1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the CFG and CFGBuilder classes for representing and
10 // building Control-Flow Graphs (CFGs) from ASTs.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/DOTGraphTraits.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/Format.h"
53 #include "llvm/Support/GraphWriter.h"
54 #include "llvm/Support/SaveAndRestore.h"
55 #include "llvm/Support/raw_ostream.h"
64 using namespace clang
;
66 static SourceLocation
GetEndLoc(Decl
*D
) {
67 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
68 if (Expr
*Ex
= VD
->getInit())
69 return Ex
->getSourceRange().getEnd();
70 return D
->getLocation();
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
75 /// FIXME: it would be good to unify this function with
76 /// getIntegerLiteralSubexpressionValue at some point given the similarity
77 /// between the functions.
79 static bool IsIntegerLiteralConstantExpr(const Expr
*E
) {
81 E
= E
->IgnoreParens();
83 // Allow conversions to different integer kind.
84 if (const auto *CE
= dyn_cast
<CastExpr
>(E
)) {
85 if (CE
->getCastKind() != CK_IntegralCast
)
90 // Allow negative numbers.
91 if (const auto *UO
= dyn_cast
<UnaryOperator
>(E
)) {
92 if (UO
->getOpcode() != UO_Minus
)
97 return isa
<IntegerLiteral
>(E
);
100 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
101 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
103 static const Expr
*tryTransformToIntOrEnumConstant(const Expr
*E
) {
104 E
= E
->IgnoreParens();
105 if (IsIntegerLiteralConstantExpr(E
))
107 if (auto *DR
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParenImpCasts()))
108 return isa
<EnumConstantDecl
>(DR
->getDecl()) ? DR
: nullptr;
112 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
113 /// NumExpr is an integer literal or an enum constant.
115 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
117 static std::tuple
<const Expr
*, BinaryOperatorKind
, const Expr
*>
118 tryNormalizeBinaryOperator(const BinaryOperator
*B
) {
119 BinaryOperatorKind Op
= B
->getOpcode();
121 const Expr
*MaybeDecl
= B
->getLHS();
122 const Expr
*Constant
= tryTransformToIntOrEnumConstant(B
->getRHS());
123 // Expr looked like `0 == Foo` instead of `Foo == 0`
124 if (Constant
== nullptr) {
128 else if (Op
== BO_GE
)
130 else if (Op
== BO_LT
)
132 else if (Op
== BO_LE
)
135 MaybeDecl
= B
->getRHS();
136 Constant
= tryTransformToIntOrEnumConstant(B
->getLHS());
139 return std::make_tuple(MaybeDecl
, Op
, Constant
);
142 /// For an expression `x == Foo && x == Bar`, this determines whether the
143 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
146 /// It's an error to pass this arguments that are not either IntegerLiterals
147 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
148 static bool areExprTypesCompatible(const Expr
*E1
, const Expr
*E2
) {
149 // User intent isn't clear if they're mixing int literals with enum
151 if (isa
<DeclRefExpr
>(E1
) != isa
<DeclRefExpr
>(E2
))
154 // Integer literal comparisons, regardless of literal type, are acceptable.
155 if (!isa
<DeclRefExpr
>(E1
))
158 // IntegerLiterals are handled above and only EnumConstantDecls are expected
160 assert(isa
<DeclRefExpr
>(E1
) && isa
<DeclRefExpr
>(E2
));
161 auto *Decl1
= cast
<DeclRefExpr
>(E1
)->getDecl();
162 auto *Decl2
= cast
<DeclRefExpr
>(E2
)->getDecl();
164 assert(isa
<EnumConstantDecl
>(Decl1
) && isa
<EnumConstantDecl
>(Decl2
));
165 const DeclContext
*DC1
= Decl1
->getDeclContext();
166 const DeclContext
*DC2
= Decl2
->getDeclContext();
168 assert(isa
<EnumDecl
>(DC1
) && isa
<EnumDecl
>(DC2
));
176 /// The CFG builder uses a recursive algorithm to build the CFG. When
177 /// we process an expression, sometimes we know that we must add the
178 /// subexpressions as block-level expressions. For example:
182 /// When processing the '||' expression, we know that exp1 and exp2
183 /// need to be added as block-level expressions, even though they
184 /// might not normally need to be. AddStmtChoice records this
185 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
186 /// the builder has an option not to add a subexpression as a
187 /// block-level expression.
188 class AddStmtChoice
{
190 enum Kind
{ NotAlwaysAdd
= 0, AlwaysAdd
= 1 };
192 AddStmtChoice(Kind a_kind
= NotAlwaysAdd
) : kind(a_kind
) {}
194 bool alwaysAdd(CFGBuilder
&builder
,
195 const Stmt
*stmt
) const;
197 /// Return a copy of this object, except with the 'always-add' bit
198 /// set as specified.
199 AddStmtChoice
withAlwaysAdd(bool alwaysAdd
) const {
200 return AddStmtChoice(alwaysAdd
? AlwaysAdd
: NotAlwaysAdd
);
207 /// LocalScope - Node in tree of local scopes created for C++ implicit
208 /// destructor calls generation. It contains list of automatic variables
209 /// declared in the scope and link to position in previous scope this scope
212 /// The process of creating local scopes is as follows:
213 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
214 /// - Before processing statements in scope (e.g. CompoundStmt) create
215 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
216 /// and set CFGBuilder::ScopePos to the end of new scope,
217 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
219 /// - For every normal (without jump) end of scope add to CFGBlock destructors
220 /// for objects in the current scope,
221 /// - For every jump add to CFGBlock destructors for objects
222 /// between CFGBuilder::ScopePos and local scope position saved for jump
223 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
224 /// jump target position will be on the path to root from CFGBuilder::ScopePos
225 /// (adding any variable that doesn't need constructor to be called to
226 /// LocalScope can break this assumption),
230 using AutomaticVarsTy
= BumpVector
<VarDecl
*>;
232 /// const_iterator - Iterates local scope backwards and jumps to previous
233 /// scope on reaching the beginning of currently iterated scope.
234 class const_iterator
{
235 const LocalScope
* Scope
= nullptr;
237 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
238 /// Invalid iterator (with null Scope) has VarIter equal to 0.
239 unsigned VarIter
= 0;
242 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
243 /// Incrementing invalid iterator is allowed and will result in invalid
245 const_iterator() = default;
247 /// Create valid iterator. In case when S.Prev is an invalid iterator and
248 /// I is equal to 0, this will create invalid iterator.
249 const_iterator(const LocalScope
& S
, unsigned I
)
250 : Scope(&S
), VarIter(I
) {
251 // Iterator to "end" of scope is not allowed. Handle it by going up
252 // in scopes tree possibly up to invalid iterator in the root.
253 if (VarIter
== 0 && Scope
)
257 VarDecl
*const* operator->() const {
258 assert(Scope
&& "Dereferencing invalid iterator is not allowed");
259 assert(VarIter
!= 0 && "Iterator has invalid value of VarIter member");
260 return &Scope
->Vars
[VarIter
- 1];
263 const VarDecl
*getFirstVarInScope() const {
264 assert(Scope
&& "Dereferencing invalid iterator is not allowed");
265 assert(VarIter
!= 0 && "Iterator has invalid value of VarIter member");
266 return Scope
->Vars
[0];
269 VarDecl
*operator*() const {
270 return *this->operator->();
273 const_iterator
&operator++() {
277 assert(VarIter
!= 0 && "Iterator has invalid value of VarIter member");
283 const_iterator
operator++(int) {
284 const_iterator P
= *this;
289 bool operator==(const const_iterator
&rhs
) const {
290 return Scope
== rhs
.Scope
&& VarIter
== rhs
.VarIter
;
292 bool operator!=(const const_iterator
&rhs
) const {
293 return !(*this == rhs
);
296 explicit operator bool() const {
297 return *this != const_iterator();
300 int distance(const_iterator L
);
301 const_iterator
shared_parent(const_iterator L
);
302 bool pointsToFirstDeclaredVar() { return VarIter
== 1; }
306 BumpVectorContext ctx
;
308 /// Automatic variables in order of declaration.
309 AutomaticVarsTy Vars
;
311 /// Iterator to variable in previous scope that was declared just before
312 /// begin of this scope.
316 /// Constructs empty scope linked to previous scope in specified place.
317 LocalScope(BumpVectorContext ctx
, const_iterator P
)
318 : ctx(std::move(ctx
)), Vars(this->ctx
, 4), Prev(P
) {}
320 /// Begin of scope in direction of CFG building (backwards).
321 const_iterator
begin() const { return const_iterator(*this, Vars
.size()); }
323 void addVar(VarDecl
*VD
) {
324 Vars
.push_back(VD
, ctx
);
330 /// distance - Calculates distance from this to L. L must be reachable from this
331 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
332 /// number of scopes between this and L.
333 int LocalScope::const_iterator::distance(LocalScope::const_iterator L
) {
335 const_iterator F
= *this;
336 while (F
.Scope
!= L
.Scope
) {
337 assert(F
!= const_iterator() &&
338 "L iterator is not reachable from F iterator.");
342 D
+= F
.VarIter
- L
.VarIter
;
346 /// Calculates the closest parent of this iterator
347 /// that is in a scope reachable through the parents of L.
348 /// I.e. when using 'goto' from this to L, the lifetime of all variables
349 /// between this and shared_parent(L) end.
350 LocalScope::const_iterator
351 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L
) {
352 llvm::SmallPtrSet
<const LocalScope
*, 4> ScopesOfL
;
354 ScopesOfL
.insert(L
.Scope
);
355 if (L
== const_iterator())
360 const_iterator F
= *this;
362 if (ScopesOfL
.count(F
.Scope
))
364 assert(F
!= const_iterator() &&
365 "L iterator is not reachable from F iterator.");
372 /// Structure for specifying position in CFG during its build process. It
373 /// consists of CFGBlock that specifies position in CFG and
374 /// LocalScope::const_iterator that specifies position in LocalScope graph.
375 struct BlockScopePosPair
{
376 CFGBlock
*block
= nullptr;
377 LocalScope::const_iterator scopePosition
;
379 BlockScopePosPair() = default;
380 BlockScopePosPair(CFGBlock
*b
, LocalScope::const_iterator scopePos
)
381 : block(b
), scopePosition(scopePos
) {}
384 /// TryResult - a class representing a variant over the values
385 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
386 /// and is used by the CFGBuilder to decide if a branch condition
387 /// can be decided up front during CFG construction.
392 TryResult() = default;
393 TryResult(bool b
) : X(b
? 1 : 0) {}
395 bool isTrue() const { return X
== 1; }
396 bool isFalse() const { return X
== 0; }
397 bool isKnown() const { return X
>= 0; }
407 static TryResult
bothKnownTrue(TryResult R1
, TryResult R2
) {
408 if (!R1
.isKnown() || !R2
.isKnown())
410 return TryResult(R1
.isTrue() && R2
.isTrue());
415 class reverse_children
{
416 llvm::SmallVector
<Stmt
*, 12> childrenBuf
;
417 ArrayRef
<Stmt
*> children
;
420 reverse_children(Stmt
*S
);
422 using iterator
= ArrayRef
<Stmt
*>::reverse_iterator
;
424 iterator
begin() const { return children
.rbegin(); }
425 iterator
end() const { return children
.rend(); }
430 reverse_children::reverse_children(Stmt
*S
) {
431 if (CallExpr
*CE
= dyn_cast
<CallExpr
>(S
)) {
432 children
= CE
->getRawSubExprs();
435 switch (S
->getStmtClass()) {
436 // Note: Fill in this switch with more cases we want to optimize.
437 case Stmt::InitListExprClass
: {
438 InitListExpr
*IE
= cast
<InitListExpr
>(S
);
439 children
= llvm::ArrayRef(reinterpret_cast<Stmt
**>(IE
->getInits()),
447 // Default case for all other statements.
448 llvm::append_range(childrenBuf
, S
->children());
450 // This needs to be done *after* childrenBuf has been populated.
451 children
= childrenBuf
;
456 /// CFGBuilder - This class implements CFG construction from an AST.
457 /// The builder is stateful: an instance of the builder should be used to only
458 /// construct a single CFG.
462 /// CFGBuilder builder;
463 /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
465 /// CFG construction is done via a recursive walk of an AST. We actually parse
466 /// the AST in reverse order so that the successor of a basic block is
467 /// constructed prior to its predecessor. This allows us to nicely capture
468 /// implicit fall-throughs without extra basic blocks.
470 using JumpTarget
= BlockScopePosPair
;
471 using JumpSource
= BlockScopePosPair
;
474 std::unique_ptr
<CFG
> cfg
;
477 CFGBlock
*Block
= nullptr;
479 // Block after the current block.
480 CFGBlock
*Succ
= nullptr;
482 JumpTarget ContinueJumpTarget
;
483 JumpTarget BreakJumpTarget
;
484 JumpTarget SEHLeaveJumpTarget
;
485 CFGBlock
*SwitchTerminatedBlock
= nullptr;
486 CFGBlock
*DefaultCaseBlock
= nullptr;
488 // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
489 // try and @try can be mixed and generally work the same.
490 // The frontend forbids mixing SEH __try with either try or @try.
491 // So having one for all three is enough.
492 CFGBlock
*TryTerminatedBlock
= nullptr;
494 // Current position in local scope.
495 LocalScope::const_iterator ScopePos
;
497 // LabelMap records the mapping from Label expressions to their jump targets.
498 using LabelMapTy
= llvm::DenseMap
<LabelDecl
*, JumpTarget
>;
501 // A list of blocks that end with a "goto" that must be backpatched to their
502 // resolved targets upon completion of CFG construction.
503 using BackpatchBlocksTy
= std::vector
<JumpSource
>;
504 BackpatchBlocksTy BackpatchBlocks
;
506 // A list of labels whose address has been taken (for indirect gotos).
507 using LabelSetTy
= llvm::SmallSetVector
<LabelDecl
*, 8>;
508 LabelSetTy AddressTakenLabels
;
510 // Information about the currently visited C++ object construction site.
511 // This is set in the construction trigger and read when the constructor
512 // or a function that returns an object by value is being visited.
513 llvm::DenseMap
<Expr
*, const ConstructionContextLayer
*>
514 ConstructionContextMap
;
516 using DeclsWithEndedScopeSetTy
= llvm::SmallSetVector
<VarDecl
*, 16>;
517 DeclsWithEndedScopeSetTy DeclsWithEndedScope
;
520 const CFG::BuildOptions
&BuildOpts
;
522 // State to track for building switch statements.
523 bool switchExclusivelyCovered
= false;
524 Expr::EvalResult
*switchCond
= nullptr;
526 CFG::BuildOptions::ForcedBlkExprs::value_type
*cachedEntry
= nullptr;
527 const Stmt
*lastLookup
= nullptr;
529 // Caches boolean evaluations of expressions to avoid multiple re-evaluations
530 // during construction of branches for chained logical operators.
531 using CachedBoolEvalsTy
= llvm::DenseMap
<Expr
*, TryResult
>;
532 CachedBoolEvalsTy CachedBoolEvals
;
535 explicit CFGBuilder(ASTContext
*astContext
,
536 const CFG::BuildOptions
&buildOpts
)
537 : Context(astContext
), cfg(new CFG()), BuildOpts(buildOpts
) {}
539 // buildCFG - Used by external clients to construct the CFG.
540 std::unique_ptr
<CFG
> buildCFG(const Decl
*D
, Stmt
*Statement
);
542 bool alwaysAdd(const Stmt
*stmt
);
545 // Visitors to walk an AST and construct the CFG.
546 CFGBlock
*VisitInitListExpr(InitListExpr
*ILE
, AddStmtChoice asc
);
547 CFGBlock
*VisitAddrLabelExpr(AddrLabelExpr
*A
, AddStmtChoice asc
);
548 CFGBlock
*VisitAttributedStmt(AttributedStmt
*A
, AddStmtChoice asc
);
549 CFGBlock
*VisitBinaryOperator(BinaryOperator
*B
, AddStmtChoice asc
);
550 CFGBlock
*VisitBreakStmt(BreakStmt
*B
);
551 CFGBlock
*VisitCallExpr(CallExpr
*C
, AddStmtChoice asc
);
552 CFGBlock
*VisitCaseStmt(CaseStmt
*C
);
553 CFGBlock
*VisitChooseExpr(ChooseExpr
*C
, AddStmtChoice asc
);
554 CFGBlock
*VisitCompoundStmt(CompoundStmt
*C
, bool ExternallyDestructed
);
555 CFGBlock
*VisitConditionalOperator(AbstractConditionalOperator
*C
,
557 CFGBlock
*VisitContinueStmt(ContinueStmt
*C
);
558 CFGBlock
*VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
,
560 CFGBlock
*VisitCXXCatchStmt(CXXCatchStmt
*S
);
561 CFGBlock
*VisitCXXConstructExpr(CXXConstructExpr
*C
, AddStmtChoice asc
);
562 CFGBlock
*VisitCXXNewExpr(CXXNewExpr
*DE
, AddStmtChoice asc
);
563 CFGBlock
*VisitCXXDeleteExpr(CXXDeleteExpr
*DE
, AddStmtChoice asc
);
564 CFGBlock
*VisitCXXForRangeStmt(CXXForRangeStmt
*S
);
565 CFGBlock
*VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr
*E
,
567 CFGBlock
*VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr
*C
,
569 CFGBlock
*VisitCXXThrowExpr(CXXThrowExpr
*T
);
570 CFGBlock
*VisitCXXTryStmt(CXXTryStmt
*S
);
571 CFGBlock
*VisitCXXTypeidExpr(CXXTypeidExpr
*S
, AddStmtChoice asc
);
572 CFGBlock
*VisitDeclStmt(DeclStmt
*DS
);
573 CFGBlock
*VisitDeclSubExpr(DeclStmt
*DS
);
574 CFGBlock
*VisitDefaultStmt(DefaultStmt
*D
);
575 CFGBlock
*VisitDoStmt(DoStmt
*D
);
576 CFGBlock
*VisitExprWithCleanups(ExprWithCleanups
*E
,
577 AddStmtChoice asc
, bool ExternallyDestructed
);
578 CFGBlock
*VisitForStmt(ForStmt
*F
);
579 CFGBlock
*VisitGotoStmt(GotoStmt
*G
);
580 CFGBlock
*VisitGCCAsmStmt(GCCAsmStmt
*G
, AddStmtChoice asc
);
581 CFGBlock
*VisitIfStmt(IfStmt
*I
);
582 CFGBlock
*VisitImplicitCastExpr(ImplicitCastExpr
*E
, AddStmtChoice asc
);
583 CFGBlock
*VisitConstantExpr(ConstantExpr
*E
, AddStmtChoice asc
);
584 CFGBlock
*VisitIndirectGotoStmt(IndirectGotoStmt
*I
);
585 CFGBlock
*VisitLabelStmt(LabelStmt
*L
);
586 CFGBlock
*VisitBlockExpr(BlockExpr
*E
, AddStmtChoice asc
);
587 CFGBlock
*VisitLambdaExpr(LambdaExpr
*E
, AddStmtChoice asc
);
588 CFGBlock
*VisitLogicalOperator(BinaryOperator
*B
);
589 std::pair
<CFGBlock
*, CFGBlock
*> VisitLogicalOperator(BinaryOperator
*B
,
592 CFGBlock
*FalseBlock
);
593 CFGBlock
*VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr
*MTE
,
595 CFGBlock
*VisitMemberExpr(MemberExpr
*M
, AddStmtChoice asc
);
596 CFGBlock
*VisitObjCAtCatchStmt(ObjCAtCatchStmt
*S
);
597 CFGBlock
*VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt
*S
);
598 CFGBlock
*VisitObjCAtThrowStmt(ObjCAtThrowStmt
*S
);
599 CFGBlock
*VisitObjCAtTryStmt(ObjCAtTryStmt
*S
);
600 CFGBlock
*VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt
*S
);
601 CFGBlock
*VisitObjCForCollectionStmt(ObjCForCollectionStmt
*S
);
602 CFGBlock
*VisitObjCMessageExpr(ObjCMessageExpr
*E
, AddStmtChoice asc
);
603 CFGBlock
*VisitPseudoObjectExpr(PseudoObjectExpr
*E
);
604 CFGBlock
*VisitReturnStmt(Stmt
*S
);
605 CFGBlock
*VisitCoroutineSuspendExpr(CoroutineSuspendExpr
*S
,
607 CFGBlock
*VisitSEHExceptStmt(SEHExceptStmt
*S
);
608 CFGBlock
*VisitSEHFinallyStmt(SEHFinallyStmt
*S
);
609 CFGBlock
*VisitSEHLeaveStmt(SEHLeaveStmt
*S
);
610 CFGBlock
*VisitSEHTryStmt(SEHTryStmt
*S
);
611 CFGBlock
*VisitStmtExpr(StmtExpr
*S
, AddStmtChoice asc
);
612 CFGBlock
*VisitSwitchStmt(SwitchStmt
*S
);
613 CFGBlock
*VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr
*E
,
615 CFGBlock
*VisitUnaryOperator(UnaryOperator
*U
, AddStmtChoice asc
);
616 CFGBlock
*VisitWhileStmt(WhileStmt
*W
);
617 CFGBlock
*VisitArrayInitLoopExpr(ArrayInitLoopExpr
*A
, AddStmtChoice asc
);
619 CFGBlock
*Visit(Stmt
*S
, AddStmtChoice asc
= AddStmtChoice::NotAlwaysAdd
,
620 bool ExternallyDestructed
= false);
621 CFGBlock
*VisitStmt(Stmt
*S
, AddStmtChoice asc
);
622 CFGBlock
*VisitChildren(Stmt
*S
);
623 CFGBlock
*VisitNoRecurse(Expr
*E
, AddStmtChoice asc
);
624 CFGBlock
*VisitOMPExecutableDirective(OMPExecutableDirective
*D
,
627 void maybeAddScopeBeginForVarDecl(CFGBlock
*B
, const VarDecl
*VD
,
629 if (ScopePos
&& (VD
== ScopePos
.getFirstVarInScope()))
630 appendScopeBegin(B
, VD
, S
);
633 /// When creating the CFG for temporary destructors, we want to mirror the
634 /// branch structure of the corresponding constructor calls.
635 /// Thus, while visiting a statement for temporary destructors, we keep a
636 /// context to keep track of the following information:
637 /// - whether a subexpression is executed unconditionally
638 /// - if a subexpression is executed conditionally, the first
639 /// CXXBindTemporaryExpr we encounter in that subexpression (which
640 /// corresponds to the last temporary destructor we have to call for this
641 /// subexpression) and the CFG block at that point (which will become the
642 /// successor block when inserting the decision point).
644 /// That way, we can build the branch structure for temporary destructors as
646 /// 1. If a subexpression is executed unconditionally, we add the temporary
647 /// destructor calls to the current block.
648 /// 2. If a subexpression is executed conditionally, when we encounter a
649 /// CXXBindTemporaryExpr:
650 /// a) If it is the first temporary destructor call in the subexpression,
651 /// we remember the CXXBindTemporaryExpr and the current block in the
652 /// TempDtorContext; we start a new block, and insert the temporary
654 /// b) Otherwise, add the temporary destructor call to the current block.
655 /// 3. When we finished visiting a conditionally executed subexpression,
656 /// and we found at least one temporary constructor during the visitation
657 /// (2.a has executed), we insert a decision block that uses the
658 /// CXXBindTemporaryExpr as terminator, and branches to the current block
659 /// if the CXXBindTemporaryExpr was marked executed, and otherwise
660 /// branches to the stored successor.
661 struct TempDtorContext
{
662 TempDtorContext() = default;
663 TempDtorContext(TryResult KnownExecuted
)
664 : IsConditional(true), KnownExecuted(KnownExecuted
) {}
666 /// Returns whether we need to start a new branch for a temporary destructor
667 /// call. This is the case when the temporary destructor is
668 /// conditionally executed, and it is the first one we encounter while
669 /// visiting a subexpression - other temporary destructors at the same level
670 /// will be added to the same block and are executed under the same
672 bool needsTempDtorBranch() const {
673 return IsConditional
&& !TerminatorExpr
;
676 /// Remember the successor S of a temporary destructor decision branch for
677 /// the corresponding CXXBindTemporaryExpr E.
678 void setDecisionPoint(CFGBlock
*S
, CXXBindTemporaryExpr
*E
) {
683 const bool IsConditional
= false;
684 const TryResult KnownExecuted
= true;
685 CFGBlock
*Succ
= nullptr;
686 CXXBindTemporaryExpr
*TerminatorExpr
= nullptr;
689 // Visitors to walk an AST and generate destructors of temporaries in
691 CFGBlock
*VisitForTemporaryDtors(Stmt
*E
, bool ExternallyDestructed
,
692 TempDtorContext
&Context
);
693 CFGBlock
*VisitChildrenForTemporaryDtors(Stmt
*E
, bool ExternallyDestructed
,
694 TempDtorContext
&Context
);
695 CFGBlock
*VisitBinaryOperatorForTemporaryDtors(BinaryOperator
*E
,
696 bool ExternallyDestructed
,
697 TempDtorContext
&Context
);
698 CFGBlock
*VisitCXXBindTemporaryExprForTemporaryDtors(
699 CXXBindTemporaryExpr
*E
, bool ExternallyDestructed
, TempDtorContext
&Context
);
700 CFGBlock
*VisitConditionalOperatorForTemporaryDtors(
701 AbstractConditionalOperator
*E
, bool ExternallyDestructed
,
702 TempDtorContext
&Context
);
703 void InsertTempDtorDecisionBlock(const TempDtorContext
&Context
,
704 CFGBlock
*FalseSucc
= nullptr);
706 // NYS == Not Yet Supported
712 // Remember to apply the construction context based on the current \p Layer
713 // when constructing the CFG element for \p CE.
714 void consumeConstructionContext(const ConstructionContextLayer
*Layer
,
717 // Scan \p Child statement to find constructors in it, while keeping in mind
718 // that its parent statement is providing a partial construction context
719 // described by \p Layer. If a constructor is found, it would be assigned
720 // the context based on the layer. If an additional construction context layer
721 // is found, the function recurses into that.
722 void findConstructionContexts(const ConstructionContextLayer
*Layer
,
725 // Scan all arguments of a call expression for a construction context.
726 // These sorts of call expressions don't have a common superclass,
727 // hence strict duck-typing.
728 template <typename CallLikeExpr
,
729 typename
= std::enable_if_t
<
730 std::is_base_of_v
<CallExpr
, CallLikeExpr
> ||
731 std::is_base_of_v
<CXXConstructExpr
, CallLikeExpr
> ||
732 std::is_base_of_v
<ObjCMessageExpr
, CallLikeExpr
>>>
733 void findConstructionContextsForArguments(CallLikeExpr
*E
) {
734 for (unsigned i
= 0, e
= E
->getNumArgs(); i
!= e
; ++i
) {
735 Expr
*Arg
= E
->getArg(i
);
736 if (Arg
->getType()->getAsCXXRecordDecl() && !Arg
->isGLValue())
737 findConstructionContexts(
738 ConstructionContextLayer::create(cfg
->getBumpVectorContext(),
739 ConstructionContextItem(E
, i
)),
744 // Unset the construction context after consuming it. This is done immediately
745 // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
746 // there's no need to do this manually in every Visit... function.
747 void cleanupConstructionContext(Expr
*E
);
749 void autoCreateBlock() { if (!Block
) Block
= createBlock(); }
750 CFGBlock
*createBlock(bool add_successor
= true);
751 CFGBlock
*createNoReturnBlock();
753 CFGBlock
*addStmt(Stmt
*S
) {
754 return Visit(S
, AddStmtChoice::AlwaysAdd
);
757 CFGBlock
*addInitializer(CXXCtorInitializer
*I
);
758 void addLoopExit(const Stmt
*LoopStmt
);
759 void addAutomaticObjDtors(LocalScope::const_iterator B
,
760 LocalScope::const_iterator E
, Stmt
*S
);
761 void addLifetimeEnds(LocalScope::const_iterator B
,
762 LocalScope::const_iterator E
, Stmt
*S
);
763 void addAutomaticObjHandling(LocalScope::const_iterator B
,
764 LocalScope::const_iterator E
, Stmt
*S
);
765 void addImplicitDtorsForDestructor(const CXXDestructorDecl
*DD
);
766 void addScopesEnd(LocalScope::const_iterator B
, LocalScope::const_iterator E
,
769 void getDeclsWithEndedScope(LocalScope::const_iterator B
,
770 LocalScope::const_iterator E
, Stmt
*S
);
772 // Local scopes creation.
