[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / Analysis / CFG.cpp
blobea8b73e81ea247a570684b3037e6c2225aa2946d
1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the CFG and CFGBuilder classes for representing and
10 // building Control-Flow Graphs (CFGs) from ASTs.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/DOTGraphTraits.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/SaveAndRestore.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <memory>
58 #include <optional>
59 #include <string>
60 #include <tuple>
61 #include <utility>
62 #include <vector>
64 using namespace clang;
66 static SourceLocation GetEndLoc(Decl *D) {
67 if (VarDecl *VD = dyn_cast<VarDecl>(D))
68 if (Expr *Ex = VD->getInit())
69 return Ex->getSourceRange().getEnd();
70 return D->getLocation();
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 /// FIXME: it would be good to unify this function with
76 /// getIntegerLiteralSubexpressionValue at some point given the similarity
77 /// between the functions.
79 static bool IsIntegerLiteralConstantExpr(const Expr *E) {
80 // Allow parentheses
81 E = E->IgnoreParens();
83 // Allow conversions to different integer kind.
84 if (const auto *CE = dyn_cast<CastExpr>(E)) {
85 if (CE->getCastKind() != CK_IntegralCast)
86 return false;
87 E = CE->getSubExpr();
90 // Allow negative numbers.
91 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
92 if (UO->getOpcode() != UO_Minus)
93 return false;
94 E = UO->getSubExpr();
97 return isa<IntegerLiteral>(E);
100 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
101 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
102 /// returns nullptr.
103 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
104 E = E->IgnoreParens();
105 if (IsIntegerLiteralConstantExpr(E))
106 return E;
107 if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
108 return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
109 return nullptr;
112 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
113 /// NumExpr is an integer literal or an enum constant.
115 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
116 /// null.
117 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
118 tryNormalizeBinaryOperator(const BinaryOperator *B) {
119 BinaryOperatorKind Op = B->getOpcode();
121 const Expr *MaybeDecl = B->getLHS();
122 const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
123 // Expr looked like `0 == Foo` instead of `Foo == 0`
124 if (Constant == nullptr) {
125 // Flip the operator
126 if (Op == BO_GT)
127 Op = BO_LT;
128 else if (Op == BO_GE)
129 Op = BO_LE;
130 else if (Op == BO_LT)
131 Op = BO_GT;
132 else if (Op == BO_LE)
133 Op = BO_GE;
135 MaybeDecl = B->getRHS();
136 Constant = tryTransformToIntOrEnumConstant(B->getLHS());
139 return std::make_tuple(MaybeDecl, Op, Constant);
142 /// For an expression `x == Foo && x == Bar`, this determines whether the
143 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
144 /// literals.
146 /// It's an error to pass this arguments that are not either IntegerLiterals
147 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
148 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
149 // User intent isn't clear if they're mixing int literals with enum
150 // constants.
151 if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
152 return false;
154 // Integer literal comparisons, regardless of literal type, are acceptable.
155 if (!isa<DeclRefExpr>(E1))
156 return true;
158 // IntegerLiterals are handled above and only EnumConstantDecls are expected
159 // beyond this point
160 assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
161 auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
162 auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
164 assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
165 const DeclContext *DC1 = Decl1->getDeclContext();
166 const DeclContext *DC2 = Decl2->getDeclContext();
168 assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
169 return DC1 == DC2;
172 namespace {
174 class CFGBuilder;
176 /// The CFG builder uses a recursive algorithm to build the CFG. When
177 /// we process an expression, sometimes we know that we must add the
178 /// subexpressions as block-level expressions. For example:
180 /// exp1 || exp2
182 /// When processing the '||' expression, we know that exp1 and exp2
183 /// need to be added as block-level expressions, even though they
184 /// might not normally need to be. AddStmtChoice records this
185 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
186 /// the builder has an option not to add a subexpression as a
187 /// block-level expression.
188 class AddStmtChoice {
189 public:
190 enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
192 AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
194 bool alwaysAdd(CFGBuilder &builder,
195 const Stmt *stmt) const;
197 /// Return a copy of this object, except with the 'always-add' bit
198 /// set as specified.
199 AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
200 return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
203 private:
204 Kind kind;
207 /// LocalScope - Node in tree of local scopes created for C++ implicit
208 /// destructor calls generation. It contains list of automatic variables
209 /// declared in the scope and link to position in previous scope this scope
210 /// began in.
212 /// The process of creating local scopes is as follows:
213 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
214 /// - Before processing statements in scope (e.g. CompoundStmt) create
215 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
216 /// and set CFGBuilder::ScopePos to the end of new scope,
217 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
218 /// at this VarDecl,
219 /// - For every normal (without jump) end of scope add to CFGBlock destructors
220 /// for objects in the current scope,
221 /// - For every jump add to CFGBlock destructors for objects
222 /// between CFGBuilder::ScopePos and local scope position saved for jump
223 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
224 /// jump target position will be on the path to root from CFGBuilder::ScopePos
225 /// (adding any variable that doesn't need constructor to be called to
226 /// LocalScope can break this assumption),
228 class LocalScope {
229 public:
230 using AutomaticVarsTy = BumpVector<VarDecl *>;
232 /// const_iterator - Iterates local scope backwards and jumps to previous
233 /// scope on reaching the beginning of currently iterated scope.
234 class const_iterator {
235 const LocalScope* Scope = nullptr;
237 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
238 /// Invalid iterator (with null Scope) has VarIter equal to 0.
239 unsigned VarIter = 0;
241 public:
242 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
243 /// Incrementing invalid iterator is allowed and will result in invalid
244 /// iterator.
245 const_iterator() = default;
247 /// Create valid iterator. In case when S.Prev is an invalid iterator and
248 /// I is equal to 0, this will create invalid iterator.
249 const_iterator(const LocalScope& S, unsigned I)
250 : Scope(&S), VarIter(I) {
251 // Iterator to "end" of scope is not allowed. Handle it by going up
252 // in scopes tree possibly up to invalid iterator in the root.
253 if (VarIter == 0 && Scope)
254 *this = Scope->Prev;
257 VarDecl *const* operator->() const {
258 assert(Scope && "Dereferencing invalid iterator is not allowed");
259 assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
260 return &Scope->Vars[VarIter - 1];
263 const VarDecl *getFirstVarInScope() const {
264 assert(Scope && "Dereferencing invalid iterator is not allowed");
265 assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
266 return Scope->Vars[0];
269 VarDecl *operator*() const {
270 return *this->operator->();
273 const_iterator &operator++() {
274 if (!Scope)
275 return *this;
277 assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
278 --VarIter;
279 if (VarIter == 0)
280 *this = Scope->Prev;
281 return *this;
283 const_iterator operator++(int) {
284 const_iterator P = *this;
285 ++*this;
286 return P;
289 bool operator==(const const_iterator &rhs) const {
290 return Scope == rhs.Scope && VarIter == rhs.VarIter;
292 bool operator!=(const const_iterator &rhs) const {
293 return !(*this == rhs);
296 explicit operator bool() const {
297 return *this != const_iterator();
300 int distance(const_iterator L);
301 const_iterator shared_parent(const_iterator L);
302 bool pointsToFirstDeclaredVar() { return VarIter == 1; }
305 private:
306 BumpVectorContext ctx;
308 /// Automatic variables in order of declaration.
309 AutomaticVarsTy Vars;
311 /// Iterator to variable in previous scope that was declared just before
312 /// begin of this scope.
313 const_iterator Prev;
315 public:
316 /// Constructs empty scope linked to previous scope in specified place.
317 LocalScope(BumpVectorContext ctx, const_iterator P)
318 : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
320 /// Begin of scope in direction of CFG building (backwards).
321 const_iterator begin() const { return const_iterator(*this, Vars.size()); }
323 void addVar(VarDecl *VD) {
324 Vars.push_back(VD, ctx);
328 } // namespace
330 /// distance - Calculates distance from this to L. L must be reachable from this
331 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
332 /// number of scopes between this and L.
333 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
334 int D = 0;
335 const_iterator F = *this;
336 while (F.Scope != L.Scope) {
337 assert(F != const_iterator() &&
338 "L iterator is not reachable from F iterator.");
339 D += F.VarIter;
340 F = F.Scope->Prev;
342 D += F.VarIter - L.VarIter;
343 return D;
346 /// Calculates the closest parent of this iterator
347 /// that is in a scope reachable through the parents of L.
348 /// I.e. when using 'goto' from this to L, the lifetime of all variables
349 /// between this and shared_parent(L) end.
350 LocalScope::const_iterator
351 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
352 llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
353 while (true) {
354 ScopesOfL.insert(L.Scope);
355 if (L == const_iterator())
356 break;
357 L = L.Scope->Prev;
360 const_iterator F = *this;
361 while (true) {
362 if (ScopesOfL.count(F.Scope))
363 return F;
364 assert(F != const_iterator() &&
365 "L iterator is not reachable from F iterator.");
366 F = F.Scope->Prev;
370 namespace {
372 /// Structure for specifying position in CFG during its build process. It
373 /// consists of CFGBlock that specifies position in CFG and
374 /// LocalScope::const_iterator that specifies position in LocalScope graph.
375 struct BlockScopePosPair {
376 CFGBlock *block = nullptr;
377 LocalScope::const_iterator scopePosition;
379 BlockScopePosPair() = default;
380 BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
381 : block(b), scopePosition(scopePos) {}
384 /// TryResult - a class representing a variant over the values
385 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
386 /// and is used by the CFGBuilder to decide if a branch condition
387 /// can be decided up front during CFG construction.
388 class TryResult {
389 int X = -1;
391 public:
392 TryResult() = default;
393 TryResult(bool b) : X(b ? 1 : 0) {}
395 bool isTrue() const { return X == 1; }
396 bool isFalse() const { return X == 0; }
397 bool isKnown() const { return X >= 0; }
399 void negate() {
400 assert(isKnown());
401 X ^= 0x1;
405 } // namespace
407 static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
408 if (!R1.isKnown() || !R2.isKnown())
409 return TryResult();
410 return TryResult(R1.isTrue() && R2.isTrue());
413 namespace {
415 class reverse_children {
416 llvm::SmallVector<Stmt *, 12> childrenBuf;
417 ArrayRef<Stmt *> children;
419 public:
420 reverse_children(Stmt *S);
422 using iterator = ArrayRef<Stmt *>::reverse_iterator;
424 iterator begin() const { return children.rbegin(); }
425 iterator end() const { return children.rend(); }
428 } // namespace
430 reverse_children::reverse_children(Stmt *S) {
431 if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
432 children = CE->getRawSubExprs();
433 return;
435 switch (S->getStmtClass()) {
436 // Note: Fill in this switch with more cases we want to optimize.
437 case Stmt::InitListExprClass: {
438 InitListExpr *IE = cast<InitListExpr>(S);
439 children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()),
440 IE->getNumInits());
441 return;
443 default:
444 break;
447 // Default case for all other statements.
448 llvm::append_range(childrenBuf, S->children());
450 // This needs to be done *after* childrenBuf has been populated.
451 children = childrenBuf;
454 namespace {
456 /// CFGBuilder - This class implements CFG construction from an AST.
457 /// The builder is stateful: an instance of the builder should be used to only
458 /// construct a single CFG.
460 /// Example usage:
462 /// CFGBuilder builder;
463 /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
465 /// CFG construction is done via a recursive walk of an AST. We actually parse
466 /// the AST in reverse order so that the successor of a basic block is
467 /// constructed prior to its predecessor. This allows us to nicely capture
468 /// implicit fall-throughs without extra basic blocks.
469 class CFGBuilder {
470 using JumpTarget = BlockScopePosPair;
471 using JumpSource = BlockScopePosPair;
473 ASTContext *Context;
474 std::unique_ptr<CFG> cfg;
476 // Current block.
477 CFGBlock *Block = nullptr;
479 // Block after the current block.
480 CFGBlock *Succ = nullptr;
482 JumpTarget ContinueJumpTarget;
483 JumpTarget BreakJumpTarget;
484 JumpTarget SEHLeaveJumpTarget;
485 CFGBlock *SwitchTerminatedBlock = nullptr;
486 CFGBlock *DefaultCaseBlock = nullptr;
488 // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
489 // try and @try can be mixed and generally work the same.
490 // The frontend forbids mixing SEH __try with either try or @try.
491 // So having one for all three is enough.
492 CFGBlock *TryTerminatedBlock = nullptr;
494 // Current position in local scope.
495 LocalScope::const_iterator ScopePos;
497 // LabelMap records the mapping from Label expressions to their jump targets.
498 using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
499 LabelMapTy LabelMap;
501 // A list of blocks that end with a "goto" that must be backpatched to their
502 // resolved targets upon completion of CFG construction.
503 using BackpatchBlocksTy = std::vector<JumpSource>;
504 BackpatchBlocksTy BackpatchBlocks;
506 // A list of labels whose address has been taken (for indirect gotos).
507 using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
508 LabelSetTy AddressTakenLabels;
510 // Information about the currently visited C++ object construction site.
511 // This is set in the construction trigger and read when the constructor
512 // or a function that returns an object by value is being visited.
513 llvm::DenseMap<Expr *, const ConstructionContextLayer *>
514 ConstructionContextMap;
516 using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
517 DeclsWithEndedScopeSetTy DeclsWithEndedScope;
519 bool badCFG = false;
520 const CFG::BuildOptions &BuildOpts;
522 // State to track for building switch statements.
523 bool switchExclusivelyCovered = false;
524 Expr::EvalResult *switchCond = nullptr;
526 CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
527 const Stmt *lastLookup = nullptr;
529 // Caches boolean evaluations of expressions to avoid multiple re-evaluations
530 // during construction of branches for chained logical operators.
531 using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
532 CachedBoolEvalsTy CachedBoolEvals;
534 public:
535 explicit CFGBuilder(ASTContext *astContext,
536 const CFG::BuildOptions &buildOpts)
537 : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {}
539 // buildCFG - Used by external clients to construct the CFG.
540 std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
542 bool alwaysAdd(const Stmt *stmt);
544 private:
545 // Visitors to walk an AST and construct the CFG.
546 CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
547 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
548 CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc);
549 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
550 CFGBlock *VisitBreakStmt(BreakStmt *B);
551 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
552 CFGBlock *VisitCaseStmt(CaseStmt *C);
553 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
554 CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
555 CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
556 AddStmtChoice asc);
557 CFGBlock *VisitContinueStmt(ContinueStmt *C);
558 CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
559 AddStmtChoice asc);
560 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
561 CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
562 CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
563 CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
564 CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
565 CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
566 AddStmtChoice asc);
567 CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
568 AddStmtChoice asc);
569 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
570 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
571 CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc);
572 CFGBlock *VisitDeclStmt(DeclStmt *DS);
573 CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
574 CFGBlock *VisitDefaultStmt(DefaultStmt *D);
575 CFGBlock *VisitDoStmt(DoStmt *D);
576 CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
577 AddStmtChoice asc, bool ExternallyDestructed);
578 CFGBlock *VisitForStmt(ForStmt *F);
579 CFGBlock *VisitGotoStmt(GotoStmt *G);
580 CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
581 CFGBlock *VisitIfStmt(IfStmt *I);
582 CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
583 CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
584 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
585 CFGBlock *VisitLabelStmt(LabelStmt *L);
586 CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
587 CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
588 CFGBlock *VisitLogicalOperator(BinaryOperator *B);
589 std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
590 Stmt *Term,
591 CFGBlock *TrueBlock,
592 CFGBlock *FalseBlock);
593 CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
594 AddStmtChoice asc);
595 CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
596 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
597 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
598 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
599 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
600 CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
601 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
602 CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
603 CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
604 CFGBlock *VisitReturnStmt(Stmt *S);
605 CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S,
606 AddStmtChoice asc);
607 CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
608 CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
609 CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
610 CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
611 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
612 CFGBlock *VisitSwitchStmt(SwitchStmt *S);
613 CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
614 AddStmtChoice asc);
615 CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
616 CFGBlock *VisitWhileStmt(WhileStmt *W);
617 CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc);
619 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
620 bool ExternallyDestructed = false);
621 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
622 CFGBlock *VisitChildren(Stmt *S);
623 CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
624 CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
625 AddStmtChoice asc);
627 void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
628 const Stmt *S) {
629 if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
630 appendScopeBegin(B, VD, S);
633 /// When creating the CFG for temporary destructors, we want to mirror the
634 /// branch structure of the corresponding constructor calls.
635 /// Thus, while visiting a statement for temporary destructors, we keep a
636 /// context to keep track of the following information:
637 /// - whether a subexpression is executed unconditionally
638 /// - if a subexpression is executed conditionally, the first
639 /// CXXBindTemporaryExpr we encounter in that subexpression (which
640 /// corresponds to the last temporary destructor we have to call for this
641 /// subexpression) and the CFG block at that point (which will become the
642 /// successor block when inserting the decision point).
644 /// That way, we can build the branch structure for temporary destructors as
645 /// follows:
646 /// 1. If a subexpression is executed unconditionally, we add the temporary
647 /// destructor calls to the current block.
648 /// 2. If a subexpression is executed conditionally, when we encounter a
649 /// CXXBindTemporaryExpr:
650 /// a) If it is the first temporary destructor call in the subexpression,
651 /// we remember the CXXBindTemporaryExpr and the current block in the
652 /// TempDtorContext; we start a new block, and insert the temporary
653 /// destructor call.
654 /// b) Otherwise, add the temporary destructor call to the current block.
655 /// 3. When we finished visiting a conditionally executed subexpression,
656 /// and we found at least one temporary constructor during the visitation
657 /// (2.a has executed), we insert a decision block that uses the
658 /// CXXBindTemporaryExpr as terminator, and branches to the current block
659 /// if the CXXBindTemporaryExpr was marked executed, and otherwise
660 /// branches to the stored successor.
661 struct TempDtorContext {
662 TempDtorContext() = default;
663 TempDtorContext(TryResult KnownExecuted)
664 : IsConditional(true), KnownExecuted(KnownExecuted) {}
666 /// Returns whether we need to start a new branch for a temporary destructor
667 /// call. This is the case when the temporary destructor is
668 /// conditionally executed, and it is the first one we encounter while
669 /// visiting a subexpression - other temporary destructors at the same level
670 /// will be added to the same block and are executed under the same
671 /// condition.
672 bool needsTempDtorBranch() const {
673 return IsConditional && !TerminatorExpr;
676 /// Remember the successor S of a temporary destructor decision branch for
677 /// the corresponding CXXBindTemporaryExpr E.
678 void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
679 Succ = S;
680 TerminatorExpr = E;
683 const bool IsConditional = false;
684 const TryResult KnownExecuted = true;
685 CFGBlock *Succ = nullptr;
686 CXXBindTemporaryExpr *TerminatorExpr = nullptr;
689 // Visitors to walk an AST and generate destructors of temporaries in
690 // full expression.
691 CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
692 TempDtorContext &Context);
693 CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
694 TempDtorContext &Context);
695 CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
696 bool ExternallyDestructed,
697 TempDtorContext &Context);
698 CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
699 CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
700 CFGBlock *VisitConditionalOperatorForTemporaryDtors(
701 AbstractConditionalOperator *E, bool ExternallyDestructed,
702 TempDtorContext &Context);
703 void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
704 CFGBlock *FalseSucc = nullptr);
706 // NYS == Not Yet Supported
707 CFGBlock *NYS() {
708 badCFG = true;
709 return Block;
712 // Remember to apply the construction context based on the current \p Layer
713 // when constructing the CFG element for \p CE.
714 void consumeConstructionContext(const ConstructionContextLayer *Layer,
715 Expr *E);
717 // Scan \p Child statement to find constructors in it, while keeping in mind
718 // that its parent statement is providing a partial construction context
719 // described by \p Layer. If a constructor is found, it would be assigned
720 // the context based on the layer. If an additional construction context layer
721 // is found, the function recurses into that.
722 void findConstructionContexts(const ConstructionContextLayer *Layer,
723 Stmt *Child);
725 // Scan all arguments of a call expression for a construction context.
726 // These sorts of call expressions don't have a common superclass,
727 // hence strict duck-typing.
728 template <typename CallLikeExpr,
729 typename = std::enable_if_t<
730 std::is_base_of_v<CallExpr, CallLikeExpr> ||
731 std::is_base_of_v<CXXConstructExpr, CallLikeExpr> ||
732 std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>>
733 void findConstructionContextsForArguments(CallLikeExpr *E) {
734 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
735 Expr *Arg = E->getArg(i);
736 if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
737 findConstructionContexts(
738 ConstructionContextLayer::create(cfg->getBumpVectorContext(),
739 ConstructionContextItem(E, i)),
740 Arg);
744 // Unset the construction context after consuming it. This is done immediately
745 // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
746 // there's no need to do this manually in every Visit... function.
747 void cleanupConstructionContext(Expr *E);
749 void autoCreateBlock() { if (!Block) Block = createBlock(); }
750 CFGBlock *createBlock(bool add_successor = true);
751 CFGBlock *createNoReturnBlock();
753 CFGBlock *addStmt(Stmt *S) {
754 return Visit(S, AddStmtChoice::AlwaysAdd);
757 CFGBlock *addInitializer(CXXCtorInitializer *I);
758 void addLoopExit(const Stmt *LoopStmt);
759 void addAutomaticObjDtors(LocalScope::const_iterator B,
760 LocalScope::const_iterator E, Stmt *S);
761 void addLifetimeEnds(LocalScope::const_iterator B,
762 LocalScope::const_iterator E, Stmt *S);
763 void addAutomaticObjHandling(LocalScope::const_iterator B,
764 LocalScope::const_iterator E, Stmt *S);
765 void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
766 void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
767 Stmt *S);
769 void getDeclsWithEndedScope(LocalScope::const_iterator B,
770 LocalScope::const_iterator E, Stmt *S);
772 // Local scopes creation.
773 LocalScope* createOrReuseLocalScope(LocalScope* Scope);
775 void addLocalScopeForStmt(Stmt *S);
776 LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
777 LocalScope* Scope = nullptr);
778 LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
780 void addLocalScopeAndDtors(Stmt *S);
782 const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
783 if (!BuildOpts.AddRichCXXConstructors)
784 return nullptr;
786 const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
787 if (!Layer)
788 return nullptr;
790 cleanupConstructionContext(E);
791 return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
792 Layer);
795 // Interface to CFGBlock - adding CFGElements.
797 void appendStmt(CFGBlock *B, const Stmt *S) {
798 if (alwaysAdd(S) && cachedEntry)
799 cachedEntry->second = B;
801 // All block-level expressions should have already been IgnoreParens()ed.
802 assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
803 B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
806 void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
807 if (const ConstructionContext *CC =
808 retrieveAndCleanupConstructionContext(CE)) {
809 B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
810 return;
813 // No valid construction context found. Fall back to statement.
