1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This coordinates the per-module state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenModule.h"
16 #include "CGCUDARuntime.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ProfileSummary.h"
61 #include "llvm/ProfileData/InstrProfReader.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/Support/CRC.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ConvertUTF.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/TimeProfiler.h"
69 #include "llvm/Support/xxhash.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include "llvm/TargetParser/X86TargetParser.h"
74 using namespace clang
;
75 using namespace CodeGen
;
77 static llvm::cl::opt
<bool> LimitedCoverage(
78 "limited-coverage-experimental", llvm::cl::Hidden
,
79 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
81 static const char AnnotationSection
[] = "llvm.metadata";
83 static CGCXXABI
*createCXXABI(CodeGenModule
&CGM
) {
84 switch (CGM
.getContext().getCXXABIKind()) {
85 case TargetCXXABI::AppleARM64
:
86 case TargetCXXABI::Fuchsia
:
87 case TargetCXXABI::GenericAArch64
:
88 case TargetCXXABI::GenericARM
:
89 case TargetCXXABI::iOS
:
90 case TargetCXXABI::WatchOS
:
91 case TargetCXXABI::GenericMIPS
:
92 case TargetCXXABI::GenericItanium
:
93 case TargetCXXABI::WebAssembly
:
94 case TargetCXXABI::XL
:
95 return CreateItaniumCXXABI(CGM
);
96 case TargetCXXABI::Microsoft
:
97 return CreateMicrosoftCXXABI(CGM
);
100 llvm_unreachable("invalid C++ ABI kind");
103 CodeGenModule::CodeGenModule(ASTContext
&C
,
104 IntrusiveRefCntPtr
<llvm::vfs::FileSystem
> FS
,
105 const HeaderSearchOptions
&HSO
,
106 const PreprocessorOptions
&PPO
,
107 const CodeGenOptions
&CGO
, llvm::Module
&M
,
108 DiagnosticsEngine
&diags
,
109 CoverageSourceInfo
*CoverageInfo
)
110 : Context(C
), LangOpts(C
.getLangOpts()), FS(FS
), HeaderSearchOpts(HSO
),
111 PreprocessorOpts(PPO
), CodeGenOpts(CGO
), TheModule(M
), Diags(diags
),
112 Target(C
.getTargetInfo()), ABI(createCXXABI(*this)),
113 VMContext(M
.getContext()), Types(*this), VTables(*this),
114 SanitizerMD(new SanitizerMetadata(*this)) {
116 // Initialize the type cache.
117 llvm::LLVMContext
&LLVMContext
= M
.getContext();
118 VoidTy
= llvm::Type::getVoidTy(LLVMContext
);
119 Int8Ty
= llvm::Type::getInt8Ty(LLVMContext
);
120 Int16Ty
= llvm::Type::getInt16Ty(LLVMContext
);
121 Int32Ty
= llvm::Type::getInt32Ty(LLVMContext
);
122 Int64Ty
= llvm::Type::getInt64Ty(LLVMContext
);
123 HalfTy
= llvm::Type::getHalfTy(LLVMContext
);
124 BFloatTy
= llvm::Type::getBFloatTy(LLVMContext
);
125 FloatTy
= llvm::Type::getFloatTy(LLVMContext
);
126 DoubleTy
= llvm::Type::getDoubleTy(LLVMContext
);
127 PointerWidthInBits
= C
.getTargetInfo().getPointerWidth(LangAS::Default
);
128 PointerAlignInBytes
=
129 C
.toCharUnitsFromBits(C
.getTargetInfo().getPointerAlign(LangAS::Default
))
132 C
.toCharUnitsFromBits(C
.getTargetInfo().getMaxPointerWidth()).getQuantity();
134 C
.toCharUnitsFromBits(C
.getTargetInfo().getIntAlign()).getQuantity();
136 llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getCharWidth());
137 IntTy
= llvm::IntegerType::get(LLVMContext
, C
.getTargetInfo().getIntWidth());
138 IntPtrTy
= llvm::IntegerType::get(LLVMContext
,
139 C
.getTargetInfo().getMaxPointerWidth());
140 Int8PtrTy
= Int8Ty
->getPointerTo(0);
141 Int8PtrPtrTy
= Int8PtrTy
->getPointerTo(0);
142 const llvm::DataLayout
&DL
= M
.getDataLayout();
143 AllocaInt8PtrTy
= Int8Ty
->getPointerTo(DL
.getAllocaAddrSpace());
144 GlobalsInt8PtrTy
= Int8Ty
->getPointerTo(DL
.getDefaultGlobalsAddressSpace());
145 ConstGlobalsPtrTy
= Int8Ty
->getPointerTo(
146 C
.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
147 ASTAllocaAddressSpace
= getTargetCodeGenInfo().getASTAllocaAddressSpace();
149 // Build C++20 Module initializers.
150 // TODO: Add Microsoft here once we know the mangling required for the
153 LangOpts
.CPlusPlusModules
&& getCXXABI().getMangleContext().getKind() ==
154 ItaniumMangleContext::MK_Itanium
;
156 RuntimeCC
= getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
161 createOpenCLRuntime();
163 createOpenMPRuntime();
169 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
170 if (LangOpts
.Sanitize
.has(SanitizerKind::Thread
) ||
171 (!CodeGenOpts
.RelaxedAliasing
&& CodeGenOpts
.OptimizationLevel
> 0))
172 TBAA
.reset(new CodeGenTBAA(Context
, TheModule
, CodeGenOpts
, getLangOpts(),
173 getCXXABI().getMangleContext()));
175 // If debug info or coverage generation is enabled, create the CGDebugInfo
177 if (CodeGenOpts
.getDebugInfo() != codegenoptions::NoDebugInfo
||
178 CodeGenOpts
.EmitGcovArcs
|| CodeGenOpts
.EmitGcovNotes
)
179 DebugInfo
.reset(new CGDebugInfo(*this));
181 Block
.GlobalUniqueCount
= 0;
183 if (C
.getLangOpts().ObjC
)
184 ObjCData
.reset(new ObjCEntrypoints());
186 if (CodeGenOpts
.hasProfileClangUse()) {
187 auto ReaderOrErr
= llvm::IndexedInstrProfReader::create(
188 CodeGenOpts
.ProfileInstrumentUsePath
, *FS
,
189 CodeGenOpts
.ProfileRemappingFile
);
190 // We're checking for profile read errors in CompilerInvocation, so if
191 // there was an error it should've already been caught. If it hasn't been
192 // somehow, trip an assertion.
194 PGOReader
= std::move(ReaderOrErr
.get());
197 // If coverage mapping generation is enabled, create the
198 // CoverageMappingModuleGen object.
199 if (CodeGenOpts
.CoverageMapping
)
200 CoverageMapping
.reset(new CoverageMappingModuleGen(*this, *CoverageInfo
));
202 // Generate the module name hash here if needed.
203 if (CodeGenOpts
.UniqueInternalLinkageNames
&&
204 !getModule().getSourceFileName().empty()) {
205 std::string Path
= getModule().getSourceFileName();
206 // Check if a path substitution is needed from the MacroPrefixMap.
207 for (const auto &Entry
: LangOpts
.MacroPrefixMap
)
208 if (Path
.rfind(Entry
.first
, 0) != std::string::npos
) {
209 Path
= Entry
.second
+ Path
.substr(Entry
.first
.size());
212 ModuleNameHash
= llvm::getUniqueInternalLinkagePostfix(Path
);
216 CodeGenModule::~CodeGenModule() {}
218 void CodeGenModule::createObjCRuntime() {
219 // This is just isGNUFamily(), but we want to force implementors of
220 // new ABIs to decide how best to do this.
221 switch (LangOpts
.ObjCRuntime
.getKind()) {
222 case ObjCRuntime::GNUstep
:
223 case ObjCRuntime::GCC
:
224 case ObjCRuntime::ObjFW
:
225 ObjCRuntime
.reset(CreateGNUObjCRuntime(*this));
228 case ObjCRuntime::FragileMacOSX
:
229 case ObjCRuntime::MacOSX
:
230 case ObjCRuntime::iOS
:
231 case ObjCRuntime::WatchOS
:
232 ObjCRuntime
.reset(CreateMacObjCRuntime(*this));
235 llvm_unreachable("bad runtime kind");
238 void CodeGenModule::createOpenCLRuntime() {
239 OpenCLRuntime
.reset(new CGOpenCLRuntime(*this));
242 void CodeGenModule::createOpenMPRuntime() {
243 // Select a specialized code generation class based on the target, if any.
244 // If it does not exist use the default implementation.
245 switch (getTriple().getArch()) {
246 case llvm::Triple::nvptx
:
247 case llvm::Triple::nvptx64
:
248 case llvm::Triple::amdgcn
:
249 assert(getLangOpts().OpenMPIsDevice
&&
250 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
251 OpenMPRuntime
.reset(new CGOpenMPRuntimeGPU(*this));
254 if (LangOpts
.OpenMPSimd
)
255 OpenMPRuntime
.reset(new CGOpenMPSIMDRuntime(*this));
257 OpenMPRuntime
.reset(new CGOpenMPRuntime(*this));
262 void CodeGenModule::createCUDARuntime() {
263 CUDARuntime
.reset(CreateNVCUDARuntime(*this));
266 void CodeGenModule::createHLSLRuntime() {
267 HLSLRuntime
.reset(new CGHLSLRuntime(*this));
270 void CodeGenModule::addReplacement(StringRef Name
, llvm::Constant
*C
) {
271 Replacements
[Name
] = C
;
274 void CodeGenModule::applyReplacements() {
275 for (auto &I
: Replacements
) {
276 StringRef MangledName
= I
.first();
277 llvm::Constant
*Replacement
= I
.second
;
278 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
281 auto *OldF
= cast
<llvm::Function
>(Entry
);
282 auto *NewF
= dyn_cast
<llvm::Function
>(Replacement
);
284 if (auto *Alias
= dyn_cast
<llvm::GlobalAlias
>(Replacement
)) {
285 NewF
= dyn_cast
<llvm::Function
>(Alias
->getAliasee());
287 auto *CE
= cast
<llvm::ConstantExpr
>(Replacement
);
288 assert(CE
->getOpcode() == llvm::Instruction::BitCast
||
289 CE
->getOpcode() == llvm::Instruction::GetElementPtr
);
290 NewF
= dyn_cast
<llvm::Function
>(CE
->getOperand(0));
294 // Replace old with new, but keep the old order.
