1 //===-- sanitizer_procmaps_mac.cpp ----------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Information about the process mappings (Mac-specific parts).
10 //===----------------------------------------------------------------------===//
12 #include "sanitizer_platform.h"
14 #include "sanitizer_common.h"
15 #include "sanitizer_placement_new.h"
16 #include "sanitizer_procmaps.h"
18 #include <mach-o/dyld.h>
19 #include <mach-o/loader.h>
20 #include <mach/mach.h>
22 // These are not available in older macOS SDKs.
23 #ifndef CPU_SUBTYPE_X86_64_H
24 #define CPU_SUBTYPE_X86_64_H ((cpu_subtype_t)8) /* Haswell */
26 #ifndef CPU_SUBTYPE_ARM_V7S
27 #define CPU_SUBTYPE_ARM_V7S ((cpu_subtype_t)11) /* Swift */
29 #ifndef CPU_SUBTYPE_ARM_V7K
30 #define CPU_SUBTYPE_ARM_V7K ((cpu_subtype_t)12)
32 #ifndef CPU_TYPE_ARM64
33 #define CPU_TYPE_ARM64 (CPU_TYPE_ARM | CPU_ARCH_ABI64)
36 namespace __sanitizer
{
38 // Contains information used to iterate through sections.
39 struct MemoryMappedSegmentData
{
40 char name
[kMaxSegName
];
42 const char *current_load_cmd_addr
;
48 template <typename Section
>
49 static void NextSectionLoad(LoadedModule
*module
, MemoryMappedSegmentData
*data
,
51 const Section
*sc
= (const Section
*)data
->current_load_cmd_addr
;
52 data
->current_load_cmd_addr
+= sizeof(Section
);
54 uptr sec_start
= (sc
->addr
& data
->addr_mask
) + data
->base_virt_addr
;
55 uptr sec_end
= sec_start
+ sc
->size
;
56 module
->addAddressRange(sec_start
, sec_end
, /*executable=*/false, isWritable
,
60 void MemoryMappedSegment::AddAddressRanges(LoadedModule
*module
) {
61 // Don't iterate over sections when the caller hasn't set up the
62 // data pointer, when there are no sections, or when the segment
63 // is executable. Avoid iterating over executable sections because
64 // it will confuse libignore, and because the extra granularity
65 // of information is not needed by any sanitizers.
66 if (!data_
|| !data_
->nsects
|| IsExecutable()) {
67 module
->addAddressRange(start
, end
, IsExecutable(), IsWritable(),
68 data_
? data_
->name
: nullptr);
73 if (data_
->lc_type
== LC_SEGMENT
) {
74 NextSectionLoad
<struct section
>(module
, data_
, IsWritable());
76 } else if (data_
->lc_type
== LC_SEGMENT_64
) {
77 NextSectionLoad
<struct section_64
>(module
, data_
, IsWritable());
80 } while (--data_
->nsects
);
83 MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled
) {
87 MemoryMappingLayout::~MemoryMappingLayout() {
90 bool MemoryMappingLayout::Error() const {
94 // More information about Mach-O headers can be found in mach-o/loader.h
95 // Each Mach-O image has a header (mach_header or mach_header_64) starting with
96 // a magic number, and a list of linker load commands directly following the
98 // A load command is at least two 32-bit words: the command type and the
99 // command size in bytes. We're interested only in segment load commands
100 // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
101 // into the task's address space.
102 // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
103 // segment_command_64 correspond to the memory address, memory size and the
104 // file offset of the current memory segment.
105 // Because these fields are taken from the images as is, one needs to add
106 // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
108 void MemoryMappingLayout::Reset() {
109 // Count down from the top.
110 // TODO(glider): as per man 3 dyld, iterating over the headers with
111 // _dyld_image_count is thread-unsafe. We need to register callbacks for
112 // adding and removing images which will invalidate the MemoryMappingLayout
114 data_
.current_image
= _dyld_image_count();
115 data_
.current_load_cmd_count
= -1;
116 data_
.current_load_cmd_addr
= 0;
117 data_
.current_magic
= 0;
118 data_
.current_filetype
= 0;
119 data_
.current_arch
= kModuleArchUnknown
;
120 internal_memset(data_
.current_uuid
, 0, kModuleUUIDSize
);
123 // The dyld load address should be unchanged throughout process execution,
124 // and it is expensive to compute once many libraries have been loaded,
125 // so cache it here and do not reset.
126 static mach_header
*dyld_hdr
= 0;
127 static const char kDyldPath
[] = "/usr/lib/dyld";
128 static const int kDyldImageIdx
= -1;
131 void MemoryMappingLayout::CacheMemoryMappings() {
132 // No-op on Mac for now.
135 void MemoryMappingLayout::LoadFromCache() {
136 // No-op on Mac for now.