814 B->appendStmt(CE, cfg->getBumpVectorContext());
817 void appendCall(CFGBlock *B, CallExpr *CE) {
818 if (alwaysAdd(CE) && cachedEntry)
819 cachedEntry->second = B;
821 if (const ConstructionContext *CC =
822 retrieveAndCleanupConstructionContext(CE)) {
823 B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
824 return;
827 // No valid construction context found. Fall back to statement.
828 B->appendStmt(CE, cfg->getBumpVectorContext());
831 void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
832 B->appendInitializer(I, cfg->getBumpVectorContext());
835 void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
836 B->appendNewAllocator(NE, cfg->getBumpVectorContext());
839 void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
840 B->appendBaseDtor(BS, cfg->getBumpVectorContext());
843 void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
844 B->appendMemberDtor(FD, cfg->getBumpVectorContext());
847 void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
848 if (alwaysAdd(ME) && cachedEntry)
849 cachedEntry->second = B;
851 if (const ConstructionContext *CC =
852 retrieveAndCleanupConstructionContext(ME)) {
853 B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
854 return;
857 B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
858 cfg->getBumpVectorContext());
861 void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
862 B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
865 void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
866 B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
869 void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
870 B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
873 void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
874 B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
877 void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
878 B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
881 void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
882 LocalScope::const_iterator B, LocalScope::const_iterator E);
884 void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
885 LocalScope::const_iterator B,
886 LocalScope::const_iterator E);
888 const VarDecl *
889 prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
890 LocalScope::const_iterator B,
891 LocalScope::const_iterator E);
893 void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
894 B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
895 cfg->getBumpVectorContext());
898 /// Add a reachable successor to a block, with the alternate variant that is
899 /// unreachable.
900 void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
901 B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
902 cfg->getBumpVectorContext());
905 void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
906 if (BuildOpts.AddScopes)
907 B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
910 void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
911 if (BuildOpts.AddScopes)
912 B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
915 void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
916 if (BuildOpts.AddScopes)
917 B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
920 void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
921 if (BuildOpts.AddScopes)
922 B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
925 /// Find a relational comparison with an expression evaluating to a
926 /// boolean and a constant other than 0 and 1.
927 /// e.g. if ((x < y) == 10)
928 TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
929 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
930 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
932 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
933 const Expr *BoolExpr = RHSExpr;
934 bool IntFirst = true;
935 if (!IntLiteral) {
936 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
937 BoolExpr = LHSExpr;
938 IntFirst = false;
941 if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
942 return TryResult();
944 llvm::APInt IntValue = IntLiteral->getValue();
945 if ((IntValue == 1) || (IntValue == 0))
946 return TryResult();
948 bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
949 !IntValue.isNegative();
951 BinaryOperatorKind Bok = B->getOpcode();
952 if (Bok == BO_GT || Bok == BO_GE) {
953 // Always true for 10 > bool and bool > -1
954 // Always false for -1 > bool and bool > 10
955 return TryResult(IntFirst == IntLarger);
956 } else {
957 // Always true for -1 < bool and bool < 10
958 // Always false for 10 < bool and bool < -1
959 return TryResult(IntFirst != IntLarger);
963 /// Find an incorrect equality comparison. Either with an expression
964 /// evaluating to a boolean and a constant other than 0 and 1.
965 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
966 /// true/false e.q. (x & 8) == 4.
967 TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
968 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
969 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
971 std::optional<llvm::APInt> IntLiteral1 =
972 getIntegerLiteralSubexpressionValue(LHSExpr);
973 const Expr *BoolExpr = RHSExpr;
975 if (!IntLiteral1) {
976 IntLiteral1 = getIntegerLiteralSubexpressionValue(RHSExpr);
977 BoolExpr = LHSExpr;
980 if (!IntLiteral1)
981 return TryResult();
983 const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
984 if (BitOp && (BitOp->getOpcode() == BO_And ||
985 BitOp->getOpcode() == BO_Or)) {
986 const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
987 const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
989 std::optional<llvm::APInt> IntLiteral2 =
990 getIntegerLiteralSubexpressionValue(LHSExpr2);
992 if (!IntLiteral2)
993 IntLiteral2 = getIntegerLiteralSubexpressionValue(RHSExpr2);
995 if (!IntLiteral2)
996 return TryResult();
998 if ((BitOp->getOpcode() == BO_And &&
999 (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) ||
1000 (BitOp->getOpcode() == BO_Or &&
1001 (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) {
1002 if (BuildOpts.Observer)
1003 BuildOpts.Observer->compareBitwiseEquality(B,
1004 B->getOpcode() != BO_EQ);
1005 return TryResult(B->getOpcode() != BO_EQ);
1007 } else if (BoolExpr->isKnownToHaveBooleanValue()) {
1008 if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) {
1009 return TryResult();
1011 return TryResult(B->getOpcode() != BO_EQ);
1014 return TryResult();
1017 // Helper function to get an APInt from an expression. Supports expressions
1018 // which are an IntegerLiteral or a UnaryOperator and returns the value with
1019 // all operations performed on it.
1020 // FIXME: it would be good to unify this function with
1021 // IsIntegerLiteralConstantExpr at some point given the similarity between the
1022 // functions.
1023 std::optional<llvm::APInt>
1024 getIntegerLiteralSubexpressionValue(const Expr *E) {
1026 // If unary.
1027 if (const auto *UnOp = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1028 // Get the sub expression of the unary expression and get the Integer
1029 // Literal.
1030 const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens();
1032 if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(SubExpr)) {
1034 llvm::APInt Value = IntLiteral->getValue();
1036 // Perform the operation manually.
1037 switch (UnOp->getOpcode()) {
1038 case UO_Plus:
1039 return Value;
1040 case UO_Minus:
1041 return -Value;
1042 case UO_Not:
1043 return ~Value;
1044 case UO_LNot:
1045 return llvm::APInt(Context->getTypeSize(Context->IntTy), !Value);
1046 default:
1047 assert(false && "Unexpected unary operator!");
1048 return std::nullopt;
1051 } else if (const auto *IntLiteral =
1052 dyn_cast<IntegerLiteral>(E->IgnoreParens()))
1053 return IntLiteral->getValue();
1055 return std::nullopt;
1058 TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1059 const llvm::APSInt &Value1,
1060 const llvm::APSInt &Value2) {
1061 assert(Value1.isSigned() == Value2.isSigned());
1062 switch (Relation) {
1063 default:
1064 return TryResult();
1065 case BO_EQ:
1066 return TryResult(Value1 == Value2);
1067 case BO_NE:
1068 return TryResult(Value1 != Value2);
1069 case BO_LT:
1070 return TryResult(Value1 < Value2);
1071 case BO_LE:
1072 return TryResult(Value1 <= Value2);
1073 case BO_GT:
1074 return TryResult(Value1 > Value2);
1075 case BO_GE:
1076 return TryResult(Value1 >= Value2);
1080 /// Find a pair of comparison expressions with or without parentheses
1081 /// with a shared variable and constants and a logical operator between them
1082 /// that always evaluates to either true or false.
1083 /// e.g. if (x != 3 || x != 4)
1084 TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1085 assert(B->isLogicalOp());
1086 const BinaryOperator *LHS =
1087 dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
1088 const BinaryOperator *RHS =
1089 dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
1090 if (!LHS || !RHS)
1091 return {};
1093 if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1094 return {};
1096 const Expr *DeclExpr1;
1097 const Expr *NumExpr1;
1098 BinaryOperatorKind BO1;
1099 std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1101 if (!DeclExpr1 || !NumExpr1)
1102 return {};
1104 const Expr *DeclExpr2;
1105 const Expr *NumExpr2;
1106 BinaryOperatorKind BO2;
1107 std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1109 if (!DeclExpr2 || !NumExpr2)
1110 return {};
1112 // Check that it is the same variable on both sides.
1113 if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1114 return {};
1116 // Make sure the user's intent is clear (e.g. they're comparing against two
1117 // int literals, or two things from the same enum)
1118 if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1119 return {};
1121 Expr::EvalResult L1Result, L2Result;
1122 if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1123 !NumExpr2->EvaluateAsInt(L2Result, *Context))
1124 return {};
1126 llvm::APSInt L1 = L1Result.Val.getInt();
1127 llvm::APSInt L2 = L2Result.Val.getInt();
1129 // Can't compare signed with unsigned or with different bit width.
1130 if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1131 return {};
1133 // Values that will be used to determine if result of logical
1134 // operator is always true/false
1135 const llvm::APSInt Values[] = {
1136 // Value less than both Value1 and Value2
1137 llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1138 // L1
1140 // Value between Value1 and Value2
1141 ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1142 L1.isUnsigned()),
1143 // L2
1145 // Value greater than both Value1 and Value2
1146 llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1149 // Check whether expression is always true/false by evaluating the following
1150 // * variable x is less than the smallest literal.
1151 // * variable x is equal to the smallest literal.
1152 // * Variable x is between smallest and largest literal.
1153 // * Variable x is equal to the largest literal.
1154 // * Variable x is greater than largest literal.
1155 bool AlwaysTrue = true, AlwaysFalse = true;
1156 // Track value of both subexpressions. If either side is always
1157 // true/false, another warning should have already been emitted.
1158 bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1159 bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1160 for (const llvm::APSInt &Value : Values) {
1161 TryResult Res1, Res2;
1162 Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1163 Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1165 if (!Res1.isKnown() || !Res2.isKnown())
1166 return {};
1168 if (B->getOpcode() == BO_LAnd) {
1169 AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1170 AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1171 } else {
1172 AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1173 AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1176 LHSAlwaysTrue &= Res1.isTrue();
1177 LHSAlwaysFalse &= Res1.isFalse();
1178 RHSAlwaysTrue &= Res2.isTrue();
1179 RHSAlwaysFalse &= Res2.isFalse();
1182 if (AlwaysTrue || AlwaysFalse) {
1183 if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1184 !RHSAlwaysFalse && BuildOpts.Observer)
1185 BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1186 return TryResult(AlwaysTrue);
1188 return {};
1191 /// A bitwise-or with a non-zero constant always evaluates to true.
1192 TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1193 const Expr *LHSConstant =
1194 tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1195 const Expr *RHSConstant =
1196 tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1198 if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1199 return {};
1201 const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1203 Expr::EvalResult Result;
1204 if (!Constant->EvaluateAsInt(Result, *Context))
1205 return {};
1207 if (Result.Val.getInt() == 0)
1208 return {};
1210 if (BuildOpts.Observer)
1211 BuildOpts.Observer->compareBitwiseOr(B);
1213 return TryResult(true);
1216 /// Try and evaluate an expression to an integer constant.
1217 bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1218 if (!BuildOpts.PruneTriviallyFalseEdges)
1219 return false;
1220 return !S->isTypeDependent() &&
1221 !S->isValueDependent() &&
1222 S->EvaluateAsRValue(outResult, *Context);
1225 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1226 /// if we can evaluate to a known value, otherwise return -1.
1227 TryResult tryEvaluateBool(Expr *S) {
1228 if (!BuildOpts.PruneTriviallyFalseEdges ||
1229 S->isTypeDependent() || S->isValueDependent())
1230 return {};
1232 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1233 if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1234 // Check the cache first.
1235 CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1236 if (I != CachedBoolEvals.end())
1237 return I->second; // already in map;
1239 // Retrieve result at first, or the map might be updated.
1240 TryResult Result = evaluateAsBooleanConditionNoCache(S);
1241 CachedBoolEvals[S] = Result; // update or insert
1242 return Result;
1244 else {
1245 switch (Bop->getOpcode()) {
1246 default: break;
1247 // For 'x & 0' and 'x * 0', we can determine that
1248 // the value is always false.
1249 case BO_Mul:
1250 case BO_And: {
1251 // If either operand is zero, we know the value
1252 // must be false.
1253 Expr::EvalResult LHSResult;
1254 if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1255 llvm::APSInt IntVal = LHSResult.Val.getInt();
1256 if (!IntVal.getBoolValue()) {
1257 return TryResult(false);
1260 Expr::EvalResult RHSResult;
1261 if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1262 llvm::APSInt IntVal = RHSResult.Val.getInt();
1263 if (!IntVal.getBoolValue()) {
1264 return TryResult(false);
1268 break;
1273 return evaluateAsBooleanConditionNoCache(S);
1276 /// Evaluate as boolean \param E without using the cache.
1277 TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1278 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1279 if (Bop->isLogicalOp()) {
1280 TryResult LHS = tryEvaluateBool(Bop->getLHS());
1281 if (LHS.isKnown()) {
1282 // We were able to evaluate the LHS, see if we can get away with not
1283 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1284 if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1285 return LHS.isTrue();
1287 TryResult RHS = tryEvaluateBool(Bop->getRHS());
1288 if (RHS.isKnown()) {
1289 if (Bop->getOpcode() == BO_LOr)
1290 return LHS.isTrue() || RHS.isTrue();
1291 else
1292 return LHS.isTrue() && RHS.isTrue();
1294 } else {
1295 TryResult RHS = tryEvaluateBool(Bop->getRHS());
1296 if (RHS.isKnown()) {
1297 // We can't evaluate the LHS; however, sometimes the result
1298 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1299 if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1300 return RHS.isTrue();
1301 } else {
1302 TryResult BopRes = checkIncorrectLogicOperator(Bop);
1303 if (BopRes.isKnown())
1304 return BopRes.isTrue();
1308 return {};
1309 } else if (Bop->isEqualityOp()) {
1310 TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1311 if (BopRes.isKnown())
1312 return BopRes.isTrue();
1313 } else if (Bop->isRelationalOp()) {
1314 TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1315 if (BopRes.isKnown())
1316 return BopRes.isTrue();
1317 } else if (Bop->getOpcode() == BO_Or) {
1318 TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1319 if (BopRes.isKnown())
1320 return BopRes.isTrue();
1324 bool Result;
1325 if (E->EvaluateAsBooleanCondition(Result, *Context))
1326 return Result;
1328 return {};
1331 bool hasTrivialDestructor(VarDecl *VD);
1334 } // namespace
1336 Expr *
1337 clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE) {
1338 if (!AILE)
1339 return nullptr;
1341 Expr *AILEInit = AILE->getSubExpr();
1342 while (const auto *E = dyn_cast<ArrayInitLoopExpr>(AILEInit))
1343 AILEInit = E->getSubExpr();
1345 return AILEInit;
1348 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1349 const Stmt *stmt) const {
1350 return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1353 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1354 bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1356 if (!BuildOpts.forcedBlkExprs)
1357 return shouldAdd;
1359 if (lastLookup == stmt) {
1360 if (cachedEntry) {
1361 assert(cachedEntry->first == stmt);
1362 return true;
1364 return shouldAdd;
1367 lastLookup = stmt;
1369 // Perform the lookup!
1370 CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1372 if (!fb) {
1373 // No need to update 'cachedEntry', since it will always be null.
1374 assert(!cachedEntry);
1375 return shouldAdd;
1378 CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1379 if (itr == fb->end()) {
1380 cachedEntry = nullptr;
1381 return shouldAdd;
1384 cachedEntry = &*itr;
1385 return true;
1388 // FIXME: Add support for dependent-sized array types in C++?
1389 // Does it even make sense to build a CFG for an uninstantiated template?
1390 static const VariableArrayType *FindVA(const Type *t) {
1391 while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1392 if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1393 if (vat->getSizeExpr())
1394 return vat;
1396 t = vt->getElementType().getTypePtr();
1399 return nullptr;
1402 void CFGBuilder::consumeConstructionContext(
1403 const ConstructionContextLayer *Layer, Expr *E) {
1404 assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1405 isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1406 if (const ConstructionContextLayer *PreviouslyStoredLayer =
1407 ConstructionContextMap.lookup(E)) {
1408 (void)PreviouslyStoredLayer;
1409 // We might have visited this child when we were finding construction
1410 // contexts within its parents.
1411 assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1412 "Already within a different construction context!");
1413 } else {
1414 ConstructionContextMap[E] = Layer;
1418 void CFGBuilder::findConstructionContexts(
1419 const ConstructionContextLayer *Layer, Stmt *Child) {
1420 if (!BuildOpts.AddRichCXXConstructors)
1421 return;
1423 if (!Child)
1424 return;
1426 auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1427 return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1428 Layer);
1431 switch(Child->getStmtClass()) {
1432 case Stmt::CXXConstructExprClass:
1433 case Stmt::CXXTemporaryObjectExprClass: {
1434 // Support pre-C++17 copy elision AST.
1435 auto *CE = cast<CXXConstructExpr>(Child);
1436 if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1437 findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1440 consumeConstructionContext(Layer, CE);
1441 break;
1443 // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1444 // FIXME: An isa<> would look much better but this whole switch is a
1445 // workaround for an internal compiler error in MSVC 2015 (see r326021).
1446 case Stmt::CallExprClass:
1447 case Stmt::CXXMemberCallExprClass:
1448 case Stmt::CXXOperatorCallExprClass:
1449 case Stmt::UserDefinedLiteralClass:
1450 case Stmt::ObjCMessageExprClass: {
1451 auto *E = cast<Expr>(Child);
1452 if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1453 consumeConstructionContext(Layer, E);
1454 break;
1456 case Stmt::ExprWithCleanupsClass: {
1457 auto *Cleanups = cast<ExprWithCleanups>(Child);
1458 findConstructionContexts(Layer, Cleanups->getSubExpr());
1459 break;
1461 case Stmt::CXXFunctionalCastExprClass: {
1462 auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1463 findConstructionContexts(Layer, Cast->getSubExpr());
1464 break;
1466 case Stmt::ImplicitCastExprClass: {
1467 auto *Cast = cast<ImplicitCastExpr>(Child);
1468 // Should we support other implicit cast kinds?
1469 switch (Cast->getCastKind()) {
1470 case CK_NoOp:
1471 case CK_ConstructorConversion:
1472 findConstructionContexts(Layer, Cast->getSubExpr());
1473 break;
1474 default:
1475 break;
1477 break;
1479 case Stmt::CXXBindTemporaryExprClass: {
1480 auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1481 findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1482 break;
1484 case Stmt::MaterializeTemporaryExprClass: {
1485 // Normally we don't want to search in MaterializeTemporaryExpr because
1486 // it indicates the beginning of a temporary object construction context,
1487 // so it shouldn't be found in the middle. However, if it is the beginning
1488 // of an elidable copy or move construction context, we need to include it.
1489 if (Layer->getItem().getKind() ==
1490 ConstructionContextItem::ElidableConstructorKind) {
1491 auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1492 findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1494 break;
1496 case Stmt::ConditionalOperatorClass: {
1497 auto *CO = cast<ConditionalOperator>(Child);
1498 if (Layer->getItem().getKind() !=
1499 ConstructionContextItem::MaterializationKind) {
1500 // If the object returned by the conditional operator is not going to be a
1501 // temporary object that needs to be immediately materialized, then
1502 // it must be C++17 with its mandatory copy elision. Do not yet promise
1503 // to support this case.
1504 assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1505 Context->getLangOpts().CPlusPlus17);
1506 break;
1508 findConstructionContexts(Layer, CO->getLHS());
1509 findConstructionContexts(Layer, CO->getRHS());
1510 break;
1512 case Stmt::InitListExprClass: {
1513 auto *ILE = cast<InitListExpr>(Child);
1514 if (ILE->isTransparent()) {
1515 findConstructionContexts(Layer, ILE->getInit(0));
1516 break;
1518 // TODO: Handle other cases. For now, fail to find construction contexts.
1519 break;
1521 case Stmt::ParenExprClass: {
1522 // If expression is placed into parenthesis we should propagate the parent
1523 // construction context to subexpressions.
1524 auto *PE = cast<ParenExpr>(Child);
1525 findConstructionContexts(Layer, PE->getSubExpr());
1526 break;
1528 default:
1529 break;
1533 void CFGBuilder::cleanupConstructionContext(Expr *E) {
1534 assert(BuildOpts.AddRichCXXConstructors &&
1535 "We should not be managing construction contexts!");
1536 assert(ConstructionContextMap.count(E) &&
1537 "Cannot exit construction context without the context!");
1538 ConstructionContextMap.erase(E);
1542 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
1543 /// arbitrary statement. Examples include a single expression or a function
1544 /// body (compound statement). The ownership of the returned CFG is
1545 /// transferred to the caller. If CFG construction fails, this method returns
1546 /// NULL.
1547 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1548 assert(cfg.get());
1549 if (!Statement)
1550 return nullptr;
1552 // Create an empty block that will serve as the exit block for the CFG. Since
1553 // this is the first block added to the CFG, it will be implicitly registered
1554 // as the exit block.
1555 Succ = createBlock();
1556 assert(Succ == &cfg->getExit());
1557 Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
1559 assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
1560 "AddImplicitDtors and AddLifetime cannot be used at the same time");
1562 if (BuildOpts.AddImplicitDtors)
1563 if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1564 addImplicitDtorsForDestructor(DD);
1566 // Visit the statements and create the CFG.
1567 CFGBlock *B = addStmt(Statement);
1569 if (badCFG)
1570 return nullptr;
1572 // For C++ constructor add initializers to CFG. Constructors of virtual bases
1573 // are ignored unless the object is of the most derived class.
1574 // class VBase { VBase() = default; VBase(int) {} };
1575 // class A : virtual public VBase { A() : VBase(0) {} };
1576 // class B : public A {};
1577 // B b; // Constructor calls in order: VBase(), A(), B().
1578 // // VBase(0) is ignored because A isn't the most derived class.
1579 // This may result in the virtual base(s) being already initialized at this
1580 // point, in which case we should jump right onto non-virtual bases and
1581 // fields. To handle this, make a CFG branch. We only need to add one such
1582 // branch per constructor, since the Standard states that all virtual bases
1583 // shall be initialized before non-virtual bases and direct data members.
1584 if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1585 CFGBlock *VBaseSucc = nullptr;
1586 for (auto *I : llvm::reverse(CD->inits())) {
1587 if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1588 I->isBaseInitializer() && I->isBaseVirtual()) {
1589 // We've reached the first virtual base init while iterating in reverse
1590 // order. Make a new block for virtual base initializers so that we
1591 // could skip them.
1592 VBaseSucc = Succ = B ? B : &cfg->getExit();
1593 Block = createBlock();
1595 B = addInitializer(I);
1596 if (badCFG)
1597 return nullptr;
1599 if (VBaseSucc) {
1600 // Make a branch block for potentially skipping virtual base initializers.
1601 Succ = VBaseSucc;
1602 B = createBlock();
1603 B->setTerminator(
1604 CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1605 addSuccessor(B, Block, true);
1609 if (B)
1610 Succ = B;
1612 // Backpatch the gotos whose label -> block mappings we didn't know when we
1613 // encountered them.
1614 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1615 E = BackpatchBlocks.end(); I != E; ++I ) {
1617 CFGBlock *B = I->block;
1618 if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1619 LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1620 // If there is no target for the goto, then we are looking at an
1621 // incomplete AST. Handle this by not registering a successor.
