[AMDGPU][AsmParser][NFC] Translate parsed MIMG instructions to MCInsts automatically.
[llvm-project.git] / clang-tools-extra / clangd / FindTarget.cpp
blob630b75059b6baf978b9b8bc0aaaa060638dfe3af
1 //===--- FindTarget.cpp - What does an AST node refer to? -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "FindTarget.h"
10 #include "AST.h"
11 #include "HeuristicResolver.h"
12 #include "support/Logger.h"
13 #include "clang/AST/ASTTypeTraits.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclBase.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/DeclVisitor.h"
19 #include "clang/AST/DeclarationName.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/NestedNameSpecifier.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/Type.h"
30 #include "clang/AST/TypeLoc.h"
31 #include "clang/AST/TypeLocVisitor.h"
32 #include "clang/AST/TypeVisitor.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <iterator>
44 #include <string>
45 #include <utility>
46 #include <vector>
48 namespace clang {
49 namespace clangd {
50 namespace {
52 LLVM_ATTRIBUTE_UNUSED std::string nodeToString(const DynTypedNode &N) {
53 std::string S = std::string(N.getNodeKind().asStringRef());
55 llvm::raw_string_ostream OS(S);
56 OS << ": ";
57 N.print(OS, PrintingPolicy(LangOptions()));
59 std::replace(S.begin(), S.end(), '\n', ' ');
60 return S;
63 const NamedDecl *getTemplatePattern(const NamedDecl *D) {
64 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(D)) {
65 if (const auto *Result = CRD->getTemplateInstantiationPattern())
66 return Result;
67 // getTemplateInstantiationPattern returns null if the Specialization is
68 // incomplete (e.g. the type didn't need to be complete), fall back to the
69 // primary template.
70 if (CRD->getTemplateSpecializationKind() == TSK_Undeclared)
71 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(CRD))
72 return Spec->getSpecializedTemplate()->getTemplatedDecl();
73 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74 return FD->getTemplateInstantiationPattern();
75 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
76 // Hmm: getTIP returns its arg if it's not an instantiation?!
77 VarDecl *T = VD->getTemplateInstantiationPattern();
78 return (T == D) ? nullptr : T;
79 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
80 return ED->getInstantiatedFromMemberEnum();
81 } else if (isa<FieldDecl>(D) || isa<TypedefNameDecl>(D)) {
82 if (const auto *Parent = llvm::dyn_cast<NamedDecl>(D->getDeclContext()))
83 if (const DeclContext *ParentPat =
84 dyn_cast_or_null<DeclContext>(getTemplatePattern(Parent)))
85 for (const NamedDecl *BaseND : ParentPat->lookup(D->getDeclName()))
86 if (!BaseND->isImplicit() && BaseND->getKind() == D->getKind())
87 return BaseND;
88 } else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
89 if (const auto *ED = dyn_cast<EnumDecl>(ECD->getDeclContext())) {
90 if (const EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) {
91 for (const NamedDecl *BaseECD : Pattern->lookup(ECD->getDeclName()))
92 return BaseECD;
96 return nullptr;
99 // Returns true if the `TypedefNameDecl` should not be reported.
100 bool shouldSkipTypedef(const TypedefNameDecl *TD) {
101 // These should be treated as keywords rather than decls - the typedef is an
102 // odd implementation detail.
103 if (TD == TD->getASTContext().getObjCInstanceTypeDecl() ||
104 TD == TD->getASTContext().getObjCIdDecl())
105 return true;
106 return false;
109 // TargetFinder locates the entities that an AST node refers to.
111 // Typically this is (possibly) one declaration and (possibly) one type, but
112 // may be more:
113 // - for ambiguous nodes like OverloadExpr
114 // - if we want to include e.g. both typedefs and the underlying type
116 // This is organized as a set of mutually recursive helpers for particular node
117 // types, but for most nodes this is a short walk rather than a deep traversal.
119 // It's tempting to do e.g. typedef resolution as a second normalization step,
120 // after finding the 'primary' decl etc. But we do this monolithically instead
121 // because:
122 // - normalization may require these traversals again (e.g. unwrapping a
123 // typedef reveals a decltype which must be traversed)
124 // - it doesn't simplify that much, e.g. the first stage must still be able
125 // to yield multiple decls to handle OverloadExpr
126 // - there are cases where it's required for correctness. e.g:
127 // template<class X> using pvec = vector<x*>; pvec<int> x;
128 // There's no Decl `pvec<int>`, we must choose `pvec<X>` or `vector<int*>`
129 // and both are lossy. We must know upfront what the caller ultimately wants.
130 struct TargetFinder {
131 using RelSet = DeclRelationSet;
132 using Rel = DeclRelation;
134 private:
135 const HeuristicResolver *Resolver;
136 llvm::SmallDenseMap<const NamedDecl *,
137 std::pair<RelSet, /*InsertionOrder*/ size_t>>
138 Decls;
139 llvm::SmallDenseMap<const Decl *, RelSet> Seen;
140 RelSet Flags;
142 template <typename T> void debug(T &Node, RelSet Flags) {
143 dlog("visit [{0}] {1}", Flags, nodeToString(DynTypedNode::create(Node)));
146 void report(const NamedDecl *D, RelSet Flags) {
147 dlog("--> [{0}] {1}", Flags, nodeToString(DynTypedNode::create(*D)));
148 auto It = Decls.try_emplace(D, std::make_pair(Flags, Decls.size()));
149 // If already exists, update the flags.
150 if (!It.second)
151 It.first->second.first |= Flags;
154 public:
155 TargetFinder(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
157 llvm::SmallVector<std::pair<const NamedDecl *, RelSet>, 1> takeDecls() const {
158 using ValTy = std::pair<const NamedDecl *, RelSet>;
159 llvm::SmallVector<ValTy, 1> Result;
160 Result.resize(Decls.size());
161 for (const auto &Elem : Decls)
162 Result[Elem.second.second] = {Elem.first, Elem.second.first};
163 return Result;
166 void add(const Decl *Dcl, RelSet Flags) {
167 const NamedDecl *D = llvm::dyn_cast_or_null<NamedDecl>(Dcl);
168 if (!D)
169 return;
170 debug(*D, Flags);
172 // Avoid recursion (which can arise in the presence of heuristic
173 // resolution of dependent names) by exiting early if we have
174 // already seen this decl with all flags in Flags.
