1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This contains code to emit Objective-C code as LLVM code.
11 //===----------------------------------------------------------------------===//
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/StmtObjC.h"
23 #include "clang/Basic/Diagnostic.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/CodeGenABITypes.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Analysis/ObjCARCUtil.h"
28 #include "llvm/BinaryFormat/MachO.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
33 using namespace clang
;
34 using namespace CodeGen
;
36 typedef llvm::PointerIntPair
<llvm::Value
*,1,bool> TryEmitResult
;
38 tryEmitARCRetainScalarExpr(CodeGenFunction
&CGF
, const Expr
*e
);
39 static RValue
AdjustObjCObjectType(CodeGenFunction
&CGF
,
43 /// Given the address of a variable of pointer type, find the correct
44 /// null to store into it.
45 static llvm::Constant
*getNullForVariable(Address addr
) {
46 llvm::Type
*type
= addr
.getElementType();
47 return llvm::ConstantPointerNull::get(cast
<llvm::PointerType
>(type
));
50 /// Emits an instance of NSConstantString representing the object.
51 llvm::Value
*CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral
*E
)
54 CGM
.getObjCRuntime().GenerateConstantString(E
->getString()).getPointer();
55 // FIXME: This bitcast should just be made an invariant on the Runtime.
56 return llvm::ConstantExpr::getBitCast(C
, ConvertType(E
->getType()));
59 /// EmitObjCBoxedExpr - This routine generates code to call
60 /// the appropriate expression boxing method. This will either be
61 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
62 /// or [NSValue valueWithBytes:objCType:].
65 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr
*E
) {
66 // Generate the correct selector for this literal's concrete type.
68 const ObjCMethodDecl
*BoxingMethod
= E
->getBoxingMethod();
69 const Expr
*SubExpr
= E
->getSubExpr();
71 if (E
->isExpressibleAsConstantInitializer()) {
72 ConstantEmitter
ConstEmitter(CGM
);
73 return ConstEmitter
.tryEmitAbstract(E
, E
->getType());
76 assert(BoxingMethod
->isClassMethod() && "BoxingMethod must be a class method");
77 Selector Sel
= BoxingMethod
->getSelector();
79 // Generate a reference to the class pointer, which will be the receiver.
80 // Assumes that the method was introduced in the class that should be
81 // messaged (avoids pulling it out of the result type).
82 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
83 const ObjCInterfaceDecl
*ClassDecl
= BoxingMethod
->getClassInterface();
84 llvm::Value
*Receiver
= Runtime
.GetClass(*this, ClassDecl
);
87 const ParmVarDecl
*ArgDecl
= *BoxingMethod
->param_begin();
88 QualType ArgQT
= ArgDecl
->getType().getUnqualifiedType();
90 // ObjCBoxedExpr supports boxing of structs and unions
91 // via [NSValue valueWithBytes:objCType:]
92 const QualType
ValueType(SubExpr
->getType().getCanonicalType());
93 if (ValueType
->isObjCBoxableRecordType()) {
94 // Emit CodeGen for first parameter
95 // and cast value to correct type
96 Address Temporary
= CreateMemTemp(SubExpr
->getType());
97 EmitAnyExprToMem(SubExpr
, Temporary
, Qualifiers(), /*isInit*/ true);
98 llvm::Value
*BitCast
=
99 Builder
.CreateBitCast(Temporary
.getPointer(), ConvertType(ArgQT
));
100 Args
.add(RValue::get(BitCast
), ArgQT
);
102 // Create char array to store type encoding
104 getContext().getObjCEncodingForType(ValueType
, Str
);
105 llvm::Constant
*GV
= CGM
.GetAddrOfConstantCString(Str
).getPointer();
107 // Cast type encoding to correct type
108 const ParmVarDecl
*EncodingDecl
= BoxingMethod
->parameters()[1];
109 QualType EncodingQT
= EncodingDecl
->getType().getUnqualifiedType();
110 llvm::Value
*Cast
= Builder
.CreateBitCast(GV
, ConvertType(EncodingQT
));
112 Args
.add(RValue::get(Cast
), EncodingQT
);
114 Args
.add(EmitAnyExpr(SubExpr
), ArgQT
);
117 RValue result
= Runtime
.GenerateMessageSend(
118 *this, ReturnValueSlot(), BoxingMethod
->getReturnType(), Sel
, Receiver
,
119 Args
, ClassDecl
, BoxingMethod
);
120 return Builder
.CreateBitCast(result
.getScalarVal(),
121 ConvertType(E
->getType()));
124 llvm::Value
*CodeGenFunction::EmitObjCCollectionLiteral(const Expr
*E
,
125 const ObjCMethodDecl
*MethodWithObjects
) {
126 ASTContext
&Context
= CGM
.getContext();
127 const ObjCDictionaryLiteral
*DLE
= nullptr;
128 const ObjCArrayLiteral
*ALE
= dyn_cast
<ObjCArrayLiteral
>(E
);
130 DLE
= cast
<ObjCDictionaryLiteral
>(E
);
132 // Optimize empty collections by referencing constants, when available.
133 uint64_t NumElements
=
134 ALE
? ALE
->getNumElements() : DLE
->getNumElements();
135 if (NumElements
== 0 && CGM
.getLangOpts().ObjCRuntime
.hasEmptyCollections()) {
136 StringRef ConstantName
= ALE
? "__NSArray0__" : "__NSDictionary0__";
137 QualType
IdTy(CGM
.getContext().getObjCIdType());
138 llvm::Constant
*Constant
=
139 CGM
.CreateRuntimeVariable(ConvertType(IdTy
), ConstantName
);
140 LValue LV
= MakeNaturalAlignAddrLValue(Constant
, IdTy
);
141 llvm::Value
*Ptr
= EmitLoadOfScalar(LV
, E
->getBeginLoc());
142 cast
<llvm::LoadInst
>(Ptr
)->setMetadata(
143 CGM
.getModule().getMDKindID("invariant.load"),
144 llvm::MDNode::get(getLLVMContext(), std::nullopt
));
145 return Builder
.CreateBitCast(Ptr
, ConvertType(E
->getType()));
148 // Compute the type of the array we're initializing.
149 llvm::APInt
APNumElements(Context
.getTypeSize(Context
.getSizeType()),
151 QualType ElementType
= Context
.getObjCIdType().withConst();
152 QualType ElementArrayType
153 = Context
.getConstantArrayType(ElementType
, APNumElements
, nullptr,
154 ArrayType::Normal
, /*IndexTypeQuals=*/0);
156 // Allocate the temporary array(s).
157 Address Objects
= CreateMemTemp(ElementArrayType
, "objects");
158 Address Keys
= Address::invalid();
160 Keys
= CreateMemTemp(ElementArrayType
, "keys");
162 // In ARC, we may need to do extra work to keep all the keys and
163 // values alive until after the call.
164 SmallVector
<llvm::Value
*, 16> NeededObjects
;
165 bool TrackNeededObjects
=
166 (getLangOpts().ObjCAutoRefCount
&&
167 CGM
.getCodeGenOpts().OptimizationLevel
!= 0);
169 // Perform the actual initialialization of the array(s).
170 for (uint64_t i
= 0; i
< NumElements
; i
++) {
172 // Emit the element and store it to the appropriate array slot.
173 const Expr
*Rhs
= ALE
->getElement(i
);
174 LValue LV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Objects
, i
),
175 ElementType
, AlignmentSource::Decl
);
177 llvm::Value
*value
= EmitScalarExpr(Rhs
);
178 EmitStoreThroughLValue(RValue::get(value
), LV
, true);
179 if (TrackNeededObjects
) {
180 NeededObjects
.push_back(value
);
183 // Emit the key and store it to the appropriate array slot.
184 const Expr
*Key
= DLE
->getKeyValueElement(i
).Key
;
185 LValue KeyLV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Keys
, i
),
186 ElementType
, AlignmentSource::Decl
);
187 llvm::Value
*keyValue
= EmitScalarExpr(Key
);
188 EmitStoreThroughLValue(RValue::get(keyValue
), KeyLV
, /*isInit=*/true);
190 // Emit the value and store it to the appropriate array slot.
191 const Expr
*Value
= DLE
->getKeyValueElement(i
).Value
;
192 LValue ValueLV
= MakeAddrLValue(Builder
.CreateConstArrayGEP(Objects
, i
),
193 ElementType
, AlignmentSource::Decl
);
194 llvm::Value
*valueValue
= EmitScalarExpr(Value
);
195 EmitStoreThroughLValue(RValue::get(valueValue
), ValueLV
, /*isInit=*/true);
196 if (TrackNeededObjects
) {
197 NeededObjects
.push_back(keyValue
);
198 NeededObjects
.push_back(valueValue
);
203 // Generate the argument list.
205 ObjCMethodDecl::param_const_iterator PI
= MethodWithObjects
->param_begin();
206 const ParmVarDecl
*argDecl
= *PI
++;
207 QualType ArgQT
= argDecl
->getType().getUnqualifiedType();
208 Args
.add(RValue::get(Objects
.getPointer()), ArgQT
);
211 ArgQT
= argDecl
->getType().getUnqualifiedType();
212 Args
.add(RValue::get(Keys
.getPointer()), ArgQT
);
215 ArgQT
= argDecl
->getType().getUnqualifiedType();
217 llvm::ConstantInt::get(CGM
.getTypes().ConvertType(ArgQT
), NumElements
);
218 Args
.add(RValue::get(Count
), ArgQT
);
220 // Generate a reference to the class pointer, which will be the receiver.
221 Selector Sel
= MethodWithObjects
->getSelector();
222 QualType ResultType
= E
->getType();
223 const ObjCObjectPointerType
*InterfacePointerType
224 = ResultType
->getAsObjCInterfacePointerType();
225 ObjCInterfaceDecl
*Class
226 = InterfacePointerType
->getObjectType()->getInterface();
227 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
228 llvm::Value
*Receiver
= Runtime
.GetClass(*this, Class
);
230 // Generate the message send.
231 RValue result
= Runtime
.GenerateMessageSend(
232 *this, ReturnValueSlot(), MethodWithObjects
->getReturnType(), Sel
,
233 Receiver
, Args
, Class
, MethodWithObjects
);
235 // The above message send needs these objects, but in ARC they are
236 // passed in a buffer that is essentially __unsafe_unretained.
237 // Therefore we must prevent the optimizer from releasing them until
239 if (TrackNeededObjects
) {
240 EmitARCIntrinsicUse(NeededObjects
);
243 return Builder
.CreateBitCast(result
.getScalarVal(),
244 ConvertType(E
->getType()));
247 llvm::Value
*CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral
*E
) {
248 return EmitObjCCollectionLiteral(E
, E
->getArrayWithObjectsMethod());
251 llvm::Value
*CodeGenFunction::EmitObjCDictionaryLiteral(
252 const ObjCDictionaryLiteral
*E
) {
253 return EmitObjCCollectionLiteral(E
, E
->getDictWithObjectsMethod());
257 llvm::Value
*CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr
*E
) {
259 // Note that this implementation allows for non-constant strings to be passed
260 // as arguments to @selector(). Currently, the only thing preventing this
261 // behaviour is the type checking in the front end.
262 return CGM
.getObjCRuntime().GetSelector(*this, E
->getSelector());
265 llvm::Value
*CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr
*E
) {
266 // FIXME: This should pass the Decl not the name.
267 return CGM
.getObjCRuntime().GenerateProtocolRef(*this, E
->getProtocol());
270 /// Adjust the type of an Objective-C object that doesn't match up due
271 /// to type erasure at various points, e.g., related result types or the use
272 /// of parameterized classes.
273 static RValue
AdjustObjCObjectType(CodeGenFunction
&CGF
, QualType ExpT
,
275 if (!ExpT
->isObjCRetainableType())
278 // If the converted types are the same, we're done.
279 llvm::Type
*ExpLLVMTy
= CGF
.ConvertType(ExpT
);
280 if (ExpLLVMTy
== Result
.getScalarVal()->getType())
283 // We have applied a substitution. Cast the rvalue appropriately.
284 return RValue::get(CGF
.Builder
.CreateBitCast(Result
.getScalarVal(),
288 /// Decide whether to extend the lifetime of the receiver of a
289 /// returns-inner-pointer message.
291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr
*message
) {
292 switch (message
->getReceiverKind()) {
294 // For a normal instance message, we should extend unless the
295 // receiver is loaded from a variable with precise lifetime.
296 case ObjCMessageExpr::Instance
: {
297 const Expr
*receiver
= message
->getInstanceReceiver();
299 // Look through OVEs.
300 if (auto opaque
= dyn_cast
<OpaqueValueExpr
>(receiver
)) {
301 if (opaque
->getSourceExpr())
302 receiver
= opaque
->getSourceExpr()->IgnoreParens();
305 const ImplicitCastExpr
*ice
= dyn_cast
<ImplicitCastExpr
>(receiver
);
306 if (!ice
|| ice
->getCastKind() != CK_LValueToRValue
) return true;
307 receiver
= ice
->getSubExpr()->IgnoreParens();
309 // Look through OVEs.
310 if (auto opaque
= dyn_cast
<OpaqueValueExpr
>(receiver
)) {
311 if (opaque
->getSourceExpr())
312 receiver
= opaque
->getSourceExpr()->IgnoreParens();
315 // Only __strong variables.
316 if (receiver
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
)
319 // All ivars and fields have precise lifetime.
320 if (isa
<MemberExpr
>(receiver
) || isa
<ObjCIvarRefExpr
>(receiver
))
323 // Otherwise, check for variables.
324 const DeclRefExpr
*declRef
= dyn_cast
<DeclRefExpr
>(ice
->getSubExpr());
325 if (!declRef
) return true;
326 const VarDecl
*var
= dyn_cast
<VarDecl
>(declRef
->getDecl());
327 if (!var
) return true;
329 // All variables have precise lifetime except local variables with
330 // automatic storage duration that aren't specially marked.
331 return (var
->hasLocalStorage() &&
332 !var
->hasAttr
<ObjCPreciseLifetimeAttr
>());
335 case ObjCMessageExpr::Class
:
336 case ObjCMessageExpr::SuperClass
:
337 // It's never necessary for class objects.
340 case ObjCMessageExpr::SuperInstance
:
341 // We generally assume that 'self' lives throughout a method call.
345 llvm_unreachable("invalid receiver kind");
348 /// Given an expression of ObjC pointer type, check whether it was
349 /// immediately loaded from an ARC __weak l-value.
350 static const Expr
*findWeakLValue(const Expr
*E
) {
351 assert(E
->getType()->isObjCRetainableType());
352 E
= E
->IgnoreParens();
353 if (auto CE
= dyn_cast
<CastExpr
>(E
)) {
354 if (CE
->getCastKind() == CK_LValueToRValue
) {
355 if (CE
->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak
)
356 return CE
->getSubExpr();
363 /// The ObjC runtime may provide entrypoints that are likely to be faster
364 /// than an ordinary message send of the appropriate selector.
366 /// The entrypoints are guaranteed to be equivalent to just sending the
367 /// corresponding message. If the entrypoint is implemented naively as just a
368 /// message send, using it is a trade-off: it sacrifices a few cycles of
369 /// overhead to save a small amount of code. However, it's possible for
370 /// runtimes to detect and special-case classes that use "standard"
371 /// behavior; if that's dynamically a large proportion of all objects, using
372 /// the entrypoint will also be faster than using a message send.
374 /// If the runtime does support a required entrypoint, then this method will
375 /// generate a call and return the resulting value. Otherwise it will return
376 /// std::nullopt and the caller can generate a msgSend instead.
377 static std::optional
<llvm::Value
*> tryGenerateSpecializedMessageSend(
378 CodeGenFunction
&CGF
, QualType ResultType
, llvm::Value
*Receiver
,
379 const CallArgList
&Args
, Selector Sel
, const ObjCMethodDecl
*method
,
380 bool isClassMessage
) {
382 if (!CGM
.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls
)
385 auto &Runtime
= CGM
.getLangOpts().ObjCRuntime
;
386 switch (Sel
.getMethodFamily()) {
388 if (isClassMessage
&&
389 Runtime
.shouldUseRuntimeFunctionsForAlloc() &&
390 ResultType
->isObjCObjectPointerType()) {
391 // [Foo alloc] -> objc_alloc(Foo) or
392 // [self alloc] -> objc_alloc(self)
393 if (Sel
.isUnarySelector() && Sel
.getNameForSlot(0) == "alloc")
394 return CGF
.EmitObjCAlloc(Receiver
, CGF
.ConvertType(ResultType
));
395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or
396 // [self allocWithZone:nil] -> objc_allocWithZone(self)
397 if (Sel
.isKeywordSelector() && Sel
.getNumArgs() == 1 &&
398 Args
.size() == 1 && Args
.front().getType()->isPointerType() &&
399 Sel
.getNameForSlot(0) == "allocWithZone") {
400 const llvm::Value
* arg
= Args
.front().getKnownRValue().getScalarVal();
401 if (isa
<llvm::ConstantPointerNull
>(arg
))
402 return CGF
.EmitObjCAllocWithZone(Receiver
,
403 CGF
.ConvertType(ResultType
));
409 case OMF_autorelease
:
410 if (ResultType
->isObjCObjectPointerType() &&
411 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
412 Runtime
.shouldUseARCFunctionsForRetainRelease())
413 return CGF
.EmitObjCAutorelease(Receiver
, CGF
.ConvertType(ResultType
));
417 if (ResultType
->isObjCObjectPointerType() &&
418 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
419 Runtime
.shouldUseARCFunctionsForRetainRelease())
420 return CGF
.EmitObjCRetainNonBlock(Receiver
, CGF
.ConvertType(ResultType
));
424 if (ResultType
->isVoidType() &&
425 CGM
.getLangOpts().getGC() == LangOptions::NonGC
&&
426 Runtime
.shouldUseARCFunctionsForRetainRelease()) {
427 CGF
.EmitObjCRelease(Receiver
, ARCPreciseLifetime
);
438 CodeGen::RValue
CGObjCRuntime::GeneratePossiblySpecializedMessageSend(
439 CodeGenFunction
&CGF
, ReturnValueSlot Return
, QualType ResultType
,
440 Selector Sel
, llvm::Value
*Receiver
, const CallArgList
&Args
,
441 const ObjCInterfaceDecl
*OID
, const ObjCMethodDecl
*Method
,
442 bool isClassMessage
) {
443 if (std::optional
<llvm::Value
*> SpecializedResult
=
444 tryGenerateSpecializedMessageSend(CGF
, ResultType
, Receiver
, Args
,
445 Sel
, Method
, isClassMessage
)) {
446 return RValue::get(*SpecializedResult
);
448 return GenerateMessageSend(CGF
, Return
, ResultType
, Sel
, Receiver
, Args
, OID
,
452 static void AppendFirstImpliedRuntimeProtocols(
453 const ObjCProtocolDecl
*PD
,
454 llvm::UniqueVector
<const ObjCProtocolDecl
*> &PDs
) {
455 if (!PD
->isNonRuntimeProtocol()) {
456 const auto *Can
= PD
->getCanonicalDecl();
461 for (const auto *ParentPD
: PD
->protocols())
462 AppendFirstImpliedRuntimeProtocols(ParentPD
, PDs
);
465 std::vector
<const ObjCProtocolDecl
*>
466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin
,
467 ObjCProtocolDecl::protocol_iterator end
) {
468 std::vector
<const ObjCProtocolDecl
*> RuntimePds
;
469 llvm::DenseSet
<const ObjCProtocolDecl
*> NonRuntimePDs
;
471 for (; begin
!= end
; ++begin
) {
472 const auto *It
= *begin
;
473 const auto *Can
= It
->getCanonicalDecl();
474 if (Can
->isNonRuntimeProtocol())
475 NonRuntimePDs
.insert(Can
);
477 RuntimePds
.push_back(Can
);
480 // If there are no non-runtime protocols then we can just stop now.
481 if (NonRuntimePDs
.empty())
484 // Else we have to search through the non-runtime protocol's inheritancy
485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or
486 // a non-runtime protocol without any parents. These are the "first-implied"
487 // protocols from a non-runtime protocol.
488 llvm::UniqueVector
<const ObjCProtocolDecl
*> FirstImpliedProtos
;
489 for (const auto *PD
: NonRuntimePDs
)
490 AppendFirstImpliedRuntimeProtocols(PD
, FirstImpliedProtos
);
492 // Walk the Runtime list to get all protocols implied via the inclusion of
493 // this protocol, e.g. all protocols it inherits from including itself.
494 llvm::DenseSet
<const ObjCProtocolDecl
*> AllImpliedProtocols
;
495 for (const auto *PD
: RuntimePds
) {
496 const auto *Can
= PD
->getCanonicalDecl();
497 AllImpliedProtocols
.insert(Can
);
498 Can
->getImpliedProtocols(AllImpliedProtocols
);
501 // Similar to above, walk the list of first-implied protocols to find the set
502 // all the protocols implied excluding the listed protocols themselves since
503 // they are not yet a part of the `RuntimePds` list.
