbered registered remain 2*GRLen-aligned.
5142 if (Idx % 2) {
5143 MFI.CreateFixedObject(GRLenInBytes, VaArgOffset - (int)GRLenInBytes,
5144 true);
5145 VarArgsSaveSize += GRLenInBytes;
5148 // Copy the integer registers that may have been used for passing varargs
5149 // to the vararg save area.
5150 for (unsigned I = Idx; I < ArgRegs.size();
5151 ++I, VaArgOffset += GRLenInBytes) {
5152 const Register Reg = RegInfo.createVirtualRegister(RC);
5153 RegInfo.addLiveIn(ArgRegs[I], Reg);
5154 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, GRLenVT);
5155 FI = MFI.CreateFixedObject(GRLenInBytes, VaArgOffset, true);
5156 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5157 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
5158 MachinePointerInfo::getFixedStack(MF, FI));
5159 cast<StoreSDNode>(Store.getNode())
5160 ->getMemOperand()
5161 ->setValue((Value *)nullptr);
5162 OutChains.push_back(Store);
5164 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
5167 // All stores are grouped in one node to allow the matching between
5168 // the size of Ins and InVals. This only happens for vararg functions.
5169 if (!OutChains.empty()) {
5170 OutChains.push_back(Chain);
5171 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
5174 return Chain;
5177 bool LoongArchTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
5178 return CI->isTailCall();
5181 // Check if the return value is used as only a return value, as otherwise
5182 // we can't perform a tail-call.
5183 bool LoongArchTargetLowering::isUsedByReturnOnly(SDNode *N,
5184 SDValue &Chain) const {
5185 if (N->getNumValues() != 1)
5186 return false;
5187 if (!N->hasNUsesOfValue(1, 0))
5188 return false;
5190 SDNode *Copy = *N->use_begin();
5191 if (Copy->getOpcode() != ISD::CopyToReg)
5192 return false;
5194 // If the ISD::CopyToReg has a glue operand, we conservatively assume it
5195 // isn't safe to perform a tail call.
5196 if (Copy->getGluedNode())
5197 return false;
5199 // The copy must be used by a LoongArchISD::RET, and nothing else.
5200 bool HasRet = false;
5201 for (SDNode *Node : Copy->uses()) {
5202 if (Node->getOpcode() != LoongArchISD::RET)
5203 return false;
5204 HasRet = true;
5207 if (!HasRet)
5208 return false;
5210 Chain = Copy->getOperand(0);
5211 return true;
5214 // Check whether the call is eligible for tail call optimization.
5215 bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
5216 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
5217 const SmallVectorImpl<CCValAssign> &ArgLocs) const {
5219 auto CalleeCC = CLI.CallConv;
5220 auto &Outs = CLI.Outs;
5221 auto &Caller = MF.getFunction();
5222 auto CallerCC = Caller.getCallingConv();
5224 // Do not tail call opt if the stack is used to pass parameters.
5225 if (CCInfo.getStackSize() != 0)
5226 return false;
5228 // Do not tail call opt if any parameters need to be passed indirectly.
5229 for (auto &VA : ArgLocs)
5230 if (VA.getLocInfo() == CCValAssign::Indirect)
5231 return false;
5233 // Do not tail call opt if either caller or callee uses struct return
5234 // semantics.
5235 auto IsCallerStructRet = Caller.hasStructRetAttr();
5236 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
5237 if (IsCallerStructRet || IsCalleeStructRet)
5238 return false;
5240 // Do not tail call opt if either the callee or caller has a byval argument.
5241 for (auto &Arg : Outs)
5242 if (Arg.Flags.isByVal())
5243 return false;
5245 // The callee has to preserve all registers the caller needs to preserve.
5246 const LoongArchRegisterInfo *TRI = Subtarget.getRegisterInfo();
5247 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
5248 if (CalleeCC != CallerCC) {
5249 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
5250 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
5251 return false;
5253 return true;
5256 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
5257 return DAG.getDataLayout().getPrefTypeAlign(
5258 VT.getTypeForEVT(*DAG.getContext()));
5261 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
5262 // and output parameter nodes.
5263 SDValue
5264 LoongArchTargetLowering::LowerCall(CallLoweringInfo &CLI,
5265 SmallVectorImpl<SDValue> &InVals) const {
5266 SelectionDAG &DAG = CLI.DAG;
5267 SDLoc &DL = CLI.DL;
5268 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5269 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
5270 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
5271 SDValue Chain = CLI.Chain;
5272 SDValue Callee = CLI.Callee;
5273 CallingConv::ID CallConv = CLI.CallConv;
5274 bool IsVarArg = CLI.IsVarArg;
5275 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5276 MVT GRLenVT = Subtarget.getGRLenVT();
5277 bool &IsTailCall = CLI.IsTailCall;
5279 MachineFunction &MF = DAG.getMachineFunction();
5281 // Analyze the operands of the call, assigning locations to each operand.