175 auto Res = Seen.try_emplace(D);
176 if (!Res.second && Res.first->second.contains(Flags))
177 return;
178 Res.first->second |= Flags;
180 if (const UsingDirectiveDecl *UDD = llvm::dyn_cast<UsingDirectiveDecl>(D))
181 D = UDD->getNominatedNamespaceAsWritten();
183 if (const TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D)) {
184 add(TND->getUnderlyingType(), Flags | Rel::Underlying);
185 Flags |= Rel::Alias; // continue with the alias.
186 } else if (const UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
187 // no Underlying as this is a non-renaming alias.
188 for (const UsingShadowDecl *S : UD->shadows())
189 add(S->getUnderlyingDecl(), Flags);
190 Flags |= Rel::Alias; // continue with the alias.
191 } else if (const UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) {
192 // UsingEnumDecl is not an alias at all, just a reference.
193 D = UED->getEnumDecl();
194 } else if (const auto *NAD = dyn_cast<NamespaceAliasDecl>(D)) {
195 add(NAD->getUnderlyingDecl(), Flags | Rel::Underlying);
196 Flags |= Rel::Alias; // continue with the alias
197 } else if (const UnresolvedUsingValueDecl *UUVD =
198 dyn_cast<UnresolvedUsingValueDecl>(D)) {
199 if (Resolver) {
200 for (const NamedDecl *Target : Resolver->resolveUsingValueDecl(UUVD)) {
201 add(Target, Flags); // no Underlying as this is a non-renaming alias
204 Flags |= Rel::Alias; // continue with the alias
205 } else if (isa<UnresolvedUsingTypenameDecl>(D)) {
206 // FIXME: improve common dependent scope using name lookup in primary
207 // templates.
208 Flags |= Rel::Alias;
209 } else if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) {
210 // Include the introducing UsingDecl, but don't traverse it. This may end
211 // up including *all* shadows, which we don't want.
212 // Don't apply this logic to UsingEnumDecl, which can't easily be
213 // conflated with the aliases it introduces.
214 if (llvm::isa<UsingDecl>(USD->getIntroducer()))
215 report(USD->getIntroducer(), Flags | Rel::Alias);
216 // Shadow decls are synthetic and not themselves interesting.
217 // Record the underlying decl instead, if allowed.
218 D = USD->getTargetDecl();
219 } else if (const auto *DG = dyn_cast<CXXDeductionGuideDecl>(D)) {
220 D = DG->getDeducedTemplate();
221 } else if (const ObjCImplementationDecl *IID =
222 dyn_cast<ObjCImplementationDecl>(D)) {
223 // Treat ObjC{Interface,Implementation}Decl as if they were a decl/def
224 // pair as long as the interface isn't implicit.
225 if (const auto *CID = IID->getClassInterface())
226 if (const auto *DD = CID->getDefinition())
227 if (!DD->isImplicitInterfaceDecl())
228 D = DD;
229 } else if (const ObjCCategoryImplDecl *CID =
230 dyn_cast<ObjCCategoryImplDecl>(D)) {
231 // Treat ObjC{Category,CategoryImpl}Decl as if they were a decl/def pair.
232 D = CID->getCategoryDecl();
234 if (!D)
235 return;
237 if (const Decl *Pat = getTemplatePattern(D)) {
238 assert(Pat != D);
239 add(Pat, Flags | Rel::TemplatePattern);
240 // Now continue with the instantiation.
241 Flags |= Rel::TemplateInstantiation;
244 report(D, Flags);
247 void add(const Stmt *S, RelSet Flags) {
248 if (!S)
249 return;
250 debug(*S, Flags);
251 struct Visitor : public ConstStmtVisitor<Visitor> {
252 TargetFinder &Outer;
253 RelSet Flags;
254 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
256 void VisitCallExpr(const CallExpr *CE) {
257 Outer.add(CE->getCalleeDecl(), Flags);
259 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
260 Outer.add(E->getNamedConcept(), Flags);
262 void VisitDeclRefExpr(const DeclRefExpr *DRE) {
263 const Decl *D = DRE->getDecl();
264 // UsingShadowDecl allows us to record the UsingDecl.
265 // getFoundDecl() returns the wrong thing in other cases (templates).
266 if (auto *USD = llvm::dyn_cast<UsingShadowDecl>(DRE->getFoundDecl()))
267 D = USD;
268 Outer.add(D, Flags);
270 void VisitMemberExpr(const MemberExpr *ME) {
271 const Decl *D = ME->getMemberDecl();
272 if (auto *USD =
273 llvm::dyn_cast<UsingShadowDecl>(ME->getFoundDecl().getDecl()))
274 D = USD;
275 Outer.add(D, Flags);
277 void VisitOverloadExpr(const OverloadExpr *OE) {
278 for (auto *D : OE->decls())
279 Outer.add(D, Flags);
281 void VisitSizeOfPackExpr(const SizeOfPackExpr *SE) {
282 Outer.add(SE->getPack(), Flags);
284 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
285 Outer.add(CCE->getConstructor(), Flags);
287 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
288 for (const DesignatedInitExpr::Designator &D :
289 llvm::reverse(DIE->designators()))
290 if (D.isFieldDesignator()) {
291 Outer.add(D.getFieldDecl(), Flags);
292 // We don't know which designator was intended, we assume the outer.