504 for (const auto *PD
: FirstImpliedProtos
) {
505 PD
->getImpliedProtocols(AllImpliedProtocols
);
508 // From the first-implied list we have to finish building the final protocol
509 // list. If a protocol in the first-implied list was already implied via some
510 // inheritance path through some other protocols then it would be redundant to
511 // add it here and so we skip over it.
512 for (const auto *PD
: FirstImpliedProtos
) {
513 if (!AllImpliedProtocols
.contains(PD
)) {
514 RuntimePds
.push_back(PD
);
521 /// Instead of '[[MyClass alloc] init]', try to generate
522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
523 /// caller side, as well as the optimized objc_alloc.
524 static std::optional
<llvm::Value
*>
525 tryEmitSpecializedAllocInit(CodeGenFunction
&CGF
, const ObjCMessageExpr
*OME
) {
526 auto &Runtime
= CGF
.getLangOpts().ObjCRuntime
;
527 if (!Runtime
.shouldUseRuntimeFunctionForCombinedAllocInit())
530 // Match the exact pattern '[[MyClass alloc] init]'.
531 Selector Sel
= OME
->getSelector();
532 if (OME
->getReceiverKind() != ObjCMessageExpr::Instance
||
533 !OME
->getType()->isObjCObjectPointerType() || !Sel
.isUnarySelector() ||
534 Sel
.getNameForSlot(0) != "init")
537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'
538 // with 'cls' a Class.
540 dyn_cast
<ObjCMessageExpr
>(OME
->getInstanceReceiver()->IgnoreParenCasts());
543 Selector SubSel
= SubOME
->getSelector();
545 if (!SubOME
->getType()->isObjCObjectPointerType() ||
546 !SubSel
.isUnarySelector() || SubSel
.getNameForSlot(0) != "alloc")
549 llvm::Value
*Receiver
= nullptr;
550 switch (SubOME
->getReceiverKind()) {
551 case ObjCMessageExpr::Instance
:
552 if (!SubOME
->getInstanceReceiver()->getType()->isObjCClassType())
554 Receiver
= CGF
.EmitScalarExpr(SubOME
->getInstanceReceiver());
557 case ObjCMessageExpr::Class
: {
558 QualType ReceiverType
= SubOME
->getClassReceiver();
559 const ObjCObjectType
*ObjTy
= ReceiverType
->castAs
<ObjCObjectType
>();
560 const ObjCInterfaceDecl
*ID
= ObjTy
->getInterface();
561 assert(ID
&& "null interface should be impossible here");
562 Receiver
= CGF
.CGM
.getObjCRuntime().GetClass(CGF
, ID
);
565 case ObjCMessageExpr::SuperInstance
:
566 case ObjCMessageExpr::SuperClass
:
570 return CGF
.EmitObjCAllocInit(Receiver
, CGF
.ConvertType(OME
->getType()));
573 RValue
CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr
*E
,
574 ReturnValueSlot Return
) {
575 // Only the lookup mechanism and first two arguments of the method
576 // implementation vary between runtimes. We can get the receiver and
577 // arguments in generic code.
579 bool isDelegateInit
= E
->isDelegateInitCall();
581 const ObjCMethodDecl
*method
= E
->getMethodDecl();
583 // If the method is -retain, and the receiver's being loaded from
584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
585 if (method
&& E
->getReceiverKind() == ObjCMessageExpr::Instance
&&
586 method
->getMethodFamily() == OMF_retain
) {
587 if (auto lvalueExpr
= findWeakLValue(E
->getInstanceReceiver())) {
588 LValue lvalue
= EmitLValue(lvalueExpr
);
589 llvm::Value
*result
= EmitARCLoadWeakRetained(lvalue
.getAddress(*this));
590 return AdjustObjCObjectType(*this, E
->getType(), RValue::get(result
));
594 if (std::optional
<llvm::Value
*> Val
= tryEmitSpecializedAllocInit(*this, E
))
595 return AdjustObjCObjectType(*this, E
->getType(), RValue::get(*Val
));
597 // We don't retain the receiver in delegate init calls, and this is
598 // safe because the receiver value is always loaded from 'self',
599 // which we zero out. We don't want to Block_copy block receivers,
603 CGM
.getLangOpts().ObjCAutoRefCount
&&
605 method
->hasAttr
<NSConsumesSelfAttr
>());
607 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
608 bool isSuperMessage
= false;
609 bool isClassMessage
= false;
610 ObjCInterfaceDecl
*OID
= nullptr;
612 QualType ReceiverType
;
613 llvm::Value
*Receiver
= nullptr;
614 switch (E
->getReceiverKind()) {
615 case ObjCMessageExpr::Instance
:
616 ReceiverType
= E
->getInstanceReceiver()->getType();
617 isClassMessage
= ReceiverType
->isObjCClassType();
619 TryEmitResult ter
= tryEmitARCRetainScalarExpr(*this,
620 E
->getInstanceReceiver());
621 Receiver
= ter
.getPointer();
622 if (ter
.getInt()) retainSelf
= false;
624 Receiver
= EmitScalarExpr(E
->getInstanceReceiver());
627 case ObjCMessageExpr::Class
: {
628 ReceiverType
= E
->getClassReceiver();
629 OID
= ReceiverType
->castAs
<ObjCObjectType
>()->getInterface();
630 assert(OID
&& "Invalid Objective-C class message send");
631 Receiver
= Runtime
.GetClass(*this, OID
);
632 isClassMessage
= true;
636 case ObjCMessageExpr::SuperInstance
:
637 ReceiverType
= E
->getSuperType();
638 Receiver
= LoadObjCSelf();
639 isSuperMessage
= true;
642 case ObjCMessageExpr::SuperClass
:
643 ReceiverType
= E
->getSuperType();
644 Receiver
= LoadObjCSelf();
645 isSuperMessage
= true;
646 isClassMessage
= true;
651 Receiver
= EmitARCRetainNonBlock(Receiver
);
653 // In ARC, we sometimes want to "extend the lifetime"
654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer
656 if (getLangOpts().ObjCAutoRefCount
&& method
&&
657 method
->hasAttr
<ObjCReturnsInnerPointerAttr
>() &&
658 shouldExtendReceiverForInnerPointerMessage(E
))
659 Receiver
= EmitARCRetainAutorelease(ReceiverType
, Receiver
);
661 QualType ResultType
= method
? method
->getReturnType() : E
->getType();
664 EmitCallArgs(Args
, method
, E
->arguments(), /*AC*/AbstractCallee(method
));
666 // For delegate init calls in ARC, do an unsafe store of null into
667 // self. This represents the call taking direct ownership of that
668 // value. We have to do this after emitting the other call
669 // arguments because they might also reference self, but we don't
670 // have to worry about any of them modifying self because that would
671 // be an undefined read and write of an object in unordered
673 if (isDelegateInit
) {
674 assert(getLangOpts().ObjCAutoRefCount
&&
675 "delegate init calls should only be marked in ARC");
677 // Do an unsafe store of null into self.
679 GetAddrOfLocalVar(cast
<ObjCMethodDecl
>(CurCodeDecl
)->getSelfDecl());
680 Builder
.CreateStore(getNullForVariable(selfAddr
), selfAddr
);
684 if (isSuperMessage
) {
685 // super is only valid in an Objective-C method
686 const ObjCMethodDecl
*OMD
= cast
<ObjCMethodDecl
>(CurFuncDecl
);
687 bool isCategoryImpl
= isa
<ObjCCategoryImplDecl
>(OMD
->getDeclContext());
688 result
= Runtime
.GenerateMessageSendSuper(*this, Return
, ResultType
,
690 OMD
->getClassInterface(),
697 // Call runtime methods directly if we can.
698 result
= Runtime
.GeneratePossiblySpecializedMessageSend(
699 *this, Return
, ResultType
, E
->getSelector(), Receiver
, Args
, OID
,
700 method
, isClassMessage
);
703 // For delegate init calls in ARC, implicitly store the result of
704 // the call back into self. This takes ownership of the value.
705 if (isDelegateInit
) {
707 GetAddrOfLocalVar(cast
<ObjCMethodDecl
>(CurCodeDecl
)->getSelfDecl());
708 llvm::Value
*newSelf
= result
.getScalarVal();
710 // The delegate return type isn't necessarily a matching type; in
711 // fact, it's quite likely to be 'id'.
712 llvm::Type
*selfTy
= selfAddr
.getElementType();
713 newSelf
= Builder
.CreateBitCast(newSelf
, selfTy
);
715 Builder
.CreateStore(newSelf
, selfAddr
);
718 return AdjustObjCObjectType(*this, E
->getType(), result
);
722 struct FinishARCDealloc final
: EHScopeStack::Cleanup
{
723 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
724 const ObjCMethodDecl
*method
= cast
<ObjCMethodDecl
>(CGF
.CurCodeDecl
);
726 const ObjCImplDecl
*impl
= cast
<ObjCImplDecl
>(method
->getDeclContext());
727 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
728 if (!iface
->getSuperClass()) return;
730 bool isCategory
= isa
<ObjCCategoryImplDecl
>(impl
);
732 // Call [super dealloc] if we have a superclass.
733 llvm::Value
*self
= CGF
.LoadObjCSelf();
736 CGF
.CGM
.getObjCRuntime().GenerateMessageSendSuper(CGF
, ReturnValueSlot(),
737 CGF
.getContext().VoidTy
,
738 method
->getSelector(),
742 /*is class msg*/ false,
749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
750 /// the LLVM function and sets the other context used by
752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl
*OMD
,
753 const ObjCContainerDecl
*CD
) {
754 SourceLocation StartLoc
= OMD
->getBeginLoc();
755 FunctionArgList args
;
756 // Check if we should generate debug info for this method.
757 if (OMD
->hasAttr
<NoDebugAttr
>())
758 DebugInfo
= nullptr; // disable debug info indefinitely for this function
760 llvm::Function
*Fn
= CGM
.getObjCRuntime().GenerateMethod(OMD
, CD
);
762 const CGFunctionInfo
&FI
= CGM
.getTypes().arrangeObjCMethodDeclaration(OMD
);
763 if (OMD
->isDirectMethod()) {
764 Fn
->setVisibility(llvm::Function::HiddenVisibility
);
765 CGM
.SetLLVMFunctionAttributes(OMD
, FI
, Fn
, /*IsThunk=*/false);
766 CGM
.SetLLVMFunctionAttributesForDefinition(OMD
, Fn
);
768 CGM
.SetInternalFunctionAttributes(OMD
, Fn
, FI
);
771 args
.push_back(OMD
->getSelfDecl());
772 if (!OMD
->isDirectMethod())
773 args
.push_back(OMD
->getCmdDecl());
775 args
.append(OMD
->param_begin(), OMD
->param_end());
778 CurEHLocation
= OMD
->getEndLoc();
780 StartFunction(OMD
, OMD
->getReturnType(), Fn
, FI
, args
,
781 OMD
->getLocation(), StartLoc
);
783 if (OMD
->isDirectMethod()) {
784 // This function is a direct call, it has to implement a nil check
787 // TODO: possibly have several entry points to elide the check
788 CGM
.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn
, OMD
, CD
);
791 // In ARC, certain methods get an extra cleanup.
792 if (CGM
.getLangOpts().ObjCAutoRefCount
&&
793 OMD
->isInstanceMethod() &&
794 OMD
->getSelector().isUnarySelector()) {
795 const IdentifierInfo
*ident
=
796 OMD
->getSelector().getIdentifierInfoForSlot(0);
797 if (ident
->isStr("dealloc"))
798 EHStack
.pushCleanup
<FinishARCDealloc
>(getARCCleanupKind());
802 static llvm::Value
*emitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
803 LValue lvalue
, QualType type
);
805 /// Generate an Objective-C method. An Objective-C method is a C function with
806 /// its pointer, name, and types registered in the class structure.
807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl
*OMD
) {
808 StartObjCMethod(OMD
, OMD
->getClassInterface());
809 PGO
.assignRegionCounters(GlobalDecl(OMD
), CurFn
);
810 assert(isa
<CompoundStmt
>(OMD
->getBody()));
811 incrementProfileCounter(OMD
->getBody());
812 EmitCompoundStmtWithoutScope(*cast
<CompoundStmt
>(OMD
->getBody()));
813 FinishFunction(OMD
->getBodyRBrace());
816 /// emitStructGetterCall - Call the runtime function to load a property
817 /// into the return value slot.
818 static void emitStructGetterCall(CodeGenFunction
&CGF
, ObjCIvarDecl
*ivar
,
819 bool isAtomic
, bool hasStrong
) {
820 ASTContext
&Context
= CGF
.getContext();
823 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
826 // objc_copyStruct (ReturnValue, &structIvar,
827 // sizeof (Type of Ivar), isAtomic, false);
831 CGF
.Builder
.CreateBitCast(CGF
.ReturnValue
.getPointer(), CGF
.VoidPtrTy
);
832 args
.add(RValue::get(dest
), Context
.VoidPtrTy
);
834 src
= CGF
.Builder
.CreateBitCast(src
, CGF
.VoidPtrTy
);
835 args
.add(RValue::get(src
), Context
.VoidPtrTy
);
837 CharUnits size
= CGF
.getContext().getTypeSizeInChars(ivar
->getType());
838 args
.add(RValue::get(CGF
.CGM
.getSize(size
)), Context
.getSizeType());
839 args
.add(RValue::get(CGF
.Builder
.getInt1(isAtomic
)), Context
.BoolTy
);
840 args
.add(RValue::get(CGF
.Builder
.getInt1(hasStrong
)), Context
.BoolTy
);
842 llvm::FunctionCallee fn
= CGF
.CGM
.getObjCRuntime().GetGetStructFunction();
843 CGCallee callee
= CGCallee::forDirect(fn
);
844 CGF
.EmitCall(CGF
.getTypes().arrangeBuiltinFunctionCall(Context
.VoidTy
, args
),
845 callee
, ReturnValueSlot(), args
);
848 /// Determine whether the given architecture supports unaligned atomic
849 /// accesses. They don't have to be fast, just faster than a function
850 /// call and a mutex.
851 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch
) {
852 // FIXME: Allow unaligned atomic load/store on x86. (It is not
853 // currently supported by the backend.)
857 /// Return the maximum size that permits atomic accesses for the given
859 static CharUnits
getMaxAtomicAccessSize(CodeGenModule
&CGM
,
860 llvm::Triple::ArchType arch
) {
861 // ARM has 8-byte atomic accesses, but it's not clear whether we
862 // want to rely on them here.
864 // In the default case, just assume that any size up to a pointer is
865 // fine given adequate alignment.
866 return CharUnits::fromQuantity(CGM
.PointerSizeInBytes
);
870 class PropertyImplStrategy
{
873 /// The 'native' strategy is to use the architecture's provided
874 /// reads and writes.
877 /// Use objc_setProperty and objc_getProperty.
880 /// Use objc_setProperty for the setter, but use expression
881 /// evaluation for the getter.
882 SetPropertyAndExpressionGet
,
884 /// Use objc_copyStruct.
887 /// The 'expression' strategy is to emit normal assignment or
888 /// lvalue-to-rvalue expressions.
892 StrategyKind
getKind() const { return StrategyKind(Kind
); }
894 bool hasStrongMember() const { return HasStrong
; }
895 bool isAtomic() const { return IsAtomic
; }
896 bool isCopy() const { return IsCopy
; }
898 CharUnits
getIvarSize() const { return IvarSize
; }
899 CharUnits
getIvarAlignment() const { return IvarAlignment
; }
901 PropertyImplStrategy(CodeGenModule
&CGM
,
902 const ObjCPropertyImplDecl
*propImpl
);
906 unsigned IsAtomic
: 1;
908 unsigned HasStrong
: 1;
911 CharUnits IvarAlignment
;
915 /// Pick an implementation strategy for the given property synthesis.
916 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule
&CGM
,
917 const ObjCPropertyImplDecl
*propImpl
) {
918 const ObjCPropertyDecl
*prop
= propImpl
->getPropertyDecl();
919 ObjCPropertyDecl::SetterKind setterKind
= prop
->getSetterKind();
921 IsCopy
= (setterKind
== ObjCPropertyDecl::Copy
);
922 IsAtomic
= prop
->isAtomic();
923 HasStrong
= false; // doesn't matter here.
925 // Evaluate the ivar's size and alignment.
926 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
927 QualType ivarType
= ivar
->getType();
928 auto TInfo
= CGM
.getContext().getTypeInfoInChars(ivarType
);
929 IvarSize
= TInfo
.Width
;
930 IvarAlignment
= TInfo
.Align
;
932 // If we have a copy property, we always have to use setProperty.
933 // If the property is atomic we need to use getProperty, but in
934 // the nonatomic case we can just use expression.
936 Kind
= IsAtomic
? GetSetProperty
: SetPropertyAndExpressionGet
;
941 if (setterKind
== ObjCPropertyDecl::Retain
) {
942 // In GC-only, there's nothing special that needs to be done.
943 if (CGM
.getLangOpts().getGC() == LangOptions::GCOnly
) {
946 // In ARC, if the property is non-atomic, use expression emission,
947 // which translates to objc_storeStrong. This isn't required, but
948 // it's slightly nicer.
949 } else if (CGM
.getLangOpts().ObjCAutoRefCount
&& !IsAtomic
) {
950 // Using standard expression emission for the setter is only
951 // acceptable if the ivar is __strong, which won't be true if
952 // the property is annotated with __attribute__((NSObject)).
953 // TODO: falling all the way back to objc_setProperty here is
954 // just laziness, though; we could still use objc_storeStrong
955 // if we hacked it right.
956 if (ivarType
.getObjCLifetime() == Qualifiers::OCL_Strong
)
959 Kind
= SetPropertyAndExpressionGet
;
962 // Otherwise, we need to at least use setProperty. However, if
963 // the property isn't atomic, we can use normal expression
964 // emission for the getter.
965 } else if (!IsAtomic
) {
966 Kind
= SetPropertyAndExpressionGet
;
969 // Otherwise, we have to use both setProperty and getProperty.
971 Kind
= GetSetProperty
;
976 // If we're not atomic, just use expression accesses.
982 // Properties on bitfield ivars need to be emitted using expression
983 // accesses even if they're nominally atomic.
984 if (ivar
->isBitField()) {
989 // GC-qualified or ARC-qualified ivars need to be emitted as
990 // expressions. This actually works out to being atomic anyway,
991 // except for ARC __strong, but that should trigger the above code.
992 if (ivarType
.hasNonTrivialObjCLifetime() ||
993 (CGM
.getLangOpts().getGC() &&
994 CGM
.getContext().getObjCGCAttrKind(ivarType
))) {
999 // Compute whether the ivar has strong members.
1000 if (CGM
.getLangOpts().getGC())
1001 if (const RecordType
*recordType
= ivarType
->getAs
<RecordType
>())
1002 HasStrong
= recordType
->getDecl()->hasObjectMember();
1004 // We can never access structs with object members with a native
1005 // access, because we need to use write barriers. This is what
1006 // objc_copyStruct is for.
1012 // Otherwise, this is target-dependent and based on the size and
1013 // alignment of the ivar.
1015 // If the size of the ivar is not a power of two, give up. We don't
1016 // want to get into the business of doing compare-and-swaps.
1017 if (!IvarSize
.isPowerOfTwo()) {
1022 llvm::Triple::ArchType arch
=
1023 CGM
.getTarget().getTriple().getArch();
1025 // Most architectures require memory to fit within a single cache
1026 // line, so the alignment has to be at least the size of the access.
1027 // Otherwise we have to grab a lock.
1028 if (IvarAlignment
< IvarSize
&& !hasUnalignedAtomics(arch
)) {
1033 // If the ivar's size exceeds the architecture's maximum atomic
1034 // access size, we have to use CopyStruct.
1035 if (IvarSize
> getMaxAtomicAccessSize(CGM
, arch
)) {
1040 // Otherwise, we can use native loads and stores.
1044 /// Generate an Objective-C property getter function.
1046 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1047 /// is illegal within a category.
1048 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl
*IMP
,
1049 const ObjCPropertyImplDecl
*PID
) {
1050 llvm::Constant
*AtomicHelperFn
=
1051 CodeGenFunction(CGM
).GenerateObjCAtomicGetterCopyHelperFunction(PID
);
1052 ObjCMethodDecl
*OMD
= PID
->getGetterMethodDecl();
1053 assert(OMD
&& "Invalid call to generate getter (empty method)");
1054 StartObjCMethod(OMD
, IMP
->getClassInterface());
1056 generateObjCGetterBody(IMP
, PID
, OMD
, AtomicHelperFn
);
1058 FinishFunction(OMD
->getEndLoc());
1061 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl
*propImpl
) {
1062 const Expr
*getter
= propImpl
->getGetterCXXConstructor();
1063 if (!getter
) return true;
1065 // Sema only makes only of these when the ivar has a C++ class type,
1066 // so the form is pretty constrained.
1068 // If the property has a reference type, we might just be binding a
1069 // reference, in which case the result will be a gl-value. We should
1070 // treat this as a non-trivial operation.
1071 if (getter
->isGLValue())
1074 // If we selected a trivial copy-constructor, we're okay.
1075 if (const CXXConstructExpr
*construct
= dyn_cast
<CXXConstructExpr
>(getter
))
1076 return (construct
->getConstructor()->isTrivial());
1078 // The constructor might require cleanups (in which case it's never
1080 assert(isa
<ExprWithCleanups
>(getter
));
1084 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
1085 /// copy the ivar into the resturn slot.
