[clang-repl] [codegen] Reduce the state in TBAA. NFC for static compilation. (#98138)
[llvm-project.git] / polly / lib / Transform / MatmulOptimizer.cpp
blobff1683b2d63c598162bf50fdb235d24f3dff7966
1 //===- MatmulOptimizer.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "polly/MatmulOptimizer.h"
10 #include "polly/DependenceInfo.h"
11 #include "polly/Options.h"
12 #include "polly/ScheduleTreeTransform.h"
13 #include "polly/ScopInfo.h"
14 #include "polly/ScopPass.h"
15 #include "polly/Simplify.h"
16 #include "polly/Support/GICHelper.h"
17 #include "polly/Support/ISLTools.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/Sequence.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/TypeSize.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "isl/ctx.h"
34 #include "isl/schedule_node.h"
35 #include "isl/schedule_type.h"
36 #include "isl/union_map.h"
37 #include "isl/union_set.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cmath>
41 #include <cstdint>
42 #include <string>
43 #include <vector>
45 #include "polly/Support/PollyDebug.h"
46 #define DEBUG_TYPE "polly-opt-isl"
48 using namespace llvm;
49 using namespace polly;
51 namespace llvm {
52 class Value;
55 static cl::opt<int> LatencyVectorFma(
56 "polly-target-latency-vector-fma",
57 cl::desc("The minimal number of cycles between issuing two "
58 "dependent consecutive vector fused multiply-add "
59 "instructions."),
60 cl::Hidden, cl::init(8), cl::cat(PollyCategory));
62 static cl::opt<int> ThroughputVectorFma(
63 "polly-target-throughput-vector-fma",
64 cl::desc("A throughput of the processor floating-point arithmetic units "
65 "expressed in the number of vector fused multiply-add "
66 "instructions per clock cycle."),
67 cl::Hidden, cl::init(1), cl::cat(PollyCategory));
69 static cl::opt<int> FirstCacheLevelSize(
70 "polly-target-1st-cache-level-size",
71 cl::desc("The size of the first cache level specified in bytes."),
72 cl::Hidden, cl::init(-1), cl::cat(PollyCategory));
74 static cl::opt<int> FirstCacheLevelDefaultSize(
75 "polly-target-1st-cache-level-default-size",
76 cl::desc("The default size of the first cache level specified in bytes"
77 " (if not enough were provided by the TargetTransformInfo)."),
78 cl::Hidden, cl::init(32768), cl::cat(PollyCategory));
80 static cl::opt<int> SecondCacheLevelSize(
81 "polly-target-2nd-cache-level-size",
82 cl::desc("The size of the second level specified in bytes."), cl::Hidden,
83 cl::init(-1), cl::cat(PollyCategory));
85 static cl::opt<int> SecondCacheLevelDefaultSize(
86 "polly-target-2nd-cache-level-default-size",
87 cl::desc("The default size of the second cache level specified in bytes"
88 " (if not enough were provided by the TargetTransformInfo)."),
89 cl::Hidden, cl::init(262144), cl::cat(PollyCategory));
91 // This option, along with --polly-target-2nd-cache-level-associativity,
92 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
93 // represent the parameters of the target cache, which do not have typical
94 // values that can be used by default. However, to apply the pattern matching
95 // optimizations, we use the values of the parameters of Intel Core i7-3820
96 // SandyBridge in case the parameters are not specified or not provided by the
97 // TargetTransformInfo.
98 static cl::opt<int> FirstCacheLevelAssociativity(
99 "polly-target-1st-cache-level-associativity",
100 cl::desc("The associativity of the first cache level."), cl::Hidden,
101 cl::init(-1), cl::cat(PollyCategory));
103 static cl::opt<int> FirstCacheLevelDefaultAssociativity(
104 "polly-target-1st-cache-level-default-associativity",
105 cl::desc("The default associativity of the first cache level"
106 " (if not enough were provided by the TargetTransformInfo)."),
107 cl::Hidden, cl::init(8), cl::cat(PollyCategory));
109 static cl::opt<int> SecondCacheLevelAssociativity(
110 "polly-target-2nd-cache-level-associativity",
111 cl::desc("The associativity of the second cache level."), cl::Hidden,
112 cl::init(-1), cl::cat(PollyCategory));
114 static cl::opt<int> SecondCacheLevelDefaultAssociativity(
115 "polly-target-2nd-cache-level-default-associativity",
116 cl::desc("The default associativity of the second cache level"
117 " (if not enough were provided by the TargetTransformInfo)."),
118 cl::Hidden, cl::init(8), cl::cat(PollyCategory));
120 static cl::opt<int> VectorRegisterBitwidth(
121 "polly-target-vector-register-bitwidth",
122 cl::desc("The size in bits of a vector register (if not set, this "
123 "information is taken from LLVM's target information."),
124 cl::Hidden, cl::init(-1), cl::cat(PollyCategory));
126 static cl::opt<int> PollyPatternMatchingNcQuotient(
127 "polly-pattern-matching-nc-quotient",
128 cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
129 "macro-kernel, by Nr, the parameter of the micro-kernel"),
130 cl::Hidden, cl::init(256), cl::cat(PollyCategory));
132 static cl::opt<bool>
133 PMBasedTCOpts("polly-tc-opt",
134 cl::desc("Perform optimizations of tensor contractions based "
135 "on pattern matching"),
136 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
138 static cl::opt<bool>
139 PMBasedMMMOpts("polly-matmul-opt",
140 cl::desc("Perform optimizations of matrix multiplications "
141 "based on pattern matching"),
142 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
144 static cl::opt<int> OptComputeOut(
145 "polly-tc-dependences-computeout",
146 cl::desc("Bound the dependence analysis by a maximal amount of "
147 "computational steps (0 means no bound)"),
148 cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));
150 namespace {
151 /// Parameters of the micro kernel.
153 /// Parameters, which determine sizes of rank-1 (i.e., outer product) update
154 /// used in the optimized matrix multiplication.
155 struct MicroKernelParamsTy {
156 int Mr;
157 int Nr;
160 /// Parameters of the macro kernel.
162 /// Parameters, which determine sizes of blocks of partitioned matrices
163 /// used in the optimized matrix multiplication.
164 struct MacroKernelParamsTy {
165 int Mc;
166 int Nc;
167 int Kc;
170 /// Parameters of the matrix multiplication operands.
172 /// Parameters, which describe access relations that represent operands of the
173 /// matrix multiplication.
174 struct MatMulInfoTy {
175 MemoryAccess *A = nullptr;
176 MemoryAccess *B = nullptr;
177 MemoryAccess *ReadFromC = nullptr;
178 MemoryAccess *WriteToC = nullptr;
179 int i = -1;
180 int j = -1;
181 int k = -1;
184 /// Parameters of the tensor contraction operands.
186 /// A general d-dimensional tensor T ∈ R ^ Nu0 x ... x Nud−1 can be defined
187 /// as the set of scalar elements indexed by the set of indices u0 ... ud,
189 /// T ≡ {Anu0...nud−1 ∈ R | (u0,...,ud−1) ∈ Nu0 x ... x Nud−1}.
191 /// Let A, B, and C be dA, dB, and dC-dimensional tensors, respectively.
192 /// Let the free and the contracted indices of the tensor A be grouped into
193 /// two bundles I = i0...ir−1 and P = p0...pt−1, respectively. Similarly,
194 /// the free and the contracted indices of B are grouped into bundles
195 /// J = j0..js−1 and P and the free indices of C are grouped into
196 /// bundles I and J.
198 /// Tensor contraction (TC) of tensors A, B into tensor C can be represented as
199 /// C(shuffle(I,J))=∑α·A(shuffle(I,P))·B(shuffle(P,J))+β·C(shuffle(I,J)),
200 /// where ∑ is a summation over all contracted indices of P,
201 /// α, β ∈ R, Npi is the length of the tensor dimension that corresponds
202 /// to the index pi, A(shuffle(I, P)), B(shuffle(P, J)), C(shuffle(I, J)) are
203 /// accesses to tensors A, B, C, respectively,
204 /// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of
205 /// the enclosed indices.
207 /// Multiplication of C(shuffle(I,J)) by β can be moved into a different SCoP
208 /// statement by loop distribution, which is done by the isl scheduler.
209 // If β is not equal to one, the optimization of TC of Polly requires
210 /// such a transformation.
212 /// TCInfoTy contains parameters, which describe access relations that represent
213 /// operands of the tensor contraction.
214 struct TCInfoTy {
215 /// @{
216 /// Memory accesses that represent reading from tensors, which are operands of
217 /// the tensor contraction.
218 MemoryAccess *A = nullptr;
219 MemoryAccess *B = nullptr;
220 /// @}
222 /// @{
223 /// Memory accesses that represent reading from and writing into the tensor,
224 /// which contains the result of the tensor contraction.
225 MemoryAccess *ReadFromC = nullptr;
226 MemoryAccess *WriteToC = nullptr;
227 /// @}
229 /// @{
230 /// Input dimensions of the schedule space, which represent free
231 /// indices of tensors.