295 OldF
->replaceAllUsesWith(Replacement
);
297 NewF
->removeFromParent();
298 OldF
->getParent()->getFunctionList().insertAfter(OldF
->getIterator(),
301 OldF
->eraseFromParent();
305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue
*GV
, llvm::Constant
*C
) {
306 GlobalValReplacements
.push_back(std::make_pair(GV
, C
));
309 void CodeGenModule::applyGlobalValReplacements() {
310 for (auto &I
: GlobalValReplacements
) {
311 llvm::GlobalValue
*GV
= I
.first
;
312 llvm::Constant
*C
= I
.second
;
314 GV
->replaceAllUsesWith(C
);
315 GV
->eraseFromParent();
319 // This is only used in aliases that we created and we know they have a
321 static const llvm::GlobalValue
*getAliasedGlobal(const llvm::GlobalValue
*GV
) {
322 const llvm::Constant
*C
;
323 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(GV
))
324 C
= GA
->getAliasee();
325 else if (auto *GI
= dyn_cast
<llvm::GlobalIFunc
>(GV
))
326 C
= GI
->getResolver();
330 const auto *AliaseeGV
= dyn_cast
<llvm::GlobalValue
>(C
->stripPointerCasts());
334 const llvm::GlobalValue
*FinalGV
= AliaseeGV
->getAliaseeObject();
341 static bool checkAliasedGlobal(DiagnosticsEngine
&Diags
,
342 SourceLocation Location
, bool IsIFunc
,
343 const llvm::GlobalValue
*Alias
,
344 const llvm::GlobalValue
*&GV
) {
345 GV
= getAliasedGlobal(Alias
);
347 Diags
.Report(Location
, diag::err_cyclic_alias
) << IsIFunc
;
351 if (GV
->isDeclaration()) {
352 Diags
.Report(Location
, diag::err_alias_to_undefined
) << IsIFunc
<< IsIFunc
;
357 // Check resolver function type.
358 const auto *F
= dyn_cast
<llvm::Function
>(GV
);
360 Diags
.Report(Location
, diag::err_alias_to_undefined
)
361 << IsIFunc
<< IsIFunc
;
365 llvm::FunctionType
*FTy
= F
->getFunctionType();
366 if (!FTy
->getReturnType()->isPointerTy()) {
367 Diags
.Report(Location
, diag::err_ifunc_resolver_return
);
375 void CodeGenModule::checkAliases() {
376 // Check if the constructed aliases are well formed. It is really unfortunate
377 // that we have to do this in CodeGen, but we only construct mangled names
378 // and aliases during codegen.
380 DiagnosticsEngine
&Diags
= getDiags();
381 for (const GlobalDecl
&GD
: Aliases
) {
382 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
383 SourceLocation Location
;
384 bool IsIFunc
= D
->hasAttr
<IFuncAttr
>();
385 if (const Attr
*A
= D
->getDefiningAttr())
386 Location
= A
->getLocation();
388 llvm_unreachable("Not an alias or ifunc?");
390 StringRef MangledName
= getMangledName(GD
);
391 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
392 const llvm::GlobalValue
*GV
= nullptr;
393 if (!checkAliasedGlobal(Diags
, Location
, IsIFunc
, Alias
, GV
)) {
398 llvm::Constant
*Aliasee
=
399 IsIFunc
? cast
<llvm::GlobalIFunc
>(Alias
)->getResolver()
400 : cast
<llvm::GlobalAlias
>(Alias
)->getAliasee();
402 llvm::GlobalValue
*AliaseeGV
;
403 if (auto CE
= dyn_cast
<llvm::ConstantExpr
>(Aliasee
))
404 AliaseeGV
= cast
<llvm::GlobalValue
>(CE
->getOperand(0));
406 AliaseeGV
= cast
<llvm::GlobalValue
>(Aliasee
);
408 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
409 StringRef AliasSection
= SA
->getName();
410 if (AliasSection
!= AliaseeGV
->getSection())
411 Diags
.Report(SA
->getLocation(), diag::warn_alias_with_section
)
412 << AliasSection
<< IsIFunc
<< IsIFunc
;
415 // We have to handle alias to weak aliases in here. LLVM itself disallows
416 // this since the object semantics would not match the IL one. For
417 // compatibility with gcc we implement it by just pointing the alias
418 // to its aliasee's aliasee. We also warn, since the user is probably
419 // expecting the link to be weak.
420 if (auto *GA
= dyn_cast
<llvm::GlobalAlias
>(AliaseeGV
)) {
421 if (GA
->isInterposable()) {
422 Diags
.Report(Location
, diag::warn_alias_to_weak_alias
)
423 << GV
->getName() << GA
->getName() << IsIFunc
;
424 Aliasee
= llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
425 GA
->getAliasee(), Alias
->getType());
428 cast
<llvm::GlobalIFunc
>(Alias
)->setResolver(Aliasee
);
430 cast
<llvm::GlobalAlias
>(Alias
)->setAliasee(Aliasee
);
437 for (const GlobalDecl
&GD
: Aliases
) {
438 StringRef MangledName
= getMangledName(GD
);
439 llvm::GlobalValue
*Alias
= GetGlobalValue(MangledName
);
440 Alias
->replaceAllUsesWith(llvm::UndefValue::get(Alias
->getType()));
441 Alias
->eraseFromParent();
445 void CodeGenModule::clear() {
446 DeferredDeclsToEmit
.clear();
447 EmittedDeferredDecls
.clear();
449 OpenMPRuntime
->clear();
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine
&Diags
,
453 StringRef MainFile
) {
454 if (!hasDiagnostics())
456 if (VisitedInMainFile
> 0 && VisitedInMainFile
== MissingInMainFile
) {
457 if (MainFile
.empty())
458 MainFile
= "<stdin>";
459 Diags
.Report(diag::warn_profile_data_unprofiled
) << MainFile
;
462 Diags
.Report(diag::warn_profile_data_out_of_date
) << Visited
<< Mismatched
;
465 Diags
.Report(diag::warn_profile_data_missing
) << Visited
<< Missing
;
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions
&LO
,
471 if (!LO
.VisibilityFromDLLStorageClass
)
474 llvm::GlobalValue::VisibilityTypes DLLExportVisibility
=
475 CodeGenModule::GetLLVMVisibility(LO
.getDLLExportVisibility());
476 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility
=
477 CodeGenModule::GetLLVMVisibility(LO
.getNoDLLStorageClassVisibility());
478 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility
=
479 CodeGenModule::GetLLVMVisibility(LO
.getExternDeclDLLImportVisibility());
480 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility
=
481 CodeGenModule::GetLLVMVisibility(
482 LO
.getExternDeclNoDLLStorageClassVisibility());
484 for (llvm::GlobalValue
&GV
: M
.global_values()) {
485 if (GV
.hasAppendingLinkage() || GV
.hasLocalLinkage())
488 // Reset DSO locality before setting the visibility. This removes
489 // any effects that visibility options and annotations may have
490 // had on the DSO locality. Setting the visibility will implicitly set
491 // appropriate globals to DSO Local; however, this will be pessimistic
492 // w.r.t. to the normal compiler IRGen.
493 GV
.setDSOLocal(false);
495 if (GV
.isDeclarationForLinker()) {
496 GV
.setVisibility(GV
.getDLLStorageClass() ==
497 llvm::GlobalValue::DLLImportStorageClass
498 ? ExternDeclDLLImportVisibility
499 : ExternDeclNoDLLStorageClassVisibility
);
501 GV
.setVisibility(GV
.getDLLStorageClass() ==
502 llvm::GlobalValue::DLLExportStorageClass
503 ? DLLExportVisibility
504 : NoDLLStorageClassVisibility
);
507 GV
.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
511 void CodeGenModule::Release() {
512 Module
*Primary
= getContext().getNamedModuleForCodeGen();
513 if (CXX20ModuleInits
&& Primary
&& !Primary
->isHeaderLikeModule())
514 EmitModuleInitializers(Primary
);
516 DeferredDecls
.insert(EmittedDeferredDecls
.begin(),
517 EmittedDeferredDecls
.end());
518 EmittedDeferredDecls
.clear();
519 EmitVTablesOpportunistically();
520 applyGlobalValReplacements();
522 emitMultiVersionFunctions();
524 if (Context
.getLangOpts().IncrementalExtensions
&&
525 GlobalTopLevelStmtBlockInFlight
.first
) {
526 const TopLevelStmtDecl
*TLSD
= GlobalTopLevelStmtBlockInFlight
.second
;
527 GlobalTopLevelStmtBlockInFlight
.first
->FinishFunction(TLSD
->getEndLoc());
528 GlobalTopLevelStmtBlockInFlight
= {nullptr, nullptr};
531 if (CXX20ModuleInits
&& Primary
&& Primary
->isInterfaceOrPartition())
532 EmitCXXModuleInitFunc(Primary
);
534 EmitCXXGlobalInitFunc();
535 EmitCXXGlobalCleanUpFunc();
536 registerGlobalDtorsWithAtExit();
537 EmitCXXThreadLocalInitFunc();
539 if (llvm::Function
*ObjCInitFunction
= ObjCRuntime
->ModuleInitFunction())
540 AddGlobalCtor(ObjCInitFunction
);
541 if (Context
.getLangOpts().CUDA
&& CUDARuntime
) {
542 if (llvm::Function
*CudaCtorFunction
= CUDARuntime
->finalizeModule())
543 AddGlobalCtor(CudaCtorFunction
);
546 if (llvm::Function
*OpenMPRequiresDirectiveRegFun
=
547 OpenMPRuntime
->emitRequiresDirectiveRegFun()) {
548 AddGlobalCtor(OpenMPRequiresDirectiveRegFun
, 0);
550 OpenMPRuntime
->createOffloadEntriesAndInfoMetadata();
551 OpenMPRuntime
->clear();
554 getModule().setProfileSummary(
555 PGOReader
->getSummary(/* UseCS */ false).getMD(VMContext
),
556 llvm::ProfileSummary::PSK_Instr
);
557 if (PGOStats
.hasDiagnostics())
558 PGOStats
.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName
);
560 llvm::stable_sort(GlobalCtors
, [](const Structor
&L
, const Structor
&R
) {
561 return L
.LexOrder
< R
.LexOrder
;
563 EmitCtorList(GlobalCtors
, "llvm.global_ctors");
564 EmitCtorList(GlobalDtors
, "llvm.global_dtors");
565 EmitGlobalAnnotations();
566 EmitStaticExternCAliases();
568 EmitDeferredUnusedCoverageMappings();
569 CodeGenPGO(*this).setValueProfilingFlag(getModule());
571 CoverageMapping
->emit();
572 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
573 CodeGenFunction(*this).EmitCfiCheckFail();
574 CodeGenFunction(*this).EmitCfiCheckStub();
576 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
578 emitAtAvailableLinkGuard();
579 if (Context
.getTargetInfo().getTriple().isWasm())
582 if (getTriple().isAMDGPU()) {
583 // Emit reference of __amdgpu_device_library_preserve_asan_functions to
584 // preserve ASAN functions in bitcode libraries.