5282 SmallVector<CCValAssign> ArgLocs;
5283 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5285 if (CallConv == CallingConv::GHC)
5286 ArgCCInfo.AnalyzeCallOperands(Outs, CC_LoongArch_GHC);
5287 else
5288 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI, CC_LoongArch);
5290 // Check if it's really possible to do a tail call.
5291 if (IsTailCall)
5292 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
5294 if (IsTailCall)
5295 ++NumTailCalls;
5296 else if (CLI.CB && CLI.CB->isMustTailCall())
5297 report_fatal_error("failed to perform tail call elimination on a call "
5298 "site marked musttail");
5300 // Get a count of how many bytes are to be pushed on the stack.
5301 unsigned NumBytes = ArgCCInfo.getStackSize();
5303 // Create local copies for byval args.
5304 SmallVector<SDValue> ByValArgs;
5305 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5306 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5307 if (!Flags.isByVal())
5308 continue;
5310 SDValue Arg = OutVals[i];
5311 unsigned Size = Flags.getByValSize();
5312 Align Alignment = Flags.getNonZeroByValAlign();
5314 int FI =
5315 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
5316 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
5317 SDValue SizeNode = DAG.getConstant(Size, DL, GRLenVT);
5319 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
5320 /*IsVolatile=*/false,
5321 /*AlwaysInline=*/false, /*CI=*/nullptr, std::nullopt,
5322 MachinePointerInfo(), MachinePointerInfo());
5323 ByValArgs.push_back(FIPtr);
5326 if (!IsTailCall)
5327 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
5329 // Copy argument values to their designated locations.
5330 SmallVector<std::pair<Register, SDValue>> RegsToPass;
5331 SmallVector<SDValue> MemOpChains;
5332 SDValue StackPtr;
5333 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
5334 CCValAssign &VA = ArgLocs[i];
5335 SDValue ArgValue = OutVals[i];
5336 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5338 // Promote the value if needed.
5339 // For now, only handle fully promoted and indirect arguments.
5340 if (VA.getLocInfo() == CCValAssign::Indirect) {
5341 // Store the argument in a stack slot and pass its address.
5342 Align StackAlign =
5343 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
5344 getPrefTypeAlign(ArgValue.getValueType(), DAG));
5345 TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
5346 // If the original argument was split and passed by reference, we need to
5347 // store the required parts of it here (and pass just one address).
5348 unsigned ArgIndex = Outs[i].OrigArgIndex;
5349 unsigned ArgPartOffset = Outs[i].PartOffset;
5350 assert(ArgPartOffset == 0);
5351 // Calculate the total size to store. We don't have access to what we're
5352 // actually storing other than performing the loop and collecting the
5353 // info.
5354 SmallVector<std::pair<SDValue, SDValue>> Parts;
5355 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
5356 SDValue PartValue = OutVals[i + 1];
5357 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
5358 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
5359 EVT PartVT = PartValue.getValueType();
5361 StoredSize += PartVT.getStoreSize();
5362 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
5363 Parts.push_back(std::make_pair(PartValue, Offset));
5364 ++i;
5366 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
5367 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
5368 MemOpChains.push_back(
5369 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
5370 MachinePointerInfo::getFixedStack(MF, FI)));
5371 for (const auto &Part : Parts) {
5372 SDValue PartValue = Part.first;
5373 SDValue PartOffset = Part.second;
5374 SDValue Address =
5375 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
5376 MemOpChains.push_back(
5377 DAG.getStore(Chain, DL, PartValue, Address,
5378 MachinePointerInfo::getFixedStack(MF, FI)));
5380 ArgValue = SpillSlot;
5381 } else {
5382 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
5385 // Use local copy if it is a byval arg.
5386 if (Flags.isByVal())
5387 ArgValue = ByValArgs[j++];
5389 if (VA.isRegLoc()) {
5390 // Queue up the argument copies and emit them at the end.
5391 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
5392 } else {
5393 assert(VA.isMemLoc() && "Argument not register or memory");
5394 assert(!IsTailCall && "Tail call not allowed if stack is used "
5395 "for passing parameters");
5397 // Work out the address of the stack slot.