139 // _dyld_get_image_header() and related APIs don't report dyld itself.
140 // We work around this by manually recursing through the memory map
141 // until we hit a Mach header matching dyld instead. These recurse
142 // calls are expensive, but the first memory map generation occurs
143 // early in the process, when dyld is one of the only images loaded,
144 // so it will be hit after only a few iterations.
145 static mach_header
*get_dyld_image_header() {
146 vm_address_t address
= 0;
151 struct vm_region_submap_info_64 info
;
152 mach_msg_type_number_t count
= VM_REGION_SUBMAP_INFO_COUNT_64
;
154 vm_region_recurse_64(mach_task_self(), &address
, &size
, &depth
,
155 (vm_region_info_t
)&info
, &count
);
156 if (err
!= KERN_SUCCESS
) return nullptr;
158 if (size
>= sizeof(mach_header
) && info
.protection
& kProtectionRead
) {
159 mach_header
*hdr
= (mach_header
*)address
;
160 if ((hdr
->magic
== MH_MAGIC
|| hdr
->magic
== MH_MAGIC_64
) &&
161 hdr
->filetype
== MH_DYLINKER
) {
169 const mach_header
*get_dyld_hdr() {
170 if (!dyld_hdr
) dyld_hdr
= get_dyld_image_header();
175 // Next and NextSegmentLoad were inspired by base/sysinfo.cc in
176 // Google Perftools, https://github.com/gperftools/gperftools.
178 // NextSegmentLoad scans the current image for the next segment load command
179 // and returns the start and end addresses and file offset of the corresponding
181 // Note that the segment addresses are not necessarily sorted.
182 template <u32 kLCSegment
, typename SegmentCommand
>
183 static bool NextSegmentLoad(MemoryMappedSegment
*segment
,
184 MemoryMappedSegmentData
*seg_data
,
185 MemoryMappingLayoutData
*layout_data
) {
186 const char *lc
= layout_data
->current_load_cmd_addr
;
187 layout_data
->current_load_cmd_addr
+= ((const load_command
*)lc
)->cmdsize
;
188 if (((const load_command
*)lc
)->cmd
== kLCSegment
) {
189 const SegmentCommand
* sc
= (const SegmentCommand
*)lc
;
190 uptr base_virt_addr
, addr_mask
;
191 if (layout_data
->current_image
== kDyldImageIdx
) {
192 base_virt_addr
= (uptr
)get_dyld_hdr();
193 // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
194 // it contains an absolute address rather than an offset for dyld.
195 // To make matters even more complicated, this absolute address
196 // isn't actually the absolute segment address, but the offset portion
197 // of the address is accurate when combined with the dyld base address,
198 // and the mask will give just this offset.
202 (uptr
)_dyld_get_image_vmaddr_slide(layout_data
->current_image
);
206 segment
->start
= (sc
->vmaddr
& addr_mask
) + base_virt_addr
;
207 segment
->end
= segment
->start
+ sc
->vmsize
;
208 // Most callers don't need section information, so only fill this struct
211 seg_data
->nsects
= sc
->nsects
;
212 seg_data
->current_load_cmd_addr
=
213 (const char *)lc
+ sizeof(SegmentCommand
);
214 seg_data
->lc_type
= kLCSegment
;
215 seg_data
->base_virt_addr
= base_virt_addr
;
216 seg_data
->addr_mask
= addr_mask
;
217 internal_strncpy(seg_data
->name
, sc
->segname
,
218 ARRAY_SIZE(seg_data
->name
));
221 // Return the initial protection.