293 break;
296 void VisitGotoStmt(const GotoStmt *Goto) {
297 if (auto *LabelDecl = Goto->getLabel())
298 Outer.add(LabelDecl, Flags);
300 void VisitLabelStmt(const LabelStmt *Label) {
301 if (auto *LabelDecl = Label->getDecl())
302 Outer.add(LabelDecl, Flags);
304 void
305 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
306 if (Outer.Resolver) {
307 for (const NamedDecl *D : Outer.Resolver->resolveMemberExpr(E)) {
308 Outer.add(D, Flags);
312 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
313 if (Outer.Resolver) {
314 for (const NamedDecl *D : Outer.Resolver->resolveDeclRefExpr(E)) {
315 Outer.add(D, Flags);
319 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
320 Outer.add(OIRE->getDecl(), Flags);
322 void VisitObjCMessageExpr(const ObjCMessageExpr *OME) {
323 Outer.add(OME->getMethodDecl(), Flags);
325 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *OPRE) {
326 if (OPRE->isExplicitProperty())
327 Outer.add(OPRE->getExplicitProperty(), Flags);
328 else {
329 if (OPRE->isMessagingGetter())
330 Outer.add(OPRE->getImplicitPropertyGetter(), Flags);
331 if (OPRE->isMessagingSetter())
332 Outer.add(OPRE->getImplicitPropertySetter(), Flags);
335 void VisitObjCProtocolExpr(const ObjCProtocolExpr *OPE) {
336 Outer.add(OPE->getProtocol(), Flags);
338 void VisitOpaqueValueExpr(const OpaqueValueExpr *OVE) {
339 Outer.add(OVE->getSourceExpr(), Flags);
341 void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
342 Outer.add(POE->getSyntacticForm(), Flags);
344 void VisitCXXNewExpr(const CXXNewExpr *CNE) {
345 Outer.add(CNE->getOperatorNew(), Flags);
347 void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE) {
348 Outer.add(CDE->getOperatorDelete(), Flags);
350 void
351 VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
352 Outer.add(RBO->getDecomposedForm().InnerBinOp, Flags);
355 Visitor(*this, Flags).Visit(S);
358 void add(QualType T, RelSet Flags) {
359 if (T.isNull())
360 return;
361 debug(T, Flags);
362 struct Visitor : public TypeVisitor<Visitor> {
363 TargetFinder &Outer;
364 RelSet Flags;
365 Visitor(TargetFinder &Outer, RelSet Flags) : Outer(Outer), Flags(Flags) {}
367 void VisitTagType(const TagType *TT) {
368 Outer.add(TT->getAsTagDecl(), Flags);
371 void VisitElaboratedType(const ElaboratedType *ET) {
372 Outer.add(ET->desugar(), Flags);
375 void VisitUsingType(const UsingType *ET) {
376 Outer.add(ET->getFoundDecl(), Flags);
379 void VisitInjectedClassNameType(const InjectedClassNameType *ICNT) {
380 Outer.add(ICNT->getDecl(), Flags);
383 void VisitDecltypeType(const DecltypeType *DTT) {
384 Outer.add(DTT->getUnderlyingType(), Flags | Rel::Underlying);
386 void VisitDeducedType(const DeducedType *DT) {
387 // FIXME: In practice this doesn't work: the AutoType you find inside
388 // TypeLoc never has a deduced type. https://llvm.org/PR42914
389 Outer.add(DT->getDeducedType(), Flags);
391 void VisitUnresolvedUsingType(const UnresolvedUsingType *UUT) {
392 Outer.add(UUT->getDecl(), Flags);
394 void VisitDeducedTemplateSpecializationType(
395 const DeducedTemplateSpecializationType *DTST) {
396 if (const auto *USD = DTST->getTemplateName().getAsUsingShadowDecl())
397 Outer.add(USD, Flags);
399 // FIXME: This is a workaround for https://llvm.org/PR42914,
400 // which is causing DTST->getDeducedType() to be empty. We
401 // fall back to the template pattern and miss the instantiation
402 // even when it's known in principle. Once that bug is fixed,
403 // the following code can be removed (the existing handling in
404 // VisitDeducedType() is sufficient).
405 if (auto *TD = DTST->getTemplateName().getAsTemplateDecl())
406 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
408 void VisitDependentNameType(const DependentNameType *DNT) {
409 if (Outer.Resolver) {
410 for (const NamedDecl *ND :
411 Outer.Resolver->resolveDependentNameType(DNT)) {
412 Outer.add(ND, Flags);
416 void VisitDependentTemplateSpecializationType(
417 const DependentTemplateSpecializationType *DTST) {
418 if (Outer.Resolver) {
419 for (const NamedDecl *ND :
420 Outer.Resolver->resolveTemplateSpecializationType(DTST)) {
421 Outer.add(ND, Flags);
425 void VisitTypedefType(const TypedefType *TT) {
426 if (shouldSkipTypedef(TT->getDecl()))
427 return;
428 Outer.add(TT->getDecl(), Flags);
430 void
431 VisitTemplateSpecializationType(const TemplateSpecializationType *TST) {
432 // Have to handle these case-by-case.
434 if (const auto *UTN = TST->getTemplateName().getAsUsingShadowDecl())
435 Outer.add(UTN, Flags);
437 // templated type aliases: there's no specialized/instantiated using
438 // decl to point to. So try to find a decl for the underlying type
439 // (after substitution), and failing that point to the (templated) using
440 // decl.
441 if (TST->isTypeAlias()) {
442 Outer.add(TST->getAliasedType(), Flags | Rel::Underlying);
443 // Don't *traverse* the alias, which would result in traversing the
444 // template of the underlying type.
445 Outer.report(
446 TST->getTemplateName().getAsTemplateDecl()->getTemplatedDecl(),
447 Flags | Rel::Alias | Rel::TemplatePattern);
449 // specializations of template template parameters aren't instantiated
450 // into decls, so they must refer to the parameter itself.
451 else if (const auto *Parm =
452 llvm::dyn_cast_or_null<TemplateTemplateParmDecl>(
453 TST->getTemplateName().getAsTemplateDecl()))
454 Outer.add(Parm, Flags);
455 // class template specializations have a (specialized) CXXRecordDecl.