5398 if (!StackPtr.getNode())
5399 StackPtr = DAG.getCopyFromReg(Chain, DL, LoongArch::R3, PtrVT);
5400 SDValue Address =
5401 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
5402 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
5404 // Emit the store.
5405 MemOpChains.push_back(
5406 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
5410 // Join the stores, which are independent of one another.
5411 if (!MemOpChains.empty())
5412 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
5414 SDValue Glue;
5416 // Build a sequence of copy-to-reg nodes, chained and glued together.
5417 for (auto &Reg : RegsToPass) {
5418 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
5419 Glue = Chain.getValue(1);
5422 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
5423 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
5424 // split it and then direct call can be matched by PseudoCALL.
5425 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
5426 const GlobalValue *GV = S->getGlobal();
5427 unsigned OpFlags = getTargetMachine().shouldAssumeDSOLocal(GV)
5428 ? LoongArchII::MO_CALL
5429 : LoongArchII::MO_CALL_PLT;
5430 Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, OpFlags);
5431 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5432 unsigned OpFlags = getTargetMachine().shouldAssumeDSOLocal(nullptr)
5433 ? LoongArchII::MO_CALL
5434 : LoongArchII::MO_CALL_PLT;
5435 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
5438 // The first call operand is the chain and the second is the target address.
5439 SmallVector<SDValue> Ops;
5440 Ops.push_back(Chain);
5441 Ops.push_back(Callee);
5443 // Add argument registers to the end of the list so that they are
5444 // known live into the call.
5445 for (auto &Reg : RegsToPass)
5446 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
5448 if (!IsTailCall) {
5449 // Add a register mask operand representing the call-preserved registers.
5450 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5451 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
5452 assert(Mask && "Missing call preserved mask for calling convention");
5453 Ops.push_back(DAG.getRegisterMask(Mask));
5456 // Glue the call to the argument copies, if any.
5457 if (Glue.getNode())
5458 Ops.push_back(Glue);
5460 // Emit the call.
5461 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
5462 unsigned Op;
5463 switch (DAG.getTarget().getCodeModel()) {
5464 default:
5465 report_fatal_error("Unsupported code model");
5466 case CodeModel::Small:
5467 Op = IsTailCall ? LoongArchISD::TAIL : LoongArchISD::CALL;
5468 break;
5469 case CodeModel::Medium:
5470 assert(Subtarget.is64Bit() && "Medium code model requires LA64");
5471 Op = IsTailCall ? LoongArchISD::TAIL_MEDIUM : LoongArchISD::CALL_MEDIUM;
5472 break;
5473 case CodeModel::Large:
5474 assert(Subtarget.is64Bit() && "Large code model requires LA64");
5475 Op = IsTailCall ? LoongArchISD::TAIL_LARGE : LoongArchISD::CALL_LARGE;
5476 break;
5479 if (IsTailCall) {
5480 MF.getFrameInfo().setHasTailCall();
5481 SDValue Ret = DAG.getNode(Op, DL, NodeTys, Ops);
5482 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
5483 return Ret;
5486 Chain = DAG.getNode(Op, DL, NodeTys, Ops);
5487 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
5488 Glue = Chain.getValue(1);
5490 // Mark the end of the call, which is glued to the call itself.
5491 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, DL);
5492 Glue = Chain.getValue(1);
5494 // Assign locations to each value returned by this call.
5495 SmallVector<CCValAssign> RVLocs;
5496 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
5497 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_LoongArch);
5499 // Copy all of the result registers out of their specified physreg.
5500 for (auto &VA : RVLocs) {
5501 // Copy the value out.
5502 SDValue RetValue =
5503 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
5504 // Glue the RetValue to the end of the call sequence.
5505 Chain = RetValue.getValue(1);
5506 Glue = RetValue.getValue(2);
5508 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
5510 InVals.push_back(RetValue);
5513 return Chain;
5516 bool LoongArchTargetLowering::CanLowerReturn(
5517 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
5518 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
5519 SmallVector<CCValAssign> RVLocs;
5520 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
5522 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
5523 LoongArchABI::ABI ABI =
5524 MF.getSubtarget<LoongArchSubtarget>().getTargetABI();
5525 if (CC_LoongArch(MF.getDataLayout(), ABI, i, Outs[i].VT, CCValAssign::Full,
5526 Outs[i].Flags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true,
5527 nullptr))
5528 return false;
5530 return true;
5533 SDValue LoongArchTargetLowering::LowerReturn(
5534 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
5535 const SmallVectorImpl<ISD::OutputArg> &Outs,
5536 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
5537 SelectionDAG &DAG) const {
5538 // Stores the assignment of the return value to a location.