585 if (LangOpts
.Sanitize
.has(SanitizerKind::Address
)) {
586 auto *FT
= llvm::FunctionType::get(VoidTy
, {});
587 auto *F
= llvm::Function::Create(
588 FT
, llvm::GlobalValue::ExternalLinkage
,
589 "__amdgpu_device_library_preserve_asan_functions", &getModule());
590 auto *Var
= new llvm::GlobalVariable(
591 getModule(), FT
->getPointerTo(),
592 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage
, F
,
593 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
594 llvm::GlobalVariable::NotThreadLocal
);
595 addCompilerUsedGlobal(Var
);
597 // Emit amdgpu_code_object_version module flag, which is code object version
599 if (getTarget().getTargetOpts().CodeObjectVersion
!=
600 TargetOptions::COV_None
) {
601 getModule().addModuleFlag(llvm::Module::Error
,
602 "amdgpu_code_object_version",
603 getTarget().getTargetOpts().CodeObjectVersion
);
607 // Emit a global array containing all external kernels or device variables
608 // used by host functions and mark it as used for CUDA/HIP. This is necessary
609 // to get kernels or device variables in archives linked in even if these
610 // kernels or device variables are only used in host functions.
611 if (!Context
.CUDAExternalDeviceDeclODRUsedByHost
.empty()) {
612 SmallVector
<llvm::Constant
*, 8> UsedArray
;
613 for (auto D
: Context
.CUDAExternalDeviceDeclODRUsedByHost
) {
615 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
616 GD
= GlobalDecl(FD
, KernelReferenceKind::Kernel
);
619 UsedArray
.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
620 GetAddrOfGlobal(GD
), Int8PtrTy
));
623 llvm::ArrayType
*ATy
= llvm::ArrayType::get(Int8PtrTy
, UsedArray
.size());
625 auto *GV
= new llvm::GlobalVariable(
626 getModule(), ATy
, false, llvm::GlobalValue::InternalLinkage
,
627 llvm::ConstantArray::get(ATy
, UsedArray
), "__clang_gpu_used_external");
628 addCompilerUsedGlobal(GV
);
635 if (CodeGenOpts
.Autolink
&&
636 (Context
.getLangOpts().Modules
|| !LinkerOptionsMetadata
.empty())) {
637 EmitModuleLinkOptions();
640 // On ELF we pass the dependent library specifiers directly to the linker
641 // without manipulating them. This is in contrast to other platforms where
642 // they are mapped to a specific linker option by the compiler. This
643 // difference is a result of the greater variety of ELF linkers and the fact
644 // that ELF linkers tend to handle libraries in a more complicated fashion
645 // than on other platforms. This forces us to defer handling the dependent
646 // libs to the linker.
648 // CUDA/HIP device and host libraries are different. Currently there is no
649 // way to differentiate dependent libraries for host or device. Existing
650 // usage of #pragma comment(lib, *) is intended for host libraries on
651 // Windows. Therefore emit llvm.dependent-libraries only for host.
652 if (!ELFDependentLibraries
.empty() && !Context
.getLangOpts().CUDAIsDevice
) {
653 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
654 for (auto *MD
: ELFDependentLibraries
)
658 // Record mregparm value now so it is visible through rest of codegen.
659 if (Context
.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
)
660 getModule().addModuleFlag(llvm::Module::Error
, "NumRegisterParameters",
661 CodeGenOpts
.NumRegisterParameters
);
663 if (CodeGenOpts
.DwarfVersion
) {
664 getModule().addModuleFlag(llvm::Module::Max
, "Dwarf Version",
665 CodeGenOpts
.DwarfVersion
);
668 if (CodeGenOpts
.Dwarf64
)
669 getModule().addModuleFlag(llvm::Module::Max
, "DWARF64", 1);
671 if (Context
.getLangOpts().SemanticInterposition
)
672 // Require various optimization to respect semantic interposition.
673 getModule().setSemanticInterposition(true);
675 if (CodeGenOpts
.EmitCodeView
) {
676 // Indicate that we want CodeView in the metadata.
677 getModule().addModuleFlag(llvm::Module::Warning
, "CodeView", 1);
679 if (CodeGenOpts
.CodeViewGHash
) {
680 getModule().addModuleFlag(llvm::Module::Warning
, "CodeViewGHash", 1);
682 if (CodeGenOpts
.ControlFlowGuard
) {
683 // Function ID tables and checks for Control Flow Guard (cfguard=2).
684 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 2);
685 } else if (CodeGenOpts
.ControlFlowGuardNoChecks
) {
686 // Function ID tables for Control Flow Guard (cfguard=1).
687 getModule().addModuleFlag(llvm::Module::Warning
, "cfguard", 1);
689 if (CodeGenOpts
.EHContGuard
) {
690 // Function ID tables for EH Continuation Guard.
691 getModule().addModuleFlag(llvm::Module::Warning
, "ehcontguard", 1);
693 if (Context
.getLangOpts().Kernel
) {
694 // Note if we are compiling with /kernel.
695 getModule().addModuleFlag(llvm::Module::Warning
, "ms-kernel", 1);
697 if (CodeGenOpts
.OptimizationLevel
> 0 && CodeGenOpts
.StrictVTablePointers
) {
698 // We don't support LTO with 2 with different StrictVTablePointers
699 // FIXME: we could support it by stripping all the information introduced
700 // by StrictVTablePointers.
702 getModule().addModuleFlag(llvm::Module::Error
, "StrictVTablePointers",1);
704 llvm::Metadata
*Ops
[2] = {
705 llvm::MDString::get(VMContext
, "StrictVTablePointers"),
706 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
707 llvm::Type::getInt32Ty(VMContext
), 1))};
709 getModule().addModuleFlag(llvm::Module::Require
,
710 "StrictVTablePointersRequirement",
711 llvm::MDNode::get(VMContext
, Ops
));
713 if (getModuleDebugInfo())
714 // We support a single version in the linked module. The LLVM
715 // parser will drop debug info with a different version number
716 // (and warn about it, too).
717 getModule().addModuleFlag(llvm::Module::Warning
, "Debug Info Version",
718 llvm::DEBUG_METADATA_VERSION
);
720 // We need to record the widths of enums and wchar_t, so that we can generate
721 // the correct build attributes in the ARM backend. wchar_size is also used by
722 // TargetLibraryInfo.
723 uint64_t WCharWidth
=
724 Context
.getTypeSizeInChars(Context
.getWideCharType()).getQuantity();
725 getModule().addModuleFlag(llvm::Module::Error
, "wchar_size", WCharWidth
);
727 llvm::Triple::ArchType Arch
= Context
.getTargetInfo().getTriple().getArch();
728 if ( Arch
== llvm::Triple::arm
729 || Arch
== llvm::Triple::armeb
730 || Arch
== llvm::Triple::thumb
731 || Arch
== llvm::Triple::thumbeb
) {
732 // The minimum width of an enum in bytes
733 uint64_t EnumWidth
= Context
.getLangOpts().ShortEnums
? 1 : 4;
734 getModule().addModuleFlag(llvm::Module::Error
, "min_enum_size", EnumWidth
);
737 if (Arch
== llvm::Triple::riscv32
|| Arch
== llvm::Triple::riscv64
) {
738 StringRef ABIStr
= Target
.getABI();
739 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
740 getModule().addModuleFlag(llvm::Module::Error
, "target-abi",
741 llvm::MDString::get(Ctx
, ABIStr
));
744 if (CodeGenOpts
.SanitizeCfiCrossDso
) {
745 // Indicate that we want cross-DSO control flow integrity checks.
746 getModule().addModuleFlag(llvm::Module::Override
, "Cross-DSO CFI", 1);
749 if (CodeGenOpts
.WholeProgramVTables
) {
750 // Indicate whether VFE was enabled for this module, so that the
751 // vcall_visibility metadata added under whole program vtables is handled
752 // appropriately in the optimizer.
753 getModule().addModuleFlag(llvm::Module::Error
, "Virtual Function Elim",
754 CodeGenOpts
.VirtualFunctionElimination
);
757 if (LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
)) {
758 getModule().addModuleFlag(llvm::Module::Override
,
759 "CFI Canonical Jump Tables",
760 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
);
763 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
)) {
764 getModule().addModuleFlag(llvm::Module::Override
, "kcfi", 1);
765 // KCFI assumes patchable-function-prefix is the same for all indirectly
766 // called functions. Store the expected offset for code generation.
767 if (CodeGenOpts
.PatchableFunctionEntryOffset
)
768 getModule().addModuleFlag(llvm::Module::Override
, "kcfi-offset",
769 CodeGenOpts
.PatchableFunctionEntryOffset
);
772 if (CodeGenOpts
.CFProtectionReturn
&&
773 Target
.checkCFProtectionReturnSupported(getDiags())) {
774 // Indicate that we want to instrument return control flow protection.
775 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-return",
779 if (CodeGenOpts
.CFProtectionBranch
&&
780 Target
.checkCFProtectionBranchSupported(getDiags())) {
781 // Indicate that we want to instrument branch control flow protection.
782 getModule().addModuleFlag(llvm::Module::Min
, "cf-protection-branch",
786 if (CodeGenOpts
.FunctionReturnThunks
)
787 getModule().addModuleFlag(llvm::Module::Override
, "function_return_thunk_extern", 1);
789 if (CodeGenOpts
.IndirectBranchCSPrefix
)
790 getModule().addModuleFlag(llvm::Module::Override
, "indirect_branch_cs_prefix", 1);
792 // Add module metadata for return address signing (ignoring
793 // non-leaf/all) and stack tagging. These are actually turned on by function
794 // attributes, but we use module metadata to emit build attributes. This is
795 // needed for LTO, where the function attributes are inside bitcode
796 // serialised into a global variable by the time build attributes are
797 // emitted, so we can't access them. LTO objects could be compiled with
798 // different flags therefore module flags are set to "Min" behavior to achieve
799 // the same end result of the normal build where e.g BTI is off if any object
800 // doesn't support it.