1622 if (LI == LabelMap.end())
1623 continue;
1624 JumpTarget JT = LI->second;
1625 prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
1626 JT.scopePosition);
1627 prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1628 JT.scopePosition);
1629 const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
1630 B, I->scopePosition, JT.scopePosition);
1631 appendScopeBegin(JT.block, VD, G);
1632 addSuccessor(B, JT.block);
1634 if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1635 CFGBlock *Successor = (I+1)->block;
1636 for (auto *L : G->labels()) {
1637 LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1638 // If there is no target for the goto, then we are looking at an
1639 // incomplete AST. Handle this by not registering a successor.
1640 if (LI == LabelMap.end())
1641 continue;
1642 JumpTarget JT = LI->second;
1643 // Successor has been added, so skip it.
1644 if (JT.block == Successor)
1645 continue;
1646 addSuccessor(B, JT.block);
1648 I++;
1652 // Add successors to the Indirect Goto Dispatch block (if we have one).
1653 if (CFGBlock *B = cfg->getIndirectGotoBlock())
1654 for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1655 E = AddressTakenLabels.end(); I != E; ++I ) {
1656 // Lookup the target block.
1657 LabelMapTy::iterator LI = LabelMap.find(*I);
1659 // If there is no target block that contains label, then we are looking
1660 // at an incomplete AST. Handle this by not registering a successor.
1661 if (LI == LabelMap.end()) continue;
1663 addSuccessor(B, LI->second.block);
1666 // Create an empty entry block that has no predecessors.
1667 cfg->setEntry(createBlock());
1669 if (BuildOpts.AddRichCXXConstructors)
1670 assert(ConstructionContextMap.empty() &&
1671 "Not all construction contexts were cleaned up!");
1673 return std::move(cfg);
1676 /// createBlock - Used to lazily create blocks that are connected
1677 /// to the current (global) successor.
1678 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1679 CFGBlock *B = cfg->createBlock();
1680 if (add_successor && Succ)
1681 addSuccessor(B, Succ);
1682 return B;
1685 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1686 /// CFG. It is *not* connected to the current (global) successor, and instead
1687 /// directly tied to the exit block in order to be reachable.
1688 CFGBlock *CFGBuilder::createNoReturnBlock() {
1689 CFGBlock *B = createBlock(false);
1690 B->setHasNoReturnElement();
1691 addSuccessor(B, &cfg->getExit(), Succ);
1692 return B;
1695 /// addInitializer - Add C++ base or member initializer element to CFG.
1696 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1697 if (!BuildOpts.AddInitializers)
1698 return Block;
1700 bool HasTemporaries = false;
1702 // Destructors of temporaries in initialization expression should be called
1703 // after initialization finishes.
1704 Expr *Init = I->getInit();
1705 if (Init) {
1706 HasTemporaries = isa<ExprWithCleanups>(Init);
1708 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1709 // Generate destructors for temporaries in initialization expression.
1710 TempDtorContext Context;
1711 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1712 /*ExternallyDestructed=*/false, Context);
1716 autoCreateBlock();
1717 appendInitializer(Block, I);
1719 if (Init) {
1720 // If the initializer is an ArrayInitLoopExpr, we want to extract the
1721 // initializer, that's used for each element.
1722 auto *AILEInit = extractElementInitializerFromNestedAILE(
1723 dyn_cast<ArrayInitLoopExpr>(Init));
1725 findConstructionContexts(
1726 ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1727 AILEInit ? AILEInit : Init);
1729 if (HasTemporaries) {
1730 // For expression with temporaries go directly to subexpression to omit
1731 // generating destructors for the second time.
1732 return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1734 if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1735 if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1736 // In general, appending the expression wrapped by a CXXDefaultInitExpr
1737 // may cause the same Expr to appear more than once in the CFG. Doing it
1738 // here is safe because there's only one initializer per field.
1739 autoCreateBlock();
1740 appendStmt(Block, Default);
1741 if (Stmt *Child = Default->getExpr())
1742 if (CFGBlock *R = Visit(Child))
1743 Block = R;
1744 return Block;
1747 return Visit(Init);
1750 return Block;
1753 /// Retrieve the type of the temporary object whose lifetime was
1754 /// extended by a local reference with the given initializer.
1755 static QualType getReferenceInitTemporaryType(const Expr *Init,
1756 bool *FoundMTE = nullptr) {
1757 while (true) {
1758 // Skip parentheses.
1759 Init = Init->IgnoreParens();
1761 // Skip through cleanups.
1762 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1763 Init = EWC->getSubExpr();
1764 continue;
1767 // Skip through the temporary-materialization expression.
1768 if (const MaterializeTemporaryExpr *MTE
1769 = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1770 Init = MTE->getSubExpr();
1771 if (FoundMTE)
1772 *FoundMTE = true;
1773 continue;
1776 // Skip sub-object accesses into rvalues.
1777 SmallVector<const Expr *, 2> CommaLHSs;
1778 SmallVector<SubobjectAdjustment, 2> Adjustments;
1779 const Expr *SkippedInit =
1780 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1781 if (SkippedInit != Init) {
1782 Init = SkippedInit;
1783 continue;
1786 break;
1789 return Init->getType();
1792 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1793 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1794 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1795 if(!BuildOpts.AddLoopExit)
1796 return;
1797 autoCreateBlock();
1798 appendLoopExit(Block, LoopStmt);
1801 void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
1802 LocalScope::const_iterator E, Stmt *S) {
1803 if (!BuildOpts.AddScopes)
1804 return;
1806 if (B == E)
1807 return;
1809 // To go from B to E, one first goes up the scopes from B to P
1810 // then sideways in one scope from P to P' and then down
1811 // the scopes from P' to E.
1812 // The lifetime of all objects between B and P end.
1813 LocalScope::const_iterator P = B.shared_parent(E);
1814 int Dist = B.distance(P);
1815 if (Dist <= 0)
1816 return;
1818 for (LocalScope::const_iterator I = B; I != P; ++I)
1819 if (I.pointsToFirstDeclaredVar())
1820 DeclsWithEndedScope.insert(*I);
1823 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1824 LocalScope::const_iterator E,
1825 Stmt *S) {
1826 getDeclsWithEndedScope(B, E, S);
1827 if (BuildOpts.AddScopes)
1828 addScopesEnd(B, E, S);
1829 if (BuildOpts.AddImplicitDtors)
1830 addAutomaticObjDtors(B, E, S);
1831 if (BuildOpts.AddLifetime)
1832 addLifetimeEnds(B, E, S);
1835 /// Add to current block automatic objects that leave the scope.
1836 void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
1837 LocalScope::const_iterator E, Stmt *S) {
1838 if (!BuildOpts.AddLifetime)
1839 return;
1841 if (B == E)
1842 return;
1844 // To go from B to E, one first goes up the scopes from B to P
1845 // then sideways in one scope from P to P' and then down
1846 // the scopes from P' to E.
1847 // The lifetime of all objects between B and P end.
1848 LocalScope::const_iterator P = B.shared_parent(E);
1849 int dist = B.distance(P);
1850 if (dist <= 0)
1851 return;
1853 // We need to perform the scope leaving in reverse order
1854 SmallVector<VarDecl *, 10> DeclsTrivial;
1855 SmallVector<VarDecl *, 10> DeclsNonTrivial;
1856 DeclsTrivial.reserve(dist);
1857 DeclsNonTrivial.reserve(dist);
1859 for (LocalScope::const_iterator I = B; I != P; ++I)
1860 if (hasTrivialDestructor(*I))
1861 DeclsTrivial.push_back(*I);
1862 else
1863 DeclsNonTrivial.push_back(*I);
1865 autoCreateBlock();
1866 // object with trivial destructor end their lifetime last (when storage
1867 // duration ends)
1868 for (VarDecl *VD : llvm::reverse(DeclsTrivial))
1869 appendLifetimeEnds(Block, VD, S);
1871 for (VarDecl *VD : llvm::reverse(DeclsNonTrivial))
1872 appendLifetimeEnds(Block, VD, S);
1875 /// Add to current block markers for ending scopes.
1876 void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
1877 LocalScope::const_iterator E, Stmt *S) {
1878 // If implicit destructors are enabled, we'll add scope ends in
1879 // addAutomaticObjDtors.
1880 if (BuildOpts.AddImplicitDtors)
1881 return;
1883 autoCreateBlock();
1885 for (VarDecl *VD : llvm::reverse(DeclsWithEndedScope))
1886 appendScopeEnd(Block, VD, S);
1889 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1890 /// for objects in range of local scope positions. Use S as trigger statement
1891 /// for destructors.
1892 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1893 LocalScope::const_iterator E, Stmt *S) {
1894 if (!BuildOpts.AddImplicitDtors)
1895 return;
1897 if (B == E)
1898 return;
1900 // We need to append the destructors in reverse order, but any one of them
1901 // may be a no-return destructor which changes the CFG. As a result, buffer
1902 // this sequence up and replay them in reverse order when appending onto the
1903 // CFGBlock(s).
1904 SmallVector<VarDecl*, 10> Decls;
1905 Decls.reserve(B.distance(E));
1906 for (LocalScope::const_iterator I = B; I != E; ++I)
1907 Decls.push_back(*I);
1909 for (VarDecl *VD : llvm::reverse(Decls)) {
1910 if (hasTrivialDestructor(VD)) {
1911 // If AddScopes is enabled and *I is a first variable in a scope, add a
1912 // ScopeEnd marker in a Block.
1913 if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD)) {
1914 autoCreateBlock();
1915 appendScopeEnd(Block, VD, S);
1917 continue;
1919 // If this destructor is marked as a no-return destructor, we need to
1920 // create a new block for the destructor which does not have as a successor
1921 // anything built thus far: control won't flow out of this block.
1922 QualType Ty = VD->getType();
1923 if (Ty->isReferenceType()) {
1924 Ty = getReferenceInitTemporaryType(VD->getInit());
1926 Ty = Context->getBaseElementType(Ty);
1928 if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1929 Block = createNoReturnBlock();
1930 else
1931 autoCreateBlock();
1933 // Add ScopeEnd just after automatic obj destructor.
1934 if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD))
1935 appendScopeEnd(Block, VD, S);
1936 appendAutomaticObjDtor(Block, VD, S);
1940 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1941 /// base and member objects in destructor.
1942 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1943 assert(BuildOpts.AddImplicitDtors &&
1944 "Can be called only when dtors should be added");
1945 const CXXRecordDecl *RD = DD->getParent();
1947 // At the end destroy virtual base objects.
1948 for (const auto &VI : RD->vbases()) {
1949 // TODO: Add a VirtualBaseBranch to see if the most derived class
1950 // (which is different from the current class) is responsible for
1951 // destroying them.
1952 const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1953 if (CD && !CD->hasTrivialDestructor()) {
1954 autoCreateBlock();
1955 appendBaseDtor(Block, &VI);
1959 // Before virtual bases destroy direct base objects.
1960 for (const auto &BI : RD->bases()) {
1961 if (!BI.isVirtual()) {
1962 const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1963 if (CD && !CD->hasTrivialDestructor()) {
1964 autoCreateBlock();
1965 appendBaseDtor(Block, &BI);
1970 // First destroy member objects.
1971 for (auto *FI : RD->fields()) {
1972 // Check for constant size array. Set type to array element type.
1973 QualType QT = FI->getType();
1974 // It may be a multidimensional array.
1975 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1976 if (AT->getSize() == 0)
1977 break;
1978 QT = AT->getElementType();
1981 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1982 if (!CD->hasTrivialDestructor()) {
1983 autoCreateBlock();
1984 appendMemberDtor(Block, FI);
1989 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1990 /// way return valid LocalScope object.
1991 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1992 if (Scope)
1993 return Scope;
1994 llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1995 return new (alloc.Allocate<LocalScope>())
1996 LocalScope(BumpVectorContext(alloc), ScopePos);
1999 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
2000 /// that should create implicit scope (e.g. if/else substatements).
2001 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
2002 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2003 !BuildOpts.AddScopes)
2004 return;
2006 LocalScope *Scope = nullptr;
2008 // For compound statement we will be creating explicit scope.
2009 if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
2010 for (auto *BI : CS->body()) {
2011 Stmt *SI = BI->stripLabelLikeStatements();
2012 if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
2013 Scope = addLocalScopeForDeclStmt(DS, Scope);
2015 return;
2018 // For any other statement scope will be implicit and as such will be
2019 // interesting only for DeclStmt.
2020 if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
2021 addLocalScopeForDeclStmt(DS);
2024 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
2025 /// reuse Scope if not NULL.
2026 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
2027 LocalScope* Scope) {
2028 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2029 !BuildOpts.AddScopes)
2030 return Scope;
2032 for (auto *DI : DS->decls())
2033 if (VarDecl *VD = dyn_cast<VarDecl>(DI))
2034 Scope = addLocalScopeForVarDecl(VD, Scope);
2035 return Scope;
2038 bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
2039 // Check for const references bound to temporary. Set type to pointee.
2040 QualType QT = VD->getType();
2041 if (QT->isReferenceType()) {
2042 // Attempt to determine whether this declaration lifetime-extends a
2043 // temporary.
2045 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
2046 // temporaries, and a single declaration can extend multiple temporaries.
2047 // We should look at the storage duration on each nested
2048 // MaterializeTemporaryExpr instead.
2050 const Expr *Init = VD->getInit();
2051 if (!Init) {
2052 // Probably an exception catch-by-reference variable.
2053 // FIXME: It doesn't really mean that the object has a trivial destructor.
2054 // Also are there other cases?
2055 return true;
2058 // Lifetime-extending a temporary?
2059 bool FoundMTE = false;
2060 QT = getReferenceInitTemporaryType(Init, &FoundMTE);
2061 if (!FoundMTE)
2062 return true;
2065 // Check for constant size array. Set type to array element type.
2066 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2067 if (AT->getSize() == 0)
2068 return true;
2069 QT = AT->getElementType();
2072 // Check if type is a C++ class with non-trivial destructor.
2073 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2074 return !CD->hasDefinition() || CD->hasTrivialDestructor();
2075 return true;
2078 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2079 /// create add scope for automatic objects and temporary objects bound to
2080 /// const reference. Will reuse Scope if not NULL.
2081 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2082 LocalScope* Scope) {
2083 assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
2084 "AddImplicitDtors and AddLifetime cannot be used at the same time");
2085 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2086 !BuildOpts.AddScopes)
2087 return Scope;
2089 // Check if variable is local.
2090 if (!VD->hasLocalStorage())
2091 return Scope;
2093 if (BuildOpts.AddImplicitDtors) {
2094 if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
2095 // Add the variable to scope
2096 Scope = createOrReuseLocalScope(Scope);
2097 Scope->addVar(VD);
2098 ScopePos = Scope->begin();
2100 return Scope;
2103 assert(BuildOpts.AddLifetime);
2104 // Add the variable to scope
2105 Scope = createOrReuseLocalScope(Scope);
2106 Scope->addVar(VD);
2107 ScopePos = Scope->begin();
2108 return Scope;
2111 /// addLocalScopeAndDtors - For given statement add local scope for it and
2112 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2113 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2114 LocalScope::const_iterator scopeBeginPos = ScopePos;
2115 addLocalScopeForStmt(S);
2116 addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2119 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
2120 /// variables with automatic storage duration to CFGBlock's elements vector.
2121 /// Elements will be prepended to physical beginning of the vector which
2122 /// happens to be logical end. Use blocks terminator as statement that specifies
2123 /// destructors call site.
2124 /// FIXME: This mechanism for adding automatic destructors doesn't handle
2125 /// no-return destructors properly.
2126 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
2127 LocalScope::const_iterator B, LocalScope::const_iterator E) {
2128 if (!BuildOpts.AddImplicitDtors)
2129 return;
2130 BumpVectorContext &C = cfg->getBumpVectorContext();
2131 CFGBlock::iterator InsertPos
2132 = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
2133 for (LocalScope::const_iterator I = B; I != E; ++I)
2134 InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
2135 Blk->getTerminatorStmt());
2138 /// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
2139 /// variables with automatic storage duration to CFGBlock's elements vector.
2140 /// Elements will be prepended to physical beginning of the vector which
2141 /// happens to be logical end. Use blocks terminator as statement that specifies
2142 /// where lifetime ends.
2143 void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
2144 CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2145 if (!BuildOpts.AddLifetime)
2146 return;
2147 BumpVectorContext &C = cfg->getBumpVectorContext();
2148 CFGBlock::iterator InsertPos =
2149 Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
2150 for (LocalScope::const_iterator I = B; I != E; ++I) {
2151 InsertPos =
2152 Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
2156 /// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
2157 /// variables with automatic storage duration to CFGBlock's elements vector.
2158 /// Elements will be prepended to physical beginning of the vector which
2159 /// happens to be logical end. Use blocks terminator as statement that specifies
2160 /// where scope ends.
2161 const VarDecl *
2162 CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
2163 CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2164 if (!BuildOpts.AddScopes)
2165 return nullptr;
2166 BumpVectorContext &C = cfg->getBumpVectorContext();
2167 CFGBlock::iterator InsertPos =
2168 Blk->beginScopeEndInsert(Blk->end(), 1, C);
2169 LocalScope::const_iterator PlaceToInsert = B;
2170 for (LocalScope::const_iterator I = B; I != E; ++I)
2171 PlaceToInsert = I;
2172 Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
2173 return *PlaceToInsert;
2176 /// Visit - Walk the subtree of a statement and add extra
2177 /// blocks for ternary operators, &&, and ||. We also process "," and
2178 /// DeclStmts (which may contain nested control-flow).
2179 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2180 bool ExternallyDestructed) {
2181 if (!S) {
2182 badCFG = true;
2183 return nullptr;
2186 if (Expr *E = dyn_cast<Expr>(S))
2187 S = E->IgnoreParens();
2189 if (Context->getLangOpts().OpenMP)
2190 if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2191 return VisitOMPExecutableDirective(D, asc);
2193 switch (S->getStmtClass()) {
2194 default:
2195 return VisitStmt(S, asc);
2197 case Stmt::ImplicitValueInitExprClass:
2198 if (BuildOpts.OmitImplicitValueInitializers)
2199 return Block;
2200 return VisitStmt(S, asc);
2202 case Stmt::InitListExprClass:
2203 return VisitInitListExpr(cast<InitListExpr>(S), asc);
2205 case Stmt::AttributedStmtClass:
2206 return VisitAttributedStmt(cast<AttributedStmt>(S), asc);
2208 case Stmt::AddrLabelExprClass:
2209 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2211 case Stmt::BinaryConditionalOperatorClass:
2212 return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2214 case Stmt::BinaryOperatorClass:
2215 return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2217 case Stmt::BlockExprClass:
2218 return VisitBlockExpr(cast<BlockExpr>(S), asc);
2220 case Stmt::BreakStmtClass:
2221 return VisitBreakStmt(cast<BreakStmt>(S));
2223 case Stmt::CallExprClass:
2224 case Stmt::CXXOperatorCallExprClass:
2225 case Stmt::CXXMemberCallExprClass:
2226 case Stmt::UserDefinedLiteralClass:
2227 return VisitCallExpr(cast<CallExpr>(S), asc);
2229 case Stmt::CaseStmtClass:
2230 return VisitCaseStmt(cast<CaseStmt>(S));
2232 case Stmt::ChooseExprClass:
2233 return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2235 case Stmt::CompoundStmtClass:
2236 return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2238 case Stmt::ConditionalOperatorClass:
2239 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2241 case Stmt::ContinueStmtClass:
2242 return VisitContinueStmt(cast<ContinueStmt>(S));
2244 case Stmt::CXXCatchStmtClass:
2245 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2247 case Stmt::ExprWithCleanupsClass:
2248 return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2249 asc, ExternallyDestructed);
2251 case Stmt::CXXDefaultArgExprClass:
2252 case Stmt::CXXDefaultInitExprClass:
2253 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2254 // called function's declaration, not by the caller. If we simply add
2255 // this expression to the CFG, we could end up with the same Expr
2256 // appearing multiple times.
2257 // PR13385 / <rdar://problem/12156507>
2259 // It's likewise possible for multiple CXXDefaultInitExprs for the same
2260 // expression to be used in the same function (through aggregate
2261 // initialization).
2262 return VisitStmt(S, asc);
2264 case Stmt::CXXBindTemporaryExprClass:
2265 return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2267 case Stmt::CXXConstructExprClass:
2268 return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2270 case Stmt::CXXNewExprClass:
2271 return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2273 case Stmt::CXXDeleteExprClass:
2274 return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2276 case Stmt::CXXFunctionalCastExprClass:
2277 return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2279 case Stmt::CXXTemporaryObjectExprClass:
2280 return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2282 case Stmt::CXXThrowExprClass:
2283 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2285 case Stmt::CXXTryStmtClass:
2286 return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2288 case Stmt::CXXTypeidExprClass:
2289 return VisitCXXTypeidExpr(cast<CXXTypeidExpr>(S), asc);
2291 case Stmt::CXXForRangeStmtClass:
2292 return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2294 case Stmt::DeclStmtClass:
2295 return VisitDeclStmt(cast<DeclStmt>(S));
2297 case Stmt::DefaultStmtClass:
2298 return VisitDefaultStmt(cast<DefaultStmt>(S));
2300 case Stmt::DoStmtClass:
2301 return VisitDoStmt(cast<DoStmt>(S));
2303 case Stmt::ForStmtClass:
2304 return VisitForStmt(cast<ForStmt>(S));
2306 case Stmt::GotoStmtClass:
2307 return VisitGotoStmt(cast<GotoStmt>(S));
2309 case Stmt::GCCAsmStmtClass:
2310 return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2312 case Stmt::IfStmtClass:
2313 return VisitIfStmt(cast<IfStmt>(S));
2315 case Stmt::ImplicitCastExprClass:
2316 return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2318 case Stmt::ConstantExprClass:
2319 return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2321 case Stmt::IndirectGotoStmtClass:
2322 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2324 case Stmt::LabelStmtClass:
2325 return VisitLabelStmt(cast<LabelStmt>(S));
2327 case Stmt::LambdaExprClass:
2328 return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2330 case Stmt::MaterializeTemporaryExprClass:
2331 return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2332 asc);
2334 case Stmt::MemberExprClass:
2335 return VisitMemberExpr(cast<MemberExpr>(S), asc);
2337 case Stmt::NullStmtClass:
2338 return Block;
2340 case Stmt::ObjCAtCatchStmtClass:
2341 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2343 case Stmt::ObjCAutoreleasePoolStmtClass:
2344 return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2346 case Stmt::ObjCAtSynchronizedStmtClass:
2347 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2349 case Stmt::ObjCAtThrowStmtClass:
2350 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2352 case Stmt::ObjCAtTryStmtClass:
2353 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2355 case Stmt::ObjCForCollectionStmtClass:
2356 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2358 case Stmt::ObjCMessageExprClass:
2359 return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2361 case Stmt::OpaqueValueExprClass:
2362 return Block;
2364 case Stmt::PseudoObjectExprClass:
2365 return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2367 case Stmt::ReturnStmtClass:
2368 case Stmt::CoreturnStmtClass:
2369 return VisitReturnStmt(S);
2371 case Stmt::CoyieldExprClass:
2372 case Stmt::CoawaitExprClass:
2373 return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc);
2375 case Stmt::SEHExceptStmtClass:
2376 return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2378 case Stmt::SEHFinallyStmtClass:
2379 return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2381 case Stmt::SEHLeaveStmtClass:
2382 return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2384 case Stmt::SEHTryStmtClass:
2385 return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2387 case Stmt::UnaryExprOrTypeTraitExprClass:
2388 return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2389 asc);
2391 case Stmt::StmtExprClass:
2392 return VisitStmtExpr(cast<StmtExpr>(S), asc);
2394 case Stmt::SwitchStmtClass:
2395 return VisitSwitchStmt(cast<SwitchStmt>(S));
2397 case Stmt::UnaryOperatorClass:
2398 return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2400 case Stmt::WhileStmtClass:
2401 return VisitWhileStmt(cast<WhileStmt>(S));
2403 case Stmt::ArrayInitLoopExprClass:
2404 return VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), asc);
2408 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2409 if (asc.alwaysAdd(*this, S)) {
2410 autoCreateBlock();
2411 appendStmt(Block, S);
2414 return VisitChildren(S);
2417 /// VisitChildren - Visit the children of a Stmt.