5539 SmallVector<CCValAssign> RVLocs;
5541 // Info about the registers and stack slot.
5542 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
5543 *DAG.getContext());
5545 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
5546 nullptr, CC_LoongArch);
5547 if (CallConv == CallingConv::GHC && !RVLocs.empty())
5548 report_fatal_error("GHC functions return void only");
5549 SDValue Glue;
5550 SmallVector<SDValue, 4> RetOps(1, Chain);
5552 // Copy the result values into the output registers.
5553 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
5554 CCValAssign &VA = RVLocs[i];
5555 assert(VA.isRegLoc() && "Can only return in registers!");
5557 // Handle a 'normal' return.
5558 SDValue Val = convertValVTToLocVT(DAG, OutVals[i], VA, DL);
5559 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
5561 // Guarantee that all emitted copies are stuck together.
5562 Glue = Chain.getValue(1);
5563 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
5566 RetOps[0] = Chain; // Update chain.
5568 // Add the glue node if we have it.
5569 if (Glue.getNode())
5570 RetOps.push_back(Glue);
5572 return DAG.getNode(LoongArchISD::RET, DL, MVT::Other, RetOps);
5575 bool LoongArchTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
5576 bool ForCodeSize) const {
5577 // TODO: Maybe need more checks here after vector extension is supported.
5578 if (VT == MVT::f32 && !Subtarget.hasBasicF())
5579 return false;
5580 if (VT == MVT::f64 && !Subtarget.hasBasicD())
5581 return false;
5582 return (Imm.isZero() || Imm.isExactlyValue(+1.0));
5585 bool LoongArchTargetLowering::isCheapToSpeculateCttz(Type *) const {
5586 return true;
5589 bool LoongArchTargetLowering::isCheapToSpeculateCtlz(Type *) const {
5590 return true;
5593 bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
5594 const Instruction *I) const {
5595 if (!Subtarget.is64Bit())
5596 return isa<LoadInst>(I) || isa<StoreInst>(I);
5598 if (isa<LoadInst>(I))
5599 return true;
5601 // On LA64, atomic store operations with IntegerBitWidth of 32 and 64 do not
5602 // require fences beacuse we can use amswap_db.[w/d].
5603 if (isa<StoreInst>(I)) {
5604 unsigned Size = I->getOperand(0)->getType()->getIntegerBitWidth();
5605 return (Size == 8 || Size == 16);
5608 return false;
5611 EVT LoongArchTargetLowering::getSetCCResultType(const DataLayout &DL,
5612 LLVMContext &Context,
5613 EVT VT) const {
5614 if (!VT.isVector())
5615 return getPointerTy(DL);
5616 return VT.changeVectorElementTypeToInteger();
5619 bool LoongArchTargetLowering::hasAndNot(SDValue Y) const {
5620 // TODO: Support vectors.
5621 return Y.getValueType().isScalarInteger() && !isa<ConstantSDNode>(Y);
5624 bool LoongArchTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5625 const CallInst &I,
5626 MachineFunction &MF,
5627 unsigned Intrinsic) const {
5628 switch (Intrinsic) {
5629 default:
5630 return false;
5631 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
5632 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
5633 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
5634 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
5635 Info.opc = ISD::INTRINSIC_W_CHAIN;
5636 Info.memVT = MVT::i32;
5637 Info.ptrVal = I.getArgOperand(0);
5638 Info.offset = 0;
5639 Info.align = Align(4);
5640 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
5641 MachineMemOperand::MOVolatile;
5642 return true;
5643 // TODO: Add more Intrinsics later.
5647 TargetLowering::AtomicExpansionKind
5648 LoongArchTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
5649 // TODO: Add more AtomicRMWInst that needs to be extended.
5651 // Since floating-point operation requires a non-trivial set of data
5652 // operations, use CmpXChg to expand.