801 if (Context
.getTargetInfo().hasFeature("ptrauth") &&
802 LangOpts
.getSignReturnAddressScope() !=
803 LangOptions::SignReturnAddressScopeKind::None
)
804 getModule().addModuleFlag(llvm::Module::Override
,
805 "sign-return-address-buildattr", 1);
806 if (LangOpts
.Sanitize
.has(SanitizerKind::MemtagStack
))
807 getModule().addModuleFlag(llvm::Module::Override
,
808 "tag-stack-memory-buildattr", 1);
810 if (Arch
== llvm::Triple::thumb
|| Arch
== llvm::Triple::thumbeb
||
811 Arch
== llvm::Triple::arm
|| Arch
== llvm::Triple::armeb
||
812 Arch
== llvm::Triple::aarch64
|| Arch
== llvm::Triple::aarch64_32
||
813 Arch
== llvm::Triple::aarch64_be
) {
814 if (LangOpts
.BranchTargetEnforcement
)
815 getModule().addModuleFlag(llvm::Module::Min
, "branch-target-enforcement",
817 if (LangOpts
.hasSignReturnAddress())
818 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address", 1);
819 if (LangOpts
.isSignReturnAddressScopeAll())
820 getModule().addModuleFlag(llvm::Module::Min
, "sign-return-address-all",
822 if (!LangOpts
.isSignReturnAddressWithAKey())
823 getModule().addModuleFlag(llvm::Module::Min
,
824 "sign-return-address-with-bkey", 1);
827 if (!CodeGenOpts
.MemoryProfileOutput
.empty()) {
828 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
829 getModule().addModuleFlag(
830 llvm::Module::Error
, "MemProfProfileFilename",
831 llvm::MDString::get(Ctx
, CodeGenOpts
.MemoryProfileOutput
));
834 if (LangOpts
.CUDAIsDevice
&& getTriple().isNVPTX()) {
835 // Indicate whether __nvvm_reflect should be configured to flush denormal
836 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
838 getModule().addModuleFlag(llvm::Module::Override
, "nvvm-reflect-ftz",
839 CodeGenOpts
.FP32DenormalMode
.Output
!=
840 llvm::DenormalMode::IEEE
);
843 if (LangOpts
.EHAsynch
)
844 getModule().addModuleFlag(llvm::Module::Warning
, "eh-asynch", 1);
846 // Indicate whether this Module was compiled with -fopenmp
847 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
848 getModule().addModuleFlag(llvm::Module::Max
, "openmp", LangOpts
.OpenMP
);
849 if (getLangOpts().OpenMPIsDevice
)
850 getModule().addModuleFlag(llvm::Module::Max
, "openmp-device",
853 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
854 if (LangOpts
.OpenCL
|| (LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())) {
855 EmitOpenCLMetadata();
856 // Emit SPIR version.
857 if (getTriple().isSPIR()) {
858 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
859 // opencl.spir.version named metadata.
860 // C++ for OpenCL has a distinct mapping for version compatibility with
862 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
863 llvm::Metadata
*SPIRVerElts
[] = {
864 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
865 Int32Ty
, Version
/ 100)),
866 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
867 Int32Ty
, (Version
/ 100 > 1) ? 0 : 2))};
868 llvm::NamedMDNode
*SPIRVerMD
=
869 TheModule
.getOrInsertNamedMetadata("opencl.spir.version");
870 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
871 SPIRVerMD
->addOperand(llvm::MDNode::get(Ctx
, SPIRVerElts
));
875 // HLSL related end of code gen work items.
877 getHLSLRuntime().finishCodeGen();
879 if (uint32_t PLevel
= Context
.getLangOpts().PICLevel
) {
880 assert(PLevel
< 3 && "Invalid PIC Level");
881 getModule().setPICLevel(static_cast<llvm::PICLevel::Level
>(PLevel
));
882 if (Context
.getLangOpts().PIE
)
883 getModule().setPIELevel(static_cast<llvm::PIELevel::Level
>(PLevel
));
886 if (getCodeGenOpts().CodeModel
.size() > 0) {
887 unsigned CM
= llvm::StringSwitch
<unsigned>(getCodeGenOpts().CodeModel
)
888 .Case("tiny", llvm::CodeModel::Tiny
)
889 .Case("small", llvm::CodeModel::Small
)
890 .Case("kernel", llvm::CodeModel::Kernel
)
891 .Case("medium", llvm::CodeModel::Medium
)
892 .Case("large", llvm::CodeModel::Large
)
895 llvm::CodeModel::Model codeModel
= static_cast<llvm::CodeModel::Model
>(CM
);
896 getModule().setCodeModel(codeModel
);
900 if (CodeGenOpts
.NoPLT
)
901 getModule().setRtLibUseGOT();
902 if (CodeGenOpts
.UnwindTables
)
903 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
905 switch (CodeGenOpts
.getFramePointer()) {
906 case CodeGenOptions::FramePointerKind::None
:
907 // 0 ("none") is the default.
909 case CodeGenOptions::FramePointerKind::NonLeaf
:
910 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf
);
912 case CodeGenOptions::FramePointerKind::All
:
913 getModule().setFramePointer(llvm::FramePointerKind::All
);
917 SimplifyPersonality();
919 if (getCodeGenOpts().EmitDeclMetadata
)
922 if (getCodeGenOpts().EmitGcovArcs
|| getCodeGenOpts().EmitGcovNotes
)
925 if (CGDebugInfo
*DI
= getModuleDebugInfo())
928 if (getCodeGenOpts().EmitVersionIdentMetadata
)
929 EmitVersionIdentMetadata();
931 if (!getCodeGenOpts().RecordCommandLine
.empty())
932 EmitCommandLineMetadata();
934 if (!getCodeGenOpts().StackProtectorGuard
.empty())
935 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard
);
936 if (!getCodeGenOpts().StackProtectorGuardReg
.empty())
937 getModule().setStackProtectorGuardReg(
938 getCodeGenOpts().StackProtectorGuardReg
);
939 if (!getCodeGenOpts().StackProtectorGuardSymbol
.empty())
940 getModule().setStackProtectorGuardSymbol(
941 getCodeGenOpts().StackProtectorGuardSymbol
);
942 if (getCodeGenOpts().StackProtectorGuardOffset
!= INT_MAX
)
943 getModule().setStackProtectorGuardOffset(
944 getCodeGenOpts().StackProtectorGuardOffset
);
945 if (getCodeGenOpts().StackAlignment
)
946 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment
);
947 if (getCodeGenOpts().SkipRaxSetup
)
948 getModule().addModuleFlag(llvm::Module::Override
, "SkipRaxSetup", 1);
950 if (getContext().getTargetInfo().getMaxTLSAlign())
951 getModule().addModuleFlag(llvm::Module::Error
, "MaxTLSAlign",
952 getContext().getTargetInfo().getMaxTLSAlign());
954 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames
);
956 EmitBackendOptionsMetadata(getCodeGenOpts());
958 // If there is device offloading code embed it in the host now.
959 EmbedObject(&getModule(), CodeGenOpts
, getDiags());
961 // Set visibility from DLL storage class
962 // We do this at the end of LLVM IR generation; after any operation
963 // that might affect the DLL storage class or the visibility, and
964 // before anything that might act on these.
965 setVisibilityFromDLLStorageClass(LangOpts
, getModule());
968 void CodeGenModule::EmitOpenCLMetadata() {
969 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
970 // opencl.ocl.version named metadata node.
971 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
972 auto Version
= LangOpts
.getOpenCLCompatibleVersion();
973 llvm::Metadata
*OCLVerElts
[] = {
974 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
975 Int32Ty
, Version
/ 100)),
976 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
977 Int32Ty
, (Version
% 100) / 10))};
978 llvm::NamedMDNode
*OCLVerMD
=
979 TheModule
.getOrInsertNamedMetadata("opencl.ocl.version");
980 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
981 OCLVerMD
->addOperand(llvm::MDNode::get(Ctx
, OCLVerElts
));
984 void CodeGenModule::EmitBackendOptionsMetadata(
985 const CodeGenOptions CodeGenOpts
) {
986 if (getTriple().isRISCV()) {
987 getModule().addModuleFlag(llvm::Module::Min
, "SmallDataLimit",
988 CodeGenOpts
.SmallDataLimit
);
992 void CodeGenModule::UpdateCompletedType(const TagDecl
*TD
) {
993 // Make sure that this type is translated.
994 Types
.UpdateCompletedType(TD
);
997 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
998 // Make sure that this type is translated.
999 Types
.RefreshTypeCacheForClass(RD
);
1002 llvm::MDNode
*CodeGenModule::getTBAATypeInfo(QualType QTy
) {
1005 return TBAA
->getTypeInfo(QTy
);
1008 TBAAAccessInfo
CodeGenModule::getTBAAAccessInfo(QualType AccessType
) {
1010 return TBAAAccessInfo();
1011 if (getLangOpts().CUDAIsDevice
) {
1012 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1014 if (AccessType
->isCUDADeviceBuiltinSurfaceType()) {
1015 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1017 return TBAAAccessInfo();
1018 } else if (AccessType
->isCUDADeviceBuiltinTextureType()) {
1019 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1021 return TBAAAccessInfo();
1024 return TBAA
->getAccessInfo(AccessType
);
1028 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type
*VTablePtrType
) {
1030 return TBAAAccessInfo();
1031 return TBAA
->getVTablePtrAccessInfo(VTablePtrType
);
1034 llvm::MDNode
*CodeGenModule::getTBAAStructInfo(QualType QTy
) {
1037 return TBAA
->getTBAAStructInfo(QTy
);
1040 llvm::MDNode
*CodeGenModule::getTBAABaseTypeInfo(QualType QTy
) {
1043 return TBAA
->getBaseTypeInfo(QTy
);
1046 llvm::MDNode
*CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info
) {
1049 return TBAA
->getAccessTagInfo(Info
);
1052 TBAAAccessInfo
CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo
,
1053 TBAAAccessInfo TargetInfo
) {
1055 return TBAAAccessInfo();
1056 return TBAA
->mergeTBAAInfoForCast(SourceInfo
, TargetInfo
);
1060 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA
,
1061 TBAAAccessInfo InfoB
) {
1063 return TBAAAccessInfo();
1064 return TBAA
->mergeTBAAInfoForConditionalOperator(InfoA
, InfoB
);
1068 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo
,
1069 TBAAAccessInfo SrcInfo
) {
1071 return TBAAAccessInfo();
1072 return TBAA
->mergeTBAAInfoForConditionalOperator(DestInfo
, SrcInfo
);
1075 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction
*Inst
,
1076 TBAAAccessInfo TBAAInfo
) {
1077 if (llvm::MDNode
*Tag
= getTBAAAccessTagInfo(TBAAInfo
))
1078 Inst
->setMetadata(llvm::LLVMContext::MD_tbaa
, Tag
);
1081 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1082 llvm::Instruction
*I
, const CXXRecordDecl
*RD
) {
1083 I
->setMetadata(llvm::LLVMContext::MD_invariant_group
,
1084 llvm::MDNode::get(getLLVMContext(), {}));
1087 void CodeGenModule::Error(SourceLocation loc
, StringRef message
) {
1088 unsigned diagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
, "%0");
1089 getDiags().Report(Context
.getFullLoc(loc
), diagID
) << message
;
1092 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1093 /// specified stmt yet.