2418 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2419 CFGBlock *B = Block;
2421 // Visit the children in their reverse order so that they appear in
2422 // left-to-right (natural) order in the CFG.
2423 reverse_children RChildren(S);
2424 for (Stmt *Child : RChildren) {
2425 if (Child)
2426 if (CFGBlock *R = Visit(Child))
2427 B = R;
2429 return B;
2432 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2433 if (asc.alwaysAdd(*this, ILE)) {
2434 autoCreateBlock();
2435 appendStmt(Block, ILE);
2437 CFGBlock *B = Block;
2439 reverse_children RChildren(ILE);
2440 for (Stmt *Child : RChildren) {
2441 if (!Child)
2442 continue;
2443 if (CFGBlock *R = Visit(Child))
2444 B = R;
2445 if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2446 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2447 if (Stmt *Child = DIE->getExpr())
2448 if (CFGBlock *R = Visit(Child))
2449 B = R;
2452 return B;
2455 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2456 AddStmtChoice asc) {
2457 AddressTakenLabels.insert(A->getLabel());
2459 if (asc.alwaysAdd(*this, A)) {
2460 autoCreateBlock();
2461 appendStmt(Block, A);
2464 return Block;
2467 static bool isFallthroughStatement(const AttributedStmt *A) {
2468 bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs());
2469 assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) &&
2470 "expected fallthrough not to have children");
2471 return isFallthrough;
2474 CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A,
2475 AddStmtChoice asc) {
2476 // AttributedStmts for [[likely]] can have arbitrary statements as children,
2477 // and the current visitation order here would add the AttributedStmts
2478 // for [[likely]] after the child nodes, which is undesirable: For example,
2479 // if the child contains an unconditional return, the [[likely]] would be
2480 // considered unreachable.
2481 // So only add the AttributedStmt for FallThrough, which has CFG effects and
2482 // also no children, and omit the others. None of the other current StmtAttrs
2483 // have semantic meaning for the CFG.
2484 if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) {
2485 autoCreateBlock();
2486 appendStmt(Block, A);
2489 return VisitChildren(A);
2492 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) {
2493 if (asc.alwaysAdd(*this, U)) {
2494 autoCreateBlock();
2495 appendStmt(Block, U);
2498 if (U->getOpcode() == UO_LNot)
2499 tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2501 return Visit(U->getSubExpr(), AddStmtChoice());
2504 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2505 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2506 appendStmt(ConfluenceBlock, B);
2508 if (badCFG)
2509 return nullptr;
2511 return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2512 ConfluenceBlock).first;
2515 std::pair<CFGBlock*, CFGBlock*>
2516 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2517 Stmt *Term,
2518 CFGBlock *TrueBlock,
2519 CFGBlock *FalseBlock) {
2520 // Introspect the RHS. If it is a nested logical operation, we recursively
2521 // build the CFG using this function. Otherwise, resort to default
2522 // CFG construction behavior.
2523 Expr *RHS = B->getRHS()->IgnoreParens();
2524 CFGBlock *RHSBlock, *ExitBlock;
2526 do {
2527 if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2528 if (B_RHS->isLogicalOp()) {
2529 std::tie(RHSBlock, ExitBlock) =
2530 VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2531 break;
2534 // The RHS is not a nested logical operation. Don't push the terminator
2535 // down further, but instead visit RHS and construct the respective
2536 // pieces of the CFG, and link up the RHSBlock with the terminator
2537 // we have been provided.
2538 ExitBlock = RHSBlock = createBlock(false);
2540 // Even though KnownVal is only used in the else branch of the next
2541 // conditional, tryEvaluateBool performs additional checking on the
2542 // Expr, so it should be called unconditionally.
2543 TryResult KnownVal = tryEvaluateBool(RHS);
2544 if (!KnownVal.isKnown())
2545 KnownVal = tryEvaluateBool(B);
2547 if (!Term) {
2548 assert(TrueBlock == FalseBlock);
2549 addSuccessor(RHSBlock, TrueBlock);
2551 else {
2552 RHSBlock->setTerminator(Term);
2553 addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2554 addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2557 Block = RHSBlock;
2558 RHSBlock = addStmt(RHS);
2560 while (false);
2562 if (badCFG)
2563 return std::make_pair(nullptr, nullptr);
2565 // Generate the blocks for evaluating the LHS.
2566 Expr *LHS = B->getLHS()->IgnoreParens();
2568 if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2569 if (B_LHS->isLogicalOp()) {
2570 if (B->getOpcode() == BO_LOr)
2571 FalseBlock = RHSBlock;
2572 else
2573 TrueBlock = RHSBlock;
2575 // For the LHS, treat 'B' as the terminator that we want to sink
2576 // into the nested branch. The RHS always gets the top-most
2577 // terminator.
2578 return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2581 // Create the block evaluating the LHS.
2582 // This contains the '&&' or '||' as the terminator.
2583 CFGBlock *LHSBlock = createBlock(false);
2584 LHSBlock->setTerminator(B);
2586 Block = LHSBlock;
2587 CFGBlock *EntryLHSBlock = addStmt(LHS);
2589 if (badCFG)
2590 return std::make_pair(nullptr, nullptr);
2592 // See if this is a known constant.
2593 TryResult KnownVal = tryEvaluateBool(LHS);
2595 // Now link the LHSBlock with RHSBlock.
2596 if (B->getOpcode() == BO_LOr) {
2597 addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2598 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2599 } else {
2600 assert(B->getOpcode() == BO_LAnd);
2601 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2602 addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2605 return std::make_pair(EntryLHSBlock, ExitBlock);
2608 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2609 AddStmtChoice asc) {
2610 // && or ||
2611 if (B->isLogicalOp())
2612 return VisitLogicalOperator(B);
2614 if (B->getOpcode() == BO_Comma) { // ,
2615 autoCreateBlock();
2616 appendStmt(Block, B);
2617 addStmt(B->getRHS());
2618 return addStmt(B->getLHS());
2621 if (B->isAssignmentOp()) {
2622 if (asc.alwaysAdd(*this, B)) {
2623 autoCreateBlock();
2624 appendStmt(Block, B);
2626 Visit(B->getLHS());
2627 return Visit(B->getRHS());
2630 if (asc.alwaysAdd(*this, B)) {
2631 autoCreateBlock();
2632 appendStmt(Block, B);
2635 if (B->isEqualityOp() || B->isRelationalOp())
2636 tryEvaluateBool(B);
2638 CFGBlock *RBlock = Visit(B->getRHS());
2639 CFGBlock *LBlock = Visit(B->getLHS());
2640 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2641 // containing a DoStmt, and the LHS doesn't create a new block, then we should
2642 // return RBlock. Otherwise we'll incorrectly return NULL.
2643 return (LBlock ? LBlock : RBlock);
2646 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2647 if (asc.alwaysAdd(*this, E)) {
2648 autoCreateBlock();
2649 appendStmt(Block, E);
2651 return Block;
2654 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2655 // "break" is a control-flow statement. Thus we stop processing the current
2656 // block.
2657 if (badCFG)
2658 return nullptr;
2660 // Now create a new block that ends with the break statement.
2661 Block = createBlock(false);
2662 Block->setTerminator(B);
2664 // If there is no target for the break, then we are looking at an incomplete
2665 // AST. This means that the CFG cannot be constructed.
2666 if (BreakJumpTarget.block) {
2667 addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2668 addSuccessor(Block, BreakJumpTarget.block);
2669 } else
2670 badCFG = true;
2672 return Block;
2675 static bool CanThrow(Expr *E, ASTContext &Ctx) {
2676 QualType Ty = E->getType();
2677 if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2678 Ty = Ty->getPointeeType();
2680 const FunctionType *FT = Ty->getAs<FunctionType>();
2681 if (FT) {
2682 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2683 if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2684 Proto->isNothrow())
2685 return false;
2687 return true;
2690 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2691 // Compute the callee type.
2692 QualType calleeType = C->getCallee()->getType();
2693 if (calleeType == Context->BoundMemberTy) {
2694 QualType boundType = Expr::findBoundMemberType(C->getCallee());
2696 // We should only get a null bound type if processing a dependent
2697 // CFG. Recover by assuming nothing.
2698 if (!boundType.isNull()) calleeType = boundType;
2701 // If this is a call to a no-return function, this stops the block here.
2702 bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2704 bool AddEHEdge = false;
2706 // Languages without exceptions are assumed to not throw.
2707 if (Context->getLangOpts().Exceptions) {
2708 if (BuildOpts.AddEHEdges)
2709 AddEHEdge = true;
2712 // If this is a call to a builtin function, it might not actually evaluate
2713 // its arguments. Don't add them to the CFG if this is the case.
2714 bool OmitArguments = false;
2716 if (FunctionDecl *FD = C->getDirectCallee()) {
2717 // TODO: Support construction contexts for variadic function arguments.
2718 // These are a bit problematic and not very useful because passing
2719 // C++ objects as C-style variadic arguments doesn't work in general
2720 // (see [expr.call]).
2721 if (!FD->isVariadic())
2722 findConstructionContextsForArguments(C);
2724 if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2725 NoReturn = true;
2726 if (FD->hasAttr<NoThrowAttr>())
2727 AddEHEdge = false;
2728 if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2729 FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2730 OmitArguments = true;
2733 if (!CanThrow(C->getCallee(), *Context))
2734 AddEHEdge = false;
2736 if (OmitArguments) {
2737 assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2738 assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2739 autoCreateBlock();
2740 appendStmt(Block, C);
2741 return Visit(C->getCallee());
2744 if (!NoReturn && !AddEHEdge) {
2745 autoCreateBlock();
2746 appendCall(Block, C);
2748 return VisitChildren(C);
2751 if (Block) {
2752 Succ = Block;
2753 if (badCFG)
2754 return nullptr;
2757 if (NoReturn)
2758 Block = createNoReturnBlock();
2759 else
2760 Block = createBlock();
2762 appendCall(Block, C);
2764 if (AddEHEdge) {
2765 // Add exceptional edges.
2766 if (TryTerminatedBlock)
2767 addSuccessor(Block, TryTerminatedBlock);
2768 else
2769 addSuccessor(Block, &cfg->getExit());
2772 return VisitChildren(C);
2775 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2776 AddStmtChoice asc) {
2777 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2778 appendStmt(ConfluenceBlock, C);
2779 if (badCFG)
2780 return nullptr;
2782 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2783 Succ = ConfluenceBlock;
2784 Block = nullptr;
2785 CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2786 if (badCFG)
2787 return nullptr;
2789 Succ = ConfluenceBlock;
2790 Block = nullptr;
2791 CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2792 if (badCFG)
2793 return nullptr;
2795 Block = createBlock(false);
2796 // See if this is a known constant.
2797 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2798 addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2799 addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2800 Block->setTerminator(C);
2801 return addStmt(C->getCond());
2804 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C,
2805 bool ExternallyDestructed) {
2806 LocalScope::const_iterator scopeBeginPos = ScopePos;
2807 addLocalScopeForStmt(C);
2809 if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2810 // If the body ends with a ReturnStmt, the dtors will be added in
2811 // VisitReturnStmt.
2812 addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2815 CFGBlock *LastBlock = Block;
2817 for (Stmt *S : llvm::reverse(C->body())) {
2818 // If we hit a segment of code just containing ';' (NullStmts), we can
2819 // get a null block back. In such cases, just use the LastBlock
2820 CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd,
2821 ExternallyDestructed);
2823 if (newBlock)
2824 LastBlock = newBlock;
2826 if (badCFG)
2827 return nullptr;
2829 ExternallyDestructed = false;
2832 return LastBlock;
2835 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2836 AddStmtChoice asc) {
2837 const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2838 const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2840 // Create the confluence block that will "merge" the results of the ternary
2841 // expression.
2842 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2843 appendStmt(ConfluenceBlock, C);
2844 if (badCFG)
2845 return nullptr;
2847 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2849 // Create a block for the LHS expression if there is an LHS expression. A
2850 // GCC extension allows LHS to be NULL, causing the condition to be the
2851 // value that is returned instead.
2852 // e.g: x ?: y is shorthand for: x ? x : y;
2853 Succ = ConfluenceBlock;
2854 Block = nullptr;
2855 CFGBlock *LHSBlock = nullptr;
2856 const Expr *trueExpr = C->getTrueExpr();
2857 if (trueExpr != opaqueValue) {
2858 LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2859 if (badCFG)
2860 return nullptr;
2861 Block = nullptr;
2863 else
2864 LHSBlock = ConfluenceBlock;
2866 // Create the block for the RHS expression.
2867 Succ = ConfluenceBlock;
2868 CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2869 if (badCFG)
2870 return nullptr;
2872 // If the condition is a logical '&&' or '||', build a more accurate CFG.
2873 if (BinaryOperator *Cond =
2874 dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2875 if (Cond->isLogicalOp())
2876 return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2878 // Create the block that will contain the condition.
2879 Block = createBlock(false);
2881 // See if this is a known constant.
2882 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2883 addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2884 addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2885 Block->setTerminator(C);
2886 Expr *condExpr = C->getCond();
2888 if (opaqueValue) {
2889 // Run the condition expression if it's not trivially expressed in
2890 // terms of the opaque value (or if there is no opaque value).
2891 if (condExpr != opaqueValue)
2892 addStmt(condExpr);
2894 // Before that, run the common subexpression if there was one.
2895 // At least one of this or the above will be run.
2896 return addStmt(BCO->getCommon());
2899 return addStmt(condExpr);
2902 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2903 // Check if the Decl is for an __label__. If so, elide it from the
2904 // CFG entirely.
2905 if (isa<LabelDecl>(*DS->decl_begin()))
2906 return Block;
2908 // This case also handles static_asserts.
2909 if (DS->isSingleDecl())
2910 return VisitDeclSubExpr(DS);
2912 CFGBlock *B = nullptr;
2914 // Build an individual DeclStmt for each decl.
2915 for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2916 E = DS->decl_rend();
2917 I != E; ++I) {
2919 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
2920 // automatically freed with the CFG.
2921 DeclGroupRef DG(*I);
2922 Decl *D = *I;
2923 DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2924 cfg->addSyntheticDeclStmt(DSNew, DS);
2926 // Append the fake DeclStmt to block.
2927 B = VisitDeclSubExpr(DSNew);
2930 return B;
2933 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2934 /// DeclStmts and initializers in them.
2935 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2936 assert(DS->isSingleDecl() && "Can handle single declarations only.");
2938 if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
2939 // If we encounter a VLA, process its size expressions.
2940 const Type *T = TND->getUnderlyingType().getTypePtr();
2941 if (!T->isVariablyModifiedType())
2942 return Block;
2944 autoCreateBlock();
2945 appendStmt(Block, DS);
2947 CFGBlock *LastBlock = Block;
2948 for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
2949 VA = FindVA(VA->getElementType().getTypePtr())) {
2950 if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
2951 LastBlock = NewBlock;
2953 return LastBlock;
2956 VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2958 if (!VD) {
2959 // Of everything that can be declared in a DeclStmt, only VarDecls and the
2960 // exceptions above impact runtime semantics.
2961 return Block;
2964 bool HasTemporaries = false;
2966 // Guard static initializers under a branch.
2967 CFGBlock *blockAfterStaticInit = nullptr;
2969 if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2970 // For static variables, we need to create a branch to track
2971 // whether or not they are initialized.
2972 if (Block) {
2973 Succ = Block;
2974 Block = nullptr;
2975 if (badCFG)
2976 return nullptr;
2978 blockAfterStaticInit = Succ;
2981 // Destructors of temporaries in initialization expression should be called
2982 // after initialization finishes.
2983 Expr *Init = VD->getInit();
2984 if (Init) {
2985 HasTemporaries = isa<ExprWithCleanups>(Init);
2987 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2988 // Generate destructors for temporaries in initialization expression.
2989 TempDtorContext Context;
2990 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2991 /*ExternallyDestructed=*/true, Context);
2995 // If we bind to a tuple-like type, we iterate over the HoldingVars, and
2996 // create a DeclStmt for each of them.
2997 if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) {
2998 for (auto *BD : llvm::reverse(DD->bindings())) {
2999 if (auto *VD = BD->getHoldingVar()) {
3000 DeclGroupRef DG(VD);
3001 DeclStmt *DSNew =
3002 new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(VD));
3003 cfg->addSyntheticDeclStmt(DSNew, DS);
3004 Block = VisitDeclSubExpr(DSNew);
3009 autoCreateBlock();
3010 appendStmt(Block, DS);
3012 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3013 // initializer, that's used for each element.
3014 const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init);
3016 findConstructionContexts(
3017 ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3018 AILE ? AILE->getSubExpr() : Init);
3020 // Keep track of the last non-null block, as 'Block' can be nulled out
3021 // if the initializer expression is something like a 'while' in a
3022 // statement-expression.
3023 CFGBlock *LastBlock = Block;
3025 if (Init) {
3026 if (HasTemporaries) {
3027 // For expression with temporaries go directly to subexpression to omit
3028 // generating destructors for the second time.
3029 ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
3030 if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
3031 LastBlock = newBlock;
3033 else {
3034 if (CFGBlock *newBlock = Visit(Init))
3035 LastBlock = newBlock;
3039 // If the type of VD is a VLA, then we must process its size expressions.
3040 // FIXME: This does not find the VLA if it is embedded in other types,
3041 // like here: `int (*p_vla)[x];`
3042 for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
3043 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
3044 if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
3045 LastBlock = newBlock;
3048 maybeAddScopeBeginForVarDecl(Block, VD, DS);
3050 // Remove variable from local scope.
3051 if (ScopePos && VD == *ScopePos)
3052 ++ScopePos;
3054 CFGBlock *B = LastBlock;
3055 if (blockAfterStaticInit) {
3056 Succ = B;
3057 Block = createBlock(false);
3058 Block->setTerminator(DS);
3059 addSuccessor(Block, blockAfterStaticInit);
3060 addSuccessor(Block, B);
3061 B = Block;
3064 return B;
3067 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
3068 // We may see an if statement in the middle of a basic block, or it may be the
3069 // first statement we are processing. In either case, we create a new basic
3070 // block. First, we create the blocks for the then...else statements, and
3071 // then we create the block containing the if statement. If we were in the
3072 // middle of a block, we stop processing that block. That block is then the
3073 // implicit successor for the "then" and "else" clauses.
3075 // Save local scope position because in case of condition variable ScopePos
3076 // won't be restored when traversing AST.
3077 SaveAndRestore save_scope_pos(ScopePos);
3079 // Create local scope for C++17 if init-stmt if one exists.
3080 if (Stmt *Init = I->getInit())
3081 addLocalScopeForStmt(Init);
3083 // Create local scope for possible condition variable.
3084 // Store scope position. Add implicit destructor.
3085 if (VarDecl *VD = I->getConditionVariable())
3086 addLocalScopeForVarDecl(VD);
3088 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
3090 // The block we were processing is now finished. Make it the successor
3091 // block.
3092 if (Block) {
3093 Succ = Block;
3094 if (badCFG)
3095 return nullptr;
3098 // Process the false branch.
3099 CFGBlock *ElseBlock = Succ;
3101 if (Stmt *Else = I->getElse()) {
3102 SaveAndRestore sv(Succ);
3104 // NULL out Block so that the recursive call to Visit will
3105 // create a new basic block.
3106 Block = nullptr;
3108 // If branch is not a compound statement create implicit scope
3109 // and add destructors.
3110 if (!isa<CompoundStmt>(Else))
3111 addLocalScopeAndDtors(Else);
3113 ElseBlock = addStmt(Else);
3115 if (!ElseBlock) // Can occur when the Else body has all NullStmts.
3116 ElseBlock = sv.get();
3117 else if (Block) {
3118 if (badCFG)
3119 return nullptr;
3123 // Process the true branch.
3124 CFGBlock *ThenBlock;
3126 Stmt *Then = I->getThen();
3127 assert(Then);
3128 SaveAndRestore sv(Succ);
3129 Block = nullptr;
3131 // If branch is not a compound statement create implicit scope
3132 // and add destructors.
3133 if (!isa<CompoundStmt>(Then))
3134 addLocalScopeAndDtors(Then);
3136 ThenBlock = addStmt(Then);
3138 if (!ThenBlock) {
3139 // We can reach here if the "then" body has all NullStmts.
3140 // Create an empty block so we can distinguish between true and false
3141 // branches in path-sensitive analyses.
3142 ThenBlock = createBlock(false);
3143 addSuccessor(ThenBlock, sv.get());
3144 } else if (Block) {
3145 if (badCFG)
3146 return nullptr;
3150 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3151 // having these handle the actual control-flow jump. Note that
3152 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3153 // we resort to the old control-flow behavior. This special handling
3154 // removes infeasible paths from the control-flow graph by having the
3155 // control-flow transfer of '&&' or '||' go directly into the then/else
3156 // blocks directly.
3157 BinaryOperator *Cond =
3158 (I->isConsteval() || I->getConditionVariable())
3159 ? nullptr
3160 : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3161 CFGBlock *LastBlock;
3162 if (Cond && Cond->isLogicalOp())
3163 LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3164 else {
3165 // Now create a new block containing the if statement.
3166 Block = createBlock(false);
3168 // Set the terminator of the new block to the If statement.
3169 Block->setTerminator(I);
3171 // See if this is a known constant.
3172 TryResult KnownVal;
3173 if (!I->isConsteval())
3174 KnownVal = tryEvaluateBool(I->getCond());
3176 // Add the successors. If we know that specific branches are
3177 // unreachable, inform addSuccessor() of that knowledge.