456 else if (const CXXRecordDecl *RD = TST->getAsCXXRecordDecl())
457 Outer.add(RD, Flags); // add(Decl) will despecialize if needed.
458 else {
459 // fallback: the (un-specialized) declaration from primary template.
460 if (auto *TD = TST->getTemplateName().getAsTemplateDecl())
461 Outer.add(TD->getTemplatedDecl(), Flags | Rel::TemplatePattern);
464 void
465 VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *STTPT) {
466 Outer.add(STTPT->getReplacementType(), Flags);
468 void VisitTemplateTypeParmType(const TemplateTypeParmType *TTPT) {
469 Outer.add(TTPT->getDecl(), Flags);
471 void VisitObjCInterfaceType(const ObjCInterfaceType *OIT) {
472 Outer.add(OIT->getDecl(), Flags);
475 Visitor(*this, Flags).Visit(T.getTypePtr());
478 void add(const NestedNameSpecifier *NNS, RelSet Flags) {
479 if (!NNS)
480 return;
481 debug(*NNS, Flags);
482 switch (NNS->getKind()) {
483 case NestedNameSpecifier::Namespace:
484 add(NNS->getAsNamespace(), Flags);
485 return;
486 case NestedNameSpecifier::NamespaceAlias:
487 add(NNS->getAsNamespaceAlias(), Flags);
488 return;
489 case NestedNameSpecifier::Identifier:
490 if (Resolver) {
491 add(QualType(Resolver->resolveNestedNameSpecifierToType(NNS), 0),
492 Flags);
494 return;
495 case NestedNameSpecifier::TypeSpec:
496 case NestedNameSpecifier::TypeSpecWithTemplate:
497 add(QualType(NNS->getAsType(), 0), Flags);
498 return;
499 case NestedNameSpecifier::Global:
500 // This should be TUDecl, but we can't get a pointer to it!
501 return;
502 case NestedNameSpecifier::Super:
503 add(NNS->getAsRecordDecl(), Flags);
504 return;
506 llvm_unreachable("unhandled NestedNameSpecifier::SpecifierKind");
509 void add(const CXXCtorInitializer *CCI, RelSet Flags) {
510 if (!CCI)
511 return;
512 debug(*CCI, Flags);
514 if (CCI->isAnyMemberInitializer())
515 add(CCI->getAnyMember(), Flags);
516 // Constructor calls contain a TypeLoc node, so we don't handle them here.
519 void add(const TemplateArgument &Arg, RelSet Flags) {
520 // Only used for template template arguments.
521 // For type and non-type template arguments, SelectionTree
522 // will hit a more specific node (e.g. a TypeLoc or a
523 // DeclRefExpr).
524 if (Arg.getKind() == TemplateArgument::Template ||
525 Arg.getKind() == TemplateArgument::TemplateExpansion) {
526 if (TemplateDecl *TD =
527 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) {
528 report(TD, Flags);
530 if (const auto *USD =
531 Arg.getAsTemplateOrTemplatePattern().getAsUsingShadowDecl())
532 add(USD, Flags);
537 } // namespace
539 llvm::SmallVector<std::pair<const NamedDecl *, DeclRelationSet>, 1>
540 allTargetDecls(const DynTypedNode &N, const HeuristicResolver *Resolver) {
541 dlog("allTargetDecls({0})", nodeToString(N));
542 TargetFinder Finder(Resolver);
543 DeclRelationSet Flags;
544 if (const Decl *D = N.get<Decl>())
545 Finder.add(D, Flags);
546 else if (const Stmt *S = N.get<Stmt>())
547 Finder.add(S, Flags);
548 else if (const NestedNameSpecifierLoc *NNSL = N.get<NestedNameSpecifierLoc>())
549 Finder.add(NNSL->getNestedNameSpecifier(), Flags);
550 else if (const NestedNameSpecifier *NNS = N.get<NestedNameSpecifier>())
551 Finder.add(NNS, Flags);
552 else if (const TypeLoc *TL = N.get<TypeLoc>())
553 Finder.add(TL->getType(), Flags);
554 else if (const QualType *QT = N.get<QualType>())
555 Finder.add(*QT, Flags);
556 else if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>())
557 Finder.add(CCI, Flags);
558 else if (const TemplateArgumentLoc *TAL = N.get<TemplateArgumentLoc>())
559 Finder.add(TAL->getArgument(), Flags);
560 else if (const CXXBaseSpecifier *CBS = N.get<CXXBaseSpecifier>())
561 Finder.add(CBS->getTypeSourceInfo()->getType(), Flags);
562 else if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
563 Finder.add(PL->getProtocol(), Flags);
564 return Finder.takeDecls();
567 llvm::SmallVector<const NamedDecl *, 1>
568 targetDecl(const DynTypedNode &N, DeclRelationSet Mask,
569 const HeuristicResolver *Resolver) {
570 llvm::SmallVector<const NamedDecl *, 1> Result;
571 for (const auto &Entry : allTargetDecls(N, Resolver)) {
572 if (!(Entry.second & ~Mask))
573 Result.push_back(Entry.first);
575 return Result;
578 llvm::SmallVector<const NamedDecl *, 1>
579 explicitReferenceTargets(DynTypedNode N, DeclRelationSet Mask,
580 const HeuristicResolver *Resolver) {
581 assert(!(Mask & (DeclRelation::TemplatePattern |
582 DeclRelation::TemplateInstantiation)) &&
583 "explicitReferenceTargets handles templates on its own");
584 auto Decls = allTargetDecls(N, Resolver);
586 // We prefer to return template instantiation, but fallback to template
587 // pattern if instantiation is not available.