1094 void CodeGenModule::ErrorUnsupported(const Stmt
*S
, const char *Type
) {
1095 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1096 "cannot compile this %0 yet");
1097 std::string Msg
= Type
;
1098 getDiags().Report(Context
.getFullLoc(S
->getBeginLoc()), DiagID
)
1099 << Msg
<< S
->getSourceRange();
1102 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1103 /// specified decl yet.
1104 void CodeGenModule::ErrorUnsupported(const Decl
*D
, const char *Type
) {
1105 unsigned DiagID
= getDiags().getCustomDiagID(DiagnosticsEngine::Error
,
1106 "cannot compile this %0 yet");
1107 std::string Msg
= Type
;
1108 getDiags().Report(Context
.getFullLoc(D
->getLocation()), DiagID
) << Msg
;
1111 llvm::ConstantInt
*CodeGenModule::getSize(CharUnits size
) {
1112 return llvm::ConstantInt::get(SizeTy
, size
.getQuantity());
1115 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue
*GV
,
1116 const NamedDecl
*D
) const {
1117 // Internal definitions always have default visibility.
1118 if (GV
->hasLocalLinkage()) {
1119 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
1124 // Set visibility for definitions, and for declarations if requested globally
1125 // or set explicitly.
1126 LinkageInfo LV
= D
->getLinkageAndVisibility();
1127 if (GV
->hasDLLExportStorageClass() || GV
->hasDLLImportStorageClass()) {
1128 // Reject incompatible dlllstorage and visibility annotations.
1129 if (!LV
.isVisibilityExplicit())
1131 if (GV
->hasDLLExportStorageClass()) {
1132 if (LV
.getVisibility() == HiddenVisibility
)
1133 getDiags().Report(D
->getLocation(),
1134 diag::err_hidden_visibility_dllexport
);
1135 } else if (LV
.getVisibility() != DefaultVisibility
) {
1136 getDiags().Report(D
->getLocation(),
1137 diag::err_non_default_visibility_dllimport
);
1142 if (LV
.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls
||
1143 !GV
->isDeclarationForLinker())
1144 GV
->setVisibility(GetLLVMVisibility(LV
.getVisibility()));
1147 static bool shouldAssumeDSOLocal(const CodeGenModule
&CGM
,
1148 llvm::GlobalValue
*GV
) {
1149 if (GV
->hasLocalLinkage())
1152 if (!GV
->hasDefaultVisibility() && !GV
->hasExternalWeakLinkage())
1155 // DLLImport explicitly marks the GV as external.
1156 if (GV
->hasDLLImportStorageClass())
1159 const llvm::Triple
&TT
= CGM
.getTriple();
1160 if (TT
.isWindowsGNUEnvironment()) {
1161 // In MinGW, variables without DLLImport can still be automatically
1162 // imported from a DLL by the linker; don't mark variables that
1163 // potentially could come from another DLL as DSO local.
1165 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1166 // (and this actually happens in the public interface of libstdc++), so
1167 // such variables can't be marked as DSO local. (Native TLS variables
1168 // can't be dllimported at all, though.)
1169 if (GV
->isDeclarationForLinker() && isa
<llvm::GlobalVariable
>(GV
) &&
1170 (!GV
->isThreadLocal() || CGM
.getCodeGenOpts().EmulatedTLS
))
1174 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1175 // remain unresolved in the link, they can be resolved to zero, which is
1176 // outside the current DSO.
1177 if (TT
.isOSBinFormatCOFF() && GV
->hasExternalWeakLinkage())
1180 // Every other GV is local on COFF.
1181 // Make an exception for windows OS in the triple: Some firmware builds use
1182 // *-win32-macho triples. This (accidentally?) produced windows relocations
1183 // without GOT tables in older clang versions; Keep this behaviour.
1184 // FIXME: even thread local variables?
1185 if (TT
.isOSBinFormatCOFF() || (TT
.isOSWindows() && TT
.isOSBinFormatMachO()))
1188 // Only handle COFF and ELF for now.
1189 if (!TT
.isOSBinFormatELF())
1192 // If this is not an executable, don't assume anything is local.
1193 const auto &CGOpts
= CGM
.getCodeGenOpts();
1194 llvm::Reloc::Model RM
= CGOpts
.RelocationModel
;
1195 const auto &LOpts
= CGM
.getLangOpts();
1196 if (RM
!= llvm::Reloc::Static
&& !LOpts
.PIE
) {
1197 // On ELF, if -fno-semantic-interposition is specified and the target
1198 // supports local aliases, there will be neither CC1
1199 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1200 // dso_local on the function if using a local alias is preferable (can avoid
1201 // PLT indirection).
1202 if (!(isa
<llvm::Function
>(GV
) && GV
->canBenefitFromLocalAlias()))
1204 return !(CGM
.getLangOpts().SemanticInterposition
||
1205 CGM
.getLangOpts().HalfNoSemanticInterposition
);
1208 // A definition cannot be preempted from an executable.
1209 if (!GV
->isDeclarationForLinker())
1212 // Most PIC code sequences that assume that a symbol is local cannot produce a
1213 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1214 // depended, it seems worth it to handle it here.
1215 if (RM
== llvm::Reloc::PIC_
&& GV
->hasExternalWeakLinkage())
1218 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1222 if (CGOpts
.DirectAccessExternalData
) {
1223 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1224 // for non-thread-local variables. If the symbol is not defined in the
1225 // executable, a copy relocation will be needed at link time. dso_local is
1226 // excluded for thread-local variables because they generally don't support
1227 // copy relocations.
1228 if (auto *Var
= dyn_cast
<llvm::GlobalVariable
>(GV
))
1229 if (!Var
->isThreadLocal())
1232 // -fno-pic sets dso_local on a function declaration to allow direct
1233 // accesses when taking its address (similar to a data symbol). If the
1234 // function is not defined in the executable, a canonical PLT entry will be
1235 // needed at link time. -fno-direct-access-external-data can avoid the
1236 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1237 // it could just cause trouble without providing perceptible benefits.
1238 if (isa
<llvm::Function
>(GV
) && !CGOpts
.NoPLT
&& RM
== llvm::Reloc::Static
)
1242 // If we can use copy relocations we can assume it is local.
1244 // Otherwise don't assume it is local.
1248 void CodeGenModule::setDSOLocal(llvm::GlobalValue
*GV
) const {
1249 GV
->setDSOLocal(shouldAssumeDSOLocal(*this, GV
));
1252 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1253 GlobalDecl GD
) const {
1254 const auto *D
= dyn_cast
<NamedDecl
>(GD
.getDecl());
1255 // C++ destructors have a few C++ ABI specific special cases.
1256 if (const auto *Dtor
= dyn_cast_or_null
<CXXDestructorDecl
>(D
)) {
1257 getCXXABI().setCXXDestructorDLLStorage(GV
, Dtor
, GD
.getDtorType());
1260 setDLLImportDLLExport(GV
, D
);
1263 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue
*GV
,
1264 const NamedDecl
*D
) const {
1265 if (D
&& D
->isExternallyVisible()) {
1266 if (D
->hasAttr
<DLLImportAttr
>())
1267 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
1268 else if ((D
->hasAttr
<DLLExportAttr
>() ||
1269 shouldMapVisibilityToDLLExport(D
)) &&
1270 !GV
->isDeclarationForLinker())
1271 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
1275 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1276 GlobalDecl GD
) const {
1277 setDLLImportDLLExport(GV
, GD
);
1278 setGVPropertiesAux(GV
, dyn_cast
<NamedDecl
>(GD
.getDecl()));
1281 void CodeGenModule::setGVProperties(llvm::GlobalValue
*GV
,
1282 const NamedDecl
*D
) const {
1283 setDLLImportDLLExport(GV
, D
);
1284 setGVPropertiesAux(GV
, D
);
1287 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue
*GV
,
1288 const NamedDecl
*D
) const {
1289 setGlobalVisibility(GV
, D
);
1291 GV
->setPartition(CodeGenOpts
.SymbolPartition
);
1294 static llvm::GlobalVariable::ThreadLocalMode
GetLLVMTLSModel(StringRef S
) {
1295 return llvm::StringSwitch
<llvm::GlobalVariable::ThreadLocalMode
>(S
)
1296 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel
)
1297 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel
)
1298 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel
)
1299 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel
);
1302 llvm::GlobalVariable::ThreadLocalMode
1303 CodeGenModule::GetDefaultLLVMTLSModel() const {
1304 switch (CodeGenOpts
.getDefaultTLSModel()) {
1305 case CodeGenOptions::GeneralDynamicTLSModel
:
1306 return llvm::GlobalVariable::GeneralDynamicTLSModel
;
1307 case CodeGenOptions::LocalDynamicTLSModel
:
1308 return llvm::GlobalVariable::LocalDynamicTLSModel
;
1309 case CodeGenOptions::InitialExecTLSModel
:
1310 return llvm::GlobalVariable::InitialExecTLSModel
;
1311 case CodeGenOptions::LocalExecTLSModel
:
1312 return llvm::GlobalVariable::LocalExecTLSModel
;
1314 llvm_unreachable("Invalid TLS model!");
1317 void CodeGenModule::setTLSMode(llvm::GlobalValue
*GV
, const VarDecl
&D
) const {
1318 assert(D
.getTLSKind() && "setting TLS mode on non-TLS var!");
1320 llvm::GlobalValue::ThreadLocalMode TLM
;
1321 TLM
= GetDefaultLLVMTLSModel();
1323 // Override the TLS model if it is explicitly specified.
