[clang][extract-api] Emit "navigator" property of "name" in SymbolGraph
[llvm-project.git] / compiler-rt / lib / hwasan / hwasan_linux.cpp
blobba9e23621cc2ae9707ce01c40394a2720d138200
1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
18 # include <dlfcn.h>
19 # include <elf.h>
20 # include <errno.h>
21 # include <link.h>
22 # include <pthread.h>
23 # include <signal.h>
24 # include <stdio.h>
25 # include <stdlib.h>
26 # include <sys/prctl.h>
27 # include <sys/resource.h>
28 # include <sys/time.h>
29 # include <unistd.h>
30 # include <unwind.h>
32 # include "hwasan.h"
33 # include "hwasan_dynamic_shadow.h"
34 # include "hwasan_interface_internal.h"
35 # include "hwasan_mapping.h"
36 # include "hwasan_report.h"
37 # include "hwasan_thread.h"
38 # include "hwasan_thread_list.h"
39 # include "sanitizer_common/sanitizer_common.h"
40 # include "sanitizer_common/sanitizer_procmaps.h"
41 # include "sanitizer_common/sanitizer_stackdepot.h"
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 // Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 // Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 // Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 // Tested with check-hwasan on aarch64-linux-android.
53 # if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 # endif
58 namespace __hwasan {
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
65 static void ProtectGap(uptr addr, uptr size) {
66 __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67 kZeroBaseMaxShadowStart);
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kHighMemStart;
73 uptr kHighMemEnd;
75 static void PrintRange(uptr start, uptr end, const char *name) {
76 Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
79 static void PrintAddressSpaceLayout() {
80 PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81 if (kHighShadowEnd + 1 < kHighMemStart)
82 PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83 else
84 CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85 PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86 if (kLowShadowEnd + 1 < kHighShadowStart)
87 PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88 else
89 CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90 PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91 if (kLowMemEnd + 1 < kLowShadowStart)
92 PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93 else
94 CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95 PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96 CHECK_EQ(0, kLowMemStart);
99 static uptr GetHighMemEnd() {
100 // HighMem covers the upper part of the address space.
101 uptr max_address = GetMaxUserVirtualAddress();
102 // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103 // properly aligned:
104 max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105 return max_address;
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109 __hwasan_shadow_memory_dynamic_address =
110 FindDynamicShadowStart(shadow_size_bytes);
113 void InitializeOsSupport() {
114 # define PR_SET_TAGGED_ADDR_CTRL 55
115 # define PR_GET_TAGGED_ADDR_CTRL 56
116 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
117 // Check we're running on a kernel that can use the tagged address ABI.
118 int local_errno = 0;
119 if (internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0),
120 &local_errno) &&
121 local_errno == EINVAL) {
122 # if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
123 // Some older Android kernels have the tagged pointer ABI on
124 // unconditionally, and hence don't have the tagged-addr prctl while still
125 // allow the ABI.
126 // If targeting Android and the prctl is not around we assume this is the
127 // case.
128 return;
129 # else
130 if (flags()->fail_without_syscall_abi) {
131 Printf(
132 "FATAL: "
133 "HWAddressSanitizer requires a kernel with tagged address ABI.\n");
134 Die();
136 # endif
139 // Turn on the tagged address ABI.
140 if ((internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
141 PR_TAGGED_ADDR_ENABLE, 0, 0, 0)) ||
142 !internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0))) {
143 # if defined(__x86_64__) && !defined(HWASAN_ALIASING_MODE)
144 // Try the new prctl API for Intel LAM. The API is based on a currently
145 // unsubmitted patch to the Linux kernel (as of May 2021) and is thus
146 // subject to change. Patch is here:
147 // https://lore.kernel.org/linux-mm/20210205151631.43511-12-kirill.shutemov@linux.intel.com/
148 int tag_bits = kTagBits;
149 int tag_shift = kAddressTagShift;
150 if (!internal_iserror(
151 internal_prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE,
152 reinterpret_cast<unsigned long>(&tag_bits),
153 reinterpret_cast<unsigned long>(&tag_shift), 0))) {
154 CHECK_EQ(tag_bits, kTagBits);
155 CHECK_EQ(tag_shift, kAddressTagShift);
156 return;
158 # endif // defined(__x86_64__) && !defined(HWASAN_ALIASING_MODE)
159 if (flags()->fail_without_syscall_abi) {
160 Printf(
161 "FATAL: HWAddressSanitizer failed to enable tagged address syscall "
162 "ABI.\nSuggest check `sysctl abi.tagged_addr_disabled` "
163 "configuration.\n");
164 Die();
167 # undef PR_SET_TAGGED_ADDR_CTRL
168 # undef PR_GET_TAGGED_ADDR_CTRL
169 # undef PR_TAGGED_ADDR_ENABLE
172 bool InitShadow() {
173 // Define the entire memory range.