773 LocalScope
* createOrReuseLocalScope(LocalScope
* Scope
);
775 void addLocalScopeForStmt(Stmt
*S
);
776 LocalScope
* addLocalScopeForDeclStmt(DeclStmt
*DS
,
777 LocalScope
* Scope
= nullptr);
778 LocalScope
* addLocalScopeForVarDecl(VarDecl
*VD
, LocalScope
* Scope
= nullptr);
780 void addLocalScopeAndDtors(Stmt
*S
);
782 const ConstructionContext
*retrieveAndCleanupConstructionContext(Expr
*E
) {
783 if (!BuildOpts
.AddRichCXXConstructors
)
786 const ConstructionContextLayer
*Layer
= ConstructionContextMap
.lookup(E
);
790 cleanupConstructionContext(E
);
791 return ConstructionContext::createFromLayers(cfg
->getBumpVectorContext(),
795 // Interface to CFGBlock - adding CFGElements.
797 void appendStmt(CFGBlock
*B
, const Stmt
*S
) {
798 if (alwaysAdd(S
) && cachedEntry
)
799 cachedEntry
->second
= B
;
801 // All block-level expressions should have already been IgnoreParens()ed.
802 assert(!isa
<Expr
>(S
) || cast
<Expr
>(S
)->IgnoreParens() == S
);
803 B
->appendStmt(const_cast<Stmt
*>(S
), cfg
->getBumpVectorContext());
806 void appendConstructor(CFGBlock
*B
, CXXConstructExpr
*CE
) {
807 if (const ConstructionContext
*CC
=
808 retrieveAndCleanupConstructionContext(CE
)) {
809 B
->appendConstructor(CE
, CC
, cfg
->getBumpVectorContext());
813 // No valid construction context found. Fall back to statement.
814 B
->appendStmt(CE
, cfg
->getBumpVectorContext());
817 void appendCall(CFGBlock
*B
, CallExpr
*CE
) {
818 if (alwaysAdd(CE
) && cachedEntry
)
819 cachedEntry
->second
= B
;
821 if (const ConstructionContext
*CC
=
822 retrieveAndCleanupConstructionContext(CE
)) {
823 B
->appendCXXRecordTypedCall(CE
, CC
, cfg
->getBumpVectorContext());
827 // No valid construction context found. Fall back to statement.
828 B
->appendStmt(CE
, cfg
->getBumpVectorContext());
831 void appendInitializer(CFGBlock
*B
, CXXCtorInitializer
*I
) {
832 B
->appendInitializer(I
, cfg
->getBumpVectorContext());
835 void appendNewAllocator(CFGBlock
*B
, CXXNewExpr
*NE
) {
836 B
->appendNewAllocator(NE
, cfg
->getBumpVectorContext());
839 void appendBaseDtor(CFGBlock
*B
, const CXXBaseSpecifier
*BS
) {
840 B
->appendBaseDtor(BS
, cfg
->getBumpVectorContext());
843 void appendMemberDtor(CFGBlock
*B
, FieldDecl
*FD
) {
844 B
->appendMemberDtor(FD
, cfg
->getBumpVectorContext());
847 void appendObjCMessage(CFGBlock
*B
, ObjCMessageExpr
*ME
) {
848 if (alwaysAdd(ME
) && cachedEntry
)
849 cachedEntry
->second
= B
;
851 if (const ConstructionContext
*CC
=
852 retrieveAndCleanupConstructionContext(ME
)) {
853 B
->appendCXXRecordTypedCall(ME
, CC
, cfg
->getBumpVectorContext());
857 B
->appendStmt(const_cast<ObjCMessageExpr
*>(ME
),
858 cfg
->getBumpVectorContext());
861 void appendTemporaryDtor(CFGBlock
*B
, CXXBindTemporaryExpr
*E
) {
862 B
->appendTemporaryDtor(E
, cfg
->getBumpVectorContext());
865 void appendAutomaticObjDtor(CFGBlock
*B
, VarDecl
*VD
, Stmt
*S
) {
866 B
->appendAutomaticObjDtor(VD
, S
, cfg
->getBumpVectorContext());
869 void appendLifetimeEnds(CFGBlock
*B
, VarDecl
*VD
, Stmt
*S
) {
870 B
->appendLifetimeEnds(VD
, S
, cfg
->getBumpVectorContext());
873 void appendLoopExit(CFGBlock
*B
, const Stmt
*LoopStmt
) {
874 B
->appendLoopExit(LoopStmt
, cfg
->getBumpVectorContext());
877 void appendDeleteDtor(CFGBlock
*B
, CXXRecordDecl
*RD
, CXXDeleteExpr
*DE
) {
878 B
->appendDeleteDtor(RD
, DE
, cfg
->getBumpVectorContext());
881 void prependAutomaticObjDtorsWithTerminator(CFGBlock
*Blk
,
882 LocalScope::const_iterator B
, LocalScope::const_iterator E
);
884 void prependAutomaticObjLifetimeWithTerminator(CFGBlock
*Blk
,
885 LocalScope::const_iterator B
,
886 LocalScope::const_iterator E
);
889 prependAutomaticObjScopeEndWithTerminator(CFGBlock
*Blk
,
890 LocalScope::const_iterator B
,
891 LocalScope::const_iterator E
);
893 void addSuccessor(CFGBlock
*B
, CFGBlock
*S
, bool IsReachable
= true) {
894 B
->addSuccessor(CFGBlock::AdjacentBlock(S
, IsReachable
),
895 cfg
->getBumpVectorContext());
898 /// Add a reachable successor to a block, with the alternate variant that is
900 void addSuccessor(CFGBlock
*B
, CFGBlock
*ReachableBlock
, CFGBlock
*AltBlock
) {
901 B
->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock
, AltBlock
),
902 cfg
->getBumpVectorContext());
905 void appendScopeBegin(CFGBlock
*B
, const VarDecl
*VD
, const Stmt
*S
) {
906 if (BuildOpts
.AddScopes
)
907 B
->appendScopeBegin(VD
, S
, cfg
->getBumpVectorContext());
910 void prependScopeBegin(CFGBlock
*B
, const VarDecl
*VD
, const Stmt
*S
) {
911 if (BuildOpts
.AddScopes
)
912 B
->prependScopeBegin(VD
, S
, cfg
->getBumpVectorContext());
915 void appendScopeEnd(CFGBlock
*B
, const VarDecl
*VD
, const Stmt
*S
) {
916 if (BuildOpts
.AddScopes
)
917 B
->appendScopeEnd(VD
, S
, cfg
->getBumpVectorContext());
920 void prependScopeEnd(CFGBlock
*B
, const VarDecl
*VD
, const Stmt
*S
) {
921 if (BuildOpts
.AddScopes
)
922 B
->prependScopeEnd(VD
, S
, cfg
->getBumpVectorContext());
925 /// Find a relational comparison with an expression evaluating to a
926 /// boolean and a constant other than 0 and 1.
927 /// e.g. if ((x < y) == 10)
928 TryResult
checkIncorrectRelationalOperator(const BinaryOperator
*B
) {
929 const Expr
*LHSExpr
= B
->getLHS()->IgnoreParens();
930 const Expr
*RHSExpr
= B
->getRHS()->IgnoreParens();
932 const IntegerLiteral
*IntLiteral
= dyn_cast
<IntegerLiteral
>(LHSExpr
);
933 const Expr
*BoolExpr
= RHSExpr
;
934 bool IntFirst
= true;
936 IntLiteral
= dyn_cast
<IntegerLiteral
>(RHSExpr
);
941 if (!IntLiteral
|| !BoolExpr
->isKnownToHaveBooleanValue())
944 llvm::APInt IntValue
= IntLiteral
->getValue();
945 if ((IntValue
== 1) || (IntValue
== 0))
948 bool IntLarger
= IntLiteral
->getType()->isUnsignedIntegerType() ||
949 !IntValue
.isNegative();
951 BinaryOperatorKind Bok
= B
->getOpcode();
952 if (Bok
== BO_GT
|| Bok
== BO_GE
) {
953 // Always true for 10 > bool and bool > -1
954 // Always false for -1 > bool and bool > 10
955 return TryResult(IntFirst
== IntLarger
);
957 // Always true for -1 < bool and bool < 10
958 // Always false for 10 < bool and bool < -1
959 return TryResult(IntFirst
!= IntLarger
);
963 /// Find an incorrect equality comparison. Either with an expression
964 /// evaluating to a boolean and a constant other than 0 and 1.
965 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
966 /// true/false e.q. (x & 8) == 4.
967 TryResult
checkIncorrectEqualityOperator(const BinaryOperator
*B
) {
968 const Expr
*LHSExpr
= B
->getLHS()->IgnoreParens();
969 const Expr
*RHSExpr
= B
->getRHS()->IgnoreParens();
971 std::optional
<llvm::APInt
> IntLiteral1
=
972 getIntegerLiteralSubexpressionValue(LHSExpr
);
973 const Expr
*BoolExpr
= RHSExpr
;
976 IntLiteral1
= getIntegerLiteralSubexpressionValue(RHSExpr
);
983 const BinaryOperator
*BitOp
= dyn_cast
<BinaryOperator
>(BoolExpr
);
984 if (BitOp
&& (BitOp
->getOpcode() == BO_And
||
985 BitOp
->getOpcode() == BO_Or
)) {
986 const Expr
*LHSExpr2
= BitOp
->getLHS()->IgnoreParens();
987 const Expr
*RHSExpr2
= BitOp
->getRHS()->IgnoreParens();
989 std::optional
<llvm::APInt
> IntLiteral2
=
990 getIntegerLiteralSubexpressionValue(LHSExpr2
);
993 IntLiteral2
= getIntegerLiteralSubexpressionValue(RHSExpr2
);
998 if ((BitOp
->getOpcode() == BO_And
&&
999 (*IntLiteral2
& *IntLiteral1
) != *IntLiteral1
) ||
1000 (BitOp
->getOpcode() == BO_Or
&&
1001 (*IntLiteral2
| *IntLiteral1
) != *IntLiteral1
)) {
1002 if (BuildOpts
.Observer
)
1003 BuildOpts
.Observer
->compareBitwiseEquality(B
,
1004 B
->getOpcode() != BO_EQ
);
1005 return TryResult(B
->getOpcode() != BO_EQ
);
1007 } else if (BoolExpr
->isKnownToHaveBooleanValue()) {
1008 if ((*IntLiteral1
== 1) || (*IntLiteral1
== 0)) {
1011 return TryResult(B
->getOpcode() != BO_EQ
);
1017 // Helper function to get an APInt from an expression. Supports expressions
1018 // which are an IntegerLiteral or a UnaryOperator and returns the value with
1019 // all operations performed on it.
1020 // FIXME: it would be good to unify this function with
1021 // IsIntegerLiteralConstantExpr at some point given the similarity between the
1023 std::optional
<llvm::APInt
>
1024 getIntegerLiteralSubexpressionValue(const Expr
*E
) {
1027 if (const auto *UnOp
= dyn_cast
<UnaryOperator
>(E
->IgnoreParens())) {
1028 // Get the sub expression of the unary expression and get the Integer
1030 const Expr
*SubExpr
= UnOp
->getSubExpr()->IgnoreParens();
1032 if (const auto *IntLiteral
= dyn_cast
<IntegerLiteral
>(SubExpr
)) {
1034 llvm::APInt Value
= IntLiteral
->getValue();
1036 // Perform the operation manually.
1037 switch (UnOp
->getOpcode()) {
1045 return llvm::APInt(Context
->getTypeSize(Context
->IntTy
), !Value
);
1047 assert(false && "Unexpected unary operator!");
1048 return std::nullopt
;
1051 } else if (const auto *IntLiteral
=
1052 dyn_cast
<IntegerLiteral
>(E
->IgnoreParens()))
1053 return IntLiteral
->getValue();
1055 return std::nullopt
;
1058 TryResult
analyzeLogicOperatorCondition(BinaryOperatorKind Relation
,
1059 const llvm::APSInt
&Value1
,
1060 const llvm::APSInt
&Value2
) {
1061 assert(Value1
.isSigned() == Value2
.isSigned());
1066 return TryResult(Value1
== Value2
);
1068 return TryResult(Value1
!= Value2
);
1070 return TryResult(Value1
< Value2
);
1072 return TryResult(Value1
<= Value2
);
1074 return TryResult(Value1
> Value2
);
1076 return TryResult(Value1
>= Value2
);
1080 /// Find a pair of comparison expressions with or without parentheses
1081 /// with a shared variable and constants and a logical operator between them
1082 /// that always evaluates to either true or false.
1083 /// e.g. if (x != 3 || x != 4)
1084 TryResult
checkIncorrectLogicOperator(const BinaryOperator
*B
) {
1085 assert(B
->isLogicalOp());
1086 const BinaryOperator
*LHS
=
1087 dyn_cast
<BinaryOperator
>(B
->getLHS()->IgnoreParens());
1088 const BinaryOperator
*RHS
=
1089 dyn_cast
<BinaryOperator
>(B
->getRHS()->IgnoreParens());
1093 if (!LHS
->isComparisonOp() || !RHS
->isComparisonOp())
1096 const Expr
*DeclExpr1
;
1097 const Expr
*NumExpr1
;
1098 BinaryOperatorKind BO1
;
1099 std::tie(DeclExpr1
, BO1
, NumExpr1
) = tryNormalizeBinaryOperator(LHS
);
1101 if (!DeclExpr1
|| !NumExpr1
)
1104 const Expr
*DeclExpr2
;
1105 const Expr
*NumExpr2
;
1106 BinaryOperatorKind BO2
;
1107 std::tie(DeclExpr2
, BO2
, NumExpr2
) = tryNormalizeBinaryOperator(RHS
);
1109 if (!DeclExpr2
|| !NumExpr2
)
1112 // Check that it is the same variable on both sides.
1113 if (!Expr::isSameComparisonOperand(DeclExpr1
, DeclExpr2
))
1116 // Make sure the user's intent is clear (e.g. they're comparing against two
1117 // int literals, or two things from the same enum)
1118 if (!areExprTypesCompatible(NumExpr1
, NumExpr2
))
1121 Expr::EvalResult L1Result
, L2Result
;
1122 if (!NumExpr1
->EvaluateAsInt(L1Result
, *Context
) ||
1123 !NumExpr2
->EvaluateAsInt(L2Result
, *Context
))
1126 llvm::APSInt L1
= L1Result
.Val
.getInt();
1127 llvm::APSInt L2
= L2Result
.Val
.getInt();
1129 // Can't compare signed with unsigned or with different bit width.
1130 if (L1
.isSigned() != L2
.isSigned() || L1
.getBitWidth() != L2
.getBitWidth())
1133 // Values that will be used to determine if result of logical
1134 // operator is always true/false
1135 const llvm::APSInt Values
[] = {
1136 // Value less than both Value1 and Value2
1137 llvm::APSInt::getMinValue(L1
.getBitWidth(), L1
.isUnsigned()),
1140 // Value between Value1 and Value2
1141 ((L1
< L2
) ? L1
: L2
) + llvm::APSInt(llvm::APInt(L1
.getBitWidth(), 1),
1145 // Value greater than both Value1 and Value2
1146 llvm::APSInt::getMaxValue(L1
.getBitWidth(), L1
.isUnsigned()),
1149 // Check whether expression is always true/false by evaluating the following
1150 // * variable x is less than the smallest literal.
1151 // * variable x is equal to the smallest literal.
1152 // * Variable x is between smallest and largest literal.
1153 // * Variable x is equal to the largest literal.
1154 // * Variable x is greater than largest literal.
1155 bool AlwaysTrue
= true, AlwaysFalse
= true;
1156 // Track value of both subexpressions. If either side is always
1157 // true/false, another warning should have already been emitted.
1158 bool LHSAlwaysTrue
= true, LHSAlwaysFalse
= true;
1159 bool RHSAlwaysTrue
= true, RHSAlwaysFalse
= true;
1160 for (const llvm::APSInt
&Value
: Values
) {
1161 TryResult Res1
, Res2
;
1162 Res1
= analyzeLogicOperatorCondition(BO1
, Value
, L1
);
1163 Res2
= analyzeLogicOperatorCondition(BO2
, Value
, L2
);
1165 if (!Res1
.isKnown() || !Res2
.isKnown())
1168 if (B
->getOpcode() == BO_LAnd
) {
1169 AlwaysTrue
&= (Res1
.isTrue() && Res2
.isTrue());
1170 AlwaysFalse
&= !(Res1
.isTrue() && Res2
.isTrue());
1172 AlwaysTrue
&= (Res1
.isTrue() || Res2
.isTrue());
1173 AlwaysFalse
&= !(Res1
.isTrue() || Res2
.isTrue());
1176 LHSAlwaysTrue
&= Res1
.isTrue();
1177 LHSAlwaysFalse
&= Res1
.isFalse();
1178 RHSAlwaysTrue
&= Res2
.isTrue();
1179 RHSAlwaysFalse
&= Res2
.isFalse();
1182 if (AlwaysTrue
|| AlwaysFalse
) {
1183 if (!LHSAlwaysTrue
&& !LHSAlwaysFalse
&& !RHSAlwaysTrue
&&
1184 !RHSAlwaysFalse
&& BuildOpts
.Observer
)
1185 BuildOpts
.Observer
->compareAlwaysTrue(B
, AlwaysTrue
);
1186 return TryResult(AlwaysTrue
);
1191 /// A bitwise-or with a non-zero constant always evaluates to true.
1192 TryResult
checkIncorrectBitwiseOrOperator(const BinaryOperator
*B
) {
1193 const Expr
*LHSConstant
=
1194 tryTransformToIntOrEnumConstant(B
->getLHS()->IgnoreParenImpCasts());
1195 const Expr
*RHSConstant
=
1196 tryTransformToIntOrEnumConstant(B
->getRHS()->IgnoreParenImpCasts());
1198 if ((LHSConstant
&& RHSConstant
) || (!LHSConstant
&& !RHSConstant
))
1201 const Expr
*Constant
= LHSConstant
? LHSConstant
: RHSConstant
;
1203 Expr::EvalResult Result
;
1204 if (!Constant
->EvaluateAsInt(Result
, *Context
))
1207 if (Result
.Val
.getInt() == 0)
1210 if (BuildOpts
.Observer
)
1211 BuildOpts
.Observer
->compareBitwiseOr(B
);
1213 return TryResult(true);
1216 /// Try and evaluate an expression to an integer constant.
1217 bool tryEvaluate(Expr
*S
, Expr::EvalResult
&outResult
) {
1218 if (!BuildOpts
.PruneTriviallyFalseEdges
)
1220 return !S
->isTypeDependent() &&
1221 !S
->isValueDependent() &&
1222 S
->EvaluateAsRValue(outResult
, *Context
);
1225 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1226 /// if we can evaluate to a known value, otherwise return -1.
1227 TryResult
tryEvaluateBool(Expr
*S
) {
1228 if (!BuildOpts
.PruneTriviallyFalseEdges
||
1229 S
->isTypeDependent() || S
->isValueDependent())
1232 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(S
)) {
1233 if (Bop
->isLogicalOp() || Bop
->isEqualityOp()) {
1234 // Check the cache first.
1235 CachedBoolEvalsTy::iterator I
= CachedBoolEvals
.find(S
);
1236 if (I
!= CachedBoolEvals
.end())
1237 return I
->second
; // already in map;
1239 // Retrieve result at first, or the map might be updated.
1240 TryResult Result
= evaluateAsBooleanConditionNoCache(S
);
1241 CachedBoolEvals
[S
] = Result
; // update or insert
1245 switch (Bop
->getOpcode()) {
1247 // For 'x & 0' and 'x * 0', we can determine that
1248 // the value is always false.
1251 // If either operand is zero, we know the value
1253 Expr::EvalResult LHSResult
;
1254 if (Bop
->getLHS()->EvaluateAsInt(LHSResult
, *Context
)) {
1255 llvm::APSInt IntVal
= LHSResult
.Val
.getInt();
1256 if (!IntVal
.getBoolValue()) {
1257 return TryResult(false);
1260 Expr::EvalResult RHSResult
;
1261 if (Bop
->getRHS()->EvaluateAsInt(RHSResult
, *Context
)) {
1262 llvm::APSInt IntVal
= RHSResult
.Val
.getInt();
1263 if (!IntVal
.getBoolValue()) {
1264 return TryResult(false);
1273 return evaluateAsBooleanConditionNoCache(S
);
1276 /// Evaluate as boolean \param E without using the cache.
1277 TryResult
evaluateAsBooleanConditionNoCache(Expr
*E
) {
1278 if (BinaryOperator
*Bop
= dyn_cast
<BinaryOperator
>(E
)) {
1279 if (Bop
->isLogicalOp()) {
1280 TryResult LHS
= tryEvaluateBool(Bop
->getLHS());
1281 if (LHS
.isKnown()) {
1282 // We were able to evaluate the LHS, see if we can get away with not
1283 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1284 if (LHS
.isTrue() == (Bop
->getOpcode() == BO_LOr
))
1285 return LHS
.isTrue();
1287 TryResult RHS
= tryEvaluateBool(Bop
->getRHS());
1288 if (RHS
.isKnown()) {
1289 if (Bop
->getOpcode() == BO_LOr
)
1290 return LHS
.isTrue() || RHS
.isTrue();
1292 return LHS
.isTrue() && RHS
.isTrue();
1295 TryResult RHS
= tryEvaluateBool(Bop
->getRHS());
1296 if (RHS
.isKnown()) {
1297 // We can't evaluate the LHS; however, sometimes the result
1298 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1299 if (RHS
.isTrue() == (Bop
->getOpcode() == BO_LOr
))
1300 return RHS
.isTrue();
1302 TryResult BopRes
= checkIncorrectLogicOperator(Bop
);
1303 if (BopRes
.isKnown())
1304 return BopRes
.isTrue();
1309 } else if (Bop
->isEqualityOp()) {
1310 TryResult BopRes
= checkIncorrectEqualityOperator(Bop
);
1311 if (BopRes
.isKnown())
1312 return BopRes
.isTrue();
1313 } else if (Bop
->isRelationalOp()) {
1314 TryResult BopRes
= checkIncorrectRelationalOperator(Bop
);
1315 if (BopRes
.isKnown())
1316 return BopRes
.isTrue();
1317 } else if (Bop
->getOpcode() == BO_Or
) {
1318 TryResult BopRes
= checkIncorrectBitwiseOrOperator(Bop
);
1319 if (BopRes
.isKnown())
1320 return BopRes
.isTrue();
1325 if (E
->EvaluateAsBooleanCondition(Result
, *Context
))
1331 bool hasTrivialDestructor(VarDecl
*VD
);
1337 clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr
*AILE
) {
1341 Expr
*AILEInit
= AILE
->getSubExpr();
1342 while (const auto *E
= dyn_cast
<ArrayInitLoopExpr
>(AILEInit
))
1343 AILEInit
= E
->getSubExpr();
1348 inline bool AddStmtChoice::alwaysAdd(CFGBuilder
&builder
,
1349 const Stmt
*stmt
) const {
1350 return builder
.alwaysAdd(stmt
) || kind
== AlwaysAdd
;
1353 bool CFGBuilder::alwaysAdd(const Stmt
*stmt
) {
1354 bool shouldAdd
= BuildOpts
.alwaysAdd(stmt
);
1356 if (!BuildOpts
.forcedBlkExprs
)
1359 if (lastLookup
== stmt
) {
1361 assert(cachedEntry
->first
== stmt
);
1369 // Perform the lookup!
1370 CFG::BuildOptions::ForcedBlkExprs
*fb
= *BuildOpts
.forcedBlkExprs
;
1373 // No need to update 'cachedEntry', since it will always be null.
1374 assert(!cachedEntry
);
1378 CFG::BuildOptions::ForcedBlkExprs::iterator itr
= fb
->find(stmt
);
1379 if (itr
== fb
->end()) {
1380 cachedEntry
= nullptr;
1384 cachedEntry
= &*itr
;
1388 // FIXME: Add support for dependent-sized array types in C++?
1389 // Does it even make sense to build a CFG for an uninstantiated template?
1390 static const VariableArrayType
*FindVA(const Type
*t
) {
1391 while (const ArrayType
*vt
= dyn_cast
<ArrayType
>(t
)) {
1392 if (const VariableArrayType
*vat
= dyn_cast
<VariableArrayType
>(vt
))
1393 if (vat
->getSizeExpr())
1396 t
= vt
->getElementType().getTypePtr();
1402 void CFGBuilder::consumeConstructionContext(
1403 const ConstructionContextLayer
*Layer
, Expr
*E
) {
1404 assert((isa
<CXXConstructExpr
>(E
) || isa
<CallExpr
>(E
) ||
1405 isa
<ObjCMessageExpr
>(E
)) && "Expression cannot construct an object!");
1406 if (const ConstructionContextLayer
*PreviouslyStoredLayer
=
1407 ConstructionContextMap
.lookup(E
)) {
1408 (void)PreviouslyStoredLayer
;
1409 // We might have visited this child when we were finding construction
1410 // contexts within its parents.
1411 assert(PreviouslyStoredLayer
->isStrictlyMoreSpecificThan(Layer
) &&
1412 "Already within a different construction context!");
1414 ConstructionContextMap
[E
] = Layer
;
1418 void CFGBuilder::findConstructionContexts(
1419 const ConstructionContextLayer
*Layer
, Stmt
*Child
) {
1420 if (!BuildOpts
.AddRichCXXConstructors
)
1426 auto withExtraLayer
= [this, Layer
](const ConstructionContextItem
&Item
) {
1427 return ConstructionContextLayer::create(cfg
->getBumpVectorContext(), Item
,
1431 switch(Child
->getStmtClass()) {
1432 case Stmt::CXXConstructExprClass
:
1433 case Stmt::CXXTemporaryObjectExprClass
: {
1434 // Support pre-C++17 copy elision AST.
1435 auto *CE
= cast
<CXXConstructExpr
>(Child
);
1436 if (BuildOpts
.MarkElidedCXXConstructors
&& CE
->isElidable()) {
1437 findConstructionContexts(withExtraLayer(CE
), CE
->getArg(0));
1440 consumeConstructionContext(Layer
, CE
);
1443 // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1444 // FIXME: An isa<> would look much better but this whole switch is a
1445 // workaround for an internal compiler error in MSVC 2015 (see r326021).
1446 case Stmt::CallExprClass
:
1447 case Stmt::CXXMemberCallExprClass
:
1448 case Stmt::CXXOperatorCallExprClass
:
1449 case Stmt::UserDefinedLiteralClass
:
1450 case Stmt::ObjCMessageExprClass
: {
1451 auto *E
= cast
<Expr
>(Child
);
1452 if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E
))
1453 consumeConstructionContext(Layer
, E
);
1456 case Stmt::ExprWithCleanupsClass
: {
1457 auto *Cleanups
= cast
<ExprWithCleanups
>(Child
);
1458 findConstructionContexts(Layer
, Cleanups
->getSubExpr());
1461 case Stmt::CXXFunctionalCastExprClass
: {
1462 auto *Cast
= cast
<CXXFunctionalCastExpr
>(Child
);
1463 findConstructionContexts(Layer
, Cast
->getSubExpr());
1466 case Stmt::ImplicitCastExprClass
: {
1467 auto *Cast
= cast
<ImplicitCastExpr
>(Child
);
1468 // Should we support other implicit cast kinds?
1469 switch (Cast
->getCastKind()) {
1471 case CK_ConstructorConversion
:
1472 findConstructionContexts(Layer
, Cast
->getSubExpr());
1479 case Stmt::CXXBindTemporaryExprClass
: {
1480 auto *BTE
= cast
<CXXBindTemporaryExpr
>(Child
);
1481 findConstructionContexts(withExtraLayer(BTE
), BTE
->getSubExpr());
1484 case Stmt::MaterializeTemporaryExprClass
: {
1485 // Normally we don't want to search in MaterializeTemporaryExpr because
1486 // it indicates the beginning of a temporary object construction context,
1487 // so it shouldn't be found in the middle. However, if it is the beginning
1488 // of an elidable copy or move construction context, we need to include it.