1086 static void emitCPPObjectAtomicGetterCall(CodeGenFunction
&CGF
,
1087 llvm::Value
*returnAddr
,
1089 llvm::Constant
*AtomicHelperFn
) {
1090 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
1094 // The 1st argument is the return Slot.
1095 args
.add(RValue::get(returnAddr
), CGF
.getContext().VoidPtrTy
);
1097 // The 2nd argument is the address of the ivar.
1098 llvm::Value
*ivarAddr
=
1099 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1101 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1102 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1104 // Third argument is the helper function.
1105 args
.add(RValue::get(AtomicHelperFn
), CGF
.getContext().VoidPtrTy
);
1107 llvm::FunctionCallee copyCppAtomicObjectFn
=
1108 CGF
.CGM
.getObjCRuntime().GetCppAtomicObjectGetFunction();
1109 CGCallee callee
= CGCallee::forDirect(copyCppAtomicObjectFn
);
1111 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1112 callee
, ReturnValueSlot(), args
);
1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for
1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods,
1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd`
1118 // being removed from the direct method ABI as the getter/setter caller would
1119 // never load one. For non-direct methods, this emits a load of the implicit
1121 static llvm::Value
*emitCmdValueForGetterSetterBody(CodeGenFunction
&CGF
,
1122 ObjCMethodDecl
*MD
) {
1123 if (MD
->isDirectMethod()) {
1124 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison
1125 // value. This will be passed to objc_getProperty/objc_setProperty, which
1126 // has not appeared bothered by the `_cmd` argument being undefined before.
1127 llvm::Type
*selType
= CGF
.ConvertType(CGF
.getContext().getObjCSelType());
1128 return llvm::PoisonValue::get(selType
);
1131 return CGF
.Builder
.CreateLoad(CGF
.GetAddrOfLocalVar(MD
->getCmdDecl()), "cmd");
1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl
*classImpl
,
1136 const ObjCPropertyImplDecl
*propImpl
,
1137 const ObjCMethodDecl
*GetterMethodDecl
,
1138 llvm::Constant
*AtomicHelperFn
) {
1140 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1142 if (ivar
->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
1143 if (!AtomicHelperFn
) {
1145 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1146 LValue Dst
= MakeAddrLValue(ReturnValue
, ivar
->getType());
1147 callCStructCopyConstructor(Dst
, Src
);
1149 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1150 emitCPPObjectAtomicGetterCall(*this, ReturnValue
.getPointer(), ivar
,
1156 // If there's a non-trivial 'get' expression, we just have to emit that.
1157 if (!hasTrivialGetExpr(propImpl
)) {
1158 if (!AtomicHelperFn
) {
1159 auto *ret
= ReturnStmt::Create(getContext(), SourceLocation(),
1160 propImpl
->getGetterCXXConstructor(),
1161 /* NRVOCandidate=*/nullptr);
1162 EmitReturnStmt(*ret
);
1165 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1166 emitCPPObjectAtomicGetterCall(*this, ReturnValue
.getPointer(),
1167 ivar
, AtomicHelperFn
);
1172 const ObjCPropertyDecl
*prop
= propImpl
->getPropertyDecl();
1173 QualType propType
= prop
->getType();
1174 ObjCMethodDecl
*getterMethod
= propImpl
->getGetterMethodDecl();
1176 // Pick an implementation strategy.
1177 PropertyImplStrategy
strategy(CGM
, propImpl
);
1178 switch (strategy
.getKind()) {
1179 case PropertyImplStrategy::Native
: {
1180 // We don't need to do anything for a zero-size struct.
1181 if (strategy
.getIvarSize().isZero())
1184 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1186 // Currently, all atomic accesses have to be through integer
1187 // types, so there's no point in trying to pick a prettier type.
1188 uint64_t ivarSize
= getContext().toBits(strategy
.getIvarSize());
1189 llvm::Type
*bitcastType
= llvm::Type::getIntNTy(getLLVMContext(), ivarSize
);
1191 // Perform an atomic load. This does not impose ordering constraints.
1192 Address ivarAddr
= LV
.getAddress(*this);
1193 ivarAddr
= Builder
.CreateElementBitCast(ivarAddr
, bitcastType
);
1194 llvm::LoadInst
*load
= Builder
.CreateLoad(ivarAddr
, "load");
1195 load
->setAtomic(llvm::AtomicOrdering::Unordered
);
1197 // Store that value into the return address. Doing this with a
1198 // bitcast is likely to produce some pretty ugly IR, but it's not
1199 // the *most* terrible thing in the world.
1200 llvm::Type
*retTy
= ConvertType(getterMethod
->getReturnType());
1201 uint64_t retTySize
= CGM
.getDataLayout().getTypeSizeInBits(retTy
);
1202 llvm::Value
*ivarVal
= load
;
1203 if (ivarSize
> retTySize
) {
1204 bitcastType
= llvm::Type::getIntNTy(getLLVMContext(), retTySize
);
1205 ivarVal
= Builder
.CreateTrunc(load
, bitcastType
);
1207 Builder
.CreateStore(ivarVal
,
1208 Builder
.CreateElementBitCast(ReturnValue
, bitcastType
));
1210 // Make sure we don't do an autorelease.
1211 AutoreleaseResult
= false;
1215 case PropertyImplStrategy::GetSetProperty
: {
1216 llvm::FunctionCallee getPropertyFn
=
1217 CGM
.getObjCRuntime().GetPropertyGetFunction();
1218 if (!getPropertyFn
) {
1219 CGM
.ErrorUnsupported(propImpl
, "Obj-C getter requiring atomic copy");
1222 CGCallee callee
= CGCallee::forDirect(getPropertyFn
);
1224 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1225 // FIXME: Can't this be simpler? This might even be worse than the
1226 // corresponding gcc code.
1227 llvm::Value
*cmd
= emitCmdValueForGetterSetterBody(*this, getterMethod
);
1228 llvm::Value
*self
= Builder
.CreateBitCast(LoadObjCSelf(), VoidPtrTy
);
1229 llvm::Value
*ivarOffset
=
1230 EmitIvarOffsetAsPointerDiff(classImpl
->getClassInterface(), ivar
);
1233 args
.add(RValue::get(self
), getContext().getObjCIdType());
1234 args
.add(RValue::get(cmd
), getContext().getObjCSelType());
1235 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1236 args
.add(RValue::get(Builder
.getInt1(strategy
.isAtomic())),
1237 getContext().BoolTy
);
1239 // FIXME: We shouldn't need to get the function info here, the
1240 // runtime already should have computed it to build the function.
1241 llvm::CallBase
*CallInstruction
;
1242 RValue RV
= EmitCall(getTypes().arrangeBuiltinFunctionCall(
1243 getContext().getObjCIdType(), args
),
1244 callee
, ReturnValueSlot(), args
, &CallInstruction
);
1245 if (llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(CallInstruction
))
1246 call
->setTailCall();
1248 // We need to fix the type here. Ivars with copy & retain are
1249 // always objects so we don't need to worry about complex or
1251 RV
= RValue::get(Builder
.CreateBitCast(
1253 getTypes().ConvertType(getterMethod
->getReturnType())));
1255 EmitReturnOfRValue(RV
, propType
);
1257 // objc_getProperty does an autorelease, so we should suppress ours.
1258 AutoreleaseResult
= false;
1263 case PropertyImplStrategy::CopyStruct
:
1264 emitStructGetterCall(*this, ivar
, strategy
.isAtomic(),
1265 strategy
.hasStrongMember());
1268 case PropertyImplStrategy::Expression
:
1269 case PropertyImplStrategy::SetPropertyAndExpressionGet
: {
1270 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, 0);
1272 QualType ivarType
= ivar
->getType();
1273 switch (getEvaluationKind(ivarType
)) {
1275 ComplexPairTy pair
= EmitLoadOfComplex(LV
, SourceLocation());
1276 EmitStoreOfComplex(pair
, MakeAddrLValue(ReturnValue
, ivarType
),
1280 case TEK_Aggregate
: {
1281 // The return value slot is guaranteed to not be aliased, but
1282 // that's not necessarily the same as "on the stack", so
1283 // we still potentially need objc_memmove_collectable.
1284 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue
, ivarType
),
1285 /* Src= */ LV
, ivarType
, getOverlapForReturnValue());
1290 if (propType
->isReferenceType()) {
1291 value
= LV
.getAddress(*this).getPointer();
1293 // We want to load and autoreleaseReturnValue ARC __weak ivars.
1294 if (LV
.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1295 if (getLangOpts().ObjCAutoRefCount
) {
1296 value
= emitARCRetainLoadOfScalar(*this, LV
, ivarType
);
1298 value
= EmitARCLoadWeak(LV
.getAddress(*this));
1301 // Otherwise we want to do a simple load, suppressing the
1302 // final autorelease.
1304 value
= EmitLoadOfLValue(LV
, SourceLocation()).getScalarVal();
1305 AutoreleaseResult
= false;
1308 value
= Builder
.CreateBitCast(
1309 value
, ConvertType(GetterMethodDecl
->getReturnType()));
1312 EmitReturnOfRValue(RValue::get(value
), propType
);
1316 llvm_unreachable("bad evaluation kind");
1320 llvm_unreachable("bad @property implementation strategy!");
1323 /// emitStructSetterCall - Call the runtime function to store the value
1324 /// from the first formal parameter into the given ivar.
1325 static void emitStructSetterCall(CodeGenFunction
&CGF
, ObjCMethodDecl
*OMD
,
1326 ObjCIvarDecl
*ivar
) {
1327 // objc_copyStruct (&structIvar, &Arg,
1328 // sizeof (struct something), true, false);
1331 // The first argument is the address of the ivar.
1332 llvm::Value
*ivarAddr
=
1333 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1335 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1336 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1338 // The second argument is the address of the parameter variable.
1339 ParmVarDecl
*argVar
= *OMD
->param_begin();
1340 DeclRefExpr
argRef(CGF
.getContext(), argVar
, false,
1341 argVar
->getType().getNonReferenceType(), VK_LValue
,
1343 llvm::Value
*argAddr
= CGF
.EmitLValue(&argRef
).getPointer(CGF
);
1344 argAddr
= CGF
.Builder
.CreateBitCast(argAddr
, CGF
.Int8PtrTy
);
1345 args
.add(RValue::get(argAddr
), CGF
.getContext().VoidPtrTy
);
1347 // The third argument is the sizeof the type.
1349 CGF
.CGM
.getSize(CGF
.getContext().getTypeSizeInChars(ivar
->getType()));
1350 args
.add(RValue::get(size
), CGF
.getContext().getSizeType());
1352 // The fourth argument is the 'isAtomic' flag.
1353 args
.add(RValue::get(CGF
.Builder
.getTrue()), CGF
.getContext().BoolTy
);
1355 // The fifth argument is the 'hasStrong' flag.
1356 // FIXME: should this really always be false?
1357 args
.add(RValue::get(CGF
.Builder
.getFalse()), CGF
.getContext().BoolTy
);
1359 llvm::FunctionCallee fn
= CGF
.CGM
.getObjCRuntime().GetSetStructFunction();
1360 CGCallee callee
= CGCallee::forDirect(fn
);
1362 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1363 callee
, ReturnValueSlot(), args
);
1366 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1367 /// the value from the first formal parameter into the given ivar, using
1368 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1369 static void emitCPPObjectAtomicSetterCall(CodeGenFunction
&CGF
,
1370 ObjCMethodDecl
*OMD
,
1372 llvm::Constant
*AtomicHelperFn
) {
1373 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1377 // The first argument is the address of the ivar.
1378 llvm::Value
*ivarAddr
=
1379 CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), CGF
.LoadObjCSelf(), ivar
, 0)
1381 ivarAddr
= CGF
.Builder
.CreateBitCast(ivarAddr
, CGF
.Int8PtrTy
);
1382 args
.add(RValue::get(ivarAddr
), CGF
.getContext().VoidPtrTy
);
1384 // The second argument is the address of the parameter variable.
1385 ParmVarDecl
*argVar
= *OMD
->param_begin();
1386 DeclRefExpr
argRef(CGF
.getContext(), argVar
, false,
1387 argVar
->getType().getNonReferenceType(), VK_LValue
,
1389 llvm::Value
*argAddr
= CGF
.EmitLValue(&argRef
).getPointer(CGF
);
1390 argAddr
= CGF
.Builder
.CreateBitCast(argAddr
, CGF
.Int8PtrTy
);
1391 args
.add(RValue::get(argAddr
), CGF
.getContext().VoidPtrTy
);
1393 // Third argument is the helper function.
1394 args
.add(RValue::get(AtomicHelperFn
), CGF
.getContext().VoidPtrTy
);
1396 llvm::FunctionCallee fn
=
1397 CGF
.CGM
.getObjCRuntime().GetCppAtomicObjectSetFunction();
1398 CGCallee callee
= CGCallee::forDirect(fn
);
1400 CGF
.getTypes().arrangeBuiltinFunctionCall(CGF
.getContext().VoidTy
, args
),
1401 callee
, ReturnValueSlot(), args
);
1405 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl
*PID
) {
1406 Expr
*setter
= PID
->getSetterCXXAssignment();
1407 if (!setter
) return true;
1409 // Sema only makes only of these when the ivar has a C++ class type,
1410 // so the form is pretty constrained.
1412 // An operator call is trivial if the function it calls is trivial.
1413 // This also implies that there's nothing non-trivial going on with
1414 // the arguments, because operator= can only be trivial if it's a
1415 // synthesized assignment operator and therefore both parameters are
1417 if (CallExpr
*call
= dyn_cast
<CallExpr
>(setter
)) {
1418 if (const FunctionDecl
*callee
1419 = dyn_cast_or_null
<FunctionDecl
>(call
->getCalleeDecl()))
1420 if (callee
->isTrivial())
1425 assert(isa
<ExprWithCleanups
>(setter
));
1429 static bool UseOptimizedSetter(CodeGenModule
&CGM
) {
1430 if (CGM
.getLangOpts().getGC() != LangOptions::NonGC
)
1432 return CGM
.getLangOpts().ObjCRuntime
.hasOptimizedSetter();
1436 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl
*classImpl
,
1437 const ObjCPropertyImplDecl
*propImpl
,
1438 llvm::Constant
*AtomicHelperFn
) {
1439 ObjCIvarDecl
*ivar
= propImpl
->getPropertyIvarDecl();
1440 ObjCMethodDecl
*setterMethod
= propImpl
->getSetterMethodDecl();
1442 if (ivar
->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
1443 ParmVarDecl
*PVD
= *setterMethod
->param_begin();
1444 if (!AtomicHelperFn
) {
1445 // Call the move assignment operator instead of calling the copy
1446 // assignment operator and destructor.
1447 LValue Dst
= EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
,
1449 LValue Src
= MakeAddrLValue(GetAddrOfLocalVar(PVD
), ivar
->getType());
1450 callCStructMoveAssignmentOperator(Dst
, Src
);
1452 // If atomic, assignment is called via a locking api.
1453 emitCPPObjectAtomicSetterCall(*this, setterMethod
, ivar
, AtomicHelperFn
);
1455 // Decativate the destructor for the setter parameter.
1456 DeactivateCleanupBlock(CalleeDestructedParamCleanups
[PVD
], AllocaInsertPt
);
1460 // Just use the setter expression if Sema gave us one and it's
1462 if (!hasTrivialSetExpr(propImpl
)) {
1463 if (!AtomicHelperFn
)
1464 // If non-atomic, assignment is called directly.
1465 EmitStmt(propImpl
->getSetterCXXAssignment());
1467 // If atomic, assignment is called via a locking api.
1468 emitCPPObjectAtomicSetterCall(*this, setterMethod
, ivar
,
1473 PropertyImplStrategy
strategy(CGM
, propImpl
);
1474 switch (strategy
.getKind()) {
1475 case PropertyImplStrategy::Native
: {
1476 // We don't need to do anything for a zero-size struct.
1477 if (strategy
.getIvarSize().isZero())
1480 Address argAddr
= GetAddrOfLocalVar(*setterMethod
->param_begin());
1483 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar
, /*quals*/ 0);
1484 Address ivarAddr
= ivarLValue
.getAddress(*this);
1486 // Currently, all atomic accesses have to be through integer
1487 // types, so there's no point in trying to pick a prettier type.
1488 llvm::Type
*bitcastType
=
1489 llvm::Type::getIntNTy(getLLVMContext(),
1490 getContext().toBits(strategy
.getIvarSize()));
1492 // Cast both arguments to the chosen operation type.
1493 argAddr
= Builder
.CreateElementBitCast(argAddr
, bitcastType
);
1494 ivarAddr
= Builder
.CreateElementBitCast(ivarAddr
, bitcastType
);
1496 // This bitcast load is likely to cause some nasty IR.
1497 llvm::Value
*load
= Builder
.CreateLoad(argAddr
);
1499 // Perform an atomic store. There are no memory ordering requirements.
1500 llvm::StoreInst
*store
= Builder
.CreateStore(load
, ivarAddr
);
1501 store
->setAtomic(llvm::AtomicOrdering::Unordered
);
1505 case PropertyImplStrategy::GetSetProperty
:
1506 case PropertyImplStrategy::SetPropertyAndExpressionGet
: {
1508 llvm::FunctionCallee setOptimizedPropertyFn
= nullptr;
1509 llvm::FunctionCallee setPropertyFn
= nullptr;
1510 if (UseOptimizedSetter(CGM
)) {
1511 // 10.8 and iOS 6.0 code and GC is off
1512 setOptimizedPropertyFn
=
1513 CGM
.getObjCRuntime().GetOptimizedPropertySetFunction(
1514 strategy
.isAtomic(), strategy
.isCopy());
1515 if (!setOptimizedPropertyFn
) {
1516 CGM
.ErrorUnsupported(propImpl
, "Obj-C optimized setter - NYI");
1521 setPropertyFn
= CGM
.getObjCRuntime().GetPropertySetFunction();
1522 if (!setPropertyFn
) {
1523 CGM
.ErrorUnsupported(propImpl
, "Obj-C setter requiring atomic copy");
1528 // Emit objc_setProperty((id) self, _cmd, offset, arg,
1529 // <is-atomic>, <is-copy>).
1530 llvm::Value
*cmd
= emitCmdValueForGetterSetterBody(*this, setterMethod
);
1532 Builder
.CreateBitCast(LoadObjCSelf(), VoidPtrTy
);
1533 llvm::Value
*ivarOffset
=
1534 EmitIvarOffsetAsPointerDiff(classImpl
->getClassInterface(), ivar
);
1535 Address argAddr
= GetAddrOfLocalVar(*setterMethod
->param_begin());
1536 llvm::Value
*arg
= Builder
.CreateLoad(argAddr
, "arg");
1537 arg
= Builder
.CreateBitCast(arg
, VoidPtrTy
);
1540 args
.add(RValue::get(self
), getContext().getObjCIdType());
1541 args
.add(RValue::get(cmd
), getContext().getObjCSelType());
1542 if (setOptimizedPropertyFn
) {
1543 args
.add(RValue::get(arg
), getContext().getObjCIdType());
1544 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1545 CGCallee callee
= CGCallee::forDirect(setOptimizedPropertyFn
);
1546 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, args
),
1547 callee
, ReturnValueSlot(), args
);
1549 args
.add(RValue::get(ivarOffset
), getContext().getPointerDiffType());
1550 args
.add(RValue::get(arg
), getContext().getObjCIdType());
1551 args
.add(RValue::get(Builder
.getInt1(strategy
.isAtomic())),
1552 getContext().BoolTy
);
1553 args
.add(RValue::get(Builder
.getInt1(strategy
.isCopy())),
1554 getContext().BoolTy
);
1555 // FIXME: We shouldn't need to get the function info here, the runtime
1556 // already should have computed it to build the function.
1557 CGCallee callee
= CGCallee::forDirect(setPropertyFn
);
1558 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, args
),
1559 callee
, ReturnValueSlot(), args
);
1565 case PropertyImplStrategy::CopyStruct
:
1566 emitStructSetterCall(*this, setterMethod
, ivar
);
1569 case PropertyImplStrategy::Expression
:
1573 // Otherwise, fake up some ASTs and emit a normal assignment.
1574 ValueDecl
*selfDecl
= setterMethod
->getSelfDecl();
1575 DeclRefExpr
self(getContext(), selfDecl
, false, selfDecl
->getType(),
1576 VK_LValue
, SourceLocation());
1577 ImplicitCastExpr
selfLoad(ImplicitCastExpr::OnStack
, selfDecl
->getType(),
1578 CK_LValueToRValue
, &self
, VK_PRValue
,
1579 FPOptionsOverride());
1580 ObjCIvarRefExpr
ivarRef(ivar
, ivar
->getType().getNonReferenceType(),
1581 SourceLocation(), SourceLocation(),
1582 &selfLoad
, true, true);
1584 ParmVarDecl
*argDecl
= *setterMethod
->param_begin();
1585 QualType argType
= argDecl
->getType().getNonReferenceType();
1586 DeclRefExpr
arg(getContext(), argDecl
, false, argType
, VK_LValue
,
1588 ImplicitCastExpr
argLoad(ImplicitCastExpr::OnStack
,
1589 argType
.getUnqualifiedType(), CK_LValueToRValue
,
1590 &arg
, VK_PRValue
, FPOptionsOverride());
1592 // The property type can differ from the ivar type in some situations with
1593 // Objective-C pointer types, we can always bit cast the RHS in these cases.