232 SmallDenseSet<int> I;
233 SmallDenseSet<int> J;
234 /// @}
236 /// Input dimension of the schedule space, which represents contracted
237 /// indices of tensors.
238 SmallDenseSet<int> P;
240 /// @{
241 /// Sizes of tensor dimensions for corresponding input dimensions of
242 /// the schedule space. The size of the tensor dimension can be larger than
243 /// the size of the corresponding input dimension of the schedule space.
244 /// This does not correspond to a tensor contraction. However, such a pattern
245 /// will be optimized by the transformation.
246 SmallVector<int> DimensionSizes;
247 SmallVector<int> ADimensions;
248 SmallVector<int> BDimensions;
249 SmallVector<int> CDimensions;
250 /// @}
252 /// @{
253 /// Permutations of indices of I, J, and P, which describe operands of
254 /// the tensor contraction and its result.
255 SmallVector<int> OrderedI;
256 SmallVector<int> OrderedJ;
257 SmallVector<int> OrderedP;
258 /// @}
261 /// Create an isl::union_set, which describes the option of the form
262 /// [isolate[] -> unroll[x]].
264 /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
265 static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
266 isl::space Space = isl::space(Ctx, 0, 0, 1);
267 isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
268 isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
269 isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
270 UnrollIsolatedSetOption =
271 UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
272 UnrollIsolatedSetOption =
273 UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
274 return UnrollIsolatedSetOption.wrap();
277 /// Permute the two dimensions of the isl map.
279 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
280 /// have type @p DimType.
282 /// @param Map The isl map to be modified.
283 /// @param DimType The type of the dimensions.
284 /// @param DstPos The first dimension.
285 /// @param SrcPos The second dimension.
286 /// @return The modified map.
287 static isl::map permuteDimensions(isl::map Map, isl::dim DimType,
288 unsigned DstPos, unsigned SrcPos) {
289 assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) &&
290 SrcPos < unsignedFromIslSize(Map.dim(DimType)));
291 if (DstPos == SrcPos)
292 return Map;
293 isl::id DimId;
294 if (Map.has_tuple_id(DimType))
295 DimId = Map.get_tuple_id(DimType);
296 auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
297 isl::id FreeDimId;
298 if (Map.has_tuple_id(FreeDim))
299 FreeDimId = Map.get_tuple_id(FreeDim);
300 auto MaxDim = std::max(DstPos, SrcPos);
301 auto MinDim = std::min(DstPos, SrcPos);
302 Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
303 Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
304 Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
305 Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
306 if (!DimId.is_null())
307 Map = Map.set_tuple_id(DimType, DimId);
308 if (!FreeDimId.is_null())
309 Map = Map.set_tuple_id(FreeDim, FreeDimId);
310 return Map;
313 /// Check the form of the access relation.
315 /// Check that the access relation @p AccMap has the form M[i][j], where i
316 /// is a @p FirstPos and j is a @p SecondPos.
318 /// @param AccMap The access relation to be checked.
319 /// @param FirstPos The index of the input dimension that is mapped to
320 /// the first output dimension.
321 /// @param SecondPos The index of the input dimension that is mapped to the
322 /// second output dimension.
323 /// @return True in case @p AccMap has the expected form and false,
324 /// otherwise.
325 static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
326 int &SecondPos) {
327 isl::space Space = AccMap.get_space();
328 isl::map Universe = isl::map::universe(Space);
330 if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2)
331 return false;
333 // MatMul has the form:
334 // for (i = 0; i < N; i++)
335 // for (j = 0; j < M; j++)
336 // for (k = 0; k < P; k++)
337 // C[i, j] += A[i, k] * B[k, j]
339 // Permutation of three outer loops: 3! = 6 possibilities.
340 int FirstDims[] = {0, 0, 1, 1, 2, 2};
341 int SecondDims[] = {1, 2, 2, 0, 0, 1};
342 for (int i = 0; i < 6; i += 1) {
343 auto PossibleMatMul =
344 Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
345 .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
347 AccMap = AccMap.intersect_domain(Domain);
348 PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
350 // If AccMap spans entire domain (Non-partial write),
351 // compute FirstPos and SecondPos.
352 // If AccMap != PossibleMatMul here (the two maps have been gisted at
353 // this point), it means that the writes are not complete, or in other
354 // words, it is a Partial write and Partial writes must be rejected.
355 if (AccMap.is_equal(PossibleMatMul)) {
356 if (FirstPos != -1 && FirstPos != FirstDims[i])
357 continue;
358 FirstPos = FirstDims[i];
359 if (SecondPos != -1 && SecondPos != SecondDims[i])
360 continue;
361 SecondPos = SecondDims[i];
362 return true;
366 return false;
369 /// Does the memory access represent a non-scalar operand of the matrix
370 /// multiplication.
372 /// Check that the memory access @p MemAccess is the read access to a non-scalar
373 /// operand of the matrix multiplication or its result.
375 /// @param MemAccess The memory access to be checked.
376 /// @param MMI Parameters of the matrix multiplication operands.
377 /// @return True in case the memory access represents the read access
378 /// to a non-scalar operand of the matrix multiplication and
379 /// false, otherwise.
380 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
381 MatMulInfoTy &MMI) {
382 if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
383 return false;
384 auto AccMap = MemAccess->getLatestAccessRelation();
385 isl::set StmtDomain = MemAccess->getStatement()->getDomain();
386 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
387 MMI.ReadFromC = MemAccess;
388 return true;
390 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
391 MMI.A = MemAccess;
392 return true;
394 if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
395 MMI.B = MemAccess;
396 return true;
398 return false;
401 /// Check accesses to operands of the matrix multiplication.
403 /// Check that accesses of the SCoP statement, which corresponds to
404 /// the partial schedule @p PartialSchedule, are scalar in terms of loops
405 /// containing the matrix multiplication, in case they do not represent
406 /// accesses to the non-scalar operands of the matrix multiplication or
407 /// its result.
409 /// @param PartialSchedule The partial schedule of the SCoP statement.
410 /// @param MMI Parameters of the matrix multiplication operands.
411 /// @return True in case the corresponding SCoP statement
412 /// represents matrix multiplication and false,
413 /// otherwise.
414 static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
415 MatMulInfoTy &MMI) {
416 auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
417 auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
418 unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim());
419 assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
420 "and, consequently, the corresponding scheduling "
421 "functions have at least three dimensions.");
422 auto MapI =
423 permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
424 auto MapJ =
425 permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
426 auto MapK =
427 permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
429 auto Accesses = getAccessesInOrder(*Stmt);
430 for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
431 auto *MemAccessPtr = *MemA;
432 if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
433 !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
434 !(MemAccessPtr->isStrideZero(MapI) &&
435 MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK)))
436 return false;
438 return true;
441 /// Check for dependencies corresponding to the matrix multiplication.
443 /// Check that there is only true dependence of the form
444 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
445 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
446 /// to the dependency produced by the matrix multiplication.
448 /// @param Schedule The schedule of the SCoP statement.
449 /// @param D The SCoP dependencies.
450 /// @param Pos The parameter to describe an acceptable true dependence.
451 /// In case it has a negative value, try to determine its
452 /// acceptable value.
453 /// @return True in case dependencies correspond to the matrix multiplication
454 /// and false, otherwise.
455 static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
456 int &Pos) {
457 isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
458 isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
459 if (!Red.is_null())
460 Dep = Dep.unite(Red);
461 auto DomainSpace = Schedule.get_space().domain();
462 auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
463 auto Deltas = Dep.extract_map(Space).deltas();
464 int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set));
465 for (int i = 0; i < DeltasDimNum; i++) {
466 auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
467 Pos = Pos < 0 && Val.is_one() ? i : Pos;
468 if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
469 return false;
471 if (DeltasDimNum == 0 || Pos < 0)
472 return false;
473 return true;
476 /// Check if the SCoP statement could probably be optimized with analytical
477 /// modeling.
479 /// containsMatrMult tries to determine whether the following conditions
480 /// are true:
481 /// 1. The last memory access modeling an array, MA1, represents writing to
482 /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
483 /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
484 /// under consideration.
485 /// 2. There is only one loop-carried true dependency, and it has the
486 /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
487 /// loop-carried or anti dependencies.
488 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
489 /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
490 /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
491 /// and all memory accesses of the SCoP that are different from MA1, MA2,
492 /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
493 /// of loops i1, i2 and i3.
495 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
496 /// to check.
497 /// @D The SCoP dependencies.
498 /// @MMI Parameters of the matrix multiplication operands.
499 static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
500 MatMulInfoTy &MMI) {
501 auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
502 auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
503 if (Stmt->size() <= 1)
504 return false;
506 auto Accesses = getAccessesInOrder(*Stmt);
507 for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
508 auto *MemAccessPtr = *MemA;
509 if (!MemAccessPtr->isLatestArrayKind())
510 continue;
511 if (!MemAccessPtr->isWrite())
512 return false;
513 auto AccMap = MemAccessPtr->getLatestAccessRelation();
514 if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
515 return false;
516 MMI.WriteToC = MemAccessPtr;
517 break;
520 if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
521 return false;
523 if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
524 return false;
526 if (!MMI.A || !MMI.B || !MMI.ReadFromC)
527 return false;
528 return true;
531 /// Permute two dimensions of the band node.