1489 if (Layer
->getItem().getKind() ==
1490 ConstructionContextItem::ElidableConstructorKind
) {
1491 auto *MTE
= cast
<MaterializeTemporaryExpr
>(Child
);
1492 findConstructionContexts(withExtraLayer(MTE
), MTE
->getSubExpr());
1496 case Stmt::ConditionalOperatorClass
: {
1497 auto *CO
= cast
<ConditionalOperator
>(Child
);
1498 if (Layer
->getItem().getKind() !=
1499 ConstructionContextItem::MaterializationKind
) {
1500 // If the object returned by the conditional operator is not going to be a
1501 // temporary object that needs to be immediately materialized, then
1502 // it must be C++17 with its mandatory copy elision. Do not yet promise
1503 // to support this case.
1504 assert(!CO
->getType()->getAsCXXRecordDecl() || CO
->isGLValue() ||
1505 Context
->getLangOpts().CPlusPlus17
);
1508 findConstructionContexts(Layer
, CO
->getLHS());
1509 findConstructionContexts(Layer
, CO
->getRHS());
1512 case Stmt::InitListExprClass
: {
1513 auto *ILE
= cast
<InitListExpr
>(Child
);
1514 if (ILE
->isTransparent()) {
1515 findConstructionContexts(Layer
, ILE
->getInit(0));
1518 // TODO: Handle other cases. For now, fail to find construction contexts.
1521 case Stmt::ParenExprClass
: {
1522 // If expression is placed into parenthesis we should propagate the parent
1523 // construction context to subexpressions.
1524 auto *PE
= cast
<ParenExpr
>(Child
);
1525 findConstructionContexts(Layer
, PE
->getSubExpr());
1533 void CFGBuilder::cleanupConstructionContext(Expr
*E
) {
1534 assert(BuildOpts
.AddRichCXXConstructors
&&
1535 "We should not be managing construction contexts!");
1536 assert(ConstructionContextMap
.count(E
) &&
1537 "Cannot exit construction context without the context!");
1538 ConstructionContextMap
.erase(E
);
1542 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
1543 /// arbitrary statement. Examples include a single expression or a function
1544 /// body (compound statement). The ownership of the returned CFG is
1545 /// transferred to the caller. If CFG construction fails, this method returns
1547 std::unique_ptr
<CFG
> CFGBuilder::buildCFG(const Decl
*D
, Stmt
*Statement
) {
1552 // Create an empty block that will serve as the exit block for the CFG. Since
1553 // this is the first block added to the CFG, it will be implicitly registered
1554 // as the exit block.
1555 Succ
= createBlock();
1556 assert(Succ
== &cfg
->getExit());
1557 Block
= nullptr; // the EXIT block is empty. Create all other blocks lazily.
1559 assert(!(BuildOpts
.AddImplicitDtors
&& BuildOpts
.AddLifetime
) &&
1560 "AddImplicitDtors and AddLifetime cannot be used at the same time");
1562 if (BuildOpts
.AddImplicitDtors
)
1563 if (const CXXDestructorDecl
*DD
= dyn_cast_or_null
<CXXDestructorDecl
>(D
))
1564 addImplicitDtorsForDestructor(DD
);
1566 // Visit the statements and create the CFG.
1567 CFGBlock
*B
= addStmt(Statement
);
1572 // For C++ constructor add initializers to CFG. Constructors of virtual bases
1573 // are ignored unless the object is of the most derived class.
1574 // class VBase { VBase() = default; VBase(int) {} };
1575 // class A : virtual public VBase { A() : VBase(0) {} };
1576 // class B : public A {};
1577 // B b; // Constructor calls in order: VBase(), A(), B().
1578 // // VBase(0) is ignored because A isn't the most derived class.
1579 // This may result in the virtual base(s) being already initialized at this
1580 // point, in which case we should jump right onto non-virtual bases and
1581 // fields. To handle this, make a CFG branch. We only need to add one such
1582 // branch per constructor, since the Standard states that all virtual bases
1583 // shall be initialized before non-virtual bases and direct data members.
1584 if (const auto *CD
= dyn_cast_or_null
<CXXConstructorDecl
>(D
)) {
1585 CFGBlock
*VBaseSucc
= nullptr;
1586 for (auto *I
: llvm::reverse(CD
->inits())) {
1587 if (BuildOpts
.AddVirtualBaseBranches
&& !VBaseSucc
&&
1588 I
->isBaseInitializer() && I
->isBaseVirtual()) {
1589 // We've reached the first virtual base init while iterating in reverse
1590 // order. Make a new block for virtual base initializers so that we
1592 VBaseSucc
= Succ
= B
? B
: &cfg
->getExit();
1593 Block
= createBlock();
1595 B
= addInitializer(I
);
1600 // Make a branch block for potentially skipping virtual base initializers.
1604 CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch
));
1605 addSuccessor(B
, Block
, true);
1612 // Backpatch the gotos whose label -> block mappings we didn't know when we
1613 // encountered them.
1614 for (BackpatchBlocksTy::iterator I
= BackpatchBlocks
.begin(),
1615 E
= BackpatchBlocks
.end(); I
!= E
; ++I
) {
1617 CFGBlock
*B
= I
->block
;
1618 if (auto *G
= dyn_cast
<GotoStmt
>(B
->getTerminator())) {
1619 LabelMapTy::iterator LI
= LabelMap
.find(G
->getLabel());
1620 // If there is no target for the goto, then we are looking at an
1621 // incomplete AST. Handle this by not registering a successor.
1622 if (LI
== LabelMap
.end())
1624 JumpTarget JT
= LI
->second
;
1625 prependAutomaticObjLifetimeWithTerminator(B
, I
->scopePosition
,
1627 prependAutomaticObjDtorsWithTerminator(B
, I
->scopePosition
,
1629 const VarDecl
*VD
= prependAutomaticObjScopeEndWithTerminator(
1630 B
, I
->scopePosition
, JT
.scopePosition
);
1631 appendScopeBegin(JT
.block
, VD
, G
);
1632 addSuccessor(B
, JT
.block
);
1634 if (auto *G
= dyn_cast
<GCCAsmStmt
>(B
->getTerminator())) {
1635 CFGBlock
*Successor
= (I
+1)->block
;
1636 for (auto *L
: G
->labels()) {
1637 LabelMapTy::iterator LI
= LabelMap
.find(L
->getLabel());
1638 // If there is no target for the goto, then we are looking at an
1639 // incomplete AST. Handle this by not registering a successor.
1640 if (LI
== LabelMap
.end())
1642 JumpTarget JT
= LI
->second
;
1643 // Successor has been added, so skip it.
1644 if (JT
.block
== Successor
)
1646 addSuccessor(B
, JT
.block
);
1652 // Add successors to the Indirect Goto Dispatch block (if we have one).
1653 if (CFGBlock
*B
= cfg
->getIndirectGotoBlock())
1654 for (LabelSetTy::iterator I
= AddressTakenLabels
.begin(),
1655 E
= AddressTakenLabels
.end(); I
!= E
; ++I
) {
1656 // Lookup the target block.
1657 LabelMapTy::iterator LI
= LabelMap
.find(*I
);
1659 // If there is no target block that contains label, then we are looking
1660 // at an incomplete AST. Handle this by not registering a successor.
1661 if (LI
== LabelMap
.end()) continue;
1663 addSuccessor(B
, LI
->second
.block
);
1666 // Create an empty entry block that has no predecessors.
1667 cfg
->setEntry(createBlock());
1669 if (BuildOpts
.AddRichCXXConstructors
)
1670 assert(ConstructionContextMap
.empty() &&
1671 "Not all construction contexts were cleaned up!");
1673 return std::move(cfg
);
1676 /// createBlock - Used to lazily create blocks that are connected
1677 /// to the current (global) successor.
1678 CFGBlock
*CFGBuilder::createBlock(bool add_successor
) {
1679 CFGBlock
*B
= cfg
->createBlock();
1680 if (add_successor
&& Succ
)
1681 addSuccessor(B
, Succ
);
1685 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1686 /// CFG. It is *not* connected to the current (global) successor, and instead
1687 /// directly tied to the exit block in order to be reachable.
1688 CFGBlock
*CFGBuilder::createNoReturnBlock() {
1689 CFGBlock
*B
= createBlock(false);
1690 B
->setHasNoReturnElement();
1691 addSuccessor(B
, &cfg
->getExit(), Succ
);
1695 /// addInitializer - Add C++ base or member initializer element to CFG.
1696 CFGBlock
*CFGBuilder::addInitializer(CXXCtorInitializer
*I
) {
1697 if (!BuildOpts
.AddInitializers
)
1700 bool HasTemporaries
= false;
1702 // Destructors of temporaries in initialization expression should be called
1703 // after initialization finishes.
1704 Expr
*Init
= I
->getInit();
1706 HasTemporaries
= isa
<ExprWithCleanups
>(Init
);
1708 if (BuildOpts
.AddTemporaryDtors
&& HasTemporaries
) {
1709 // Generate destructors for temporaries in initialization expression.
1710 TempDtorContext Context
;
1711 VisitForTemporaryDtors(cast
<ExprWithCleanups
>(Init
)->getSubExpr(),
1712 /*ExternallyDestructed=*/false, Context
);
1717 appendInitializer(Block
, I
);
1720 // If the initializer is an ArrayInitLoopExpr, we want to extract the
1721 // initializer, that's used for each element.
1722 auto *AILEInit
= extractElementInitializerFromNestedAILE(
1723 dyn_cast
<ArrayInitLoopExpr
>(Init
));
1725 findConstructionContexts(
1726 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), I
),
1727 AILEInit
? AILEInit
: Init
);
1729 if (HasTemporaries
) {
1730 // For expression with temporaries go directly to subexpression to omit
1731 // generating destructors for the second time.
1732 return Visit(cast
<ExprWithCleanups
>(Init
)->getSubExpr());
1734 if (BuildOpts
.AddCXXDefaultInitExprInCtors
) {
1735 if (CXXDefaultInitExpr
*Default
= dyn_cast
<CXXDefaultInitExpr
>(Init
)) {
1736 // In general, appending the expression wrapped by a CXXDefaultInitExpr
1737 // may cause the same Expr to appear more than once in the CFG. Doing it
1738 // here is safe because there's only one initializer per field.
1740 appendStmt(Block
, Default
);
1741 if (Stmt
*Child
= Default
->getExpr())
1742 if (CFGBlock
*R
= Visit(Child
))
1753 /// Retrieve the type of the temporary object whose lifetime was
1754 /// extended by a local reference with the given initializer.
1755 static QualType
getReferenceInitTemporaryType(const Expr
*Init
,
1756 bool *FoundMTE
= nullptr) {
1758 // Skip parentheses.
1759 Init
= Init
->IgnoreParens();
1761 // Skip through cleanups.
1762 if (const ExprWithCleanups
*EWC
= dyn_cast
<ExprWithCleanups
>(Init
)) {
1763 Init
= EWC
->getSubExpr();
1767 // Skip through the temporary-materialization expression.
1768 if (const MaterializeTemporaryExpr
*MTE
1769 = dyn_cast
<MaterializeTemporaryExpr
>(Init
)) {
1770 Init
= MTE
->getSubExpr();
1776 // Skip sub-object accesses into rvalues.
1777 SmallVector
<const Expr
*, 2> CommaLHSs
;
1778 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
1779 const Expr
*SkippedInit
=
1780 Init
->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
);
1781 if (SkippedInit
!= Init
) {
1789 return Init
->getType();
1792 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1793 // ended by ReturnStmt, GotoStmt or ThrowExpr.
1794 void CFGBuilder::addLoopExit(const Stmt
*LoopStmt
){
1795 if(!BuildOpts
.AddLoopExit
)
1798 appendLoopExit(Block
, LoopStmt
);
1801 void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B
,
1802 LocalScope::const_iterator E
, Stmt
*S
) {
1803 if (!BuildOpts
.AddScopes
)
1809 // To go from B to E, one first goes up the scopes from B to P
1810 // then sideways in one scope from P to P' and then down
1811 // the scopes from P' to E.
1812 // The lifetime of all objects between B and P end.
1813 LocalScope::const_iterator P
= B
.shared_parent(E
);
1814 int Dist
= B
.distance(P
);
1818 for (LocalScope::const_iterator I
= B
; I
!= P
; ++I
)
1819 if (I
.pointsToFirstDeclaredVar())
1820 DeclsWithEndedScope
.insert(*I
);
1823 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B
,
1824 LocalScope::const_iterator E
,
1826 getDeclsWithEndedScope(B
, E
, S
);
1827 if (BuildOpts
.AddScopes
)
1828 addScopesEnd(B
, E
, S
);
1829 if (BuildOpts
.AddImplicitDtors
)
1830 addAutomaticObjDtors(B
, E
, S
);
1831 if (BuildOpts
.AddLifetime
)
1832 addLifetimeEnds(B
, E
, S
);
1835 /// Add to current block automatic objects that leave the scope.
1836 void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B
,
1837 LocalScope::const_iterator E
, Stmt
*S
) {
1838 if (!BuildOpts
.AddLifetime
)
1844 // To go from B to E, one first goes up the scopes from B to P
1845 // then sideways in one scope from P to P' and then down
1846 // the scopes from P' to E.
1847 // The lifetime of all objects between B and P end.
1848 LocalScope::const_iterator P
= B
.shared_parent(E
);
1849 int dist
= B
.distance(P
);
1853 // We need to perform the scope leaving in reverse order
1854 SmallVector
<VarDecl
*, 10> DeclsTrivial
;
1855 SmallVector
<VarDecl
*, 10> DeclsNonTrivial
;
1856 DeclsTrivial
.reserve(dist
);
1857 DeclsNonTrivial
.reserve(dist
);
1859 for (LocalScope::const_iterator I
= B
; I
!= P
; ++I
)
1860 if (hasTrivialDestructor(*I
))
1861 DeclsTrivial
.push_back(*I
);
1863 DeclsNonTrivial
.push_back(*I
);
1866 // object with trivial destructor end their lifetime last (when storage
1868 for (VarDecl
*VD
: llvm::reverse(DeclsTrivial
))
1869 appendLifetimeEnds(Block
, VD
, S
);
1871 for (VarDecl
*VD
: llvm::reverse(DeclsNonTrivial
))
1872 appendLifetimeEnds(Block
, VD
, S
);
1875 /// Add to current block markers for ending scopes.
1876 void CFGBuilder::addScopesEnd(LocalScope::const_iterator B
,
1877 LocalScope::const_iterator E
, Stmt
*S
) {
1878 // If implicit destructors are enabled, we'll add scope ends in
1879 // addAutomaticObjDtors.
1880 if (BuildOpts
.AddImplicitDtors
)
1885 for (VarDecl
*VD
: llvm::reverse(DeclsWithEndedScope
))
1886 appendScopeEnd(Block
, VD
, S
);
1889 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1890 /// for objects in range of local scope positions. Use S as trigger statement
1891 /// for destructors.
1892 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B
,
1893 LocalScope::const_iterator E
, Stmt
*S
) {
1894 if (!BuildOpts
.AddImplicitDtors
)
1900 // We need to append the destructors in reverse order, but any one of them
1901 // may be a no-return destructor which changes the CFG. As a result, buffer
1902 // this sequence up and replay them in reverse order when appending onto the
1904 SmallVector
<VarDecl
*, 10> Decls
;
1905 Decls
.reserve(B
.distance(E
));
1906 for (LocalScope::const_iterator I
= B
; I
!= E
; ++I
)
1907 Decls
.push_back(*I
);
1909 for (VarDecl
*VD
: llvm::reverse(Decls
)) {
1910 if (hasTrivialDestructor(VD
)) {
1911 // If AddScopes is enabled and *I is a first variable in a scope, add a
1912 // ScopeEnd marker in a Block.
1913 if (BuildOpts
.AddScopes
&& DeclsWithEndedScope
.count(VD
)) {
1915 appendScopeEnd(Block
, VD
, S
);
1919 // If this destructor is marked as a no-return destructor, we need to
1920 // create a new block for the destructor which does not have as a successor
1921 // anything built thus far: control won't flow out of this block.
1922 QualType Ty
= VD
->getType();
1923 if (Ty
->isReferenceType()) {
1924 Ty
= getReferenceInitTemporaryType(VD
->getInit());
1926 Ty
= Context
->getBaseElementType(Ty
);
1928 if (Ty
->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1929 Block
= createNoReturnBlock();
1933 // Add ScopeEnd just after automatic obj destructor.
1934 if (BuildOpts
.AddScopes
&& DeclsWithEndedScope
.count(VD
))
1935 appendScopeEnd(Block
, VD
, S
);
1936 appendAutomaticObjDtor(Block
, VD
, S
);
1940 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1941 /// base and member objects in destructor.
1942 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl
*DD
) {
1943 assert(BuildOpts
.AddImplicitDtors
&&
1944 "Can be called only when dtors should be added");
1945 const CXXRecordDecl
*RD
= DD
->getParent();
1947 // At the end destroy virtual base objects.
1948 for (const auto &VI
: RD
->vbases()) {
1949 // TODO: Add a VirtualBaseBranch to see if the most derived class
1950 // (which is different from the current class) is responsible for
1952 const CXXRecordDecl
*CD
= VI
.getType()->getAsCXXRecordDecl();
1953 if (CD
&& !CD
->hasTrivialDestructor()) {
1955 appendBaseDtor(Block
, &VI
);
1959 // Before virtual bases destroy direct base objects.
1960 for (const auto &BI
: RD
->bases()) {
1961 if (!BI
.isVirtual()) {
1962 const CXXRecordDecl
*CD
= BI
.getType()->getAsCXXRecordDecl();
1963 if (CD
&& !CD
->hasTrivialDestructor()) {
1965 appendBaseDtor(Block
, &BI
);
1970 // First destroy member objects.
1971 for (auto *FI
: RD
->fields()) {
1972 // Check for constant size array. Set type to array element type.
1973 QualType QT
= FI
->getType();
1974 // It may be a multidimensional array.
1975 while (const ConstantArrayType
*AT
= Context
->getAsConstantArrayType(QT
)) {
1976 if (AT
->getSize() == 0)
1978 QT
= AT
->getElementType();
1981 if (const CXXRecordDecl
*CD
= QT
->getAsCXXRecordDecl())
1982 if (!CD
->hasTrivialDestructor()) {
1984 appendMemberDtor(Block
, FI
);
1989 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1990 /// way return valid LocalScope object.
1991 LocalScope
* CFGBuilder::createOrReuseLocalScope(LocalScope
* Scope
) {
1994 llvm::BumpPtrAllocator
&alloc
= cfg
->getAllocator();
1995 return new (alloc
.Allocate
<LocalScope
>())
1996 LocalScope(BumpVectorContext(alloc
), ScopePos
);
1999 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
2000 /// that should create implicit scope (e.g. if/else substatements).
2001 void CFGBuilder::addLocalScopeForStmt(Stmt
*S
) {
2002 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
2003 !BuildOpts
.AddScopes
)
2006 LocalScope
*Scope
= nullptr;
2008 // For compound statement we will be creating explicit scope.
2009 if (CompoundStmt
*CS
= dyn_cast
<CompoundStmt
>(S
)) {
2010 for (auto *BI
: CS
->body()) {
2011 Stmt
*SI
= BI
->stripLabelLikeStatements();
2012 if (DeclStmt
*DS
= dyn_cast
<DeclStmt
>(SI
))
2013 Scope
= addLocalScopeForDeclStmt(DS
, Scope
);
2018 // For any other statement scope will be implicit and as such will be
2019 // interesting only for DeclStmt.
2020 if (DeclStmt
*DS
= dyn_cast
<DeclStmt
>(S
->stripLabelLikeStatements()))
2021 addLocalScopeForDeclStmt(DS
);
2024 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
2025 /// reuse Scope if not NULL.
2026 LocalScope
* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt
*DS
,
2027 LocalScope
* Scope
) {
2028 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
2029 !BuildOpts
.AddScopes
)
2032 for (auto *DI
: DS
->decls())
2033 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(DI
))
2034 Scope
= addLocalScopeForVarDecl(VD
, Scope
);
2038 bool CFGBuilder::hasTrivialDestructor(VarDecl
*VD
) {
2039 // Check for const references bound to temporary. Set type to pointee.
2040 QualType QT
= VD
->getType();
2041 if (QT
->isReferenceType()) {
2042 // Attempt to determine whether this declaration lifetime-extends a
2045 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
2046 // temporaries, and a single declaration can extend multiple temporaries.
2047 // We should look at the storage duration on each nested
2048 // MaterializeTemporaryExpr instead.
2050 const Expr
*Init
= VD
->getInit();
2052 // Probably an exception catch-by-reference variable.
2053 // FIXME: It doesn't really mean that the object has a trivial destructor.
2054 // Also are there other cases?
2058 // Lifetime-extending a temporary?
2059 bool FoundMTE
= false;
2060 QT
= getReferenceInitTemporaryType(Init
, &FoundMTE
);
2065 // Check for constant size array. Set type to array element type.
2066 while (const ConstantArrayType
*AT
= Context
->getAsConstantArrayType(QT
)) {
2067 if (AT
->getSize() == 0)
2069 QT
= AT
->getElementType();
2072 // Check if type is a C++ class with non-trivial destructor.
2073 if (const CXXRecordDecl
*CD
= QT
->getAsCXXRecordDecl())
2074 return !CD
->hasDefinition() || CD
->hasTrivialDestructor();
2078 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2079 /// create add scope for automatic objects and temporary objects bound to
2080 /// const reference. Will reuse Scope if not NULL.
2081 LocalScope
* CFGBuilder::addLocalScopeForVarDecl(VarDecl
*VD
,
2082 LocalScope
* Scope
) {
2083 assert(!(BuildOpts
.AddImplicitDtors
&& BuildOpts
.AddLifetime
) &&
2084 "AddImplicitDtors and AddLifetime cannot be used at the same time");
2085 if (!BuildOpts
.AddImplicitDtors
&& !BuildOpts
.AddLifetime
&&
2086 !BuildOpts
.AddScopes
)
2089 // Check if variable is local.
2090 if (!VD
->hasLocalStorage())
2093 if (BuildOpts
.AddImplicitDtors
) {
2094 if (!hasTrivialDestructor(VD
) || BuildOpts
.AddScopes
) {
2095 // Add the variable to scope
2096 Scope
= createOrReuseLocalScope(Scope
);
2098 ScopePos
= Scope
->begin();
2103 assert(BuildOpts
.AddLifetime
);
2104 // Add the variable to scope
2105 Scope
= createOrReuseLocalScope(Scope
);
2107 ScopePos
= Scope
->begin();
2111 /// addLocalScopeAndDtors - For given statement add local scope for it and
2112 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
2113 void CFGBuilder::addLocalScopeAndDtors(Stmt
*S
) {
2114 LocalScope::const_iterator scopeBeginPos
= ScopePos
;
2115 addLocalScopeForStmt(S
);
2116 addAutomaticObjHandling(ScopePos
, scopeBeginPos
, S
);
2119 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
2120 /// variables with automatic storage duration to CFGBlock's elements vector.
2121 /// Elements will be prepended to physical beginning of the vector which
2122 /// happens to be logical end. Use blocks terminator as statement that specifies
2123 /// destructors call site.
2124 /// FIXME: This mechanism for adding automatic destructors doesn't handle
2125 /// no-return destructors properly.
2126 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock
*Blk
,
2127 LocalScope::const_iterator B
, LocalScope::const_iterator E
) {
2128 if (!BuildOpts
.AddImplicitDtors
)
2130 BumpVectorContext
&C
= cfg
->getBumpVectorContext();
2131 CFGBlock::iterator InsertPos
2132 = Blk
->beginAutomaticObjDtorsInsert(Blk
->end(), B
.distance(E
), C
);
2133 for (LocalScope::const_iterator I
= B
; I
!= E
; ++I
)
2134 InsertPos
= Blk
->insertAutomaticObjDtor(InsertPos
, *I
,
2135 Blk
->getTerminatorStmt());
2138 /// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
2139 /// variables with automatic storage duration to CFGBlock's elements vector.
2140 /// Elements will be prepended to physical beginning of the vector which
2141 /// happens to be logical end. Use blocks terminator as statement that specifies
2142 /// where lifetime ends.
2143 void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
2144 CFGBlock
*Blk
, LocalScope::const_iterator B
, LocalScope::const_iterator E
) {
2145 if (!BuildOpts
.AddLifetime
)
2147 BumpVectorContext
&C
= cfg
->getBumpVectorContext();
2148 CFGBlock::iterator InsertPos
=
2149 Blk
->beginLifetimeEndsInsert(Blk
->end(), B
.distance(E
), C
);
2150 for (LocalScope::const_iterator I
= B
; I
!= E
; ++I
) {
2152 Blk
->insertLifetimeEnds(InsertPos
, *I
, Blk
->getTerminatorStmt());
2156 /// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
2157 /// variables with automatic storage duration to CFGBlock's elements vector.
2158 /// Elements will be prepended to physical beginning of the vector which
2159 /// happens to be logical end. Use blocks terminator as statement that specifies
2160 /// where scope ends.
2162 CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
2163 CFGBlock
*Blk
, LocalScope::const_iterator B
, LocalScope::const_iterator E
) {
2164 if (!BuildOpts
.AddScopes
)
2166 BumpVectorContext
&C
= cfg
->getBumpVectorContext();
2167 CFGBlock::iterator InsertPos
=
2168 Blk
->beginScopeEndInsert(Blk
->end(), 1, C
);
2169 LocalScope::const_iterator PlaceToInsert
= B
;
2170 for (LocalScope::const_iterator I
= B
; I
!= E
; ++I
)
2172 Blk
->insertScopeEnd(InsertPos
, *PlaceToInsert
, Blk
->getTerminatorStmt());
2173 return *PlaceToInsert
;
2176 /// Visit - Walk the subtree of a statement and add extra
2177 /// blocks for ternary operators, &&, and ||. We also process "," and
2178 /// DeclStmts (which may contain nested control-flow).
2179 CFGBlock
*CFGBuilder::Visit(Stmt
* S
, AddStmtChoice asc
,
2180 bool ExternallyDestructed
) {
2186 if (Expr
*E
= dyn_cast
<Expr
>(S
))
2187 S
= E
->IgnoreParens();
2189 if (Context
->getLangOpts().OpenMP
)
2190 if (auto *D
= dyn_cast
<OMPExecutableDirective
>(S
))
2191 return VisitOMPExecutableDirective(D
, asc
);
2193 switch (S
->getStmtClass()) {
2195 return VisitStmt(S
, asc
);
2197 case Stmt::ImplicitValueInitExprClass
:
2198 if (BuildOpts
.OmitImplicitValueInitializers
)
2200 return VisitStmt(S
, asc
);
2202 case Stmt::InitListExprClass
:
2203 return VisitInitListExpr(cast
<InitListExpr
>(S
), asc
);
2205 case Stmt::AttributedStmtClass
:
2206 return VisitAttributedStmt(cast
<AttributedStmt
>(S
), asc
);
2208 case Stmt::AddrLabelExprClass
:
2209 return VisitAddrLabelExpr(cast
<AddrLabelExpr
>(S
), asc
);
2211 case Stmt::BinaryConditionalOperatorClass
:
2212 return VisitConditionalOperator(cast
<BinaryConditionalOperator
>(S
), asc
);
2214 case Stmt::BinaryOperatorClass
:
2215 return VisitBinaryOperator(cast
<BinaryOperator
>(S
), asc
);
2217 case Stmt::BlockExprClass
:
2218 return VisitBlockExpr(cast
<BlockExpr
>(S
), asc
);
2220 case Stmt::BreakStmtClass
:
2221 return VisitBreakStmt(cast
<BreakStmt
>(S
));
2223 case Stmt::CallExprClass
:
2224 case Stmt::CXXOperatorCallExprClass
:
2225 case Stmt::CXXMemberCallExprClass
:
2226 case Stmt::UserDefinedLiteralClass
:
2227 return VisitCallExpr(cast
<CallExpr
>(S
), asc
);
2229 case Stmt::CaseStmtClass
:
2230 return VisitCaseStmt(cast
<CaseStmt
>(S
));
2232 case Stmt::ChooseExprClass
:
2233 return VisitChooseExpr(cast
<ChooseExpr
>(S
), asc
);
2235 case Stmt::CompoundStmtClass
:
2236 return VisitCompoundStmt(cast
<CompoundStmt
>(S
), ExternallyDestructed
);
2238 case Stmt::ConditionalOperatorClass
:
2239 return VisitConditionalOperator(cast
<ConditionalOperator
>(S
), asc
);
2241 case Stmt::ContinueStmtClass
:
2242 return VisitContinueStmt(cast
<ContinueStmt
>(S
));
2244 case Stmt::CXXCatchStmtClass
:
2245 return VisitCXXCatchStmt(cast
<CXXCatchStmt
>(S
));
2247 case Stmt::ExprWithCleanupsClass
:
2248 return VisitExprWithCleanups(cast
<ExprWithCleanups
>(S
),
2249 asc
, ExternallyDestructed
);
2251 case Stmt::CXXDefaultArgExprClass
:
2252 case Stmt::CXXDefaultInitExprClass
:
2253 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2254 // called function's declaration, not by the caller. If we simply add
2255 // this expression to the CFG, we could end up with the same Expr
2256 // appearing multiple times.