3178 addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3179 addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3181 // Add the condition as the last statement in the new block. This may
3182 // create new blocks as the condition may contain control-flow. Any newly
3183 // created blocks will be pointed to be "Block".
3184 LastBlock = addStmt(I->getCond());
3186 // If the IfStmt contains a condition variable, add it and its
3187 // initializer to the CFG.
3188 if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3189 autoCreateBlock();
3190 LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3194 // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3195 if (Stmt *Init = I->getInit()) {
3196 autoCreateBlock();
3197 LastBlock = addStmt(Init);
3200 return LastBlock;
3203 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3204 // If we were in the middle of a block we stop processing that block.
3206 // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3207 // means that the code afterwards is DEAD (unreachable). We still keep
3208 // a basic block for that code; a simple "mark-and-sweep" from the entry
3209 // block will be able to report such dead blocks.
3210 assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3212 // Create the new block.
3213 Block = createBlock(false);
3215 addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3217 if (auto *R = dyn_cast<ReturnStmt>(S))
3218 findConstructionContexts(
3219 ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3220 R->getRetValue());
3222 // If the one of the destructors does not return, we already have the Exit
3223 // block as a successor.
3224 if (!Block->hasNoReturnElement())
3225 addSuccessor(Block, &cfg->getExit());
3227 // Add the return statement to the block.
3228 appendStmt(Block, S);
3230 // Visit children
3231 if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3232 if (Expr *O = RS->getRetValue())
3233 return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3234 return Block;
3237 CoreturnStmt *CRS = cast<CoreturnStmt>(S);
3238 auto *B = Block;
3239 if (CFGBlock *R = Visit(CRS->getPromiseCall()))
3240 B = R;
3242 if (Expr *RV = CRS->getOperand())
3243 if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV))
3244 // A non-initlist void expression.
3245 if (CFGBlock *R = Visit(RV))
3246 B = R;
3248 return B;
3251 CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E,
3252 AddStmtChoice asc) {
3253 // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3254 // active components of the co_await or co_yield. Note we do not model the
3255 // edge from the builtin_suspend to the exit node.
3256 if (asc.alwaysAdd(*this, E)) {
3257 autoCreateBlock();
3258 appendStmt(Block, E);
3260 CFGBlock *B = Block;
3261 if (auto *R = Visit(E->getResumeExpr()))
3262 B = R;
3263 if (auto *R = Visit(E->getSuspendExpr()))
3264 B = R;
3265 if (auto *R = Visit(E->getReadyExpr()))
3266 B = R;
3267 if (auto *R = Visit(E->getCommonExpr()))
3268 B = R;
3269 return B;
3272 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3273 // SEHExceptStmt are treated like labels, so they are the first statement in a
3274 // block.
3276 // Save local scope position because in case of exception variable ScopePos
3277 // won't be restored when traversing AST.
3278 SaveAndRestore save_scope_pos(ScopePos);
3280 addStmt(ES->getBlock());
3281 CFGBlock *SEHExceptBlock = Block;
3282 if (!SEHExceptBlock)
3283 SEHExceptBlock = createBlock();
3285 appendStmt(SEHExceptBlock, ES);
3287 // Also add the SEHExceptBlock as a label, like with regular labels.
3288 SEHExceptBlock->setLabel(ES);
3290 // Bail out if the CFG is bad.
3291 if (badCFG)
3292 return nullptr;
3294 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3295 Block = nullptr;
3297 return SEHExceptBlock;
3300 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3301 return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3304 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3305 // "__leave" is a control-flow statement. Thus we stop processing the current
3306 // block.
3307 if (badCFG)
3308 return nullptr;
3310 // Now create a new block that ends with the __leave statement.
3311 Block = createBlock(false);
3312 Block->setTerminator(LS);
3314 // If there is no target for the __leave, then we are looking at an incomplete
3315 // AST. This means that the CFG cannot be constructed.
3316 if (SEHLeaveJumpTarget.block) {
3317 addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3318 addSuccessor(Block, SEHLeaveJumpTarget.block);
3319 } else
3320 badCFG = true;
3322 return Block;
3325 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3326 // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop
3327 // processing the current block.
3328 CFGBlock *SEHTrySuccessor = nullptr;
3330 if (Block) {
3331 if (badCFG)
3332 return nullptr;
3333 SEHTrySuccessor = Block;
3334 } else SEHTrySuccessor = Succ;
3336 // FIXME: Implement __finally support.
3337 if (Terminator->getFinallyHandler())
3338 return NYS();
3340 CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3342 // Create a new block that will contain the __try statement.
3343 CFGBlock *NewTryTerminatedBlock = createBlock(false);
3345 // Add the terminator in the __try block.
3346 NewTryTerminatedBlock->setTerminator(Terminator);
3348 if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3349 // The code after the try is the implicit successor if there's an __except.
3350 Succ = SEHTrySuccessor;
3351 Block = nullptr;
3352 CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3353 if (!ExceptBlock)
3354 return nullptr;
3355 // Add this block to the list of successors for the block with the try
3356 // statement.
3357 addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3359 if (PrevSEHTryTerminatedBlock)
3360 addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3361 else
3362 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3364 // The code after the try is the implicit successor.
3365 Succ = SEHTrySuccessor;
3367 // Save the current "__try" context.
3368 SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
3369 cfg->addTryDispatchBlock(TryTerminatedBlock);
3371 // Save the current value for the __leave target.
3372 // All __leaves should go to the code following the __try
3373 // (FIXME: or if the __try has a __finally, to the __finally.)
3374 SaveAndRestore save_break(SEHLeaveJumpTarget);
3375 SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3377 assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3378 Block = nullptr;
3379 return addStmt(Terminator->getTryBlock());
3382 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3383 // Get the block of the labeled statement. Add it to our map.
3384 addStmt(L->getSubStmt());
3385 CFGBlock *LabelBlock = Block;
3387 if (!LabelBlock) // This can happen when the body is empty, i.e.
3388 LabelBlock = createBlock(); // scopes that only contains NullStmts.
3390 assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
3391 "label already in map");
3392 LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3394 // Labels partition blocks, so this is the end of the basic block we were
3395 // processing (L is the block's label). Because this is label (and we have
3396 // already processed the substatement) there is no extra control-flow to worry
3397 // about.
3398 LabelBlock->setLabel(L);
3399 if (badCFG)
3400 return nullptr;
3402 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3403 Block = nullptr;
3405 // This block is now the implicit successor of other blocks.
3406 Succ = LabelBlock;
3408 return LabelBlock;
3411 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3412 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3413 for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3414 if (Expr *CopyExpr = CI.getCopyExpr()) {
3415 CFGBlock *Tmp = Visit(CopyExpr);
3416 if (Tmp)
3417 LastBlock = Tmp;
3420 return LastBlock;
3423 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3424 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3426 unsigned Idx = 0;
3427 for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3428 et = E->capture_init_end();
3429 it != et; ++it, ++Idx) {
3430 if (Expr *Init = *it) {
3431 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3432 // initializer, that's used for each element.
3433 auto *AILEInit = extractElementInitializerFromNestedAILE(
3434 dyn_cast<ArrayInitLoopExpr>(Init));
3436 findConstructionContexts(ConstructionContextLayer::create(
3437 cfg->getBumpVectorContext(), {E, Idx}),
3438 AILEInit ? AILEInit : Init);
3440 CFGBlock *Tmp = Visit(Init);
3441 if (Tmp)
3442 LastBlock = Tmp;
3445 return LastBlock;
3448 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3449 // Goto is a control-flow statement. Thus we stop processing the current
3450 // block and create a new one.
3452 Block = createBlock(false);
3453 Block->setTerminator(G);
3455 // If we already know the mapping to the label block add the successor now.
3456 LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3458 if (I == LabelMap.end())
3459 // We will need to backpatch this block later.
3460 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3461 else {
3462 JumpTarget JT = I->second;
3463 addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
3464 addSuccessor(Block, JT.block);
3467 return Block;
3470 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3471 // Goto is a control-flow statement. Thus we stop processing the current
3472 // block and create a new one.
3474 if (!G->isAsmGoto())
3475 return VisitStmt(G, asc);
3477 if (Block) {
3478 Succ = Block;
3479 if (badCFG)
3480 return nullptr;
3482 Block = createBlock();
3483 Block->setTerminator(G);
3484 // We will backpatch this block later for all the labels.
3485 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3486 // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3487 // used to avoid adding "Succ" again.
3488 BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3489 return VisitChildren(G);
3492 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3493 CFGBlock *LoopSuccessor = nullptr;
3495 // Save local scope position because in case of condition variable ScopePos
3496 // won't be restored when traversing AST.
3497 SaveAndRestore save_scope_pos(ScopePos);
3499 // Create local scope for init statement and possible condition variable.
3500 // Add destructor for init statement and condition variable.
3501 // Store scope position for continue statement.
3502 if (Stmt *Init = F->getInit())
3503 addLocalScopeForStmt(Init);
3504 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3506 if (VarDecl *VD = F->getConditionVariable())
3507 addLocalScopeForVarDecl(VD);
3508 LocalScope::const_iterator ContinueScopePos = ScopePos;
3510 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3512 addLoopExit(F);
3514 // "for" is a control-flow statement. Thus we stop processing the current
3515 // block.
3516 if (Block) {
3517 if (badCFG)
3518 return nullptr;
3519 LoopSuccessor = Block;
3520 } else
3521 LoopSuccessor = Succ;
3523 // Save the current value for the break targets.
3524 // All breaks should go to the code following the loop.
3525 SaveAndRestore save_break(BreakJumpTarget);
3526 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3528 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3530 // Now create the loop body.
3532 assert(F->getBody());
3534 // Save the current values for Block, Succ, continue and break targets.
3535 SaveAndRestore save_Block(Block), save_Succ(Succ);
3536 SaveAndRestore save_continue(ContinueJumpTarget);
3538 // Create an empty block to represent the transition block for looping back
3539 // to the head of the loop. If we have increment code, it will
3540 // go in this block as well.
3541 Block = Succ = TransitionBlock = createBlock(false);
3542 TransitionBlock->setLoopTarget(F);
3544 if (Stmt *I = F->getInc()) {
3545 // Generate increment code in its own basic block. This is the target of
3546 // continue statements.
3547 Succ = addStmt(I);
3550 // Finish up the increment (or empty) block if it hasn't been already.
3551 if (Block) {
3552 assert(Block == Succ);
3553 if (badCFG)
3554 return nullptr;
3555 Block = nullptr;
3558 // The starting block for the loop increment is the block that should
3559 // represent the 'loop target' for looping back to the start of the loop.
3560 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3561 ContinueJumpTarget.block->setLoopTarget(F);
3563 // Loop body should end with destructor of Condition variable (if any).
3564 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3566 // If body is not a compound statement create implicit scope
3567 // and add destructors.
3568 if (!isa<CompoundStmt>(F->getBody()))
3569 addLocalScopeAndDtors(F->getBody());
3571 // Now populate the body block, and in the process create new blocks as we
3572 // walk the body of the loop.
3573 BodyBlock = addStmt(F->getBody());
3575 if (!BodyBlock) {
3576 // In the case of "for (...;...;...);" we can have a null BodyBlock.
3577 // Use the continue jump target as the proxy for the body.
3578 BodyBlock = ContinueJumpTarget.block;
3580 else if (badCFG)
3581 return nullptr;
3584 // Because of short-circuit evaluation, the condition of the loop can span
3585 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3586 // evaluate the condition.
3587 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3589 do {
3590 Expr *C = F->getCond();
3591 SaveAndRestore save_scope_pos(ScopePos);
3593 // Specially handle logical operators, which have a slightly
3594 // more optimal CFG representation.
3595 if (BinaryOperator *Cond =
3596 dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3597 if (Cond->isLogicalOp()) {
3598 std::tie(EntryConditionBlock, ExitConditionBlock) =
3599 VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3600 break;
3603 // The default case when not handling logical operators.
3604 EntryConditionBlock = ExitConditionBlock = createBlock(false);
3605 ExitConditionBlock->setTerminator(F);
3607 // See if this is a known constant.
3608 TryResult KnownVal(true);
3610 if (C) {
3611 // Now add the actual condition to the condition block.
3612 // Because the condition itself may contain control-flow, new blocks may
3613 // be created. Thus we update "Succ" after adding the condition.
3614 Block = ExitConditionBlock;
3615 EntryConditionBlock = addStmt(C);
3617 // If this block contains a condition variable, add both the condition
3618 // variable and initializer to the CFG.
3619 if (VarDecl *VD = F->getConditionVariable()) {
3620 if (Expr *Init = VD->getInit()) {
3621 autoCreateBlock();
3622 const DeclStmt *DS = F->getConditionVariableDeclStmt();
3623 assert(DS->isSingleDecl());
3624 findConstructionContexts(
3625 ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3626 Init);
3627 appendStmt(Block, DS);
3628 EntryConditionBlock = addStmt(Init);
3629 assert(Block == EntryConditionBlock);
3630 maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3634 if (Block && badCFG)
3635 return nullptr;
3637 KnownVal = tryEvaluateBool(C);
3640 // Add the loop body entry as a successor to the condition.
3641 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3642 // Link up the condition block with the code that follows the loop. (the
3643 // false branch).
3644 addSuccessor(ExitConditionBlock,
3645 KnownVal.isTrue() ? nullptr : LoopSuccessor);
3646 } while (false);
3648 // Link up the loop-back block to the entry condition block.
3649 addSuccessor(TransitionBlock, EntryConditionBlock);
3651 // The condition block is the implicit successor for any code above the loop.
3652 Succ = EntryConditionBlock;
3654 // If the loop contains initialization, create a new block for those
3655 // statements. This block can also contain statements that precede the loop.
3656 if (Stmt *I = F->getInit()) {
3657 SaveAndRestore save_scope_pos(ScopePos);
3658 ScopePos = LoopBeginScopePos;
3659 Block = createBlock();
3660 return addStmt(I);
3663 // There is no loop initialization. We are thus basically a while loop.
3664 // NULL out Block to force lazy block construction.
3665 Block = nullptr;
3666 Succ = EntryConditionBlock;
3667 return EntryConditionBlock;
3670 CFGBlock *
3671 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3672 AddStmtChoice asc) {
3673 findConstructionContexts(
3674 ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3675 MTE->getSubExpr());
3677 return VisitStmt(MTE, asc);
3680 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3681 if (asc.alwaysAdd(*this, M)) {
3682 autoCreateBlock();
3683 appendStmt(Block, M);
3685 return Visit(M->getBase());
3688 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3689 // Objective-C fast enumeration 'for' statements:
3690 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3692 // for ( Type newVariable in collection_expression ) { statements }
3694 // becomes:
3696 // prologue:
3697 // 1. collection_expression
3698 // T. jump to loop_entry
3699 // loop_entry:
3700 // 1. side-effects of element expression
3701 // 1. ObjCForCollectionStmt [performs binding to newVariable]
3702 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
3703 // TB:
3704 // statements
3705 // T. jump to loop_entry
3706 // FB:
3707 // what comes after
3709 // and
3711 // Type existingItem;
3712 // for ( existingItem in expression ) { statements }
3714 // becomes:
3716 // the same with newVariable replaced with existingItem; the binding works
3717 // the same except that for one ObjCForCollectionStmt::getElement() returns
3718 // a DeclStmt and the other returns a DeclRefExpr.
3720 CFGBlock *LoopSuccessor = nullptr;
3722 if (Block) {
3723 if (badCFG)
3724 return nullptr;
3725 LoopSuccessor = Block;
3726 Block = nullptr;
3727 } else
3728 LoopSuccessor = Succ;
3730 // Build the condition blocks.
3731 CFGBlock *ExitConditionBlock = createBlock(false);
3733 // Set the terminator for the "exit" condition block.
3734 ExitConditionBlock->setTerminator(S);
3736 // The last statement in the block should be the ObjCForCollectionStmt, which
3737 // performs the actual binding to 'element' and determines if there are any
3738 // more items in the collection.
3739 appendStmt(ExitConditionBlock, S);
3740 Block = ExitConditionBlock;
3742 // Walk the 'element' expression to see if there are any side-effects. We
3743 // generate new blocks as necessary. We DON'T add the statement by default to
3744 // the CFG unless it contains control-flow.
3745 CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3746 AddStmtChoice::NotAlwaysAdd);
3747 if (Block) {
3748 if (badCFG)
3749 return nullptr;
3750 Block = nullptr;
3753 // The condition block is the implicit successor for the loop body as well as
3754 // any code above the loop.
3755 Succ = EntryConditionBlock;
3757 // Now create the true branch.
3759 // Save the current values for Succ, continue and break targets.
3760 SaveAndRestore save_Block(Block), save_Succ(Succ);
3761 SaveAndRestore save_continue(ContinueJumpTarget),
3762 save_break(BreakJumpTarget);
3764 // Add an intermediate block between the BodyBlock and the
3765 // EntryConditionBlock to represent the "loop back" transition, for looping
3766 // back to the head of the loop.
3767 CFGBlock *LoopBackBlock = nullptr;
3768 Succ = LoopBackBlock = createBlock();
3769 LoopBackBlock->setLoopTarget(S);
3771 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3772 ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3774 CFGBlock *BodyBlock = addStmt(S->getBody());
3776 if (!BodyBlock)
3777 BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3778 else if (Block) {
3779 if (badCFG)
3780 return nullptr;
3783 // This new body block is a successor to our "exit" condition block.
3784 addSuccessor(ExitConditionBlock, BodyBlock);
3787 // Link up the condition block with the code that follows the loop.
3788 // (the false branch).
3789 addSuccessor(ExitConditionBlock, LoopSuccessor);
3791 // Now create a prologue block to contain the collection expression.
3792 Block = createBlock();
3793 return addStmt(S->getCollection());
3796 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3797 // Inline the body.
3798 return addStmt(S->getSubStmt());
3799 // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3802 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3803 // FIXME: Add locking 'primitives' to CFG for @synchronized.
3805 // Inline the body.
3806 CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3808 // The sync body starts its own basic block. This makes it a little easier
3809 // for diagnostic clients.
3810 if (SyncBlock) {
3811 if (badCFG)
3812 return nullptr;
3814 Block = nullptr;
3815 Succ = SyncBlock;
3818 // Add the @synchronized to the CFG.
3819 autoCreateBlock();
3820 appendStmt(Block, S);
3822 // Inline the sync expression.
3823 return addStmt(S->getSynchExpr());
3826 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3827 autoCreateBlock();
3829 // Add the PseudoObject as the last thing.
3830 appendStmt(Block, E);
3832 CFGBlock *lastBlock = Block;
3834 // Before that, evaluate all of the semantics in order. In
3835 // CFG-land, that means appending them in reverse order.
3836 for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3837 Expr *Semantic = E->getSemanticExpr(--i);
3839 // If the semantic is an opaque value, we're being asked to bind
3840 // it to its source expression.
3841 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3842 Semantic = OVE->getSourceExpr();
3844 if (CFGBlock *B = Visit(Semantic))
3845 lastBlock = B;
3848 return lastBlock;
3851 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3852 CFGBlock *LoopSuccessor = nullptr;
3854 // Save local scope position because in case of condition variable ScopePos
3855 // won't be restored when traversing AST.
3856 SaveAndRestore save_scope_pos(ScopePos);
3858 // Create local scope for possible condition variable.
3859 // Store scope position for continue statement.
3860 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3861 if (VarDecl *VD = W->getConditionVariable()) {
3862 addLocalScopeForVarDecl(VD);
3863 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3865 addLoopExit(W);
3867 // "while" is a control-flow statement. Thus we stop processing the current
3868 // block.
3869 if (Block) {
3870 if (badCFG)
3871 return nullptr;
3872 LoopSuccessor = Block;
3873 Block = nullptr;
3874 } else {
3875 LoopSuccessor = Succ;
3878 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3880 // Process the loop body.
3882 assert(W->getBody());
3884 // Save the current values for Block, Succ, continue and break targets.
3885 SaveAndRestore save_Block(Block), save_Succ(Succ);
3886 SaveAndRestore save_continue(ContinueJumpTarget),
3887 save_break(BreakJumpTarget);
3889 // Create an empty block to represent the transition block for looping back
3890 // to the head of the loop.
3891 Succ = TransitionBlock = createBlock(false);
3892 TransitionBlock->setLoopTarget(W);
3893 ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3895 // All breaks should go to the code following the loop.
3896 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3898 // Loop body should end with destructor of Condition variable (if any).
3899 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3901 // If body is not a compound statement create implicit scope
3902 // and add destructors.
3903 if (!isa<CompoundStmt>(W->getBody()))
3904 addLocalScopeAndDtors(W->getBody());
3906 // Create the body. The returned block is the entry to the loop body.
3907 BodyBlock = addStmt(W->getBody());
3909 if (!BodyBlock)
3910 BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3911 else if (Block && badCFG)
3912 return nullptr;
3915 // Because of short-circuit evaluation, the condition of the loop can span
3916 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3917 // evaluate the condition.
3918 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3920 do {
3921 Expr *C = W->getCond();
3923 // Specially handle logical operators, which have a slightly
3924 // more optimal CFG representation.
3925 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3926 if (Cond->isLogicalOp()) {
3927 std::tie(EntryConditionBlock, ExitConditionBlock) =
3928 VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3929 break;
3932 // The default case when not handling logical operators.
3933 ExitConditionBlock = createBlock(false);
3934 ExitConditionBlock->setTerminator(W);
3936 // Now add the actual condition to the condition block.
3937 // Because the condition itself may contain control-flow, new blocks may
3938 // be created. Thus we update "Succ" after adding the condition.
3939 Block = ExitConditionBlock;
3940 Block = EntryConditionBlock = addStmt(C);
3942 // If this block contains a condition variable, add both the condition
3943 // variable and initializer to the CFG.
3944 if (VarDecl *VD = W->getConditionVariable()) {
3945 if (Expr *Init = VD->getInit()) {
3946 autoCreateBlock();
3947 const DeclStmt *DS = W->getConditionVariableDeclStmt();
3948 assert(DS->isSingleDecl());
3949 findConstructionContexts(
3950 ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3951 const_cast<DeclStmt *>(DS)),
3952 Init);
3953 appendStmt(Block, DS);
3954 EntryConditionBlock = addStmt(Init);
3955 assert(Block == EntryConditionBlock);
3956 maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3960 if (Block && badCFG)
3961 return nullptr;
3963 // See if this is a known constant.
3964 const TryResult& KnownVal = tryEvaluateBool(C);
3966 // Add the loop body entry as a successor to the condition.
3967 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3968 // Link up the condition block with the code that follows the loop. (the
3969 // false branch).
3970 addSuccessor(ExitConditionBlock,
3971 KnownVal.isTrue() ? nullptr : LoopSuccessor);
3972 } while(false);
3974 // Link up the loop-back block to the entry condition block.
3975 addSuccessor(TransitionBlock, EntryConditionBlock);
3977 // There can be no more statements in the condition block since we loop back
3978 // to this block. NULL out Block to force lazy creation of another block.