174 kHighMemEnd = GetHighMemEnd();
176 // Determine shadow memory base offset.
177 InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
179 // Place the low memory first.
180 kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
181 kLowMemStart = 0;
183 // Define the low shadow based on the already placed low memory.
184 kLowShadowEnd = MemToShadow(kLowMemEnd);
185 kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
187 // High shadow takes whatever memory is left up there (making sure it is not
188 // interfering with low memory in the fixed case).
189 kHighShadowEnd = MemToShadow(kHighMemEnd);
190 kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
192 // High memory starts where allocated shadow allows.
193 kHighMemStart = ShadowToMem(kHighShadowStart);
195 // Check the sanity of the defined memory ranges (there might be gaps).
196 CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
197 CHECK_GT(kHighMemStart, kHighShadowEnd);
198 CHECK_GT(kHighShadowEnd, kHighShadowStart);
199 CHECK_GT(kHighShadowStart, kLowMemEnd);
200 CHECK_GT(kLowMemEnd, kLowMemStart);
201 CHECK_GT(kLowShadowEnd, kLowShadowStart);
202 CHECK_GT(kLowShadowStart, kLowMemEnd);
204 if (Verbosity())
205 PrintAddressSpaceLayout();
207 // Reserve shadow memory.
208 ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
209 ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
211 // Protect all the gaps.
212 ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
213 if (kLowMemEnd + 1 < kLowShadowStart)
214 ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
215 if (kLowShadowEnd + 1 < kHighShadowStart)
216 ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
217 if (kHighShadowEnd + 1 < kHighMemStart)
218 ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
220 return true;
223 void InitThreads() {
224 CHECK(__hwasan_shadow_memory_dynamic_address);
225 uptr guard_page_size = GetMmapGranularity();
226 uptr thread_space_start =
227 __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
228 uptr thread_space_end =
229 __hwasan_shadow_memory_dynamic_address - guard_page_size;
230 ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
231 "hwasan threads", /*madvise_shadow*/ false);
232 ProtectGap(thread_space_end,
233 __hwasan_shadow_memory_dynamic_address - thread_space_end);
234 InitThreadList(thread_space_start, thread_space_end - thread_space_start);
235 hwasanThreadList().CreateCurrentThread();
238 bool MemIsApp(uptr p) {
239 // Memory outside the alias range has non-zero tags.
240 # if !defined(HWASAN_ALIASING_MODE)
241 CHECK(GetTagFromPointer(p) == 0);
242 # endif
244 return (p >= kHighMemStart && p <= kHighMemEnd) ||
245 (p >= kLowMemStart && p <= kLowMemEnd);
248 void InstallAtExitHandler() { atexit(HwasanAtExit); }
250 // ---------------------- TSD ---------------- {{{1
252 extern "C" void __hwasan_thread_enter() {
253 hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
256 extern "C" void __hwasan_thread_exit() {
257 Thread *t = GetCurrentThread();
258 // Make sure that signal handler can not see a stale current thread pointer.
259 atomic_signal_fence(memory_order_seq_cst);
260 if (t)
261 hwasanThreadList().ReleaseThread(t);
264 # if HWASAN_WITH_INTERCEPTORS
265 static pthread_key_t tsd_key;
266 static bool tsd_key_inited = false;
268 void HwasanTSDThreadInit() {
269 if (tsd_key_inited)
270 CHECK_EQ(0, pthread_setspecific(tsd_key,
271 (void *)GetPthreadDestructorIterations()));
274 void HwasanTSDDtor(void *tsd) {
275 uptr iterations = (uptr)tsd;
276 if (iterations > 1) {
277 CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
278 return;
280 __hwasan_thread_exit();
283 void HwasanTSDInit() {
284 CHECK(!tsd_key_inited);
285 tsd_key_inited = true;
286 CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
288 # else
289 void HwasanTSDInit() {}
290 void HwasanTSDThreadInit() {}
291 # endif
293 # if SANITIZER_ANDROID
294 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
295 # else
296 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
297 # endif
299 # if SANITIZER_ANDROID
300 void AndroidTestTlsSlot() {
301 uptr kMagicValue = 0x010203040A0B0C0D;
302 uptr *tls_ptr = GetCurrentThreadLongPtr();
303 uptr old_value = *tls_ptr;
304 *tls_ptr = kMagicValue;
305 dlerror();
306 if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
307 Printf(
308 "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
309 "for dlerror().\n");
310 Die();
312 *tls_ptr = old_value;
314 # else
315 void AndroidTestTlsSlot() {}
316 # endif
318 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
319 // Access type is passed in a platform dependent way (see below) and encoded
320 // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
321 // recoverable. Valid values of Y are 0 to 4, which are interpreted as
322 // log2(access_size), and 0xF, which means that access size is passed via
323 // platform dependent register (see below).