1594 // The following absurdity is just to ensure well-formed IR.
1595 CastKind argCK
= CK_NoOp
;
1596 if (ivarRef
.getType()->isObjCObjectPointerType()) {
1597 if (argLoad
.getType()->isObjCObjectPointerType())
1599 else if (argLoad
.getType()->isBlockPointerType())
1600 argCK
= CK_BlockPointerToObjCPointerCast
;
1602 argCK
= CK_CPointerToObjCPointerCast
;
1603 } else if (ivarRef
.getType()->isBlockPointerType()) {
1604 if (argLoad
.getType()->isBlockPointerType())
1607 argCK
= CK_AnyPointerToBlockPointerCast
;
1608 } else if (ivarRef
.getType()->isPointerType()) {
1610 } else if (argLoad
.getType()->isAtomicType() &&
1611 !ivarRef
.getType()->isAtomicType()) {
1612 argCK
= CK_AtomicToNonAtomic
;
1613 } else if (!argLoad
.getType()->isAtomicType() &&
1614 ivarRef
.getType()->isAtomicType()) {
1615 argCK
= CK_NonAtomicToAtomic
;
1617 ImplicitCastExpr
argCast(ImplicitCastExpr::OnStack
, ivarRef
.getType(), argCK
,
1618 &argLoad
, VK_PRValue
, FPOptionsOverride());
1619 Expr
*finalArg
= &argLoad
;
1620 if (!getContext().hasSameUnqualifiedType(ivarRef
.getType(),
1622 finalArg
= &argCast
;
1624 BinaryOperator
*assign
= BinaryOperator::Create(
1625 getContext(), &ivarRef
, finalArg
, BO_Assign
, ivarRef
.getType(),
1626 VK_PRValue
, OK_Ordinary
, SourceLocation(), FPOptionsOverride());
1630 /// Generate an Objective-C property setter function.
1632 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1633 /// is illegal within a category.
1634 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl
*IMP
,
1635 const ObjCPropertyImplDecl
*PID
) {
1636 llvm::Constant
*AtomicHelperFn
=
1637 CodeGenFunction(CGM
).GenerateObjCAtomicSetterCopyHelperFunction(PID
);
1638 ObjCMethodDecl
*OMD
= PID
->getSetterMethodDecl();
1639 assert(OMD
&& "Invalid call to generate setter (empty method)");
1640 StartObjCMethod(OMD
, IMP
->getClassInterface());
1642 generateObjCSetterBody(IMP
, PID
, AtomicHelperFn
);
1644 FinishFunction(OMD
->getEndLoc());
1648 struct DestroyIvar final
: EHScopeStack::Cleanup
{
1651 const ObjCIvarDecl
*ivar
;
1652 CodeGenFunction::Destroyer
*destroyer
;
1653 bool useEHCleanupForArray
;
1655 DestroyIvar(llvm::Value
*addr
, const ObjCIvarDecl
*ivar
,
1656 CodeGenFunction::Destroyer
*destroyer
,
1657 bool useEHCleanupForArray
)
1658 : addr(addr
), ivar(ivar
), destroyer(destroyer
),
1659 useEHCleanupForArray(useEHCleanupForArray
) {}
1661 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
1663 = CGF
.EmitLValueForIvar(CGF
.TypeOfSelfObject(), addr
, ivar
, /*CVR*/ 0);
1664 CGF
.emitDestroy(lvalue
.getAddress(CGF
), ivar
->getType(), destroyer
,
1665 flags
.isForNormalCleanup() && useEHCleanupForArray
);
1670 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1671 static void destroyARCStrongWithStore(CodeGenFunction
&CGF
,
1674 llvm::Value
*null
= getNullForVariable(addr
);
1675 CGF
.EmitARCStoreStrongCall(addr
, null
, /*ignored*/ true);
1678 static void emitCXXDestructMethod(CodeGenFunction
&CGF
,
1679 ObjCImplementationDecl
*impl
) {
1680 CodeGenFunction::RunCleanupsScope
scope(CGF
);
1682 llvm::Value
*self
= CGF
.LoadObjCSelf();
1684 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
1685 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
1686 ivar
; ivar
= ivar
->getNextIvar()) {
1687 QualType type
= ivar
->getType();
1689 // Check whether the ivar is a destructible type.
1690 QualType::DestructionKind dtorKind
= type
.isDestructedType();
1691 if (!dtorKind
) continue;
1693 CodeGenFunction::Destroyer
*destroyer
= nullptr;
1695 // Use a call to objc_storeStrong to destroy strong ivars, for the
1696 // general benefit of the tools.
1697 if (dtorKind
== QualType::DK_objc_strong_lifetime
) {
1698 destroyer
= destroyARCStrongWithStore
;
1700 // Otherwise use the default for the destruction kind.
1702 destroyer
= CGF
.getDestroyer(dtorKind
);
1705 CleanupKind cleanupKind
= CGF
.getCleanupKind(dtorKind
);
1707 CGF
.EHStack
.pushCleanup
<DestroyIvar
>(cleanupKind
, self
, ivar
, destroyer
,
1708 cleanupKind
& EHCleanup
);
1711 assert(scope
.requiresCleanups() && "nothing to do in .cxx_destruct?");
1714 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl
*IMP
,
1717 MD
->createImplicitParams(CGM
.getContext(), IMP
->getClassInterface());
1718 StartObjCMethod(MD
, IMP
->getClassInterface());
1720 // Emit .cxx_construct.
1722 // Suppress the final autorelease in ARC.
1723 AutoreleaseResult
= false;
1725 for (const auto *IvarInit
: IMP
->inits()) {
1726 FieldDecl
*Field
= IvarInit
->getAnyMember();
1727 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(Field
);
1728 LValue LV
= EmitLValueForIvar(TypeOfSelfObject(),
1729 LoadObjCSelf(), Ivar
, 0);
1730 EmitAggExpr(IvarInit
->getInit(),
1731 AggValueSlot::forLValue(LV
, *this, AggValueSlot::IsDestructed
,
1732 AggValueSlot::DoesNotNeedGCBarriers
,
1733 AggValueSlot::IsNotAliased
,
1734 AggValueSlot::DoesNotOverlap
));
1736 // constructor returns 'self'.
1737 CodeGenTypes
&Types
= CGM
.getTypes();
1738 QualType
IdTy(CGM
.getContext().getObjCIdType());
1739 llvm::Value
*SelfAsId
=
1740 Builder
.CreateBitCast(LoadObjCSelf(), Types
.ConvertType(IdTy
));
1741 EmitReturnOfRValue(RValue::get(SelfAsId
), IdTy
);
1743 // Emit .cxx_destruct.
1745 emitCXXDestructMethod(*this, IMP
);
1750 llvm::Value
*CodeGenFunction::LoadObjCSelf() {
1751 VarDecl
*Self
= cast
<ObjCMethodDecl
>(CurFuncDecl
)->getSelfDecl();
1752 DeclRefExpr
DRE(getContext(), Self
,
1753 /*is enclosing local*/ (CurFuncDecl
!= CurCodeDecl
),
1754 Self
->getType(), VK_LValue
, SourceLocation());
1755 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE
), SourceLocation());
1758 QualType
CodeGenFunction::TypeOfSelfObject() {
1759 const ObjCMethodDecl
*OMD
= cast
<ObjCMethodDecl
>(CurFuncDecl
);
1760 ImplicitParamDecl
*selfDecl
= OMD
->getSelfDecl();
1761 const ObjCObjectPointerType
*PTy
= cast
<ObjCObjectPointerType
>(
1762 getContext().getCanonicalType(selfDecl
->getType()));
1763 return PTy
->getPointeeType();
1766 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt
&S
){
1767 llvm::FunctionCallee EnumerationMutationFnPtr
=
1768 CGM
.getObjCRuntime().EnumerationMutationFunction();
1769 if (!EnumerationMutationFnPtr
) {
1770 CGM
.ErrorUnsupported(&S
, "Obj-C fast enumeration for this runtime");
1773 CGCallee EnumerationMutationFn
=
1774 CGCallee::forDirect(EnumerationMutationFnPtr
);
1776 CGDebugInfo
*DI
= getDebugInfo();
1778 DI
->EmitLexicalBlockStart(Builder
, S
.getSourceRange().getBegin());
1780 RunCleanupsScope
ForScope(*this);
1782 // The local variable comes into scope immediately.
1783 AutoVarEmission variable
= AutoVarEmission::invalid();
1784 if (const DeclStmt
*SD
= dyn_cast
<DeclStmt
>(S
.getElement()))
1785 variable
= EmitAutoVarAlloca(*cast
<VarDecl
>(SD
->getSingleDecl()));
1787 JumpDest LoopEnd
= getJumpDestInCurrentScope("forcoll.end");
1789 // Fast enumeration state.
1790 QualType StateTy
= CGM
.getObjCFastEnumerationStateType();
1791 Address StatePtr
= CreateMemTemp(StateTy
, "state.ptr");
1792 EmitNullInitialization(StatePtr
, StateTy
);
1794 // Number of elements in the items array.
1795 static const unsigned NumItems
= 16;
1797 // Fetch the countByEnumeratingWithState:objects:count: selector.
1798 IdentifierInfo
*II
[] = {
1799 &CGM
.getContext().Idents
.get("countByEnumeratingWithState"),
1800 &CGM
.getContext().Idents
.get("objects"),
1801 &CGM
.getContext().Idents
.get("count")
1803 Selector FastEnumSel
=
1804 CGM
.getContext().Selectors
.getSelector(std::size(II
), &II
[0]);
1807 getContext().getConstantArrayType(getContext().getObjCIdType(),
1808 llvm::APInt(32, NumItems
), nullptr,
1809 ArrayType::Normal
, 0);
1810 Address ItemsPtr
= CreateMemTemp(ItemsTy
, "items.ptr");
1812 // Emit the collection pointer. In ARC, we do a retain.
1813 llvm::Value
*Collection
;
1814 if (getLangOpts().ObjCAutoRefCount
) {
1815 Collection
= EmitARCRetainScalarExpr(S
.getCollection());
1817 // Enter a cleanup to do the release.
1818 EmitObjCConsumeObject(S
.getCollection()->getType(), Collection
);
1820 Collection
= EmitScalarExpr(S
.getCollection());
1823 // The 'continue' label needs to appear within the cleanup for the
1824 // collection object.
1825 JumpDest AfterBody
= getJumpDestInCurrentScope("forcoll.next");
1827 // Send it our message:
1830 // The first argument is a temporary of the enumeration-state type.
1831 Args
.add(RValue::get(StatePtr
.getPointer()),
1832 getContext().getPointerType(StateTy
));
1834 // The second argument is a temporary array with space for NumItems
1835 // pointers. We'll actually be loading elements from the array
1836 // pointer written into the control state; this buffer is so that
1837 // collections that *aren't* backed by arrays can still queue up
1838 // batches of elements.
1839 Args
.add(RValue::get(ItemsPtr
.getPointer()),
1840 getContext().getPointerType(ItemsTy
));
1842 // The third argument is the capacity of that temporary array.
1843 llvm::Type
*NSUIntegerTy
= ConvertType(getContext().getNSUIntegerType());
1844 llvm::Constant
*Count
= llvm::ConstantInt::get(NSUIntegerTy
, NumItems
);
1845 Args
.add(RValue::get(Count
), getContext().getNSUIntegerType());
1847 // Start the enumeration.
1849 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1850 getContext().getNSUIntegerType(),
1851 FastEnumSel
, Collection
, Args
);
1853 // The initial number of objects that were returned in the buffer.
1854 llvm::Value
*initialBufferLimit
= CountRV
.getScalarVal();
1856 llvm::BasicBlock
*EmptyBB
= createBasicBlock("forcoll.empty");
1857 llvm::BasicBlock
*LoopInitBB
= createBasicBlock("forcoll.loopinit");
1859 llvm::Value
*zero
= llvm::Constant::getNullValue(NSUIntegerTy
);
1861 // If the limit pointer was zero to begin with, the collection is
1862 // empty; skip all this. Set the branch weight assuming this has the same
1863 // probability of exiting the loop as any other loop exit.
1864 uint64_t EntryCount
= getCurrentProfileCount();
1865 Builder
.CreateCondBr(
1866 Builder
.CreateICmpEQ(initialBufferLimit
, zero
, "iszero"), EmptyBB
,
1868 createProfileWeights(EntryCount
, getProfileCount(S
.getBody())));
1870 // Otherwise, initialize the loop.
1871 EmitBlock(LoopInitBB
);
1873 // Save the initial mutations value. This is the value at an
1874 // address that was written into the state object by
1875 // countByEnumeratingWithState:objects:count:.
1876 Address StateMutationsPtrPtr
=
1877 Builder
.CreateStructGEP(StatePtr
, 2, "mutationsptr.ptr");
1878 llvm::Value
*StateMutationsPtr
1879 = Builder
.CreateLoad(StateMutationsPtrPtr
, "mutationsptr");
1881 llvm::Type
*UnsignedLongTy
= ConvertType(getContext().UnsignedLongTy
);
1882 llvm::Value
*initialMutations
=
1883 Builder
.CreateAlignedLoad(UnsignedLongTy
, StateMutationsPtr
,
1884 getPointerAlign(), "forcoll.initial-mutations");
1886 // Start looping. This is the point we return to whenever we have a
1887 // fresh, non-empty batch of objects.
1888 llvm::BasicBlock
*LoopBodyBB
= createBasicBlock("forcoll.loopbody");
1889 EmitBlock(LoopBodyBB
);
1891 // The current index into the buffer.
1892 llvm::PHINode
*index
= Builder
.CreatePHI(NSUIntegerTy
, 3, "forcoll.index");
1893 index
->addIncoming(zero
, LoopInitBB
);
1895 // The current buffer size.
1896 llvm::PHINode
*count
= Builder
.CreatePHI(NSUIntegerTy
, 3, "forcoll.count");
1897 count
->addIncoming(initialBufferLimit
, LoopInitBB
);
1899 incrementProfileCounter(&S
);
1901 // Check whether the mutations value has changed from where it was
1902 // at start. StateMutationsPtr should actually be invariant between
1904 StateMutationsPtr
= Builder
.CreateLoad(StateMutationsPtrPtr
, "mutationsptr");
1905 llvm::Value
*currentMutations
1906 = Builder
.CreateAlignedLoad(UnsignedLongTy
, StateMutationsPtr
,
1907 getPointerAlign(), "statemutations");
1909 llvm::BasicBlock
*WasMutatedBB
= createBasicBlock("forcoll.mutated");
1910 llvm::BasicBlock
*WasNotMutatedBB
= createBasicBlock("forcoll.notmutated");
1912 Builder
.CreateCondBr(Builder
.CreateICmpEQ(currentMutations
, initialMutations
),
1913 WasNotMutatedBB
, WasMutatedBB
);
1915 // If so, call the enumeration-mutation function.
1916 EmitBlock(WasMutatedBB
);
1917 llvm::Type
*ObjCIdType
= ConvertType(getContext().getObjCIdType());
1919 Builder
.CreateBitCast(Collection
, ObjCIdType
);
1921 Args2
.add(RValue::get(V
), getContext().getObjCIdType());
1922 // FIXME: We shouldn't need to get the function info here, the runtime already
1923 // should have computed it to build the function.
1925 CGM
.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy
, Args2
),
1926 EnumerationMutationFn
, ReturnValueSlot(), Args2
);
1928 // Otherwise, or if the mutation function returns, just continue.
1929 EmitBlock(WasNotMutatedBB
);
1931 // Initialize the element variable.
1932 RunCleanupsScope
elementVariableScope(*this);
1933 bool elementIsVariable
;
1934 LValue elementLValue
;
1935 QualType elementType
;
1936 if (const DeclStmt
*SD
= dyn_cast
<DeclStmt
>(S
.getElement())) {
1937 // Initialize the variable, in case it's a __block variable or something.
1938 EmitAutoVarInit(variable
);
1940 const VarDecl
*D
= cast
<VarDecl
>(SD
->getSingleDecl());
1941 DeclRefExpr
tempDRE(getContext(), const_cast<VarDecl
*>(D
), false,
1942 D
->getType(), VK_LValue
, SourceLocation());
1943 elementLValue
= EmitLValue(&tempDRE
);
1944 elementType
= D
->getType();
1945 elementIsVariable
= true;
1947 if (D
->isARCPseudoStrong())
1948 elementLValue
.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone
);
1950 elementLValue
= LValue(); // suppress warning
1951 elementType
= cast
<Expr
>(S
.getElement())->getType();
1952 elementIsVariable
= false;
1954 llvm::Type
*convertedElementType
= ConvertType(elementType
);
1956 // Fetch the buffer out of the enumeration state.
1957 // TODO: this pointer should actually be invariant between
1958 // refreshes, which would help us do certain loop optimizations.
1959 Address StateItemsPtr
=
1960 Builder
.CreateStructGEP(StatePtr
, 1, "stateitems.ptr");
1961 llvm::Value
*EnumStateItems
=
1962 Builder
.CreateLoad(StateItemsPtr
, "stateitems");
1964 // Fetch the value at the current index from the buffer.
1965 llvm::Value
*CurrentItemPtr
= Builder
.CreateGEP(
1966 ObjCIdType
, EnumStateItems
, index
, "currentitem.ptr");
1967 llvm::Value
*CurrentItem
=
1968 Builder
.CreateAlignedLoad(ObjCIdType
, CurrentItemPtr
, getPointerAlign());
1970 if (SanOpts
.has(SanitizerKind::ObjCCast
)) {
1971 // Before using an item from the collection, check that the implicit cast
1972 // from id to the element type is valid. This is done with instrumentation
1973 // roughly corresponding to:
1975 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ }
1976 const ObjCObjectPointerType
*ObjPtrTy
=
1977 elementType
->getAsObjCInterfacePointerType();
1978 const ObjCInterfaceType
*InterfaceTy
=
1979 ObjPtrTy
? ObjPtrTy
->getInterfaceType() : nullptr;
1981 SanitizerScope
SanScope(this);
1982 auto &C
= CGM
.getContext();
1983 assert(InterfaceTy
->getDecl() && "No decl for ObjC interface type");
1984 Selector IsKindOfClassSel
= GetUnarySelector("isKindOfClass", C
);
1985 CallArgList IsKindOfClassArgs
;
1987 CGM
.getObjCRuntime().GetClass(*this, InterfaceTy
->getDecl());
1988 IsKindOfClassArgs
.add(RValue::get(Cls
), C
.getObjCClassType());
1989 llvm::Value
*IsClass
=
1990 CGM
.getObjCRuntime()
1991 .GenerateMessageSend(*this, ReturnValueSlot(), C
.BoolTy
,
1992 IsKindOfClassSel
, CurrentItem
,
1995 llvm::Constant
*StaticData
[] = {
1996 EmitCheckSourceLocation(S
.getBeginLoc()),
1997 EmitCheckTypeDescriptor(QualType(InterfaceTy
, 0))};
1998 EmitCheck({{IsClass
, SanitizerKind::ObjCCast
}},
1999 SanitizerHandler::InvalidObjCCast
,
2000 ArrayRef
<llvm::Constant
*>(StaticData
), CurrentItem
);
2004 // Cast that value to the right type.
2005 CurrentItem
= Builder
.CreateBitCast(CurrentItem
, convertedElementType
,
2008 // Make sure we have an l-value. Yes, this gets evaluated every
2009 // time through the loop.
2010 if (!elementIsVariable
) {
2011 elementLValue
= EmitLValue(cast
<Expr
>(S
.getElement()));
2012 EmitStoreThroughLValue(RValue::get(CurrentItem
), elementLValue
);
2014 EmitStoreThroughLValue(RValue::get(CurrentItem
), elementLValue
,
2018 // If we do have an element variable, this assignment is the end of
2019 // its initialization.
2020 if (elementIsVariable
)
2021 EmitAutoVarCleanups(variable
);
2023 // Perform the loop body, setting up break and continue labels.
2024 BreakContinueStack
.push_back(BreakContinue(LoopEnd
, AfterBody
));
2026 RunCleanupsScope
Scope(*this);
2027 EmitStmt(S
.getBody());
2029 BreakContinueStack
.pop_back();
2031 // Destroy the element variable now.
2032 elementVariableScope
.ForceCleanup();
2034 // Check whether there are more elements.
2035 EmitBlock(AfterBody
.getBlock());
2037 llvm::BasicBlock
*FetchMoreBB
= createBasicBlock("forcoll.refetch");
2039 // First we check in the local buffer.
2040 llvm::Value
*indexPlusOne
=
2041 Builder
.CreateAdd(index
, llvm::ConstantInt::get(NSUIntegerTy
, 1));
2043 // If we haven't overrun the buffer yet, we can continue.