5653 if (AI->isFloatingPointOperation() ||
5654 AI->getOperation() == AtomicRMWInst::UIncWrap ||
5655 AI->getOperation() == AtomicRMWInst::UDecWrap)
5656 return AtomicExpansionKind::CmpXChg;
5658 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
5659 if (Size == 8 || Size == 16)
5660 return AtomicExpansionKind::MaskedIntrinsic;
5661 return AtomicExpansionKind::None;
5664 static Intrinsic::ID
5665 getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen,
5666 AtomicRMWInst::BinOp BinOp) {
5667 if (GRLen == 64) {
5668 switch (BinOp) {
5669 default:
5670 llvm_unreachable("Unexpected AtomicRMW BinOp");
5671 case AtomicRMWInst::Xchg:
5672 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
5673 case AtomicRMWInst::Add:
5674 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
5675 case AtomicRMWInst::Sub:
5676 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
5677 case AtomicRMWInst::Nand:
5678 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
5679 case AtomicRMWInst::UMax:
5680 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
5681 case AtomicRMWInst::UMin:
5682 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
5683 case AtomicRMWInst::Max:
5684 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
5685 case AtomicRMWInst::Min:
5686 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
5687 // TODO: support other AtomicRMWInst.
5691 if (GRLen == 32) {
5692 switch (BinOp) {
5693 default:
5694 llvm_unreachable("Unexpected AtomicRMW BinOp");
5695 case AtomicRMWInst::Xchg:
5696 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
5697 case AtomicRMWInst::Add:
5698 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
5699 case AtomicRMWInst::Sub:
5700 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
5701 case AtomicRMWInst::Nand:
5702 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
5703 // TODO: support other AtomicRMWInst.
5707 llvm_unreachable("Unexpected GRLen\n");
5710 TargetLowering::AtomicExpansionKind
5711 LoongArchTargetLowering::shouldExpandAtomicCmpXchgInIR(
5712 AtomicCmpXchgInst *CI) const {
5713 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
5714 if (Size == 8 || Size == 16)
5715 return AtomicExpansionKind::MaskedIntrinsic;
5716 return AtomicExpansionKind::None;
5719 Value *LoongArchTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
5720 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
5721 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
5722 AtomicOrdering FailOrd = CI->getFailureOrdering();
5723 Value *FailureOrdering =
5724 Builder.getIntN(Subtarget.getGRLen(), static_cast<uint64_t>(FailOrd));
5726 // TODO: Support cmpxchg on LA32.
5727 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
5728 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
5729 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
5730 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
5731 Type *Tys[] = {AlignedAddr->getType()};
5732 Function *MaskedCmpXchg =
5733 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
5734 Value *Result = Builder.CreateCall(
5735 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
5736 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
5737 return Result;
5740 Value *LoongArchTargetLowering::emitMaskedAtomicRMWIntrinsic(
5741 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
5742 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
5743 // In the case of an atomicrmw xchg with a constant 0/-1 operand, replace
5744 // the atomic instruction with an AtomicRMWInst::And/Or with appropriate
5745 // mask, as this produces better code than the LL/SC loop emitted by
5746 // int_loongarch_masked_atomicrmw_xchg.
5747 if (AI->getOperation() == AtomicRMWInst::Xchg &&
5748 isa<ConstantInt>(AI->getValOperand())) {
5749 ConstantInt *CVal = cast<ConstantInt>(AI->getValOperand());
5750 if (CVal->isZero())
5751 return Builder.CreateAtomicRMW(AtomicRMWInst::And, AlignedAddr,
5752 Builder.CreateNot(Mask, "Inv_Mask"),
5753 AI->getAlign(), Ord);
5754 if (CVal->isMinusOne())
5755 return Builder.CreateAtomicRMW(AtomicRMWInst::Or, AlignedAddr, Mask,
5756 AI->getAlign(), Ord);
5759 unsigned GRLen = Subtarget.getGRLen();
5760 Value *Ordering =
5761 Builder.getIntN(GRLen, static_cast<uint64_t>(AI->getOrdering()));
5762 Type *Tys[] = {AlignedAddr->getType()};
5763 Function *LlwOpScwLoop = Intrinsic::getDeclaration(
5764 AI->getModule(),
5765 getIntrinsicForMaskedAtomicRMWBinOp(GRLen, AI->getOperation()), Tys);
5767 if (GRLen == 64) {
5768 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
5769 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
5770 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
5773 Value *Result;
5775 // Must pass the shift amount needed to sign extend the loaded value prior
5776 // to performing a signed comparison for min/max. ShiftAmt is the number of
5777 // bits to shift the value into position. Pass GRLen-ShiftAmt-ValWidth, which
5778 // is the number of bits to left+right shift the value in order to
5779 // sign-extend.