533 /// Permute FirstDim and SecondDim dimensions of the Node.
535 /// @param Node The band node to be modified.
536 /// @param FirstDim The first dimension to be permuted.
537 /// @param SecondDim The second dimension to be permuted.
538 static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
539 unsigned FirstDim,
540 unsigned SecondDim) {
541 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
542 (unsigned)isl_schedule_node_band_n_member(Node.get()) >
543 std::max(FirstDim, SecondDim));
544 auto PartialSchedule =
545 isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
546 auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim);
547 auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim);
548 PartialSchedule =
549 PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
550 PartialSchedule =
551 PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
552 Node = isl::manage(isl_schedule_node_delete(Node.release()));
553 return Node.insert_partial_schedule(PartialSchedule);
556 static isl::schedule_node
557 createMicroKernel(isl::schedule_node Node,
558 MicroKernelParamsTy MicroKernelParams) {
559 Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
561 Node = Node.parent().parent();
562 return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
565 /// Create the BLIS macro-kernel.
567 /// We create the BLIS macro-kernel by applying a combination of tiling
568 /// of dimensions of the band node and interchanging of two innermost
569 /// modified dimensions. The values of MacroKernelParams's fields are used
570 /// as tile sizes.
572 /// @param Node The schedule node to be modified.
573 /// @param MacroKernelParams Parameters of the macro kernel
574 /// to be used as tile sizes.
575 static isl::schedule_node
576 createMacroKernel(isl::schedule_node Node,
577 MacroKernelParamsTy MacroKernelParams) {
578 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
579 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
580 MacroKernelParams.Kc == 1)
581 return Node;
582 int DimOutNum = isl_schedule_node_band_n_member(Node.get());
583 std::vector<int> TileSizes(DimOutNum, 1);
584 TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
585 TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
586 TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
587 Node = tileNode(Node, "1st level tiling", TileSizes, 1);
588 Node = Node.parent().parent();
589 Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
590 Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
592 return Node.child(0).child(0);
595 /// Get the size of the widest type of the matrix multiplication operands
596 /// in bytes, including alignment padding.
598 /// @param MMI Parameters of the matrix multiplication operands.
599 /// @return The size of the widest type of the matrix multiplication operands
600 /// in bytes, including alignment padding.
601 static uint64_t getMatMulAlignTypeSize(const MatMulInfoTy &MMI) {
602 auto *S = MMI.A->getStatement()->getParent();
603 auto &DL = S->getFunction().getParent()->getDataLayout();
604 auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
605 auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
606 auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
607 return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
610 /// Get the size of the widest type of the matrix multiplication operands
611 /// in bits.
613 /// @param MMI Parameters of the matrix multiplication operands.
614 /// @return The size of the widest type of the matrix multiplication operands
615 /// in bits.
616 static uint64_t getMatMulTypeSize(const MatMulInfoTy &MMI) {
617 auto *S = MMI.A->getStatement()->getParent();
618 auto &DL = S->getFunction().getParent()->getDataLayout();
619 auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
620 auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
621 auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
622 return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
625 /// Get parameters of the BLIS micro kernel.
627 /// We choose the Mr and Nr parameters of the micro kernel to be large enough
628 /// such that no stalls caused by the combination of latencies and dependencies
629 /// are introduced during the updates of the resulting matrix of the matrix
630 /// multiplication. However, they should also be as small as possible to
631 /// release more registers for entries of multiplied matrices.
633 /// @param TTI Target Transform Info.
634 /// @param MMI Parameters of the matrix multiplication operands.
635 /// @return The structure of type MicroKernelParamsTy.
636 /// @see MicroKernelParamsTy
637 static MicroKernelParamsTy getMicroKernelParams(const TargetTransformInfo *TTI,
638 const MatMulInfoTy &MMI) {
639 assert(TTI && "The target transform info should be provided.");
641 // Nvec - Number of double-precision floating-point numbers that can be hold
642 // by a vector register. Use 2 by default.
643 long RegisterBitwidth = VectorRegisterBitwidth;
645 if (RegisterBitwidth == -1)
646 RegisterBitwidth =
647 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
648 auto ElementSize = getMatMulTypeSize(MMI);
649 assert(ElementSize > 0 && "The element size of the matrix multiplication "
650 "operands should be greater than zero.");
651 auto Nvec = RegisterBitwidth / ElementSize;
652 if (Nvec == 0)
653 Nvec = 2;
654 int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
655 Nvec) *
656 Nvec;
657 int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
658 return {Mr, Nr};
661 /// Determine parameters of the target cache.
663 /// @param TTI Target Transform Info.
664 static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
665 auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
666 auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
667 if (FirstCacheLevelSize == -1) {
668 if (TTI->getCacheSize(L1DCache))
669 FirstCacheLevelSize = TTI->getCacheSize(L1DCache).value();
670 else
671 FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
673 if (SecondCacheLevelSize == -1) {
674 if (TTI->getCacheSize(L2DCache))
675 SecondCacheLevelSize = TTI->getCacheSize(L2DCache).value();
676 else
677 SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
679 if (FirstCacheLevelAssociativity == -1) {
680 if (TTI->getCacheAssociativity(L1DCache))
681 FirstCacheLevelAssociativity =
682 TTI->getCacheAssociativity(L1DCache).value();
683 else
684 FirstCacheLevelAssociativity =
685 static_cast<int>(FirstCacheLevelDefaultAssociativity);
687 if (SecondCacheLevelAssociativity == -1) {
688 if (TTI->getCacheAssociativity(L2DCache))
689 SecondCacheLevelAssociativity =
690 TTI->getCacheAssociativity(L2DCache).value();
691 else
692 SecondCacheLevelAssociativity =
693 static_cast<int>(SecondCacheLevelDefaultAssociativity);
697 /// Get parameters of the BLIS macro kernel.
699 /// During the computation of matrix multiplication, blocks of partitioned
700 /// matrices are mapped to different layers of the memory hierarchy.
701 /// To optimize data reuse, blocks should be ideally kept in cache between
702 /// iterations. Since parameters of the macro kernel determine sizes of these
703 /// blocks, there are upper and lower bounds on these parameters.
705 /// @param TTI Target Transform Info.
706 /// @param MicroKernelParams Parameters of the micro-kernel
707 /// to be taken into account.
708 /// @param MMI Parameters of the matrix multiplication operands.
709 /// @return The structure of type MacroKernelParamsTy.
710 /// @see MacroKernelParamsTy
711 /// @see MicroKernelParamsTy
712 static MacroKernelParamsTy
713 getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
714 const MicroKernelParamsTy &MicroKernelParams,
715 const MatMulInfoTy &MMI) {
716 getTargetCacheParameters(TTI);
717 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
718 // it requires information about the first two levels of a cache to determine
719 // all the parameters of a macro-kernel. It also checks that an associativity
720 // degree of a cache level is greater than two. Otherwise, another algorithm
721 // for determination of the parameters should be used.
722 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
723 FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
724 FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
725 return {1, 1, 1};
726 // The quotient should be greater than zero.
727 if (PollyPatternMatchingNcQuotient <= 0)
728 return {1, 1, 1};
729 int Car = floor(
730 (FirstCacheLevelAssociativity - 1) /
731 (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
733 // Car can be computed to be zero since it is floor to int.
734 // On Mac OS, division by 0 does not raise a signal. This causes negative
735 // tile sizes to be computed. Prevent division by Cac==0 by early returning
736 // if this happens.
737 if (Car == 0)
738 return {1, 1, 1};
740 auto ElementSize = getMatMulAlignTypeSize(MMI);
741 assert(ElementSize > 0 && "The element size of the matrix multiplication "
742 "operands should be greater than zero.");
743 int Kc = (Car * FirstCacheLevelSize) /
744 (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
745 double Cac =
746 static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
747 SecondCacheLevelSize;
748 int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
749 int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
751 assert(Mc > 0 && Nc > 0 && Kc > 0 &&
752 "Matrix block sizes should be greater than zero");
753 return {Mc, Nc, Kc};
756 /// Create an access relation that is specific to
757 /// the matrix multiplication pattern.
759 /// Create an access relation of the following form:
760 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
761 /// where I is @p FirstDim, J is @p SecondDim.
763 /// It can be used, for example, to create relations that helps to consequently
764 /// access elements of operands of a matrix multiplication after creation of
765 /// the BLIS micro and macro kernels.
767 /// @see ScheduleTreeOptimizer::createMicroKernel
768 /// @see ScheduleTreeOptimizer::createMacroKernel
770 /// Subsequently, the described access relation is applied to the range of
771 /// @p MapOldIndVar, that is used to map original induction variables to
772 /// the ones, which are produced by schedule transformations. It helps to
773 /// define relations using a new space and, at the same time, keep them
774 /// in the original one.