2044 // Set the branch weights based on the simplifying assumption that this is
2045 // like a while-loop, i.e., ignoring that the false branch fetches more
2046 // elements and then returns to the loop.
2047 Builder
.CreateCondBr(
2048 Builder
.CreateICmpULT(indexPlusOne
, count
), LoopBodyBB
, FetchMoreBB
,
2049 createProfileWeights(getProfileCount(S
.getBody()), EntryCount
));
2051 index
->addIncoming(indexPlusOne
, AfterBody
.getBlock());
2052 count
->addIncoming(count
, AfterBody
.getBlock());
2054 // Otherwise, we have to fetch more elements.
2055 EmitBlock(FetchMoreBB
);
2058 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2059 getContext().getNSUIntegerType(),
2060 FastEnumSel
, Collection
, Args
);
2062 // If we got a zero count, we're done.
2063 llvm::Value
*refetchCount
= CountRV
.getScalarVal();
2065 // (note that the message send might split FetchMoreBB)
2066 index
->addIncoming(zero
, Builder
.GetInsertBlock());
2067 count
->addIncoming(refetchCount
, Builder
.GetInsertBlock());
2069 Builder
.CreateCondBr(Builder
.CreateICmpEQ(refetchCount
, zero
),
2070 EmptyBB
, LoopBodyBB
);
2072 // No more elements.
2075 if (!elementIsVariable
) {
2076 // If the element was not a declaration, set it to be null.
2078 llvm::Value
*null
= llvm::Constant::getNullValue(convertedElementType
);
2079 elementLValue
= EmitLValue(cast
<Expr
>(S
.getElement()));
2080 EmitStoreThroughLValue(RValue::get(null
), elementLValue
);
2084 DI
->EmitLexicalBlockEnd(Builder
, S
.getSourceRange().getEnd());
2086 ForScope
.ForceCleanup();
2087 EmitBlock(LoopEnd
.getBlock());
2090 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt
&S
) {
2091 CGM
.getObjCRuntime().EmitTryStmt(*this, S
);
2094 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt
&S
) {
2095 CGM
.getObjCRuntime().EmitThrowStmt(*this, S
);
2098 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
2099 const ObjCAtSynchronizedStmt
&S
) {
2100 CGM
.getObjCRuntime().EmitSynchronizedStmt(*this, S
);
2104 struct CallObjCRelease final
: EHScopeStack::Cleanup
{
2105 CallObjCRelease(llvm::Value
*object
) : object(object
) {}
2106 llvm::Value
*object
;
2108 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2109 // Releases at the end of the full-expression are imprecise.
2110 CGF
.EmitARCRelease(object
, ARCImpreciseLifetime
);
2115 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
2116 /// release at the end of the full-expression.
2117 llvm::Value
*CodeGenFunction::EmitObjCConsumeObject(QualType type
,
2118 llvm::Value
*object
) {
2119 // If we're in a conditional branch, we need to make the cleanup
2121 pushFullExprCleanup
<CallObjCRelease
>(getARCCleanupKind(), object
);
2125 llvm::Value
*CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type
,
2126 llvm::Value
*value
) {
2127 return EmitARCRetainAutorelease(type
, value
);
2130 /// Given a number of pointers, inform the optimizer that they're
2131 /// being intrinsically used up until this point in the program.
2132 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef
<llvm::Value
*> values
) {
2133 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().clang_arc_use
;
2135 fn
= CGM
.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use
);
2137 // This isn't really a "runtime" function, but as an intrinsic it
2138 // doesn't really matter as long as we align things up.
2139 EmitNounwindRuntimeCall(fn
, values
);
2142 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call
2143 /// that has operand bundle "clang.arc.attachedcall".
2144 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef
<llvm::Value
*> values
) {
2145 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().clang_arc_noop_use
;
2147 fn
= CGM
.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use
);
2148 EmitNounwindRuntimeCall(fn
, values
);
2151 static void setARCRuntimeFunctionLinkage(CodeGenModule
&CGM
, llvm::Value
*RTF
) {
2152 if (auto *F
= dyn_cast
<llvm::Function
>(RTF
)) {
2153 // If the target runtime doesn't naturally support ARC, emit weak
2154 // references to the runtime support library. We don't really
2155 // permit this to fail, but we need a particular relocation style.
2156 if (!CGM
.getLangOpts().ObjCRuntime
.hasNativeARC() &&
2157 !CGM
.getTriple().isOSBinFormatCOFF()) {
2158 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
2163 static void setARCRuntimeFunctionLinkage(CodeGenModule
&CGM
,
2164 llvm::FunctionCallee RTF
) {
2165 setARCRuntimeFunctionLinkage(CGM
, RTF
.getCallee());
2168 static llvm::Function
*getARCIntrinsic(llvm::Intrinsic::ID IntID
,
2169 CodeGenModule
&CGM
) {
2170 llvm::Function
*fn
= CGM
.getIntrinsic(IntID
);
2171 setARCRuntimeFunctionLinkage(CGM
, fn
);
2175 /// Perform an operation having the signature
2177 /// where a null input causes a no-op and returns null.
2178 static llvm::Value
*emitARCValueOperation(
2179 CodeGenFunction
&CGF
, llvm::Value
*value
, llvm::Type
*returnType
,
2180 llvm::Function
*&fn
, llvm::Intrinsic::ID IntID
,
2181 llvm::CallInst::TailCallKind tailKind
= llvm::CallInst::TCK_None
) {
2182 if (isa
<llvm::ConstantPointerNull
>(value
))
2186 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2188 // Cast the argument to 'id'.
2189 llvm::Type
*origType
= returnType
? returnType
: value
->getType();
2190 value
= CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
);
2192 // Call the function.
2193 llvm::CallInst
*call
= CGF
.EmitNounwindRuntimeCall(fn
, value
);
2194 call
->setTailCallKind(tailKind
);
2196 // Cast the result back to the original type.
2197 return CGF
.Builder
.CreateBitCast(call
, origType
);
2200 /// Perform an operation having the following signature:
2202 static llvm::Value
*emitARCLoadOperation(CodeGenFunction
&CGF
, Address addr
,
2203 llvm::Function
*&fn
,
2204 llvm::Intrinsic::ID IntID
) {
2206 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2208 // Cast the argument to 'id*'.
2209 llvm::Type
*origType
= addr
.getElementType();
2210 addr
= CGF
.Builder
.CreateElementBitCast(addr
, CGF
.Int8PtrTy
);
2212 // Call the function.
2213 llvm::Value
*result
= CGF
.EmitNounwindRuntimeCall(fn
, addr
.getPointer());
2215 // Cast the result back to a dereference of the original type.
2216 if (origType
!= CGF
.Int8PtrTy
)
2217 result
= CGF
.Builder
.CreateBitCast(result
, origType
);
2222 /// Perform an operation having the following signature:
2224 static llvm::Value
*emitARCStoreOperation(CodeGenFunction
&CGF
, Address addr
,
2226 llvm::Function
*&fn
,
2227 llvm::Intrinsic::ID IntID
,
2229 assert(addr
.getElementType() == value
->getType());
2232 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2234 llvm::Type
*origType
= value
->getType();
2236 llvm::Value
*args
[] = {
2237 CGF
.Builder
.CreateBitCast(addr
.getPointer(), CGF
.Int8PtrPtrTy
),
2238 CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
)
2240 llvm::CallInst
*result
= CGF
.EmitNounwindRuntimeCall(fn
, args
);
2242 if (ignored
) return nullptr;
2244 return CGF
.Builder
.CreateBitCast(result
, origType
);
2247 /// Perform an operation having the following signature:
2248 /// void (i8**, i8**)
2249 static void emitARCCopyOperation(CodeGenFunction
&CGF
, Address dst
, Address src
,
2250 llvm::Function
*&fn
,
2251 llvm::Intrinsic::ID IntID
) {
2252 assert(dst
.getType() == src
.getType());
2255 fn
= getARCIntrinsic(IntID
, CGF
.CGM
);
2257 llvm::Value
*args
[] = {
2258 CGF
.Builder
.CreateBitCast(dst
.getPointer(), CGF
.Int8PtrPtrTy
),
2259 CGF
.Builder
.CreateBitCast(src
.getPointer(), CGF
.Int8PtrPtrTy
)
2261 CGF
.EmitNounwindRuntimeCall(fn
, args
);
2264 /// Perform an operation having the signature
2266 /// where a null input causes a no-op and returns null.
2267 static llvm::Value
*emitObjCValueOperation(CodeGenFunction
&CGF
,
2269 llvm::Type
*returnType
,
2270 llvm::FunctionCallee
&fn
,
2272 if (isa
<llvm::ConstantPointerNull
>(value
))
2276 llvm::FunctionType
*fnType
=
2277 llvm::FunctionType::get(CGF
.Int8PtrTy
, CGF
.Int8PtrTy
, false);
2278 fn
= CGF
.CGM
.CreateRuntimeFunction(fnType
, fnName
);
2280 // We have Native ARC, so set nonlazybind attribute for performance
2281 if (llvm::Function
*f
= dyn_cast
<llvm::Function
>(fn
.getCallee()))
2282 if (fnName
== "objc_retain")
2283 f
->addFnAttr(llvm::Attribute::NonLazyBind
);
2286 // Cast the argument to 'id'.
2287 llvm::Type
*origType
= returnType
? returnType
: value
->getType();
2288 value
= CGF
.Builder
.CreateBitCast(value
, CGF
.Int8PtrTy
);
2290 // Call the function.
2291 llvm::CallBase
*Inst
= CGF
.EmitCallOrInvoke(fn
, value
);
2293 // Mark calls to objc_autorelease as tail on the assumption that methods
2294 // overriding autorelease do not touch anything on the stack.
2295 if (fnName
== "objc_autorelease")
2296 if (auto *Call
= dyn_cast
<llvm::CallInst
>(Inst
))
2297 Call
->setTailCall();
2299 // Cast the result back to the original type.
2300 return CGF
.Builder
.CreateBitCast(Inst
, origType
);
2303 /// Produce the code to do a retain. Based on the type, calls one of:
2304 /// call i8* \@objc_retain(i8* %value)
2305 /// call i8* \@objc_retainBlock(i8* %value)
2306 llvm::Value
*CodeGenFunction::EmitARCRetain(QualType type
, llvm::Value
*value
) {
2307 if (type
->isBlockPointerType())
2308 return EmitARCRetainBlock(value
, /*mandatory*/ false);
2310 return EmitARCRetainNonBlock(value
);
2313 /// Retain the given object, with normal retain semantics.
2314 /// call i8* \@objc_retain(i8* %value)
2315 llvm::Value
*CodeGenFunction::EmitARCRetainNonBlock(llvm::Value
*value
) {
2316 return emitARCValueOperation(*this, value
, nullptr,
2317 CGM
.getObjCEntrypoints().objc_retain
,
2318 llvm::Intrinsic::objc_retain
);
2321 /// Retain the given block, with _Block_copy semantics.
2322 /// call i8* \@objc_retainBlock(i8* %value)
2324 /// \param mandatory - If false, emit the call with metadata
2325 /// indicating that it's okay for the optimizer to eliminate this call
2326 /// if it can prove that the block never escapes except down the stack.
2327 llvm::Value
*CodeGenFunction::EmitARCRetainBlock(llvm::Value
*value
,
2330 = emitARCValueOperation(*this, value
, nullptr,
2331 CGM
.getObjCEntrypoints().objc_retainBlock
,
2332 llvm::Intrinsic::objc_retainBlock
);
2334 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2335 // tell the optimizer that it doesn't need to do this copy if the
2336 // block doesn't escape, where being passed as an argument doesn't
2337 // count as escaping.
2338 if (!mandatory
&& isa
<llvm::Instruction
>(result
)) {
2339 llvm::CallInst
*call
2340 = cast
<llvm::CallInst
>(result
->stripPointerCasts());
2341 assert(call
->getCalledOperand() ==
2342 CGM
.getObjCEntrypoints().objc_retainBlock
);
2344 call
->setMetadata("clang.arc.copy_on_escape",
2345 llvm::MDNode::get(Builder
.getContext(), std::nullopt
));
2351 static void emitAutoreleasedReturnValueMarker(CodeGenFunction
&CGF
) {
2352 // Fetch the void(void) inline asm which marks that we're going to
2353 // do something with the autoreleased return value.
2354 llvm::InlineAsm
*&marker
2355 = CGF
.CGM
.getObjCEntrypoints().retainAutoreleasedReturnValueMarker
;
2358 = CGF
.CGM
.getTargetCodeGenInfo()
2359 .getARCRetainAutoreleasedReturnValueMarker();
2361 // If we have an empty assembly string, there's nothing to do.
2362 if (assembly
.empty()) {
2364 // Otherwise, at -O0, build an inline asm that we're going to call
2366 } else if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2367 llvm::FunctionType
*type
=
2368 llvm::FunctionType::get(CGF
.VoidTy
, /*variadic*/false);
2370 marker
= llvm::InlineAsm::get(type
, assembly
, "", /*sideeffects*/ true);
2372 // If we're at -O1 and above, we don't want to litter the code
2373 // with this marker yet, so leave a breadcrumb for the ARC
2374 // optimizer to pick up.
2376 const char *retainRVMarkerKey
= llvm::objcarc::getRVMarkerModuleFlagStr();
2377 if (!CGF
.CGM
.getModule().getModuleFlag(retainRVMarkerKey
)) {
2378 auto *str
= llvm::MDString::get(CGF
.getLLVMContext(), assembly
);
2379 CGF
.CGM
.getModule().addModuleFlag(llvm::Module::Error
,
2380 retainRVMarkerKey
, str
);
2385 // Call the marker asm if we made one, which we do only at -O0.
2387 CGF
.Builder
.CreateCall(marker
, std::nullopt
,
2388 CGF
.getBundlesForFunclet(marker
));
2391 static llvm::Value
*emitOptimizedARCReturnCall(llvm::Value
*value
,
2393 CodeGenFunction
&CGF
) {
2394 emitAutoreleasedReturnValueMarker(CGF
);
2396 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting
2397 // retainRV or claimRV calls in the IR. We currently do this only when the
2398 // optimization level isn't -O0 since global-isel, which is currently run at
2399 // -O0, doesn't know about the operand bundle.
2400 ObjCEntrypoints
&EPs
= CGF
.CGM
.getObjCEntrypoints();
2401 llvm::Function
*&EP
= IsRetainRV
2402 ? EPs
.objc_retainAutoreleasedReturnValue
2403 : EPs
.objc_unsafeClaimAutoreleasedReturnValue
;
2404 llvm::Intrinsic::ID IID
=
2405 IsRetainRV
? llvm::Intrinsic::objc_retainAutoreleasedReturnValue
2406 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue
;
2407 EP
= getARCIntrinsic(IID
, CGF
.CGM
);
2409 llvm::Triple::ArchType Arch
= CGF
.CGM
.getTriple().getArch();
2411 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if
2412 // the target backend knows how to handle the operand bundle.
2413 if (CGF
.CGM
.getCodeGenOpts().OptimizationLevel
> 0 &&
2414 (Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::x86_64
)) {
2415 llvm::Value
*bundleArgs
[] = {EP
};
2416 llvm::OperandBundleDef
OB("clang.arc.attachedcall", bundleArgs
);
2417 auto *oldCall
= cast
<llvm::CallBase
>(value
);
2418 llvm::CallBase
*newCall
= llvm::CallBase::addOperandBundle(
2419 oldCall
, llvm::LLVMContext::OB_clang_arc_attachedcall
, OB
, oldCall
);
2420 newCall
->copyMetadata(*oldCall
);
2421 oldCall
->replaceAllUsesWith(newCall
);
2422 oldCall
->eraseFromParent();
2423 CGF
.EmitARCNoopIntrinsicUse(newCall
);
2428 CGF
.CGM
.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail();
2429 llvm::CallInst::TailCallKind tailKind
=
2430 isNoTail
? llvm::CallInst::TCK_NoTail
: llvm::CallInst::TCK_None
;
2431 return emitARCValueOperation(CGF
, value
, nullptr, EP
, IID
, tailKind
);
2434 /// Retain the given object which is the result of a function call.
2435 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2437 /// Yes, this function name is one character away from a different
2438 /// call with completely different semantics.
2440 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value
*value
) {
2441 return emitOptimizedARCReturnCall(value
, true, *this);
2444 /// Claim a possibly-autoreleased return value at +0. This is only
2445 /// valid to do in contexts which do not rely on the retain to keep
2446 /// the object valid for all of its uses; for example, when
2447 /// the value is ignored, or when it is being assigned to an
2448 /// __unsafe_unretained variable.
2450 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2452 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value
*value
) {
2453 return emitOptimizedARCReturnCall(value
, false, *this);
2456 /// Release the given object.
2457 /// call void \@objc_release(i8* %value)
2458 void CodeGenFunction::EmitARCRelease(llvm::Value
*value
,
2459 ARCPreciseLifetime_t precise
) {
2460 if (isa
<llvm::ConstantPointerNull
>(value
)) return;
2462 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_release
;
2464 fn
= getARCIntrinsic(llvm::Intrinsic::objc_release
, CGM
);
2466 // Cast the argument to 'id'.
2467 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2469 // Call objc_release.
2470 llvm::CallInst
*call
= EmitNounwindRuntimeCall(fn
, value
);
2472 if (precise
== ARCImpreciseLifetime
) {
2473 call
->setMetadata("clang.imprecise_release",
2474 llvm::MDNode::get(Builder
.getContext(), std::nullopt
));
2478 /// Destroy a __strong variable.
2480 /// At -O0, emit a call to store 'null' into the address;
2481 /// instrumenting tools prefer this because the address is exposed,
2482 /// but it's relatively cumbersome to optimize.
2484 /// At -O1 and above, just load and call objc_release.
2486 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2487 void CodeGenFunction::EmitARCDestroyStrong(Address addr
,
2488 ARCPreciseLifetime_t precise
) {
2489 if (CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2490 llvm::Value
*null
= getNullForVariable(addr
);
2491 EmitARCStoreStrongCall(addr
, null
, /*ignored*/ true);
2495 llvm::Value
*value
= Builder
.CreateLoad(addr
);
2496 EmitARCRelease(value
, precise
);
2499 /// Store into a strong object. Always calls this:
2500 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2501 llvm::Value
*CodeGenFunction::EmitARCStoreStrongCall(Address addr
,
2504 assert(addr
.getElementType() == value
->getType());
2506 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_storeStrong
;
2508 fn
= getARCIntrinsic(llvm::Intrinsic::objc_storeStrong
, CGM
);
2510 llvm::Value
*args
[] = {
2511 Builder
.CreateBitCast(addr
.getPointer(), Int8PtrPtrTy
),
2512 Builder
.CreateBitCast(value
, Int8PtrTy
)
2514 EmitNounwindRuntimeCall(fn
, args
);
2516 if (ignored
) return nullptr;
2520 /// Store into a strong object. Sometimes calls this:
2521 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2522 /// Other times, breaks it down into components.
2523 llvm::Value
*CodeGenFunction::EmitARCStoreStrong(LValue dst
,
2524 llvm::Value
*newValue
,
2526 QualType type
= dst
.getType();
2527 bool isBlock
= type
->isBlockPointerType();
2529 // Use a store barrier at -O0 unless this is a block type or the
2530 // lvalue is inadequately aligned.
2531 if (shouldUseFusedARCCalls() &&
2533 (dst
.getAlignment().isZero() ||
2534 dst
.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes
))) {
2535 return EmitARCStoreStrongCall(dst
.getAddress(*this), newValue
, ignored
);
2538 // Otherwise, split it out.
2540 // Retain the new value.
2541 newValue
= EmitARCRetain(type
, newValue
);
2543 // Read the old value.
2544 llvm::Value
*oldValue
= EmitLoadOfScalar(dst
, SourceLocation());
2546 // Store. We do this before the release so that any deallocs won't
2547 // see the old value.
2548 EmitStoreOfScalar(newValue
, dst
);
2550 // Finally, release the old value.
2551 EmitARCRelease(oldValue
, dst
.isARCPreciseLifetime());
2556 /// Autorelease the given object.
2557 /// call i8* \@objc_autorelease(i8* %value)
2558 llvm::Value
*CodeGenFunction::EmitARCAutorelease(llvm::Value
*value
) {
2559 return emitARCValueOperation(*this, value
, nullptr,
2560 CGM
.getObjCEntrypoints().objc_autorelease
,
2561 llvm::Intrinsic::objc_autorelease
);
2564 /// Autorelease the given object.
2565 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2567 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value
*value
) {
2568 return emitARCValueOperation(*this, value
, nullptr,
2569 CGM
.getObjCEntrypoints().objc_autoreleaseReturnValue
,
2570 llvm::Intrinsic::objc_autoreleaseReturnValue
,
2571 llvm::CallInst::TCK_Tail
);
2574 /// Do a fused retain/autorelease of the given object.
2575 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2577 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value
*value
) {
2578 return emitARCValueOperation(*this, value
, nullptr,
2579 CGM
.getObjCEntrypoints().objc_retainAutoreleaseReturnValue
,
2580 llvm::Intrinsic::objc_retainAutoreleaseReturnValue
,
2581 llvm::CallInst::TCK_Tail
);
2584 /// Do a fused retain/autorelease of the given object.