222 segment
->protection
= sc
->initprot
;
223 segment
->offset
= (layout_data
->current_filetype
==
227 if (segment
->filename
) {
228 const char *src
= (layout_data
->current_image
== kDyldImageIdx
)
230 : _dyld_get_image_name(layout_data
->current_image
);
231 internal_strncpy(segment
->filename
, src
, segment
->filename_size
);
233 segment
->arch
= layout_data
->current_arch
;
234 internal_memcpy(segment
->uuid
, layout_data
->current_uuid
, kModuleUUIDSize
);
240 ModuleArch
ModuleArchFromCpuType(cpu_type_t cputype
, cpu_subtype_t cpusubtype
) {
241 cpusubtype
= cpusubtype
& ~CPU_SUBTYPE_MASK
;
244 return kModuleArchI386
;
245 case CPU_TYPE_X86_64
:
246 if (cpusubtype
== CPU_SUBTYPE_X86_64_ALL
) return kModuleArchX86_64
;
247 if (cpusubtype
== CPU_SUBTYPE_X86_64_H
) return kModuleArchX86_64H
;
248 CHECK(0 && "Invalid subtype of x86_64");
249 return kModuleArchUnknown
;
251 if (cpusubtype
== CPU_SUBTYPE_ARM_V6
) return kModuleArchARMV6
;
252 if (cpusubtype
== CPU_SUBTYPE_ARM_V7
) return kModuleArchARMV7
;
253 if (cpusubtype
== CPU_SUBTYPE_ARM_V7S
) return kModuleArchARMV7S
;
254 if (cpusubtype
== CPU_SUBTYPE_ARM_V7K
) return kModuleArchARMV7K
;
255 CHECK(0 && "Invalid subtype of ARM");
256 return kModuleArchUnknown
;
258 return kModuleArchARM64
;
260 CHECK(0 && "Invalid CPU type");
261 return kModuleArchUnknown
;
265 static const load_command
*NextCommand(const load_command
*lc
) {
266 return (const load_command
*)((const char *)lc
+ lc
->cmdsize
);
269 static void FindUUID(const load_command
*first_lc
, u8
*uuid_output
) {
270 for (const load_command
*lc
= first_lc
; lc
->cmd
!= 0; lc
= NextCommand(lc
)) {
271 if (lc
->cmd
!= LC_UUID
) continue;
273 const uuid_command
*uuid_lc
= (const uuid_command
*)lc
;
274 const uint8_t *uuid
= &uuid_lc
->uuid
[0];
275 internal_memcpy(uuid_output
, uuid
, kModuleUUIDSize
);
280 static bool IsModuleInstrumented(const load_command
*first_lc
) {
281 for (const load_command
*lc
= first_lc
; lc
->cmd
!= 0; lc
= NextCommand(lc
)) {
282 if (lc
->cmd
!= LC_LOAD_DYLIB
) continue;
284 const dylib_command
*dylib_lc
= (const dylib_command
*)lc
;
285 uint32_t dylib_name_offset
= dylib_lc
->dylib
.name
.offset
;
286 const char *dylib_name
= ((const char *)dylib_lc
) + dylib_name_offset
;
287 dylib_name
= StripModuleName(dylib_name
);
288 if (dylib_name
!= 0 && (internal_strstr(dylib_name
, "libclang_rt."))) {
295 bool MemoryMappingLayout::Next(MemoryMappedSegment
*segment
) {
296 for (; data_
.current_image
>= kDyldImageIdx
; data_
.current_image
--) {
297 const mach_header
*hdr
= (data_
.current_image
== kDyldImageIdx
)
299 : _dyld_get_image_header(data_
.current_image
);
301 if (data_
.current_load_cmd_count
< 0) {
302 // Set up for this image;
303 data_
.current_load_cmd_count
= hdr
->ncmds
;
304 data_
.current_magic
= hdr
->magic
;
305 data_
.current_filetype
= hdr
->filetype
;
306 data_
.current_arch
= ModuleArchFromCpuType(hdr
->cputype
, hdr
->cpusubtype
);
307 switch (data_
.current_magic
) {
310 data_
.current_load_cmd_addr
=
311 (const char *)hdr
+ sizeof(mach_header_64
);
316 data_
.current_load_cmd_addr
= (const char *)hdr
+ sizeof(mach_header
);
323 FindUUID((const load_command
*)data_
.current_load_cmd_addr
,
325 data_
.current_instrumented
= IsModuleInstrumented(
326 (const load_command
*)data_
.current_load_cmd_addr
);
329 for (; data_
.current_load_cmd_count
>= 0; data_
.current_load_cmd_count
--) {
330 switch (data_
.current_magic
) {
331 // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
334 if (NextSegmentLoad
<LC_SEGMENT_64
, struct segment_command_64
>(
335 segment
, segment
->data_
, &data_
))
341 if (NextSegmentLoad
<LC_SEGMENT
, struct segment_command
>(
342 segment
, segment
->data_
, &data_
))
348 // If we get here, no more load_cmd's in this image talk about
349 // segments. Go on to the next image.
354 void MemoryMappingLayout::DumpListOfModules(
355 InternalMmapVectorNoCtor
<LoadedModule
> *modules
) {
357 InternalMmapVector
<char> module_name(kMaxPathLength
);
358 MemoryMappedSegment
segment(module_name
.data(), module_name
.size());
359 MemoryMappedSegmentData data
;
360 segment
.data_
= &data
;
361 while (Next(&segment
)) {
362 if (segment
.filename
[0] == '\0') continue;
363 LoadedModule
*cur_module
= nullptr;
364 if (!modules
->empty() &&
365 0 == internal_strcmp(segment
.filename
, modules
->back().full_name())) {
366 cur_module
= &modules
->back();
368 modules
->push_back(LoadedModule());
369 cur_module
= &modules
->back();
370 cur_module
->set(segment
.filename
, segment
.start
, segment
.arch
,
371 segment
.uuid
, data_
.current_instrumented
);
373 segment
.AddAddressRanges(cur_module
);
377 } // namespace __sanitizer
379 #endif // SANITIZER_MAC