776 /// @param MapOldIndVar The relation, which maps original induction variables
777 /// to the ones, which are produced by schedule
778 /// transformations.
779 /// @param FirstDim, SecondDim The input dimensions that are used to define
780 /// the specified access relation.
781 /// @return The specified access relation.
782 static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
783 unsigned SecondDim) {
784 auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3);
785 auto AccessRel = isl::map::universe(AccessRelSpace);
786 AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
787 AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
788 AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
789 return MapOldIndVar.apply_range(AccessRel);
792 static isl::schedule_node createExtensionNode(isl::schedule_node Node,
793 isl::map ExtensionMap) {
794 auto Extension = isl::union_map(ExtensionMap);
795 auto NewNode = isl::schedule_node::from_extension(Extension);
796 return Node.graft_before(NewNode);
799 static isl::schedule_node optimizePackedB(isl::schedule_node Node,
800 ScopStmt *Stmt, isl::map MapOldIndVar,
801 MicroKernelParamsTy MicroParams,
802 MacroKernelParamsTy MacroParams,
803 MatMulInfoTy &MMI) {
804 Scop *S = Stmt->getParent();
805 isl::set Domain = Stmt->getDomain();
807 // Create packed array.
808 unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
809 unsigned SecondDimSize = MacroParams.Kc;
810 unsigned ThirdDimSize = MicroParams.Nr;
811 ScopArrayInfo *PackedB =
812 S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B",
813 {FirstDimSize, SecondDimSize, ThirdDimSize});
815 // Compute the access relation for copying from B to PackedB.
816 isl::map AccRelB = MMI.B->getLatestAccessRelation();
817 isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7);
818 AccRelPackedB =
819 AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId());
821 // Create the copy statement and redirect access.
822 ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain);
823 MMI.B->setNewAccessRelation(AccRelPackedB);
825 unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
826 assert(Dim >= 2);
827 // Insert into the schedule tree.
828 isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2);
829 ExtMap = ExtMap.reverse();
830 ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
831 ExtMap = ExtMap.intersect_range(Domain);
832 ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId());
833 return createExtensionNode(Node, ExtMap);
836 static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *,
837 isl::map MapOldIndVar,
838 MicroKernelParamsTy MicroParams,
839 MacroKernelParamsTy MacroParams,
840 MatMulInfoTy &MMI) {
841 isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
842 ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
843 isl::set Domain = Stmt->getDomain();
844 isl::id DomainId = Domain.get_tuple_id();
846 // Create the packed array.
847 unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr;
848 unsigned SecondDimSize = MacroParams.Kc;
849 unsigned ThirdDimSize = MicroParams.Mr;
850 ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo(
851 MMI.A->getElementType(), "Packed_A",
852 {FirstDimSize, SecondDimSize, ThirdDimSize});
854 // Compute the access relation for copying from A to PackedA.
855 isl::map AccRelA = MMI.A->getLatestAccessRelation();
856 isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6);
857 AccRelPackedA =
858 AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId());
859 // { MemrefA[] -> PackedA[] }
860 isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA);
862 // Compute the domain for the copy statement.
863 // Construct the copy statement domain out of the 3 outermost scatter
864 // dimensions (to match the 3 band nodes surrounding the extension node) and
865 // the array elements to copy (one statement instance per array element).
866 // { Scatter[] }
867 isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range();
868 // { Scatter[] -> OutermostScatter[] }
869 isl::map OuterDomainMap =
870 makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6);
871 // { Scatter[] -> MemrefA[] }
872 isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA);
873 // { Scatter[] -> CopyStmt[] }
874 isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom);
875 // { CopyStmt[] }
876 isl::set CopyDomain = DomainTranslator.range();
878 // Translate the access relations to the new domain.
879 // { CopyStmt[] -> MemrefA[] }
880 CopyFrom = CopyFrom.apply_domain(DomainTranslator);
881 // { CopyStmt[] -> PackedA[] }
882 isl::map CopyTo = CopyFrom.apply_range(PackedATranslator);
884 // Create the copy statement and redirect access.
885 ScopStmt *CopyStmt =
886 Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain);
887 MMI.A->setNewAccessRelation(AccRelPackedA);
889 // Insert into the schedule tree.
890 // { Scatter[] -> CopyStmt[] }
891 isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true);
892 ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2);
893 return createExtensionNode(Node, ExtScatterCopy);
896 /// Apply the packing transformation.
898 /// The packing transformation can be described as a data-layout
899 /// transformation that requires to introduce a new array, copy data
900 /// to the array, and change memory access locations to reference the array.
901 /// It can be used to ensure that elements of the new array are read in-stride
902 /// access, aligned to cache lines boundaries, and preloaded into certain cache
903 /// levels.
905 /// As an example let us consider the packing of the array A that would help
906 /// to read its elements with in-stride access. An access to the array A
907 /// is represented by an access relation that has the form
908 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
909 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
910 /// k mod Kc, j mod Nr, i mod Mr].
912 /// To ensure that elements of the array A are read in-stride access, we add
913 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
914 /// Scop::createScopArrayInfo, change the access relation
915 /// S[i, j, k] -> A[i, k] to
916 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
917 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
918 /// the copy statement created by Scop::addScopStmt.
920 /// @param Node The schedule node to be optimized.
921 /// @param MapOldIndVar The relation, which maps original induction variables
922 /// to the ones, which are produced by schedule
923 /// transformations.
924 /// @param MicroParams, MacroParams Parameters of the BLIS kernel
925 /// to be taken into account.
926 /// @param MMI Parameters of the matrix multiplication operands.
927 /// @return The optimized schedule node.
928 static isl::schedule_node
929 optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
930 MicroKernelParamsTy MicroParams,
931 MacroKernelParamsTy MacroParams,
932 MatMulInfoTy &MMI) {
933 isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
934 ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
936 Node = Node.parent().parent().parent().parent().parent().parent();
937 Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2));
939 Node = Node.child(0);
940 Node =
941 optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
943 Node = Node.child(0);
944 Node =
945 optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI);
947 return Node.child(0).child(0).child(0).child(0).child(0);
950 /// Get a relation mapping induction variables produced by schedule
951 /// transformations to the original ones.
953 /// @param Node The schedule node produced as the result of creation
954 /// of the BLIS kernels.
955 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
956 /// to be taken into account.
957 /// @return The relation mapping original induction variables to the ones
958 /// produced by schedule transformation.
959 /// @see ScheduleTreeOptimizer::createMicroKernel
960 /// @see ScheduleTreeOptimizer::createMacroKernel
961 /// @see getMacroKernelParams
962 static isl::map
963 getInductionVariablesSubstitution(isl::schedule_node Node,
964 MicroKernelParamsTy MicroKernelParams,
965 MacroKernelParamsTy MacroKernelParams) {
966 auto Child = Node.child(0);
967 auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
968 auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
969 unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim());
970 if (Dim > 9u)
971 return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9);
972 return MapOldIndVar;
975 /// Isolate a set of partial tile prefixes and unroll the isolated part.
977 /// The set should ensure that it contains only partial tile prefixes that have
978 /// exactly Mr x Nr iterations of the two innermost loops produced by
979 /// the optimization of the matrix multiplication. Mr and Nr are parameters of
980 /// the micro-kernel.
982 /// In case of parametric bounds, this helps to auto-vectorize the unrolled
983 /// innermost loops, using the SLP vectorizer.
985 /// @param Node The schedule node to be modified.
986 /// @param MicroKernelParams Parameters of the micro-kernel
987 /// to be taken into account.
988 /// @return The modified isl_schedule_node.
989 static isl::schedule_node
990 isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
991 MicroKernelParamsTy MicroKernelParams) {
992 isl::schedule_node Child = Node.child(0);
993 isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
994 isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
995 unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim());
996 assert(Dims >= 1);
997 Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
998 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
999 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
1001 isl::union_set IsolateOption =
1002 getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
1003 isl::ctx Ctx = Node.ctx();
1004 auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
1005 Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
1006 Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
1007 Node = Node.parent().parent().parent();
1008 IsolateOption = getIsolateOptions(Prefix, 3);
1009 Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
1010 Node = Node.as<isl::schedule_node_band>().set_ast_build_options(Options);
1011 Node = Node.child(0).child(0).child(0);
1012 return Node;
1015 /// Insert "Loop Vectorizer Disabled" mark node.
1017 /// @param Node The child of the mark node to be inserted.
1018 /// @return The modified isl_schedule_node.
1019 static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
1020 auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr);
1021 return Node.insert_mark(Id).child(0);
1024 /// Restore the initial ordering of dimensions of the band node
1026 /// In case the band node represents all the dimensions of the iteration
1027 /// domain, recreate the band node to restore the initial ordering of the
1028 /// dimensions.
1030 /// @param Node The band node to be modified.
1031 /// @return The modified schedule node.