1324 if (const TLSModelAttr
*Attr
= D
.getAttr
<TLSModelAttr
>()) {
1325 TLM
= GetLLVMTLSModel(Attr
->getModel());
1328 GV
->setThreadLocalMode(TLM
);
1331 static std::string
getCPUSpecificMangling(const CodeGenModule
&CGM
,
1333 const TargetInfo
&Target
= CGM
.getTarget();
1334 return (Twine('.') + Twine(Target
.CPUSpecificManglingCharacter(Name
))).str();
1337 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule
&CGM
,
1338 const CPUSpecificAttr
*Attr
,
1341 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1344 Out
<< getCPUSpecificMangling(CGM
, Attr
->getCPUName(CPUIndex
)->getName());
1345 else if (CGM
.getTarget().supportsIFunc())
1349 static void AppendTargetVersionMangling(const CodeGenModule
&CGM
,
1350 const TargetVersionAttr
*Attr
,
1352 if (Attr
->isDefaultVersion())
1355 llvm::SmallVector
<StringRef
, 8> Feats
;
1356 Attr
->getFeatures(Feats
);
1357 for (const auto &Feat
: Feats
) {
1363 static void AppendTargetMangling(const CodeGenModule
&CGM
,
1364 const TargetAttr
*Attr
, raw_ostream
&Out
) {
1365 if (Attr
->isDefaultVersion())
1369 const TargetInfo
&Target
= CGM
.getTarget();
1370 ParsedTargetAttr Info
= Target
.parseTargetAttr(Attr
->getFeaturesStr());
1371 llvm::sort(Info
.Features
, [&Target
](StringRef LHS
, StringRef RHS
) {
1372 // Multiversioning doesn't allow "no-${feature}", so we can
1373 // only have "+" prefixes here.
1374 assert(LHS
.startswith("+") && RHS
.startswith("+") &&
1375 "Features should always have a prefix.");
1376 return Target
.multiVersionSortPriority(LHS
.substr(1)) >
1377 Target
.multiVersionSortPriority(RHS
.substr(1));
1380 bool IsFirst
= true;
1382 if (!Info
.CPU
.empty()) {
1384 Out
<< "arch_" << Info
.CPU
;
1387 for (StringRef Feat
: Info
.Features
) {
1391 Out
<< Feat
.substr(1);
1395 // Returns true if GD is a function decl with internal linkage and
1396 // needs a unique suffix after the mangled name.
1397 static bool isUniqueInternalLinkageDecl(GlobalDecl GD
,
1398 CodeGenModule
&CGM
) {
1399 const Decl
*D
= GD
.getDecl();
1400 return !CGM
.getModuleNameHash().empty() && isa
<FunctionDecl
>(D
) &&
1401 (CGM
.getFunctionLinkage(GD
) == llvm::GlobalValue::InternalLinkage
);
1404 static void AppendTargetClonesMangling(const CodeGenModule
&CGM
,
1405 const TargetClonesAttr
*Attr
,
1406 unsigned VersionIndex
,
1408 if (CGM
.getTarget().getTriple().isAArch64()) {
1409 StringRef FeatureStr
= Attr
->getFeatureStr(VersionIndex
);
1410 if (FeatureStr
== "default")
1413 SmallVector
<StringRef
, 8> Features
;
1414 FeatureStr
.split(Features
, "+");
1415 for (auto &Feat
: Features
) {
1421 StringRef FeatureStr
= Attr
->getFeatureStr(VersionIndex
);
1422 if (FeatureStr
.startswith("arch="))
1423 Out
<< "arch_" << FeatureStr
.substr(sizeof("arch=") - 1);
1427 Out
<< '.' << Attr
->getMangledIndex(VersionIndex
);
1431 static std::string
getMangledNameImpl(CodeGenModule
&CGM
, GlobalDecl GD
,
1432 const NamedDecl
*ND
,
1433 bool OmitMultiVersionMangling
= false) {
1434 SmallString
<256> Buffer
;
1435 llvm::raw_svector_ostream
Out(Buffer
);
1436 MangleContext
&MC
= CGM
.getCXXABI().getMangleContext();
1437 if (!CGM
.getModuleNameHash().empty())
1438 MC
.needsUniqueInternalLinkageNames();
1439 bool ShouldMangle
= MC
.shouldMangleDeclName(ND
);
1441 MC
.mangleName(GD
.getWithDecl(ND
), Out
);
1443 IdentifierInfo
*II
= ND
->getIdentifier();
1444 assert(II
&& "Attempt to mangle unnamed decl.");
1445 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
1448 FD
->getType()->castAs
<FunctionType
>()->getCallConv() == CC_X86RegCall
) {
1449 Out
<< "__regcall3__" << II
->getName();
1450 } else if (FD
&& FD
->hasAttr
<CUDAGlobalAttr
>() &&
1451 GD
.getKernelReferenceKind() == KernelReferenceKind::Stub
) {
1452 Out
<< "__device_stub__" << II
->getName();
1454 Out
<< II
->getName();
1458 // Check if the module name hash should be appended for internal linkage
1459 // symbols. This should come before multi-version target suffixes are
1460 // appended. This is to keep the name and module hash suffix of the
1461 // internal linkage function together. The unique suffix should only be
1462 // added when name mangling is done to make sure that the final name can
1463 // be properly demangled. For example, for C functions without prototypes,
1464 // name mangling is not done and the unique suffix should not be appeneded
1466 if (ShouldMangle
&& isUniqueInternalLinkageDecl(GD
, CGM
)) {
1467 assert(CGM
.getCodeGenOpts().UniqueInternalLinkageNames
&&
1468 "Hash computed when not explicitly requested");
1469 Out
<< CGM
.getModuleNameHash();
1472 if (const auto *FD
= dyn_cast
<FunctionDecl
>(ND
))
1473 if (FD
->isMultiVersion() && !OmitMultiVersionMangling
) {
1474 switch (FD
->getMultiVersionKind()) {
1475 case MultiVersionKind::CPUDispatch
:
1476 case MultiVersionKind::CPUSpecific
:
1477 AppendCPUSpecificCPUDispatchMangling(CGM
,
1478 FD
->getAttr
<CPUSpecificAttr
>(),
1479 GD
.getMultiVersionIndex(), Out
);
1481 case MultiVersionKind::Target
:
1482 AppendTargetMangling(CGM
, FD
->getAttr
<TargetAttr
>(), Out
);
1484 case MultiVersionKind::TargetVersion
:
1485 AppendTargetVersionMangling(CGM
, FD
->getAttr
<TargetVersionAttr
>(), Out
);
1487 case MultiVersionKind::TargetClones
:
1488 AppendTargetClonesMangling(CGM
, FD
->getAttr
<TargetClonesAttr
>(),
1489 GD
.getMultiVersionIndex(), Out
);
1491 case MultiVersionKind::None
:
1492 llvm_unreachable("None multiversion type isn't valid here");
1496 // Make unique name for device side static file-scope variable for HIP.
1497 if (CGM
.getContext().shouldExternalize(ND
) &&
1498 CGM
.getLangOpts().GPURelocatableDeviceCode
&&
1499 CGM
.getLangOpts().CUDAIsDevice
)
1500 CGM
.printPostfixForExternalizedDecl(Out
, ND
);
1502 return std::string(Out
.str());
1505 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD
,
1506 const FunctionDecl
*FD
,
1507 StringRef
&CurName
) {
1508 if (!FD
->isMultiVersion())
1511 // Get the name of what this would be without the 'target' attribute. This
1512 // allows us to lookup the version that was emitted when this wasn't a
1513 // multiversion function.
1514 std::string NonTargetName
=
1515 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
1517 if (lookupRepresentativeDecl(NonTargetName
, OtherGD
)) {
1518 assert(OtherGD
.getCanonicalDecl()
1521 ->isMultiVersion() &&
1522 "Other GD should now be a multiversioned function");
1523 // OtherFD is the version of this function that was mangled BEFORE
1524 // becoming a MultiVersion function. It potentially needs to be updated.
1525 const FunctionDecl
*OtherFD
= OtherGD
.getCanonicalDecl()
1528 ->getMostRecentDecl();
1529 std::string OtherName
= getMangledNameImpl(*this, OtherGD
, OtherFD
);
1530 // This is so that if the initial version was already the 'default'
1531 // version, we don't try to update it.
1532 if (OtherName
!= NonTargetName
) {
1533 // Remove instead of erase, since others may have stored the StringRef
1535 const auto ExistingRecord
= Manglings
.find(NonTargetName
);
1536 if (ExistingRecord
!= std::end(Manglings
))
1537 Manglings
.remove(&(*ExistingRecord
));
1538 auto Result
= Manglings
.insert(std::make_pair(OtherName
, OtherGD
));
1539 StringRef OtherNameRef
= MangledDeclNames
[OtherGD
.getCanonicalDecl()] =
1540 Result
.first
->first();
1541 // If this is the current decl is being created, make sure we update the name.
1542 if (GD
.getCanonicalDecl() == OtherGD
.getCanonicalDecl())
1543 CurName
= OtherNameRef
;
1544 if (llvm::GlobalValue
*Entry
= GetGlobalValue(NonTargetName
))
1545 Entry
->setName(OtherName
);
1550 StringRef
CodeGenModule::getMangledName(GlobalDecl GD
) {
1551 GlobalDecl CanonicalGD
= GD
.getCanonicalDecl();
1553 // Some ABIs don't have constructor variants. Make sure that base and
1554 // complete constructors get mangled the same.
1555 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(CanonicalGD
.getDecl())) {
1556 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1557 CXXCtorType OrigCtorType
= GD
.getCtorType();
1558 assert(OrigCtorType
== Ctor_Base
|| OrigCtorType
== Ctor_Complete
);
1559 if (OrigCtorType
== Ctor_Base
)
1560 CanonicalGD
= GlobalDecl(CD
, Ctor_Complete
);
1564 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1565 // static device variable depends on whether the variable is referenced by
1566 // a host or device host function. Therefore the mangled name cannot be
1568 if (!LangOpts
.CUDAIsDevice
|| !getContext().mayExternalize(GD
.getDecl())) {
1569 auto FoundName
= MangledDeclNames
.find(CanonicalGD
);
1570 if (FoundName
!= MangledDeclNames
.end())
1571 return FoundName
->second
;
1574 // Keep the first result in the case of a mangling collision.
1575 const auto *ND
= cast
<NamedDecl
>(GD
.getDecl());
1576 std::string MangledName
= getMangledNameImpl(*this, GD
, ND
);
1578 // Ensure either we have different ABIs between host and device compilations,
1579 // says host compilation following MSVC ABI but device compilation follows
1580 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1581 // mangling should be the same after name stubbing. The later checking is
1582 // very important as the device kernel name being mangled in host-compilation
1583 // is used to resolve the device binaries to be executed. Inconsistent naming
1584 // result in undefined behavior. Even though we cannot check that naming
1585 // directly between host- and device-compilations, the host- and
1586 // device-mangling in host compilation could help catching certain ones.
