[clang][extract-api] Emit "navigator" property of "name" in SymbolGraph
[llvm-project.git] / compiler-rt / lib / sanitizer_common / sanitizer_procmaps_mac.cpp
blob62b2e5e032166d0d4e93bd0ec79c4afdbd9498fe
1 //===-- sanitizer_procmaps_mac.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Information about the process mappings (Mac-specific parts).
10 //===----------------------------------------------------------------------===//
12 #include "sanitizer_platform.h"
13 #if SANITIZER_MAC
14 #include "sanitizer_common.h"
15 #include "sanitizer_placement_new.h"
16 #include "sanitizer_procmaps.h"
18 #include <mach-o/dyld.h>
19 #include <mach-o/loader.h>
20 #include <mach/mach.h>
22 // These are not available in older macOS SDKs.
23 #ifndef CPU_SUBTYPE_X86_64_H
24 #define CPU_SUBTYPE_X86_64_H ((cpu_subtype_t)8) /* Haswell */
25 #endif
26 #ifndef CPU_SUBTYPE_ARM_V7S
27 #define CPU_SUBTYPE_ARM_V7S ((cpu_subtype_t)11) /* Swift */
28 #endif
29 #ifndef CPU_SUBTYPE_ARM_V7K
30 #define CPU_SUBTYPE_ARM_V7K ((cpu_subtype_t)12)
31 #endif
32 #ifndef CPU_TYPE_ARM64
33 #define CPU_TYPE_ARM64 (CPU_TYPE_ARM | CPU_ARCH_ABI64)
34 #endif
36 namespace __sanitizer {
38 // Contains information used to iterate through sections.
39 struct MemoryMappedSegmentData {
40 char name[kMaxSegName];
41 uptr nsects;
42 const char *current_load_cmd_addr;
43 u32 lc_type;
44 uptr base_virt_addr;
45 uptr addr_mask;
48 template <typename Section>
49 static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
50 bool isWritable) {
51 const Section *sc = (const Section *)data->current_load_cmd_addr;
52 data->current_load_cmd_addr += sizeof(Section);
54 uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
55 uptr sec_end = sec_start + sc->size;
56 module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
57 sc->sectname);
60 void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
61 // Don't iterate over sections when the caller hasn't set up the
62 // data pointer, when there are no sections, or when the segment
63 // is executable. Avoid iterating over executable sections because
64 // it will confuse libignore, and because the extra granularity
65 // of information is not needed by any sanitizers.
66 if (!data_ || !data_->nsects || IsExecutable()) {
67 module->addAddressRange(start, end, IsExecutable(), IsWritable(),
68 data_ ? data_->name : nullptr);
69 return;
72 do {
73 if (data_->lc_type == LC_SEGMENT) {
74 NextSectionLoad<struct section>(module, data_, IsWritable());
75 #ifdef MH_MAGIC_64
76 } else if (data_->lc_type == LC_SEGMENT_64) {
77 NextSectionLoad<struct section_64>(module, data_, IsWritable());
78 #endif
80 } while (--data_->nsects);
83 MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
84 Reset();
87 MemoryMappingLayout::~MemoryMappingLayout() {
90 bool MemoryMappingLayout::Error() const {
91 return false;
94 // More information about Mach-O headers can be found in mach-o/loader.h
95 // Each Mach-O image has a header (mach_header or mach_header_64) starting with
96 // a magic number, and a list of linker load commands directly following the
97 // header.
98 // A load command is at least two 32-bit words: the command type and the
99 // command size in bytes. We're interested only in segment load commands
100 // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
101 // into the task's address space.
102 // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
103 // segment_command_64 correspond to the memory address, memory size and the
104 // file offset of the current memory segment.
105 // Because these fields are taken from the images as is, one needs to add
106 // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
108 void MemoryMappingLayout::Reset() {
109 // Count down from the top.
110 // TODO(glider): as per man 3 dyld, iterating over the headers with
111 // _dyld_image_count is thread-unsafe. We need to register callbacks for
112 // adding and removing images which will invalidate the MemoryMappingLayout
113 // state.