1032 static isl::schedule_node
1033 getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
1034 assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
1035 if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
1036 return Node;
1037 auto Domain = Node.get_universe_domain();
1038 assert(isl_union_set_n_set(Domain.get()) == 1);
1039 if (Node.get_schedule_depth().release() != 0 ||
1040 (unsignedFromIslSize(isl::set(Domain).tuple_dim()) !=
1041 unsignedFromIslSize(Node.as<isl::schedule_node_band>().n_member())))
1042 return Node;
1043 Node = isl::manage(isl_schedule_node_delete(Node.copy()));
1044 auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
1045 auto PartialScheduleMultiPwAff =
1046 isl::multi_union_pw_aff(PartialSchedulePwAff);
1047 PartialScheduleMultiPwAff =
1048 PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
1049 return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
1052 static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node,
1053 const TargetTransformInfo *TTI,
1054 MatMulInfoTy &MMI) {
1055 assert(TTI && "The target transform info should be provided.");
1056 int DimOutNum = isl_schedule_node_band_n_member(Node.get());
1057 assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
1058 "and, consequently, the corresponding scheduling "
1059 "functions have at least three dimensions.");
1060 Node = getBandNodeWithOriginDimOrder(Node);
1061 Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
1062 int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
1063 int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
1064 Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
1065 NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
1066 Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
1067 auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
1068 auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
1069 Node = createMacroKernel(Node, MacroKernelParams);
1070 Node = createMicroKernel(Node, MicroKernelParams);
1071 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
1072 MacroKernelParams.Kc == 1)
1073 return Node;
1074 auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
1075 MacroKernelParams);
1076 if (MapOldIndVar.is_null())
1077 return Node;
1078 Node = markLoopVectorizerDisabled(Node.parent()).child(0);
1079 Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
1080 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
1081 MacroKernelParams, MMI);
1084 /// Check if this node contains a partial schedule that could
1085 /// probably be optimized with analytical modeling.
1087 /// isMatrMultPattern tries to determine whether the following conditions
1088 /// are true:
1089 /// 1. the partial schedule contains only one statement.
1090 /// 2. there are exactly three input dimensions.
1091 /// 3. all memory accesses of the statement will have stride 0 or 1, if we
1092 /// interchange loops (switch the variable used in the inner loop to
1093 /// the outer loop).
1094 /// 4. all memory accesses of the statement except from the last one, are
1095 /// read memory access and the last one is write memory access.
1096 /// 5. all subscripts of the last memory access of the statement don't
1097 /// contain the variable used in the inner loop.
1098 /// If this is the case, we could try to use an approach that is similar to
1099 /// the one used to get close-to-peak performance of matrix multiplications.
1101 /// @param Node The node to check.
1102 /// @param D The SCoP dependencies.
1103 /// @param MMI Parameters of the matrix multiplication operands.
1104 static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D,
1105 MatMulInfoTy &MMI) {
1106 auto PartialSchedule = isl::manage(
1107 isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
1108 if (isl_schedule_node_band_n_member(Node.get()) < 3 ||
1109 Node.get_schedule_depth().release() != 0 ||
1110 isl_union_map_n_map(PartialSchedule.get()) != 1)
1111 return false;
1112 auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
1113 if (containsMatrMult(NewPartialSchedule, D, MMI))
1114 return true;
1115 return false;
1118 /// Get the dimension size.
1120 /// Return the size of the dimension @p Pos, which is obtained from @p SAI.
1121 /// Return -1 in the case of the first dimension of a multi-dimensional array,
1122 /// since the ScopArrayInfo class does not carry size information.
1124 /// @param SAI The information about the array.
1125 /// @param Pos The position of the dimension.
1126 /// @return The size of the dimension.
1127 static int getDimSize(const ScopArrayInfo *SAI, unsigned Pos) {
1128 if (Pos == 0)
1129 return -1;
1130 const llvm::SCEV *SCEVDimSize = SAI->getDimensionSize(Pos);
1131 assert(SCEVDimSize);
1132 auto *ConstantDimSize = dyn_cast<const SCEVConstant>(SCEVDimSize);
1133 assert(ConstantDimSize);
1134 auto *IntDimSize = dyn_cast<ConstantInt>(ConstantDimSize->getValue());
1135 assert(IntDimSize);
1136 return IntDimSize->getSExtValue();
1139 /// Check whether the access relation has the specified form.
1141 /// Check that the access relation @p AccMap has the form T[I0, …, In], where
1142 /// indexes I0, …, In are specified by @p Dimensions.
1144 /// @param Domain The domain of the access relation.
1145 /// @param AccMap The access relation to be checked.
1146 /// @param Dimensions The permutation of the subset of the input dimensions.
1147 /// @return True if @p AccMap has the expected form and false,
1148 /// otherwise.
1149 static bool isCorrectAccessMap(isl::set Domain, isl::map AccMap,
1150 ArrayRef<int> Dimensions) {
1151 isl::space Space = AccMap.get_space();
1152 if (unsignedFromIslSize(Space.dim(isl::dim::out)) != Dimensions.size())
1153 return false;
1155 // Create an access relation of the following form:
1156 // [I0, …, Im] -> [Il, …, In], where indexes
1157 // Il, …, In are specified by @p Dimensions.
1158 isl::map PossibleTensor = isl::map::universe(Space);
1159 unsigned DimInSize = unsignedFromIslSize(Space.dim(isl::dim::in));
1160 for (unsigned i = 0; i < Dimensions.size(); i++) {
1161 const int InPos = Dimensions[i];
1162 if ((InPos >= static_cast<int>(DimInSize)) || (InPos < 0))
1163 return false;
1164 PossibleTensor =
1165 PossibleTensor.equate(isl::dim::in, InPos, isl::dim::out, i);
1168 AccMap = AccMap.intersect_domain(Domain);
1169 PossibleTensor = PossibleTensor.intersect_domain(Domain);
1171 // If AccMap != PossibleTensor here (the two maps have been gisted at
1172 // this point), it means that the writes are not complete, or in other
1173 // words, it is a Partial write and Partial writes must be rejected.
1174 return AccMap.is_equal(PossibleTensor);
1177 /// Check whether the access represents the tensor contraction operand.
1179 /// Check that the access relation @p AccMap has the form T[i1, …, in].
1180 /// Obtained indexes i1, …, in, their sizes and their permutation are stored
1181 /// into @p IndexSet, @p DimensionSizes, and @p Dimensions, respectively.
1183 /// @param Domain The domain of the access relation.
1184 /// @param AccMap The access relation to be checked.
1185 /// @param IndexSet The subset of the input dimensions.
1186 /// @param DimensionSizes Sizes of the input dimensions of @p Dimensions.
1187 /// @param Dimensions The permutation of the subset of the input dimensions.
1188 /// @return True if @p AccMap has the expected form and false,
1189 /// otherwise.
1190 static bool isTCOperandAcc(isl::set Domain, isl::map AccMap,
1191 SmallDenseSet<int> &IndexSet,
1192 SmallVectorImpl<int> &DimensionSizes,
1193 SmallVectorImpl<int> &Dimensions) {
1194 isl::id Id = AccMap.get_tuple_id(isl::dim::out);
1195 const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id);
1196 assert(SAI && "AccMap should represent memory access");
1198 // Fix values of output dimensions with respect to their positions.
1199 // In the case of the tensor contraction, values of output dimensions are
1200 // fixed and form a permutation of a subset of values of input dimensions.
1202 // For example, in the case of Stmt[i][j][k] -> A[k][i], which represents
1203 // the operand of the tensor contraction, we get the following map by fixing
1204 // the output dimensions Stmt[1][j][0] -> A[0][1].
1206 // We store the permutation of the subset of the input dimensions {2, 0} into
1207 // @p Dimensions.
1209 // The obtained permutation and the isCorrectAccessMap function are used to
1210 // check whether the access relation @p AccMap represents the tensor
1211 // contraction operand. For example, in the case of
1212 // Stmt[i][j][k] -> A[i-1][j+1], we get Stmt[1][0][k] -> A[0][1] and,
1213 // consequently, {1, 0}, which is rejected by isCorrectAccessMap,
1214 // since it corresponds to Stmt[i][j][k] -> A[j][i].
1215 isl::map CheckMap = isl::manage(AccMap.copy());
1216 unsigned OutDimNum = unsignedFromIslSize(CheckMap.dim(isl::dim::out));
1217 for (unsigned i = 0; i < OutDimNum; i++)
1218 CheckMap = CheckMap.fix_si(isl::dim::out, i, i);
1220 // Try to obtain the permutation and sizes of corresponding input dimensions.
1221 Dimensions.assign(OutDimNum, -1);
1222 for (unsigned i : rangeIslSize(0, CheckMap.dim(isl::dim::in))) {
1223 isl::val Val = getConstant(CheckMap, isl::dim::in, i);
1224 if (!Val.is_int())
1225 continue;
1226 int OutPos = -1;
1227 llvm::APInt ValAPInt = APIntFromVal(Val);
1228 if (ValAPInt.isSignedIntN(32))
1229 OutPos = ValAPInt.getSExtValue();
1230 if ((OutPos < 0) || (OutPos >= static_cast<int>(OutDimNum)) ||
1231 IndexSet.count(i))
1232 return false;
1233 IndexSet.insert(i);
1234 Dimensions[OutPos] = i;
1235 if (DimensionSizes[i] <= 0)
1236 DimensionSizes[i] = getDimSize(SAI, OutPos);
1239 return isCorrectAccessMap(Domain, AccMap, Dimensions);
1242 /// Find the intersection of two sets.