2585 /// call i8* \@objc_retainAutorelease(i8* %value)
2587 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2588 /// call i8* \@objc_autorelease(i8* %retain)
2589 llvm::Value
*CodeGenFunction::EmitARCRetainAutorelease(QualType type
,
2590 llvm::Value
*value
) {
2591 if (!type
->isBlockPointerType())
2592 return EmitARCRetainAutoreleaseNonBlock(value
);
2594 if (isa
<llvm::ConstantPointerNull
>(value
)) return value
;
2596 llvm::Type
*origType
= value
->getType();
2597 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2598 value
= EmitARCRetainBlock(value
, /*mandatory*/ true);
2599 value
= EmitARCAutorelease(value
);
2600 return Builder
.CreateBitCast(value
, origType
);
2603 /// Do a fused retain/autorelease of the given object.
2604 /// call i8* \@objc_retainAutorelease(i8* %value)
2606 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value
*value
) {
2607 return emitARCValueOperation(*this, value
, nullptr,
2608 CGM
.getObjCEntrypoints().objc_retainAutorelease
,
2609 llvm::Intrinsic::objc_retainAutorelease
);
2612 /// i8* \@objc_loadWeak(i8** %addr)
2613 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2614 llvm::Value
*CodeGenFunction::EmitARCLoadWeak(Address addr
) {
2615 return emitARCLoadOperation(*this, addr
,
2616 CGM
.getObjCEntrypoints().objc_loadWeak
,
2617 llvm::Intrinsic::objc_loadWeak
);
2620 /// i8* \@objc_loadWeakRetained(i8** %addr)
2621 llvm::Value
*CodeGenFunction::EmitARCLoadWeakRetained(Address addr
) {
2622 return emitARCLoadOperation(*this, addr
,
2623 CGM
.getObjCEntrypoints().objc_loadWeakRetained
,
2624 llvm::Intrinsic::objc_loadWeakRetained
);
2627 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2629 llvm::Value
*CodeGenFunction::EmitARCStoreWeak(Address addr
,
2632 return emitARCStoreOperation(*this, addr
, value
,
2633 CGM
.getObjCEntrypoints().objc_storeWeak
,
2634 llvm::Intrinsic::objc_storeWeak
, ignored
);
2637 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2638 /// Returns %value. %addr is known to not have a current weak entry.
2639 /// Essentially equivalent to:
2640 /// *addr = nil; objc_storeWeak(addr, value);
2641 void CodeGenFunction::EmitARCInitWeak(Address addr
, llvm::Value
*value
) {
2642 // If we're initializing to null, just write null to memory; no need
2643 // to get the runtime involved. But don't do this if optimization
2644 // is enabled, because accounting for this would make the optimizer
2645 // much more complicated.
2646 if (isa
<llvm::ConstantPointerNull
>(value
) &&
2647 CGM
.getCodeGenOpts().OptimizationLevel
== 0) {
2648 Builder
.CreateStore(value
, addr
);
2652 emitARCStoreOperation(*this, addr
, value
,
2653 CGM
.getObjCEntrypoints().objc_initWeak
,
2654 llvm::Intrinsic::objc_initWeak
, /*ignored*/ true);
2657 /// void \@objc_destroyWeak(i8** %addr)
2658 /// Essentially objc_storeWeak(addr, nil).
2659 void CodeGenFunction::EmitARCDestroyWeak(Address addr
) {
2660 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_destroyWeak
;
2662 fn
= getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak
, CGM
);
2664 // Cast the argument to 'id*'.
2665 addr
= Builder
.CreateElementBitCast(addr
, Int8PtrTy
);
2667 EmitNounwindRuntimeCall(fn
, addr
.getPointer());
2670 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2671 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2672 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2673 void CodeGenFunction::EmitARCMoveWeak(Address dst
, Address src
) {
2674 emitARCCopyOperation(*this, dst
, src
,
2675 CGM
.getObjCEntrypoints().objc_moveWeak
,
2676 llvm::Intrinsic::objc_moveWeak
);
2679 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2680 /// Disregards the current value in %dest. Essentially
2681 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2682 void CodeGenFunction::EmitARCCopyWeak(Address dst
, Address src
) {
2683 emitARCCopyOperation(*this, dst
, src
,
2684 CGM
.getObjCEntrypoints().objc_copyWeak
,
2685 llvm::Intrinsic::objc_copyWeak
);
2688 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty
, Address DstAddr
,
2690 llvm::Value
*Object
= EmitARCLoadWeakRetained(SrcAddr
);
2691 Object
= EmitObjCConsumeObject(Ty
, Object
);
2692 EmitARCStoreWeak(DstAddr
, Object
, false);
2695 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty
, Address DstAddr
,
2697 llvm::Value
*Object
= EmitARCLoadWeakRetained(SrcAddr
);
2698 Object
= EmitObjCConsumeObject(Ty
, Object
);
2699 EmitARCStoreWeak(DstAddr
, Object
, false);
2700 EmitARCDestroyWeak(SrcAddr
);
2703 /// Produce the code to do a objc_autoreleasepool_push.
2704 /// call i8* \@objc_autoreleasePoolPush(void)
2705 llvm::Value
*CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2706 llvm::Function
*&fn
= CGM
.getObjCEntrypoints().objc_autoreleasePoolPush
;
2708 fn
= getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush
, CGM
);
2710 return EmitNounwindRuntimeCall(fn
);
2713 /// Produce the code to do a primitive release.
2714 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2715 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value
*value
) {
2716 assert(value
->getType() == Int8PtrTy
);
2718 if (getInvokeDest()) {
2719 // Call the runtime method not the intrinsic if we are handling exceptions
2720 llvm::FunctionCallee
&fn
=
2721 CGM
.getObjCEntrypoints().objc_autoreleasePoolPopInvoke
;
2723 llvm::FunctionType
*fnType
=
2724 llvm::FunctionType::get(Builder
.getVoidTy(), Int8PtrTy
, false);
2725 fn
= CGM
.CreateRuntimeFunction(fnType
, "objc_autoreleasePoolPop");
2726 setARCRuntimeFunctionLinkage(CGM
, fn
);
2729 // objc_autoreleasePoolPop can throw.
2730 EmitRuntimeCallOrInvoke(fn
, value
);
2732 llvm::FunctionCallee
&fn
= CGM
.getObjCEntrypoints().objc_autoreleasePoolPop
;
2734 fn
= getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop
, CGM
);
2736 EmitRuntimeCall(fn
, value
);
2740 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2741 /// Which is: [[NSAutoreleasePool alloc] init];
2742 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2743 /// init is declared as: - (id) init; in its NSObject super class.
2745 llvm::Value
*CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2746 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
2747 llvm::Value
*Receiver
= Runtime
.EmitNSAutoreleasePoolClassRef(*this);
2748 // [NSAutoreleasePool alloc]
2749 IdentifierInfo
*II
= &CGM
.getContext().Idents
.get("alloc");
2750 Selector AllocSel
= getContext().Selectors
.getSelector(0, &II
);
2753 Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
2754 getContext().getObjCIdType(),
2755 AllocSel
, Receiver
, Args
);
2758 Receiver
= AllocRV
.getScalarVal();
2759 II
= &CGM
.getContext().Idents
.get("init");
2760 Selector InitSel
= getContext().Selectors
.getSelector(0, &II
);
2762 Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
2763 getContext().getObjCIdType(),
2764 InitSel
, Receiver
, Args
);
2765 return InitRV
.getScalarVal();
2768 /// Allocate the given objc object.
2769 /// call i8* \@objc_alloc(i8* %value)
2770 llvm::Value
*CodeGenFunction::EmitObjCAlloc(llvm::Value
*value
,
2771 llvm::Type
*resultType
) {
2772 return emitObjCValueOperation(*this, value
, resultType
,
2773 CGM
.getObjCEntrypoints().objc_alloc
,
2777 /// Allocate the given objc object.
2778 /// call i8* \@objc_allocWithZone(i8* %value)
2779 llvm::Value
*CodeGenFunction::EmitObjCAllocWithZone(llvm::Value
*value
,
2780 llvm::Type
*resultType
) {
2781 return emitObjCValueOperation(*this, value
, resultType
,
2782 CGM
.getObjCEntrypoints().objc_allocWithZone
,
2783 "objc_allocWithZone");
2786 llvm::Value
*CodeGenFunction::EmitObjCAllocInit(llvm::Value
*value
,
2787 llvm::Type
*resultType
) {
2788 return emitObjCValueOperation(*this, value
, resultType
,
2789 CGM
.getObjCEntrypoints().objc_alloc_init
,
2793 /// Produce the code to do a primitive release.
2795 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value
*Arg
) {
2796 IdentifierInfo
*II
= &CGM
.getContext().Idents
.get("drain");
2797 Selector DrainSel
= getContext().Selectors
.getSelector(0, &II
);
2799 CGM
.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2800 getContext().VoidTy
, DrainSel
, Arg
, Args
);
2803 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction
&CGF
,
2806 CGF
.EmitARCDestroyStrong(addr
, ARCPreciseLifetime
);
2809 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction
&CGF
,
2812 CGF
.EmitARCDestroyStrong(addr
, ARCImpreciseLifetime
);
2815 void CodeGenFunction::destroyARCWeak(CodeGenFunction
&CGF
,
2818 CGF
.EmitARCDestroyWeak(addr
);
2821 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction
&CGF
, Address addr
,
2823 llvm::Value
*value
= CGF
.Builder
.CreateLoad(addr
);
2824 CGF
.EmitARCIntrinsicUse(value
);
2827 /// Autorelease the given object.
2828 /// call i8* \@objc_autorelease(i8* %value)
2829 llvm::Value
*CodeGenFunction::EmitObjCAutorelease(llvm::Value
*value
,
2830 llvm::Type
*returnType
) {
2831 return emitObjCValueOperation(
2832 *this, value
, returnType
,
2833 CGM
.getObjCEntrypoints().objc_autoreleaseRuntimeFunction
,
2834 "objc_autorelease");
2837 /// Retain the given object, with normal retain semantics.
2838 /// call i8* \@objc_retain(i8* %value)
2839 llvm::Value
*CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value
*value
,
2840 llvm::Type
*returnType
) {
2841 return emitObjCValueOperation(
2842 *this, value
, returnType
,
2843 CGM
.getObjCEntrypoints().objc_retainRuntimeFunction
, "objc_retain");
2846 /// Release the given object.
2847 /// call void \@objc_release(i8* %value)
2848 void CodeGenFunction::EmitObjCRelease(llvm::Value
*value
,
2849 ARCPreciseLifetime_t precise
) {
2850 if (isa
<llvm::ConstantPointerNull
>(value
)) return;
2852 llvm::FunctionCallee
&fn
=
2853 CGM
.getObjCEntrypoints().objc_releaseRuntimeFunction
;
2855 llvm::FunctionType
*fnType
=
2856 llvm::FunctionType::get(Builder
.getVoidTy(), Int8PtrTy
, false);
2857 fn
= CGM
.CreateRuntimeFunction(fnType
, "objc_release");
2858 setARCRuntimeFunctionLinkage(CGM
, fn
);
2859 // We have Native ARC, so set nonlazybind attribute for performance
2860 if (llvm::Function
*f
= dyn_cast
<llvm::Function
>(fn
.getCallee()))
2861 f
->addFnAttr(llvm::Attribute::NonLazyBind
);
2864 // Cast the argument to 'id'.
2865 value
= Builder
.CreateBitCast(value
, Int8PtrTy
);
2867 // Call objc_release.
2868 llvm::CallBase
*call
= EmitCallOrInvoke(fn
, value
);
2870 if (precise
== ARCImpreciseLifetime
) {
2871 call
->setMetadata("clang.imprecise_release",
2872 llvm::MDNode::get(Builder
.getContext(), std::nullopt
));
2877 struct CallObjCAutoreleasePoolObject final
: EHScopeStack::Cleanup
{
2880 CallObjCAutoreleasePoolObject(llvm::Value
*token
) : Token(token
) {}
2882 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2883 CGF
.EmitObjCAutoreleasePoolPop(Token
);
2886 struct CallObjCMRRAutoreleasePoolObject final
: EHScopeStack::Cleanup
{
2889 CallObjCMRRAutoreleasePoolObject(llvm::Value
*token
) : Token(token
) {}
2891 void Emit(CodeGenFunction
&CGF
, Flags flags
) override
{
2892 CGF
.EmitObjCMRRAutoreleasePoolPop(Token
);
2897 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value
*Ptr
) {
2898 if (CGM
.getLangOpts().ObjCAutoRefCount
)
2899 EHStack
.pushCleanup
<CallObjCAutoreleasePoolObject
>(NormalCleanup
, Ptr
);
2901 EHStack
.pushCleanup
<CallObjCMRRAutoreleasePoolObject
>(NormalCleanup
, Ptr
);
2904 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime
) {
2906 case Qualifiers::OCL_None
:
2907 case Qualifiers::OCL_ExplicitNone
:
2908 case Qualifiers::OCL_Strong
:
2909 case Qualifiers::OCL_Autoreleasing
:
2912 case Qualifiers::OCL_Weak
:
2916 llvm_unreachable("impossible lifetime!");
2919 static TryEmitResult
tryEmitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
2922 llvm::Value
*result
;
2923 bool shouldRetain
= shouldRetainObjCLifetime(type
.getObjCLifetime());
2925 result
= CGF
.EmitLoadOfLValue(lvalue
, SourceLocation()).getScalarVal();
2927 assert(type
.getObjCLifetime() == Qualifiers::OCL_Weak
);
2928 result
= CGF
.EmitARCLoadWeakRetained(lvalue
.getAddress(CGF
));
2930 return TryEmitResult(result
, !shouldRetain
);
2933 static TryEmitResult
tryEmitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
2935 e
= e
->IgnoreParens();
2936 QualType type
= e
->getType();
2938 // If we're loading retained from a __strong xvalue, we can avoid
2939 // an extra retain/release pair by zeroing out the source of this
2940 // "move" operation.
2941 if (e
->isXValue() &&
2942 !type
.isConstQualified() &&
2943 type
.getObjCLifetime() == Qualifiers::OCL_Strong
) {
2945 LValue lv
= CGF
.EmitLValue(e
);
2947 // Load the object pointer.
2948 llvm::Value
*result
= CGF
.EmitLoadOfLValue(lv
,
2949 SourceLocation()).getScalarVal();
2951 // Set the source pointer to NULL.
2952 CGF
.EmitStoreOfScalar(getNullForVariable(lv
.getAddress(CGF
)), lv
);
2954 return TryEmitResult(result
, true);
2957 // As a very special optimization, in ARC++, if the l-value is the
2958 // result of a non-volatile assignment, do a simple retain of the
2959 // result of the call to objc_storeWeak instead of reloading.
2960 if (CGF
.getLangOpts().CPlusPlus
&&
2961 !type
.isVolatileQualified() &&
2962 type
.getObjCLifetime() == Qualifiers::OCL_Weak
&&
2963 isa
<BinaryOperator
>(e
) &&
2964 cast
<BinaryOperator
>(e
)->getOpcode() == BO_Assign
)
2965 return TryEmitResult(CGF
.EmitScalarExpr(e
), false);
2967 // Try to emit code for scalar constant instead of emitting LValue and
2968 // loading it because we are not guaranteed to have an l-value. One of such
2969 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2970 if (const auto *decl_expr
= dyn_cast
<DeclRefExpr
>(e
)) {
2971 auto *DRE
= const_cast<DeclRefExpr
*>(decl_expr
);
2972 if (CodeGenFunction::ConstantEmission constant
= CGF
.tryEmitAsConstant(DRE
))
2973 return TryEmitResult(CGF
.emitScalarConstant(constant
, DRE
),
2974 !shouldRetainObjCLifetime(type
.getObjCLifetime()));
2977 return tryEmitARCRetainLoadOfScalar(CGF
, CGF
.EmitLValue(e
), type
);
2980 typedef llvm::function_ref
<llvm::Value
*(CodeGenFunction
&CGF
,
2981 llvm::Value
*value
)>
2984 /// Insert code immediately after a call.
2986 // FIXME: We should find a way to emit the runtime call immediately
2987 // after the call is emitted to eliminate the need for this function.
2988 static llvm::Value
*emitARCOperationAfterCall(CodeGenFunction
&CGF
,
2990 ValueTransform doAfterCall
,
2991 ValueTransform doFallback
) {
2992 CGBuilderTy::InsertPoint ip
= CGF
.Builder
.saveIP();
2993 auto *callBase
= dyn_cast
<llvm::CallBase
>(value
);
2995 if (callBase
&& llvm::objcarc::hasAttachedCallOpBundle(callBase
)) {
2996 // Fall back if the call base has operand bundle "clang.arc.attachedcall".
2997 value
= doFallback(CGF
, value
);
2998 } else if (llvm::CallInst
*call
= dyn_cast
<llvm::CallInst
>(value
)) {
2999 // Place the retain immediately following the call.
3000 CGF
.Builder
.SetInsertPoint(call
->getParent(),
3001 ++llvm::BasicBlock::iterator(call
));
3002 value
= doAfterCall(CGF
, value
);
3003 } else if (llvm::InvokeInst
*invoke
= dyn_cast
<llvm::InvokeInst
>(value
)) {
3004 // Place the retain at the beginning of the normal destination block.
3005 llvm::BasicBlock
*BB
= invoke
->getNormalDest();
3006 CGF
.Builder
.SetInsertPoint(BB
, BB
->begin());
3007 value
= doAfterCall(CGF
, value
);
3009 // Bitcasts can arise because of related-result returns. Rewrite
3011 } else if (llvm::BitCastInst
*bitcast
= dyn_cast
<llvm::BitCastInst
>(value
)) {
3012 // Change the insert point to avoid emitting the fall-back call after the
3014 CGF
.Builder
.SetInsertPoint(bitcast
->getParent(), bitcast
->getIterator());
3015 llvm::Value
*operand
= bitcast
->getOperand(0);
3016 operand
= emitARCOperationAfterCall(CGF
, operand
, doAfterCall
, doFallback
);
3017 bitcast
->setOperand(0, operand
);
3020 auto *phi
= dyn_cast
<llvm::PHINode
>(value
);
3021 if (phi
&& phi
->getNumIncomingValues() == 2 &&
3022 isa
<llvm::ConstantPointerNull
>(phi
->getIncomingValue(1)) &&
3023 isa
<llvm::CallBase
>(phi
->getIncomingValue(0))) {
3024 // Handle phi instructions that are generated when it's necessary to check
3025 // whether the receiver of a message is null.
3026 llvm::Value
*inVal
= phi
->getIncomingValue(0);
3027 inVal
= emitARCOperationAfterCall(CGF
, inVal
, doAfterCall
, doFallback
);
3028 phi
->setIncomingValue(0, inVal
);
3031 // Generic fall-back case.
3032 // Retain using the non-block variant: we never need to do a copy
3033 // of a block that's been returned to us.
3034 value
= doFallback(CGF
, value
);
3038 CGF
.Builder
.restoreIP(ip
);
3042 /// Given that the given expression is some sort of call (which does
3043 /// not return retained), emit a retain following it.
3044 static llvm::Value
*emitARCRetainCallResult(CodeGenFunction
&CGF
,
3046 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3047 return emitARCOperationAfterCall(CGF
, value
,
3048 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3049 return CGF
.EmitARCRetainAutoreleasedReturnValue(value
);
3051 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3052 return CGF
.EmitARCRetainNonBlock(value
);
3056 /// Given that the given expression is some sort of call (which does
3057 /// not return retained), perform an unsafeClaim following it.
3058 static llvm::Value
*emitARCUnsafeClaimCallResult(CodeGenFunction
&CGF
,
3060 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3061 return emitARCOperationAfterCall(CGF
, value
,
3062 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3063 return CGF
.EmitARCUnsafeClaimAutoreleasedReturnValue(value
);
3065 [](CodeGenFunction
&CGF
, llvm::Value
*value
) {
3070 llvm::Value
*CodeGenFunction::EmitARCReclaimReturnedObject(const Expr
*E
,
3071 bool allowUnsafeClaim
) {
3072 if (allowUnsafeClaim
&&
3073 CGM
.getLangOpts().ObjCRuntime
.hasARCUnsafeClaimAutoreleasedReturnValue()) {
3074 return emitARCUnsafeClaimCallResult(*this, E
);
3076 llvm::Value
*value
= emitARCRetainCallResult(*this, E
);
3077 return EmitObjCConsumeObject(E
->getType(), value
);
3081 /// Determine whether it might be important to emit a separate
3082 /// objc_retain_block on the result of the given expression, or
3083 /// whether it's okay to just emit it in a +1 context.
3084 static bool shouldEmitSeparateBlockRetain(const Expr
*e
) {
3085 assert(e
->getType()->isBlockPointerType());
3086 e
= e
->IgnoreParens();
3088 // For future goodness, emit block expressions directly in +1
3089 // contexts if we can.
3090 if (isa
<BlockExpr
>(e
))
3093 if (const CastExpr
*cast
= dyn_cast
<CastExpr
>(e
)) {
3094 switch (cast
->getCastKind()) {
3095 // Emitting these operations in +1 contexts is goodness.