114 data_.current_image = _dyld_image_count();
115 data_.current_load_cmd_count = -1;
116 data_.current_load_cmd_addr = 0;
117 data_.current_magic = 0;
118 data_.current_filetype = 0;
119 data_.current_arch = kModuleArchUnknown;
120 internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
123 // The dyld load address should be unchanged throughout process execution,
124 // and it is expensive to compute once many libraries have been loaded,
125 // so cache it here and do not reset.
126 static mach_header *dyld_hdr = 0;
127 static const char kDyldPath[] = "/usr/lib/dyld";
128 static const int kDyldImageIdx = -1;
130 // static
131 void MemoryMappingLayout::CacheMemoryMappings() {
132 // No-op on Mac for now.
135 void MemoryMappingLayout::LoadFromCache() {
136 // No-op on Mac for now.
139 // _dyld_get_image_header() and related APIs don't report dyld itself.
140 // We work around this by manually recursing through the memory map
141 // until we hit a Mach header matching dyld instead. These recurse
142 // calls are expensive, but the first memory map generation occurs
143 // early in the process, when dyld is one of the only images loaded,
144 // so it will be hit after only a few iterations.
145 static mach_header *get_dyld_image_header() {
146 vm_address_t address = 0;
148 while (true) {
149 vm_size_t size = 0;
150 unsigned depth = 1;
151 struct vm_region_submap_info_64 info;
152 mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
153 kern_return_t err =
154 vm_region_recurse_64(mach_task_self(), &address, &size, &depth,
155 (vm_region_info_t)&info, &count);
156 if (err != KERN_SUCCESS) return nullptr;
158 if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
159 mach_header *hdr = (mach_header *)address;
160 if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
161 hdr->filetype == MH_DYLINKER) {
162 return hdr;
165 address += size;
169 const mach_header *get_dyld_hdr() {
170 if (!dyld_hdr) dyld_hdr = get_dyld_image_header();
172 return dyld_hdr;
175 // Next and NextSegmentLoad were inspired by base/sysinfo.cc in
176 // Google Perftools, https://github.com/gperftools/gperftools.
178 // NextSegmentLoad scans the current image for the next segment load command
179 // and returns the start and end addresses and file offset of the corresponding
180 // segment.
181 // Note that the segment addresses are not necessarily sorted.
182 template <u32 kLCSegment, typename SegmentCommand>
183 static bool NextSegmentLoad(MemoryMappedSegment *segment,
184 MemoryMappedSegmentData *seg_data,
185 MemoryMappingLayoutData *layout_data) {
186 const char *lc = layout_data->current_load_cmd_addr;
187 layout_data->current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
188 if (((const load_command *)lc)->cmd == kLCSegment) {
189 const SegmentCommand* sc = (const SegmentCommand *)lc;
190 uptr base_virt_addr, addr_mask;
191 if (layout_data->current_image == kDyldImageIdx) {
192 base_virt_addr = (uptr)get_dyld_hdr();
193 // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
194 // it contains an absolute address rather than an offset for dyld.
195 // To make matters even more complicated, this absolute address
196 // isn't actually the absolute segment address, but the offset portion
197 // of the address is accurate when combined with the dyld base address,
198 // and the mask will give just this offset.
199 addr_mask = 0xfffff;
200 } else {
201 base_virt_addr =
202 (uptr)_dyld_get_image_vmaddr_slide(layout_data->current_image);
203 addr_mask = ~0;
206 segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
207 segment->end = segment->start + sc->vmsize;
208 // Most callers don't need section information, so only fill this struct
209 // when required.
210 if (seg_data) {
211 seg_data->nsects = sc->nsects;
212 seg_data->current_load_cmd_addr =
213 (const char *)lc + sizeof(SegmentCommand);
214 seg_data->lc_type = kLCSegment;
215 seg_data->base_virt_addr = base_virt_addr;
216 seg_data->addr_mask = addr_mask;
217 internal_strncpy(seg_data->name, sc->segname,
218 ARRAY_SIZE(seg_data->name));
221 // Return the initial protection.