1244 /// Find the intersection of the set @p A and the set @p B.
1246 /// @param A, B Sets to intersect.
1247 /// @return The set intersection.
1248 static SmallDenseSet<int> intersect(const SmallDenseSet<int> &A,
1249 const SmallDenseSet<int> &B) {
1250 SmallDenseSet<int> Intersection = A;
1251 set_intersect(Intersection, B);
1252 return Intersection;
1255 /// Check whether the set is a superset.
1257 /// Check that the set @p A is a superset of @p B.
1259 /// @param A, B Sets to be checked.
1260 /// @return True if the set A is a superset of B.
1261 static bool isSuperset(const SmallDenseSet<int> &A,
1262 const SmallDenseSet<int> &B) {
1263 return intersect(A, B).size() == B.size();
1266 /// Find the union of two sets.
1268 /// Find the union of the set @p A and the set @p B.
1270 /// @param A, B Sets to unite.
1271 /// @return The set union.
1272 static SmallDenseSet<int> unite(const SmallDenseSet<int> &A,
1273 const SmallDenseSet<int> &B) {
1274 SmallDenseSet<int> Union = A;
1275 set_union(Union, B);
1276 return Union;
1279 /// Determine the access that writes to the tensor, which contains
1280 /// the result of the tensor contraction.
1282 /// @param Domain The domain of the statement.
1283 /// @param Stmt The statement, which writes to memory.
1284 /// @param TCI The information about the tensor contraction.
1285 /// @param IandJIndexSet The set, which contains free indexes of tensors.
1286 /// @return The determined MemoryAccess, or nullptr if there is no necessary
1287 /// access within the SCoP.
1288 static MemoryAccess *getWriteAccess(isl::set Domain, ScopStmt *Stmt,
1289 TCInfoTy &TCI,
1290 SmallDenseSet<int> &IandJIndexSet) {
1291 TCI.WriteToC = nullptr;
1292 SmallVector<MemoryAccess *, 32> Accesses = getAccessesInOrder(*Stmt);
1293 for (MemoryAccess *MemA : reverse(Accesses)) {
1294 // A TC-like does not contain write scalar memory accesses
1295 if (!MemA->isLatestArrayKind())
1296 return nullptr;
1297 // The last memory access should be a write memory access.
1298 if (!MemA->isWrite())
1299 return nullptr;
1301 isl::map AccMap = MemA->getLatestAccessRelation();
1302 if (!isTCOperandAcc(Domain, AccMap, IandJIndexSet, TCI.DimensionSizes,
1303 TCI.CDimensions))
1304 return nullptr;
1306 return MemA;
1308 return nullptr;
1311 /// Determine an access, which reads elements of an operand of the tensor
1312 /// contraction
1314 /// @param MemAccessPtr The access, which reads elements of the tensor.
1315 /// @param IndexSet The set, which contains indexes of the tensors.
1316 /// @param IandJIndexSet The set, which contains free indexes of tensors.
1317 /// @param Dimensions The permutation of the subset of the input dimensions.
1318 /// @param TCI The information about the tensor contraction.
1319 /// @return True if the memory access @p MemAccessPtr corresponds
1320 /// to the tensor contraction.
1321 static bool setReadAccess(MemoryAccess *MemAccessPtr,
1322 const SmallDenseSet<int> &IndexSet,
1323 const SmallDenseSet<int> &IandJIndexSet,
1324 ArrayRef<int> Dimensions, TCInfoTy &TCI) {
1325 if (!TCI.A) {
1326 // Probably IndexSet is a union of I and P sets.
1327 if (!isSuperset(IndexSet, TCI.P))
1328 return false;
1330 // Obtain the set I.
1331 TCI.I = set_difference(IndexSet, TCI.P);
1332 if (!isSuperset(IandJIndexSet, TCI.I))
1333 return false;
1335 // Obtain the set J.
1336 TCI.J = set_difference(IandJIndexSet, TCI.I);
1338 // Set the first operand of the tensor contraction.
1339 TCI.A = MemAccessPtr;
1340 llvm::replace(TCI.ADimensions, TCI.ADimensions.begin(),
1341 TCI.ADimensions.end(), Dimensions.begin(), Dimensions.end());
1342 return true;
1345 if (!TCI.B) {
1346 // IndexSet should be a union of J and P sets.
1347 if (unite(TCI.P, TCI.J) != IndexSet)
1348 return false;
1350 // Set the second operand of the tensor contraction.
1351 TCI.B = MemAccessPtr;
1352 llvm::replace(TCI.BDimensions, TCI.BDimensions.begin(),
1353 TCI.BDimensions.end(), Dimensions.begin(), Dimensions.end());
1354 return true;
1357 return false;
1360 /// Check that all memory accesses of the statement, except from the last
1361 /// one, are read memory accesses, which read elements of operands of the tensor
1362 /// contraction and its result.
1364 /// @param Domain The domain of the statement.
1365 /// @param Stmt The statement, which writes to memory.
1366 /// @param TCI The information about the tensor contraction.
1367 /// @param IandJIndexSet The set, which contains free indexes of tensors.
1368 /// @return True if all read memory accesses of the statement @p Stmt correspond
1369 /// to the tensor contraction.
1370 static bool setReadAccesses(isl::set Domain, ScopStmt *Stmt, TCInfoTy &TCI,
1371 SmallDenseSet<int> &IandJIndexSet) {
1372 TCI.A = nullptr;
1373 TCI.B = nullptr;
1374 TCI.ReadFromC = nullptr;
1375 SmallVector<MemoryAccess *, 32> Accesses = getAccessesInOrder(*Stmt);
1376 for (auto *MemA = Accesses.begin(); *MemA != TCI.WriteToC; MemA++) {
1377 MemoryAccess *MemAccessPtr = *MemA;
1379 // All memory accesses, except from the last one, should be read memory
1380 // accesses.
1381 if (MemAccessPtr->isWrite())
1382 return false;
1384 isl::map AccMap = MemAccessPtr->getLatestAccessRelation();
1386 if (!MemAccessPtr->isLatestArrayKind()) {
1387 // Check whether the scalar read memory access is not partial.
1388 if (!Domain.is_subset(AccMap.domain()))
1389 return false;
1390 continue;
1391 return false;
1394 // There is only one memory access, which reads elements of the result of
1395 // the tensor contraction.
1396 if (AccMap.is_equal(TCI.WriteToC->getLatestAccessRelation())) {
1397 if (TCI.ReadFromC)
1398 return false;
1399 TCI.ReadFromC = MemAccessPtr;
1400 continue;
1403 SmallVector<int> Dimensions;
1404 SmallDenseSet<int> IndexSet;
1405 if (!isTCOperandAcc(Domain, AccMap, IndexSet, TCI.DimensionSizes,
1406 Dimensions))
1407 return false;
1409 if (!setReadAccess(MemAccessPtr, IndexSet, IandJIndexSet, Dimensions, TCI))
1410 return false;
1413 // Check that there are read memory accesses, which read elements of operands
1414 // of the tensor contraction and its result.
1415 return TCI.ReadFromC && TCI.A && TCI.B;
1418 /// Check accesses to operands of the tensor contraction.
1420 /// Check that accesses of the SCoP statement, which corresponds to
1421 /// the partial schedule @p PartialSchedule, represent accesses
1422 /// to the non-scalar operands of the tensor contraction.
1424 /// @param Domain The domain of the SCoP statement.
1425 /// @param PartialSchedule The partial schedule of the SCoP statement.
1426 /// @param TCI Parameters of the tensor contraction operands.
1427 /// @return True if the corresponding SCoP statement
1428 /// represents tensor contraction and false,
1429 /// otherwise.
1430 static bool containsOnlyTCAcc(isl::set Domain, isl::map PartialSchedule,
1431 TCInfoTy &TCI) {
1432 isl::id InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
1433 ScopStmt *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
1435 // In region statements, the order of memory accesses execution is not
1436 // predictable at compile-time.
1437 if ((Stmt->size() <= 1) || Stmt->isRegionStmt())
1438 return false;
1440 unsigned DimNum = unsignedFromIslSize(PartialSchedule.dim(isl::dim::in));
1441 TCI.DimensionSizes.resize(DimNum);
1442 SmallDenseSet<int> IandJIndexSet;
1444 TCI.WriteToC = getWriteAccess(Domain, Stmt, TCI, IandJIndexSet);
1445 if (!TCI.WriteToC)
1446 return false;
1448 if (intersect(IandJIndexSet, TCI.P).size() != 0)
1449 return false;
1451 if (!setReadAccesses(Domain, Stmt, TCI, IandJIndexSet))
1452 return false;
1454 return true;
1457 /// Check that dependency corresponds to the tensor contraction carried over
1458 /// loop dimension @p Dim.