3979 Block = nullptr;
3981 // Return the condition block, which is the dominating block for the loop.
3982 Succ = EntryConditionBlock;
3983 return EntryConditionBlock;
3986 CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A,
3987 AddStmtChoice asc) {
3988 if (asc.alwaysAdd(*this, A)) {
3989 autoCreateBlock();
3990 appendStmt(Block, A);
3993 CFGBlock *B = Block;
3995 if (CFGBlock *R = Visit(A->getSubExpr()))
3996 B = R;
3998 auto *OVE = dyn_cast<OpaqueValueExpr>(A->getCommonExpr());
3999 assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an "
4000 "OpaqueValueExpr!");
4001 if (CFGBlock *R = Visit(OVE->getSourceExpr()))
4002 B = R;
4004 return B;
4007 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) {
4008 // ObjCAtCatchStmt are treated like labels, so they are the first statement
4009 // in a block.
4011 // Save local scope position because in case of exception variable ScopePos
4012 // won't be restored when traversing AST.
4013 SaveAndRestore save_scope_pos(ScopePos);
4015 if (CS->getCatchBody())
4016 addStmt(CS->getCatchBody());
4018 CFGBlock *CatchBlock = Block;
4019 if (!CatchBlock)
4020 CatchBlock = createBlock();
4022 appendStmt(CatchBlock, CS);
4024 // Also add the ObjCAtCatchStmt as a label, like with regular labels.
4025 CatchBlock->setLabel(CS);
4027 // Bail out if the CFG is bad.
4028 if (badCFG)
4029 return nullptr;
4031 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4032 Block = nullptr;
4034 return CatchBlock;
4037 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
4038 // If we were in the middle of a block we stop processing that block.
4039 if (badCFG)
4040 return nullptr;
4042 // Create the new block.
4043 Block = createBlock(false);
4045 if (TryTerminatedBlock)
4046 // The current try statement is the only successor.
4047 addSuccessor(Block, TryTerminatedBlock);
4048 else
4049 // otherwise the Exit block is the only successor.
4050 addSuccessor(Block, &cfg->getExit());
4052 // Add the statement to the block. This may create new blocks if S contains
4053 // control-flow (short-circuit operations).
4054 return VisitStmt(S, AddStmtChoice::AlwaysAdd);
4057 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) {
4058 // "@try"/"@catch" is a control-flow statement. Thus we stop processing the
4059 // current block.
4060 CFGBlock *TrySuccessor = nullptr;
4062 if (Block) {
4063 if (badCFG)
4064 return nullptr;
4065 TrySuccessor = Block;
4066 } else
4067 TrySuccessor = Succ;
4069 // FIXME: Implement @finally support.
4070 if (Terminator->getFinallyStmt())
4071 return NYS();
4073 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4075 // Create a new block that will contain the try statement.
4076 CFGBlock *NewTryTerminatedBlock = createBlock(false);
4077 // Add the terminator in the try block.
4078 NewTryTerminatedBlock->setTerminator(Terminator);
4080 bool HasCatchAll = false;
4081 for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) {
4082 // The code after the try is the implicit successor.
4083 Succ = TrySuccessor;
4084 if (CS->hasEllipsis()) {
4085 HasCatchAll = true;
4087 Block = nullptr;
4088 CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS);
4089 if (!CatchBlock)
4090 return nullptr;
4091 // Add this block to the list of successors for the block with the try
4092 // statement.
4093 addSuccessor(NewTryTerminatedBlock, CatchBlock);
4096 // FIXME: This needs updating when @finally support is added.
4097 if (!HasCatchAll) {
4098 if (PrevTryTerminatedBlock)
4099 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4100 else
4101 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4104 // The code after the try is the implicit successor.
4105 Succ = TrySuccessor;
4107 // Save the current "try" context.
4108 SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4109 cfg->addTryDispatchBlock(TryTerminatedBlock);
4111 assert(Terminator->getTryBody() && "try must contain a non-NULL body");
4112 Block = nullptr;
4113 return addStmt(Terminator->getTryBody());
4116 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
4117 AddStmtChoice asc) {
4118 findConstructionContextsForArguments(ME);
4120 autoCreateBlock();
4121 appendObjCMessage(Block, ME);
4123 return VisitChildren(ME);
4126 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
4127 // If we were in the middle of a block we stop processing that block.
4128 if (badCFG)
4129 return nullptr;
4131 // Create the new block.
4132 Block = createBlock(false);
4134 if (TryTerminatedBlock)
4135 // The current try statement is the only successor.
4136 addSuccessor(Block, TryTerminatedBlock);
4137 else
4138 // otherwise the Exit block is the only successor.
4139 addSuccessor(Block, &cfg->getExit());
4141 // Add the statement to the block. This may create new blocks if S contains
4142 // control-flow (short-circuit operations).
4143 return VisitStmt(T, AddStmtChoice::AlwaysAdd);
4146 CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) {
4147 if (asc.alwaysAdd(*this, S)) {
4148 autoCreateBlock();
4149 appendStmt(Block, S);
4152 // C++ [expr.typeid]p3:
4153 // When typeid is applied to an expression other than an glvalue of a
4154 // polymorphic class type [...] [the] expression is an unevaluated
4155 // operand. [...]
4156 // We add only potentially evaluated statements to the block to avoid
4157 // CFG generation for unevaluated operands.
4158 if (S && !S->isTypeDependent() && S->isPotentiallyEvaluated())
4159 return VisitChildren(S);
4161 // Return block without CFG for unevaluated operands.
4162 return Block;
4165 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
4166 CFGBlock *LoopSuccessor = nullptr;
4168 addLoopExit(D);
4170 // "do...while" is a control-flow statement. Thus we stop processing the
4171 // current block.
4172 if (Block) {
4173 if (badCFG)
4174 return nullptr;
4175 LoopSuccessor = Block;
4176 } else
4177 LoopSuccessor = Succ;
4179 // Because of short-circuit evaluation, the condition of the loop can span
4180 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
4181 // evaluate the condition.
4182 CFGBlock *ExitConditionBlock = createBlock(false);
4183 CFGBlock *EntryConditionBlock = ExitConditionBlock;
4185 // Set the terminator for the "exit" condition block.
4186 ExitConditionBlock->setTerminator(D);
4188 // Now add the actual condition to the condition block. Because the condition
4189 // itself may contain control-flow, new blocks may be created.
4190 if (Stmt *C = D->getCond()) {
4191 Block = ExitConditionBlock;
4192 EntryConditionBlock = addStmt(C);
4193 if (Block) {
4194 if (badCFG)
4195 return nullptr;
4199 // The condition block is the implicit successor for the loop body.
4200 Succ = EntryConditionBlock;
4202 // See if this is a known constant.
4203 const TryResult &KnownVal = tryEvaluateBool(D->getCond());
4205 // Process the loop body.
4206 CFGBlock *BodyBlock = nullptr;
4208 assert(D->getBody());
4210 // Save the current values for Block, Succ, and continue and break targets
4211 SaveAndRestore save_Block(Block), save_Succ(Succ);
4212 SaveAndRestore save_continue(ContinueJumpTarget),
4213 save_break(BreakJumpTarget);
4215 // All continues within this loop should go to the condition block
4216 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
4218 // All breaks should go to the code following the loop.
4219 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4221 // NULL out Block to force lazy instantiation of blocks for the body.
4222 Block = nullptr;
4224 // If body is not a compound statement create implicit scope
4225 // and add destructors.
4226 if (!isa<CompoundStmt>(D->getBody()))
4227 addLocalScopeAndDtors(D->getBody());
4229 // Create the body. The returned block is the entry to the loop body.
4230 BodyBlock = addStmt(D->getBody());
4232 if (!BodyBlock)
4233 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
4234 else if (Block) {
4235 if (badCFG)
4236 return nullptr;
4239 // Add an intermediate block between the BodyBlock and the
4240 // ExitConditionBlock to represent the "loop back" transition. Create an
4241 // empty block to represent the transition block for looping back to the
4242 // head of the loop.
4243 // FIXME: Can we do this more efficiently without adding another block?
4244 Block = nullptr;
4245 Succ = BodyBlock;
4246 CFGBlock *LoopBackBlock = createBlock();
4247 LoopBackBlock->setLoopTarget(D);
4249 if (!KnownVal.isFalse())
4250 // Add the loop body entry as a successor to the condition.
4251 addSuccessor(ExitConditionBlock, LoopBackBlock);
4252 else
4253 addSuccessor(ExitConditionBlock, nullptr);
4256 // Link up the condition block with the code that follows the loop.
4257 // (the false branch).
4258 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4260 // There can be no more statements in the body block(s) since we loop back to
4261 // the body. NULL out Block to force lazy creation of another block.
4262 Block = nullptr;
4264 // Return the loop body, which is the dominating block for the loop.
4265 Succ = BodyBlock;
4266 return BodyBlock;
4269 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
4270 // "continue" is a control-flow statement. Thus we stop processing the
4271 // current block.
4272 if (badCFG)
4273 return nullptr;
4275 // Now create a new block that ends with the continue statement.
4276 Block = createBlock(false);
4277 Block->setTerminator(C);
4279 // If there is no target for the continue, then we are looking at an
4280 // incomplete AST. This means the CFG cannot be constructed.
4281 if (ContinueJumpTarget.block) {
4282 addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
4283 addSuccessor(Block, ContinueJumpTarget.block);
4284 } else
4285 badCFG = true;
4287 return Block;
4290 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
4291 AddStmtChoice asc) {
4292 if (asc.alwaysAdd(*this, E)) {
4293 autoCreateBlock();
4294 appendStmt(Block, E);
4297 // VLA types have expressions that must be evaluated.
4298 // Evaluation is done only for `sizeof`.
4300 if (E->getKind() != UETT_SizeOf)
4301 return Block;
4303 CFGBlock *lastBlock = Block;
4305 if (E->isArgumentType()) {
4306 for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4307 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4308 lastBlock = addStmt(VA->getSizeExpr());
4310 return lastBlock;
4313 /// VisitStmtExpr - Utility method to handle (nested) statement
4314 /// expressions (a GCC extension).
4315 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4316 if (asc.alwaysAdd(*this, SE)) {
4317 autoCreateBlock();
4318 appendStmt(Block, SE);
4320 return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4323 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4324 // "switch" is a control-flow statement. Thus we stop processing the current
4325 // block.
4326 CFGBlock *SwitchSuccessor = nullptr;
4328 // Save local scope position because in case of condition variable ScopePos
4329 // won't be restored when traversing AST.
4330 SaveAndRestore save_scope_pos(ScopePos);
4332 // Create local scope for C++17 switch init-stmt if one exists.
4333 if (Stmt *Init = Terminator->getInit())
4334 addLocalScopeForStmt(Init);
4336 // Create local scope for possible condition variable.
4337 // Store scope position. Add implicit destructor.
4338 if (VarDecl *VD = Terminator->getConditionVariable())
4339 addLocalScopeForVarDecl(VD);
4341 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4343 if (Block) {
4344 if (badCFG)
4345 return nullptr;
4346 SwitchSuccessor = Block;
4347 } else SwitchSuccessor = Succ;
4349 // Save the current "switch" context.
4350 SaveAndRestore save_switch(SwitchTerminatedBlock),
4351 save_default(DefaultCaseBlock);
4352 SaveAndRestore save_break(BreakJumpTarget);
4354 // Set the "default" case to be the block after the switch statement. If the
4355 // switch statement contains a "default:", this value will be overwritten with
4356 // the block for that code.
4357 DefaultCaseBlock = SwitchSuccessor;
4359 // Create a new block that will contain the switch statement.
4360 SwitchTerminatedBlock = createBlock(false);
4362 // Now process the switch body. The code after the switch is the implicit
4363 // successor.
4364 Succ = SwitchSuccessor;
4365 BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4367 // When visiting the body, the case statements should automatically get linked
4368 // up to the switch. We also don't keep a pointer to the body, since all
4369 // control-flow from the switch goes to case/default statements.
4370 assert(Terminator->getBody() && "switch must contain a non-NULL body");
4371 Block = nullptr;
4373 // For pruning unreachable case statements, save the current state
4374 // for tracking the condition value.
4375 SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false);
4377 // Determine if the switch condition can be explicitly evaluated.
4378 assert(Terminator->getCond() && "switch condition must be non-NULL");
4379 Expr::EvalResult result;
4380 bool b = tryEvaluate(Terminator->getCond(), result);
4381 SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr);
4383 // If body is not a compound statement create implicit scope
4384 // and add destructors.
4385 if (!isa<CompoundStmt>(Terminator->getBody()))
4386 addLocalScopeAndDtors(Terminator->getBody());
4388 addStmt(Terminator->getBody());
4389 if (Block) {
4390 if (badCFG)
4391 return nullptr;
4394 // If we have no "default:" case, the default transition is to the code
4395 // following the switch body. Moreover, take into account if all the
4396 // cases of a switch are covered (e.g., switching on an enum value).
4398 // Note: We add a successor to a switch that is considered covered yet has no
4399 // case statements if the enumeration has no enumerators.
4400 bool SwitchAlwaysHasSuccessor = false;
4401 SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4402 SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4403 Terminator->getSwitchCaseList();
4404 addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4405 !SwitchAlwaysHasSuccessor);
4407 // Add the terminator and condition in the switch block.
4408 SwitchTerminatedBlock->setTerminator(Terminator);
4409 Block = SwitchTerminatedBlock;
4410 CFGBlock *LastBlock = addStmt(Terminator->getCond());
4412 // If the SwitchStmt contains a condition variable, add both the
4413 // SwitchStmt and the condition variable initialization to the CFG.
4414 if (VarDecl *VD = Terminator->getConditionVariable()) {
4415 if (Expr *Init = VD->getInit()) {
4416 autoCreateBlock();
4417 appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4418 LastBlock = addStmt(Init);
4419 maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4423 // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4424 if (Stmt *Init = Terminator->getInit()) {
4425 autoCreateBlock();
4426 LastBlock = addStmt(Init);
4429 return LastBlock;
4432 static bool shouldAddCase(bool &switchExclusivelyCovered,
4433 const Expr::EvalResult *switchCond,
4434 const CaseStmt *CS,
4435 ASTContext &Ctx) {
4436 if (!switchCond)
4437 return true;
4439 bool addCase = false;
4441 if (!switchExclusivelyCovered) {
4442 if (switchCond->Val.isInt()) {
4443 // Evaluate the LHS of the case value.
4444 const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4445 const llvm::APSInt &condInt = switchCond->Val.getInt();
4447 if (condInt == lhsInt) {
4448 addCase = true;
4449 switchExclusivelyCovered = true;
4451 else if (condInt > lhsInt) {
4452 if (const Expr *RHS = CS->getRHS()) {
4453 // Evaluate the RHS of the case value.
4454 const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4455 if (V2 >= condInt) {
4456 addCase = true;
4457 switchExclusivelyCovered = true;
4462 else
4463 addCase = true;
4465 return addCase;
4468 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4469 // CaseStmts are essentially labels, so they are the first statement in a
4470 // block.
4471 CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4473 if (Stmt *Sub = CS->getSubStmt()) {
4474 // For deeply nested chains of CaseStmts, instead of doing a recursion
4475 // (which can blow out the stack), manually unroll and create blocks
4476 // along the way.
4477 while (isa<CaseStmt>(Sub)) {
4478 CFGBlock *currentBlock = createBlock(false);
4479 currentBlock->setLabel(CS);
4481 if (TopBlock)
4482 addSuccessor(LastBlock, currentBlock);
4483 else
4484 TopBlock = currentBlock;
4486 addSuccessor(SwitchTerminatedBlock,
4487 shouldAddCase(switchExclusivelyCovered, switchCond,
4488 CS, *Context)
4489 ? currentBlock : nullptr);
4491 LastBlock = currentBlock;
4492 CS = cast<CaseStmt>(Sub);
4493 Sub = CS->getSubStmt();
4496 addStmt(Sub);
4499 CFGBlock *CaseBlock = Block;
4500 if (!CaseBlock)
4501 CaseBlock = createBlock();
4503 // Cases statements partition blocks, so this is the top of the basic block we
4504 // were processing (the "case XXX:" is the label).
4505 CaseBlock->setLabel(CS);
4507 if (badCFG)
4508 return nullptr;
4510 // Add this block to the list of successors for the block with the switch
4511 // statement.
4512 assert(SwitchTerminatedBlock);
4513 addSuccessor(SwitchTerminatedBlock, CaseBlock,
4514 shouldAddCase(switchExclusivelyCovered, switchCond,
4515 CS, *Context));
4517 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4518 Block = nullptr;
4520 if (TopBlock) {
4521 addSuccessor(LastBlock, CaseBlock);
4522 Succ = TopBlock;
4523 } else {
4524 // This block is now the implicit successor of other blocks.
4525 Succ = CaseBlock;
4528 return Succ;
4531 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4532 if (Terminator->getSubStmt())
4533 addStmt(Terminator->getSubStmt());
4535 DefaultCaseBlock = Block;
4537 if (!DefaultCaseBlock)
4538 DefaultCaseBlock = createBlock();
4540 // Default statements partition blocks, so this is the top of the basic block
4541 // we were processing (the "default:" is the label).
4542 DefaultCaseBlock->setLabel(Terminator);
4544 if (badCFG)
4545 return nullptr;
4547 // Unlike case statements, we don't add the default block to the successors
4548 // for the switch statement immediately. This is done when we finish
4549 // processing the switch statement. This allows for the default case
4550 // (including a fall-through to the code after the switch statement) to always
4551 // be the last successor of a switch-terminated block.
4553 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4554 Block = nullptr;
4556 // This block is now the implicit successor of other blocks.
4557 Succ = DefaultCaseBlock;
4559 return DefaultCaseBlock;
4562 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4563 // "try"/"catch" is a control-flow statement. Thus we stop processing the
4564 // current block.
4565 CFGBlock *TrySuccessor = nullptr;
4567 if (Block) {
4568 if (badCFG)
4569 return nullptr;
4570 TrySuccessor = Block;
4571 } else
4572 TrySuccessor = Succ;
4574 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4576 // Create a new block that will contain the try statement.
4577 CFGBlock *NewTryTerminatedBlock = createBlock(false);
4578 // Add the terminator in the try block.
4579 NewTryTerminatedBlock->setTerminator(Terminator);
4581 bool HasCatchAll = false;
4582 for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) {
4583 // The code after the try is the implicit successor.
4584 Succ = TrySuccessor;
4585 CXXCatchStmt *CS = Terminator->getHandler(I);
4586 if (CS->getExceptionDecl() == nullptr) {
4587 HasCatchAll = true;
4589 Block = nullptr;
4590 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4591 if (!CatchBlock)
4592 return nullptr;
4593 // Add this block to the list of successors for the block with the try
4594 // statement.
4595 addSuccessor(NewTryTerminatedBlock, CatchBlock);
4597 if (!HasCatchAll) {
4598 if (PrevTryTerminatedBlock)
4599 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4600 else
4601 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4604 // The code after the try is the implicit successor.
4605 Succ = TrySuccessor;
4607 // Save the current "try" context.
4608 SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4609 cfg->addTryDispatchBlock(TryTerminatedBlock);
4611 assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4612 Block = nullptr;
4613 return addStmt(Terminator->getTryBlock());
4616 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4617 // CXXCatchStmt are treated like labels, so they are the first statement in a
4618 // block.
4620 // Save local scope position because in case of exception variable ScopePos
4621 // won't be restored when traversing AST.
4622 SaveAndRestore save_scope_pos(ScopePos);
4624 // Create local scope for possible exception variable.
4625 // Store scope position. Add implicit destructor.
4626 if (VarDecl *VD = CS->getExceptionDecl()) {
4627 LocalScope::const_iterator BeginScopePos = ScopePos;
4628 addLocalScopeForVarDecl(VD);
4629 addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4632 if (CS->getHandlerBlock())
4633 addStmt(CS->getHandlerBlock());
4635 CFGBlock *CatchBlock = Block;
4636 if (!CatchBlock)
4637 CatchBlock = createBlock();
4639 // CXXCatchStmt is more than just a label. They have semantic meaning
4640 // as well, as they implicitly "initialize" the catch variable. Add
4641 // it to the CFG as a CFGElement so that the control-flow of these
4642 // semantics gets captured.
4643 appendStmt(CatchBlock, CS);
4645 // Also add the CXXCatchStmt as a label, to mirror handling of regular
4646 // labels.
4647 CatchBlock->setLabel(CS);
4649 // Bail out if the CFG is bad.
4650 if (badCFG)
4651 return nullptr;
4653 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4654 Block = nullptr;
4656 return CatchBlock;
4659 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4660 // C++0x for-range statements are specified as [stmt.ranged]:
4662 // {
4663 // auto && __range = range-init;
4664 // for ( auto __begin = begin-expr,
4665 // __end = end-expr;
4666 // __begin != __end;
4667 // ++__begin ) {
4668 // for-range-declaration = *__begin;
4669 // statement
4670 // }
4671 // }
4673 // Save local scope position before the addition of the implicit variables.
4674 SaveAndRestore save_scope_pos(ScopePos);
4676 // Create local scopes and destructors for range, begin and end variables.
4677 if (Stmt *Range = S->getRangeStmt())
4678 addLocalScopeForStmt(Range);
4679 if (Stmt *Begin = S->getBeginStmt())
4680 addLocalScopeForStmt(Begin);
4681 if (Stmt *End = S->getEndStmt())
4682 addLocalScopeForStmt(End);
4683 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4685 LocalScope::const_iterator ContinueScopePos = ScopePos;
4687 // "for" is a control-flow statement. Thus we stop processing the current
4688 // block.
4689 CFGBlock *LoopSuccessor = nullptr;
4690 if (Block) {
4691 if (badCFG)
4692 return nullptr;
4693 LoopSuccessor = Block;
4694 } else
4695 LoopSuccessor = Succ;
4697 // Save the current value for the break targets.
4698 // All breaks should go to the code following the loop.
4699 SaveAndRestore save_break(BreakJumpTarget);
4700 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4702 // The block for the __begin != __end expression.
4703 CFGBlock *ConditionBlock = createBlock(false);
4704 ConditionBlock->setTerminator(S);
4706 // Now add the actual condition to the condition block.
4707 if (Expr *C = S->getCond()) {
4708 Block = ConditionBlock;
4709 CFGBlock *BeginConditionBlock = addStmt(C);
4710 if (badCFG)
4711 return nullptr;
4712 assert(BeginConditionBlock == ConditionBlock &&
4713 "condition block in for-range was unexpectedly complex");
4714 (void)BeginConditionBlock;
4717 // The condition block is the implicit successor for the loop body as well as
4718 // any code above the loop.
4719 Succ = ConditionBlock;
4721 // See if this is a known constant.
4722 TryResult KnownVal(true);
4724 if (S->getCond())
4725 KnownVal = tryEvaluateBool(S->getCond());
4727 // Now create the loop body.