3096 case CK_LValueToRValue
:
3097 case CK_ARCReclaimReturnedObject
:
3098 case CK_ARCConsumeObject
:
3099 case CK_ARCProduceObject
:
3102 // These operations preserve a block type.
3105 return shouldEmitSeparateBlockRetain(cast
->getSubExpr());
3107 // These operations are known to be bad (or haven't been considered).
3108 case CK_AnyPointerToBlockPointerCast
:
3118 /// A CRTP base class for emitting expressions of retainable object
3119 /// pointer type in ARC.
3120 template <typename Impl
, typename Result
> class ARCExprEmitter
{
3122 CodeGenFunction
&CGF
;
3123 Impl
&asImpl() { return *static_cast<Impl
*>(this); }
3125 ARCExprEmitter(CodeGenFunction
&CGF
) : CGF(CGF
) {}
3128 Result
visit(const Expr
*e
);
3129 Result
visitCastExpr(const CastExpr
*e
);
3130 Result
visitPseudoObjectExpr(const PseudoObjectExpr
*e
);
3131 Result
visitBlockExpr(const BlockExpr
*e
);
3132 Result
visitBinaryOperator(const BinaryOperator
*e
);
3133 Result
visitBinAssign(const BinaryOperator
*e
);
3134 Result
visitBinAssignUnsafeUnretained(const BinaryOperator
*e
);
3135 Result
visitBinAssignAutoreleasing(const BinaryOperator
*e
);
3136 Result
visitBinAssignWeak(const BinaryOperator
*e
);
3137 Result
visitBinAssignStrong(const BinaryOperator
*e
);
3139 // Minimal implementation:
3140 // Result visitLValueToRValue(const Expr *e)
3141 // Result visitConsumeObject(const Expr *e)
3142 // Result visitExtendBlockObject(const Expr *e)
3143 // Result visitReclaimReturnedObject(const Expr *e)
3144 // Result visitCall(const Expr *e)
3145 // Result visitExpr(const Expr *e)
3147 // Result emitBitCast(Result result, llvm::Type *resultType)
3148 // llvm::Value *getValueOfResult(Result result)
3152 /// Try to emit a PseudoObjectExpr under special ARC rules.
3154 /// This massively duplicates emitPseudoObjectRValue.
3155 template <typename Impl
, typename Result
>
3157 ARCExprEmitter
<Impl
,Result
>::visitPseudoObjectExpr(const PseudoObjectExpr
*E
) {
3158 SmallVector
<CodeGenFunction::OpaqueValueMappingData
, 4> opaques
;
3160 // Find the result expression.
3161 const Expr
*resultExpr
= E
->getResultExpr();
3165 for (PseudoObjectExpr::const_semantics_iterator
3166 i
= E
->semantics_begin(), e
= E
->semantics_end(); i
!= e
; ++i
) {
3167 const Expr
*semantic
= *i
;
3169 // If this semantic expression is an opaque value, bind it
3170 // to the result of its source expression.
3171 if (const OpaqueValueExpr
*ov
= dyn_cast
<OpaqueValueExpr
>(semantic
)) {
3172 typedef CodeGenFunction::OpaqueValueMappingData OVMA
;
3175 // If this semantic is the result of the pseudo-object
3176 // expression, try to evaluate the source as +1.
3177 if (ov
== resultExpr
) {
3178 assert(!OVMA::shouldBindAsLValue(ov
));
3179 result
= asImpl().visit(ov
->getSourceExpr());
3180 opaqueData
= OVMA::bind(CGF
, ov
,
3181 RValue::get(asImpl().getValueOfResult(result
)));
3183 // Otherwise, just bind it.
3185 opaqueData
= OVMA::bind(CGF
, ov
, ov
->getSourceExpr());
3187 opaques
.push_back(opaqueData
);
3189 // Otherwise, if the expression is the result, evaluate it
3190 // and remember the result.
3191 } else if (semantic
== resultExpr
) {
3192 result
= asImpl().visit(semantic
);
3194 // Otherwise, evaluate the expression in an ignored context.
3196 CGF
.EmitIgnoredExpr(semantic
);
3200 // Unbind all the opaques now.
3201 for (unsigned i
= 0, e
= opaques
.size(); i
!= e
; ++i
)
3202 opaques
[i
].unbind(CGF
);
3207 template <typename Impl
, typename Result
>
3208 Result ARCExprEmitter
<Impl
, Result
>::visitBlockExpr(const BlockExpr
*e
) {
3209 // The default implementation just forwards the expression to visitExpr.
3210 return asImpl().visitExpr(e
);
3213 template <typename Impl
, typename Result
>
3214 Result ARCExprEmitter
<Impl
,Result
>::visitCastExpr(const CastExpr
*e
) {
3215 switch (e
->getCastKind()) {
3217 // No-op casts don't change the type, so we just ignore them.
3219 return asImpl().visit(e
->getSubExpr());
3221 // These casts can change the type.
3222 case CK_CPointerToObjCPointerCast
:
3223 case CK_BlockPointerToObjCPointerCast
:
3224 case CK_AnyPointerToBlockPointerCast
:
3226 llvm::Type
*resultType
= CGF
.ConvertType(e
->getType());
3227 assert(e
->getSubExpr()->getType()->hasPointerRepresentation());
3228 Result result
= asImpl().visit(e
->getSubExpr());
3229 return asImpl().emitBitCast(result
, resultType
);
3232 // Handle some casts specially.
3233 case CK_LValueToRValue
:
3234 return asImpl().visitLValueToRValue(e
->getSubExpr());
3235 case CK_ARCConsumeObject
:
3236 return asImpl().visitConsumeObject(e
->getSubExpr());
3237 case CK_ARCExtendBlockObject
:
3238 return asImpl().visitExtendBlockObject(e
->getSubExpr());
3239 case CK_ARCReclaimReturnedObject
:
3240 return asImpl().visitReclaimReturnedObject(e
->getSubExpr());
3242 // Otherwise, use the default logic.
3244 return asImpl().visitExpr(e
);
3248 template <typename Impl
, typename Result
>
3250 ARCExprEmitter
<Impl
,Result
>::visitBinaryOperator(const BinaryOperator
*e
) {
3251 switch (e
->getOpcode()) {
3253 CGF
.EmitIgnoredExpr(e
->getLHS());
3254 CGF
.EnsureInsertPoint();
3255 return asImpl().visit(e
->getRHS());
3258 return asImpl().visitBinAssign(e
);
3261 return asImpl().visitExpr(e
);
3265 template <typename Impl
, typename Result
>
3266 Result ARCExprEmitter
<Impl
,Result
>::visitBinAssign(const BinaryOperator
*e
) {
3267 switch (e
->getLHS()->getType().getObjCLifetime()) {
3268 case Qualifiers::OCL_ExplicitNone
:
3269 return asImpl().visitBinAssignUnsafeUnretained(e
);
3271 case Qualifiers::OCL_Weak
:
3272 return asImpl().visitBinAssignWeak(e
);
3274 case Qualifiers::OCL_Autoreleasing
:
3275 return asImpl().visitBinAssignAutoreleasing(e
);
3277 case Qualifiers::OCL_Strong
:
3278 return asImpl().visitBinAssignStrong(e
);
3280 case Qualifiers::OCL_None
:
3281 return asImpl().visitExpr(e
);
3283 llvm_unreachable("bad ObjC ownership qualifier");
3286 /// The default rule for __unsafe_unretained emits the RHS recursively,
3287 /// stores into the unsafe variable, and propagates the result outward.
3288 template <typename Impl
, typename Result
>
3289 Result ARCExprEmitter
<Impl
,Result
>::
3290 visitBinAssignUnsafeUnretained(const BinaryOperator
*e
) {
3291 // Recursively emit the RHS.
3292 // For __block safety, do this before emitting the LHS.
3293 Result result
= asImpl().visit(e
->getRHS());
3295 // Perform the store.
3297 CGF
.EmitCheckedLValue(e
->getLHS(), CodeGenFunction::TCK_Store
);
3298 CGF
.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result
)),
3304 template <typename Impl
, typename Result
>
3306 ARCExprEmitter
<Impl
,Result
>::visitBinAssignAutoreleasing(const BinaryOperator
*e
) {
3307 return asImpl().visitExpr(e
);
3310 template <typename Impl
, typename Result
>
3312 ARCExprEmitter
<Impl
,Result
>::visitBinAssignWeak(const BinaryOperator
*e
) {
3313 return asImpl().visitExpr(e
);
3316 template <typename Impl
, typename Result
>
3318 ARCExprEmitter
<Impl
,Result
>::visitBinAssignStrong(const BinaryOperator
*e
) {
3319 return asImpl().visitExpr(e
);
3322 /// The general expression-emission logic.
3323 template <typename Impl
, typename Result
>
3324 Result ARCExprEmitter
<Impl
,Result
>::visit(const Expr
*e
) {
3325 // We should *never* see a nested full-expression here, because if
3326 // we fail to emit at +1, our caller must not retain after we close
3327 // out the full-expression. This isn't as important in the unsafe
3329 assert(!isa
<ExprWithCleanups
>(e
));
3331 // Look through parens, __extension__, generic selection, etc.
3332 e
= e
->IgnoreParens();
3334 // Handle certain kinds of casts.
3335 if (const CastExpr
*ce
= dyn_cast
<CastExpr
>(e
)) {
3336 return asImpl().visitCastExpr(ce
);
3338 // Handle the comma operator.
3339 } else if (auto op
= dyn_cast
<BinaryOperator
>(e
)) {
3340 return asImpl().visitBinaryOperator(op
);
3342 // TODO: handle conditional operators here
3344 // For calls and message sends, use the retained-call logic.
3345 // Delegate inits are a special case in that they're the only
3346 // returns-retained expression that *isn't* surrounded by
3348 } else if (isa
<CallExpr
>(e
) ||
3349 (isa
<ObjCMessageExpr
>(e
) &&
3350 !cast
<ObjCMessageExpr
>(e
)->isDelegateInitCall())) {
3351 return asImpl().visitCall(e
);
3353 // Look through pseudo-object expressions.
3354 } else if (const PseudoObjectExpr
*pseudo
= dyn_cast
<PseudoObjectExpr
>(e
)) {
3355 return asImpl().visitPseudoObjectExpr(pseudo
);
3356 } else if (auto *be
= dyn_cast
<BlockExpr
>(e
))
3357 return asImpl().visitBlockExpr(be
);
3359 return asImpl().visitExpr(e
);
3364 /// An emitter for +1 results.
3365 struct ARCRetainExprEmitter
:
3366 public ARCExprEmitter
<ARCRetainExprEmitter
, TryEmitResult
> {
3368 ARCRetainExprEmitter(CodeGenFunction
&CGF
) : ARCExprEmitter(CGF
) {}
3370 llvm::Value
*getValueOfResult(TryEmitResult result
) {
3371 return result
.getPointer();
3374 TryEmitResult
emitBitCast(TryEmitResult result
, llvm::Type
*resultType
) {
3375 llvm::Value
*value
= result
.getPointer();
3376 value
= CGF
.Builder
.CreateBitCast(value
, resultType
);
3377 result
.setPointer(value
);
3381 TryEmitResult
visitLValueToRValue(const Expr
*e
) {
3382 return tryEmitARCRetainLoadOfScalar(CGF
, e
);
3385 /// For consumptions, just emit the subexpression and thus elide
3386 /// the retain/release pair.
3387 TryEmitResult
visitConsumeObject(const Expr
*e
) {
3388 llvm::Value
*result
= CGF
.EmitScalarExpr(e
);
3389 return TryEmitResult(result
, true);
3392 TryEmitResult
visitBlockExpr(const BlockExpr
*e
) {
3393 TryEmitResult result
= visitExpr(e
);
3394 // Avoid the block-retain if this is a block literal that doesn't need to be
3395 // copied to the heap.
3396 if (CGF
.CGM
.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks
&&
3397 e
->getBlockDecl()->canAvoidCopyToHeap())
3398 result
.setInt(true);
3402 /// Block extends are net +0. Naively, we could just recurse on
3403 /// the subexpression, but actually we need to ensure that the
3404 /// value is copied as a block, so there's a little filter here.
3405 TryEmitResult
visitExtendBlockObject(const Expr
*e
) {
3406 llvm::Value
*result
; // will be a +0 value
3408 // If we can't safely assume the sub-expression will produce a
3409 // block-copied value, emit the sub-expression at +0.
3410 if (shouldEmitSeparateBlockRetain(e
)) {
3411 result
= CGF
.EmitScalarExpr(e
);
3413 // Otherwise, try to emit the sub-expression at +1 recursively.
3415 TryEmitResult subresult
= asImpl().visit(e
);
3417 // If that produced a retained value, just use that.
3418 if (subresult
.getInt()) {
3422 // Otherwise it's +0.
3423 result
= subresult
.getPointer();
3426 // Retain the object as a block.
3427 result
= CGF
.EmitARCRetainBlock(result
, /*mandatory*/ true);
3428 return TryEmitResult(result
, true);
3431 /// For reclaims, emit the subexpression as a retained call and
3432 /// skip the consumption.
3433 TryEmitResult
visitReclaimReturnedObject(const Expr
*e
) {
3434 llvm::Value
*result
= emitARCRetainCallResult(CGF
, e
);
3435 return TryEmitResult(result
, true);
3438 /// When we have an undecorated call, retroactively do a claim.
3439 TryEmitResult
visitCall(const Expr
*e
) {
3440 llvm::Value
*result
= emitARCRetainCallResult(CGF
, e
);
3441 return TryEmitResult(result
, true);
3444 // TODO: maybe special-case visitBinAssignWeak?
3446 TryEmitResult
visitExpr(const Expr
*e
) {
3447 // We didn't find an obvious production, so emit what we've got and
3448 // tell the caller that we didn't manage to retain.
3449 llvm::Value
*result
= CGF
.EmitScalarExpr(e
);
3450 return TryEmitResult(result
, false);
3455 static TryEmitResult
3456 tryEmitARCRetainScalarExpr(CodeGenFunction
&CGF
, const Expr
*e
) {
3457 return ARCRetainExprEmitter(CGF
).visit(e
);
3460 static llvm::Value
*emitARCRetainLoadOfScalar(CodeGenFunction
&CGF
,
3463 TryEmitResult result
= tryEmitARCRetainLoadOfScalar(CGF
, lvalue
, type
);
3464 llvm::Value
*value
= result
.getPointer();
3465 if (!result
.getInt())
3466 value
= CGF
.EmitARCRetain(type
, value
);
3470 /// EmitARCRetainScalarExpr - Semantically equivalent to
3471 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3472 /// best-effort attempt to peephole expressions that naturally produce
3473 /// retained objects.
3474 llvm::Value
*CodeGenFunction::EmitARCRetainScalarExpr(const Expr
*e
) {
3475 // The retain needs to happen within the full-expression.
3476 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3477 RunCleanupsScope
scope(*this);
3478 return EmitARCRetainScalarExpr(cleanups
->getSubExpr());
3481 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
);
3482 llvm::Value
*value
= result
.getPointer();
3483 if (!result
.getInt())
3484 value
= EmitARCRetain(e
->getType(), value
);
3489 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr
*e
) {
3490 // The retain needs to happen within the full-expression.
3491 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3492 RunCleanupsScope
scope(*this);
3493 return EmitARCRetainAutoreleaseScalarExpr(cleanups
->getSubExpr());
3496 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
);
3497 llvm::Value
*value
= result
.getPointer();
3498 if (result
.getInt())
3499 value
= EmitARCAutorelease(value
);
3501 value
= EmitARCRetainAutorelease(e
->getType(), value
);
3505 llvm::Value
*CodeGenFunction::EmitARCExtendBlockObject(const Expr
*e
) {
3506 llvm::Value
*result
;
3509 if (shouldEmitSeparateBlockRetain(e
)) {
3510 result
= EmitScalarExpr(e
);
3513 TryEmitResult subresult
= tryEmitARCRetainScalarExpr(*this, e
);
3514 result
= subresult
.getPointer();
3515 doRetain
= !subresult
.getInt();
3519 result
= EmitARCRetainBlock(result
, /*mandatory*/ true);
3520 return EmitObjCConsumeObject(e
->getType(), result
);
3523 llvm::Value
*CodeGenFunction::EmitObjCThrowOperand(const Expr
*expr
) {
3524 // In ARC, retain and autorelease the expression.
3525 if (getLangOpts().ObjCAutoRefCount
) {
3526 // Do so before running any cleanups for the full-expression.
3527 // EmitARCRetainAutoreleaseScalarExpr does this for us.
3528 return EmitARCRetainAutoreleaseScalarExpr(expr
);
3531 // Otherwise, use the normal scalar-expression emission. The
3532 // exception machinery doesn't do anything special with the
3533 // exception like retaining it, so there's no safety associated with
3534 // only running cleanups after the throw has started, and when it
3535 // matters it tends to be substantially inferior code.
3536 return EmitScalarExpr(expr
);
3541 /// An emitter for assigning into an __unsafe_unretained context.
3542 struct ARCUnsafeUnretainedExprEmitter
:
3543 public ARCExprEmitter
<ARCUnsafeUnretainedExprEmitter
, llvm::Value
*> {
3545 ARCUnsafeUnretainedExprEmitter(CodeGenFunction
&CGF
) : ARCExprEmitter(CGF
) {}
3547 llvm::Value
*getValueOfResult(llvm::Value
*value
) {
3551 llvm::Value
*emitBitCast(llvm::Value
*value
, llvm::Type
*resultType
) {
3552 return CGF
.Builder
.CreateBitCast(value
, resultType
);
3555 llvm::Value
*visitLValueToRValue(const Expr
*e
) {
3556 return CGF
.EmitScalarExpr(e
);
3559 /// For consumptions, just emit the subexpression and perform the
3560 /// consumption like normal.
3561 llvm::Value
*visitConsumeObject(const Expr
*e
) {
3562 llvm::Value
*value
= CGF
.EmitScalarExpr(e
);
3563 return CGF
.EmitObjCConsumeObject(e
->getType(), value
);
3566 /// No special logic for block extensions. (This probably can't
3567 /// actually happen in this emitter, though.)
3568 llvm::Value
*visitExtendBlockObject(const Expr
*e
) {
3569 return CGF
.EmitARCExtendBlockObject(e
);
3572 /// For reclaims, perform an unsafeClaim if that's enabled.
3573 llvm::Value
*visitReclaimReturnedObject(const Expr
*e
) {
3574 return CGF
.EmitARCReclaimReturnedObject(e
, /*unsafe*/ true);
3577 /// When we have an undecorated call, just emit it without adding
3578 /// the unsafeClaim.
3579 llvm::Value
*visitCall(const Expr
*e
) {
3580 return CGF
.EmitScalarExpr(e
);
3583 /// Just do normal scalar emission in the default case.
3584 llvm::Value
*visitExpr(const Expr
*e
) {
3585 return CGF
.EmitScalarExpr(e
);
3590 static llvm::Value
*emitARCUnsafeUnretainedScalarExpr(CodeGenFunction
&CGF
,
3592 return ARCUnsafeUnretainedExprEmitter(CGF
).visit(e
);
3595 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3596 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3597 /// avoiding any spurious retains, including by performing reclaims
3598 /// with objc_unsafeClaimAutoreleasedReturnValue.
3599 llvm::Value
*CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr
*e
) {
3600 // Look through full-expressions.
3601 if (const ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(e
)) {
3602 RunCleanupsScope
scope(*this);
3603 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups
->getSubExpr());
3606 return emitARCUnsafeUnretainedScalarExpr(*this, e
);
3609 std::pair
<LValue
,llvm::Value
*>
3610 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator
*e
,
3612 // Evaluate the RHS first. If we're ignoring the result, assume
3613 // that we can emit at an unsafe +0.
3616 value
= EmitARCUnsafeUnretainedScalarExpr(e
->getRHS());
3618 value
= EmitScalarExpr(e
->getRHS());
3621 // Emit the LHS and perform the store.
3622 LValue lvalue
= EmitLValue(e
->getLHS());
3623 EmitStoreOfScalar(value
, lvalue
);
3625 return std::pair
<LValue
,llvm::Value
*>(std::move(lvalue
), value
);
3628 std::pair
<LValue
,llvm::Value
*>
3629 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator
*e
,
3631 // Evaluate the RHS first.
3632 TryEmitResult result
= tryEmitARCRetainScalarExpr(*this, e
->getRHS());
3633 llvm::Value
*value
= result
.getPointer();
3635 bool hasImmediateRetain
= result
.getInt();
3637 // If we didn't emit a retained object, and the l-value is of block
3638 // type, then we need to emit the block-retain immediately in case
3639 // it invalidates the l-value.
3640 if (!hasImmediateRetain
&& e
->getType()->isBlockPointerType()) {
3641 value
= EmitARCRetainBlock(value
, /*mandatory*/ false);
3642 hasImmediateRetain
= true;
3645 LValue lvalue
= EmitLValue(e
->getLHS());
3647 // If the RHS was emitted retained, expand this.