2257 // PR13385 / <rdar://problem/12156507>
2259 // It's likewise possible for multiple CXXDefaultInitExprs for the same
2260 // expression to be used in the same function (through aggregate
2262 return VisitStmt(S
, asc
);
2264 case Stmt::CXXBindTemporaryExprClass
:
2265 return VisitCXXBindTemporaryExpr(cast
<CXXBindTemporaryExpr
>(S
), asc
);
2267 case Stmt::CXXConstructExprClass
:
2268 return VisitCXXConstructExpr(cast
<CXXConstructExpr
>(S
), asc
);
2270 case Stmt::CXXNewExprClass
:
2271 return VisitCXXNewExpr(cast
<CXXNewExpr
>(S
), asc
);
2273 case Stmt::CXXDeleteExprClass
:
2274 return VisitCXXDeleteExpr(cast
<CXXDeleteExpr
>(S
), asc
);
2276 case Stmt::CXXFunctionalCastExprClass
:
2277 return VisitCXXFunctionalCastExpr(cast
<CXXFunctionalCastExpr
>(S
), asc
);
2279 case Stmt::CXXTemporaryObjectExprClass
:
2280 return VisitCXXTemporaryObjectExpr(cast
<CXXTemporaryObjectExpr
>(S
), asc
);
2282 case Stmt::CXXThrowExprClass
:
2283 return VisitCXXThrowExpr(cast
<CXXThrowExpr
>(S
));
2285 case Stmt::CXXTryStmtClass
:
2286 return VisitCXXTryStmt(cast
<CXXTryStmt
>(S
));
2288 case Stmt::CXXTypeidExprClass
:
2289 return VisitCXXTypeidExpr(cast
<CXXTypeidExpr
>(S
), asc
);
2291 case Stmt::CXXForRangeStmtClass
:
2292 return VisitCXXForRangeStmt(cast
<CXXForRangeStmt
>(S
));
2294 case Stmt::DeclStmtClass
:
2295 return VisitDeclStmt(cast
<DeclStmt
>(S
));
2297 case Stmt::DefaultStmtClass
:
2298 return VisitDefaultStmt(cast
<DefaultStmt
>(S
));
2300 case Stmt::DoStmtClass
:
2301 return VisitDoStmt(cast
<DoStmt
>(S
));
2303 case Stmt::ForStmtClass
:
2304 return VisitForStmt(cast
<ForStmt
>(S
));
2306 case Stmt::GotoStmtClass
:
2307 return VisitGotoStmt(cast
<GotoStmt
>(S
));
2309 case Stmt::GCCAsmStmtClass
:
2310 return VisitGCCAsmStmt(cast
<GCCAsmStmt
>(S
), asc
);
2312 case Stmt::IfStmtClass
:
2313 return VisitIfStmt(cast
<IfStmt
>(S
));
2315 case Stmt::ImplicitCastExprClass
:
2316 return VisitImplicitCastExpr(cast
<ImplicitCastExpr
>(S
), asc
);
2318 case Stmt::ConstantExprClass
:
2319 return VisitConstantExpr(cast
<ConstantExpr
>(S
), asc
);
2321 case Stmt::IndirectGotoStmtClass
:
2322 return VisitIndirectGotoStmt(cast
<IndirectGotoStmt
>(S
));
2324 case Stmt::LabelStmtClass
:
2325 return VisitLabelStmt(cast
<LabelStmt
>(S
));
2327 case Stmt::LambdaExprClass
:
2328 return VisitLambdaExpr(cast
<LambdaExpr
>(S
), asc
);
2330 case Stmt::MaterializeTemporaryExprClass
:
2331 return VisitMaterializeTemporaryExpr(cast
<MaterializeTemporaryExpr
>(S
),
2334 case Stmt::MemberExprClass
:
2335 return VisitMemberExpr(cast
<MemberExpr
>(S
), asc
);
2337 case Stmt::NullStmtClass
:
2340 case Stmt::ObjCAtCatchStmtClass
:
2341 return VisitObjCAtCatchStmt(cast
<ObjCAtCatchStmt
>(S
));
2343 case Stmt::ObjCAutoreleasePoolStmtClass
:
2344 return VisitObjCAutoreleasePoolStmt(cast
<ObjCAutoreleasePoolStmt
>(S
));
2346 case Stmt::ObjCAtSynchronizedStmtClass
:
2347 return VisitObjCAtSynchronizedStmt(cast
<ObjCAtSynchronizedStmt
>(S
));
2349 case Stmt::ObjCAtThrowStmtClass
:
2350 return VisitObjCAtThrowStmt(cast
<ObjCAtThrowStmt
>(S
));
2352 case Stmt::ObjCAtTryStmtClass
:
2353 return VisitObjCAtTryStmt(cast
<ObjCAtTryStmt
>(S
));
2355 case Stmt::ObjCForCollectionStmtClass
:
2356 return VisitObjCForCollectionStmt(cast
<ObjCForCollectionStmt
>(S
));
2358 case Stmt::ObjCMessageExprClass
:
2359 return VisitObjCMessageExpr(cast
<ObjCMessageExpr
>(S
), asc
);
2361 case Stmt::OpaqueValueExprClass
:
2364 case Stmt::PseudoObjectExprClass
:
2365 return VisitPseudoObjectExpr(cast
<PseudoObjectExpr
>(S
));
2367 case Stmt::ReturnStmtClass
:
2368 case Stmt::CoreturnStmtClass
:
2369 return VisitReturnStmt(S
);
2371 case Stmt::CoyieldExprClass
:
2372 case Stmt::CoawaitExprClass
:
2373 return VisitCoroutineSuspendExpr(cast
<CoroutineSuspendExpr
>(S
), asc
);
2375 case Stmt::SEHExceptStmtClass
:
2376 return VisitSEHExceptStmt(cast
<SEHExceptStmt
>(S
));
2378 case Stmt::SEHFinallyStmtClass
:
2379 return VisitSEHFinallyStmt(cast
<SEHFinallyStmt
>(S
));
2381 case Stmt::SEHLeaveStmtClass
:
2382 return VisitSEHLeaveStmt(cast
<SEHLeaveStmt
>(S
));
2384 case Stmt::SEHTryStmtClass
:
2385 return VisitSEHTryStmt(cast
<SEHTryStmt
>(S
));
2387 case Stmt::UnaryExprOrTypeTraitExprClass
:
2388 return VisitUnaryExprOrTypeTraitExpr(cast
<UnaryExprOrTypeTraitExpr
>(S
),
2391 case Stmt::StmtExprClass
:
2392 return VisitStmtExpr(cast
<StmtExpr
>(S
), asc
);
2394 case Stmt::SwitchStmtClass
:
2395 return VisitSwitchStmt(cast
<SwitchStmt
>(S
));
2397 case Stmt::UnaryOperatorClass
:
2398 return VisitUnaryOperator(cast
<UnaryOperator
>(S
), asc
);
2400 case Stmt::WhileStmtClass
:
2401 return VisitWhileStmt(cast
<WhileStmt
>(S
));
2403 case Stmt::ArrayInitLoopExprClass
:
2404 return VisitArrayInitLoopExpr(cast
<ArrayInitLoopExpr
>(S
), asc
);
2408 CFGBlock
*CFGBuilder::VisitStmt(Stmt
*S
, AddStmtChoice asc
) {
2409 if (asc
.alwaysAdd(*this, S
)) {
2411 appendStmt(Block
, S
);
2414 return VisitChildren(S
);
2417 /// VisitChildren - Visit the children of a Stmt.
2418 CFGBlock
*CFGBuilder::VisitChildren(Stmt
*S
) {
2419 CFGBlock
*B
= Block
;
2421 // Visit the children in their reverse order so that they appear in
2422 // left-to-right (natural) order in the CFG.
2423 reverse_children
RChildren(S
);
2424 for (Stmt
*Child
: RChildren
) {
2426 if (CFGBlock
*R
= Visit(Child
))
2432 CFGBlock
*CFGBuilder::VisitInitListExpr(InitListExpr
*ILE
, AddStmtChoice asc
) {
2433 if (asc
.alwaysAdd(*this, ILE
)) {
2435 appendStmt(Block
, ILE
);
2437 CFGBlock
*B
= Block
;
2439 reverse_children
RChildren(ILE
);
2440 for (Stmt
*Child
: RChildren
) {
2443 if (CFGBlock
*R
= Visit(Child
))
2445 if (BuildOpts
.AddCXXDefaultInitExprInAggregates
) {
2446 if (auto *DIE
= dyn_cast
<CXXDefaultInitExpr
>(Child
))
2447 if (Stmt
*Child
= DIE
->getExpr())
2448 if (CFGBlock
*R
= Visit(Child
))
2455 CFGBlock
*CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr
*A
,
2456 AddStmtChoice asc
) {
2457 AddressTakenLabels
.insert(A
->getLabel());
2459 if (asc
.alwaysAdd(*this, A
)) {
2461 appendStmt(Block
, A
);
2467 static bool isFallthroughStatement(const AttributedStmt
*A
) {
2468 bool isFallthrough
= hasSpecificAttr
<FallThroughAttr
>(A
->getAttrs());
2469 assert((!isFallthrough
|| isa
<NullStmt
>(A
->getSubStmt())) &&
2470 "expected fallthrough not to have children");
2471 return isFallthrough
;
2474 CFGBlock
*CFGBuilder::VisitAttributedStmt(AttributedStmt
*A
,
2475 AddStmtChoice asc
) {
2476 // AttributedStmts for [[likely]] can have arbitrary statements as children,
2477 // and the current visitation order here would add the AttributedStmts
2478 // for [[likely]] after the child nodes, which is undesirable: For example,
2479 // if the child contains an unconditional return, the [[likely]] would be
2480 // considered unreachable.
2481 // So only add the AttributedStmt for FallThrough, which has CFG effects and
2482 // also no children, and omit the others. None of the other current StmtAttrs
2483 // have semantic meaning for the CFG.
2484 if (isFallthroughStatement(A
) && asc
.alwaysAdd(*this, A
)) {
2486 appendStmt(Block
, A
);
2489 return VisitChildren(A
);
2492 CFGBlock
*CFGBuilder::VisitUnaryOperator(UnaryOperator
*U
, AddStmtChoice asc
) {
2493 if (asc
.alwaysAdd(*this, U
)) {
2495 appendStmt(Block
, U
);
2498 if (U
->getOpcode() == UO_LNot
)
2499 tryEvaluateBool(U
->getSubExpr()->IgnoreParens());
2501 return Visit(U
->getSubExpr(), AddStmtChoice());
2504 CFGBlock
*CFGBuilder::VisitLogicalOperator(BinaryOperator
*B
) {
2505 CFGBlock
*ConfluenceBlock
= Block
? Block
: createBlock();
2506 appendStmt(ConfluenceBlock
, B
);
2511 return VisitLogicalOperator(B
, nullptr, ConfluenceBlock
,
2512 ConfluenceBlock
).first
;
2515 std::pair
<CFGBlock
*, CFGBlock
*>
2516 CFGBuilder::VisitLogicalOperator(BinaryOperator
*B
,
2518 CFGBlock
*TrueBlock
,
2519 CFGBlock
*FalseBlock
) {
2520 // Introspect the RHS. If it is a nested logical operation, we recursively
2521 // build the CFG using this function. Otherwise, resort to default
2522 // CFG construction behavior.
2523 Expr
*RHS
= B
->getRHS()->IgnoreParens();
2524 CFGBlock
*RHSBlock
, *ExitBlock
;
2527 if (BinaryOperator
*B_RHS
= dyn_cast
<BinaryOperator
>(RHS
))
2528 if (B_RHS
->isLogicalOp()) {
2529 std::tie(RHSBlock
, ExitBlock
) =
2530 VisitLogicalOperator(B_RHS
, Term
, TrueBlock
, FalseBlock
);
2534 // The RHS is not a nested logical operation. Don't push the terminator
2535 // down further, but instead visit RHS and construct the respective
2536 // pieces of the CFG, and link up the RHSBlock with the terminator
2537 // we have been provided.
2538 ExitBlock
= RHSBlock
= createBlock(false);
2540 // Even though KnownVal is only used in the else branch of the next
2541 // conditional, tryEvaluateBool performs additional checking on the
2542 // Expr, so it should be called unconditionally.
2543 TryResult KnownVal
= tryEvaluateBool(RHS
);
2544 if (!KnownVal
.isKnown())
2545 KnownVal
= tryEvaluateBool(B
);
2548 assert(TrueBlock
== FalseBlock
);
2549 addSuccessor(RHSBlock
, TrueBlock
);
2552 RHSBlock
->setTerminator(Term
);
2553 addSuccessor(RHSBlock
, TrueBlock
, !KnownVal
.isFalse());
2554 addSuccessor(RHSBlock
, FalseBlock
, !KnownVal
.isTrue());
2558 RHSBlock
= addStmt(RHS
);
2563 return std::make_pair(nullptr, nullptr);
2565 // Generate the blocks for evaluating the LHS.
2566 Expr
*LHS
= B
->getLHS()->IgnoreParens();
2568 if (BinaryOperator
*B_LHS
= dyn_cast
<BinaryOperator
>(LHS
))
2569 if (B_LHS
->isLogicalOp()) {
2570 if (B
->getOpcode() == BO_LOr
)
2571 FalseBlock
= RHSBlock
;
2573 TrueBlock
= RHSBlock
;
2575 // For the LHS, treat 'B' as the terminator that we want to sink
2576 // into the nested branch. The RHS always gets the top-most
2578 return VisitLogicalOperator(B_LHS
, B
, TrueBlock
, FalseBlock
);
2581 // Create the block evaluating the LHS.
2582 // This contains the '&&' or '||' as the terminator.
2583 CFGBlock
*LHSBlock
= createBlock(false);
2584 LHSBlock
->setTerminator(B
);
2587 CFGBlock
*EntryLHSBlock
= addStmt(LHS
);
2590 return std::make_pair(nullptr, nullptr);
2592 // See if this is a known constant.
2593 TryResult KnownVal
= tryEvaluateBool(LHS
);
2595 // Now link the LHSBlock with RHSBlock.
2596 if (B
->getOpcode() == BO_LOr
) {
2597 addSuccessor(LHSBlock
, TrueBlock
, !KnownVal
.isFalse());
2598 addSuccessor(LHSBlock
, RHSBlock
, !KnownVal
.isTrue());
2600 assert(B
->getOpcode() == BO_LAnd
);
2601 addSuccessor(LHSBlock
, RHSBlock
, !KnownVal
.isFalse());
2602 addSuccessor(LHSBlock
, FalseBlock
, !KnownVal
.isTrue());
2605 return std::make_pair(EntryLHSBlock
, ExitBlock
);
2608 CFGBlock
*CFGBuilder::VisitBinaryOperator(BinaryOperator
*B
,
2609 AddStmtChoice asc
) {
2611 if (B
->isLogicalOp())
2612 return VisitLogicalOperator(B
);
2614 if (B
->getOpcode() == BO_Comma
) { // ,
2616 appendStmt(Block
, B
);
2617 addStmt(B
->getRHS());
2618 return addStmt(B
->getLHS());
2621 if (B
->isAssignmentOp()) {
2622 if (asc
.alwaysAdd(*this, B
)) {
2624 appendStmt(Block
, B
);
2627 return Visit(B
->getRHS());
2630 if (asc
.alwaysAdd(*this, B
)) {
2632 appendStmt(Block
, B
);
2635 if (B
->isEqualityOp() || B
->isRelationalOp())
2638 CFGBlock
*RBlock
= Visit(B
->getRHS());
2639 CFGBlock
*LBlock
= Visit(B
->getLHS());
2640 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2641 // containing a DoStmt, and the LHS doesn't create a new block, then we should
2642 // return RBlock. Otherwise we'll incorrectly return NULL.
2643 return (LBlock
? LBlock
: RBlock
);
2646 CFGBlock
*CFGBuilder::VisitNoRecurse(Expr
*E
, AddStmtChoice asc
) {
2647 if (asc
.alwaysAdd(*this, E
)) {
2649 appendStmt(Block
, E
);
2654 CFGBlock
*CFGBuilder::VisitBreakStmt(BreakStmt
*B
) {
2655 // "break" is a control-flow statement. Thus we stop processing the current
2660 // Now create a new block that ends with the break statement.
2661 Block
= createBlock(false);
2662 Block
->setTerminator(B
);
2664 // If there is no target for the break, then we are looking at an incomplete
2665 // AST. This means that the CFG cannot be constructed.
2666 if (BreakJumpTarget
.block
) {
2667 addAutomaticObjHandling(ScopePos
, BreakJumpTarget
.scopePosition
, B
);
2668 addSuccessor(Block
, BreakJumpTarget
.block
);
2675 static bool CanThrow(Expr
*E
, ASTContext
&Ctx
) {
2676 QualType Ty
= E
->getType();
2677 if (Ty
->isFunctionPointerType() || Ty
->isBlockPointerType())
2678 Ty
= Ty
->getPointeeType();
2680 const FunctionType
*FT
= Ty
->getAs
<FunctionType
>();
2682 if (const FunctionProtoType
*Proto
= dyn_cast
<FunctionProtoType
>(FT
))
2683 if (!isUnresolvedExceptionSpec(Proto
->getExceptionSpecType()) &&
2690 CFGBlock
*CFGBuilder::VisitCallExpr(CallExpr
*C
, AddStmtChoice asc
) {
2691 // Compute the callee type.
2692 QualType calleeType
= C
->getCallee()->getType();
2693 if (calleeType
== Context
->BoundMemberTy
) {
2694 QualType boundType
= Expr::findBoundMemberType(C
->getCallee());
2696 // We should only get a null bound type if processing a dependent
2697 // CFG. Recover by assuming nothing.
2698 if (!boundType
.isNull()) calleeType
= boundType
;
2701 // If this is a call to a no-return function, this stops the block here.
2702 bool NoReturn
= getFunctionExtInfo(*calleeType
).getNoReturn();
2704 bool AddEHEdge
= false;
2706 // Languages without exceptions are assumed to not throw.
2707 if (Context
->getLangOpts().Exceptions
) {
2708 if (BuildOpts
.AddEHEdges
)
2712 // If this is a call to a builtin function, it might not actually evaluate
2713 // its arguments. Don't add them to the CFG if this is the case.
2714 bool OmitArguments
= false;
2716 if (FunctionDecl
*FD
= C
->getDirectCallee()) {
2717 // TODO: Support construction contexts for variadic function arguments.
2718 // These are a bit problematic and not very useful because passing
2719 // C++ objects as C-style variadic arguments doesn't work in general
2720 // (see [expr.call]).
2721 if (!FD
->isVariadic())
2722 findConstructionContextsForArguments(C
);
2724 if (FD
->isNoReturn() || C
->isBuiltinAssumeFalse(*Context
))
2726 if (FD
->hasAttr
<NoThrowAttr
>())
2728 if (FD
->getBuiltinID() == Builtin::BI__builtin_object_size
||
2729 FD
->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size
)
2730 OmitArguments
= true;
2733 if (!CanThrow(C
->getCallee(), *Context
))
2736 if (OmitArguments
) {
2737 assert(!NoReturn
&& "noreturn calls with unevaluated args not implemented");
2738 assert(!AddEHEdge
&& "EH calls with unevaluated args not implemented");
2740 appendStmt(Block
, C
);
2741 return Visit(C
->getCallee());
2744 if (!NoReturn
&& !AddEHEdge
) {
2746 appendCall(Block
, C
);
2748 return VisitChildren(C
);
2758 Block
= createNoReturnBlock();
2760 Block
= createBlock();
2762 appendCall(Block
, C
);
2765 // Add exceptional edges.
2766 if (TryTerminatedBlock
)
2767 addSuccessor(Block
, TryTerminatedBlock
);
2769 addSuccessor(Block
, &cfg
->getExit());
2772 return VisitChildren(C
);
2775 CFGBlock
*CFGBuilder::VisitChooseExpr(ChooseExpr
*C
,
2776 AddStmtChoice asc
) {
2777 CFGBlock
*ConfluenceBlock
= Block
? Block
: createBlock();
2778 appendStmt(ConfluenceBlock
, C
);
2782 AddStmtChoice alwaysAdd
= asc
.withAlwaysAdd(true);
2783 Succ
= ConfluenceBlock
;
2785 CFGBlock
*LHSBlock
= Visit(C
->getLHS(), alwaysAdd
);
2789 Succ
= ConfluenceBlock
;
2791 CFGBlock
*RHSBlock
= Visit(C
->getRHS(), alwaysAdd
);
2795 Block
= createBlock(false);
2796 // See if this is a known constant.
2797 const TryResult
& KnownVal
= tryEvaluateBool(C
->getCond());
2798 addSuccessor(Block
, KnownVal
.isFalse() ? nullptr : LHSBlock
);
2799 addSuccessor(Block
, KnownVal
.isTrue() ? nullptr : RHSBlock
);
2800 Block
->setTerminator(C
);
2801 return addStmt(C
->getCond());
2804 CFGBlock
*CFGBuilder::VisitCompoundStmt(CompoundStmt
*C
,
2805 bool ExternallyDestructed
) {
2806 LocalScope::const_iterator scopeBeginPos
= ScopePos
;
2807 addLocalScopeForStmt(C
);
2809 if (!C
->body_empty() && !isa
<ReturnStmt
>(*C
->body_rbegin())) {
2810 // If the body ends with a ReturnStmt, the dtors will be added in
2812 addAutomaticObjHandling(ScopePos
, scopeBeginPos
, C
);
2815 CFGBlock
*LastBlock
= Block
;
2817 for (Stmt
*S
: llvm::reverse(C
->body())) {
2818 // If we hit a segment of code just containing ';' (NullStmts), we can
2819 // get a null block back. In such cases, just use the LastBlock
2820 CFGBlock
*newBlock
= Visit(S
, AddStmtChoice::AlwaysAdd
,
2821 ExternallyDestructed
);
2824 LastBlock
= newBlock
;
2829 ExternallyDestructed
= false;
2835 CFGBlock
*CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator
*C
,
2836 AddStmtChoice asc
) {
2837 const BinaryConditionalOperator
*BCO
= dyn_cast
<BinaryConditionalOperator
>(C
);
2838 const OpaqueValueExpr
*opaqueValue
= (BCO
? BCO
->getOpaqueValue() : nullptr);
2840 // Create the confluence block that will "merge" the results of the ternary
2842 CFGBlock
*ConfluenceBlock
= Block
? Block
: createBlock();
2843 appendStmt(ConfluenceBlock
, C
);
2847 AddStmtChoice alwaysAdd
= asc
.withAlwaysAdd(true);
2849 // Create a block for the LHS expression if there is an LHS expression. A
2850 // GCC extension allows LHS to be NULL, causing the condition to be the
2851 // value that is returned instead.
2852 // e.g: x ?: y is shorthand for: x ? x : y;
2853 Succ
= ConfluenceBlock
;
2855 CFGBlock
*LHSBlock
= nullptr;
2856 const Expr
*trueExpr
= C
->getTrueExpr();
2857 if (trueExpr
!= opaqueValue
) {
2858 LHSBlock
= Visit(C
->getTrueExpr(), alwaysAdd
);
2864 LHSBlock
= ConfluenceBlock
;
2866 // Create the block for the RHS expression.
2867 Succ
= ConfluenceBlock
;
2868 CFGBlock
*RHSBlock
= Visit(C
->getFalseExpr(), alwaysAdd
);
2872 // If the condition is a logical '&&' or '||', build a more accurate CFG.
2873 if (BinaryOperator
*Cond
=
2874 dyn_cast
<BinaryOperator
>(C
->getCond()->IgnoreParens()))
2875 if (Cond
->isLogicalOp())
2876 return VisitLogicalOperator(Cond
, C
, LHSBlock
, RHSBlock
).first
;
2878 // Create the block that will contain the condition.
2879 Block
= createBlock(false);
2881 // See if this is a known constant.
2882 const TryResult
& KnownVal
= tryEvaluateBool(C
->getCond());
2883 addSuccessor(Block
, LHSBlock
, !KnownVal
.isFalse());
2884 addSuccessor(Block
, RHSBlock
, !KnownVal
.isTrue());
2885 Block
->setTerminator(C
);
2886 Expr
*condExpr
= C
->getCond();
2889 // Run the condition expression if it's not trivially expressed in
2890 // terms of the opaque value (or if there is no opaque value).
2891 if (condExpr
!= opaqueValue
)
2894 // Before that, run the common subexpression if there was one.
2895 // At least one of this or the above will be run.
2896 return addStmt(BCO
->getCommon());
2899 return addStmt(condExpr
);
2902 CFGBlock
*CFGBuilder::VisitDeclStmt(DeclStmt
*DS
) {
2903 // Check if the Decl is for an __label__. If so, elide it from the
2905 if (isa
<LabelDecl
>(*DS
->decl_begin()))
2908 // This case also handles static_asserts.
2909 if (DS
->isSingleDecl())
2910 return VisitDeclSubExpr(DS
);
2912 CFGBlock
*B
= nullptr;
2914 // Build an individual DeclStmt for each decl.
2915 for (DeclStmt::reverse_decl_iterator I
= DS
->decl_rbegin(),
2916 E
= DS
->decl_rend();
2919 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
2920 // automatically freed with the CFG.
2921 DeclGroupRef
DG(*I
);
2923 DeclStmt
*DSNew
= new (Context
) DeclStmt(DG
, D
->getLocation(), GetEndLoc(D
));
2924 cfg
->addSyntheticDeclStmt(DSNew
, DS
);
2926 // Append the fake DeclStmt to block.
2927 B
= VisitDeclSubExpr(DSNew
);
2933 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2934 /// DeclStmts and initializers in them.
2935 CFGBlock
*CFGBuilder::VisitDeclSubExpr(DeclStmt
*DS
) {
2936 assert(DS
->isSingleDecl() && "Can handle single declarations only.");
2938 if (const auto *TND
= dyn_cast
<TypedefNameDecl
>(DS
->getSingleDecl())) {
2939 // If we encounter a VLA, process its size expressions.
2940 const Type
*T
= TND
->getUnderlyingType().getTypePtr();
2941 if (!T
->isVariablyModifiedType())
2945 appendStmt(Block
, DS
);
2947 CFGBlock
*LastBlock
= Block
;
2948 for (const VariableArrayType
*VA
= FindVA(T
); VA
!= nullptr;
2949 VA
= FindVA(VA
->getElementType().getTypePtr())) {
2950 if (CFGBlock
*NewBlock
= addStmt(VA
->getSizeExpr()))
2951 LastBlock
= NewBlock
;
2956 VarDecl
*VD
= dyn_cast
<VarDecl
>(DS
->getSingleDecl());
2959 // Of everything that can be declared in a DeclStmt, only VarDecls and the
2960 // exceptions above impact runtime semantics.
2964 bool HasTemporaries
= false;
2966 // Guard static initializers under a branch.
2967 CFGBlock
*blockAfterStaticInit
= nullptr;
2969 if (BuildOpts
.AddStaticInitBranches
&& VD
->isStaticLocal()) {
2970 // For static variables, we need to create a branch to track
2971 // whether or not they are initialized.
2978 blockAfterStaticInit
= Succ
;
2981 // Destructors of temporaries in initialization expression should be called
2982 // after initialization finishes.
2983 Expr
*Init
= VD
->getInit();
2985 HasTemporaries
= isa
<ExprWithCleanups
>(Init
);
2987 if (BuildOpts
.AddTemporaryDtors
&& HasTemporaries
) {
2988 // Generate destructors for temporaries in initialization expression.
2989 TempDtorContext Context
;
2990 VisitForTemporaryDtors(cast
<ExprWithCleanups
>(Init
)->getSubExpr(),
2991 /*ExternallyDestructed=*/true, Context
);
2995 // If we bind to a tuple-like type, we iterate over the HoldingVars, and
2996 // create a DeclStmt for each of them.