4729 assert(S->getBody());
4731 // Save the current values for Block, Succ, and continue targets.
4732 SaveAndRestore save_Block(Block), save_Succ(Succ);
4733 SaveAndRestore save_continue(ContinueJumpTarget);
4735 // Generate increment code in its own basic block. This is the target of
4736 // continue statements.
4737 Block = nullptr;
4738 Succ = addStmt(S->getInc());
4739 if (badCFG)
4740 return nullptr;
4741 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4743 // The starting block for the loop increment is the block that should
4744 // represent the 'loop target' for looping back to the start of the loop.
4745 ContinueJumpTarget.block->setLoopTarget(S);
4747 // Finish up the increment block and prepare to start the loop body.
4748 assert(Block);
4749 if (badCFG)
4750 return nullptr;
4751 Block = nullptr;
4753 // Add implicit scope and dtors for loop variable.
4754 addLocalScopeAndDtors(S->getLoopVarStmt());
4756 // If body is not a compound statement create implicit scope
4757 // and add destructors.
4758 if (!isa<CompoundStmt>(S->getBody()))
4759 addLocalScopeAndDtors(S->getBody());
4761 // Populate a new block to contain the loop body and loop variable.
4762 addStmt(S->getBody());
4764 if (badCFG)
4765 return nullptr;
4766 CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4767 if (badCFG)
4768 return nullptr;
4770 // This new body block is a successor to our condition block.
4771 addSuccessor(ConditionBlock,
4772 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4775 // Link up the condition block with the code that follows the loop (the
4776 // false branch).
4777 addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4779 // Add the initialization statements.
4780 Block = createBlock();
4781 addStmt(S->getBeginStmt());
4782 addStmt(S->getEndStmt());
4783 CFGBlock *Head = addStmt(S->getRangeStmt());
4784 if (S->getInit())
4785 Head = addStmt(S->getInit());
4786 return Head;
4789 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4790 AddStmtChoice asc, bool ExternallyDestructed) {
4791 if (BuildOpts.AddTemporaryDtors) {
4792 // If adding implicit destructors visit the full expression for adding
4793 // destructors of temporaries.
4794 TempDtorContext Context;
4795 VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4797 // Full expression has to be added as CFGStmt so it will be sequenced
4798 // before destructors of it's temporaries.
4799 asc = asc.withAlwaysAdd(true);
4801 return Visit(E->getSubExpr(), asc);
4804 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4805 AddStmtChoice asc) {
4806 if (asc.alwaysAdd(*this, E)) {
4807 autoCreateBlock();
4808 appendStmt(Block, E);
4810 findConstructionContexts(
4811 ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4812 E->getSubExpr());
4814 // We do not want to propagate the AlwaysAdd property.
4815 asc = asc.withAlwaysAdd(false);
4817 return Visit(E->getSubExpr(), asc);
4820 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4821 AddStmtChoice asc) {
4822 // If the constructor takes objects as arguments by value, we need to properly
4823 // construct these objects. Construction contexts we find here aren't for the
4824 // constructor C, they're for its arguments only.
4825 findConstructionContextsForArguments(C);
4827 autoCreateBlock();
4828 appendConstructor(Block, C);
4830 return VisitChildren(C);
4833 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4834 AddStmtChoice asc) {
4835 autoCreateBlock();
4836 appendStmt(Block, NE);
4838 findConstructionContexts(
4839 ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4840 const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4842 if (NE->getInitializer())
4843 Block = Visit(NE->getInitializer());
4845 if (BuildOpts.AddCXXNewAllocator)
4846 appendNewAllocator(Block, NE);
4848 if (NE->isArray() && *NE->getArraySize())
4849 Block = Visit(*NE->getArraySize());
4851 for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4852 E = NE->placement_arg_end(); I != E; ++I)
4853 Block = Visit(*I);
4855 return Block;
4858 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4859 AddStmtChoice asc) {
4860 autoCreateBlock();
4861 appendStmt(Block, DE);
4862 QualType DTy = DE->getDestroyedType();
4863 if (!DTy.isNull()) {
4864 DTy = DTy.getNonReferenceType();
4865 CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4866 if (RD) {
4867 if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4868 appendDeleteDtor(Block, RD, DE);
4872 return VisitChildren(DE);
4875 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4876 AddStmtChoice asc) {
4877 if (asc.alwaysAdd(*this, E)) {
4878 autoCreateBlock();
4879 appendStmt(Block, E);
4880 // We do not want to propagate the AlwaysAdd property.
4881 asc = asc.withAlwaysAdd(false);
4883 return Visit(E->getSubExpr(), asc);
4886 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4887 AddStmtChoice asc) {
4888 // If the constructor takes objects as arguments by value, we need to properly
4889 // construct these objects. Construction contexts we find here aren't for the
4890 // constructor C, they're for its arguments only.
4891 findConstructionContextsForArguments(C);
4893 autoCreateBlock();
4894 appendConstructor(Block, C);
4895 return VisitChildren(C);
4898 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4899 AddStmtChoice asc) {
4900 if (asc.alwaysAdd(*this, E)) {
4901 autoCreateBlock();
4902 appendStmt(Block, E);
4905 if (E->getCastKind() == CK_IntegralToBoolean)
4906 tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4908 return Visit(E->getSubExpr(), AddStmtChoice());
4911 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4912 return Visit(E->getSubExpr(), AddStmtChoice());
4915 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4916 // Lazily create the indirect-goto dispatch block if there isn't one already.
4917 CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4919 if (!IBlock) {
4920 IBlock = createBlock(false);
4921 cfg->setIndirectGotoBlock(IBlock);
4924 // IndirectGoto is a control-flow statement. Thus we stop processing the
4925 // current block and create a new one.
4926 if (badCFG)
4927 return nullptr;
4929 Block = createBlock(false);
4930 Block->setTerminator(I);
4931 addSuccessor(Block, IBlock);
4932 return addStmt(I->getTarget());
4935 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4936 TempDtorContext &Context) {
4937 assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4939 tryAgain:
4940 if (!E) {
4941 badCFG = true;
4942 return nullptr;
4944 switch (E->getStmtClass()) {
4945 default:
4946 return VisitChildrenForTemporaryDtors(E, false, Context);
4948 case Stmt::InitListExprClass:
4949 return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4951 case Stmt::BinaryOperatorClass:
4952 return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4953 ExternallyDestructed,
4954 Context);
4956 case Stmt::CXXBindTemporaryExprClass:
4957 return VisitCXXBindTemporaryExprForTemporaryDtors(
4958 cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4960 case Stmt::BinaryConditionalOperatorClass:
4961 case Stmt::ConditionalOperatorClass:
4962 return VisitConditionalOperatorForTemporaryDtors(
4963 cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4965 case Stmt::ImplicitCastExprClass:
4966 // For implicit cast we want ExternallyDestructed to be passed further.
4967 E = cast<CastExpr>(E)->getSubExpr();
4968 goto tryAgain;
4970 case Stmt::CXXFunctionalCastExprClass:
4971 // For functional cast we want ExternallyDestructed to be passed further.
4972 E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4973 goto tryAgain;
4975 case Stmt::ConstantExprClass:
4976 E = cast<ConstantExpr>(E)->getSubExpr();
4977 goto tryAgain;
4979 case Stmt::ParenExprClass:
4980 E = cast<ParenExpr>(E)->getSubExpr();
4981 goto tryAgain;
4983 case Stmt::MaterializeTemporaryExprClass: {
4984 const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4985 ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4986 SmallVector<const Expr *, 2> CommaLHSs;
4987 SmallVector<SubobjectAdjustment, 2> Adjustments;
4988 // Find the expression whose lifetime needs to be extended.
4989 E = const_cast<Expr *>(
4990 cast<MaterializeTemporaryExpr>(E)
4991 ->getSubExpr()
4992 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
4993 // Visit the skipped comma operator left-hand sides for other temporaries.
4994 for (const Expr *CommaLHS : CommaLHSs) {
4995 VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
4996 /*ExternallyDestructed=*/false, Context);
4998 goto tryAgain;
5001 case Stmt::BlockExprClass:
5002 // Don't recurse into blocks; their subexpressions don't get evaluated
5003 // here.
5004 return Block;
5006 case Stmt::LambdaExprClass: {
5007 // For lambda expressions, only recurse into the capture initializers,
5008 // and not the body.
5009 auto *LE = cast<LambdaExpr>(E);
5010 CFGBlock *B = Block;
5011 for (Expr *Init : LE->capture_inits()) {
5012 if (Init) {
5013 if (CFGBlock *R = VisitForTemporaryDtors(
5014 Init, /*ExternallyDestructed=*/true, Context))
5015 B = R;
5018 return B;
5021 case Stmt::StmtExprClass:
5022 // Don't recurse into statement expressions; any cleanups inside them
5023 // will be wrapped in their own ExprWithCleanups.
5024 return Block;
5026 case Stmt::CXXDefaultArgExprClass:
5027 E = cast<CXXDefaultArgExpr>(E)->getExpr();
5028 goto tryAgain;
5030 case Stmt::CXXDefaultInitExprClass:
5031 E = cast<CXXDefaultInitExpr>(E)->getExpr();
5032 goto tryAgain;
5036 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
5037 bool ExternallyDestructed,
5038 TempDtorContext &Context) {
5039 if (isa<LambdaExpr>(E)) {
5040 // Do not visit the children of lambdas; they have their own CFGs.
5041 return Block;
5044 // When visiting children for destructors we want to visit them in reverse
5045 // order that they will appear in the CFG. Because the CFG is built
5046 // bottom-up, this means we visit them in their natural order, which
5047 // reverses them in the CFG.
5048 CFGBlock *B = Block;
5049 for (Stmt *Child : E->children())
5050 if (Child)
5051 if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
5052 B = R;
5054 return B;
5057 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
5058 BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
5059 if (E->isCommaOp()) {
5060 // For the comma operator, the LHS expression is evaluated before the RHS
5061 // expression, so prepend temporary destructors for the LHS first.
5062 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5063 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
5064 return RHSBlock ? RHSBlock : LHSBlock;
5067 if (E->isLogicalOp()) {
5068 VisitForTemporaryDtors(E->getLHS(), false, Context);
5069 TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
5070 if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
5071 RHSExecuted.negate();
5073 // We do not know at CFG-construction time whether the right-hand-side was
5074 // executed, thus we add a branch node that depends on the temporary
5075 // constructor call.
5076 TempDtorContext RHSContext(
5077 bothKnownTrue(Context.KnownExecuted, RHSExecuted));
5078 VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
5079 InsertTempDtorDecisionBlock(RHSContext);
5081 return Block;
5084 if (E->isAssignmentOp()) {
5085 // For assignment operators, the RHS expression is evaluated before the LHS
5086 // expression, so prepend temporary destructors for the RHS first.
5087 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
5088 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5089 return LHSBlock ? LHSBlock : RHSBlock;
5092 // Any other operator is visited normally.
5093 return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
5096 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
5097 CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
5098 // First add destructors for temporaries in subexpression.
5099 // Because VisitCXXBindTemporaryExpr calls setDestructed:
5100 CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
5101 if (!ExternallyDestructed) {
5102 // If lifetime of temporary is not prolonged (by assigning to constant
5103 // reference) add destructor for it.
5105 const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
5107 if (Dtor->getParent()->isAnyDestructorNoReturn()) {
5108 // If the destructor is marked as a no-return destructor, we need to
5109 // create a new block for the destructor which does not have as a
5110 // successor anything built thus far. Control won't flow out of this
5111 // block.
5112 if (B) Succ = B;
5113 Block = createNoReturnBlock();
5114 } else if (Context.needsTempDtorBranch()) {
5115 // If we need to introduce a branch, we add a new block that we will hook
5116 // up to a decision block later.
5117 if (B) Succ = B;
5118 Block = createBlock();
5119 } else {
5120 autoCreateBlock();
5122 if (Context.needsTempDtorBranch()) {
5123 Context.setDecisionPoint(Succ, E);
5125 appendTemporaryDtor(Block, E);
5127 B = Block;
5129 return B;
5132 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
5133 CFGBlock *FalseSucc) {
5134 if (!Context.TerminatorExpr) {
5135 // If no temporary was found, we do not need to insert a decision point.
5136 return;
5138 assert(Context.TerminatorExpr);
5139 CFGBlock *Decision = createBlock(false);
5140 Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
5141 CFGTerminator::TemporaryDtorsBranch));
5142 addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
5143 addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
5144 !Context.KnownExecuted.isTrue());
5145 Block = Decision;
5148 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5149 AbstractConditionalOperator *E, bool ExternallyDestructed,
5150 TempDtorContext &Context) {
5151 VisitForTemporaryDtors(E->getCond(), false, Context);
5152 CFGBlock *ConditionBlock = Block;
5153 CFGBlock *ConditionSucc = Succ;
5154 TryResult ConditionVal = tryEvaluateBool(E->getCond());
5155 TryResult NegatedVal = ConditionVal;
5156 if (NegatedVal.isKnown()) NegatedVal.negate();
5158 TempDtorContext TrueContext(
5159 bothKnownTrue(Context.KnownExecuted, ConditionVal));
5160 VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
5161 CFGBlock *TrueBlock = Block;
5163 Block = ConditionBlock;
5164 Succ = ConditionSucc;
5165 TempDtorContext FalseContext(
5166 bothKnownTrue(Context.KnownExecuted, NegatedVal));
5167 VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
5169 if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
5170 InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
5171 } else if (TrueContext.TerminatorExpr) {
5172 Block = TrueBlock;
5173 InsertTempDtorDecisionBlock(TrueContext);
5174 } else {
5175 InsertTempDtorDecisionBlock(FalseContext);
5177 return Block;
5180 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
5181 AddStmtChoice asc) {
5182 if (asc.alwaysAdd(*this, D)) {
5183 autoCreateBlock();
5184 appendStmt(Block, D);
5187 // Iterate over all used expression in clauses.
5188 CFGBlock *B = Block;
5190 // Reverse the elements to process them in natural order. Iterators are not
5191 // bidirectional, so we need to create temp vector.
5192 SmallVector<Stmt *, 8> Used(
5193 OMPExecutableDirective::used_clauses_children(D->clauses()));
5194 for (Stmt *S : llvm::reverse(Used)) {
5195 assert(S && "Expected non-null used-in-clause child.");
5196 if (CFGBlock *R = Visit(S))
5197 B = R;
5199 // Visit associated structured block if any.
5200 if (!D->isStandaloneDirective()) {
5201 Stmt *S = D->getRawStmt();
5202 if (!isa<CompoundStmt>(S))
5203 addLocalScopeAndDtors(S);
5204 if (CFGBlock *R = addStmt(S))
5205 B = R;
5208 return B;
5211 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
5212 /// no successors or predecessors. If this is the first block created in the
5213 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
5214 CFGBlock *CFG::createBlock() {
5215 bool first_block = begin() == end();
5217 // Create the block.
5218 CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
5219 new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
5220 Blocks.push_back(Mem, BlkBVC);
5222 // If this is the first block, set it as the Entry and Exit.
5223 if (first_block)
5224 Entry = Exit = &back();
5226 // Return the block.
5227 return &back();
5230 /// buildCFG - Constructs a CFG from an AST.
5231 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
5232 ASTContext *C, const BuildOptions &BO) {
5233 CFGBuilder Builder(C, BO);
5234 return Builder.buildCFG(D, Statement);
5237 bool CFG::isLinear() const {
5238 // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5239 // in between, then we have no room for control flow.
5240 if (size() <= 3)
5241 return true;
5243 // Traverse the CFG until we find a branch.
5244 // TODO: While this should still be very fast,
5245 // maybe we should cache the answer.
5246 llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
5247 const CFGBlock *B = Entry;
5248 while (B != Exit) {
5249 auto IteratorAndFlag = Visited.insert(B);
5250 if (!IteratorAndFlag.second) {
5251 // We looped back to a block that we've already visited. Not linear.
5252 return false;
5255 // Iterate over reachable successors.
5256 const CFGBlock *FirstReachableB = nullptr;
5257 for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
5258 if (!AB.isReachable())
5259 continue;
5261 if (FirstReachableB == nullptr) {
5262 FirstReachableB = &*AB;
5263 } else {
5264 // We've encountered a branch. It's not a linear CFG.
5265 return false;
5269 if (!FirstReachableB) {
5270 // We reached a dead end. EXIT is unreachable. This is linear enough.
5271 return true;
5274 // There's only one way to move forward. Proceed.
5275 B = FirstReachableB;
5278 // We reached EXIT and found no branches.
5279 return true;
5282 const CXXDestructorDecl *
5283 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
5284 switch (getKind()) {
5285 case CFGElement::Initializer:
5286 case CFGElement::NewAllocator:
5287 case CFGElement::LoopExit:
5288 case CFGElement::LifetimeEnds:
5289 case CFGElement::Statement:
5290 case CFGElement::Constructor:
5291 case CFGElement::CXXRecordTypedCall:
5292 case CFGElement::ScopeBegin:
5293 case CFGElement::ScopeEnd:
5294 llvm_unreachable("getDestructorDecl should only be used with "
5295 "ImplicitDtors");
5296 case CFGElement::AutomaticObjectDtor: {
5297 const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
5298 QualType ty = var->getType();
5300 // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5302 // Lifetime-extending constructs are handled here. This works for a single
5303 // temporary in an initializer expression.
5304 if (ty->isReferenceType()) {
5305 if (const Expr *Init = var->getInit()) {
5306 ty = getReferenceInitTemporaryType(Init);
5310 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5311 ty = arrayType->getElementType();
5314 // The situation when the type of the lifetime-extending reference
5315 // does not correspond to the type of the object is supposed
5316 // to be handled by now. In particular, 'ty' is now the unwrapped
5317 // record type.
5318 const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5319 assert(classDecl);
5320 return classDecl->getDestructor();
5322 case CFGElement::DeleteDtor: {
5323 const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5324 QualType DTy = DE->getDestroyedType();
5325 DTy = DTy.getNonReferenceType();
5326 const CXXRecordDecl *classDecl =
5327 astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5328 return classDecl->getDestructor();
5330 case CFGElement::TemporaryDtor: {
5331 const CXXBindTemporaryExpr *bindExpr =
5332 castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5333 const CXXTemporary *temp = bindExpr->getTemporary();
5334 return temp->getDestructor();
5336 case CFGElement::MemberDtor: {
5337 const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl();
5338 QualType ty = field->getType();
5340 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5341 ty = arrayType->getElementType();
5344 const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5345 assert(classDecl);
5346 return classDecl->getDestructor();
5348 case CFGElement::BaseDtor:
5349 // Not yet supported.
5350 return nullptr;
5352 llvm_unreachable("getKind() returned bogus value");
5355 //===----------------------------------------------------------------------===//
5356 // CFGBlock operations.
5357 //===----------------------------------------------------------------------===//
5359 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5360 : ReachableBlock(IsReachable ? B : nullptr),
5361 UnreachableBlock(!IsReachable ? B : nullptr,
5362 B && IsReachable ? AB_Normal : AB_Unreachable) {}
5364 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5365 : ReachableBlock(B),
5366 UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5367 B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5369 void CFGBlock::addSuccessor(AdjacentBlock Succ,
5370 BumpVectorContext &C) {
5371 if (CFGBlock *B = Succ.getReachableBlock())
5372 B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5374 if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5375 UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5377 Succs.push_back(Succ, C);
5380 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5381 const CFGBlock *From, const CFGBlock *To) {
5382 if (F.IgnoreNullPredecessors && !From)
5383 return true;
5385 if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5386 // If the 'To' has no label or is labeled but the label isn't a
5387 // CaseStmt then filter this edge.
5388 if (const SwitchStmt *S =
5389 dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5390 if (S->isAllEnumCasesCovered()) {
5391 const Stmt *L = To->getLabel();
5392 if (!L || !isa<CaseStmt>(L))
5393 return true;
5398 return false;
5401 //===----------------------------------------------------------------------===//
5402 // CFG pretty printing
5403 //===----------------------------------------------------------------------===//
5405 namespace {
5407 class StmtPrinterHelper : public PrinterHelper {
5408 using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5409 using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5411 StmtMapTy StmtMap;
5412 DeclMapTy DeclMap;
5413 signed currentBlock = 0;
5414 unsigned currStmt = 0;
5415 const LangOptions &LangOpts;
5417 public:
5418 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5419 : LangOpts(LO) {
5420 if (!cfg)
5421 return;
5422 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5423 unsigned j = 1;
5424 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5425 BI != BEnd; ++BI, ++j ) {
5426 if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5427 const Stmt *stmt= SE->getStmt();
5428 std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5429 StmtMap[stmt] = P;
5431 switch (stmt->getStmtClass()) {
5432 case Stmt::DeclStmtClass:
5433 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5434 break;
5435 case Stmt::IfStmtClass: {
5436 const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5437 if (var)
5438 DeclMap[var] = P;
5439 break;
5441 case Stmt::ForStmtClass: {
5442 const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5443 if (var)
5444 DeclMap[var] = P;
5445 break;
5447 case Stmt::WhileStmtClass: {
5448 const VarDecl *var =
5449 cast<WhileStmt>(stmt)->getConditionVariable();
5450 if (var)
5451 DeclMap[var] = P;
5452 break;
5454 case Stmt::SwitchStmtClass: {
5455 const VarDecl *var =
5456 cast<SwitchStmt>(stmt)->getConditionVariable();
5457 if (var)
5458 DeclMap[var] = P;
5459 break;
5461 case Stmt::CXXCatchStmtClass: {
5462 const VarDecl *var =
5463 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5464 if (var)
5465 DeclMap[var] = P;
5466 break;
5468 default:
5469 break;
5476 ~StmtPrinterHelper() override = default;
5478 const LangOptions &getLangOpts() const { return LangOpts; }
5479 void setBlockID(signed i) { currentBlock = i; }
5480 void setStmtID(unsigned i) { currStmt = i; }
5482 bool handledStmt(Stmt *S, raw_ostream &OS) override {
5483 StmtMapTy::iterator I = StmtMap.find(S);
5485 if (I == StmtMap.end())
5486 return false;
5488 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5489 && I->second.second == currStmt) {
5490 return false;
5493 OS << "[B" << I->second.first << "." << I->second.second << "]";
5494 return true;
5497 bool handleDecl(const Decl *D, raw_ostream &OS) {
5498 DeclMapTy::iterator I = DeclMap.find(D);
5500 if (I == DeclMap.end())
5501 return false;
5503 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5504 && I->second.second == currStmt) {
5505 return false;
5508 OS << "[B" << I->second.first << "." << I->second.second << "]";
5509 return true;
5513 class CFGBlockTerminatorPrint
5514 : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5515 raw_ostream &OS;
5516 StmtPrinterHelper* Helper;
5517 PrintingPolicy Policy;
5519 public:
5520 CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5521 const PrintingPolicy &Policy)
5522 : OS(os), Helper(helper), Policy(Policy) {
5523 this->Policy.IncludeNewlines = false;
5526 void VisitIfStmt(IfStmt *I) {
5527 OS << "if ";
5528 if (Stmt *C = I->getCond())
5529 C->printPretty(OS, Helper, Policy);
5532 // Default case.