324 # if defined(__aarch64__)
325 // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
326 // access size is stored in X1 register. Access address is always in X0
327 // register.
328 uptr pc = (uptr)info->si_addr;
329 const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
330 if ((code & 0xff00) != 0x900)
331 return AccessInfo{}; // Not ours.
333 const bool is_store = code & 0x10;
334 const bool recover = code & 0x20;
335 const uptr addr = uc->uc_mcontext.regs[0];
336 const unsigned size_log = code & 0xf;
337 if (size_log > 4 && size_log != 0xf)
338 return AccessInfo{}; // Not ours.
339 const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
341 # elif defined(__x86_64__)
342 // Access type is encoded in the instruction following INT3 as
343 // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
344 // RSI register. Access address is always in RDI register.
345 uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
346 uint8_t *nop = (uint8_t *)pc;
347 if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
348 *(nop + 3) < 0x40)
349 return AccessInfo{}; // Not ours.
350 const unsigned code = *(nop + 3);
352 const bool is_store = code & 0x10;
353 const bool recover = code & 0x20;
354 const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
355 const unsigned size_log = code & 0xf;
356 if (size_log > 4 && size_log != 0xf)
357 return AccessInfo{}; // Not ours.
358 const uptr size =
359 size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
361 # else
362 # error Unsupported architecture
363 # endif
365 return AccessInfo{addr, size, is_store, !is_store, recover};
368 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
369 AccessInfo ai = GetAccessInfo(info, uc);
370 if (!ai.is_store && !ai.is_load)
371 return false;
373 SignalContext sig{info, uc};
374 HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
376 # if defined(__aarch64__)
377 uc->uc_mcontext.pc += 4;
378 # elif defined(__x86_64__)
379 # else
380 # error Unsupported architecture
381 # endif
382 return true;
385 static void OnStackUnwind(const SignalContext &sig, const void *,
386 BufferedStackTrace *stack) {
387 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
388 common_flags()->fast_unwind_on_fatal);
391 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
392 // Probably a tag mismatch.
393 if (signo == SIGTRAP)
394 if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
395 return;
397 HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
400 void Thread::InitStackAndTls(const InitState *) {
401 uptr tls_size;
402 uptr stack_size;
403 GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
404 &tls_size);
405 stack_top_ = stack_bottom_ + stack_size;
406 tls_end_ = tls_begin_ + tls_size;
409 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
410 CHECK(IsAligned(p, kShadowAlignment));
411 CHECK(IsAligned(size, kShadowAlignment));
412 uptr shadow_start = MemToShadow(p);
413 uptr shadow_size = MemToShadowSize(size);
415 uptr page_size = GetPageSizeCached();
416 uptr page_start = RoundUpTo(shadow_start, page_size);
417 uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
418 uptr threshold = common_flags()->clear_shadow_mmap_threshold;
419 if (SANITIZER_LINUX &&
420 UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
421 internal_memset((void *)shadow_start, tag, page_start - shadow_start);
422 internal_memset((void *)page_end, tag,
423 shadow_start + shadow_size - page_end);
424 // For an anonymous private mapping MADV_DONTNEED will return a zero page on
425 // Linux.
426 ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
427 } else {
428 internal_memset((void *)shadow_start, tag, shadow_size);
430 return AddTagToPointer(p, tag);
433 void HwasanInstallAtForkHandler() {
434 auto before = []() {
435 HwasanAllocatorLock();
436 StackDepotLockAll();
438 auto after = []() {
439 StackDepotUnlockAll();
440 HwasanAllocatorUnlock();
442 pthread_atfork(before, after, after);
445 } // namespace __hwasan
447 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD