1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //===----------------------------------------------------------------------===//
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
37 using namespace clang
;
38 using namespace threadSafety
;
40 // From ThreadSafetyUtil.h
41 std::string
threadSafety::getSourceLiteralString(const Expr
*CE
) {
42 switch (CE
->getStmtClass()) {
43 case Stmt::IntegerLiteralClass
:
44 return toString(cast
<IntegerLiteral
>(CE
)->getValue(), 10, true);
45 case Stmt::StringLiteralClass
: {
46 std::string
ret("\"");
47 ret
+= cast
<StringLiteral
>(CE
)->getString();
51 case Stmt::CharacterLiteralClass
:
52 case Stmt::CXXNullPtrLiteralExprClass
:
53 case Stmt::GNUNullExprClass
:
54 case Stmt::CXXBoolLiteralExprClass
:
55 case Stmt::FloatingLiteralClass
:
56 case Stmt::ImaginaryLiteralClass
:
57 case Stmt::ObjCStringLiteralClass
:
63 // Return true if E is a variable that points to an incomplete Phi node.
64 static bool isIncompletePhi(const til::SExpr
*E
) {
65 if (const auto *Ph
= dyn_cast
<til::Phi
>(E
))
66 return Ph
->status() == til::Phi::PH_Incomplete
;
70 using CallingContext
= SExprBuilder::CallingContext
;
72 til::SExpr
*SExprBuilder::lookupStmt(const Stmt
*S
) {
73 auto It
= SMap
.find(S
);
79 til::SCFG
*SExprBuilder::buildCFG(CFGWalker
&Walker
) {
84 static bool isCalleeArrow(const Expr
*E
) {
85 const auto *ME
= dyn_cast
<MemberExpr
>(E
->IgnoreParenCasts());
86 return ME
? ME
->isArrow() : false;
89 static StringRef
ClassifyDiagnostic(const CapabilityAttr
*A
) {
93 static StringRef
ClassifyDiagnostic(QualType VDT
) {
94 // We need to look at the declaration of the type of the value to determine
95 // which it is. The type should either be a record or a typedef, or a pointer
96 // or reference thereof.
97 if (const auto *RT
= VDT
->getAs
<RecordType
>()) {
98 if (const auto *RD
= RT
->getDecl())
99 if (const auto *CA
= RD
->getAttr
<CapabilityAttr
>())
100 return ClassifyDiagnostic(CA
);
101 } else if (const auto *TT
= VDT
->getAs
<TypedefType
>()) {
102 if (const auto *TD
= TT
->getDecl())
103 if (const auto *CA
= TD
->getAttr
<CapabilityAttr
>())
104 return ClassifyDiagnostic(CA
);
105 } else if (VDT
->isPointerType() || VDT
->isReferenceType())
106 return ClassifyDiagnostic(VDT
->getPointeeType());
111 /// Translate a clang expression in an attribute to a til::SExpr.
112 /// Constructs the context from D, DeclExp, and SelfDecl.
114 /// \param AttrExp The expression to translate.
115 /// \param D The declaration to which the attribute is attached.
116 /// \param DeclExp An expression involving the Decl to which the attribute
117 /// is attached. E.g. the call to a function.
118 /// \param Self S-expression to substitute for a \ref CXXThisExpr.
119 CapabilityExpr
SExprBuilder::translateAttrExpr(const Expr
*AttrExp
,
123 // If we are processing a raw attribute expression, with no substitutions.
124 if (!DeclExp
&& !Self
)
125 return translateAttrExpr(AttrExp
, nullptr);
127 CallingContext
Ctx(nullptr, D
);
129 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
130 // for formal parameters when we call buildMutexID later.
132 /* We'll use Self. */;
133 else if (const auto *ME
= dyn_cast
<MemberExpr
>(DeclExp
)) {
134 Ctx
.SelfArg
= ME
->getBase();
135 Ctx
.SelfArrow
= ME
->isArrow();
136 } else if (const auto *CE
= dyn_cast
<CXXMemberCallExpr
>(DeclExp
)) {
137 Ctx
.SelfArg
= CE
->getImplicitObjectArgument();
138 Ctx
.SelfArrow
= isCalleeArrow(CE
->getCallee());
139 Ctx
.NumArgs
= CE
->getNumArgs();
140 Ctx
.FunArgs
= CE
->getArgs();
141 } else if (const auto *CE
= dyn_cast
<CallExpr
>(DeclExp
)) {
142 Ctx
.NumArgs
= CE
->getNumArgs();
143 Ctx
.FunArgs
= CE
->getArgs();
144 } else if (const auto *CE
= dyn_cast
<CXXConstructExpr
>(DeclExp
)) {
145 Ctx
.SelfArg
= nullptr; // Will be set below
146 Ctx
.NumArgs
= CE
->getNumArgs();
147 Ctx
.FunArgs
= CE
->getArgs();
151 assert(!Ctx
.SelfArg
&& "Ambiguous self argument");
154 // If the attribute has no arguments, then assume the argument is "this".
156 return CapabilityExpr(
157 Self
, ClassifyDiagnostic(cast
<CXXMethodDecl
>(D
)->getThisObjectType()),
159 else // For most attributes.
160 return translateAttrExpr(AttrExp
, &Ctx
);
163 // If the attribute has no arguments, then assume the argument is "this".
165 return translateAttrExpr(cast
<const Expr
*>(Ctx
.SelfArg
), nullptr);
166 else // For most attributes.
167 return translateAttrExpr(AttrExp
, &Ctx
);
170 /// Translate a clang expression in an attribute to a til::SExpr.
171 // This assumes a CallingContext has already been created.
172 CapabilityExpr
SExprBuilder::translateAttrExpr(const Expr
*AttrExp
,
173 CallingContext
*Ctx
) {
175 return CapabilityExpr();
177 if (const auto* SLit
= dyn_cast
<StringLiteral
>(AttrExp
)) {
178 if (SLit
->getString() == StringRef("*"))
179 // The "*" expr is a universal lock, which essentially turns off
180 // checks until it is removed from the lockset.
181 return CapabilityExpr(new (Arena
) til::Wildcard(), StringRef("wildcard"),
184 // Ignore other string literals for now.
185 return CapabilityExpr();
189 if (const auto *OE
= dyn_cast
<CXXOperatorCallExpr
>(AttrExp
)) {
190 if (OE
->getOperator() == OO_Exclaim
) {
192 AttrExp
= OE
->getArg(0);
195 else if (const auto *UO
= dyn_cast
<UnaryOperator
>(AttrExp
)) {
196 if (UO
->getOpcode() == UO_LNot
) {
198 AttrExp
= UO
->getSubExpr();
202 til::SExpr
*E
= translate(AttrExp
, Ctx
);
204 // Trap mutex expressions like nullptr, or 0.
205 // Any literal value is nonsense.
206 if (!E
|| isa
<til::Literal
>(E
))
207 return CapabilityExpr();
209 StringRef Kind
= ClassifyDiagnostic(AttrExp
->getType());
211 // Hack to deal with smart pointers -- strip off top-level pointer casts.
212 if (const auto *CE
= dyn_cast
<til::Cast
>(E
)) {
213 if (CE
->castOpcode() == til::CAST_objToPtr
)
214 return CapabilityExpr(CE
->expr(), Kind
, Neg
);
216 return CapabilityExpr(E
, Kind
, Neg
);
219 til::LiteralPtr
*SExprBuilder::createVariable(const VarDecl
*VD
) {
220 return new (Arena
) til::LiteralPtr(VD
);
223 std::pair
<til::LiteralPtr
*, StringRef
>
224 SExprBuilder::createThisPlaceholder(const Expr
*Exp
) {
225 return {new (Arena
) til::LiteralPtr(nullptr),
226 ClassifyDiagnostic(Exp
->getType())};
229 // Translate a clang statement or expression to a TIL expression.
230 // Also performs substitution of variables; Ctx provides the context.
231 // Dispatches on the type of S.
232 til::SExpr
*SExprBuilder::translate(const Stmt
*S
, CallingContext
*Ctx
) {
236 // Check if S has already been translated and cached.
237 // This handles the lookup of SSA names for DeclRefExprs here.
238 if (til::SExpr
*E
= lookupStmt(S
))
241 switch (S
->getStmtClass()) {
242 case Stmt::DeclRefExprClass
:
243 return translateDeclRefExpr(cast
<DeclRefExpr
>(S
), Ctx
);
244 case Stmt::CXXThisExprClass
:
245 return translateCXXThisExpr(cast
<CXXThisExpr
>(S
), Ctx
);
246 case Stmt::MemberExprClass
:
247 return translateMemberExpr(cast
<MemberExpr
>(S
), Ctx
);
248 case Stmt::ObjCIvarRefExprClass
:
249 return translateObjCIVarRefExpr(cast
<ObjCIvarRefExpr
>(S
), Ctx
);
250 case Stmt::CallExprClass
:
251 return translateCallExpr(cast
<CallExpr
>(S
), Ctx
);
252 case Stmt::CXXMemberCallExprClass
:
253 return translateCXXMemberCallExpr(cast
<CXXMemberCallExpr
>(S
), Ctx
);
254 case Stmt::CXXOperatorCallExprClass
:
255 return translateCXXOperatorCallExpr(cast
<CXXOperatorCallExpr
>(S
), Ctx
);
256 case Stmt::UnaryOperatorClass
:
257 return translateUnaryOperator(cast
<UnaryOperator
>(S
), Ctx
);
258 case Stmt::BinaryOperatorClass
:
259 case Stmt::CompoundAssignOperatorClass
:
260 return translateBinaryOperator(cast
<BinaryOperator
>(S
), Ctx
);
262 case Stmt::ArraySubscriptExprClass
:
263 return translateArraySubscriptExpr(cast
<ArraySubscriptExpr
>(S
), Ctx
);
264 case Stmt::ConditionalOperatorClass
:
265 return translateAbstractConditionalOperator(
266 cast
<ConditionalOperator
>(S
), Ctx
);
267 case Stmt::BinaryConditionalOperatorClass
:
268 return translateAbstractConditionalOperator(
269 cast
<BinaryConditionalOperator
>(S
), Ctx
);
271 // We treat these as no-ops
272 case Stmt::ConstantExprClass
:
273 return translate(cast
<ConstantExpr
>(S
)->getSubExpr(), Ctx
);
274 case Stmt::ParenExprClass
:
275 return translate(cast
<ParenExpr
>(S
)->getSubExpr(), Ctx
);
276 case Stmt::ExprWithCleanupsClass
:
277 return translate(cast
<ExprWithCleanups
>(S
)->getSubExpr(), Ctx
);
278 case Stmt::CXXBindTemporaryExprClass
:
279 return translate(cast
<CXXBindTemporaryExpr
>(S
)->getSubExpr(), Ctx
);
280 case Stmt::MaterializeTemporaryExprClass
:
281 return translate(cast
<MaterializeTemporaryExpr
>(S
)->getSubExpr(), Ctx
);
283 // Collect all literals
284 case Stmt::CharacterLiteralClass
:
285 case Stmt::CXXNullPtrLiteralExprClass
:
286 case Stmt::GNUNullExprClass
:
287 case Stmt::CXXBoolLiteralExprClass
:
288 case Stmt::FloatingLiteralClass
:
289 case Stmt::ImaginaryLiteralClass
:
290 case Stmt::IntegerLiteralClass
:
291 case Stmt::StringLiteralClass
:
292 case Stmt::ObjCStringLiteralClass
:
293 return new (Arena
) til::Literal(cast
<Expr
>(S
));
295 case Stmt::DeclStmtClass
:
296 return translateDeclStmt(cast
<DeclStmt
>(S
), Ctx
);
300 if (const auto *CE
= dyn_cast
<CastExpr
>(S
))
301 return translateCastExpr(CE
, Ctx
);
303 return new (Arena
) til::Undefined(S
);
306 til::SExpr
*SExprBuilder::translateDeclRefExpr(const DeclRefExpr
*DRE
,
307 CallingContext
*Ctx
) {
308 const auto *VD
= cast
<ValueDecl
>(DRE
->getDecl()->getCanonicalDecl());
310 // Function parameters require substitution and/or renaming.
311 if (const auto *PV
= dyn_cast
<ParmVarDecl
>(VD
)) {
312 unsigned I
= PV
->getFunctionScopeIndex();
313 const DeclContext
*D
= PV
->getDeclContext();
314 if (Ctx
&& Ctx
->FunArgs
) {
315 const Decl
*Canonical
= Ctx
->AttrDecl
->getCanonicalDecl();
316 if (isa
<FunctionDecl
>(D
)
317 ? (cast
<FunctionDecl
>(D
)->getCanonicalDecl() == Canonical
)
318 : (cast
<ObjCMethodDecl
>(D
)->getCanonicalDecl() == Canonical
)) {
319 // Substitute call arguments for references to function parameters
320 assert(I
< Ctx
->NumArgs
);
321 return translate(Ctx
->FunArgs
[I
], Ctx
->Prev
);
324 // Map the param back to the param of the original function declaration
325 // for consistent comparisons.
326 VD
= isa
<FunctionDecl
>(D
)
327 ? cast
<FunctionDecl
>(D
)->getCanonicalDecl()->getParamDecl(I
)
328 : cast
<ObjCMethodDecl
>(D
)->getCanonicalDecl()->getParamDecl(I
);
331 // For non-local variables, treat it as a reference to a named object.
332 return new (Arena
) til::LiteralPtr(VD
);
335 til::SExpr
*SExprBuilder::translateCXXThisExpr(const CXXThisExpr
*TE
,
336 CallingContext
*Ctx
) {
337 // Substitute for 'this'
338 if (Ctx
&& Ctx
->SelfArg
) {
339 if (const auto *SelfArg
= dyn_cast
<const Expr
*>(Ctx
->SelfArg
))
340 return translate(SelfArg
, Ctx
->Prev
);
342 return cast
<til::SExpr
*>(Ctx
->SelfArg
);
344 assert(SelfVar
&& "We have no variable for 'this'!");
348 static const ValueDecl
*getValueDeclFromSExpr(const til::SExpr
*E
) {
349 if (const auto *V
= dyn_cast
<til::Variable
>(E
))
350 return V
->clangDecl();
351 if (const auto *Ph
= dyn_cast
<til::Phi
>(E
))
352 return Ph
->clangDecl();
353 if (const auto *P
= dyn_cast
<til::Project
>(E
))
354 return P
->clangDecl();
355 if (const auto *L
= dyn_cast
<til::LiteralPtr
>(E
))
356 return L
->clangDecl();
360 static bool hasAnyPointerType(const til::SExpr
*E
) {
361 auto *VD
= getValueDeclFromSExpr(E
);
362 if (VD
&& VD
->getType()->isAnyPointerType())
364 if (const auto *C
= dyn_cast
<til::Cast
>(E
))
365 return C
->castOpcode() == til::CAST_objToPtr
;
370 // Grab the very first declaration of virtual method D
371 static const CXXMethodDecl
*getFirstVirtualDecl(const CXXMethodDecl
*D
) {
373 D
= D
->getCanonicalDecl();
374 auto OverriddenMethods
= D
->overridden_methods();
375 if (OverriddenMethods
.begin() == OverriddenMethods
.end())
376 return D
; // Method does not override anything
377 // FIXME: this does not work with multiple inheritance.
378 D
= *OverriddenMethods
.begin();
383 til::SExpr
*SExprBuilder::translateMemberExpr(const MemberExpr
*ME
,
384 CallingContext
*Ctx
) {
385 til::SExpr
*BE
= translate(ME
->getBase(), Ctx
);
386 til::SExpr
*E
= new (Arena
) til::SApply(BE
);
388 const auto *D
= cast
<ValueDecl
>(ME
->getMemberDecl()->getCanonicalDecl());
389 if (const auto *VD
= dyn_cast
<CXXMethodDecl
>(D
))
390 D
= getFirstVirtualDecl(VD
);
392 til::Project
*P
= new (Arena
) til::Project(E
, D
);
393 if (hasAnyPointerType(BE
))
398 til::SExpr
*SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr
*IVRE
,
399 CallingContext
*Ctx
) {
400 til::SExpr
*BE
= translate(IVRE
->getBase(), Ctx
);
401 til::SExpr
*E
= new (Arena
) til::SApply(BE
);
403 const auto *D
= cast
<ObjCIvarDecl
>(IVRE
->getDecl()->getCanonicalDecl());
405 til::Project
*P
= new (Arena
) til::Project(E
, D
);
406 if (hasAnyPointerType(BE
))
411 til::SExpr
*SExprBuilder::translateCallExpr(const CallExpr
*CE
,
414 if (CapabilityExprMode
) {
415 // Handle LOCK_RETURNED
416 if (const FunctionDecl
*FD
= CE
->getDirectCallee()) {
417 FD
= FD
->getMostRecentDecl();
418 if (LockReturnedAttr
*At
= FD
->getAttr
<LockReturnedAttr
>()) {
419 CallingContext
LRCallCtx(Ctx
);
420 LRCallCtx
.AttrDecl
= CE
->getDirectCallee();
421 LRCallCtx
.SelfArg
= SelfE
;
422 LRCallCtx
.NumArgs
= CE
->getNumArgs();
423 LRCallCtx
.FunArgs
= CE
->getArgs();
424 return const_cast<til::SExpr
*>(
425 translateAttrExpr(At
->getArg(), &LRCallCtx
).sexpr());
430 til::SExpr
*E
= translate(CE
->getCallee(), Ctx
);
431 for (const auto *Arg
: CE
->arguments()) {
432 til::SExpr
*A
= translate(Arg
, Ctx
);
433 E
= new (Arena
) til::Apply(E
, A
);
435 return new (Arena
) til::Call(E
, CE
);
438 til::SExpr
*SExprBuilder::translateCXXMemberCallExpr(
439 const CXXMemberCallExpr
*ME
, CallingContext
*Ctx
) {
440 if (CapabilityExprMode
) {
441 // Ignore calls to get() on smart pointers.
442 if (ME
->getMethodDecl()->getNameAsString() == "get" &&
443 ME
->getNumArgs() == 0) {
444 auto *E
= translate(ME
->getImplicitObjectArgument(), Ctx
);
445 return new (Arena
) til::Cast(til::CAST_objToPtr
, E
);
449 return translateCallExpr(cast
<CallExpr
>(ME
), Ctx
,
450 ME
->getImplicitObjectArgument());
453 til::SExpr
*SExprBuilder::translateCXXOperatorCallExpr(
454 const CXXOperatorCallExpr
*OCE
, CallingContext
*Ctx
) {
455 if (CapabilityExprMode
) {
456 // Ignore operator * and operator -> on smart pointers.
457 OverloadedOperatorKind k
= OCE
->getOperator();
458 if (k
== OO_Star
|| k
== OO_Arrow
) {
459 auto *E
= translate(OCE
->getArg(0), Ctx
);
460 return new (Arena
) til::Cast(til::CAST_objToPtr
, E
);
464 return translateCallExpr(cast
<CallExpr
>(OCE
), Ctx
);
467 til::SExpr
*SExprBuilder::translateUnaryOperator(const UnaryOperator
*UO
,
468 CallingContext
*Ctx
) {
469 switch (UO
->getOpcode()) {
474 return new (Arena
) til::Undefined(UO
);
477 if (CapabilityExprMode
) {
478 // interpret &Graph::mu_ as an existential.
479 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(UO
->getSubExpr())) {
480 if (DRE
->getDecl()->isCXXInstanceMember()) {
481 // This is a pointer-to-member expression, e.g. &MyClass::mu_.
482 // We interpret this syntax specially, as a wildcard.
483 auto *W
= new (Arena
) til::Wildcard();
484 return new (Arena
) til::Project(W
, DRE
->getDecl());
488 // otherwise, & is a no-op
489 return translate(UO
->getSubExpr(), Ctx
);
491 // We treat these as no-ops
494 return translate(UO
->getSubExpr(), Ctx
);
498 til::UnaryOp(til::UOP_Minus
, translate(UO
->getSubExpr(), Ctx
));
501 til::UnaryOp(til::UOP_BitNot
, translate(UO
->getSubExpr(), Ctx
));
504 til::UnaryOp(til::UOP_LogicNot
, translate(UO
->getSubExpr(), Ctx
));
506 // Currently unsupported
511 return new (Arena
) til::Undefined(UO
);
513 return new (Arena
) til::Undefined(UO
);
516 til::SExpr
*SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op
,
517 const BinaryOperator
*BO
,
518 CallingContext
*Ctx
, bool Reverse
) {
519 til::SExpr
*E0
= translate(BO
->getLHS(), Ctx
);
520 til::SExpr
*E1
= translate(BO
->getRHS(), Ctx
);
522 return new (Arena
) til::BinaryOp(Op
, E1
, E0
);
524 return new (Arena
) til::BinaryOp(Op
, E0
, E1
);
527 til::SExpr
*SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op
,
528 const BinaryOperator
*BO
,
531 const Expr
*LHS
= BO
->getLHS();
532 const Expr
*RHS
= BO
->getRHS();
533 til::SExpr
*E0
= translate(LHS
, Ctx
);
534 til::SExpr
*E1
= translate(RHS
, Ctx
);
536 const ValueDecl
*VD
= nullptr;
537 til::SExpr
*CV
= nullptr;
538 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(LHS
)) {
540 CV
= lookupVarDecl(VD
);
544 til::SExpr
*Arg
= CV
? CV
: new (Arena
) til::Load(E0
);
545 E1
= new (Arena
) til::BinaryOp(Op
, Arg
, E1
);
546 E1
= addStatement(E1
, nullptr, VD
);
549 return updateVarDecl(VD
, E1
);
550 return new (Arena
) til::Store(E0
, E1
);
553 til::SExpr
*SExprBuilder::translateBinaryOperator(const BinaryOperator
*BO
,
554 CallingContext
*Ctx
) {
555 switch (BO
->getOpcode()) {
558 return new (Arena
) til::Undefined(BO
);
560 case BO_Mul
: return translateBinOp(til::BOP_Mul
, BO
, Ctx
);
561 case BO_Div
: return translateBinOp(til::BOP_Div
, BO
, Ctx
);
562 case BO_Rem
: return translateBinOp(til::BOP_Rem
, BO
, Ctx
);
563 case BO_Add
: return translateBinOp(til::BOP_Add
, BO
, Ctx
);
564 case BO_Sub
: return translateBinOp(til::BOP_Sub
, BO
, Ctx
);
565 case BO_Shl
: return translateBinOp(til::BOP_Shl
, BO
, Ctx
);
566 case BO_Shr
: return translateBinOp(til::BOP_Shr
, BO
, Ctx
);
567 case BO_LT
: return translateBinOp(til::BOP_Lt
, BO
, Ctx
);
568 case BO_GT
: return translateBinOp(til::BOP_Lt
, BO
, Ctx
, true);
569 case BO_LE
: return translateBinOp(til::BOP_Leq
, BO
, Ctx
);
570 case BO_GE
: return translateBinOp(til::BOP_Leq
, BO
, Ctx
, true);
571 case BO_EQ
: return translateBinOp(til::BOP_Eq
, BO
, Ctx
);
572 case BO_NE
: return translateBinOp(til::BOP_Neq
, BO
, Ctx
);
573 case BO_Cmp
: return translateBinOp(til::BOP_Cmp
, BO
, Ctx
);
574 case BO_And
: return translateBinOp(til::BOP_BitAnd
, BO
, Ctx
);
575 case BO_Xor
: return translateBinOp(til::BOP_BitXor
, BO
, Ctx
);
576 case BO_Or
: return translateBinOp(til::BOP_BitOr
, BO
, Ctx
);
577 case BO_LAnd
: return translateBinOp(til::BOP_LogicAnd
, BO
, Ctx
);
578 case BO_LOr
: return translateBinOp(til::BOP_LogicOr
, BO
, Ctx
);
580 case BO_Assign
: return translateBinAssign(til::BOP_Eq
, BO
, Ctx
, true);
581 case BO_MulAssign
: return translateBinAssign(til::BOP_Mul
, BO
, Ctx
);
582 case BO_DivAssign
: return translateBinAssign(til::BOP_Div
, BO
, Ctx
);
583 case BO_RemAssign
: return translateBinAssign(til::BOP_Rem
, BO
, Ctx
);
584 case BO_AddAssign
: return translateBinAssign(til::BOP_Add
, BO
, Ctx
);
585 case BO_SubAssign
: return translateBinAssign(til::BOP_Sub
, BO
, Ctx
);
586 case BO_ShlAssign
: return translateBinAssign(til::BOP_Shl
, BO
, Ctx
);
587 case BO_ShrAssign
: return translateBinAssign(til::BOP_Shr
, BO
, Ctx
);
588 case BO_AndAssign
: return translateBinAssign(til::BOP_BitAnd
, BO
, Ctx
);
589 case BO_XorAssign
: return translateBinAssign(til::BOP_BitXor
, BO
, Ctx
);
590 case BO_OrAssign
: return translateBinAssign(til::BOP_BitOr
, BO
, Ctx
);
593 // The clang CFG should have already processed both sides.
594 return translate(BO
->getRHS(), Ctx
);
596 return new (Arena
) til::Undefined(BO
);
599 til::SExpr
*SExprBuilder::translateCastExpr(const CastExpr
*CE
,
600 CallingContext
*Ctx
) {
601 CastKind K
= CE
->getCastKind();
603 case CK_LValueToRValue
: {
604 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(CE
->getSubExpr())) {
605 til::SExpr
*E0
= lookupVarDecl(DRE
->getDecl());
609 til::SExpr
*E0
= translate(CE
->getSubExpr(), Ctx
);
611 // FIXME!! -- get Load working properly
612 // return new (Arena) til::Load(E0);
615 case CK_DerivedToBase
:
616 case CK_UncheckedDerivedToBase
:
617 case CK_ArrayToPointerDecay
:
618 case CK_FunctionToPointerDecay
: {
619 til::SExpr
*E0
= translate(CE
->getSubExpr(), Ctx
);
623 // FIXME: handle different kinds of casts.
624 til::SExpr
*E0
= translate(CE
->getSubExpr(), Ctx
);
625 if (CapabilityExprMode
)
627 return new (Arena
) til::Cast(til::CAST_none
, E0
);
633 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr
*E
,
634 CallingContext
*Ctx
) {
635 til::SExpr
*E0
= translate(E
->getBase(), Ctx
);
636 til::SExpr
*E1
= translate(E
->getIdx(), Ctx
);
637 return new (Arena
) til::ArrayIndex(E0
, E1
);
641 SExprBuilder::translateAbstractConditionalOperator(
642 const AbstractConditionalOperator
*CO
, CallingContext
*Ctx
) {
643 auto *C
= translate(CO
->getCond(), Ctx
);
644 auto *T
= translate(CO
->getTrueExpr(), Ctx
);
645 auto *E
= translate(CO
->getFalseExpr(), Ctx
);
646 return new (Arena
) til::IfThenElse(C
, T
, E
);
650 SExprBuilder::translateDeclStmt(const DeclStmt
*S
, CallingContext
*Ctx
) {
651 DeclGroupRef DGrp
= S
->getDeclGroup();
652 for (auto *I
: DGrp
) {
653 if (auto *VD
= dyn_cast_or_null
<VarDecl
>(I
)) {
654 Expr
*E
= VD
->getInit();
655 til::SExpr
* SE
= translate(E
, Ctx
);
657 // Add local variables with trivial type to the variable map
658 QualType T
= VD
->getType();
659 if (T
.isTrivialType(VD
->getASTContext()))
660 return addVarDecl(VD
, SE
);
669 // If (E) is non-trivial, then add it to the current basic block, and
670 // update the statement map so that S refers to E. Returns a new variable
672 // If E is trivial returns E.
673 til::SExpr
*SExprBuilder::addStatement(til::SExpr
* E
, const Stmt
*S
,
674 const ValueDecl
*VD
) {
675 if (!E
|| !CurrentBB
|| E
->block() || til::ThreadSafetyTIL::isTrivial(E
))
678 E
= new (Arena
) til::Variable(E
, VD
);
679 CurrentInstructions
.push_back(E
);
685 // Returns the current value of VD, if known, and nullptr otherwise.
686 til::SExpr
*SExprBuilder::lookupVarDecl(const ValueDecl
*VD
) {
687 auto It
= LVarIdxMap
.find(VD
);
688 if (It
!= LVarIdxMap
.end()) {
689 assert(CurrentLVarMap
[It
->second
].first
== VD
);
690 return CurrentLVarMap
[It
->second
].second
;
695 // if E is a til::Variable, update its clangDecl.
696 static void maybeUpdateVD(til::SExpr
*E
, const ValueDecl
*VD
) {
699 if (auto *V
= dyn_cast
<til::Variable
>(E
)) {
705 // Adds a new variable declaration.
706 til::SExpr
*SExprBuilder::addVarDecl(const ValueDecl
*VD
, til::SExpr
*E
) {
707 maybeUpdateVD(E
, VD
);
708 LVarIdxMap
.insert(std::make_pair(VD
, CurrentLVarMap
.size()));
709 CurrentLVarMap
.makeWritable();
710 CurrentLVarMap
.push_back(std::make_pair(VD
, E
));
714 // Updates a current variable declaration. (E.g. by assignment)
715 til::SExpr
*SExprBuilder::updateVarDecl(const ValueDecl
*VD
, til::SExpr
*E
) {
716 maybeUpdateVD(E
, VD
);
717 auto It
= LVarIdxMap
.find(VD
);
718 if (It
== LVarIdxMap
.end()) {
719 til::SExpr
*Ptr
= new (Arena
) til::LiteralPtr(VD
);
720 til::SExpr
*St
= new (Arena
) til::Store(Ptr
, E
);
723 CurrentLVarMap
.makeWritable();
724 CurrentLVarMap
.elem(It
->second
).second
= E
;
728 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
729 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
730 // If E == null, this is a backedge and will be set later.
731 void SExprBuilder::makePhiNodeVar(unsigned i
, unsigned NPreds
, til::SExpr
*E
) {
732 unsigned ArgIndex
= CurrentBlockInfo
->ProcessedPredecessors
;
733 assert(ArgIndex
> 0 && ArgIndex
< NPreds
);
735 til::SExpr
*CurrE
= CurrentLVarMap
[i
].second
;
736 if (CurrE
->block() == CurrentBB
) {
737 // We already have a Phi node in the current block,
738 // so just add the new variable to the Phi node.
739 auto *Ph
= dyn_cast
<til::Phi
>(CurrE
);
740 assert(Ph
&& "Expecting Phi node.");
742 Ph
->values()[ArgIndex
] = E
;
746 // Make a new phi node: phi(..., E)
747 // All phi args up to the current index are set to the current value.
748 til::Phi
*Ph
= new (Arena
) til::Phi(Arena
, NPreds
);
749 Ph
->values().setValues(NPreds
, nullptr);
750 for (unsigned PIdx
= 0; PIdx
< ArgIndex
; ++PIdx
)
751 Ph
->values()[PIdx
] = CurrE
;
753 Ph
->values()[ArgIndex
] = E
;
754 Ph
->setClangDecl(CurrentLVarMap
[i
].first
);
755 // If E is from a back-edge, or either E or CurrE are incomplete, then
756 // mark this node as incomplete; we may need to remove it later.
757 if (!E
|| isIncompletePhi(E
) || isIncompletePhi(CurrE
))
758 Ph
->setStatus(til::Phi::PH_Incomplete
);
760 // Add Phi node to current block, and update CurrentLVarMap[i]
761 CurrentArguments
.push_back(Ph
);
762 if (Ph
->status() == til::Phi::PH_Incomplete
)
763 IncompleteArgs
.push_back(Ph
);
765 CurrentLVarMap
.makeWritable();
766 CurrentLVarMap
.elem(i
).second
= Ph
;
769 // Merge values from Map into the current variable map.
770 // This will construct Phi nodes in the current basic block as necessary.
771 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map
) {
772 assert(CurrentBlockInfo
&& "Not processing a block!");
774 if (!CurrentLVarMap
.valid()) {
775 // Steal Map, using copy-on-write.
776 CurrentLVarMap
= std::move(Map
);
779 if (CurrentLVarMap
.sameAs(Map
))
780 return; // Easy merge: maps from different predecessors are unchanged.
782 unsigned NPreds
= CurrentBB
->numPredecessors();
783 unsigned ESz
= CurrentLVarMap
.size();
784 unsigned MSz
= Map
.size();
785 unsigned Sz
= std::min(ESz
, MSz
);
787 for (unsigned i
= 0; i
< Sz
; ++i
) {
788 if (CurrentLVarMap
[i
].first
!= Map
[i
].first
) {
789 // We've reached the end of variables in common.
790 CurrentLVarMap
.makeWritable();
791 CurrentLVarMap
.downsize(i
);
794 if (CurrentLVarMap
[i
].second
!= Map
[i
].second
)
795 makePhiNodeVar(i
, NPreds
, Map
[i
].second
);
798 CurrentLVarMap
.makeWritable();
799 CurrentLVarMap
.downsize(Map
.size());
803 // Merge a back edge into the current variable map.
804 // This will create phi nodes for all variables in the variable map.
805 void SExprBuilder::mergeEntryMapBackEdge() {
806 // We don't have definitions for variables on the backedge, because we
807 // haven't gotten that far in the CFG. Thus, when encountering a back edge,
808 // we conservatively create Phi nodes for all variables. Unnecessary Phi
809 // nodes will be marked as incomplete, and stripped out at the end.
811 // An Phi node is unnecessary if it only refers to itself and one other
812 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
814 assert(CurrentBlockInfo
&& "Not processing a block!");
816 if (CurrentBlockInfo
->HasBackEdges
)
818 CurrentBlockInfo
->HasBackEdges
= true;
820 CurrentLVarMap
.makeWritable();
821 unsigned Sz
= CurrentLVarMap
.size();
822 unsigned NPreds
= CurrentBB
->numPredecessors();
824 for (unsigned i
= 0; i
< Sz
; ++i
)
825 makePhiNodeVar(i
, NPreds
, nullptr);
828 // Update the phi nodes that were initially created for a back edge
829 // once the variable definitions have been computed.
830 // I.e., merge the current variable map into the phi nodes for Blk.
831 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock
*Blk
) {
832 til::BasicBlock
*BB
= lookupBlock(Blk
);
833 unsigned ArgIndex
= BBInfo
[Blk
->getBlockID()].ProcessedPredecessors
;
834 assert(ArgIndex
> 0 && ArgIndex
< BB
->numPredecessors());
836 for (til::SExpr
*PE
: BB
->arguments()) {
837 auto *Ph
= dyn_cast_or_null
<til::Phi
>(PE
);
838 assert(Ph
&& "Expecting Phi Node.");
839 assert(Ph
->values()[ArgIndex
] == nullptr && "Wrong index for back edge.");
841 til::SExpr
*E
= lookupVarDecl(Ph
->clangDecl());
842 assert(E
&& "Couldn't find local variable for Phi node.");
843 Ph
->values()[ArgIndex
] = E
;
847 void SExprBuilder::enterCFG(CFG
*Cfg
, const NamedDecl
*D
,
848 const CFGBlock
*First
) {
849 // Perform initial setup operations.
850 unsigned NBlocks
= Cfg
->getNumBlockIDs();
851 Scfg
= new (Arena
) til::SCFG(Arena
, NBlocks
);
853 // allocate all basic blocks immediately, to handle forward references.
854 BBInfo
.resize(NBlocks
);
855 BlockMap
.resize(NBlocks
, nullptr);
856 // create map from clang blockID to til::BasicBlocks
857 for (auto *B
: *Cfg
) {
858 auto *BB
= new (Arena
) til::BasicBlock(Arena
);
859 BB
->reserveInstructions(B
->size());
860 BlockMap
[B
->getBlockID()] = BB
;
863 CurrentBB
= lookupBlock(&Cfg
->getEntry());
864 auto Parms
= isa
<ObjCMethodDecl
>(D
) ? cast
<ObjCMethodDecl
>(D
)->parameters()
865 : cast
<FunctionDecl
>(D
)->parameters();
866 for (auto *Pm
: Parms
) {
867 QualType T
= Pm
->getType();
868 if (!T
.isTrivialType(Pm
->getASTContext()))
871 // Add parameters to local variable map.
872 // FIXME: right now we emulate params with loads; that should be fixed.
873 til::SExpr
*Lp
= new (Arena
) til::LiteralPtr(Pm
);
874 til::SExpr
*Ld
= new (Arena
) til::Load(Lp
);
875 til::SExpr
*V
= addStatement(Ld
, nullptr, Pm
);
880 void SExprBuilder::enterCFGBlock(const CFGBlock
*B
) {
881 // Initialize TIL basic block and add it to the CFG.
882 CurrentBB
= lookupBlock(B
);
883 CurrentBB
->reservePredecessors(B
->pred_size());
884 Scfg
->add(CurrentBB
);
886 CurrentBlockInfo
= &BBInfo
[B
->getBlockID()];
888 // CurrentLVarMap is moved to ExitMap on block exit.
889 // FIXME: the entry block will hold function parameters.
890 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
893 void SExprBuilder::handlePredecessor(const CFGBlock
*Pred
) {
894 // Compute CurrentLVarMap on entry from ExitMaps of predecessors
896 CurrentBB
->addPredecessor(BlockMap
[Pred
->getBlockID()]);
897 BlockInfo
*PredInfo
= &BBInfo
[Pred
->getBlockID()];
898 assert(PredInfo
->UnprocessedSuccessors
> 0);
900 if (--PredInfo
->UnprocessedSuccessors
== 0)
901 mergeEntryMap(std::move(PredInfo
->ExitMap
));
903 mergeEntryMap(PredInfo
->ExitMap
.clone());
905 ++CurrentBlockInfo
->ProcessedPredecessors
;
908 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock
*Pred
) {
909 mergeEntryMapBackEdge();
912 void SExprBuilder::enterCFGBlockBody(const CFGBlock
*B
) {
913 // The merge*() methods have created arguments.
914 // Push those arguments onto the basic block.
915 CurrentBB
->arguments().reserve(
916 static_cast<unsigned>(CurrentArguments
.size()), Arena
);
917 for (auto *A
: CurrentArguments
)
918 CurrentBB
->addArgument(A
);
921 void SExprBuilder::handleStatement(const Stmt
*S
) {
922 til::SExpr
*E
= translate(S
, nullptr);
926 void SExprBuilder::handleDestructorCall(const VarDecl
*VD
,
927 const CXXDestructorDecl
*DD
) {
928 til::SExpr
*Sf
= new (Arena
) til::LiteralPtr(VD
);
929 til::SExpr
*Dr
= new (Arena
) til::LiteralPtr(DD
);
930 til::SExpr
*Ap
= new (Arena
) til::Apply(Dr
, Sf
);
931 til::SExpr
*E
= new (Arena
) til::Call(Ap
);
932 addStatement(E
, nullptr);
935 void SExprBuilder::exitCFGBlockBody(const CFGBlock
*B
) {
936 CurrentBB
->instructions().reserve(
937 static_cast<unsigned>(CurrentInstructions
.size()), Arena
);
938 for (auto *V
: CurrentInstructions
)
939 CurrentBB
->addInstruction(V
);
941 // Create an appropriate terminator
942 unsigned N
= B
->succ_size();
943 auto It
= B
->succ_begin();
945 til::BasicBlock
*BB
= *It
? lookupBlock(*It
) : nullptr;
947 unsigned Idx
= BB
? BB
->findPredecessorIndex(CurrentBB
) : 0;
948 auto *Tm
= new (Arena
) til::Goto(BB
, Idx
);
949 CurrentBB
->setTerminator(Tm
);
952 til::SExpr
*C
= translate(B
->getTerminatorCondition(true), nullptr);
953 til::BasicBlock
*BB1
= *It
? lookupBlock(*It
) : nullptr;
955 til::BasicBlock
*BB2
= *It
? lookupBlock(*It
) : nullptr;
956 // FIXME: make sure these aren't critical edges.
957 auto *Tm
= new (Arena
) til::Branch(C
, BB1
, BB2
);
958 CurrentBB
->setTerminator(Tm
);
962 void SExprBuilder::handleSuccessor(const CFGBlock
*Succ
) {
963 ++CurrentBlockInfo
->UnprocessedSuccessors
;
966 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock
*Succ
) {
967 mergePhiNodesBackEdge(Succ
);
968 ++BBInfo
[Succ
->getBlockID()].ProcessedPredecessors
;
971 void SExprBuilder::exitCFGBlock(const CFGBlock
*B
) {
972 CurrentArguments
.clear();
973 CurrentInstructions
.clear();
974 CurrentBlockInfo
->ExitMap
= std::move(CurrentLVarMap
);
976 CurrentBlockInfo
= nullptr;
979 void SExprBuilder::exitCFG(const CFGBlock
*Last
) {
980 for (auto *Ph
: IncompleteArgs
) {
981 if (Ph
->status() == til::Phi::PH_Incomplete
)
982 simplifyIncompleteArg(Ph
);
985 CurrentArguments
.clear();
986 CurrentInstructions
.clear();
987 IncompleteArgs
.clear();
994 public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
999 namespace threadSafety {
1001 void printSCFG(CFGWalker &Walker) {
1002 llvm::BumpPtrAllocator Bpa;
1003 til::MemRegionRef Arena(&Bpa);
1004 SExprBuilder SxBuilder(Arena);
1005 til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1006 TILPrinter::print(Scfg, llvm::errs());
1009 } // namespace threadSafety
1010 } // namespace clang