1587 assert(!isa
<FunctionDecl
>(ND
) || !ND
->hasAttr
<CUDAGlobalAttr
>() ||
1588 getContext().shouldExternalize(ND
) || getLangOpts().CUDAIsDevice
||
1589 (getContext().getAuxTargetInfo() &&
1590 (getContext().getAuxTargetInfo()->getCXXABI() !=
1591 getContext().getTargetInfo().getCXXABI())) ||
1592 getCUDARuntime().getDeviceSideName(ND
) ==
1595 GD
.getWithKernelReferenceKind(KernelReferenceKind::Kernel
),
1598 auto Result
= Manglings
.insert(std::make_pair(MangledName
, GD
));
1599 return MangledDeclNames
[CanonicalGD
] = Result
.first
->first();
1602 StringRef
CodeGenModule::getBlockMangledName(GlobalDecl GD
,
1603 const BlockDecl
*BD
) {
1604 MangleContext
&MangleCtx
= getCXXABI().getMangleContext();
1605 const Decl
*D
= GD
.getDecl();
1607 SmallString
<256> Buffer
;
1608 llvm::raw_svector_ostream
Out(Buffer
);
1610 MangleCtx
.mangleGlobalBlock(BD
,
1611 dyn_cast_or_null
<VarDecl
>(initializedGlobalDecl
.getDecl()), Out
);
1612 else if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1613 MangleCtx
.mangleCtorBlock(CD
, GD
.getCtorType(), BD
, Out
);
1614 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(D
))
1615 MangleCtx
.mangleDtorBlock(DD
, GD
.getDtorType(), BD
, Out
);
1617 MangleCtx
.mangleBlock(cast
<DeclContext
>(D
), BD
, Out
);
1619 auto Result
= Manglings
.insert(std::make_pair(Out
.str(), BD
));
1620 return Result
.first
->first();
1623 const GlobalDecl
CodeGenModule::getMangledNameDecl(StringRef Name
) {
1624 auto it
= MangledDeclNames
.begin();
1625 while (it
!= MangledDeclNames
.end()) {
1626 if (it
->second
== Name
)
1630 return GlobalDecl();
1633 llvm::GlobalValue
*CodeGenModule::GetGlobalValue(StringRef Name
) {
1634 return getModule().getNamedValue(Name
);
1637 /// AddGlobalCtor - Add a function to the list that will be called before
1639 void CodeGenModule::AddGlobalCtor(llvm::Function
*Ctor
, int Priority
,
1641 llvm::Constant
*AssociatedData
) {
1642 // FIXME: Type coercion of void()* types.
1643 GlobalCtors
.push_back(Structor(Priority
, LexOrder
, Ctor
, AssociatedData
));
1646 /// AddGlobalDtor - Add a function to the list that will be called
1647 /// when the module is unloaded.
1648 void CodeGenModule::AddGlobalDtor(llvm::Function
*Dtor
, int Priority
,
1649 bool IsDtorAttrFunc
) {
1650 if (CodeGenOpts
.RegisterGlobalDtorsWithAtExit
&&
1651 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc
)) {
1652 DtorsUsingAtExit
[Priority
].push_back(Dtor
);
1656 // FIXME: Type coercion of void()* types.
1657 GlobalDtors
.push_back(Structor(Priority
, ~0U, Dtor
, nullptr));
1660 void CodeGenModule::EmitCtorList(CtorList
&Fns
, const char *GlobalName
) {
1661 if (Fns
.empty()) return;
1663 // Ctor function type is void()*.
1664 llvm::FunctionType
* CtorFTy
= llvm::FunctionType::get(VoidTy
, false);
1665 llvm::Type
*CtorPFTy
= llvm::PointerType::get(CtorFTy
,
1666 TheModule
.getDataLayout().getProgramAddressSpace());
1668 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1669 llvm::StructType
*CtorStructTy
= llvm::StructType::get(
1670 Int32Ty
, CtorPFTy
, VoidPtrTy
);
1672 // Construct the constructor and destructor arrays.
1673 ConstantInitBuilder
builder(*this);
1674 auto ctors
= builder
.beginArray(CtorStructTy
);
1675 for (const auto &I
: Fns
) {
1676 auto ctor
= ctors
.beginStruct(CtorStructTy
);
1677 ctor
.addInt(Int32Ty
, I
.Priority
);
1678 ctor
.add(llvm::ConstantExpr::getBitCast(I
.Initializer
, CtorPFTy
));
1679 if (I
.AssociatedData
)
1680 ctor
.add(llvm::ConstantExpr::getBitCast(I
.AssociatedData
, VoidPtrTy
));
1682 ctor
.addNullPointer(VoidPtrTy
);
1683 ctor
.finishAndAddTo(ctors
);
1687 ctors
.finishAndCreateGlobal(GlobalName
, getPointerAlign(),
1689 llvm::GlobalValue::AppendingLinkage
);
1691 // The LTO linker doesn't seem to like it when we set an alignment
1692 // on appending variables. Take it off as a workaround.
1693 list
->setAlignment(std::nullopt
);
1698 llvm::GlobalValue::LinkageTypes
1699 CodeGenModule::getFunctionLinkage(GlobalDecl GD
) {
1700 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
1702 GVALinkage Linkage
= getContext().GetGVALinkageForFunction(D
);
1704 if (const auto *Dtor
= dyn_cast
<CXXDestructorDecl
>(D
))
1705 return getCXXABI().getCXXDestructorLinkage(Linkage
, Dtor
, GD
.getDtorType());
1707 if (isa
<CXXConstructorDecl
>(D
) &&
1708 cast
<CXXConstructorDecl
>(D
)->isInheritingConstructor() &&
1709 Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
1710 // Our approach to inheriting constructors is fundamentally different from
1711 // that used by the MS ABI, so keep our inheriting constructor thunks
1712 // internal rather than trying to pick an unambiguous mangling for them.
1713 return llvm::GlobalValue::InternalLinkage
;
1716 return getLLVMLinkageForDeclarator(D
, Linkage
, /*IsConstantVariable=*/false);
1719 llvm::ConstantInt
*CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata
*MD
) {
1720 llvm::MDString
*MDS
= dyn_cast
<llvm::MDString
>(MD
);
1721 if (!MDS
) return nullptr;
1723 return llvm::ConstantInt::get(Int64Ty
, llvm::MD5Hash(MDS
->getString()));
1726 llvm::ConstantInt
*CodeGenModule::CreateKCFITypeId(QualType T
) {
1727 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
1728 T
= getContext().getFunctionType(
1729 FnType
->getReturnType(), FnType
->getParamTypes(),
1730 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
1732 std::string OutName
;
1733 llvm::raw_string_ostream
Out(OutName
);
1734 getCXXABI().getMangleContext().mangleTypeName(
1735 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
1737 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
1738 Out
<< ".normalized";
1740 return llvm::ConstantInt::get(Int32Ty
,
1741 static_cast<uint32_t>(llvm::xxHash64(OutName
)));
1744 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD
,
1745 const CGFunctionInfo
&Info
,
1746 llvm::Function
*F
, bool IsThunk
) {
1747 unsigned CallingConv
;
1748 llvm::AttributeList PAL
;
1749 ConstructAttributeList(F
->getName(), Info
, GD
, PAL
, CallingConv
,
1750 /*AttrOnCallSite=*/false, IsThunk
);
1751 F
->setAttributes(PAL
);
1752 F
->setCallingConv(static_cast<llvm::CallingConv::ID
>(CallingConv
));
1755 static void removeImageAccessQualifier(std::string
& TyName
) {
1756 std::string
ReadOnlyQual("__read_only");
1757 std::string::size_type ReadOnlyPos
= TyName
.find(ReadOnlyQual
);
1758 if (ReadOnlyPos
!= std::string::npos
)
1759 // "+ 1" for the space after access qualifier.
1760 TyName
.erase(ReadOnlyPos
, ReadOnlyQual
.size() + 1);
1762 std::string
WriteOnlyQual("__write_only");
1763 std::string::size_type WriteOnlyPos
= TyName
.find(WriteOnlyQual
);
1764 if (WriteOnlyPos
!= std::string::npos
)
1765 TyName
.erase(WriteOnlyPos
, WriteOnlyQual
.size() + 1);
1767 std::string
ReadWriteQual("__read_write");
1768 std::string::size_type ReadWritePos
= TyName
.find(ReadWriteQual
);
1769 if (ReadWritePos
!= std::string::npos
)
1770 TyName
.erase(ReadWritePos
, ReadWriteQual
.size() + 1);
1775 // Returns the address space id that should be produced to the
1776 // kernel_arg_addr_space metadata. This is always fixed to the ids
1777 // as specified in the SPIR 2.0 specification in order to differentiate
1778 // for example in clGetKernelArgInfo() implementation between the address
1779 // spaces with targets without unique mapping to the OpenCL address spaces
1780 // (basically all single AS CPUs).
1781 static unsigned ArgInfoAddressSpace(LangAS AS
) {
1783 case LangAS::opencl_global
:
1785 case LangAS::opencl_constant
:
1787 case LangAS::opencl_local
:
1789 case LangAS::opencl_generic
:
1790 return 4; // Not in SPIR 2.0 specs.
1791 case LangAS::opencl_global_device
:
1793 case LangAS::opencl_global_host
:
1796 return 0; // Assume private.
1800 void CodeGenModule::GenKernelArgMetadata(llvm::Function
*Fn
,
1801 const FunctionDecl
*FD
,
1802 CodeGenFunction
*CGF
) {
1803 assert(((FD
&& CGF
) || (!FD
&& !CGF
)) &&
1804 "Incorrect use - FD and CGF should either be both null or not!");
1805 // Create MDNodes that represent the kernel arg metadata.
1806 // Each MDNode is a list in the form of "key", N number of values which is
1807 // the same number of values as their are kernel arguments.
1809 const PrintingPolicy
&Policy
= Context
.getPrintingPolicy();
1811 // MDNode for the kernel argument address space qualifiers.
1812 SmallVector
<llvm::Metadata
*, 8> addressQuals
;
1814 // MDNode for the kernel argument access qualifiers (images only).
1815 SmallVector
<llvm::Metadata
*, 8> accessQuals
;
1817 // MDNode for the kernel argument type names.
1818 SmallVector
<llvm::Metadata
*, 8> argTypeNames
;
1820 // MDNode for the kernel argument base type names.
1821 SmallVector
<llvm::Metadata
*, 8> argBaseTypeNames
;
1823 // MDNode for the kernel argument type qualifiers.