5780 if (AI->getOperation() == AtomicRMWInst::Min ||
5781 AI->getOperation() == AtomicRMWInst::Max) {
5782 const DataLayout &DL = AI->getDataLayout();
5783 unsigned ValWidth =
5784 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
5785 Value *SextShamt =
5786 Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
5787 Result = Builder.CreateCall(LlwOpScwLoop,
5788 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
5789 } else {
5790 Result =
5791 Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
5794 if (GRLen == 64)
5795 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
5796 return Result;
5799 bool LoongArchTargetLowering::isFMAFasterThanFMulAndFAdd(
5800 const MachineFunction &MF, EVT VT) const {
5801 VT = VT.getScalarType();
5803 if (!VT.isSimple())
5804 return false;
5806 switch (VT.getSimpleVT().SimpleTy) {
5807 case MVT::f32:
5808 case MVT::f64:
5809 return true;
5810 default:
5811 break;
5814 return false;
5817 Register LoongArchTargetLowering::getExceptionPointerRegister(
5818 const Constant *PersonalityFn) const {
5819 return LoongArch::R4;
5822 Register LoongArchTargetLowering::getExceptionSelectorRegister(
5823 const Constant *PersonalityFn) const {
5824 return LoongArch::R5;
5827 //===----------------------------------------------------------------------===//
5828 // LoongArch Inline Assembly Support
5829 //===----------------------------------------------------------------------===//
5831 LoongArchTargetLowering::ConstraintType
5832 LoongArchTargetLowering::getConstraintType(StringRef Constraint) const {
5833 // LoongArch specific constraints in GCC: config/loongarch/constraints.md
5835 // 'f': A floating-point register (if available).
5836 // 'k': A memory operand whose address is formed by a base register and
5837 // (optionally scaled) index register.
5838 // 'l': A signed 16-bit constant.
5839 // 'm': A memory operand whose address is formed by a base register and
5840 // offset that is suitable for use in instructions with the same
5841 // addressing mode as st.w and ld.w.
5842 // 'I': A signed 12-bit constant (for arithmetic instructions).
5843 // 'J': Integer zero.
5844 // 'K': An unsigned 12-bit constant (for logic instructions).
5845 // "ZB": An address that is held in a general-purpose register. The offset is
5846 // zero.
5847 // "ZC": A memory operand whose address is formed by a base register and
5848 // offset that is suitable for use in instructions with the same
5849 // addressing mode as ll.w and sc.w.
5850 if (Constraint.size() == 1) {
5851 switch (Constraint[0]) {
5852 default:
5853 break;
5854 case 'f':
5855 return C_RegisterClass;
5856 case 'l':
5857 case 'I':
5858 case 'J':
5859 case 'K':
5860 return C_Immediate;
5861 case 'k':
5862 return C_Memory;
5866 if (Constraint == "ZC" || Constraint == "ZB")
5867 return C_Memory;
5869 // 'm' is handled here.
5870 return TargetLowering::getConstraintType(Constraint);
5873 InlineAsm::ConstraintCode LoongArchTargetLowering::getInlineAsmMemConstraint(
5874 StringRef ConstraintCode) const {
5875 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
5876 .Case("k", InlineAsm::ConstraintCode::k)
5877 .Case("ZB", InlineAsm::ConstraintCode::ZB)
5878 .Case("ZC", InlineAsm::ConstraintCode::ZC)
5879 .Default(TargetLowering::getInlineAsmMemConstraint(ConstraintCode));
5882 std::pair<unsigned, const TargetRegisterClass *>
5883 LoongArchTargetLowering::getRegForInlineAsmConstraint(
5884 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
5885 // First, see if this is a constraint that directly corresponds to a LoongArch
5886 // register class.
5887 if (Constraint.size() == 1) {
5888 switch (Constraint[0]) {
5889 case 'r':
5890 // TODO: Support fixed vectors up to GRLen?
5891 if (VT.isVector())
5892 break;
5893 return std::make_pair(0U, &LoongArch::GPRRegClass);
5894 case 'f':
5895 if (Subtarget.hasBasicF() && VT == MVT::f32)
5896 return std::make_pair(0U, &LoongArch::FPR32RegClass);
5897 if (Subtarget.hasBasicD() && VT == MVT::f64)
5898 return std::make_pair(0U, &LoongArch::FPR64RegClass);
5899 if (Subtarget.hasExtLSX() &&
5900 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
5901 return std::make_pair(0U, &LoongArch::LSX128RegClass);
5902 if (Subtarget.hasExtLASX() &&
5903 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
5904 return std::make_pair(0U, &LoongArch::LASX256RegClass);
5905 break;
5906 default:
5907 break;
5911 // TargetLowering::getRegForInlineAsmConstraint uses the name of the TableGen
5912 // record (e.g. the "R0" in `def R0`) to choose registers for InlineAsm
5913 // constraints while the official register name is prefixed with a '$'. So we
5914 // clip the '$' from the original constraint string (e.g. {$r0} to {r0}.)