1460 /// Check that the dependency has the form
1461 /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
1462 /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
1463 /// statement. For this purpose, we analyze the set @p DepDelta, which
1464 /// represents the differences between image elements and domain elements of
1465 /// the corresponding map.
1467 /// @param DepDelta The set contains the differences between image elements
1468 /// and corresponding domain elements of the map, which
1469 /// represents the dependency.
1470 /// @param Dim The position of the index ki.
1471 /// @param BoundDeltas In the case of indexes of ki, the difference between
1472 /// image elements and corresponding domain elements
1473 /// corresponds to the difference between lexicographic
1474 /// minimum and lexicographic maximum of the corresponding
1475 /// dimension of the domain of the statement.
1476 /// @param IndexSet Obtained indexes ki, which describe the dependency.
1477 /// @return True if dependencies correspond to the tensor contraction
1478 /// and false, otherwise.
1479 static bool isReductionCarriedOverDim(isl::set DepDelta, unsigned Dim,
1480 isl::pw_multi_aff BoundDeltas,
1481 const SmallDenseSet<int> &IndexSet) {
1482 isl::space Space = DepDelta.get_space();
1483 isl::set Superset = isl::set::universe(Space);
1484 for (unsigned i = 0; i < Dim; i += 1)
1485 Superset = Superset.fix_si(isl::dim::set, i, 0);
1486 Superset = Superset.fix_si(isl::dim::set, Dim, 1);
1488 // Check that the difference between the image element and the domain element
1489 // is equal to one in the case of the index ki. Image elements and
1490 // corresponding domain elements should be equal in the case of positions,
1491 // which are lower than the specified position.
1492 if (!DepDelta.is_subset(Superset))
1493 return false;
1495 // Compute a set, which is used to analyze how values of
1496 // the domain are related to the map that describes the dependency.
1497 isl_pw_multi_aff *DepDeltaPW = isl_pw_multi_aff_from_set(DepDelta.copy());
1498 BoundDeltas = BoundDeltas.add(isl::manage(DepDeltaPW));
1499 isl_set *ComplementRawSet = isl_set_from_pw_multi_aff(BoundDeltas.release());
1500 isl::set Complement = isl::manage(ComplementRawSet);
1502 for (unsigned i : rangeIslSize(Dim + 1, DepDelta.dim(isl::dim::set))) {
1503 if (!IndexSet.count(i)) {
1504 // Check the difference between the image element and the domain element
1505 // in the case of indexes, which do not describe the dependency.
1506 if (DepDelta.plain_get_val_if_fixed(isl::dim::set, i).is_zero())
1507 continue;
1508 return false;
1511 // In the case of other indexes, which describe the dependency,
1512 // the difference between the image element and the domain element
1513 // should be equal to the difference between lexicographic minimum and
1514 // lexicographic maximum of the domain of the statement.
1515 if (!Complement.plain_get_val_if_fixed(isl::dim::set, i).is_zero())
1516 return false;
1519 return true;
1522 /// Check whether dependencies are over the complete domain.
1524 /// In the case of the tensor contraction RAW, WAW, WAR dependencies
1525 /// have the form
1526 /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
1527 /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
1528 /// statement. Consequently, the domain of the dependencies
1529 /// can be described as
1530 /// Domain / Domain ∩ S(…, max(kn),…) ∩ S(…, max(k(i + 1)),…),
1531 /// where Domain is the domain of the statement S.
1533 /// For example, in the case of the following tensor contraction,
1534 /// corresponding domains will have the following form.
1536 /// An example of the tensor contraction:
1537 /// for (i = 0; i < 1024; i++)
1538 /// for (j = 0; j < 1024; j++)
1539 /// for (l = 0; l < 64; ++l)
1540 /// for (w = 0; w < 64; ++w)
1541 /// C[i][j] += A[i][l][w] * B[w][j][l];
1543 /// The domain of the statement:
1544 /// { S[i0, i1, i2, i3] : i0 >= 0 and i0 <= 1023 and
1545 /// i1 >= 0 and i1 <= 1023 and
1546 /// i2 >= 0 and i2 <= 63 and
1547 /// i3 >= 0 and i3 <= 63 }
1549 /// The domain of the dependencies:
1550 /// { S[i0, i1, i2, i3] : (i0 >= 0 and i0 <= 1023 and
1551 /// i1 >= 0 and i1 <= 1023 and
1552 /// i2 >= 0 and i2 <= 63 and
1553 /// i3 >= 0 and i3 <= 62) or
1554 /// (i3 = 63 and i0 >= 0 and i0 <= 1023 and
1555 /// i1 >= 0 and i1 <= 1023 and
1556 /// i2 >= 0 and i2 <= 62) }
1558 /// @param Domain The domain of the statement.
1559 /// @param DepsForStmt RAW and RED dependencies for the statement.
1560 /// @param UpperBound The lexicographic maximum of the elements in
1561 /// the @p Domain.
1562 /// @param IndexSet Obtained indexes ki, which describe the dependencies.
1563 /// @return True if dependencies are over the complete domain
1564 /// and false, otherwise.
1565 static bool areDepsOverCompleteDomain(isl::set Domain, isl::map DepsForStmt,
1566 isl::pw_multi_aff UpperBound,
1567 SmallDenseSet<int> &IndexSet) {
1568 isl_set *UpperBoundRawSet = isl_set_from_pw_multi_aff(UpperBound.copy());
1569 isl::set UpperBoundSet = isl::manage(UpperBoundRawSet);
1571 isl::set DomainRed = isl::manage(Domain.copy());
1572 for (const auto It : IndexSet) {
1573 isl::val FixedVal = UpperBoundSet.plain_get_val_if_fixed(isl::dim::set, It);
1574 if (FixedVal.is_nan())
1575 return false;
1576 DomainRed = isl::manage(
1577 isl_set_fix_val(DomainRed.copy(), isl_dim_set, It, FixedVal.release()));
1579 return DepsForStmt.domain().intersect(Domain).is_equal(
1580 Domain.subtract(DomainRed));
1583 /// Check that dependencies correspond to the tensor contraction.
1585 /// Check that there are only true dependencies of the form
1586 /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
1587 /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
1588 /// statement represented by @p Schedule. Such dependencies are produced by
1589 /// the tensor contraction. Obtained indexes ki are stored into @p IndexSet.
1591 /// The form of anti and output dependencies is specified implicitly by
1592 /// the form the SCoP statement, which is checked by subsequent analysis.
1594 /// @param Schedule The schedule of the SCoP statement.
1595 /// @param D The SCoP dependencies.
1596 /// @param Domain The domain of the statement.
1597 /// @param IndexSet Obtained indexes ki, which describe the dependencies.
1598 /// @return True if dependencies correspond to the tensor contraction
1599 /// and false, otherwise.
1600 static bool containsOnlyTcDeps(isl::map Schedule, const Dependences *D,
1601 SmallDenseSet<int> &IndexSet, isl::set Domain) {
1602 IslMaxOperationsGuard MaxOpGuard(Schedule.ctx().get(), OptComputeOut);
1604 isl::union_map Dep =
1605 D->getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED);
1607 isl::space DomainSpace = Schedule.get_space().domain();
1608 isl::space Space = DomainSpace.map_from_domain_and_range(DomainSpace);
1609 isl::map DepsForStmt = Dep.extract_map(Space);
1610 isl::set DepDeltas = DepsForStmt.deltas();
1611 isl::size DeltasDimNum = DepDeltas.dim(isl::dim::set);
1612 isl::pw_multi_aff LowerBound = Domain.lexmin_pw_multi_aff();
1613 isl::pw_multi_aff UpperBound = Domain.lexmax_pw_multi_aff();
1614 isl::pw_multi_aff BoundDeltas = UpperBound.sub(LowerBound);
1616 for (int i : reverse(rangeIslSize(0, DeltasDimNum))) {
1617 // In the case of the tensor contraction, the difference between image
1618 // elements and domain elements lies on a hyperplane where a dimension
1619 // has the fixed value one.
1620 isl::set Intersection = DepDeltas.fix_si(isl::dim::set, i, 1);
1621 if (Intersection.is_empty())
1622 continue;
1624 if (!isReductionCarriedOverDim(Intersection, i, BoundDeltas, IndexSet))
1625 return false;
1627 IndexSet.insert(i);
1628 DepDeltas = DepDeltas.subtract(Intersection);
1631 // In the case of the tensor contraction, all dependencies should have
1632 // the previously described form.
1633 if ((unsignedFromIslSize(DeltasDimNum) == 0) || !DepDeltas.is_empty())
1634 return false;
1636 return areDepsOverCompleteDomain(Domain, DepsForStmt, UpperBound, IndexSet);
1639 /// Check if the SCoP statement could probably be optimized with analytical
1640 /// modeling.
1642 /// containsTCInfoTy tries to determine whether the following conditions
1643 /// are true:
1645 /// 1. The last memory access modeling an array, MA1, represents writing to
1646 /// memory and has the form S(..., I, ..., J, ...) -> M(shuffle(I, J)),
1647 /// where S is the SCoP statement under consideration and shuffle(I, J)
1648 /// is a permutation of indexes of sets I and J.