588 Mask |= DeclRelation::TemplatePattern | DeclRelation::TemplateInstantiation;
590 llvm::SmallVector<const NamedDecl *, 1> TemplatePatterns;
591 llvm::SmallVector<const NamedDecl *, 1> Targets;
592 bool SeenTemplateInstantiations = false;
593 for (auto &D : Decls) {
594 if (D.second & ~Mask)
595 continue;
596 if (D.second & DeclRelation::TemplatePattern) {
597 TemplatePatterns.push_back(D.first);
598 continue;
600 if (D.second & DeclRelation::TemplateInstantiation)
601 SeenTemplateInstantiations = true;
602 Targets.push_back(D.first);
604 if (!SeenTemplateInstantiations)
605 Targets.insert(Targets.end(), TemplatePatterns.begin(),
606 TemplatePatterns.end());
607 return Targets;
610 namespace {
611 llvm::SmallVector<ReferenceLoc> refInDecl(const Decl *D,
612 const HeuristicResolver *Resolver) {
613 struct Visitor : ConstDeclVisitor<Visitor> {
614 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
616 const HeuristicResolver *Resolver;
617 llvm::SmallVector<ReferenceLoc> Refs;
619 void VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
620 // We want to keep it as non-declaration references, as the
621 // "using namespace" declaration doesn't have a name.
622 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
623 D->getIdentLocation(),
624 /*IsDecl=*/false,
625 {D->getNominatedNamespaceAsWritten()}});
628 void VisitUsingDecl(const UsingDecl *D) {
629 // "using ns::identifier;" is a non-declaration reference.
630 Refs.push_back(ReferenceLoc{
631 D->getQualifierLoc(), D->getLocation(), /*IsDecl=*/false,
632 explicitReferenceTargets(DynTypedNode::create(*D),
633 DeclRelation::Underlying, Resolver)});
636 void VisitUsingEnumDecl(const UsingEnumDecl *D) {
637 // "using enum ns::E" is a non-declaration reference.
638 // The reference is covered by the embedded typeloc.
639 // Don't use the default VisitNamedDecl, which would report a declaration.
642 void VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
643 // For namespace alias, "namespace Foo = Target;", we add two references.
644 // Add a declaration reference for Foo.
645 VisitNamedDecl(D);
646 // Add a non-declaration reference for Target.
647 Refs.push_back(ReferenceLoc{D->getQualifierLoc(),
648 D->getTargetNameLoc(),
649 /*IsDecl=*/false,
650 {D->getAliasedNamespace()}});
653 void VisitNamedDecl(const NamedDecl *ND) {
654 // We choose to ignore {Class, Function, Var, TypeAlias}TemplateDecls. As
655 // as their underlying decls, covering the same range, will be visited.
656 if (llvm::isa<ClassTemplateDecl>(ND) ||
657 llvm::isa<FunctionTemplateDecl>(ND) ||
658 llvm::isa<VarTemplateDecl>(ND) ||
659 llvm::isa<TypeAliasTemplateDecl>(ND))
660 return;
661 // FIXME: decide on how to surface destructors when we need them.
662 if (llvm::isa<CXXDestructorDecl>(ND))
663 return;
664 // Filter anonymous decls, name location will point outside the name token
665 // and the clients are not prepared to handle that.
666 if (ND->getDeclName().isIdentifier() &&
667 !ND->getDeclName().getAsIdentifierInfo())
668 return;
669 Refs.push_back(ReferenceLoc{getQualifierLoc(*ND),
670 ND->getLocation(),
671 /*IsDecl=*/true,
672 {ND}});
675 void VisitCXXDeductionGuideDecl(const CXXDeductionGuideDecl *DG) {
676 // The class template name in a deduction guide targets the class
677 // template.
678 Refs.push_back(ReferenceLoc{DG->getQualifierLoc(),
679 DG->getNameInfo().getLoc(),
680 /*IsDecl=*/false,
681 {DG->getDeducedTemplate()}});
684 void VisitObjCMethodDecl(const ObjCMethodDecl *OMD) {
685 // The name may have several tokens, we can only report the first.
686 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
687 OMD->getSelectorStartLoc(),
688 /*IsDecl=*/true,
689 {OMD}});
692 void VisitObjCCategoryDecl(const ObjCCategoryDecl *OCD) {
693 // getLocation is the extended class's location, not the category's.
694 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
695 OCD->getLocation(),
696 /*IsDecl=*/false,
697 {OCD->getClassInterface()}});
698 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
699 OCD->getCategoryNameLoc(),
700 /*IsDecl=*/true,
701 {OCD}});
704 void VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *OCID) {
705 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
706 OCID->getLocation(),
707 /*IsDecl=*/false,
708 {OCID->getClassInterface()}});
709 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
710 OCID->getCategoryNameLoc(),
711 /*IsDecl=*/false,
712 {OCID->getCategoryDecl()}});
713 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
714 OCID->getCategoryNameLoc(),
715 /*IsDecl=*/true,
716 {OCID}});
719 void VisitObjCImplementationDecl(const ObjCImplementationDecl *OIMD) {
720 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
721 OIMD->getLocation(),
722 /*IsDecl=*/false,
723 {OIMD->getClassInterface()}});
724 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
725 OIMD->getLocation(),
726 /*IsDecl=*/true,
727 {OIMD}});
731 Visitor V{Resolver};
732 V.Visit(D);
733 return V.Refs;
736 llvm::SmallVector<ReferenceLoc> refInStmt(const Stmt *S,
737 const HeuristicResolver *Resolver) {
738 struct Visitor : ConstStmtVisitor<Visitor> {
739 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
741 const HeuristicResolver *Resolver;
742 // FIXME: handle more complicated cases: more ObjC, designated initializers.
743 llvm::SmallVector<ReferenceLoc> Refs;
745 void VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
746 Refs.push_back(ReferenceLoc{E->getNestedNameSpecifierLoc(),
747 E->getConceptNameLoc(),
748 /*IsDecl=*/false,
749 {E->getNamedConcept()}});
752 void VisitDeclRefExpr(const DeclRefExpr *E) {
753 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
754 E->getNameInfo().getLoc(),
755 /*IsDecl=*/false,
756 {E->getFoundDecl()}});
759 void VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) {
760 Refs.push_back(ReferenceLoc{
761 E->getQualifierLoc(), E->getNameInfo().getLoc(), /*IsDecl=*/false,
762 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
765 void VisitMemberExpr(const MemberExpr *E) {
766 // Skip destructor calls to avoid duplication: TypeLoc within will be
767 // visited separately.