5915 // before it being parsed. And TargetLowering::getRegForInlineAsmConstraint is
5916 // case insensitive, so no need to convert the constraint to upper case here.
5918 // For now, no need to support ABI names (e.g. `$a0`) as clang will correctly
5919 // decode the usage of register name aliases into their official names. And
5920 // AFAIK, the not yet upstreamed `rustc` for LoongArch will always use
5921 // official register names.
5922 if (Constraint.starts_with("{$r") || Constraint.starts_with("{$f") ||
5923 Constraint.starts_with("{$vr") || Constraint.starts_with("{$xr")) {
5924 bool IsFP = Constraint[2] == 'f';
5925 std::pair<StringRef, StringRef> Temp = Constraint.split('$');
5926 std::pair<unsigned, const TargetRegisterClass *> R;
5927 R = TargetLowering::getRegForInlineAsmConstraint(
5928 TRI, join_items("", Temp.first, Temp.second), VT);
5929 // Match those names to the widest floating point register type available.
5930 if (IsFP) {
5931 unsigned RegNo = R.first;
5932 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
5933 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
5934 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
5935 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
5939 return R;
5942 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
5945 void LoongArchTargetLowering::LowerAsmOperandForConstraint(
5946 SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
5947 SelectionDAG &DAG) const {
5948 // Currently only support length 1 constraints.
5949 if (Constraint.size() == 1) {
5950 switch (Constraint[0]) {
5951 case 'l':
5952 // Validate & create a 16-bit signed immediate operand.
5953 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5954 uint64_t CVal = C->getSExtValue();
5955 if (isInt<16>(CVal))
5956 Ops.push_back(
5957 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getGRLenVT()));
5959 return;
5960 case 'I':
5961 // Validate & create a 12-bit signed immediate operand.
5962 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5963 uint64_t CVal = C->getSExtValue();
5964 if (isInt<12>(CVal))
5965 Ops.push_back(
5966 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getGRLenVT()));
5968 return;
5969 case 'J':
5970 // Validate & create an integer zero operand.
5971 if (auto *C = dyn_cast<ConstantSDNode>(Op))
5972 if (C->getZExtValue() == 0)
5973 Ops.push_back(
5974 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getGRLenVT()));
5975 return;
5976 case 'K':
5977 // Validate & create a 12-bit unsigned immediate operand.
5978 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
5979 uint64_t CVal = C->getZExtValue();
5980 if (isUInt<12>(CVal))
5981 Ops.push_back(
5982 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getGRLenVT()));
5984 return;
5985 default:
5986 break;
5989 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5992 #define GET_REGISTER_MATCHER
5993 #include "LoongArchGenAsmMatcher.inc"
5995 Register
5996 LoongArchTargetLowering::getRegisterByName(const char *RegName, LLT VT,
5997 const MachineFunction &MF) const {
5998 std::pair<StringRef, StringRef> Name = StringRef(RegName).split('$');
5999 std::string NewRegName = Name.second.str();
6000 Register Reg = MatchRegisterAltName(NewRegName);
6001 if (Reg == LoongArch::NoRegister)
6002 Reg = MatchRegisterName(NewRegName);
6003 if (Reg == LoongArch::NoRegister)
6004 report_fatal_error(
6005 Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
6006 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
6007 if (!ReservedRegs.test(Reg))
6008 report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
6009 StringRef(RegName) + "\"."));
6010 return Reg;
6013 bool LoongArchTargetLowering::decomposeMulByConstant(LLVMContext &Context,
6014 EVT VT, SDValue C) const {
6015 // TODO: Support vectors.
6016 if (!VT.isScalarInteger())
6017 return false;
6019 // Omit the optimization if the data size exceeds GRLen.
6020 if (VT.getSizeInBits() > Subtarget.getGRLen())
6021 return false;
6023 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
6024 const APInt &Imm = ConstNode->getAPIntValue();
6025 // Break MUL into (SLLI + ADD/SUB) or ALSL.
6026 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
6027 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
6028 return true;
6029 // Break MUL into (ALSL x, (SLLI x, imm0), imm1).
6030 if (ConstNode->hasOneUse() &&
6031 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
6032 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
6033 return true;
6034 // Break (MUL x, imm) into (ADD (SLLI x, s0), (SLLI x, s1)),
6035 // in which the immediate has two set bits. Or Break (MUL x, imm)
6036 // into (SUB (SLLI x, s0), (SLLI x, s1)), in which the immediate
6037 // equals to (1 << s0) - (1 << s1).