3648 if (hasImmediateRetain
) {
3649 llvm::Value
*oldValue
= EmitLoadOfScalar(lvalue
, SourceLocation());
3650 EmitStoreOfScalar(value
, lvalue
);
3651 EmitARCRelease(oldValue
, lvalue
.isARCPreciseLifetime());
3653 value
= EmitARCStoreStrong(lvalue
, value
, ignored
);
3656 return std::pair
<LValue
,llvm::Value
*>(lvalue
, value
);
3659 std::pair
<LValue
,llvm::Value
*>
3660 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator
*e
) {
3661 llvm::Value
*value
= EmitARCRetainAutoreleaseScalarExpr(e
->getRHS());
3662 LValue lvalue
= EmitLValue(e
->getLHS());
3664 EmitStoreOfScalar(value
, lvalue
);
3666 return std::pair
<LValue
,llvm::Value
*>(lvalue
, value
);
3669 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
3670 const ObjCAutoreleasePoolStmt
&ARPS
) {
3671 const Stmt
*subStmt
= ARPS
.getSubStmt();
3672 const CompoundStmt
&S
= cast
<CompoundStmt
>(*subStmt
);
3674 CGDebugInfo
*DI
= getDebugInfo();
3676 DI
->EmitLexicalBlockStart(Builder
, S
.getLBracLoc());
3678 // Keep track of the current cleanup stack depth.
3679 RunCleanupsScope
Scope(*this);
3680 if (CGM
.getLangOpts().ObjCRuntime
.hasNativeARC()) {
3681 llvm::Value
*token
= EmitObjCAutoreleasePoolPush();
3682 EHStack
.pushCleanup
<CallObjCAutoreleasePoolObject
>(NormalCleanup
, token
);
3684 llvm::Value
*token
= EmitObjCMRRAutoreleasePoolPush();
3685 EHStack
.pushCleanup
<CallObjCMRRAutoreleasePoolObject
>(NormalCleanup
, token
);
3688 for (const auto *I
: S
.body())
3692 DI
->EmitLexicalBlockEnd(Builder
, S
.getRBracLoc());
3695 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3696 /// make sure it survives garbage collection until this point.
3697 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value
*object
) {
3698 // We just use an inline assembly.
3699 llvm::FunctionType
*extenderType
3700 = llvm::FunctionType::get(VoidTy
, VoidPtrTy
, RequiredArgs::All
);
3701 llvm::InlineAsm
*extender
= llvm::InlineAsm::get(extenderType
,
3703 /* constraints */ "r",
3704 /* side effects */ true);
3706 object
= Builder
.CreateBitCast(object
, VoidPtrTy
);
3707 EmitNounwindRuntimeCall(extender
, object
);
3710 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3711 /// non-trivial copy assignment function, produce following helper function.
3712 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3715 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
3716 const ObjCPropertyImplDecl
*PID
) {
3717 const ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
3718 if ((!(PD
->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic
)))
3721 QualType Ty
= PID
->getPropertyIvarDecl()->getType();
3722 ASTContext
&C
= getContext();
3724 if (Ty
.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
3725 // Call the move assignment operator instead of calling the copy assignment
3726 // operator and destructor.
3727 CharUnits Alignment
= C
.getTypeAlignInChars(Ty
);
3728 llvm::Constant
*Fn
= getNonTrivialCStructMoveAssignmentOperator(
3729 CGM
, Alignment
, Alignment
, Ty
.isVolatileQualified(), Ty
);
3730 return llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3733 if (!getLangOpts().CPlusPlus
||
3734 !getLangOpts().ObjCRuntime
.hasAtomicCopyHelper())
3736 if (!Ty
->isRecordType())
3738 llvm::Constant
*HelperFn
= nullptr;
3739 if (hasTrivialSetExpr(PID
))
3741 assert(PID
->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3742 if ((HelperFn
= CGM
.getAtomicSetterHelperFnMap(Ty
)))
3746 = &CGM
.getContext().Idents
.get("__assign_helper_atomic_property_");
3748 QualType ReturnTy
= C
.VoidTy
;
3749 QualType DestTy
= C
.getPointerType(Ty
);
3750 QualType SrcTy
= Ty
;
3752 SrcTy
= C
.getPointerType(SrcTy
);
3754 SmallVector
<QualType
, 2> ArgTys
;
3755 ArgTys
.push_back(DestTy
);
3756 ArgTys
.push_back(SrcTy
);
3757 QualType FunctionTy
= C
.getFunctionType(ReturnTy
, ArgTys
, {});
3759 FunctionDecl
*FD
= FunctionDecl::Create(
3760 C
, C
.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II
,
3761 FunctionTy
, nullptr, SC_Static
, false, false, false);
3763 FunctionArgList args
;
3764 ParmVarDecl
*Params
[2];
3765 ParmVarDecl
*DstDecl
= ParmVarDecl::Create(
3766 C
, FD
, SourceLocation(), SourceLocation(), nullptr, DestTy
,
3767 C
.getTrivialTypeSourceInfo(DestTy
, SourceLocation()), SC_None
,
3768 /*DefArg=*/nullptr);
3769 args
.push_back(Params
[0] = DstDecl
);
3770 ParmVarDecl
*SrcDecl
= ParmVarDecl::Create(
3771 C
, FD
, SourceLocation(), SourceLocation(), nullptr, SrcTy
,
3772 C
.getTrivialTypeSourceInfo(SrcTy
, SourceLocation()), SC_None
,
3773 /*DefArg=*/nullptr);
3774 args
.push_back(Params
[1] = SrcDecl
);
3775 FD
->setParams(Params
);
3777 const CGFunctionInfo
&FI
=
3778 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, args
);
3780 llvm::FunctionType
*LTy
= CGM
.getTypes().GetFunctionType(FI
);
3782 llvm::Function
*Fn
=
3783 llvm::Function::Create(LTy
, llvm::GlobalValue::InternalLinkage
,
3784 "__assign_helper_atomic_property_",
3787 CGM
.SetInternalFunctionAttributes(GlobalDecl(), Fn
, FI
);
3789 StartFunction(FD
, ReturnTy
, Fn
, FI
, args
);
3791 DeclRefExpr
DstExpr(C
, DstDecl
, false, DestTy
, VK_PRValue
, SourceLocation());
3792 UnaryOperator
*DST
= UnaryOperator::Create(
3793 C
, &DstExpr
, UO_Deref
, DestTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3794 SourceLocation(), false, FPOptionsOverride());
3796 DeclRefExpr
SrcExpr(C
, SrcDecl
, false, SrcTy
, VK_PRValue
, SourceLocation());
3797 UnaryOperator
*SRC
= UnaryOperator::Create(
3798 C
, &SrcExpr
, UO_Deref
, SrcTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3799 SourceLocation(), false, FPOptionsOverride());
3801 Expr
*Args
[2] = {DST
, SRC
};
3802 CallExpr
*CalleeExp
= cast
<CallExpr
>(PID
->getSetterCXXAssignment());
3803 CXXOperatorCallExpr
*TheCall
= CXXOperatorCallExpr::Create(
3804 C
, OO_Equal
, CalleeExp
->getCallee(), Args
, DestTy
->getPointeeType(),
3805 VK_LValue
, SourceLocation(), FPOptionsOverride());
3810 HelperFn
= llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3811 CGM
.setAtomicSetterHelperFnMap(Ty
, HelperFn
);
3815 llvm::Constant
*CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
3816 const ObjCPropertyImplDecl
*PID
) {
3817 const ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
3818 if ((!(PD
->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic
)))
3821 QualType Ty
= PD
->getType();
3822 ASTContext
&C
= getContext();
3824 if (Ty
.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct
) {
3825 CharUnits Alignment
= C
.getTypeAlignInChars(Ty
);
3826 llvm::Constant
*Fn
= getNonTrivialCStructCopyConstructor(
3827 CGM
, Alignment
, Alignment
, Ty
.isVolatileQualified(), Ty
);
3828 return llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3831 if (!getLangOpts().CPlusPlus
||
3832 !getLangOpts().ObjCRuntime
.hasAtomicCopyHelper())
3834 if (!Ty
->isRecordType())
3836 llvm::Constant
*HelperFn
= nullptr;
3837 if (hasTrivialGetExpr(PID
))
3839 assert(PID
->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3840 if ((HelperFn
= CGM
.getAtomicGetterHelperFnMap(Ty
)))
3843 IdentifierInfo
*II
=
3844 &CGM
.getContext().Idents
.get("__copy_helper_atomic_property_");
3846 QualType ReturnTy
= C
.VoidTy
;
3847 QualType DestTy
= C
.getPointerType(Ty
);
3848 QualType SrcTy
= Ty
;
3850 SrcTy
= C
.getPointerType(SrcTy
);
3852 SmallVector
<QualType
, 2> ArgTys
;
3853 ArgTys
.push_back(DestTy
);
3854 ArgTys
.push_back(SrcTy
);
3855 QualType FunctionTy
= C
.getFunctionType(ReturnTy
, ArgTys
, {});
3857 FunctionDecl
*FD
= FunctionDecl::Create(
3858 C
, C
.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II
,
3859 FunctionTy
, nullptr, SC_Static
, false, false, false);
3861 FunctionArgList args
;
3862 ParmVarDecl
*Params
[2];
3863 ParmVarDecl
*DstDecl
= ParmVarDecl::Create(
3864 C
, FD
, SourceLocation(), SourceLocation(), nullptr, DestTy
,
3865 C
.getTrivialTypeSourceInfo(DestTy
, SourceLocation()), SC_None
,
3866 /*DefArg=*/nullptr);
3867 args
.push_back(Params
[0] = DstDecl
);
3868 ParmVarDecl
*SrcDecl
= ParmVarDecl::Create(
3869 C
, FD
, SourceLocation(), SourceLocation(), nullptr, SrcTy
,
3870 C
.getTrivialTypeSourceInfo(SrcTy
, SourceLocation()), SC_None
,
3871 /*DefArg=*/nullptr);
3872 args
.push_back(Params
[1] = SrcDecl
);
3873 FD
->setParams(Params
);
3875 const CGFunctionInfo
&FI
=
3876 CGM
.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy
, args
);
3878 llvm::FunctionType
*LTy
= CGM
.getTypes().GetFunctionType(FI
);
3880 llvm::Function
*Fn
= llvm::Function::Create(
3881 LTy
, llvm::GlobalValue::InternalLinkage
, "__copy_helper_atomic_property_",
3884 CGM
.SetInternalFunctionAttributes(GlobalDecl(), Fn
, FI
);
3886 StartFunction(FD
, ReturnTy
, Fn
, FI
, args
);
3888 DeclRefExpr
SrcExpr(getContext(), SrcDecl
, false, SrcTy
, VK_PRValue
,
3891 UnaryOperator
*SRC
= UnaryOperator::Create(
3892 C
, &SrcExpr
, UO_Deref
, SrcTy
->getPointeeType(), VK_LValue
, OK_Ordinary
,
3893 SourceLocation(), false, FPOptionsOverride());
3895 CXXConstructExpr
*CXXConstExpr
=
3896 cast
<CXXConstructExpr
>(PID
->getGetterCXXConstructor());
3898 SmallVector
<Expr
*, 4> ConstructorArgs
;
3899 ConstructorArgs
.push_back(SRC
);
3900 ConstructorArgs
.append(std::next(CXXConstExpr
->arg_begin()),
3901 CXXConstExpr
->arg_end());
3903 CXXConstructExpr
*TheCXXConstructExpr
=
3904 CXXConstructExpr::Create(C
, Ty
, SourceLocation(),
3905 CXXConstExpr
->getConstructor(),
3906 CXXConstExpr
->isElidable(),
3908 CXXConstExpr
->hadMultipleCandidates(),
3909 CXXConstExpr
->isListInitialization(),
3910 CXXConstExpr
->isStdInitListInitialization(),
3911 CXXConstExpr
->requiresZeroInitialization(),
3912 CXXConstExpr
->getConstructionKind(),
3915 DeclRefExpr
DstExpr(getContext(), DstDecl
, false, DestTy
, VK_PRValue
,
3918 RValue DV
= EmitAnyExpr(&DstExpr
);
3919 CharUnits Alignment
=
3920 getContext().getTypeAlignInChars(TheCXXConstructExpr
->getType());
3921 EmitAggExpr(TheCXXConstructExpr
,
3922 AggValueSlot::forAddr(
3923 Address(DV
.getScalarVal(), ConvertTypeForMem(Ty
), Alignment
),
3924 Qualifiers(), AggValueSlot::IsDestructed
,
3925 AggValueSlot::DoesNotNeedGCBarriers
,
3926 AggValueSlot::IsNotAliased
, AggValueSlot::DoesNotOverlap
));
3929 HelperFn
= llvm::ConstantExpr::getBitCast(Fn
, VoidPtrTy
);
3930 CGM
.setAtomicGetterHelperFnMap(Ty
, HelperFn
);
3935 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value
*Block
, QualType Ty
) {
3936 // Get selectors for retain/autorelease.
3937 IdentifierInfo
*CopyID
= &getContext().Idents
.get("copy");
3938 Selector CopySelector
=
3939 getContext().Selectors
.getNullarySelector(CopyID
);
3940 IdentifierInfo
*AutoreleaseID
= &getContext().Idents
.get("autorelease");
3941 Selector AutoreleaseSelector
=
3942 getContext().Selectors
.getNullarySelector(AutoreleaseID
);
3944 // Emit calls to retain/autorelease.
3945 CGObjCRuntime
&Runtime
= CGM
.getObjCRuntime();
3946 llvm::Value
*Val
= Block
;
3948 Result
= Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
3950 Val
, CallArgList(), nullptr, nullptr);
3951 Val
= Result
.getScalarVal();
3952 Result
= Runtime
.GenerateMessageSend(*this, ReturnValueSlot(),
3953 Ty
, AutoreleaseSelector
,
3954 Val
, CallArgList(), nullptr, nullptr);
3955 Val
= Result
.getScalarVal();
3959 static unsigned getBaseMachOPlatformID(const llvm::Triple
&TT
) {
3960 switch (TT
.getOS()) {
3961 case llvm::Triple::Darwin
:
3962 case llvm::Triple::MacOSX
:
3963 return llvm::MachO::PLATFORM_MACOS
;
3964 case llvm::Triple::IOS
:
3965 return llvm::MachO::PLATFORM_IOS
;
3966 case llvm::Triple::TvOS
:
3967 return llvm::MachO::PLATFORM_TVOS
;
3968 case llvm::Triple::WatchOS
:
3969 return llvm::MachO::PLATFORM_WATCHOS
;
3970 case llvm::Triple::DriverKit
:
3971 return llvm::MachO::PLATFORM_DRIVERKIT
;
3973 return /*Unknown platform*/ 0;
3977 static llvm::Value
*emitIsPlatformVersionAtLeast(CodeGenFunction
&CGF
,
3978 const VersionTuple
&Version
) {
3979 CodeGenModule
&CGM
= CGF
.CGM
;
3980 // Note: we intend to support multi-platform version checks, so reserve
3981 // the room for a dual platform checking invocation that will be
3982 // implemented in the future.
3983 llvm::SmallVector
<llvm::Value
*, 8> Args
;
3985 auto EmitArgs
= [&](const VersionTuple
&Version
, const llvm::Triple
&TT
) {
3986 std::optional
<unsigned> Min
= Version
.getMinor(),
3987 SMin
= Version
.getSubminor();
3989 llvm::ConstantInt::get(CGM
.Int32Ty
, getBaseMachOPlatformID(TT
)));
3990 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, Version
.getMajor()));
3991 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, Min
.value_or(0)));
3992 Args
.push_back(llvm::ConstantInt::get(CGM
.Int32Ty
, SMin
.value_or(0)));
3995 assert(!Version
.empty() && "unexpected empty version");
3996 EmitArgs(Version
, CGM
.getTarget().getTriple());
3998 if (!CGM
.IsPlatformVersionAtLeastFn
) {
3999 llvm::FunctionType
*FTy
= llvm::FunctionType::get(
4000 CGM
.Int32Ty
, {CGM
.Int32Ty
, CGM
.Int32Ty
, CGM
.Int32Ty
, CGM
.Int32Ty
},
4002 CGM
.IsPlatformVersionAtLeastFn
=
4003 CGM
.CreateRuntimeFunction(FTy
, "__isPlatformVersionAtLeast");
4006 llvm::Value
*Check
=
4007 CGF
.EmitNounwindRuntimeCall(CGM
.IsPlatformVersionAtLeastFn
, Args
);
4008 return CGF
.Builder
.CreateICmpNE(Check
,
4009 llvm::Constant::getNullValue(CGM
.Int32Ty
));
4013 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple
&Version
) {
4014 // Darwin uses the new __isPlatformVersionAtLeast family of routines.
4015 if (CGM
.getTarget().getTriple().isOSDarwin())
4016 return emitIsPlatformVersionAtLeast(*this, Version
);
4018 if (!CGM
.IsOSVersionAtLeastFn
) {
4019 llvm::FunctionType
*FTy
=
4020 llvm::FunctionType::get(Int32Ty
, {Int32Ty
, Int32Ty
, Int32Ty
}, false);
4021 CGM
.IsOSVersionAtLeastFn
=
4022 CGM
.CreateRuntimeFunction(FTy
, "__isOSVersionAtLeast");
4025 std::optional
<unsigned> Min
= Version
.getMinor(),
4026 SMin
= Version
.getSubminor();
4027 llvm::Value
*Args
[] = {
4028 llvm::ConstantInt::get(CGM
.Int32Ty
, Version
.getMajor()),
4029 llvm::ConstantInt::get(CGM
.Int32Ty
, Min
.value_or(0)),
4030 llvm::ConstantInt::get(CGM
.Int32Ty
, SMin
.value_or(0))};
4032 llvm::Value
*CallRes
=
4033 EmitNounwindRuntimeCall(CGM
.IsOSVersionAtLeastFn
, Args
);
4035 return Builder
.CreateICmpNE(CallRes
, llvm::Constant::getNullValue(Int32Ty
));
4038 static bool isFoundationNeededForDarwinAvailabilityCheck(
4039 const llvm::Triple
&TT
, const VersionTuple
&TargetVersion
) {
4040 VersionTuple FoundationDroppedInVersion
;
4041 switch (TT
.getOS()) {
4042 case llvm::Triple::IOS
:
4043 case llvm::Triple::TvOS
:
4044 FoundationDroppedInVersion
= VersionTuple(/*Major=*/13);
4046 case llvm::Triple::WatchOS
:
4047 FoundationDroppedInVersion
= VersionTuple(/*Major=*/6);
4049 case llvm::Triple::Darwin
:
4050 case llvm::Triple::MacOSX
:
4051 FoundationDroppedInVersion
= VersionTuple(/*Major=*/10, /*Minor=*/15);
4053 case llvm::Triple::DriverKit
:
4054 // DriverKit doesn't need Foundation.
4057 llvm_unreachable("Unexpected OS");
4059 return TargetVersion
< FoundationDroppedInVersion
;
4062 void CodeGenModule::emitAtAvailableLinkGuard() {
4063 if (!IsPlatformVersionAtLeastFn
)
4065 // @available requires CoreFoundation only on Darwin.
4066 if (!Target
.getTriple().isOSDarwin())
4068 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or
4070 if (!isFoundationNeededForDarwinAvailabilityCheck(
4071 Target
.getTriple(), Target
.getPlatformMinVersion()))
4073 // Add -framework CoreFoundation to the linker commands. We still want to
4074 // emit the core foundation reference down below because otherwise if
4075 // CoreFoundation is not used in the code, the linker won't link the
4077 auto &Context
= getLLVMContext();
4078 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
4079 llvm::MDString::get(Context
, "CoreFoundation")};
4080 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(Context
, Args
));
4081 // Emit a reference to a symbol from CoreFoundation to ensure that
4082 // CoreFoundation is linked into the final binary.
4083 llvm::FunctionType
*FTy
=
4084 llvm::FunctionType::get(Int32Ty
, {VoidPtrTy
}, false);
4085 llvm::FunctionCallee CFFunc
=
4086 CreateRuntimeFunction(FTy
, "CFBundleGetVersionNumber");
4088 llvm::FunctionType
*CheckFTy
= llvm::FunctionType::get(VoidTy
, {}, false);
4089 llvm::FunctionCallee CFLinkCheckFuncRef
= CreateRuntimeFunction(
4090 CheckFTy
, "__clang_at_available_requires_core_foundation_framework",
4091 llvm::AttributeList(), /*Local=*/true);
4092 llvm::Function
*CFLinkCheckFunc
=
4093 cast
<llvm::Function
>(CFLinkCheckFuncRef
.getCallee()->stripPointerCasts());
4094 if (CFLinkCheckFunc
->empty()) {
4095 CFLinkCheckFunc
->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage
);
4096 CFLinkCheckFunc
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
4097 CodeGenFunction
CGF(*this);
4098 CGF
.Builder
.SetInsertPoint(CGF
.createBasicBlock("", CFLinkCheckFunc
));
4099 CGF
.EmitNounwindRuntimeCall(CFFunc
,
4100 llvm::Constant::getNullValue(VoidPtrTy
));
4101 CGF
.Builder
.CreateUnreachable();
4102 addCompilerUsedGlobal(CFLinkCheckFunc
);
4106 CGObjCRuntime::~CGObjCRuntime() {}