768 if (llvm::isa<CXXDestructorDecl>(E->getFoundDecl().getDecl()))
769 return;
770 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
771 E->getMemberNameInfo().getLoc(),
772 /*IsDecl=*/false,
773 {E->getFoundDecl()}});
776 void
777 VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
778 Refs.push_back(ReferenceLoc{
779 E->getQualifierLoc(), E->getMemberNameInfo().getLoc(),
780 /*IsDecl=*/false,
781 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
784 void VisitOverloadExpr(const OverloadExpr *E) {
785 Refs.push_back(ReferenceLoc{E->getQualifierLoc(),
786 E->getNameInfo().getLoc(),
787 /*IsDecl=*/false,
788 llvm::SmallVector<const NamedDecl *, 1>(
789 E->decls().begin(), E->decls().end())});
792 void VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
793 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
794 E->getPackLoc(),
795 /*IsDecl=*/false,
796 {E->getPack()}});
799 void VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *E) {
800 Refs.push_back(ReferenceLoc{
801 NestedNameSpecifierLoc(), E->getLocation(),
802 /*IsDecl=*/false,
803 // Select the getter, setter, or @property depending on the call.
804 explicitReferenceTargets(DynTypedNode::create(*E), {}, Resolver)});
807 void VisitObjCIvarRefExpr(const ObjCIvarRefExpr *OIRE) {
808 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
809 OIRE->getLocation(),
810 /*IsDecl=*/false,
811 {OIRE->getDecl()}});
814 void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
815 // The name may have several tokens, we can only report the first.
816 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
817 E->getSelectorStartLoc(),
818 /*IsDecl=*/false,
819 {E->getMethodDecl()}});
822 void VisitDesignatedInitExpr(const DesignatedInitExpr *DIE) {
823 for (const DesignatedInitExpr::Designator &D : DIE->designators()) {
824 if (!D.isFieldDesignator())
825 continue;
827 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
828 D.getFieldLoc(),
829 /*IsDecl=*/false,
830 {D.getFieldDecl()}});
834 void VisitGotoStmt(const GotoStmt *GS) {
835 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
836 GS->getLabelLoc(),
837 /*IsDecl=*/false,
838 {GS->getLabel()}});
841 void VisitLabelStmt(const LabelStmt *LS) {
842 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
843 LS->getIdentLoc(),
844 /*IsDecl=*/true,
845 {LS->getDecl()}});
849 Visitor V{Resolver};
850 V.Visit(S);
851 return V.Refs;
854 llvm::SmallVector<ReferenceLoc>
855 refInTypeLoc(TypeLoc L, const HeuristicResolver *Resolver) {
856 struct Visitor : TypeLocVisitor<Visitor> {
857 Visitor(const HeuristicResolver *Resolver) : Resolver(Resolver) {}
859 const HeuristicResolver *Resolver;
860 llvm::SmallVector<ReferenceLoc> Refs;
862 void VisitElaboratedTypeLoc(ElaboratedTypeLoc L) {
863 // We only know about qualifier, rest if filled by inner locations.
864 size_t InitialSize = Refs.size();
865 Visit(L.getNamedTypeLoc().getUnqualifiedLoc());
866 size_t NewSize = Refs.size();
867 // Add qualifier for the newly-added refs.
868 for (unsigned I = InitialSize; I < NewSize; ++I) {
869 ReferenceLoc *Ref = &Refs[I];
870 // Fill in the qualifier.
871 assert(!Ref->Qualifier.hasQualifier() && "qualifier already set");
872 Ref->Qualifier = L.getQualifierLoc();
876 void VisitUsingTypeLoc(UsingTypeLoc L) {
877 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
878 L.getLocalSourceRange().getBegin(),
879 /*IsDecl=*/false,
880 {L.getFoundDecl()}});
883 void VisitTagTypeLoc(TagTypeLoc L) {
884 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
885 L.getNameLoc(),
886 /*IsDecl=*/false,
887 {L.getDecl()}});
890 void VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc L) {
891 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
892 L.getNameLoc(),
893 /*IsDecl=*/false,
894 {L.getDecl()}});
897 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
898 // We must ensure template type aliases are included in results if they
899 // were written in the source code, e.g. in
900 // template <class T> using valias = vector<T>;
901 // ^valias<int> x;
902 // 'explicitReferenceTargets' will return:
903 // 1. valias with mask 'Alias'.
904 // 2. 'vector<int>' with mask 'Underlying'.
905 // we want to return only #1 in this case.
906 Refs.push_back(ReferenceLoc{
907 NestedNameSpecifierLoc(), L.getTemplateNameLoc(), /*IsDecl=*/false,
908 explicitReferenceTargets(DynTypedNode::create(L.getType()),
909 DeclRelation::Alias, Resolver)});
911 void VisitDeducedTemplateSpecializationTypeLoc(
912 DeducedTemplateSpecializationTypeLoc L) {
913 Refs.push_back(ReferenceLoc{
914 NestedNameSpecifierLoc(), L.getNameLoc(), /*IsDecl=*/false,
915 explicitReferenceTargets(DynTypedNode::create(L.getType()),
916 DeclRelation::Alias, Resolver)});
919 void VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc TL) {
920 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
921 TL.getNameLoc(),
922 /*IsDecl=*/false,
923 {TL.getDecl()}});
926 void VisitDependentTemplateSpecializationTypeLoc(
927 DependentTemplateSpecializationTypeLoc L) {
928 Refs.push_back(
929 ReferenceLoc{L.getQualifierLoc(), L.getTemplateNameLoc(),
930 /*IsDecl=*/false,
931 explicitReferenceTargets(
932 DynTypedNode::create(L.getType()), {}, Resolver)});
935 void VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
936 Refs.push_back(
937 ReferenceLoc{L.getQualifierLoc(), L.getNameLoc(),
938 /*IsDecl=*/false,
939 explicitReferenceTargets(
940 DynTypedNode::create(L.getType()), {}, Resolver)});
943 void VisitTypedefTypeLoc(TypedefTypeLoc L) {
944 if (shouldSkipTypedef(L.getTypedefNameDecl()))
945 return;
946 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
947 L.getNameLoc(),
948 /*IsDecl=*/false,
949 {L.getTypedefNameDecl()}});
952 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc L) {
953 Refs.push_back(ReferenceLoc{NestedNameSpecifierLoc(),
954 L.getNameLoc(),
955 /*IsDecl=*/false,
956 {L.getIFaceDecl()}});
960 Visitor V{Resolver};
961 V.Visit(L.getUnqualifiedLoc());
962 return V.Refs;
965 class ExplicitReferenceCollector
966 : public RecursiveASTVisitor<ExplicitReferenceCollector> {
967 public:
968 ExplicitReferenceCollector(llvm::function_ref<void(ReferenceLoc)> Out,
969 const HeuristicResolver *Resolver)
970 : Out(Out), Resolver(Resolver) {
971 assert(Out);
974 bool VisitTypeLoc(TypeLoc TTL) {
975 if (TypeLocsToSkip.count(TTL.getBeginLoc()))
976 return true;
977 visitNode(DynTypedNode::create(TTL));
978 return true;
981 bool TraverseElaboratedTypeLoc(ElaboratedTypeLoc L) {
982 // ElaboratedTypeLoc will reports information for its inner type loc.
983 // Otherwise we loose information about inner types loc's qualifier.
984 TypeLoc Inner = L.getNamedTypeLoc().getUnqualifiedLoc();
985 if (L.getBeginLoc() == Inner.getBeginLoc())
986 return RecursiveASTVisitor::TraverseTypeLoc(Inner);
987 else
988 TypeLocsToSkip.insert(Inner.getBeginLoc());
989 return RecursiveASTVisitor::TraverseElaboratedTypeLoc(L);
992 bool VisitStmt(Stmt *S) {
993 visitNode(DynTypedNode::create(*S));
994 return true;
997 bool TraverseOpaqueValueExpr(OpaqueValueExpr *OVE) {
998 visitNode(DynTypedNode::create(*OVE));
999 // Not clear why the source expression is skipped by default...
1000 // FIXME: can we just make RecursiveASTVisitor do this?
1001 return RecursiveASTVisitor::TraverseStmt(OVE->getSourceExpr());
1004 bool TraversePseudoObjectExpr(PseudoObjectExpr *POE) {
1005 visitNode(DynTypedNode::create(*POE));
1006 // Traverse only the syntactic form to find the *written* references.
1007 // (The semantic form also contains lots of duplication)
1008 return RecursiveASTVisitor::TraverseStmt(POE->getSyntacticForm());
1011 // We re-define Traverse*, since there's no corresponding Visit*.
1012 // TemplateArgumentLoc is the only way to get locations for references to
1013 // template template parameters.
1014 bool TraverseTemplateArgumentLoc(TemplateArgumentLoc A) {
1015 switch (A.getArgument().getKind()) {
1016 case TemplateArgument::Template:
1017 case TemplateArgument::TemplateExpansion:
1018 reportReference(ReferenceLoc{A.getTemplateQualifierLoc(),
1019 A.getTemplateNameLoc(),
1020 /*IsDecl=*/false,
1021 {A.getArgument()
1022 .getAsTemplateOrTemplatePattern()
1023 .getAsTemplateDecl()}},
1024 DynTypedNode::create(A.getArgument()));
1025 break;
1026 case TemplateArgument::Declaration:
1027 break; // FIXME: can this actually happen in TemplateArgumentLoc?
1028 case TemplateArgument::Integral:
1029 case TemplateArgument::Null:
1030 case TemplateArgument::NullPtr:
1031 break; // no references.
1032 case TemplateArgument::Pack:
1033 case TemplateArgument::Type:
1034 case TemplateArgument::Expression:
1035 break; // Handled by VisitType and VisitExpression.
1037 return RecursiveASTVisitor::TraverseTemplateArgumentLoc(A);
1040 bool VisitDecl(Decl *D) {
1041 visitNode(DynTypedNode::create(*D));
1042 return true;
1045 // We have to use Traverse* because there is no corresponding Visit*.
1046 bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc L) {
1047 if (!L.getNestedNameSpecifier())
1048 return true;
1049 visitNode(DynTypedNode::create(L));
1050 // Inner type is missing information about its qualifier, skip it.
1051 if (auto TL = L.getTypeLoc())
1052 TypeLocsToSkip.insert(TL.getBeginLoc());
1053 return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(L);
1056 bool TraverseObjCProtocolLoc(ObjCProtocolLoc ProtocolLoc) {
1057 visitNode(DynTypedNode::create(ProtocolLoc));
1058 return true;
1061 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
1062 visitNode(DynTypedNode::create(*Init));
1063 return RecursiveASTVisitor::TraverseConstructorInitializer(Init);
1066 bool TraverseTypeConstraint(const TypeConstraint *TC) {
1067 // We want to handle all ConceptReferences but RAV is missing a
1068 // polymorphic Visit or Traverse method for it, so we handle
1069 // TypeConstraints specially here.
1070 Out(ReferenceLoc{TC->getNestedNameSpecifierLoc(),
1071 TC->getConceptNameLoc(),
1072 /*IsDecl=*/false,
1073 {TC->getNamedConcept()}});
1074 return RecursiveASTVisitor::TraverseTypeConstraint(TC);
1077 private:
1078 /// Obtain information about a reference directly defined in \p N. Does not
1079 /// recurse into child nodes, e.g. do not expect references for constructor
1080 /// initializers
1082 /// Any of the fields in the returned structure can be empty, but not all of
1083 /// them, e.g.