6038 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
6039 unsigned Shifts = Imm.countr_zero();
6040 // Reject immediates which can be composed via a single LUI.
6041 if (Shifts >= 12)
6042 return false;
6043 // Reject multiplications can be optimized to
6044 // (SLLI (ALSL x, x, 1/2/3/4), s).
6045 APInt ImmPop = Imm.ashr(Shifts);
6046 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
6047 return false;
6048 // We do not consider the case `(-Imm - ImmSmall).isPowerOf2()`,
6049 // since it needs one more instruction than other 3 cases.
6050 APInt ImmSmall = APInt(Imm.getBitWidth(), 1ULL << Shifts, true);
6051 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
6052 (ImmSmall - Imm).isPowerOf2())
6053 return true;
6057 return false;
6060 bool LoongArchTargetLowering::isLegalAddressingMode(const DataLayout &DL,
6061 const AddrMode &AM,
6062 Type *Ty, unsigned AS,
6063 Instruction *I) const {
6064 // LoongArch has four basic addressing modes:
6065 // 1. reg
6066 // 2. reg + 12-bit signed offset
6067 // 3. reg + 14-bit signed offset left-shifted by 2
6068 // 4. reg1 + reg2
6069 // TODO: Add more checks after support vector extension.
6071 // No global is ever allowed as a base.
6072 if (AM.BaseGV)
6073 return false;
6075 // Require a 12-bit signed offset or 14-bit signed offset left-shifted by 2
6076 // with `UAL` feature.
6077 if (!isInt<12>(AM.BaseOffs) &&
6078 !(isShiftedInt<14, 2>(AM.BaseOffs) && Subtarget.hasUAL()))
6079 return false;
6081 switch (AM.Scale) {
6082 case 0:
6083 // "r+i" or just "i", depending on HasBaseReg.
6084 break;
6085 case 1:
6086 // "r+r+i" is not allowed.
6087 if (AM.HasBaseReg && AM.BaseOffs)
6088 return false;
6089 // Otherwise we have "r+r" or "r+i".
6090 break;
6091 case 2:
6092 // "2*r+r" or "2*r+i" is not allowed.
6093 if (AM.HasBaseReg || AM.BaseOffs)
6094 return false;
6095 // Allow "2*r" as "r+r".
6096 break;
6097 default:
6098 return false;
6101 return true;
6104 bool LoongArchTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
6105 return isInt<12>(Imm);
6108 bool LoongArchTargetLowering::isLegalAddImmediate(int64_t Imm) const {
6109 return isInt<12>(Imm);
6112 bool LoongArchTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6113 // Zexts are free if they can be combined with a load.
6114 // Don't advertise i32->i64 zextload as being free for LA64. It interacts
6115 // poorly with type legalization of compares preferring sext.
6116 if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
6117 EVT MemVT = LD->getMemoryVT();
6118 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
6119 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
6120 LD->getExtensionType() == ISD::ZEXTLOAD))
6121 return true;
6124 return TargetLowering::isZExtFree(Val, VT2);
6127 bool LoongArchTargetLowering::isSExtCheaperThanZExt(EVT SrcVT,
6128 EVT DstVT) const {
6129 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
6132 bool LoongArchTargetLowering::signExtendConstant(const ConstantInt *CI) const {
6133 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
6136 bool LoongArchTargetLowering::hasAndNotCompare(SDValue Y) const {
6137 // TODO: Support vectors.
6138 if (Y.getValueType().isVector())
6139 return false;
6141 return !isa<ConstantSDNode>(Y);
6144 ISD::NodeType LoongArchTargetLowering::getExtendForAtomicCmpSwapArg() const {
6145 // TODO: LAMCAS will use amcas{_DB,}.[bhwd] which does not require extension.
6146 return ISD::SIGN_EXTEND;
6149 bool LoongArchTargetLowering::shouldSignExtendTypeInLibCall(
6150 EVT Type, bool IsSigned) const {
6151 if (Subtarget.is64Bit() && Type == MVT::i32)
6152 return true;
6154 return IsSigned;
6157 bool LoongArchTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
6158 // Return false to suppress the unnecessary extensions if the LibCall
6159 // arguments or return value is a float narrower than GRLEN on a soft FP ABI.
6160 if (Subtarget.isSoftFPABI() && (Type.isFloatingPoint() && !Type.isVector() &&
6161 Type.getSizeInBits() < Subtarget.getGRLen()))
6162 return false;
6163 return true;