222 segment->protection = sc->initprot;
223 segment->offset = (layout_data->current_filetype ==
224 /*MH_EXECUTE*/ 0x2)
225 ? sc->vmaddr
226 : sc->fileoff;
227 if (segment->filename) {
228 const char *src = (layout_data->current_image == kDyldImageIdx)
229 ? kDyldPath
230 : _dyld_get_image_name(layout_data->current_image);
231 internal_strncpy(segment->filename, src, segment->filename_size);
233 segment->arch = layout_data->current_arch;
234 internal_memcpy(segment->uuid, layout_data->current_uuid, kModuleUUIDSize);
235 return true;
237 return false;
240 ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
241 cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
242 switch (cputype) {
243 case CPU_TYPE_I386:
244 return kModuleArchI386;
245 case CPU_TYPE_X86_64:
246 if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
247 if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
248 CHECK(0 && "Invalid subtype of x86_64");
249 return kModuleArchUnknown;
250 case CPU_TYPE_ARM:
251 if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
252 if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
253 if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
254 if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
255 CHECK(0 && "Invalid subtype of ARM");
256 return kModuleArchUnknown;
257 case CPU_TYPE_ARM64:
258 return kModuleArchARM64;
259 default:
260 CHECK(0 && "Invalid CPU type");
261 return kModuleArchUnknown;
265 static const load_command *NextCommand(const load_command *lc) {
266 return (const load_command *)((const char *)lc + lc->cmdsize);
269 static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
270 for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
271 if (lc->cmd != LC_UUID) continue;
273 const uuid_command *uuid_lc = (const uuid_command *)lc;
274 const uint8_t *uuid = &uuid_lc->uuid[0];
275 internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
276 return;
280 static bool IsModuleInstrumented(const load_command *first_lc) {
281 for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
282 if (lc->cmd != LC_LOAD_DYLIB) continue;
284 const dylib_command *dylib_lc = (const dylib_command *)lc;
285 uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
286 const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
287 dylib_name = StripModuleName(dylib_name);
288 if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
289 return true;
292 return false;
295 bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
296 for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
297 const mach_header *hdr = (data_.current_image == kDyldImageIdx)
298 ? get_dyld_hdr()
299 : _dyld_get_image_header(data_.current_image);
300 if (!hdr) continue;
301 if (data_.current_load_cmd_count < 0) {
302 // Set up for this image;
303 data_.current_load_cmd_count = hdr->ncmds;
304 data_.current_magic = hdr->magic;
305 data_.current_filetype = hdr->filetype;
306 data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
307 switch (data_.current_magic) {
308 #ifdef MH_MAGIC_64
309 case MH_MAGIC_64: {
310 data_.current_load_cmd_addr =
311 (const char *)hdr + sizeof(mach_header_64);
312 break;
314 #endif
315 case MH_MAGIC: {
316 data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
317 break;
319 default: {
320 continue;
323 FindUUID((const load_command *)data_.current_load_cmd_addr,
324 data_.current_uuid);
325 data_.current_instrumented = IsModuleInstrumented(
326 (const load_command *)data_.current_load_cmd_addr);
329 for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
330 switch (data_.current_magic) {
331 // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
332 #ifdef MH_MAGIC_64
333 case MH_MAGIC_64: {
334 if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
335 segment, segment->data_, &data_))
336 return true;
337 break;
339 #endif
340 case MH_MAGIC: {
341 if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
342 segment, segment->data_, &data_))
343 return true;
344 break;
348 // If we get here, no more load_cmd's in this image talk about
349 // segments. Go on to the next image.
351 return false;
354 void MemoryMappingLayout::DumpListOfModules(
355 InternalMmapVectorNoCtor<LoadedModule> *modules) {
356 Reset();
357 InternalMmapVector<char> module_name(kMaxPathLength);
358 MemoryMappedSegment segment(module_name.data(), module_name.size());
359 MemoryMappedSegmentData data;
360 segment.data_ = &data;
361 while (Next(&segment)) {
362 if (segment.filename[0] == '\0') continue;
363 LoadedModule *cur_module = nullptr;
364 if (!modules->empty() &&
365 0 == internal_strcmp(segment.filename, modules->back().full_name())) {
366 cur_module = &modules->back();
367 } else {
368 modules->push_back(LoadedModule());
369 cur_module = &modules->back();
370 cur_module->set(segment.filename, segment.start, segment.arch,
371 segment.uuid, data_.current_instrumented);
373 segment.AddAddressRanges(cur_module);
377 } // namespace __sanitizer
379 #endif // SANITIZER_MAC