1084 /// - for implicitly generated nodes (e.g. MemberExpr from range-based-for),
1085 /// source location information may be missing,
1086 /// - for dependent code, targets may be empty.
1088 /// (!) For the purposes of this function declarations are not considered to
1089 /// be references. However, declarations can have references inside them,
1090 /// e.g. 'namespace foo = std' references namespace 'std' and this
1091 /// function will return the corresponding reference.
1092 llvm::SmallVector<ReferenceLoc> explicitReference(DynTypedNode N) {
1093 if (auto *D = N.get<Decl>())
1094 return refInDecl(D, Resolver);
1095 if (auto *S = N.get<Stmt>())
1096 return refInStmt(S, Resolver);
1097 if (auto *NNSL = N.get<NestedNameSpecifierLoc>()) {
1098 // (!) 'DeclRelation::Alias' ensures we do not loose namespace aliases.
1099 return {ReferenceLoc{
1100 NNSL->getPrefix(), NNSL->getLocalBeginLoc(), false,
1101 explicitReferenceTargets(
1102 DynTypedNode::create(*NNSL->getNestedNameSpecifier()),
1103 DeclRelation::Alias, Resolver)}};
1105 if (const TypeLoc *TL = N.get<TypeLoc>())
1106 return refInTypeLoc(*TL, Resolver);
1107 if (const CXXCtorInitializer *CCI = N.get<CXXCtorInitializer>()) {
1108 // Other type initializers (e.g. base initializer) are handled by visiting
1109 // the typeLoc.
1110 if (CCI->isAnyMemberInitializer()) {
1111 return {ReferenceLoc{NestedNameSpecifierLoc(),
1112 CCI->getMemberLocation(),
1113 /*IsDecl=*/false,
1114 {CCI->getAnyMember()}}};
1117 if (const ObjCProtocolLoc *PL = N.get<ObjCProtocolLoc>())
1118 return {ReferenceLoc{NestedNameSpecifierLoc(),
1119 PL->getLocation(),
1120 /*IsDecl=*/false,
1121 {PL->getProtocol()}}};
1123 // We do not have location information for other nodes (QualType, etc)
1124 return {};
1127 void visitNode(DynTypedNode N) {
1128 for (auto &R : explicitReference(N))
1129 reportReference(std::move(R), N);
1132 void reportReference(ReferenceLoc &&Ref, DynTypedNode N) {
1133 // Strip null targets that can arise from invalid code.
1134 // (This avoids having to check for null everywhere we insert)
1135 llvm::erase_value(Ref.Targets, nullptr);
1136 // Our promise is to return only references from the source code. If we lack
1137 // location information, skip these nodes.
1138 // Normally this should not happen in practice, unless there are bugs in the
1139 // traversals or users started the traversal at an implicit node.
1140 if (Ref.NameLoc.isInvalid()) {
1141 dlog("invalid location at node {0}", nodeToString(N));
1142 return;
1144 Out(Ref);
1147 llvm::function_ref<void(ReferenceLoc)> Out;
1148 const HeuristicResolver *Resolver;
1149 /// TypeLocs starting at these locations must be skipped, see
1150 /// TraverseElaboratedTypeSpecifierLoc for details.
1151 llvm::DenseSet<SourceLocation> TypeLocsToSkip;
1153 } // namespace
1155 void findExplicitReferences(const Stmt *S,
1156 llvm::function_ref<void(ReferenceLoc)> Out,
1157 const HeuristicResolver *Resolver) {
1158 assert(S);
1159 ExplicitReferenceCollector(Out, Resolver).TraverseStmt(const_cast<Stmt *>(S));
1161 void findExplicitReferences(const Decl *D,
1162 llvm::function_ref<void(ReferenceLoc)> Out,
1163 const HeuristicResolver *Resolver) {
1164 assert(D);
1165 ExplicitReferenceCollector(Out, Resolver).TraverseDecl(const_cast<Decl *>(D));
1167 void findExplicitReferences(const ASTContext &AST,
1168 llvm::function_ref<void(ReferenceLoc)> Out,
1169 const HeuristicResolver *Resolver) {
1170 ExplicitReferenceCollector(Out, Resolver)
1171 .TraverseAST(const_cast<ASTContext &>(AST));
1174 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelation R) {
1175 switch (R) {
1176 #define REL_CASE(X) \
1177 case DeclRelation::X: \
1178 return OS << #X;
1179 REL_CASE(Alias);
1180 REL_CASE(Underlying);
1181 REL_CASE(TemplateInstantiation);
1182 REL_CASE(TemplatePattern);
1183 #undef REL_CASE
1185 llvm_unreachable("Unhandled DeclRelation enum");
1187 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, DeclRelationSet RS) {
1188 const char *Sep = "";
1189 for (unsigned I = 0; I < RS.S.size(); ++I) {
1190 if (RS.S.test(I)) {
1191 OS << Sep << static_cast<DeclRelation>(I);
1192 Sep = "|";
1195 return OS;
1198 llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, ReferenceLoc R) {
1199 // note we cannot print R.NameLoc without a source manager.
1200 OS << "targets = {";
1201 llvm::SmallVector<std::string> Targets;
1202 for (const NamedDecl *T : R.Targets) {
1203 llvm::raw_string_ostream Target(Targets.emplace_back());
1204 Target << printQualifiedName(*T) << printTemplateSpecializationArgs(*T);
1206 llvm::sort(Targets);
1207 OS << llvm::join(Targets, ", ");
1208 OS << "}";
1209 if (R.Qualifier) {
1210 OS << ", qualifier = '";
1211 R.Qualifier.getNestedNameSpecifier()->print(OS,
1212 PrintingPolicy(LangOptions()));
1213 OS << "'";
1215 if (R.IsDecl)
1216 OS << ", decl";
1217 return OS;
1220 } // namespace clangd
1221 } // namespace clang