2997 if (const auto *DD
= dyn_cast
<DecompositionDecl
>(VD
)) {
2998 for (auto *BD
: llvm::reverse(DD
->bindings())) {
2999 if (auto *VD
= BD
->getHoldingVar()) {
3000 DeclGroupRef
DG(VD
);
3002 new (Context
) DeclStmt(DG
, VD
->getLocation(), GetEndLoc(VD
));
3003 cfg
->addSyntheticDeclStmt(DSNew
, DS
);
3004 Block
= VisitDeclSubExpr(DSNew
);
3010 appendStmt(Block
, DS
);
3012 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3013 // initializer, that's used for each element.
3014 const auto *AILE
= dyn_cast_or_null
<ArrayInitLoopExpr
>(Init
);
3016 findConstructionContexts(
3017 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), DS
),
3018 AILE
? AILE
->getSubExpr() : Init
);
3020 // Keep track of the last non-null block, as 'Block' can be nulled out
3021 // if the initializer expression is something like a 'while' in a
3022 // statement-expression.
3023 CFGBlock
*LastBlock
= Block
;
3026 if (HasTemporaries
) {
3027 // For expression with temporaries go directly to subexpression to omit
3028 // generating destructors for the second time.
3029 ExprWithCleanups
*EC
= cast
<ExprWithCleanups
>(Init
);
3030 if (CFGBlock
*newBlock
= Visit(EC
->getSubExpr()))
3031 LastBlock
= newBlock
;
3034 if (CFGBlock
*newBlock
= Visit(Init
))
3035 LastBlock
= newBlock
;
3039 // If the type of VD is a VLA, then we must process its size expressions.
3040 // FIXME: This does not find the VLA if it is embedded in other types,
3041 // like here: `int (*p_vla)[x];`
3042 for (const VariableArrayType
* VA
= FindVA(VD
->getType().getTypePtr());
3043 VA
!= nullptr; VA
= FindVA(VA
->getElementType().getTypePtr())) {
3044 if (CFGBlock
*newBlock
= addStmt(VA
->getSizeExpr()))
3045 LastBlock
= newBlock
;
3048 maybeAddScopeBeginForVarDecl(Block
, VD
, DS
);
3050 // Remove variable from local scope.
3051 if (ScopePos
&& VD
== *ScopePos
)
3054 CFGBlock
*B
= LastBlock
;
3055 if (blockAfterStaticInit
) {
3057 Block
= createBlock(false);
3058 Block
->setTerminator(DS
);
3059 addSuccessor(Block
, blockAfterStaticInit
);
3060 addSuccessor(Block
, B
);
3067 CFGBlock
*CFGBuilder::VisitIfStmt(IfStmt
*I
) {
3068 // We may see an if statement in the middle of a basic block, or it may be the
3069 // first statement we are processing. In either case, we create a new basic
3070 // block. First, we create the blocks for the then...else statements, and
3071 // then we create the block containing the if statement. If we were in the
3072 // middle of a block, we stop processing that block. That block is then the
3073 // implicit successor for the "then" and "else" clauses.
3075 // Save local scope position because in case of condition variable ScopePos
3076 // won't be restored when traversing AST.
3077 SaveAndRestore
save_scope_pos(ScopePos
);
3079 // Create local scope for C++17 if init-stmt if one exists.
3080 if (Stmt
*Init
= I
->getInit())
3081 addLocalScopeForStmt(Init
);
3083 // Create local scope for possible condition variable.
3084 // Store scope position. Add implicit destructor.
3085 if (VarDecl
*VD
= I
->getConditionVariable())
3086 addLocalScopeForVarDecl(VD
);
3088 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), I
);
3090 // The block we were processing is now finished. Make it the successor
3098 // Process the false branch.
3099 CFGBlock
*ElseBlock
= Succ
;
3101 if (Stmt
*Else
= I
->getElse()) {
3102 SaveAndRestore
sv(Succ
);
3104 // NULL out Block so that the recursive call to Visit will
3105 // create a new basic block.
3108 // If branch is not a compound statement create implicit scope
3109 // and add destructors.
3110 if (!isa
<CompoundStmt
>(Else
))
3111 addLocalScopeAndDtors(Else
);
3113 ElseBlock
= addStmt(Else
);
3115 if (!ElseBlock
) // Can occur when the Else body has all NullStmts.
3116 ElseBlock
= sv
.get();
3123 // Process the true branch.
3124 CFGBlock
*ThenBlock
;
3126 Stmt
*Then
= I
->getThen();
3128 SaveAndRestore
sv(Succ
);
3131 // If branch is not a compound statement create implicit scope
3132 // and add destructors.
3133 if (!isa
<CompoundStmt
>(Then
))
3134 addLocalScopeAndDtors(Then
);
3136 ThenBlock
= addStmt(Then
);
3139 // We can reach here if the "then" body has all NullStmts.
3140 // Create an empty block so we can distinguish between true and false
3141 // branches in path-sensitive analyses.
3142 ThenBlock
= createBlock(false);
3143 addSuccessor(ThenBlock
, sv
.get());
3150 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3151 // having these handle the actual control-flow jump. Note that
3152 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3153 // we resort to the old control-flow behavior. This special handling
3154 // removes infeasible paths from the control-flow graph by having the
3155 // control-flow transfer of '&&' or '||' go directly into the then/else
3157 BinaryOperator
*Cond
=
3158 (I
->isConsteval() || I
->getConditionVariable())
3160 : dyn_cast
<BinaryOperator
>(I
->getCond()->IgnoreParens());
3161 CFGBlock
*LastBlock
;
3162 if (Cond
&& Cond
->isLogicalOp())
3163 LastBlock
= VisitLogicalOperator(Cond
, I
, ThenBlock
, ElseBlock
).first
;
3165 // Now create a new block containing the if statement.
3166 Block
= createBlock(false);
3168 // Set the terminator of the new block to the If statement.
3169 Block
->setTerminator(I
);
3171 // See if this is a known constant.
3173 if (!I
->isConsteval())
3174 KnownVal
= tryEvaluateBool(I
->getCond());
3176 // Add the successors. If we know that specific branches are
3177 // unreachable, inform addSuccessor() of that knowledge.
3178 addSuccessor(Block
, ThenBlock
, /* IsReachable = */ !KnownVal
.isFalse());
3179 addSuccessor(Block
, ElseBlock
, /* IsReachable = */ !KnownVal
.isTrue());
3181 // Add the condition as the last statement in the new block. This may
3182 // create new blocks as the condition may contain control-flow. Any newly
3183 // created blocks will be pointed to be "Block".
3184 LastBlock
= addStmt(I
->getCond());
3186 // If the IfStmt contains a condition variable, add it and its
3187 // initializer to the CFG.
3188 if (const DeclStmt
* DS
= I
->getConditionVariableDeclStmt()) {
3190 LastBlock
= addStmt(const_cast<DeclStmt
*>(DS
));
3194 // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3195 if (Stmt
*Init
= I
->getInit()) {
3197 LastBlock
= addStmt(Init
);
3203 CFGBlock
*CFGBuilder::VisitReturnStmt(Stmt
*S
) {
3204 // If we were in the middle of a block we stop processing that block.
3206 // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3207 // means that the code afterwards is DEAD (unreachable). We still keep
3208 // a basic block for that code; a simple "mark-and-sweep" from the entry
3209 // block will be able to report such dead blocks.
3210 assert(isa
<ReturnStmt
>(S
) || isa
<CoreturnStmt
>(S
));
3212 // Create the new block.
3213 Block
= createBlock(false);
3215 addAutomaticObjHandling(ScopePos
, LocalScope::const_iterator(), S
);
3217 if (auto *R
= dyn_cast
<ReturnStmt
>(S
))
3218 findConstructionContexts(
3219 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), R
),
3222 // If the one of the destructors does not return, we already have the Exit
3223 // block as a successor.
3224 if (!Block
->hasNoReturnElement())
3225 addSuccessor(Block
, &cfg
->getExit());
3227 // Add the return statement to the block.
3228 appendStmt(Block
, S
);
3231 if (ReturnStmt
*RS
= dyn_cast
<ReturnStmt
>(S
)) {
3232 if (Expr
*O
= RS
->getRetValue())
3233 return Visit(O
, AddStmtChoice::AlwaysAdd
, /*ExternallyDestructed=*/true);
3237 CoreturnStmt
*CRS
= cast
<CoreturnStmt
>(S
);
3239 if (CFGBlock
*R
= Visit(CRS
->getPromiseCall()))
3242 if (Expr
*RV
= CRS
->getOperand())
3243 if (RV
->getType()->isVoidType() && !isa
<InitListExpr
>(RV
))
3244 // A non-initlist void expression.
3245 if (CFGBlock
*R
= Visit(RV
))
3251 CFGBlock
*CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr
*E
,
3252 AddStmtChoice asc
) {
3253 // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3254 // active components of the co_await or co_yield. Note we do not model the
3255 // edge from the builtin_suspend to the exit node.
3256 if (asc
.alwaysAdd(*this, E
)) {
3258 appendStmt(Block
, E
);
3260 CFGBlock
*B
= Block
;
3261 if (auto *R
= Visit(E
->getResumeExpr()))
3263 if (auto *R
= Visit(E
->getSuspendExpr()))
3265 if (auto *R
= Visit(E
->getReadyExpr()))
3267 if (auto *R
= Visit(E
->getCommonExpr()))
3272 CFGBlock
*CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt
*ES
) {
3273 // SEHExceptStmt are treated like labels, so they are the first statement in a
3276 // Save local scope position because in case of exception variable ScopePos
3277 // won't be restored when traversing AST.
3278 SaveAndRestore
save_scope_pos(ScopePos
);
3280 addStmt(ES
->getBlock());
3281 CFGBlock
*SEHExceptBlock
= Block
;
3282 if (!SEHExceptBlock
)
3283 SEHExceptBlock
= createBlock();
3285 appendStmt(SEHExceptBlock
, ES
);
3287 // Also add the SEHExceptBlock as a label, like with regular labels.
3288 SEHExceptBlock
->setLabel(ES
);
3290 // Bail out if the CFG is bad.
3294 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3297 return SEHExceptBlock
;
3300 CFGBlock
*CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt
*FS
) {
3301 return VisitCompoundStmt(FS
->getBlock(), /*ExternallyDestructed=*/false);
3304 CFGBlock
*CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt
*LS
) {
3305 // "__leave" is a control-flow statement. Thus we stop processing the current
3310 // Now create a new block that ends with the __leave statement.
3311 Block
= createBlock(false);
3312 Block
->setTerminator(LS
);
3314 // If there is no target for the __leave, then we are looking at an incomplete
3315 // AST. This means that the CFG cannot be constructed.
3316 if (SEHLeaveJumpTarget
.block
) {
3317 addAutomaticObjHandling(ScopePos
, SEHLeaveJumpTarget
.scopePosition
, LS
);
3318 addSuccessor(Block
, SEHLeaveJumpTarget
.block
);
3325 CFGBlock
*CFGBuilder::VisitSEHTryStmt(SEHTryStmt
*Terminator
) {
3326 // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop
3327 // processing the current block.
3328 CFGBlock
*SEHTrySuccessor
= nullptr;
3333 SEHTrySuccessor
= Block
;
3334 } else SEHTrySuccessor
= Succ
;
3336 // FIXME: Implement __finally support.
3337 if (Terminator
->getFinallyHandler())
3340 CFGBlock
*PrevSEHTryTerminatedBlock
= TryTerminatedBlock
;
3342 // Create a new block that will contain the __try statement.
3343 CFGBlock
*NewTryTerminatedBlock
= createBlock(false);
3345 // Add the terminator in the __try block.
3346 NewTryTerminatedBlock
->setTerminator(Terminator
);
3348 if (SEHExceptStmt
*Except
= Terminator
->getExceptHandler()) {
3349 // The code after the try is the implicit successor if there's an __except.
3350 Succ
= SEHTrySuccessor
;
3352 CFGBlock
*ExceptBlock
= VisitSEHExceptStmt(Except
);
3355 // Add this block to the list of successors for the block with the try
3357 addSuccessor(NewTryTerminatedBlock
, ExceptBlock
);
3359 if (PrevSEHTryTerminatedBlock
)
3360 addSuccessor(NewTryTerminatedBlock
, PrevSEHTryTerminatedBlock
);
3362 addSuccessor(NewTryTerminatedBlock
, &cfg
->getExit());
3364 // The code after the try is the implicit successor.
3365 Succ
= SEHTrySuccessor
;
3367 // Save the current "__try" context.
3368 SaveAndRestore
SaveTry(TryTerminatedBlock
, NewTryTerminatedBlock
);
3369 cfg
->addTryDispatchBlock(TryTerminatedBlock
);
3371 // Save the current value for the __leave target.
3372 // All __leaves should go to the code following the __try
3373 // (FIXME: or if the __try has a __finally, to the __finally.)
3374 SaveAndRestore
save_break(SEHLeaveJumpTarget
);
3375 SEHLeaveJumpTarget
= JumpTarget(SEHTrySuccessor
, ScopePos
);
3377 assert(Terminator
->getTryBlock() && "__try must contain a non-NULL body");
3379 return addStmt(Terminator
->getTryBlock());
3382 CFGBlock
*CFGBuilder::VisitLabelStmt(LabelStmt
*L
) {
3383 // Get the block of the labeled statement. Add it to our map.
3384 addStmt(L
->getSubStmt());
3385 CFGBlock
*LabelBlock
= Block
;
3387 if (!LabelBlock
) // This can happen when the body is empty, i.e.
3388 LabelBlock
= createBlock(); // scopes that only contains NullStmts.
3390 assert(LabelMap
.find(L
->getDecl()) == LabelMap
.end() &&
3391 "label already in map");
3392 LabelMap
[L
->getDecl()] = JumpTarget(LabelBlock
, ScopePos
);
3394 // Labels partition blocks, so this is the end of the basic block we were
3395 // processing (L is the block's label). Because this is label (and we have
3396 // already processed the substatement) there is no extra control-flow to worry
3398 LabelBlock
->setLabel(L
);
3402 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3405 // This block is now the implicit successor of other blocks.
3411 CFGBlock
*CFGBuilder::VisitBlockExpr(BlockExpr
*E
, AddStmtChoice asc
) {
3412 CFGBlock
*LastBlock
= VisitNoRecurse(E
, asc
);
3413 for (const BlockDecl::Capture
&CI
: E
->getBlockDecl()->captures()) {
3414 if (Expr
*CopyExpr
= CI
.getCopyExpr()) {
3415 CFGBlock
*Tmp
= Visit(CopyExpr
);
3423 CFGBlock
*CFGBuilder::VisitLambdaExpr(LambdaExpr
*E
, AddStmtChoice asc
) {
3424 CFGBlock
*LastBlock
= VisitNoRecurse(E
, asc
);
3427 for (LambdaExpr::capture_init_iterator it
= E
->capture_init_begin(),
3428 et
= E
->capture_init_end();
3429 it
!= et
; ++it
, ++Idx
) {
3430 if (Expr
*Init
= *it
) {
3431 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3432 // initializer, that's used for each element.
3433 auto *AILEInit
= extractElementInitializerFromNestedAILE(
3434 dyn_cast
<ArrayInitLoopExpr
>(Init
));
3436 findConstructionContexts(ConstructionContextLayer::create(
3437 cfg
->getBumpVectorContext(), {E
, Idx
}),
3438 AILEInit
? AILEInit
: Init
);
3440 CFGBlock
*Tmp
= Visit(Init
);
3448 CFGBlock
*CFGBuilder::VisitGotoStmt(GotoStmt
*G
) {
3449 // Goto is a control-flow statement. Thus we stop processing the current
3450 // block and create a new one.
3452 Block
= createBlock(false);
3453 Block
->setTerminator(G
);
3455 // If we already know the mapping to the label block add the successor now.
3456 LabelMapTy::iterator I
= LabelMap
.find(G
->getLabel());
3458 if (I
== LabelMap
.end())
3459 // We will need to backpatch this block later.
3460 BackpatchBlocks
.push_back(JumpSource(Block
, ScopePos
));
3462 JumpTarget JT
= I
->second
;
3463 addAutomaticObjHandling(ScopePos
, JT
.scopePosition
, G
);
3464 addSuccessor(Block
, JT
.block
);
3470 CFGBlock
*CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt
*G
, AddStmtChoice asc
) {
3471 // Goto is a control-flow statement. Thus we stop processing the current
3472 // block and create a new one.
3474 if (!G
->isAsmGoto())
3475 return VisitStmt(G
, asc
);
3482 Block
= createBlock();
3483 Block
->setTerminator(G
);
3484 // We will backpatch this block later for all the labels.
3485 BackpatchBlocks
.push_back(JumpSource(Block
, ScopePos
));
3486 // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3487 // used to avoid adding "Succ" again.
3488 BackpatchBlocks
.push_back(JumpSource(Succ
, ScopePos
));
3489 return VisitChildren(G
);
3492 CFGBlock
*CFGBuilder::VisitForStmt(ForStmt
*F
) {
3493 CFGBlock
*LoopSuccessor
= nullptr;
3495 // Save local scope position because in case of condition variable ScopePos
3496 // won't be restored when traversing AST.
3497 SaveAndRestore
save_scope_pos(ScopePos
);
3499 // Create local scope for init statement and possible condition variable.
3500 // Add destructor for init statement and condition variable.
3501 // Store scope position for continue statement.
3502 if (Stmt
*Init
= F
->getInit())
3503 addLocalScopeForStmt(Init
);
3504 LocalScope::const_iterator LoopBeginScopePos
= ScopePos
;
3506 if (VarDecl
*VD
= F
->getConditionVariable())
3507 addLocalScopeForVarDecl(VD
);
3508 LocalScope::const_iterator ContinueScopePos
= ScopePos
;
3510 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), F
);
3514 // "for" is a control-flow statement. Thus we stop processing the current
3519 LoopSuccessor
= Block
;
3521 LoopSuccessor
= Succ
;
3523 // Save the current value for the break targets.
3524 // All breaks should go to the code following the loop.
3525 SaveAndRestore
save_break(BreakJumpTarget
);
3526 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
3528 CFGBlock
*BodyBlock
= nullptr, *TransitionBlock
= nullptr;
3530 // Now create the loop body.
3532 assert(F
->getBody());
3534 // Save the current values for Block, Succ, continue and break targets.
3535 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
3536 SaveAndRestore
save_continue(ContinueJumpTarget
);
3538 // Create an empty block to represent the transition block for looping back
3539 // to the head of the loop. If we have increment code, it will
3540 // go in this block as well.
3541 Block
= Succ
= TransitionBlock
= createBlock(false);
3542 TransitionBlock
->setLoopTarget(F
);
3544 if (Stmt
*I
= F
->getInc()) {
3545 // Generate increment code in its own basic block. This is the target of
3546 // continue statements.
3550 // Finish up the increment (or empty) block if it hasn't been already.
3552 assert(Block
== Succ
);
3558 // The starting block for the loop increment is the block that should
3559 // represent the 'loop target' for looping back to the start of the loop.
3560 ContinueJumpTarget
= JumpTarget(Succ
, ContinueScopePos
);
3561 ContinueJumpTarget
.block
->setLoopTarget(F
);
3563 // Loop body should end with destructor of Condition variable (if any).
3564 addAutomaticObjHandling(ScopePos
, LoopBeginScopePos
, F
);
3566 // If body is not a compound statement create implicit scope
3567 // and add destructors.
3568 if (!isa
<CompoundStmt
>(F
->getBody()))
3569 addLocalScopeAndDtors(F
->getBody());
3571 // Now populate the body block, and in the process create new blocks as we
3572 // walk the body of the loop.
3573 BodyBlock
= addStmt(F
->getBody());
3576 // In the case of "for (...;...;...);" we can have a null BodyBlock.
3577 // Use the continue jump target as the proxy for the body.
3578 BodyBlock
= ContinueJumpTarget
.block
;
3584 // Because of short-circuit evaluation, the condition of the loop can span
3585 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3586 // evaluate the condition.
3587 CFGBlock
*EntryConditionBlock
= nullptr, *ExitConditionBlock
= nullptr;
3590 Expr
*C
= F
->getCond();
3591 SaveAndRestore
save_scope_pos(ScopePos
);
3593 // Specially handle logical operators, which have a slightly
3594 // more optimal CFG representation.
3595 if (BinaryOperator
*Cond
=
3596 dyn_cast_or_null
<BinaryOperator
>(C
? C
->IgnoreParens() : nullptr))
3597 if (Cond
->isLogicalOp()) {
3598 std::tie(EntryConditionBlock
, ExitConditionBlock
) =
3599 VisitLogicalOperator(Cond
, F
, BodyBlock
, LoopSuccessor
);
3603 // The default case when not handling logical operators.
3604 EntryConditionBlock
= ExitConditionBlock
= createBlock(false);
3605 ExitConditionBlock
->setTerminator(F
);
3607 // See if this is a known constant.
3608 TryResult
KnownVal(true);
3611 // Now add the actual condition to the condition block.
3612 // Because the condition itself may contain control-flow, new blocks may
3613 // be created. Thus we update "Succ" after adding the condition.
3614 Block
= ExitConditionBlock
;
3615 EntryConditionBlock
= addStmt(C
);
3617 // If this block contains a condition variable, add both the condition
3618 // variable and initializer to the CFG.
3619 if (VarDecl
*VD
= F
->getConditionVariable()) {
3620 if (Expr
*Init
= VD
->getInit()) {
3622 const DeclStmt
*DS
= F
->getConditionVariableDeclStmt();
3623 assert(DS
->isSingleDecl());
3624 findConstructionContexts(
3625 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), DS
),
3627 appendStmt(Block
, DS
);
3628 EntryConditionBlock
= addStmt(Init
);
3629 assert(Block
== EntryConditionBlock
);
3630 maybeAddScopeBeginForVarDecl(EntryConditionBlock
, VD
, C
);
3634 if (Block
&& badCFG
)
3637 KnownVal
= tryEvaluateBool(C
);
3640 // Add the loop body entry as a successor to the condition.
3641 addSuccessor(ExitConditionBlock
, KnownVal
.isFalse() ? nullptr : BodyBlock
);
3642 // Link up the condition block with the code that follows the loop. (the
3644 addSuccessor(ExitConditionBlock
,
3645 KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
3648 // Link up the loop-back block to the entry condition block.
3649 addSuccessor(TransitionBlock
, EntryConditionBlock
);
3651 // The condition block is the implicit successor for any code above the loop.
3652 Succ
= EntryConditionBlock
;
3654 // If the loop contains initialization, create a new block for those
3655 // statements. This block can also contain statements that precede the loop.
3656 if (Stmt
*I
= F
->getInit()) {
3657 SaveAndRestore
save_scope_pos(ScopePos
);
3658 ScopePos
= LoopBeginScopePos
;
3659 Block
= createBlock();
3663 // There is no loop initialization. We are thus basically a while loop.
3664 // NULL out Block to force lazy block construction.
3666 Succ
= EntryConditionBlock
;
3667 return EntryConditionBlock
;
3671 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr
*MTE
,
3672 AddStmtChoice asc
) {
3673 findConstructionContexts(
3674 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), MTE
),
3677 return VisitStmt(MTE
, asc
);
3680 CFGBlock
*CFGBuilder::VisitMemberExpr(MemberExpr
*M
, AddStmtChoice asc
) {
3681 if (asc
.alwaysAdd(*this, M
)) {
3683 appendStmt(Block
, M
);
3685 return Visit(M
->getBase());
3688 CFGBlock
*CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt
*S
) {
3689 // Objective-C fast enumeration 'for' statements:
3690 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3692 // for ( Type newVariable in collection_expression ) { statements }
3697 // 1. collection_expression
3698 // T. jump to loop_entry
3700 // 1. side-effects of element expression
3701 // 1. ObjCForCollectionStmt [performs binding to newVariable]
3702 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
3705 // T. jump to loop_entry
3711 // Type existingItem;
3712 // for ( existingItem in expression ) { statements }
3716 // the same with newVariable replaced with existingItem; the binding works
3717 // the same except that for one ObjCForCollectionStmt::getElement() returns
3718 // a DeclStmt and the other returns a DeclRefExpr.
3720 CFGBlock
*LoopSuccessor
= nullptr;
3725 LoopSuccessor
= Block
;
3728 LoopSuccessor
= Succ
;
3730 // Build the condition blocks.
3731 CFGBlock
*ExitConditionBlock
= createBlock(false);
3733 // Set the terminator for the "exit" condition block.
3734 ExitConditionBlock
->setTerminator(S
);
3736 // The last statement in the block should be the ObjCForCollectionStmt, which
3737 // performs the actual binding to 'element' and determines if there are any
3738 // more items in the collection.
3739 appendStmt(ExitConditionBlock
, S
);
3740 Block
= ExitConditionBlock
;
3742 // Walk the 'element' expression to see if there are any side-effects. We
3743 // generate new blocks as necessary. We DON'T add the statement by default to
3744 // the CFG unless it contains control-flow.
3745 CFGBlock
*EntryConditionBlock
= Visit(S
->getElement(),
3746 AddStmtChoice::NotAlwaysAdd
);
3753 // The condition block is the implicit successor for the loop body as well as
3754 // any code above the loop.
3755 Succ
= EntryConditionBlock
;
3757 // Now create the true branch.
3759 // Save the current values for Succ, continue and break targets.
3760 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
3761 SaveAndRestore
save_continue(ContinueJumpTarget
),
3762 save_break(BreakJumpTarget
);
3764 // Add an intermediate block between the BodyBlock and the
3765 // EntryConditionBlock to represent the "loop back" transition, for looping
3766 // back to the head of the loop.
3767 CFGBlock
*LoopBackBlock
= nullptr;
3768 Succ
= LoopBackBlock
= createBlock();
3769 LoopBackBlock
->setLoopTarget(S
);
3771 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
3772 ContinueJumpTarget
= JumpTarget(Succ
, ScopePos
);
3774 CFGBlock
*BodyBlock
= addStmt(S
->getBody());
3777 BodyBlock
= ContinueJumpTarget
.block
; // can happen for "for (X in Y) ;"
3783 // This new body block is a successor to our "exit" condition block.
3784 addSuccessor(ExitConditionBlock
, BodyBlock
);
3787 // Link up the condition block with the code that follows the loop.
3788 // (the false branch).
3789 addSuccessor(ExitConditionBlock
, LoopSuccessor
);
3791 // Now create a prologue block to contain the collection expression.
3792 Block
= createBlock();
3793 return addStmt(S
->getCollection());
3796 CFGBlock
*CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt
*S
) {
3798 return addStmt(S
->getSubStmt());
3799 // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3802 CFGBlock
*CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt
*S
) {
3803 // FIXME: Add locking 'primitives' to CFG for @synchronized.
3806 CFGBlock
*SyncBlock
= addStmt(S
->getSynchBody());
3808 // The sync body starts its own basic block. This makes it a little easier
3809 // for diagnostic clients.
3818 // Add the @synchronized to the CFG.
3820 appendStmt(Block
, S
);
3822 // Inline the sync expression.
3823 return addStmt(S
->getSynchExpr());
3826 CFGBlock
*CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr
*E
) {
3829 // Add the PseudoObject as the last thing.
3830 appendStmt(Block
, E
);
3832 CFGBlock
*lastBlock
= Block
;
3834 // Before that, evaluate all of the semantics in order. In
3835 // CFG-land, that means appending them in reverse order.
3836 for (unsigned i
= E
->getNumSemanticExprs(); i
!= 0; ) {
3837 Expr
*Semantic
= E
->getSemanticExpr(--i
);
3839 // If the semantic is an opaque value, we're being asked to bind
3840 // it to its source expression.
3841 if (OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(Semantic
))
3842 Semantic
= OVE
->getSourceExpr();
3844 if (CFGBlock
*B
= Visit(Semantic
))
3851 CFGBlock
*CFGBuilder::VisitWhileStmt(WhileStmt
*W
) {
3852 CFGBlock
*LoopSuccessor
= nullptr;
3854 // Save local scope position because in case of condition variable ScopePos
3855 // won't be restored when traversing AST.
3856 SaveAndRestore
save_scope_pos(ScopePos
);
3858 // Create local scope for possible condition variable.
3859 // Store scope position for continue statement.
3860 LocalScope::const_iterator LoopBeginScopePos
= ScopePos
;
3861 if (VarDecl
*VD
= W
->getConditionVariable()) {
3862 addLocalScopeForVarDecl(VD
);
3863 addAutomaticObjHandling(ScopePos
, LoopBeginScopePos
, W
);
3867 // "while" is a control-flow statement. Thus we stop processing the current
3872 LoopSuccessor
= Block
;
3875 LoopSuccessor
= Succ
;
3878 CFGBlock
*BodyBlock
= nullptr, *TransitionBlock
= nullptr;
3880 // Process the loop body.
3882 assert(W
->getBody());
3884 // Save the current values for Block, Succ, continue and break targets.
3885 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
3886 SaveAndRestore
save_continue(ContinueJumpTarget
),
3887 save_break(BreakJumpTarget
);
3889 // Create an empty block to represent the transition block for looping back
3890 // to the head of the loop.
3891 Succ
= TransitionBlock
= createBlock(false);
3892 TransitionBlock
->setLoopTarget(W
);
3893 ContinueJumpTarget
= JumpTarget(Succ
, LoopBeginScopePos
);
3895 // All breaks should go to the code following the loop.
3896 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
3898 // Loop body should end with destructor of Condition variable (if any).
3899 addAutomaticObjHandling(ScopePos
, LoopBeginScopePos
, W
);
3901 // If body is not a compound statement create implicit scope
3902 // and add destructors.
3903 if (!isa
<CompoundStmt
>(W
->getBody()))
3904 addLocalScopeAndDtors(W
->getBody());
3906 // Create the body. The returned block is the entry to the loop body.
3907 BodyBlock
= addStmt(W
->getBody());
3910 BodyBlock
= ContinueJumpTarget
.block
; // can happen for "while(...) ;"
3911 else if (Block
&& badCFG
)
3915 // Because of short-circuit evaluation, the condition of the loop can span
3916 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3917 // evaluate the condition.
3918 CFGBlock
*EntryConditionBlock
= nullptr, *ExitConditionBlock
= nullptr;
3921 Expr
*C
= W
->getCond();
3923 // Specially handle logical operators, which have a slightly
3924 // more optimal CFG representation.
3925 if (BinaryOperator
*Cond
= dyn_cast
<BinaryOperator
>(C
->IgnoreParens()))
3926 if (Cond
->isLogicalOp()) {
3927 std::tie(EntryConditionBlock
, ExitConditionBlock
) =
3928 VisitLogicalOperator(Cond
, W
, BodyBlock
, LoopSuccessor
);
3932 // The default case when not handling logical operators.
3933 ExitConditionBlock
= createBlock(false);
3934 ExitConditionBlock
->setTerminator(W
);
3936 // Now add the actual condition to the condition block.
3937 // Because the condition itself may contain control-flow, new blocks may
3938 // be created. Thus we update "Succ" after adding the condition.
3939 Block
= ExitConditionBlock
;
3940 Block
= EntryConditionBlock
= addStmt(C
);
3942 // If this block contains a condition variable, add both the condition
3943 // variable and initializer to the CFG.
3944 if (VarDecl
*VD
= W
->getConditionVariable()) {
3945 if (Expr
*Init
= VD
->getInit()) {
3947 const DeclStmt
*DS
= W
->getConditionVariableDeclStmt();
3948 assert(DS
->isSingleDecl());
3949 findConstructionContexts(
3950 ConstructionContextLayer::create(cfg
->getBumpVectorContext(),
3951 const_cast<DeclStmt
*>(DS
)),
3953 appendStmt(Block
, DS
);
3954 EntryConditionBlock
= addStmt(Init
);
3955 assert(Block
== EntryConditionBlock
);
3956 maybeAddScopeBeginForVarDecl(EntryConditionBlock
, VD
, C
);
3960 if (Block
&& badCFG
)
3963 // See if this is a known constant.
3964 const TryResult
& KnownVal
= tryEvaluateBool(C
);
3966 // Add the loop body entry as a successor to the condition.
3967 addSuccessor(ExitConditionBlock
, KnownVal
.isFalse() ? nullptr : BodyBlock
);
3968 // Link up the condition block with the code that follows the loop. (the
3970 addSuccessor(ExitConditionBlock
,
3971 KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
3974 // Link up the loop-back block to the entry condition block.
3975 addSuccessor(TransitionBlock
, EntryConditionBlock
);
3977 // There can be no more statements in the condition block since we loop back
3978 // to this block. NULL out Block to force lazy creation of another block.
3981 // Return the condition block, which is the dominating block for the loop.
3982 Succ
= EntryConditionBlock
;
3983 return EntryConditionBlock
;
3986 CFGBlock
*CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr
*A
,
3987 AddStmtChoice asc
) {
3988 if (asc
.alwaysAdd(*this, A
)) {
3990 appendStmt(Block
, A
);
3993 CFGBlock
*B
= Block
;
3995 if (CFGBlock
*R
= Visit(A
->getSubExpr()))
3998 auto *OVE
= dyn_cast
<OpaqueValueExpr
>(A
->getCommonExpr());
3999 assert(OVE
&& "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an "
4000 "OpaqueValueExpr!");
4001 if (CFGBlock
*R
= Visit(OVE
->getSourceExpr()))
4007 CFGBlock
*CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt
*CS
) {
4008 // ObjCAtCatchStmt are treated like labels, so they are the first statement
4011 // Save local scope position because in case of exception variable ScopePos
4012 // won't be restored when traversing AST.
4013 SaveAndRestore
save_scope_pos(ScopePos
);
4015 if (CS
->getCatchBody())
4016 addStmt(CS
->getCatchBody());
4018 CFGBlock
*CatchBlock
= Block
;
4020 CatchBlock
= createBlock();
4022 appendStmt(CatchBlock
, CS
);
4024 // Also add the ObjCAtCatchStmt as a label, like with regular labels.
4025 CatchBlock
->setLabel(CS
);
4027 // Bail out if the CFG is bad.
4031 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4037 CFGBlock
*CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt
*S
) {
4038 // If we were in the middle of a block we stop processing that block.
4042 // Create the new block.
4043 Block
= createBlock(false);
4045 if (TryTerminatedBlock
)
4046 // The current try statement is the only successor.
4047 addSuccessor(Block
, TryTerminatedBlock
);
4049 // otherwise the Exit block is the only successor.
4050 addSuccessor(Block
, &cfg
->getExit());
4052 // Add the statement to the block. This may create new blocks if S contains
4053 // control-flow (short-circuit operations).
4054 return VisitStmt(S
, AddStmtChoice::AlwaysAdd
);
4057 CFGBlock
*CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt
*Terminator
) {
4058 // "@try"/"@catch" is a control-flow statement. Thus we stop processing the
4060 CFGBlock
*TrySuccessor
= nullptr;
4065 TrySuccessor
= Block
;
4067 TrySuccessor
= Succ
;
4069 // FIXME: Implement @finally support.
4070 if (Terminator
->getFinallyStmt())
4073 CFGBlock
*PrevTryTerminatedBlock
= TryTerminatedBlock
;
4075 // Create a new block that will contain the try statement.
4076 CFGBlock
*NewTryTerminatedBlock
= createBlock(false);
4077 // Add the terminator in the try block.
4078 NewTryTerminatedBlock
->setTerminator(Terminator
);
4080 bool HasCatchAll
= false;
4081 for (ObjCAtCatchStmt
*CS
: Terminator
->catch_stmts()) {
4082 // The code after the try is the implicit successor.
4083 Succ
= TrySuccessor
;
4084 if (CS
->hasEllipsis()) {
4088 CFGBlock
*CatchBlock
= VisitObjCAtCatchStmt(CS
);
4091 // Add this block to the list of successors for the block with the try
4093 addSuccessor(NewTryTerminatedBlock
, CatchBlock
);
4096 // FIXME: This needs updating when @finally support is added.
4098 if (PrevTryTerminatedBlock
)
4099 addSuccessor(NewTryTerminatedBlock
, PrevTryTerminatedBlock
);
4101 addSuccessor(NewTryTerminatedBlock
, &cfg
->getExit());
4104 // The code after the try is the implicit successor.
4105 Succ
= TrySuccessor
;
4107 // Save the current "try" context.
4108 SaveAndRestore
SaveTry(TryTerminatedBlock
, NewTryTerminatedBlock
);
4109 cfg
->addTryDispatchBlock(TryTerminatedBlock
);
4111 assert(Terminator
->getTryBody() && "try must contain a non-NULL body");
4113 return addStmt(Terminator
->getTryBody());
4116 CFGBlock
*CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr
*ME
,
4117 AddStmtChoice asc
) {
4118 findConstructionContextsForArguments(ME
);
4121 appendObjCMessage(Block
, ME
);
4123 return VisitChildren(ME
);
4126 CFGBlock
*CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr
*T
) {
4127 // If we were in the middle of a block we stop processing that block.
4131 // Create the new block.
4132 Block
= createBlock(false);
4134 if (TryTerminatedBlock
)
4135 // The current try statement is the only successor.
4136 addSuccessor(Block
, TryTerminatedBlock
);
4138 // otherwise the Exit block is the only successor.
4139 addSuccessor(Block
, &cfg
->getExit());
4141 // Add the statement to the block. This may create new blocks if S contains
4142 // control-flow (short-circuit operations).
4143 return VisitStmt(T
, AddStmtChoice::AlwaysAdd
);
4146 CFGBlock
*CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr
*S
, AddStmtChoice asc
) {
4147 if (asc
.alwaysAdd(*this, S
)) {
4149 appendStmt(Block
, S
);
4152 // C++ [expr.typeid]p3:
4153 // When typeid is applied to an expression other than an glvalue of a
4154 // polymorphic class type [...] [the] expression is an unevaluated
4156 // We add only potentially evaluated statements to the block to avoid
4157 // CFG generation for unevaluated operands.
4158 if (S
&& !S
->isTypeDependent() && S
->isPotentiallyEvaluated())
4159 return VisitChildren(S
);
4161 // Return block without CFG for unevaluated operands.
4165 CFGBlock
*CFGBuilder::VisitDoStmt(DoStmt
*D
) {
4166 CFGBlock
*LoopSuccessor
= nullptr;
4170 // "do...while" is a control-flow statement. Thus we stop processing the
4175 LoopSuccessor
= Block
;
4177 LoopSuccessor
= Succ
;
4179 // Because of short-circuit evaluation, the condition of the loop can span
4180 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
4181 // evaluate the condition.
4182 CFGBlock
*ExitConditionBlock
= createBlock(false);
4183 CFGBlock
*EntryConditionBlock
= ExitConditionBlock
;
4185 // Set the terminator for the "exit" condition block.
4186 ExitConditionBlock
->setTerminator(D
);
4188 // Now add the actual condition to the condition block. Because the condition
4189 // itself may contain control-flow, new blocks may be created.
4190 if (Stmt
*C
= D
->getCond()) {
4191 Block
= ExitConditionBlock
;
4192 EntryConditionBlock
= addStmt(C
);
4199 // The condition block is the implicit successor for the loop body.
4200 Succ
= EntryConditionBlock
;
4202 // See if this is a known constant.
4203 const TryResult
&KnownVal
= tryEvaluateBool(D
->getCond());
4205 // Process the loop body.
4206 CFGBlock
*BodyBlock
= nullptr;
4208 assert(D
->getBody());
4210 // Save the current values for Block, Succ, and continue and break targets
4211 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
4212 SaveAndRestore
save_continue(ContinueJumpTarget
),
4213 save_break(BreakJumpTarget
);
4215 // All continues within this loop should go to the condition block
4216 ContinueJumpTarget
= JumpTarget(EntryConditionBlock
, ScopePos
);
4218 // All breaks should go to the code following the loop.
4219 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
4221 // NULL out Block to force lazy instantiation of blocks for the body.
4224 // If body is not a compound statement create implicit scope
4225 // and add destructors.
4226 if (!isa
<CompoundStmt
>(D
->getBody()))
4227 addLocalScopeAndDtors(D
->getBody());
4229 // Create the body. The returned block is the entry to the loop body.
4230 BodyBlock
= addStmt(D
->getBody());
4233 BodyBlock
= EntryConditionBlock
; // can happen for "do ; while(...)"
4239 // Add an intermediate block between the BodyBlock and the
4240 // ExitConditionBlock to represent the "loop back" transition. Create an
4241 // empty block to represent the transition block for looping back to the
4242 // head of the loop.
4243 // FIXME: Can we do this more efficiently without adding another block?
4246 CFGBlock
*LoopBackBlock
= createBlock();
4247 LoopBackBlock
->setLoopTarget(D
);
4249 if (!KnownVal
.isFalse())
4250 // Add the loop body entry as a successor to the condition.
4251 addSuccessor(ExitConditionBlock
, LoopBackBlock
);
4253 addSuccessor(ExitConditionBlock
, nullptr);
4256 // Link up the condition block with the code that follows the loop.
4257 // (the false branch).
4258 addSuccessor(ExitConditionBlock
, KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
4260 // There can be no more statements in the body block(s) since we loop back to
4261 // the body. NULL out Block to force lazy creation of another block.
4264 // Return the loop body, which is the dominating block for the loop.
4269 CFGBlock
*CFGBuilder::VisitContinueStmt(ContinueStmt
*C
) {
4270 // "continue" is a control-flow statement. Thus we stop processing the
4275 // Now create a new block that ends with the continue statement.
4276 Block
= createBlock(false);
4277 Block
->setTerminator(C
);
4279 // If there is no target for the continue, then we are looking at an
4280 // incomplete AST. This means the CFG cannot be constructed.
4281 if (ContinueJumpTarget
.block
) {
4282 addAutomaticObjHandling(ScopePos
, ContinueJumpTarget
.scopePosition
, C
);
4283 addSuccessor(Block
, ContinueJumpTarget
.block
);
4290 CFGBlock
*CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr
*E
,
4291 AddStmtChoice asc
) {
4292 if (asc
.alwaysAdd(*this, E
)) {
4294 appendStmt(Block
, E
);
4297 // VLA types have expressions that must be evaluated.
4298 // Evaluation is done only for `sizeof`.
4300 if (E
->getKind() != UETT_SizeOf
)
4303 CFGBlock
*lastBlock
= Block
;
4305 if (E
->isArgumentType()) {
4306 for (const VariableArrayType
*VA
=FindVA(E
->getArgumentType().getTypePtr());
4307 VA
!= nullptr; VA
= FindVA(VA
->getElementType().getTypePtr()))
4308 lastBlock
= addStmt(VA
->getSizeExpr());
4313 /// VisitStmtExpr - Utility method to handle (nested) statement
4314 /// expressions (a GCC extension).
4315 CFGBlock
*CFGBuilder::VisitStmtExpr(StmtExpr
*SE
, AddStmtChoice asc
) {
4316 if (asc
.alwaysAdd(*this, SE
)) {
4318 appendStmt(Block
, SE
);
4320 return VisitCompoundStmt(SE
->getSubStmt(), /*ExternallyDestructed=*/true);
4323 CFGBlock
*CFGBuilder::VisitSwitchStmt(SwitchStmt
*Terminator
) {
4324 // "switch" is a control-flow statement. Thus we stop processing the current
4326 CFGBlock
*SwitchSuccessor
= nullptr;
4328 // Save local scope position because in case of condition variable ScopePos
4329 // won't be restored when traversing AST.
4330 SaveAndRestore
save_scope_pos(ScopePos
);
4332 // Create local scope for C++17 switch init-stmt if one exists.
4333 if (Stmt
*Init
= Terminator
->getInit())
4334 addLocalScopeForStmt(Init
);
4336 // Create local scope for possible condition variable.
4337 // Store scope position. Add implicit destructor.
4338 if (VarDecl
*VD
= Terminator
->getConditionVariable())
4339 addLocalScopeForVarDecl(VD
);
4341 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), Terminator
);
4346 SwitchSuccessor
= Block
;
4347 } else SwitchSuccessor
= Succ
;
4349 // Save the current "switch" context.
4350 SaveAndRestore
save_switch(SwitchTerminatedBlock
),
4351 save_default(DefaultCaseBlock
);
4352 SaveAndRestore
save_break(BreakJumpTarget
);
4354 // Set the "default" case to be the block after the switch statement. If the
4355 // switch statement contains a "default:", this value will be overwritten with
4356 // the block for that code.
4357 DefaultCaseBlock
= SwitchSuccessor
;
4359 // Create a new block that will contain the switch statement.
4360 SwitchTerminatedBlock
= createBlock(false);
4362 // Now process the switch body. The code after the switch is the implicit
4364 Succ
= SwitchSuccessor
;
4365 BreakJumpTarget
= JumpTarget(SwitchSuccessor
, ScopePos
);
4367 // When visiting the body, the case statements should automatically get linked
4368 // up to the switch. We also don't keep a pointer to the body, since all
4369 // control-flow from the switch goes to case/default statements.
4370 assert(Terminator
->getBody() && "switch must contain a non-NULL body");
4373 // For pruning unreachable case statements, save the current state
4374 // for tracking the condition value.
4375 SaveAndRestore
save_switchExclusivelyCovered(switchExclusivelyCovered
, false);
4377 // Determine if the switch condition can be explicitly evaluated.
4378 assert(Terminator
->getCond() && "switch condition must be non-NULL");
4379 Expr::EvalResult result
;
4380 bool b
= tryEvaluate(Terminator
->getCond(), result
);
4381 SaveAndRestore
save_switchCond(switchCond
, b
? &result
: nullptr);
4383 // If body is not a compound statement create implicit scope
4384 // and add destructors.
4385 if (!isa
<CompoundStmt
>(Terminator
->getBody()))
4386 addLocalScopeAndDtors(Terminator
->getBody());
4388 addStmt(Terminator
->getBody());
4394 // If we have no "default:" case, the default transition is to the code
4395 // following the switch body. Moreover, take into account if all the
4396 // cases of a switch are covered (e.g., switching on an enum value).
4398 // Note: We add a successor to a switch that is considered covered yet has no
4399 // case statements if the enumeration has no enumerators.
4400 bool SwitchAlwaysHasSuccessor
= false;
4401 SwitchAlwaysHasSuccessor
|= switchExclusivelyCovered
;
4402 SwitchAlwaysHasSuccessor
|= Terminator
->isAllEnumCasesCovered() &&
4403 Terminator
->getSwitchCaseList();
4404 addSuccessor(SwitchTerminatedBlock
, DefaultCaseBlock
,
4405 !SwitchAlwaysHasSuccessor
);
4407 // Add the terminator and condition in the switch block.
4408 SwitchTerminatedBlock
->setTerminator(Terminator
);
4409 Block
= SwitchTerminatedBlock
;
4410 CFGBlock
*LastBlock
= addStmt(Terminator
->getCond());
4412 // If the SwitchStmt contains a condition variable, add both the
4413 // SwitchStmt and the condition variable initialization to the CFG.
4414 if (VarDecl
*VD
= Terminator
->getConditionVariable()) {
4415 if (Expr
*Init
= VD
->getInit()) {
4417 appendStmt(Block
, Terminator
->getConditionVariableDeclStmt());
4418 LastBlock
= addStmt(Init
);
4419 maybeAddScopeBeginForVarDecl(LastBlock
, VD
, Init
);
4423 // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4424 if (Stmt
*Init
= Terminator
->getInit()) {
4426 LastBlock
= addStmt(Init
);
4432 static bool shouldAddCase(bool &switchExclusivelyCovered
,
4433 const Expr::EvalResult
*switchCond
,
4439 bool addCase
= false;
4441 if (!switchExclusivelyCovered
) {
4442 if (switchCond
->Val
.isInt()) {
4443 // Evaluate the LHS of the case value.
4444 const llvm::APSInt
&lhsInt
= CS
->getLHS()->EvaluateKnownConstInt(Ctx
);
4445 const llvm::APSInt
&condInt
= switchCond
->Val
.getInt();
4447 if (condInt
== lhsInt
) {
4449 switchExclusivelyCovered
= true;
4451 else if (condInt
> lhsInt
) {
4452 if (const Expr
*RHS
= CS
->getRHS()) {
4453 // Evaluate the RHS of the case value.
4454 const llvm::APSInt
&V2
= RHS
->EvaluateKnownConstInt(Ctx
);
4455 if (V2
>= condInt
) {
4457 switchExclusivelyCovered
= true;
4468 CFGBlock
*CFGBuilder::VisitCaseStmt(CaseStmt
*CS
) {
4469 // CaseStmts are essentially labels, so they are the first statement in a
4471 CFGBlock
*TopBlock
= nullptr, *LastBlock
= nullptr;
4473 if (Stmt
*Sub
= CS
->getSubStmt()) {
4474 // For deeply nested chains of CaseStmts, instead of doing a recursion
4475 // (which can blow out the stack), manually unroll and create blocks
4477 while (isa
<CaseStmt
>(Sub
)) {
4478 CFGBlock
*currentBlock
= createBlock(false);
4479 currentBlock
->setLabel(CS
);
4482 addSuccessor(LastBlock
, currentBlock
);
4484 TopBlock
= currentBlock
;
4486 addSuccessor(SwitchTerminatedBlock
,
4487 shouldAddCase(switchExclusivelyCovered
, switchCond
,
4489 ? currentBlock
: nullptr);
4491 LastBlock
= currentBlock
;
4492 CS
= cast
<CaseStmt
>(Sub
);
4493 Sub
= CS
->getSubStmt();
4499 CFGBlock
*CaseBlock
= Block
;
4501 CaseBlock
= createBlock();
4503 // Cases statements partition blocks, so this is the top of the basic block we
4504 // were processing (the "case XXX:" is the label).
4505 CaseBlock
->setLabel(CS
);
4510 // Add this block to the list of successors for the block with the switch
4512 assert(SwitchTerminatedBlock
);
4513 addSuccessor(SwitchTerminatedBlock
, CaseBlock
,
4514 shouldAddCase(switchExclusivelyCovered
, switchCond
,
4517 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4521 addSuccessor(LastBlock
, CaseBlock
);
4524 // This block is now the implicit successor of other blocks.
4531 CFGBlock
*CFGBuilder::VisitDefaultStmt(DefaultStmt
*Terminator
) {
4532 if (Terminator
->getSubStmt())
4533 addStmt(Terminator
->getSubStmt());
4535 DefaultCaseBlock
= Block
;
4537 if (!DefaultCaseBlock
)
4538 DefaultCaseBlock
= createBlock();
4540 // Default statements partition blocks, so this is the top of the basic block
4541 // we were processing (the "default:" is the label).
4542 DefaultCaseBlock
->setLabel(Terminator
);
4547 // Unlike case statements, we don't add the default block to the successors
4548 // for the switch statement immediately. This is done when we finish
4549 // processing the switch statement. This allows for the default case
4550 // (including a fall-through to the code after the switch statement) to always
4551 // be the last successor of a switch-terminated block.
4553 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4556 // This block is now the implicit successor of other blocks.
4557 Succ
= DefaultCaseBlock
;
4559 return DefaultCaseBlock
;
4562 CFGBlock
*CFGBuilder::VisitCXXTryStmt(CXXTryStmt
*Terminator
) {
4563 // "try"/"catch" is a control-flow statement. Thus we stop processing the
4565 CFGBlock
*TrySuccessor
= nullptr;
4570 TrySuccessor
= Block
;
4572 TrySuccessor
= Succ
;
4574 CFGBlock
*PrevTryTerminatedBlock
= TryTerminatedBlock
;
4576 // Create a new block that will contain the try statement.
4577 CFGBlock
*NewTryTerminatedBlock
= createBlock(false);
4578 // Add the terminator in the try block.
4579 NewTryTerminatedBlock
->setTerminator(Terminator
);
4581 bool HasCatchAll
= false;
4582 for (unsigned I
= 0, E
= Terminator
->getNumHandlers(); I
!= E
; ++I
) {
4583 // The code after the try is the implicit successor.
4584 Succ
= TrySuccessor
;
4585 CXXCatchStmt
*CS
= Terminator
->getHandler(I
);
4586 if (CS
->getExceptionDecl() == nullptr) {
4590 CFGBlock
*CatchBlock
= VisitCXXCatchStmt(CS
);
4593 // Add this block to the list of successors for the block with the try
4595 addSuccessor(NewTryTerminatedBlock
, CatchBlock
);
4598 if (PrevTryTerminatedBlock
)
4599 addSuccessor(NewTryTerminatedBlock
, PrevTryTerminatedBlock
);
4601 addSuccessor(NewTryTerminatedBlock
, &cfg
->getExit());
4604 // The code after the try is the implicit successor.
4605 Succ
= TrySuccessor
;
4607 // Save the current "try" context.
4608 SaveAndRestore
SaveTry(TryTerminatedBlock
, NewTryTerminatedBlock
);
4609 cfg
->addTryDispatchBlock(TryTerminatedBlock
);
4611 assert(Terminator
->getTryBlock() && "try must contain a non-NULL body");
4613 return addStmt(Terminator
->getTryBlock());
4616 CFGBlock
*CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt
*CS
) {
4617 // CXXCatchStmt are treated like labels, so they are the first statement in a
4620 // Save local scope position because in case of exception variable ScopePos
4621 // won't be restored when traversing AST.
4622 SaveAndRestore
save_scope_pos(ScopePos
);
4624 // Create local scope for possible exception variable.
4625 // Store scope position. Add implicit destructor.
4626 if (VarDecl
*VD
= CS
->getExceptionDecl()) {
4627 LocalScope::const_iterator BeginScopePos
= ScopePos
;
4628 addLocalScopeForVarDecl(VD
);
4629 addAutomaticObjHandling(ScopePos
, BeginScopePos
, CS
);
4632 if (CS
->getHandlerBlock())
4633 addStmt(CS
->getHandlerBlock());
4635 CFGBlock
*CatchBlock
= Block
;
4637 CatchBlock
= createBlock();
4639 // CXXCatchStmt is more than just a label. They have semantic meaning
4640 // as well, as they implicitly "initialize" the catch variable. Add
4641 // it to the CFG as a CFGElement so that the control-flow of these
4642 // semantics gets captured.
4643 appendStmt(CatchBlock
, CS
);
4645 // Also add the CXXCatchStmt as a label, to mirror handling of regular
4647 CatchBlock
->setLabel(CS
);
4649 // Bail out if the CFG is bad.
4653 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4659 CFGBlock
*CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt
*S
) {
4660 // C++0x for-range statements are specified as [stmt.ranged]:
4663 // auto && __range = range-init;
4664 // for ( auto __begin = begin-expr,
4665 // __end = end-expr;
4666 // __begin != __end;
4668 // for-range-declaration = *__begin;
4673 // Save local scope position before the addition of the implicit variables.
4674 SaveAndRestore
save_scope_pos(ScopePos
);
4676 // Create local scopes and destructors for range, begin and end variables.
4677 if (Stmt
*Range
= S
->getRangeStmt())
4678 addLocalScopeForStmt(Range
);
4679 if (Stmt
*Begin
= S
->getBeginStmt())
4680 addLocalScopeForStmt(Begin
);
4681 if (Stmt
*End
= S
->getEndStmt())
4682 addLocalScopeForStmt(End
);
4683 addAutomaticObjHandling(ScopePos
, save_scope_pos
.get(), S
);
4685 LocalScope::const_iterator ContinueScopePos
= ScopePos
;
4687 // "for" is a control-flow statement. Thus we stop processing the current
4689 CFGBlock
*LoopSuccessor
= nullptr;
4693 LoopSuccessor
= Block
;
4695 LoopSuccessor
= Succ
;
4697 // Save the current value for the break targets.
4698 // All breaks should go to the code following the loop.
4699 SaveAndRestore
save_break(BreakJumpTarget
);
4700 BreakJumpTarget
= JumpTarget(LoopSuccessor
, ScopePos
);
4702 // The block for the __begin != __end expression.
4703 CFGBlock
*ConditionBlock
= createBlock(false);
4704 ConditionBlock
->setTerminator(S
);
4706 // Now add the actual condition to the condition block.
4707 if (Expr
*C
= S
->getCond()) {
4708 Block
= ConditionBlock
;
4709 CFGBlock
*BeginConditionBlock
= addStmt(C
);
4712 assert(BeginConditionBlock
== ConditionBlock
&&
4713 "condition block in for-range was unexpectedly complex");
4714 (void)BeginConditionBlock
;
4717 // The condition block is the implicit successor for the loop body as well as
4718 // any code above the loop.
4719 Succ
= ConditionBlock
;
4721 // See if this is a known constant.