1649 /// 2. There are only true dependencies of the form
1650 /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) ->
1651 /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP
1652 /// statement represented by @p Schedule and ki are indexes of the set P.
1653 /// 3. SCoP contains an arbitrary number of reads from constants and only three
1654 /// access relations, MA2, MA3, and MA4 that represent reading from memory
1655 /// and have the form
1656 /// S(..., I, ..., P, ...) -> M(shuffle(I, P)),
1657 /// S(..., P, ..., J, ...) -> M(shuffle(J, P)),
1658 /// S(...) -> M(shuffle(I, J)), respectively.
1660 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
1661 /// to check.
1662 /// @param D The SCoP dependencies.
1663 /// @param TCI Parameters of the tensor contraction operands.
1664 /// @param Domain The domain of the statement.
1665 /// @return True if dependencies and memory accesses correspond to the tensor
1666 /// contraction and false, otherwise.
1667 static bool containsTCInfoTy(isl::map PartialSchedule, const Dependences *D,
1668 TCInfoTy &TCI, isl::set Domain) {
1669 if (!containsOnlyTcDeps(PartialSchedule, D, TCI.P, Domain))
1670 return false;
1672 // TODO: handle cases of scalar multiplication if needed.
1673 if (TCI.P.size() == 0)
1674 return false;
1676 if (!containsOnlyTCAcc(Domain, PartialSchedule, TCI))
1677 return false;
1679 // TODO: handle cases of GEMV if needed.
1680 if ((TCI.I.size() == 0) || (TCI.J.size() == 0))
1681 return false;
1683 return true;
1686 /// Check if this node contains a partial schedule that could
1687 /// probably be optimized with analytical modeling.
1689 /// isTCPattern is used to determine whether the SCoP represents a TC-like
1690 /// kernel [1], which is a perfectly nested set of loops, with a data usage
1691 /// pattern that is similar to that produced by the tensor contraction.
1693 /// A TC-like kernel can be defined as follows:
1695 /// 1. It satisfies the requirements of the polyhedral model.
1696 /// 2. Without loss of generality, it contains three nonempty bundles of
1697 /// one-dimensional for-loops with induction variables that are grouped into
1698 /// bundles I = i0...i(r-1), J = j0..j(s-1), and P = p0...p(t-1), and they
1699 /// are incremented by one.
1700 /// 3. The innermost loop body can be represented as a statement of the form
1701 /// C(shuffle(I, J)) = E(A(shuffle(I, P)), B(shuffle(P, J)),
1702 /// C(shuffle(I, J))), where A(shuffle(I, P)), B(shuffle(P, J)),
1703 /// C(shuffle(I, J)) are accesses to tensors A, B, C, respectively,
1704 /// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of the
1705 /// enclosed indices, and E is an expression that contains reads from
1706 /// the tensors A, B, C, and an arbitrary number of reads from constants
1707 /// with respect to bundles I, J, and P.
1709 /// TC can be considered as a particular case of a TC-like kernel.
1711 /// The order of loops with indexes from P should be preserved. Otherwise,
1712 /// isTCPattern should check if a commutative operation is used.
1714 /// isTCPattern performs the following steps to check whether the SCoP
1715 /// corresponds to a definition of a TC-like kernel:
1717 /// 1. Checks that the node is the innermost band node.
1718 /// 2. Checks that the partial schedule contains only one statement.
1719 /// 3. Check that all ancestors of the node contain all band nodes for
1720 /// the statement and only mark nodes interleave such band nodes. This
1721 /// corresponds to a straightforward implementation of TC.
1722 /// 4. Analyses the dependencies to determine contraction dimensions.
1723 /// 5. Check that the last memory access modeling an array, represents writing
1724 /// to the result of the TC-like kernel.
1725 /// 6. Check that SCoP contains only three access relations that represent
1726 /// reading of the operands of the TC-like kernel and an arbitrary number of
1727 /// reads from constants.
1729 /// [1] - Gareev R., Grosser T., Kruse M. High-Performance Generalized Tensor
1730 /// Operations: A Compiler-Oriented Approach // ACM Transactions
1731 /// Architecture and Code Optimization (TACO). 2018.
1732 /// Vol. 15, no. 3. P. 34:1–34:27. DOI: 10.1145/3235029.
1734 /// If this is the case, we could logically represent tensors as matrices and
1735 /// apply algorithms, which are used to get close-to-peak performance of
1736 /// matrix multiplications in manually tuned BLAS libraries (e.g., BLIS).
1738 /// @param Node The node to check.
1739 /// @param D The SCoP dependencies.
1740 /// @param TCI Parameters of the tensor contraction operands.
1741 static bool isTCPattern(isl::schedule_node Node, const Dependences *D,
1742 TCInfoTy &TCI) {
1743 Node = Node.child(0);
1744 isl::union_map PartialSchedule = Node.get_prefix_schedule_union_map();
1745 isl::union_set Domain = Node.domain();
1746 Node = Node.parent();
1748 // The partial schedule should contain only one statement.
1749 // TODO: This constraint should not be intrinsic to the algorithm.
1750 if (isl_union_set_n_set(Domain.get()) != 1)
1751 return false;
1753 isl_schedule_node_type NodeType = isl_schedule_node_get_type(Node.get());
1755 // Check that all ancestors of the node contain all band nodes for
1756 // the statement, which represents the TC-like kernel, and only mark nodes
1757 // interleave such band nodes. This corresponds to a straightforward
1758 // implementation of TC with/without DeLICM applied.
1760 // For example, this covers the matrix multiplication pattern after a full
1761 // run of -polly-optree and -polly-delicm, where the write access is not
1762 // through the original memory access, but trough a PHI node that was
1763 // delicmed. Subsequently, such band nodes will be replaced by a single band
1764 // node.
1766 // The corresponding schedule can be the following, where Stmt_for_body8
1767 // contains the matrix multiplication:
1769 // domain: "{ Stmt_for_body8[i0, i1, i2] : 0 <= i0 <= 1599 and
1770 // 0 <= i1 <= 1799 and
1771 // 0 <= i2 <= 2199;
1772 // Stmt_for_body3[i0, i1] : 0 <= i0 <= 1599 and
1773 // 0 <= i1 <= 1799;
1774 // Stmt_for_body3_last[i0, i1] : 0 <= i0 <= 1599 and
1775 // 0 <= i1 <= 1799 }"
1776 // child:
1777 // sequence:
1778 // - filter: "{ Stmt_for_body3[i0, i1] }"
1779 // child:
1780 // schedule: "[{ Stmt_for_body3[i0, i1] -> [(i0)] },
1781 // { Stmt_for_body3[i0, i1] -> [(i1)] }]"
1782 // permutable: 1
1783 // coincident: [ 1, 1 ]
1784 // - filter: "{ Stmt_for_body3_last[i0, i1] }"
1785 // child:
1786 // schedule: "[{ Stmt_for_body3_last[i0, i1] -> [(i0)] },
1787 // { Stmt_for_body3_last[i0, i1] -> [(i1)] }]"
1788 // permutable: 1
1789 // coincident: [ 1, 1 ]
1790 // - filter: "{ Stmt_for_body8[i0, i1, i2] }"
1791 // child:
1792 // schedule: "[{ Stmt_for_body8[i0, i1, i2] -> [(i0)] },
1793 // { Stmt_for_body8[i0, i1, i2] -> [(i1)] },
1794 // { Stmt_for_body8[i0, i1, i2] -> [(i2)] }]"
1795 // permutable: 1
1796 // coincident: [ 1, 1, 0 ]
1798 while (NodeType != isl_schedule_node_domain) {
1799 if (NodeType == isl_schedule_node_filter) {
1800 if (!Node.parent().isa<isl::schedule_node_sequence>() ||
1801 !Node.parent().parent().isa<isl::schedule_node_domain>())
1802 return false;
1803 break;
1806 if ((NodeType != isl_schedule_node_band) &&
1807 (NodeType != isl_schedule_node_mark))
1808 return false;
1810 Node = Node.parent();
1811 NodeType = isl_schedule_node_get_type(Node.get());
1814 isl::map PartialScheduleMap = isl::map::from_union_map(PartialSchedule);
1815 if (containsTCInfoTy(PartialScheduleMap, D, TCI, isl::set(Domain)))
1816 return true;
1818 return false;
1821 } // namespace
1823 isl::schedule_node
1824 polly::tryOptimizeMatMulPattern(isl::schedule_node Node,
1825 const llvm::TargetTransformInfo *TTI,
1826 const Dependences *D) {
1827 TCInfoTy TCI;
1828 if (PMBasedTCOpts && isTCPattern(Node, D, TCI))
1829 POLLY_DEBUG(dbgs() << "The tensor contraction pattern was detected\n");
1830 MatMulInfoTy MMI;
1831 if (PMBasedMMMOpts && isMatrMultPattern(Node, D, MMI)) {
1832 POLLY_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
1833 return optimizeMatMulPattern(Node, TTI, MMI);
1835 return {};