5533 void VisitStmt(Stmt *Terminator) {
5534 Terminator->printPretty(OS, Helper, Policy);
5537 void VisitDeclStmt(DeclStmt *DS) {
5538 VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5539 OS << "static init " << VD->getName();
5542 void VisitForStmt(ForStmt *F) {
5543 OS << "for (" ;
5544 if (F->getInit())
5545 OS << "...";
5546 OS << "; ";
5547 if (Stmt *C = F->getCond())
5548 C->printPretty(OS, Helper, Policy);
5549 OS << "; ";
5550 if (F->getInc())
5551 OS << "...";
5552 OS << ")";
5555 void VisitWhileStmt(WhileStmt *W) {
5556 OS << "while " ;
5557 if (Stmt *C = W->getCond())
5558 C->printPretty(OS, Helper, Policy);
5561 void VisitDoStmt(DoStmt *D) {
5562 OS << "do ... while ";
5563 if (Stmt *C = D->getCond())
5564 C->printPretty(OS, Helper, Policy);
5567 void VisitSwitchStmt(SwitchStmt *Terminator) {
5568 OS << "switch ";
5569 Terminator->getCond()->printPretty(OS, Helper, Policy);
5572 void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; }
5574 void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; }
5576 void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; }
5578 void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5579 if (Stmt *Cond = C->getCond())
5580 Cond->printPretty(OS, Helper, Policy);
5581 OS << " ? ... : ...";
5584 void VisitChooseExpr(ChooseExpr *C) {
5585 OS << "__builtin_choose_expr( ";
5586 if (Stmt *Cond = C->getCond())
5587 Cond->printPretty(OS, Helper, Policy);
5588 OS << " )";
5591 void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5592 OS << "goto *";
5593 if (Stmt *T = I->getTarget())
5594 T->printPretty(OS, Helper, Policy);
5597 void VisitBinaryOperator(BinaryOperator* B) {
5598 if (!B->isLogicalOp()) {
5599 VisitExpr(B);
5600 return;
5603 if (B->getLHS())
5604 B->getLHS()->printPretty(OS, Helper, Policy);
5606 switch (B->getOpcode()) {
5607 case BO_LOr:
5608 OS << " || ...";
5609 return;
5610 case BO_LAnd:
5611 OS << " && ...";
5612 return;
5613 default:
5614 llvm_unreachable("Invalid logical operator.");
5618 void VisitExpr(Expr *E) {
5619 E->printPretty(OS, Helper, Policy);
5622 public:
5623 void print(CFGTerminator T) {
5624 switch (T.getKind()) {
5625 case CFGTerminator::StmtBranch:
5626 Visit(T.getStmt());
5627 break;
5628 case CFGTerminator::TemporaryDtorsBranch:
5629 OS << "(Temp Dtor) ";
5630 Visit(T.getStmt());
5631 break;
5632 case CFGTerminator::VirtualBaseBranch:
5633 OS << "(See if most derived ctor has already initialized vbases)";
5634 break;
5639 } // namespace
5641 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5642 const CXXCtorInitializer *I) {
5643 if (I->isBaseInitializer())
5644 OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5645 else if (I->isDelegatingInitializer())
5646 OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5647 else
5648 OS << I->getAnyMember()->getName();
5649 OS << "(";
5650 if (Expr *IE = I->getInit())
5651 IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5652 OS << ")";
5654 if (I->isBaseInitializer())
5655 OS << " (Base initializer)";
5656 else if (I->isDelegatingInitializer())
5657 OS << " (Delegating initializer)";
5658 else
5659 OS << " (Member initializer)";
5662 static void print_construction_context(raw_ostream &OS,
5663 StmtPrinterHelper &Helper,
5664 const ConstructionContext *CC) {
5665 SmallVector<const Stmt *, 3> Stmts;
5666 switch (CC->getKind()) {
5667 case ConstructionContext::SimpleConstructorInitializerKind: {
5668 OS << ", ";
5669 const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5670 print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5671 return;
5673 case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5674 OS << ", ";
5675 const auto *CICC =
5676 cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5677 print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5678 Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5679 break;
5681 case ConstructionContext::SimpleVariableKind: {
5682 const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5683 Stmts.push_back(SDSCC->getDeclStmt());
5684 break;
5686 case ConstructionContext::CXX17ElidedCopyVariableKind: {
5687 const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5688 Stmts.push_back(CDSCC->getDeclStmt());
5689 Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5690 break;
5692 case ConstructionContext::NewAllocatedObjectKind: {
5693 const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5694 Stmts.push_back(NECC->getCXXNewExpr());
5695 break;
5697 case ConstructionContext::SimpleReturnedValueKind: {
5698 const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5699 Stmts.push_back(RSCC->getReturnStmt());
5700 break;
5702 case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5703 const auto *RSCC =
5704 cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5705 Stmts.push_back(RSCC->getReturnStmt());
5706 Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5707 break;
5709 case ConstructionContext::SimpleTemporaryObjectKind: {
5710 const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5711 Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5712 Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5713 break;
5715 case ConstructionContext::ElidedTemporaryObjectKind: {
5716 const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5717 Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5718 Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5719 Stmts.push_back(TOCC->getConstructorAfterElision());
5720 break;
5722 case ConstructionContext::LambdaCaptureKind: {
5723 const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
5724 Helper.handledStmt(const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS);
5725 OS << "+" << LCC->getIndex();
5726 return;
5728 case ConstructionContext::ArgumentKind: {
5729 const auto *ACC = cast<ArgumentConstructionContext>(CC);
5730 if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5731 OS << ", ";
5732 Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5734 OS << ", ";
5735 Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5736 OS << "+" << ACC->getIndex();
5737 return;
5740 for (auto I: Stmts)
5741 if (I) {
5742 OS << ", ";
5743 Helper.handledStmt(const_cast<Stmt *>(I), OS);
5747 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5748 const CFGElement &E);
5750 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5751 StmtPrinterHelper Helper(nullptr, {});
5752 print_elem(OS, Helper, *this);
5755 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5756 const CFGElement &E) {
5757 switch (E.getKind()) {
5758 case CFGElement::Kind::Statement:
5759 case CFGElement::Kind::CXXRecordTypedCall:
5760 case CFGElement::Kind::Constructor: {
5761 CFGStmt CS = E.castAs<CFGStmt>();
5762 const Stmt *S = CS.getStmt();
5763 assert(S != nullptr && "Expecting non-null Stmt");
5765 // special printing for statement-expressions.
5766 if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5767 const CompoundStmt *Sub = SE->getSubStmt();
5769 auto Children = Sub->children();
5770 if (Children.begin() != Children.end()) {
5771 OS << "({ ... ; ";
5772 Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5773 OS << " })\n";
5774 return;
5777 // special printing for comma expressions.
5778 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5779 if (B->getOpcode() == BO_Comma) {
5780 OS << "... , ";
5781 Helper.handledStmt(B->getRHS(),OS);
5782 OS << '\n';
5783 return;
5786 S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5788 if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5789 if (isa<CXXOperatorCallExpr>(S))
5790 OS << " (OperatorCall)";
5791 OS << " (CXXRecordTypedCall";
5792 print_construction_context(OS, Helper, VTC->getConstructionContext());
5793 OS << ")";
5794 } else if (isa<CXXOperatorCallExpr>(S)) {
5795 OS << " (OperatorCall)";
5796 } else if (isa<CXXBindTemporaryExpr>(S)) {
5797 OS << " (BindTemporary)";
5798 } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5799 OS << " (CXXConstructExpr";
5800 if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5801 print_construction_context(OS, Helper, CE->getConstructionContext());
5803 OS << ", " << CCE->getType() << ")";
5804 } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5805 OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName()
5806 << ", " << CE->getType() << ")";
5809 // Expressions need a newline.
5810 if (isa<Expr>(S))
5811 OS << '\n';
5813 break;
5816 case CFGElement::Kind::Initializer:
5817 print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5818 OS << '\n';
5819 break;
5821 case CFGElement::Kind::AutomaticObjectDtor: {
5822 CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5823 const VarDecl *VD = DE.getVarDecl();
5824 Helper.handleDecl(VD, OS);
5826 QualType T = VD->getType();
5827 if (T->isReferenceType())
5828 T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5830 OS << ".~";
5831 T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5832 OS << "() (Implicit destructor)\n";
5833 break;
5836 case CFGElement::Kind::LifetimeEnds:
5837 Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5838 OS << " (Lifetime ends)\n";
5839 break;
5841 case CFGElement::Kind::LoopExit:
5842 OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5843 break;
5845 case CFGElement::Kind::ScopeBegin:
5846 OS << "CFGScopeBegin(";
5847 if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5848 OS << VD->getQualifiedNameAsString();
5849 OS << ")\n";
5850 break;
5852 case CFGElement::Kind::ScopeEnd:
5853 OS << "CFGScopeEnd(";
5854 if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5855 OS << VD->getQualifiedNameAsString();
5856 OS << ")\n";
5857 break;
5859 case CFGElement::Kind::NewAllocator:
5860 OS << "CFGNewAllocator(";
5861 if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5862 AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5863 OS << ")\n";
5864 break;
5866 case CFGElement::Kind::DeleteDtor: {
5867 CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5868 const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5869 if (!RD)
5870 return;
5871 CXXDeleteExpr *DelExpr =
5872 const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5873 Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5874 OS << "->~" << RD->getName().str() << "()";
5875 OS << " (Implicit destructor)\n";
5876 break;
5879 case CFGElement::Kind::BaseDtor: {
5880 const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5881 OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5882 OS << " (Base object destructor)\n";
5883 break;
5886 case CFGElement::Kind::MemberDtor: {
5887 const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5888 const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5889 OS << "this->" << FD->getName();
5890 OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5891 OS << " (Member object destructor)\n";
5892 break;
5895 case CFGElement::Kind::TemporaryDtor: {
5896 const CXXBindTemporaryExpr *BT =
5897 E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5898 OS << "~";
5899 BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5900 OS << "() (Temporary object destructor)\n";
5901 break;
5906 static void print_block(raw_ostream &OS, const CFG* cfg,
5907 const CFGBlock &B,
5908 StmtPrinterHelper &Helper, bool print_edges,
5909 bool ShowColors) {
5910 Helper.setBlockID(B.getBlockID());
5912 // Print the header.
5913 if (ShowColors)
5914 OS.changeColor(raw_ostream::YELLOW, true);
5916 OS << "\n [B" << B.getBlockID();
5918 if (&B == &cfg->getEntry())
5919 OS << " (ENTRY)]\n";
5920 else if (&B == &cfg->getExit())
5921 OS << " (EXIT)]\n";
5922 else if (&B == cfg->getIndirectGotoBlock())
5923 OS << " (INDIRECT GOTO DISPATCH)]\n";
5924 else if (B.hasNoReturnElement())
5925 OS << " (NORETURN)]\n";
5926 else
5927 OS << "]\n";
5929 if (ShowColors)
5930 OS.resetColor();
5932 // Print the label of this block.
5933 if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5934 if (print_edges)
5935 OS << " ";
5937 if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5938 OS << L->getName();
5939 else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5940 OS << "case ";
5941 if (const Expr *LHS = C->getLHS())
5942 LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5943 if (const Expr *RHS = C->getRHS()) {
5944 OS << " ... ";
5945 RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5947 } else if (isa<DefaultStmt>(Label))
5948 OS << "default";
5949 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5950 OS << "catch (";
5951 if (const VarDecl *ED = CS->getExceptionDecl())
5952 ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5953 else
5954 OS << "...";
5955 OS << ")";
5956 } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) {
5957 OS << "@catch (";
5958 if (const VarDecl *PD = CS->getCatchParamDecl())
5959 PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5960 else
5961 OS << "...";
5962 OS << ")";
5963 } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5964 OS << "__except (";
5965 ES->getFilterExpr()->printPretty(OS, &Helper,
5966 PrintingPolicy(Helper.getLangOpts()), 0);
5967 OS << ")";
5968 } else
5969 llvm_unreachable("Invalid label statement in CFGBlock.");
5971 OS << ":\n";
5974 // Iterate through the statements in the block and print them.
5975 unsigned j = 1;
5977 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5978 I != E ; ++I, ++j ) {
5979 // Print the statement # in the basic block and the statement itself.
5980 if (print_edges)
5981 OS << " ";
5983 OS << llvm::format("%3d", j) << ": ";
5985 Helper.setStmtID(j);
5987 print_elem(OS, Helper, *I);
5990 // Print the terminator of this block.
5991 if (B.getTerminator().isValid()) {
5992 if (ShowColors)
5993 OS.changeColor(raw_ostream::GREEN);
5995 OS << " T: ";
5997 Helper.setBlockID(-1);
5999 PrintingPolicy PP(Helper.getLangOpts());
6000 CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
6001 TPrinter.print(B.getTerminator());
6002 OS << '\n';
6004 if (ShowColors)
6005 OS.resetColor();
6008 if (print_edges) {
6009 // Print the predecessors of this block.
6010 if (!B.pred_empty()) {
6011 const raw_ostream::Colors Color = raw_ostream::BLUE;
6012 if (ShowColors)
6013 OS.changeColor(Color);
6014 OS << " Preds " ;
6015 if (ShowColors)
6016 OS.resetColor();
6017 OS << '(' << B.pred_size() << "):";
6018 unsigned i = 0;
6020 if (ShowColors)
6021 OS.changeColor(Color);
6023 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
6024 I != E; ++I, ++i) {
6025 if (i % 10 == 8)
6026 OS << "\n ";
6028 CFGBlock *B = *I;
6029 bool Reachable = true;
6030 if (!B) {
6031 Reachable = false;
6032 B = I->getPossiblyUnreachableBlock();
6035 OS << " B" << B->getBlockID();
6036 if (!Reachable)
6037 OS << "(Unreachable)";
6040 if (ShowColors)
6041 OS.resetColor();
6043 OS << '\n';
6046 // Print the successors of this block.
6047 if (!B.succ_empty()) {
6048 const raw_ostream::Colors Color = raw_ostream::MAGENTA;
6049 if (ShowColors)
6050 OS.changeColor(Color);
6051 OS << " Succs ";
6052 if (ShowColors)
6053 OS.resetColor();
6054 OS << '(' << B.succ_size() << "):";
6055 unsigned i = 0;
6057 if (ShowColors)
6058 OS.changeColor(Color);
6060 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
6061 I != E; ++I, ++i) {
6062 if (i % 10 == 8)
6063 OS << "\n ";
6065 CFGBlock *B = *I;
6067 bool Reachable = true;
6068 if (!B) {
6069 Reachable = false;
6070 B = I->getPossiblyUnreachableBlock();
6073 if (B) {
6074 OS << " B" << B->getBlockID();
6075 if (!Reachable)
6076 OS << "(Unreachable)";
6078 else {
6079 OS << " NULL";
6083 if (ShowColors)
6084 OS.resetColor();
6085 OS << '\n';
6090 /// dump - A simple pretty printer of a CFG that outputs to stderr.
6091 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
6092 print(llvm::errs(), LO, ShowColors);
6095 /// print - A simple pretty printer of a CFG that outputs to an ostream.
6096 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
6097 StmtPrinterHelper Helper(this, LO);
6099 // Print the entry block.
6100 print_block(OS, this, getEntry(), Helper, true, ShowColors);
6102 // Iterate through the CFGBlocks and print them one by one.
6103 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
6104 // Skip the entry block, because we already printed it.
6105 if (&(**I) == &getEntry() || &(**I) == &getExit())
6106 continue;
6108 print_block(OS, this, **I, Helper, true, ShowColors);
6111 // Print the exit block.
6112 print_block(OS, this, getExit(), Helper, true, ShowColors);
6113 OS << '\n';
6114 OS.flush();
6117 size_t CFGBlock::getIndexInCFG() const {
6118 return llvm::find(*getParent(), this) - getParent()->begin();
6121 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
6122 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
6123 bool ShowColors) const {
6124 print(llvm::errs(), cfg, LO, ShowColors);
6127 LLVM_DUMP_METHOD void CFGBlock::dump() const {
6128 dump(getParent(), LangOptions(), false);
6131 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
6132 /// Generally this will only be called from CFG::print.
6133 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
6134 const LangOptions &LO, bool ShowColors) const {
6135 StmtPrinterHelper Helper(cfg, LO);
6136 print_block(OS, cfg, *this, Helper, true, ShowColors);
6137 OS << '\n';
6140 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
6141 void CFGBlock::printTerminator(raw_ostream &OS,
6142 const LangOptions &LO) const {
6143 CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
6144 TPrinter.print(getTerminator());
6147 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
6148 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
6149 bool AddQuotes) const {
6150 std::string Buf;
6151 llvm::raw_string_ostream TempOut(Buf);
6153 printTerminator(TempOut, LO);
6155 Out << JsonFormat(TempOut.str(), AddQuotes);
6158 // Returns true if by simply looking at the block, we can be sure that it
6159 // results in a sink during analysis. This is useful to know when the analysis
6160 // was interrupted, and we try to figure out if it would sink eventually.
6161 // There may be many more reasons why a sink would appear during analysis
6162 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6163 // sinks that would be obvious by looking at the CFG.
6164 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
6165 if (Blk->hasNoReturnElement())
6166 return true;
6168 // FIXME: Throw-expressions are currently generating sinks during analysis:
6169 // they're not supported yet, and also often used for actually terminating
6170 // the program. So we should treat them as sinks in this analysis as well,
6171 // at least for now, but once we have better support for exceptions,
6172 // we'd need to carefully handle the case when the throw is being
6173 // immediately caught.
6174 if (llvm::any_of(*Blk, [](const CFGElement &Elm) {
6175 if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
6176 if (isa<CXXThrowExpr>(StmtElm->getStmt()))
6177 return true;
6178 return false;
6180 return true;
6182 return false;
6185 bool CFGBlock::isInevitablySinking() const {
6186 const CFG &Cfg = *getParent();
6188 const CFGBlock *StartBlk = this;
6189 if (isImmediateSinkBlock(StartBlk))
6190 return true;
6192 llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
6193 llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
6195 DFSWorkList.push_back(StartBlk);
6196 while (!DFSWorkList.empty()) {
6197 const CFGBlock *Blk = DFSWorkList.back();
6198 DFSWorkList.pop_back();
6199 Visited.insert(Blk);
6201 // If at least one path reaches the CFG exit, it means that control is
6202 // returned to the caller. For now, say that we are not sure what
6203 // happens next. If necessary, this can be improved to analyze
6204 // the parent StackFrameContext's call site in a similar manner.
6205 if (Blk == &Cfg.getExit())
6206 return false;
6208 for (const auto &Succ : Blk->succs()) {
6209 if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
6210 if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
6211 // If the block has reachable child blocks that aren't no-return,
6212 // add them to the worklist.
6213 DFSWorkList.push_back(SuccBlk);
6219 // Nothing reached the exit. It can only mean one thing: there's no return.
6220 return true;
6223 const Expr *CFGBlock::getLastCondition() const {
6224 // If the terminator is a temporary dtor or a virtual base, etc, we can't
6225 // retrieve a meaningful condition, bail out.
6226 if (Terminator.getKind() != CFGTerminator::StmtBranch)
6227 return nullptr;
6229 // Also, if this method was called on a block that doesn't have 2 successors,
6230 // this block doesn't have retrievable condition.
6231 if (succ_size() < 2)
6232 return nullptr;
6234 // FIXME: Is there a better condition expression we can return in this case?
6235 if (size() == 0)
6236 return nullptr;
6238 auto StmtElem = rbegin()->getAs<CFGStmt>();
6239 if (!StmtElem)
6240 return nullptr;
6242 const Stmt *Cond = StmtElem->getStmt();
6243 if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
6244 return nullptr;
6246 // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6247 // the cast<>.
6248 return cast<Expr>(Cond)->IgnoreParens();
6251 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
6252 Stmt *Terminator = getTerminatorStmt();
6253 if (!Terminator)
6254 return nullptr;
6256 Expr *E = nullptr;
6258 switch (Terminator->getStmtClass()) {
6259 default:
6260 break;
6262 case Stmt::CXXForRangeStmtClass:
6263 E = cast<CXXForRangeStmt>(Terminator)->getCond();
6264 break;
6266 case Stmt::ForStmtClass:
6267 E = cast<ForStmt>(Terminator)->getCond();
6268 break;
6270 case Stmt::WhileStmtClass:
6271 E = cast<WhileStmt>(Terminator)->getCond();
6272 break;
6274 case Stmt::DoStmtClass:
6275 E = cast<DoStmt>(Terminator)->getCond();
6276 break;
6278 case Stmt::IfStmtClass:
6279 E = cast<IfStmt>(Terminator)->getCond();
6280 break;
6282 case Stmt::ChooseExprClass:
6283 E = cast<ChooseExpr>(Terminator)->getCond();
6284 break;
6286 case Stmt::IndirectGotoStmtClass:
6287 E = cast<IndirectGotoStmt>(Terminator)->getTarget();
6288 break;
6290 case Stmt::SwitchStmtClass:
6291 E = cast<SwitchStmt>(Terminator)->getCond();
6292 break;
6294 case Stmt::BinaryConditionalOperatorClass:
6295 E = cast<BinaryConditionalOperator>(Terminator)->getCond();
6296 break;
6298 case Stmt::ConditionalOperatorClass:
6299 E = cast<ConditionalOperator>(Terminator)->getCond();
6300 break;
6302 case Stmt::BinaryOperatorClass: // '&&' and '||'
6303 E = cast<BinaryOperator>(Terminator)->getLHS();
6304 break;
6306 case Stmt::ObjCForCollectionStmtClass:
6307 return Terminator;
6310 if (!StripParens)
6311 return E;
6313 return E ? E->IgnoreParens() : nullptr;
6316 //===----------------------------------------------------------------------===//
6317 // CFG Graphviz Visualization
6318 //===----------------------------------------------------------------------===//
6320 static StmtPrinterHelper *GraphHelper;
6322 void CFG::viewCFG(const LangOptions &LO) const {
6323 StmtPrinterHelper H(this, LO);
6324 GraphHelper = &H;
6325 llvm::ViewGraph(this,"CFG");
6326 GraphHelper = nullptr;
6329 namespace llvm {
6331 template<>
6332 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
6333 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6335 static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) {
6336 std::string OutSStr;
6337 llvm::raw_string_ostream Out(OutSStr);
6338 print_block(Out,Graph, *Node, *GraphHelper, false, false);
6339 std::string& OutStr = Out.str();
6341 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6343 // Process string output to make it nicer...
6344 for (unsigned i = 0; i != OutStr.length(); ++i)
6345 if (OutStr[i] == '\n') { // Left justify
6346 OutStr[i] = '\\';
6347 OutStr.insert(OutStr.begin()+i+1, 'l');
6350 return OutStr;
6354 } // namespace llvm