4722 TryResult
KnownVal(true);
4725 KnownVal
= tryEvaluateBool(S
->getCond());
4727 // Now create the loop body.
4729 assert(S
->getBody());
4731 // Save the current values for Block, Succ, and continue targets.
4732 SaveAndRestore
save_Block(Block
), save_Succ(Succ
);
4733 SaveAndRestore
save_continue(ContinueJumpTarget
);
4735 // Generate increment code in its own basic block. This is the target of
4736 // continue statements.
4738 Succ
= addStmt(S
->getInc());
4741 ContinueJumpTarget
= JumpTarget(Succ
, ContinueScopePos
);
4743 // The starting block for the loop increment is the block that should
4744 // represent the 'loop target' for looping back to the start of the loop.
4745 ContinueJumpTarget
.block
->setLoopTarget(S
);
4747 // Finish up the increment block and prepare to start the loop body.
4753 // Add implicit scope and dtors for loop variable.
4754 addLocalScopeAndDtors(S
->getLoopVarStmt());
4756 // If body is not a compound statement create implicit scope
4757 // and add destructors.
4758 if (!isa
<CompoundStmt
>(S
->getBody()))
4759 addLocalScopeAndDtors(S
->getBody());
4761 // Populate a new block to contain the loop body and loop variable.
4762 addStmt(S
->getBody());
4766 CFGBlock
*LoopVarStmtBlock
= addStmt(S
->getLoopVarStmt());
4770 // This new body block is a successor to our condition block.
4771 addSuccessor(ConditionBlock
,
4772 KnownVal
.isFalse() ? nullptr : LoopVarStmtBlock
);
4775 // Link up the condition block with the code that follows the loop (the
4777 addSuccessor(ConditionBlock
, KnownVal
.isTrue() ? nullptr : LoopSuccessor
);
4779 // Add the initialization statements.
4780 Block
= createBlock();
4781 addStmt(S
->getBeginStmt());
4782 addStmt(S
->getEndStmt());
4783 CFGBlock
*Head
= addStmt(S
->getRangeStmt());
4785 Head
= addStmt(S
->getInit());
4789 CFGBlock
*CFGBuilder::VisitExprWithCleanups(ExprWithCleanups
*E
,
4790 AddStmtChoice asc
, bool ExternallyDestructed
) {
4791 if (BuildOpts
.AddTemporaryDtors
) {
4792 // If adding implicit destructors visit the full expression for adding
4793 // destructors of temporaries.
4794 TempDtorContext Context
;
4795 VisitForTemporaryDtors(E
->getSubExpr(), ExternallyDestructed
, Context
);
4797 // Full expression has to be added as CFGStmt so it will be sequenced
4798 // before destructors of it's temporaries.
4799 asc
= asc
.withAlwaysAdd(true);
4801 return Visit(E
->getSubExpr(), asc
);
4804 CFGBlock
*CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
,
4805 AddStmtChoice asc
) {
4806 if (asc
.alwaysAdd(*this, E
)) {
4808 appendStmt(Block
, E
);
4810 findConstructionContexts(
4811 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), E
),
4814 // We do not want to propagate the AlwaysAdd property.
4815 asc
= asc
.withAlwaysAdd(false);
4817 return Visit(E
->getSubExpr(), asc
);
4820 CFGBlock
*CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr
*C
,
4821 AddStmtChoice asc
) {
4822 // If the constructor takes objects as arguments by value, we need to properly
4823 // construct these objects. Construction contexts we find here aren't for the
4824 // constructor C, they're for its arguments only.
4825 findConstructionContextsForArguments(C
);
4828 appendConstructor(Block
, C
);
4830 return VisitChildren(C
);
4833 CFGBlock
*CFGBuilder::VisitCXXNewExpr(CXXNewExpr
*NE
,
4834 AddStmtChoice asc
) {
4836 appendStmt(Block
, NE
);
4838 findConstructionContexts(
4839 ConstructionContextLayer::create(cfg
->getBumpVectorContext(), NE
),
4840 const_cast<CXXConstructExpr
*>(NE
->getConstructExpr()));
4842 if (NE
->getInitializer())
4843 Block
= Visit(NE
->getInitializer());
4845 if (BuildOpts
.AddCXXNewAllocator
)
4846 appendNewAllocator(Block
, NE
);
4848 if (NE
->isArray() && *NE
->getArraySize())
4849 Block
= Visit(*NE
->getArraySize());
4851 for (CXXNewExpr::arg_iterator I
= NE
->placement_arg_begin(),
4852 E
= NE
->placement_arg_end(); I
!= E
; ++I
)
4858 CFGBlock
*CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr
*DE
,
4859 AddStmtChoice asc
) {
4861 appendStmt(Block
, DE
);
4862 QualType DTy
= DE
->getDestroyedType();
4863 if (!DTy
.isNull()) {
4864 DTy
= DTy
.getNonReferenceType();
4865 CXXRecordDecl
*RD
= Context
->getBaseElementType(DTy
)->getAsCXXRecordDecl();
4867 if (RD
->isCompleteDefinition() && !RD
->hasTrivialDestructor())
4868 appendDeleteDtor(Block
, RD
, DE
);
4872 return VisitChildren(DE
);
4875 CFGBlock
*CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr
*E
,
4876 AddStmtChoice asc
) {
4877 if (asc
.alwaysAdd(*this, E
)) {
4879 appendStmt(Block
, E
);
4880 // We do not want to propagate the AlwaysAdd property.
4881 asc
= asc
.withAlwaysAdd(false);
4883 return Visit(E
->getSubExpr(), asc
);
4886 CFGBlock
*CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr
*C
,
4887 AddStmtChoice asc
) {
4888 // If the constructor takes objects as arguments by value, we need to properly
4889 // construct these objects. Construction contexts we find here aren't for the
4890 // constructor C, they're for its arguments only.
4891 findConstructionContextsForArguments(C
);
4894 appendConstructor(Block
, C
);
4895 return VisitChildren(C
);
4898 CFGBlock
*CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr
*E
,
4899 AddStmtChoice asc
) {
4900 if (asc
.alwaysAdd(*this, E
)) {
4902 appendStmt(Block
, E
);
4905 if (E
->getCastKind() == CK_IntegralToBoolean
)
4906 tryEvaluateBool(E
->getSubExpr()->IgnoreParens());
4908 return Visit(E
->getSubExpr(), AddStmtChoice());
4911 CFGBlock
*CFGBuilder::VisitConstantExpr(ConstantExpr
*E
, AddStmtChoice asc
) {
4912 return Visit(E
->getSubExpr(), AddStmtChoice());
4915 CFGBlock
*CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt
*I
) {
4916 // Lazily create the indirect-goto dispatch block if there isn't one already.
4917 CFGBlock
*IBlock
= cfg
->getIndirectGotoBlock();
4920 IBlock
= createBlock(false);
4921 cfg
->setIndirectGotoBlock(IBlock
);
4924 // IndirectGoto is a control-flow statement. Thus we stop processing the
4925 // current block and create a new one.
4929 Block
= createBlock(false);
4930 Block
->setTerminator(I
);
4931 addSuccessor(Block
, IBlock
);
4932 return addStmt(I
->getTarget());
4935 CFGBlock
*CFGBuilder::VisitForTemporaryDtors(Stmt
*E
, bool ExternallyDestructed
,
4936 TempDtorContext
&Context
) {
4937 assert(BuildOpts
.AddImplicitDtors
&& BuildOpts
.AddTemporaryDtors
);
4944 switch (E
->getStmtClass()) {
4946 return VisitChildrenForTemporaryDtors(E
, false, Context
);
4948 case Stmt::InitListExprClass
:
4949 return VisitChildrenForTemporaryDtors(E
, ExternallyDestructed
, Context
);
4951 case Stmt::BinaryOperatorClass
:
4952 return VisitBinaryOperatorForTemporaryDtors(cast
<BinaryOperator
>(E
),
4953 ExternallyDestructed
,
4956 case Stmt::CXXBindTemporaryExprClass
:
4957 return VisitCXXBindTemporaryExprForTemporaryDtors(
4958 cast
<CXXBindTemporaryExpr
>(E
), ExternallyDestructed
, Context
);
4960 case Stmt::BinaryConditionalOperatorClass
:
4961 case Stmt::ConditionalOperatorClass
:
4962 return VisitConditionalOperatorForTemporaryDtors(
4963 cast
<AbstractConditionalOperator
>(E
), ExternallyDestructed
, Context
);
4965 case Stmt::ImplicitCastExprClass
:
4966 // For implicit cast we want ExternallyDestructed to be passed further.
4967 E
= cast
<CastExpr
>(E
)->getSubExpr();
4970 case Stmt::CXXFunctionalCastExprClass
:
4971 // For functional cast we want ExternallyDestructed to be passed further.
4972 E
= cast
<CXXFunctionalCastExpr
>(E
)->getSubExpr();
4975 case Stmt::ConstantExprClass
:
4976 E
= cast
<ConstantExpr
>(E
)->getSubExpr();
4979 case Stmt::ParenExprClass
:
4980 E
= cast
<ParenExpr
>(E
)->getSubExpr();
4983 case Stmt::MaterializeTemporaryExprClass
: {
4984 const MaterializeTemporaryExpr
* MTE
= cast
<MaterializeTemporaryExpr
>(E
);
4985 ExternallyDestructed
= (MTE
->getStorageDuration() != SD_FullExpression
);
4986 SmallVector
<const Expr
*, 2> CommaLHSs
;
4987 SmallVector
<SubobjectAdjustment
, 2> Adjustments
;
4988 // Find the expression whose lifetime needs to be extended.
4989 E
= const_cast<Expr
*>(
4990 cast
<MaterializeTemporaryExpr
>(E
)
4992 ->skipRValueSubobjectAdjustments(CommaLHSs
, Adjustments
));
4993 // Visit the skipped comma operator left-hand sides for other temporaries.
4994 for (const Expr
*CommaLHS
: CommaLHSs
) {
4995 VisitForTemporaryDtors(const_cast<Expr
*>(CommaLHS
),
4996 /*ExternallyDestructed=*/false, Context
);
5001 case Stmt::BlockExprClass
:
5002 // Don't recurse into blocks; their subexpressions don't get evaluated
5006 case Stmt::LambdaExprClass
: {
5007 // For lambda expressions, only recurse into the capture initializers,
5008 // and not the body.
5009 auto *LE
= cast
<LambdaExpr
>(E
);
5010 CFGBlock
*B
= Block
;
5011 for (Expr
*Init
: LE
->capture_inits()) {
5013 if (CFGBlock
*R
= VisitForTemporaryDtors(
5014 Init
, /*ExternallyDestructed=*/true, Context
))
5021 case Stmt::StmtExprClass
:
5022 // Don't recurse into statement expressions; any cleanups inside them
5023 // will be wrapped in their own ExprWithCleanups.
5026 case Stmt::CXXDefaultArgExprClass
:
5027 E
= cast
<CXXDefaultArgExpr
>(E
)->getExpr();
5030 case Stmt::CXXDefaultInitExprClass
:
5031 E
= cast
<CXXDefaultInitExpr
>(E
)->getExpr();
5036 CFGBlock
*CFGBuilder::VisitChildrenForTemporaryDtors(Stmt
*E
,
5037 bool ExternallyDestructed
,
5038 TempDtorContext
&Context
) {
5039 if (isa
<LambdaExpr
>(E
)) {
5040 // Do not visit the children of lambdas; they have their own CFGs.
5044 // When visiting children for destructors we want to visit them in reverse
5045 // order that they will appear in the CFG. Because the CFG is built
5046 // bottom-up, this means we visit them in their natural order, which
5047 // reverses them in the CFG.
5048 CFGBlock
*B
= Block
;
5049 for (Stmt
*Child
: E
->children())
5051 if (CFGBlock
*R
= VisitForTemporaryDtors(Child
, ExternallyDestructed
, Context
))
5057 CFGBlock
*CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
5058 BinaryOperator
*E
, bool ExternallyDestructed
, TempDtorContext
&Context
) {
5059 if (E
->isCommaOp()) {
5060 // For the comma operator, the LHS expression is evaluated before the RHS
5061 // expression, so prepend temporary destructors for the LHS first.
5062 CFGBlock
*LHSBlock
= VisitForTemporaryDtors(E
->getLHS(), false, Context
);
5063 CFGBlock
*RHSBlock
= VisitForTemporaryDtors(E
->getRHS(), ExternallyDestructed
, Context
);
5064 return RHSBlock
? RHSBlock
: LHSBlock
;
5067 if (E
->isLogicalOp()) {
5068 VisitForTemporaryDtors(E
->getLHS(), false, Context
);
5069 TryResult RHSExecuted
= tryEvaluateBool(E
->getLHS());
5070 if (RHSExecuted
.isKnown() && E
->getOpcode() == BO_LOr
)
5071 RHSExecuted
.negate();
5073 // We do not know at CFG-construction time whether the right-hand-side was
5074 // executed, thus we add a branch node that depends on the temporary
5075 // constructor call.
5076 TempDtorContext
RHSContext(
5077 bothKnownTrue(Context
.KnownExecuted
, RHSExecuted
));
5078 VisitForTemporaryDtors(E
->getRHS(), false, RHSContext
);
5079 InsertTempDtorDecisionBlock(RHSContext
);
5084 if (E
->isAssignmentOp()) {
5085 // For assignment operators, the RHS expression is evaluated before the LHS
5086 // expression, so prepend temporary destructors for the RHS first.
5087 CFGBlock
*RHSBlock
= VisitForTemporaryDtors(E
->getRHS(), false, Context
);
5088 CFGBlock
*LHSBlock
= VisitForTemporaryDtors(E
->getLHS(), false, Context
);
5089 return LHSBlock
? LHSBlock
: RHSBlock
;
5092 // Any other operator is visited normally.
5093 return VisitChildrenForTemporaryDtors(E
, ExternallyDestructed
, Context
);
5096 CFGBlock
*CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
5097 CXXBindTemporaryExpr
*E
, bool ExternallyDestructed
, TempDtorContext
&Context
) {
5098 // First add destructors for temporaries in subexpression.
5099 // Because VisitCXXBindTemporaryExpr calls setDestructed:
5100 CFGBlock
*B
= VisitForTemporaryDtors(E
->getSubExpr(), true, Context
);
5101 if (!ExternallyDestructed
) {
5102 // If lifetime of temporary is not prolonged (by assigning to constant
5103 // reference) add destructor for it.
5105 const CXXDestructorDecl
*Dtor
= E
->getTemporary()->getDestructor();
5107 if (Dtor
->getParent()->isAnyDestructorNoReturn()) {
5108 // If the destructor is marked as a no-return destructor, we need to
5109 // create a new block for the destructor which does not have as a
5110 // successor anything built thus far. Control won't flow out of this
5113 Block
= createNoReturnBlock();
5114 } else if (Context
.needsTempDtorBranch()) {
5115 // If we need to introduce a branch, we add a new block that we will hook
5116 // up to a decision block later.
5118 Block
= createBlock();
5122 if (Context
.needsTempDtorBranch()) {
5123 Context
.setDecisionPoint(Succ
, E
);
5125 appendTemporaryDtor(Block
, E
);
5132 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext
&Context
,
5133 CFGBlock
*FalseSucc
) {
5134 if (!Context
.TerminatorExpr
) {
5135 // If no temporary was found, we do not need to insert a decision point.
5138 assert(Context
.TerminatorExpr
);
5139 CFGBlock
*Decision
= createBlock(false);
5140 Decision
->setTerminator(CFGTerminator(Context
.TerminatorExpr
,
5141 CFGTerminator::TemporaryDtorsBranch
));
5142 addSuccessor(Decision
, Block
, !Context
.KnownExecuted
.isFalse());
5143 addSuccessor(Decision
, FalseSucc
? FalseSucc
: Context
.Succ
,
5144 !Context
.KnownExecuted
.isTrue());
5148 CFGBlock
*CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5149 AbstractConditionalOperator
*E
, bool ExternallyDestructed
,
5150 TempDtorContext
&Context
) {
5151 VisitForTemporaryDtors(E
->getCond(), false, Context
);
5152 CFGBlock
*ConditionBlock
= Block
;
5153 CFGBlock
*ConditionSucc
= Succ
;
5154 TryResult ConditionVal
= tryEvaluateBool(E
->getCond());
5155 TryResult NegatedVal
= ConditionVal
;
5156 if (NegatedVal
.isKnown()) NegatedVal
.negate();
5158 TempDtorContext
TrueContext(
5159 bothKnownTrue(Context
.KnownExecuted
, ConditionVal
));
5160 VisitForTemporaryDtors(E
->getTrueExpr(), ExternallyDestructed
, TrueContext
);
5161 CFGBlock
*TrueBlock
= Block
;
5163 Block
= ConditionBlock
;
5164 Succ
= ConditionSucc
;
5165 TempDtorContext
FalseContext(
5166 bothKnownTrue(Context
.KnownExecuted
, NegatedVal
));
5167 VisitForTemporaryDtors(E
->getFalseExpr(), ExternallyDestructed
, FalseContext
);
5169 if (TrueContext
.TerminatorExpr
&& FalseContext
.TerminatorExpr
) {
5170 InsertTempDtorDecisionBlock(FalseContext
, TrueBlock
);
5171 } else if (TrueContext
.TerminatorExpr
) {
5173 InsertTempDtorDecisionBlock(TrueContext
);
5175 InsertTempDtorDecisionBlock(FalseContext
);
5180 CFGBlock
*CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective
*D
,
5181 AddStmtChoice asc
) {
5182 if (asc
.alwaysAdd(*this, D
)) {
5184 appendStmt(Block
, D
);
5187 // Iterate over all used expression in clauses.
5188 CFGBlock
*B
= Block
;
5190 // Reverse the elements to process them in natural order. Iterators are not
5191 // bidirectional, so we need to create temp vector.
5192 SmallVector
<Stmt
*, 8> Used(
5193 OMPExecutableDirective::used_clauses_children(D
->clauses()));
5194 for (Stmt
*S
: llvm::reverse(Used
)) {
5195 assert(S
&& "Expected non-null used-in-clause child.");
5196 if (CFGBlock
*R
= Visit(S
))
5199 // Visit associated structured block if any.
5200 if (!D
->isStandaloneDirective()) {
5201 Stmt
*S
= D
->getRawStmt();
5202 if (!isa
<CompoundStmt
>(S
))
5203 addLocalScopeAndDtors(S
);
5204 if (CFGBlock
*R
= addStmt(S
))
5211 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
5212 /// no successors or predecessors. If this is the first block created in the
5213 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
5214 CFGBlock
*CFG::createBlock() {
5215 bool first_block
= begin() == end();
5217 // Create the block.
5218 CFGBlock
*Mem
= getAllocator().Allocate
<CFGBlock
>();
5219 new (Mem
) CFGBlock(NumBlockIDs
++, BlkBVC
, this);
5220 Blocks
.push_back(Mem
, BlkBVC
);
5222 // If this is the first block, set it as the Entry and Exit.
5224 Entry
= Exit
= &back();
5226 // Return the block.
5230 /// buildCFG - Constructs a CFG from an AST.
5231 std::unique_ptr
<CFG
> CFG::buildCFG(const Decl
*D
, Stmt
*Statement
,
5232 ASTContext
*C
, const BuildOptions
&BO
) {
5233 CFGBuilder
Builder(C
, BO
);
5234 return Builder
.buildCFG(D
, Statement
);
5237 bool CFG::isLinear() const {
5238 // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5239 // in between, then we have no room for control flow.
5243 // Traverse the CFG until we find a branch.
5244 // TODO: While this should still be very fast,
5245 // maybe we should cache the answer.
5246 llvm::SmallPtrSet
<const CFGBlock
*, 4> Visited
;
5247 const CFGBlock
*B
= Entry
;
5249 auto IteratorAndFlag
= Visited
.insert(B
);
5250 if (!IteratorAndFlag
.second
) {
5251 // We looped back to a block that we've already visited. Not linear.
5255 // Iterate over reachable successors.
5256 const CFGBlock
*FirstReachableB
= nullptr;
5257 for (const CFGBlock::AdjacentBlock
&AB
: B
->succs()) {
5258 if (!AB
.isReachable())
5261 if (FirstReachableB
== nullptr) {
5262 FirstReachableB
= &*AB
;
5264 // We've encountered a branch. It's not a linear CFG.
5269 if (!FirstReachableB
) {
5270 // We reached a dead end. EXIT is unreachable. This is linear enough.
5274 // There's only one way to move forward. Proceed.
5275 B
= FirstReachableB
;
5278 // We reached EXIT and found no branches.
5282 const CXXDestructorDecl
*
5283 CFGImplicitDtor::getDestructorDecl(ASTContext
&astContext
) const {
5284 switch (getKind()) {
5285 case CFGElement::Initializer
:
5286 case CFGElement::NewAllocator
:
5287 case CFGElement::LoopExit
:
5288 case CFGElement::LifetimeEnds
:
5289 case CFGElement::Statement
:
5290 case CFGElement::Constructor
:
5291 case CFGElement::CXXRecordTypedCall
:
5292 case CFGElement::ScopeBegin
:
5293 case CFGElement::ScopeEnd
:
5294 llvm_unreachable("getDestructorDecl should only be used with "
5296 case CFGElement::AutomaticObjectDtor
: {
5297 const VarDecl
*var
= castAs
<CFGAutomaticObjDtor
>().getVarDecl();
5298 QualType ty
= var
->getType();
5300 // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5302 // Lifetime-extending constructs are handled here. This works for a single
5303 // temporary in an initializer expression.
5304 if (ty
->isReferenceType()) {
5305 if (const Expr
*Init
= var
->getInit()) {
5306 ty
= getReferenceInitTemporaryType(Init
);
5310 while (const ArrayType
*arrayType
= astContext
.getAsArrayType(ty
)) {
5311 ty
= arrayType
->getElementType();
5314 // The situation when the type of the lifetime-extending reference
5315 // does not correspond to the type of the object is supposed
5316 // to be handled by now. In particular, 'ty' is now the unwrapped
5318 const CXXRecordDecl
*classDecl
= ty
->getAsCXXRecordDecl();
5320 return classDecl
->getDestructor();
5322 case CFGElement::DeleteDtor
: {
5323 const CXXDeleteExpr
*DE
= castAs
<CFGDeleteDtor
>().getDeleteExpr();
5324 QualType DTy
= DE
->getDestroyedType();
5325 DTy
= DTy
.getNonReferenceType();
5326 const CXXRecordDecl
*classDecl
=
5327 astContext
.getBaseElementType(DTy
)->getAsCXXRecordDecl();
5328 return classDecl
->getDestructor();
5330 case CFGElement::TemporaryDtor
: {
5331 const CXXBindTemporaryExpr
*bindExpr
=
5332 castAs
<CFGTemporaryDtor
>().getBindTemporaryExpr();
5333 const CXXTemporary
*temp
= bindExpr
->getTemporary();
5334 return temp
->getDestructor();
5336 case CFGElement::MemberDtor
: {
5337 const FieldDecl
*field
= castAs
<CFGMemberDtor
>().getFieldDecl();
5338 QualType ty
= field
->getType();
5340 while (const ArrayType
*arrayType
= astContext
.getAsArrayType(ty
)) {
5341 ty
= arrayType
->getElementType();
5344 const CXXRecordDecl
*classDecl
= ty
->getAsCXXRecordDecl();
5346 return classDecl
->getDestructor();
5348 case CFGElement::BaseDtor
:
5349 // Not yet supported.
5352 llvm_unreachable("getKind() returned bogus value");
5355 //===----------------------------------------------------------------------===//
5356 // CFGBlock operations.
5357 //===----------------------------------------------------------------------===//
5359 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock
*B
, bool IsReachable
)
5360 : ReachableBlock(IsReachable
? B
: nullptr),
5361 UnreachableBlock(!IsReachable
? B
: nullptr,
5362 B
&& IsReachable
? AB_Normal
: AB_Unreachable
) {}
5364 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock
*B
, CFGBlock
*AlternateBlock
)
5365 : ReachableBlock(B
),
5366 UnreachableBlock(B
== AlternateBlock
? nullptr : AlternateBlock
,
5367 B
== AlternateBlock
? AB_Alternate
: AB_Normal
) {}
5369 void CFGBlock::addSuccessor(AdjacentBlock Succ
,
5370 BumpVectorContext
&C
) {
5371 if (CFGBlock
*B
= Succ
.getReachableBlock())
5372 B
->Preds
.push_back(AdjacentBlock(this, Succ
.isReachable()), C
);
5374 if (CFGBlock
*UnreachableB
= Succ
.getPossiblyUnreachableBlock())
5375 UnreachableB
->Preds
.push_back(AdjacentBlock(this, false), C
);
5377 Succs
.push_back(Succ
, C
);
5380 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions
&F
,
5381 const CFGBlock
*From
, const CFGBlock
*To
) {
5382 if (F
.IgnoreNullPredecessors
&& !From
)
5385 if (To
&& From
&& F
.IgnoreDefaultsWithCoveredEnums
) {
5386 // If the 'To' has no label or is labeled but the label isn't a
5387 // CaseStmt then filter this edge.
5388 if (const SwitchStmt
*S
=
5389 dyn_cast_or_null
<SwitchStmt
>(From
->getTerminatorStmt())) {
5390 if (S
->isAllEnumCasesCovered()) {
5391 const Stmt
*L
= To
->getLabel();
5392 if (!L
|| !isa
<CaseStmt
>(L
))
5401 //===----------------------------------------------------------------------===//
5402 // CFG pretty printing
5403 //===----------------------------------------------------------------------===//
5407 class StmtPrinterHelper
: public PrinterHelper
{
5408 using StmtMapTy
= llvm::DenseMap
<const Stmt
*, std::pair
<unsigned, unsigned>>;
5409 using DeclMapTy
= llvm::DenseMap
<const Decl
*, std::pair
<unsigned, unsigned>>;
5413 signed currentBlock
= 0;
5414 unsigned currStmt
= 0;
5415 const LangOptions
&LangOpts
;
5418 StmtPrinterHelper(const CFG
* cfg
, const LangOptions
&LO
)
5422 for (CFG::const_iterator I
= cfg
->begin(), E
= cfg
->end(); I
!= E
; ++I
) {
5424 for (CFGBlock::const_iterator BI
= (*I
)->begin(), BEnd
= (*I
)->end() ;
5425 BI
!= BEnd
; ++BI
, ++j
) {
5426 if (std::optional
<CFGStmt
> SE
= BI
->getAs
<CFGStmt
>()) {
5427 const Stmt
*stmt
= SE
->getStmt();
5428 std::pair
<unsigned, unsigned> P((*I
)->getBlockID(), j
);
5431 switch (stmt
->getStmtClass()) {
5432 case Stmt::DeclStmtClass
:
5433 DeclMap
[cast
<DeclStmt
>(stmt
)->getSingleDecl()] = P
;
5435 case Stmt::IfStmtClass
: {
5436 const VarDecl
*var
= cast
<IfStmt
>(stmt
)->getConditionVariable();
5441 case Stmt::ForStmtClass
: {
5442 const VarDecl
*var
= cast
<ForStmt
>(stmt
)->getConditionVariable();
5447 case Stmt::WhileStmtClass
: {
5448 const VarDecl
*var
=
5449 cast
<WhileStmt
>(stmt
)->getConditionVariable();
5454 case Stmt::SwitchStmtClass
: {
5455 const VarDecl
*var
=
5456 cast
<SwitchStmt
>(stmt
)->getConditionVariable();
5461 case Stmt::CXXCatchStmtClass
: {
5462 const VarDecl
*var
=
5463 cast
<CXXCatchStmt
>(stmt
)->getExceptionDecl();
5476 ~StmtPrinterHelper() override
= default;
5478 const LangOptions
&getLangOpts() const { return LangOpts
; }
5479 void setBlockID(signed i
) { currentBlock
= i
; }
5480 void setStmtID(unsigned i
) { currStmt
= i
; }
5482 bool handledStmt(Stmt
*S
, raw_ostream
&OS
) override
{
5483 StmtMapTy::iterator I
= StmtMap
.find(S
);
5485 if (I
== StmtMap
.end())
5488 if (currentBlock
>= 0 && I
->second
.first
== (unsigned) currentBlock
5489 && I
->second
.second
== currStmt
) {
5493 OS
<< "[B" << I
->second
.first
<< "." << I
->second
.second
<< "]";
5497 bool handleDecl(const Decl
*D
, raw_ostream
&OS
) {
5498 DeclMapTy::iterator I
= DeclMap
.find(D
);
5500 if (I
== DeclMap
.end())
5503 if (currentBlock
>= 0 && I
->second
.first
== (unsigned) currentBlock
5504 && I
->second
.second
== currStmt
) {
5508 OS
<< "[B" << I
->second
.first
<< "." << I
->second
.second
<< "]";
5513 class CFGBlockTerminatorPrint
5514 : public StmtVisitor
<CFGBlockTerminatorPrint
,void> {
5516 StmtPrinterHelper
* Helper
;
5517 PrintingPolicy Policy
;
5520 CFGBlockTerminatorPrint(raw_ostream
&os
, StmtPrinterHelper
* helper
,
5521 const PrintingPolicy
&Policy
)
5522 : OS(os
), Helper(helper
), Policy(Policy
) {
5523 this->Policy
.IncludeNewlines
= false;
5526 void VisitIfStmt(IfStmt
*I
) {
5528 if (Stmt
*C
= I
->getCond())
5529 C
->printPretty(OS
, Helper
, Policy
);
5533 void VisitStmt(Stmt
*Terminator
) {
5534 Terminator
->printPretty(OS
, Helper
, Policy
);
5537 void VisitDeclStmt(DeclStmt
*DS
) {
5538 VarDecl
*VD
= cast
<VarDecl
>(DS
->getSingleDecl());
5539 OS
<< "static init " << VD
->getName();
5542 void VisitForStmt(ForStmt
*F
) {
5547 if (Stmt
*C
= F
->getCond())
5548 C
->printPretty(OS
, Helper
, Policy
);
5555 void VisitWhileStmt(WhileStmt
*W
) {
5557 if (Stmt
*C
= W
->getCond())
5558 C
->printPretty(OS
, Helper
, Policy
);
5561 void VisitDoStmt(DoStmt
*D
) {
5562 OS
<< "do ... while ";
5563 if (Stmt
*C
= D
->getCond())
5564 C
->printPretty(OS
, Helper
, Policy
);
5567 void VisitSwitchStmt(SwitchStmt
*Terminator
) {
5569 Terminator
->getCond()->printPretty(OS
, Helper
, Policy
);
5572 void VisitCXXTryStmt(CXXTryStmt
*) { OS
<< "try ..."; }
5574 void VisitObjCAtTryStmt(ObjCAtTryStmt
*) { OS
<< "@try ..."; }
5576 void VisitSEHTryStmt(SEHTryStmt
*CS
) { OS
<< "__try ..."; }
5578 void VisitAbstractConditionalOperator(AbstractConditionalOperator
* C
) {
5579 if (Stmt
*Cond
= C
->getCond())
5580 Cond
->printPretty(OS
, Helper
, Policy
);
5581 OS
<< " ? ... : ...";
5584 void VisitChooseExpr(ChooseExpr
*C
) {
5585 OS
<< "__builtin_choose_expr( ";
5586 if (Stmt
*Cond
= C
->getCond())
5587 Cond
->printPretty(OS
, Helper
, Policy
);
5591 void VisitIndirectGotoStmt(IndirectGotoStmt
*I
) {
5593 if (Stmt
*T
= I
->getTarget())
5594 T
->printPretty(OS
, Helper
, Policy
);
5597 void VisitBinaryOperator(BinaryOperator
* B
) {
5598 if (!B
->isLogicalOp()) {
5604 B
->getLHS()->printPretty(OS
, Helper
, Policy
);
5606 switch (B
->getOpcode()) {
5614 llvm_unreachable("Invalid logical operator.");
5618 void VisitExpr(Expr
*E
) {
5619 E
->printPretty(OS
, Helper
, Policy
);
5623 void print(CFGTerminator T
) {
5624 switch (T
.getKind()) {
5625 case CFGTerminator::StmtBranch
:
5628 case CFGTerminator::TemporaryDtorsBranch
:
5629 OS
<< "(Temp Dtor) ";
5632 case CFGTerminator::VirtualBaseBranch
:
5633 OS
<< "(See if most derived ctor has already initialized vbases)";
5641 static void print_initializer(raw_ostream
&OS
, StmtPrinterHelper
&Helper
,
5642 const CXXCtorInitializer
*I
) {
5643 if (I
->isBaseInitializer())
5644 OS
<< I
->getBaseClass()->getAsCXXRecordDecl()->getName();
5645 else if (I
->isDelegatingInitializer())
5646 OS
<< I
->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5648 OS
<< I
->getAnyMember()->getName();
5650 if (Expr
*IE
= I
->getInit())
5651 IE
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5654 if (I
->isBaseInitializer())
5655 OS
<< " (Base initializer)";
5656 else if (I
->isDelegatingInitializer())
5657 OS
<< " (Delegating initializer)";
5659 OS
<< " (Member initializer)";
5662 static void print_construction_context(raw_ostream
&OS
,
5663 StmtPrinterHelper
&Helper
,
5664 const ConstructionContext
*CC
) {
5665 SmallVector
<const Stmt
*, 3> Stmts
;
5666 switch (CC
->getKind()) {
5667 case ConstructionContext::SimpleConstructorInitializerKind
: {
5669 const auto *SICC
= cast
<SimpleConstructorInitializerConstructionContext
>(CC
);
5670 print_initializer(OS
, Helper
, SICC
->getCXXCtorInitializer());
5673 case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind
: {
5676 cast
<CXX17ElidedCopyConstructorInitializerConstructionContext
>(CC
);
5677 print_initializer(OS
, Helper
, CICC
->getCXXCtorInitializer());
5678 Stmts
.push_back(CICC
->getCXXBindTemporaryExpr());
5681 case ConstructionContext::SimpleVariableKind
: {
5682 const auto *SDSCC
= cast
<SimpleVariableConstructionContext
>(CC
);
5683 Stmts
.push_back(SDSCC
->getDeclStmt());
5686 case ConstructionContext::CXX17ElidedCopyVariableKind
: {
5687 const auto *CDSCC
= cast
<CXX17ElidedCopyVariableConstructionContext
>(CC
);
5688 Stmts
.push_back(CDSCC
->getDeclStmt());
5689 Stmts
.push_back(CDSCC
->getCXXBindTemporaryExpr());
5692 case ConstructionContext::NewAllocatedObjectKind
: {
5693 const auto *NECC
= cast
<NewAllocatedObjectConstructionContext
>(CC
);
5694 Stmts
.push_back(NECC
->getCXXNewExpr());
5697 case ConstructionContext::SimpleReturnedValueKind
: {
5698 const auto *RSCC
= cast
<SimpleReturnedValueConstructionContext
>(CC
);
5699 Stmts
.push_back(RSCC
->getReturnStmt());
5702 case ConstructionContext::CXX17ElidedCopyReturnedValueKind
: {
5704 cast
<CXX17ElidedCopyReturnedValueConstructionContext
>(CC
);
5705 Stmts
.push_back(RSCC
->getReturnStmt());
5706 Stmts
.push_back(RSCC
->getCXXBindTemporaryExpr());
5709 case ConstructionContext::SimpleTemporaryObjectKind
: {
5710 const auto *TOCC
= cast
<SimpleTemporaryObjectConstructionContext
>(CC
);
5711 Stmts
.push_back(TOCC
->getCXXBindTemporaryExpr());
5712 Stmts
.push_back(TOCC
->getMaterializedTemporaryExpr());
5715 case ConstructionContext::ElidedTemporaryObjectKind
: {
5716 const auto *TOCC
= cast
<ElidedTemporaryObjectConstructionContext
>(CC
);
5717 Stmts
.push_back(TOCC
->getCXXBindTemporaryExpr());
5718 Stmts
.push_back(TOCC
->getMaterializedTemporaryExpr());
5719 Stmts
.push_back(TOCC
->getConstructorAfterElision());
5722 case ConstructionContext::LambdaCaptureKind
: {
5723 const auto *LCC
= cast
<LambdaCaptureConstructionContext
>(CC
);
5724 Helper
.handledStmt(const_cast<LambdaExpr
*>(LCC
->getLambdaExpr()), OS
);
5725 OS
<< "+" << LCC
->getIndex();
5728 case ConstructionContext::ArgumentKind
: {
5729 const auto *ACC
= cast
<ArgumentConstructionContext
>(CC
);
5730 if (const Stmt
*BTE
= ACC
->getCXXBindTemporaryExpr()) {
5732 Helper
.handledStmt(const_cast<Stmt
*>(BTE
), OS
);
5735 Helper
.handledStmt(const_cast<Expr
*>(ACC
->getCallLikeExpr()), OS
);
5736 OS
<< "+" << ACC
->getIndex();
5743 Helper
.handledStmt(const_cast<Stmt
*>(I
), OS
);
5747 static void print_elem(raw_ostream
&OS
, StmtPrinterHelper
&Helper
,
5748 const CFGElement
&E
);
5750 void CFGElement::dumpToStream(llvm::raw_ostream
&OS
) const {
5751 StmtPrinterHelper
Helper(nullptr, {});
5752 print_elem(OS
, Helper
, *this);
5755 static void print_elem(raw_ostream
&OS
, StmtPrinterHelper
&Helper
,
5756 const CFGElement
&E
) {
5757 switch (E
.getKind()) {
5758 case CFGElement::Kind::Statement
:
5759 case CFGElement::Kind::CXXRecordTypedCall
:
5760 case CFGElement::Kind::Constructor
: {
5761 CFGStmt CS
= E
.castAs
<CFGStmt
>();
5762 const Stmt
*S
= CS
.getStmt();
5763 assert(S
!= nullptr && "Expecting non-null Stmt");
5765 // special printing for statement-expressions.
5766 if (const StmtExpr
*SE
= dyn_cast
<StmtExpr
>(S
)) {
5767 const CompoundStmt
*Sub
= SE
->getSubStmt();
5769 auto Children
= Sub
->children();
5770 if (Children
.begin() != Children
.end()) {
5772 Helper
.handledStmt(*SE
->getSubStmt()->body_rbegin(),OS
);
5777 // special printing for comma expressions.
5778 if (const BinaryOperator
* B
= dyn_cast
<BinaryOperator
>(S
)) {
5779 if (B
->getOpcode() == BO_Comma
) {
5781 Helper
.handledStmt(B
->getRHS(),OS
);
5786 S
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5788 if (auto VTC
= E
.getAs
<CFGCXXRecordTypedCall
>()) {
5789 if (isa
<CXXOperatorCallExpr
>(S
))
5790 OS
<< " (OperatorCall)";
5791 OS
<< " (CXXRecordTypedCall";
5792 print_construction_context(OS
, Helper
, VTC
->getConstructionContext());
5794 } else if (isa
<CXXOperatorCallExpr
>(S
)) {
5795 OS
<< " (OperatorCall)";
5796 } else if (isa
<CXXBindTemporaryExpr
>(S
)) {
5797 OS
<< " (BindTemporary)";
5798 } else if (const CXXConstructExpr
*CCE
= dyn_cast
<CXXConstructExpr
>(S
)) {
5799 OS
<< " (CXXConstructExpr";
5800 if (std::optional
<CFGConstructor
> CE
= E
.getAs
<CFGConstructor
>()) {
5801 print_construction_context(OS
, Helper
, CE
->getConstructionContext());
5803 OS
<< ", " << CCE
->getType() << ")";
5804 } else if (const CastExpr
*CE
= dyn_cast
<CastExpr
>(S
)) {
5805 OS
<< " (" << CE
->getStmtClassName() << ", " << CE
->getCastKindName()
5806 << ", " << CE
->getType() << ")";
5809 // Expressions need a newline.
5816 case CFGElement::Kind::Initializer
:
5817 print_initializer(OS
, Helper
, E
.castAs
<CFGInitializer
>().getInitializer());
5821 case CFGElement::Kind::AutomaticObjectDtor
: {
5822 CFGAutomaticObjDtor DE
= E
.castAs
<CFGAutomaticObjDtor
>();
5823 const VarDecl
*VD
= DE
.getVarDecl();
5824 Helper
.handleDecl(VD
, OS
);
5826 QualType T
= VD
->getType();
5827 if (T
->isReferenceType())
5828 T
= getReferenceInitTemporaryType(VD
->getInit(), nullptr);
5831 T
.getUnqualifiedType().print(OS
, PrintingPolicy(Helper
.getLangOpts()));
5832 OS
<< "() (Implicit destructor)\n";
5836 case CFGElement::Kind::LifetimeEnds
:
5837 Helper
.handleDecl(E
.castAs
<CFGLifetimeEnds
>().getVarDecl(), OS
);
5838 OS
<< " (Lifetime ends)\n";
5841 case CFGElement::Kind::LoopExit
:
5842 OS
<< E
.castAs
<CFGLoopExit
>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5845 case CFGElement::Kind::ScopeBegin
:
5846 OS
<< "CFGScopeBegin(";
5847 if (const VarDecl
*VD
= E
.castAs
<CFGScopeBegin
>().getVarDecl())
5848 OS
<< VD
->getQualifiedNameAsString();
5852 case CFGElement::Kind::ScopeEnd
:
5853 OS
<< "CFGScopeEnd(";
5854 if (const VarDecl
*VD
= E
.castAs
<CFGScopeEnd
>().getVarDecl())
5855 OS
<< VD
->getQualifiedNameAsString();
5859 case CFGElement::Kind::NewAllocator
:
5860 OS
<< "CFGNewAllocator(";
5861 if (const CXXNewExpr
*AllocExpr
= E
.castAs
<CFGNewAllocator
>().getAllocatorExpr())
5862 AllocExpr
->getType().print(OS
, PrintingPolicy(Helper
.getLangOpts()));
5866 case CFGElement::Kind::DeleteDtor
: {
5867 CFGDeleteDtor DE
= E
.castAs
<CFGDeleteDtor
>();
5868 const CXXRecordDecl
*RD
= DE
.getCXXRecordDecl();
5871 CXXDeleteExpr
*DelExpr
=
5872 const_cast<CXXDeleteExpr
*>(DE
.getDeleteExpr());
5873 Helper
.handledStmt(cast
<Stmt
>(DelExpr
->getArgument()), OS
);
5874 OS
<< "->~" << RD
->getName().str() << "()";
5875 OS
<< " (Implicit destructor)\n";
5879 case CFGElement::Kind::BaseDtor
: {
5880 const CXXBaseSpecifier
*BS
= E
.castAs
<CFGBaseDtor
>().getBaseSpecifier();
5881 OS
<< "~" << BS
->getType()->getAsCXXRecordDecl()->getName() << "()";
5882 OS
<< " (Base object destructor)\n";
5886 case CFGElement::Kind::MemberDtor
: {
5887 const FieldDecl
*FD
= E
.castAs
<CFGMemberDtor
>().getFieldDecl();
5888 const Type
*T
= FD
->getType()->getBaseElementTypeUnsafe();
5889 OS
<< "this->" << FD
->getName();
5890 OS
<< ".~" << T
->getAsCXXRecordDecl()->getName() << "()";
5891 OS
<< " (Member object destructor)\n";
5895 case CFGElement::Kind::TemporaryDtor
: {
5896 const CXXBindTemporaryExpr
*BT
=
5897 E
.castAs
<CFGTemporaryDtor
>().getBindTemporaryExpr();
5899 BT
->getType().print(OS
, PrintingPolicy(Helper
.getLangOpts()));
5900 OS
<< "() (Temporary object destructor)\n";
5906 static void print_block(raw_ostream
&OS
, const CFG
* cfg
,
5908 StmtPrinterHelper
&Helper
, bool print_edges
,
5910 Helper
.setBlockID(B
.getBlockID());
5912 // Print the header.
5914 OS
.changeColor(raw_ostream::YELLOW
, true);
5916 OS
<< "\n [B" << B
.getBlockID();
5918 if (&B
== &cfg
->getEntry())
5919 OS
<< " (ENTRY)]\n";
5920 else if (&B
== &cfg
->getExit())
5922 else if (&B
== cfg
->getIndirectGotoBlock())
5923 OS
<< " (INDIRECT GOTO DISPATCH)]\n";
5924 else if (B
.hasNoReturnElement())
5925 OS
<< " (NORETURN)]\n";
5932 // Print the label of this block.
5933 if (Stmt
*Label
= const_cast<Stmt
*>(B
.getLabel())) {
5937 if (LabelStmt
*L
= dyn_cast
<LabelStmt
>(Label
))
5939 else if (CaseStmt
*C
= dyn_cast
<CaseStmt
>(Label
)) {
5941 if (const Expr
*LHS
= C
->getLHS())
5942 LHS
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5943 if (const Expr
*RHS
= C
->getRHS()) {
5945 RHS
->printPretty(OS
, &Helper
, PrintingPolicy(Helper
.getLangOpts()));
5947 } else if (isa
<DefaultStmt
>(Label
))
5949 else if (CXXCatchStmt
*CS
= dyn_cast
<CXXCatchStmt
>(Label
)) {
5951 if (const VarDecl
*ED
= CS
->getExceptionDecl())
5952 ED
->print(OS
, PrintingPolicy(Helper
.getLangOpts()), 0);
5956 } else if (ObjCAtCatchStmt
*CS
= dyn_cast
<ObjCAtCatchStmt
>(Label
)) {
5958 if (const VarDecl
*PD
= CS
->getCatchParamDecl())
5959 PD
->print(OS
, PrintingPolicy(Helper
.getLangOpts()), 0);
5963 } else if (SEHExceptStmt
*ES
= dyn_cast
<SEHExceptStmt
>(Label
)) {
5965 ES
->getFilterExpr()->printPretty(OS
, &Helper
,
5966 PrintingPolicy(Helper
.getLangOpts()), 0);
5969 llvm_unreachable("Invalid label statement in CFGBlock.");
5974 // Iterate through the statements in the block and print them.
5977 for (CFGBlock::const_iterator I
= B
.begin(), E
= B
.end() ;
5978 I
!= E
; ++I
, ++j
) {
5979 // Print the statement # in the basic block and the statement itself.
5983 OS
<< llvm::format("%3d", j
) << ": ";
5985 Helper
.setStmtID(j
);
5987 print_elem(OS
, Helper
, *I
);
5990 // Print the terminator of this block.
5991 if (B
.getTerminator().isValid()) {
5993 OS
.changeColor(raw_ostream::GREEN
);
5997 Helper
.setBlockID(-1);
5999 PrintingPolicy
PP(Helper
.getLangOpts());
6000 CFGBlockTerminatorPrint
TPrinter(OS
, &Helper
, PP
);
6001 TPrinter
.print(B
.getTerminator());
6009 // Print the predecessors of this block.
6010 if (!B
.pred_empty()) {
6011 const raw_ostream::Colors Color
= raw_ostream::BLUE
;
6013 OS
.changeColor(Color
);
6017 OS
<< '(' << B
.pred_size() << "):";
6021 OS
.changeColor(Color
);
6023 for (CFGBlock::const_pred_iterator I
= B
.pred_begin(), E
= B
.pred_end();
6029 bool Reachable
= true;
6032 B
= I
->getPossiblyUnreachableBlock();
6035 OS
<< " B" << B
->getBlockID();
6037 OS
<< "(Unreachable)";
6046 // Print the successors of this block.
6047 if (!B
.succ_empty()) {
6048 const raw_ostream::Colors Color
= raw_ostream::MAGENTA
;
6050 OS
.changeColor(Color
);
6054 OS
<< '(' << B
.succ_size() << "):";
6058 OS
.changeColor(Color
);
6060 for (CFGBlock::const_succ_iterator I
= B
.succ_begin(), E
= B
.succ_end();
6067 bool Reachable
= true;
6070 B
= I
->getPossiblyUnreachableBlock();
6074 OS
<< " B" << B
->getBlockID();
6076 OS
<< "(Unreachable)";
6090 /// dump - A simple pretty printer of a CFG that outputs to stderr.
6091 void CFG::dump(const LangOptions
&LO
, bool ShowColors
) const {
6092 print(llvm::errs(), LO
, ShowColors
);
6095 /// print - A simple pretty printer of a CFG that outputs to an ostream.
6096 void CFG::print(raw_ostream
&OS
, const LangOptions
&LO
, bool ShowColors
) const {
6097 StmtPrinterHelper
Helper(this, LO
);
6099 // Print the entry block.
6100 print_block(OS
, this, getEntry(), Helper
, true, ShowColors
);
6102 // Iterate through the CFGBlocks and print them one by one.
6103 for (const_iterator I
= Blocks
.begin(), E
= Blocks
.end() ; I
!= E
; ++I
) {
6104 // Skip the entry block, because we already printed it.
6105 if (&(**I
) == &getEntry() || &(**I
) == &getExit())
6108 print_block(OS
, this, **I
, Helper
, true, ShowColors
);
6111 // Print the exit block.
6112 print_block(OS
, this, getExit(), Helper
, true, ShowColors
);
6117 size_t CFGBlock::getIndexInCFG() const {
6118 return llvm::find(*getParent(), this) - getParent()->begin();
6121 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
6122 void CFGBlock::dump(const CFG
* cfg
, const LangOptions
&LO
,
6123 bool ShowColors
) const {
6124 print(llvm::errs(), cfg
, LO
, ShowColors
);
6127 LLVM_DUMP_METHOD
void CFGBlock::dump() const {
6128 dump(getParent(), LangOptions(), false);
6131 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
6132 /// Generally this will only be called from CFG::print.
6133 void CFGBlock::print(raw_ostream
&OS
, const CFG
* cfg
,
6134 const LangOptions
&LO
, bool ShowColors
) const {
6135 StmtPrinterHelper
Helper(cfg
, LO
);
6136 print_block(OS
, cfg
, *this, Helper
, true, ShowColors
);
6140 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
6141 void CFGBlock::printTerminator(raw_ostream
&OS
,
6142 const LangOptions
&LO
) const {
6143 CFGBlockTerminatorPrint
TPrinter(OS
, nullptr, PrintingPolicy(LO
));
6144 TPrinter
.print(getTerminator());
6147 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
6148 void CFGBlock::printTerminatorJson(raw_ostream
&Out
, const LangOptions
&LO
,
6149 bool AddQuotes
) const {
6151 llvm::raw_string_ostream
TempOut(Buf
);
6153 printTerminator(TempOut
, LO
);
6155 Out
<< JsonFormat(TempOut
.str(), AddQuotes
);
6158 // Returns true if by simply looking at the block, we can be sure that it
6159 // results in a sink during analysis. This is useful to know when the analysis
6160 // was interrupted, and we try to figure out if it would sink eventually.
6161 // There may be many more reasons why a sink would appear during analysis
6162 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6163 // sinks that would be obvious by looking at the CFG.
6164 static bool isImmediateSinkBlock(const CFGBlock
*Blk
) {
6165 if (Blk
->hasNoReturnElement())
6168 // FIXME: Throw-expressions are currently generating sinks during analysis:
6169 // they're not supported yet, and also often used for actually terminating
6170 // the program. So we should treat them as sinks in this analysis as well,
6171 // at least for now, but once we have better support for exceptions,
6172 // we'd need to carefully handle the case when the throw is being
6173 // immediately caught.
6174 if (llvm::any_of(*Blk
, [](const CFGElement
&Elm
) {
6175 if (std::optional
<CFGStmt
> StmtElm
= Elm
.getAs
<CFGStmt
>())
6176 if (isa
<CXXThrowExpr
>(StmtElm
->getStmt()))
6185 bool CFGBlock::isInevitablySinking() const {
6186 const CFG
&Cfg
= *getParent();
6188 const CFGBlock
*StartBlk
= this;
6189 if (isImmediateSinkBlock(StartBlk
))
6192 llvm::SmallVector
<const CFGBlock
*, 32> DFSWorkList
;
6193 llvm::SmallPtrSet
<const CFGBlock
*, 32> Visited
;
6195 DFSWorkList
.push_back(StartBlk
);
6196 while (!DFSWorkList
.empty()) {
6197 const CFGBlock
*Blk
= DFSWorkList
.back();
6198 DFSWorkList
.pop_back();
6199 Visited
.insert(Blk
);
6201 // If at least one path reaches the CFG exit, it means that control is
6202 // returned to the caller. For now, say that we are not sure what
6203 // happens next. If necessary, this can be improved to analyze
6204 // the parent StackFrameContext's call site in a similar manner.
6205 if (Blk
== &Cfg
.getExit())
6208 for (const auto &Succ
: Blk
->succs()) {
6209 if (const CFGBlock
*SuccBlk
= Succ
.getReachableBlock()) {
6210 if (!isImmediateSinkBlock(SuccBlk
) && !Visited
.count(SuccBlk
)) {
6211 // If the block has reachable child blocks that aren't no-return,
6212 // add them to the worklist.
6213 DFSWorkList
.push_back(SuccBlk
);
6219 // Nothing reached the exit. It can only mean one thing: there's no return.
6223 const Expr
*CFGBlock::getLastCondition() const {
6224 // If the terminator is a temporary dtor or a virtual base, etc, we can't
6225 // retrieve a meaningful condition, bail out.
6226 if (Terminator
.getKind() != CFGTerminator::StmtBranch
)
6229 // Also, if this method was called on a block that doesn't have 2 successors,
6230 // this block doesn't have retrievable condition.
6231 if (succ_size() < 2)
6234 // FIXME: Is there a better condition expression we can return in this case?
6238 auto StmtElem
= rbegin()->getAs
<CFGStmt
>();
6242 const Stmt
*Cond
= StmtElem
->getStmt();
6243 if (isa
<ObjCForCollectionStmt
>(Cond
) || isa
<DeclStmt
>(Cond
))
6246 // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6248 return cast
<Expr
>(Cond
)->IgnoreParens();
6251 Stmt
*CFGBlock::getTerminatorCondition(bool StripParens
) {
6252 Stmt
*Terminator
= getTerminatorStmt();
6258 switch (Terminator
->getStmtClass()) {
6262 case Stmt::CXXForRangeStmtClass
:
6263 E
= cast
<CXXForRangeStmt
>(Terminator
)->getCond();
6266 case Stmt::ForStmtClass
:
6267 E
= cast
<ForStmt
>(Terminator
)->getCond();
6270 case Stmt::WhileStmtClass
:
6271 E
= cast
<WhileStmt
>(Terminator
)->getCond();
6274 case Stmt::DoStmtClass
:
6275 E
= cast
<DoStmt
>(Terminator
)->getCond();
6278 case Stmt::IfStmtClass
:
6279 E
= cast
<IfStmt
>(Terminator
)->getCond();
6282 case Stmt::ChooseExprClass
:
6283 E
= cast
<ChooseExpr
>(Terminator
)->getCond();
6286 case Stmt::IndirectGotoStmtClass
:
6287 E
= cast
<IndirectGotoStmt
>(Terminator
)->getTarget();
6290 case Stmt::SwitchStmtClass
:
6291 E
= cast
<SwitchStmt
>(Terminator
)->getCond();
6294 case Stmt::BinaryConditionalOperatorClass
:
6295 E
= cast
<BinaryConditionalOperator
>(Terminator
)->getCond();
6298 case Stmt::ConditionalOperatorClass
:
6299 E
= cast
<ConditionalOperator
>(Terminator
)->getCond();
6302 case Stmt::BinaryOperatorClass
: // '&&' and '||'
6303 E
= cast
<BinaryOperator
>(Terminator
)->getLHS();
6306 case Stmt::ObjCForCollectionStmtClass
:
6313 return E
? E
->IgnoreParens() : nullptr;
6316 //===----------------------------------------------------------------------===//
6317 // CFG Graphviz Visualization
6318 //===----------------------------------------------------------------------===//
6320 static StmtPrinterHelper
*GraphHelper
;
6322 void CFG::viewCFG(const LangOptions
&LO
) const {
6323 StmtPrinterHelper
H(this, LO
);
6325 llvm::ViewGraph(this,"CFG");
6326 GraphHelper
= nullptr;
6332 struct DOTGraphTraits
<const CFG
*> : public DefaultDOTGraphTraits
{
6333 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
6335 static std::string
getNodeLabel(const CFGBlock
*Node
, const CFG
*Graph
) {
6336 std::string OutSStr
;
6337 llvm::raw_string_ostream
Out(OutSStr
);
6338 print_block(Out
,Graph
, *Node
, *GraphHelper
, false, false);
6339 std::string
& OutStr
= Out
.str();
6341 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
6343 // Process string output to make it nicer...
6344 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
6345 if (OutStr
[i
] == '\n') { // Left justify
6347 OutStr
.insert(OutStr
.begin()+i
+1, 'l');