1824 SmallVector
<llvm::Metadata
*, 8> argTypeQuals
;
1826 // MDNode for the kernel argument names.
1827 SmallVector
<llvm::Metadata
*, 8> argNames
;
1830 for (unsigned i
= 0, e
= FD
->getNumParams(); i
!= e
; ++i
) {
1831 const ParmVarDecl
*parm
= FD
->getParamDecl(i
);
1832 // Get argument name.
1833 argNames
.push_back(llvm::MDString::get(VMContext
, parm
->getName()));
1835 if (!getLangOpts().OpenCL
)
1837 QualType ty
= parm
->getType();
1838 std::string typeQuals
;
1840 // Get image and pipe access qualifier:
1841 if (ty
->isImageType() || ty
->isPipeType()) {
1842 const Decl
*PDecl
= parm
;
1843 if (const auto *TD
= ty
->getAs
<TypedefType
>())
1844 PDecl
= TD
->getDecl();
1845 const OpenCLAccessAttr
*A
= PDecl
->getAttr
<OpenCLAccessAttr
>();
1846 if (A
&& A
->isWriteOnly())
1847 accessQuals
.push_back(llvm::MDString::get(VMContext
, "write_only"));
1848 else if (A
&& A
->isReadWrite())
1849 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_write"));
1851 accessQuals
.push_back(llvm::MDString::get(VMContext
, "read_only"));
1853 accessQuals
.push_back(llvm::MDString::get(VMContext
, "none"));
1855 auto getTypeSpelling
= [&](QualType Ty
) {
1856 auto typeName
= Ty
.getUnqualifiedType().getAsString(Policy
);
1858 if (Ty
.isCanonical()) {
1859 StringRef typeNameRef
= typeName
;
1860 // Turn "unsigned type" to "utype"
1861 if (typeNameRef
.consume_front("unsigned "))
1862 return std::string("u") + typeNameRef
.str();
1863 if (typeNameRef
.consume_front("signed "))
1864 return typeNameRef
.str();
1870 if (ty
->isPointerType()) {
1871 QualType pointeeTy
= ty
->getPointeeType();
1873 // Get address qualifier.
1874 addressQuals
.push_back(
1875 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(
1876 ArgInfoAddressSpace(pointeeTy
.getAddressSpace()))));
1878 // Get argument type name.
1879 std::string typeName
= getTypeSpelling(pointeeTy
) + "*";
1880 std::string baseTypeName
=
1881 getTypeSpelling(pointeeTy
.getCanonicalType()) + "*";
1882 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
1883 argBaseTypeNames
.push_back(
1884 llvm::MDString::get(VMContext
, baseTypeName
));
1886 // Get argument type qualifiers:
1887 if (ty
.isRestrictQualified())
1888 typeQuals
= "restrict";
1889 if (pointeeTy
.isConstQualified() ||
1890 (pointeeTy
.getAddressSpace() == LangAS::opencl_constant
))
1891 typeQuals
+= typeQuals
.empty() ? "const" : " const";
1892 if (pointeeTy
.isVolatileQualified())
1893 typeQuals
+= typeQuals
.empty() ? "volatile" : " volatile";
1895 uint32_t AddrSpc
= 0;
1896 bool isPipe
= ty
->isPipeType();
1897 if (ty
->isImageType() || isPipe
)
1898 AddrSpc
= ArgInfoAddressSpace(LangAS::opencl_global
);
1900 addressQuals
.push_back(
1901 llvm::ConstantAsMetadata::get(CGF
->Builder
.getInt32(AddrSpc
)));
1903 // Get argument type name.
1904 ty
= isPipe
? ty
->castAs
<PipeType
>()->getElementType() : ty
;
1905 std::string typeName
= getTypeSpelling(ty
);
1906 std::string baseTypeName
= getTypeSpelling(ty
.getCanonicalType());
1908 // Remove access qualifiers on images
1909 // (as they are inseparable from type in clang implementation,
1910 // but OpenCL spec provides a special query to get access qualifier
1911 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1912 if (ty
->isImageType()) {
1913 removeImageAccessQualifier(typeName
);
1914 removeImageAccessQualifier(baseTypeName
);
1917 argTypeNames
.push_back(llvm::MDString::get(VMContext
, typeName
));
1918 argBaseTypeNames
.push_back(
1919 llvm::MDString::get(VMContext
, baseTypeName
));
1924 argTypeQuals
.push_back(llvm::MDString::get(VMContext
, typeQuals
));
1927 if (getLangOpts().OpenCL
) {
1928 Fn
->setMetadata("kernel_arg_addr_space",
1929 llvm::MDNode::get(VMContext
, addressQuals
));
1930 Fn
->setMetadata("kernel_arg_access_qual",
1931 llvm::MDNode::get(VMContext
, accessQuals
));
1932 Fn
->setMetadata("kernel_arg_type",
1933 llvm::MDNode::get(VMContext
, argTypeNames
));
1934 Fn
->setMetadata("kernel_arg_base_type",
1935 llvm::MDNode::get(VMContext
, argBaseTypeNames
));
1936 Fn
->setMetadata("kernel_arg_type_qual",
1937 llvm::MDNode::get(VMContext
, argTypeQuals
));
1939 if (getCodeGenOpts().EmitOpenCLArgMetadata
||
1940 getCodeGenOpts().HIPSaveKernelArgName
)
1941 Fn
->setMetadata("kernel_arg_name",
1942 llvm::MDNode::get(VMContext
, argNames
));
1945 /// Determines whether the language options require us to model
1946 /// unwind exceptions. We treat -fexceptions as mandating this
1947 /// except under the fragile ObjC ABI with only ObjC exceptions
1948 /// enabled. This means, for example, that C with -fexceptions
1950 static bool hasUnwindExceptions(const LangOptions
&LangOpts
) {
1951 // If exceptions are completely disabled, obviously this is false.
1952 if (!LangOpts
.Exceptions
) return false;
1954 // If C++ exceptions are enabled, this is true.
1955 if (LangOpts
.CXXExceptions
) return true;
1957 // If ObjC exceptions are enabled, this depends on the ABI.
1958 if (LangOpts
.ObjCExceptions
) {
1959 return LangOpts
.ObjCRuntime
.hasUnwindExceptions();
1965 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule
&CGM
,
1966 const CXXMethodDecl
*MD
) {
1967 // Check that the type metadata can ever actually be used by a call.
1968 if (!CGM
.getCodeGenOpts().LTOUnit
||
1969 !CGM
.HasHiddenLTOVisibility(MD
->getParent()))
1972 // Only functions whose address can be taken with a member function pointer
1973 // need this sort of type metadata.
1974 return !MD
->isStatic() && !MD
->isVirtual() && !isa
<CXXConstructorDecl
>(MD
) &&
1975 !isa
<CXXDestructorDecl
>(MD
);
1978 std::vector
<const CXXRecordDecl
*>
1979 CodeGenModule::getMostBaseClasses(const CXXRecordDecl
*RD
) {
1980 llvm::SetVector
<const CXXRecordDecl
*> MostBases
;
1982 std::function
<void (const CXXRecordDecl
*)> CollectMostBases
;
1983 CollectMostBases
= [&](const CXXRecordDecl
*RD
) {
1984 if (RD
->getNumBases() == 0)
1985 MostBases
.insert(RD
);
1986 for (const CXXBaseSpecifier
&B
: RD
->bases())
1987 CollectMostBases(B
.getType()->getAsCXXRecordDecl());
1989 CollectMostBases(RD
);
1990 return MostBases
.takeVector();
1993 llvm::GlobalVariable
*
1994 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant
*Addr
) {
1995 auto It
= RTTIProxyMap
.find(Addr
);
1996 if (It
!= RTTIProxyMap
.end())
1999 auto *FTRTTIProxy
= new llvm::GlobalVariable(
2000 TheModule
, Addr
->getType(),
2001 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage
, Addr
,
2002 "__llvm_rtti_proxy");
2003 FTRTTIProxy
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2005 RTTIProxyMap
[Addr
] = FTRTTIProxy
;
2009 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl
*D
,
2010 llvm::Function
*F
) {
2011 llvm::AttrBuilder
B(F
->getContext());
2013 if ((!D
|| !D
->hasAttr
<NoUwtableAttr
>()) && CodeGenOpts
.UnwindTables
)
2014 B
.addUWTableAttr(llvm::UWTableKind(CodeGenOpts
.UnwindTables
));
2016 if (CodeGenOpts
.StackClashProtector
)
2017 B
.addAttribute("probe-stack", "inline-asm");
2019 if (!hasUnwindExceptions(LangOpts
))
2020 B
.addAttribute(llvm::Attribute::NoUnwind
);
2022 if (D
&& D
->hasAttr
<NoStackProtectorAttr
>())
2024 else if (D
&& D
->hasAttr
<StrictGuardStackCheckAttr
>() &&
2025 LangOpts
.getStackProtector() == LangOptions::SSPOn
)
2026 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2027 else if (LangOpts
.getStackProtector() == LangOptions::SSPOn
)
2028 B
.addAttribute(llvm::Attribute::StackProtect
);
2029 else if (LangOpts
.getStackProtector() == LangOptions::SSPStrong
)
2030 B
.addAttribute(llvm::Attribute::StackProtectStrong
);
2031 else if (LangOpts
.getStackProtector() == LangOptions::SSPReq
)
2032 B
.addAttribute(llvm::Attribute::StackProtectReq
);
2035 // If we don't have a declaration to control inlining, the function isn't
2036 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2037 // disabled, mark the function as noinline.
2038 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
) &&
2039 CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
)
2040 B
.addAttribute(llvm::Attribute::NoInline
);
2046 // Track whether we need to add the optnone LLVM attribute,
2047 // starting with the default for this optimization level.
2048 bool ShouldAddOptNone
=
2049 !CodeGenOpts
.DisableO0ImplyOptNone
&& CodeGenOpts
.OptimizationLevel
== 0;
2050 // We can't add optnone in the following cases, it won't pass the verifier.
2051 ShouldAddOptNone
&= !D
->hasAttr
<MinSizeAttr
>();
2052 ShouldAddOptNone
&= !D
->hasAttr
<AlwaysInlineAttr
>();
2054 // Add optnone, but do so only if the function isn't always_inline.
2055 if ((ShouldAddOptNone
|| D
->hasAttr
<OptimizeNoneAttr
>()) &&
2056 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2057 B
.addAttribute(llvm::Attribute::OptimizeNone
);
2059 // OptimizeNone implies noinline; we should not be inlining such functions.
2060 B
.addAttribute(llvm::Attribute::NoInline
);
2062 // We still need to handle naked functions even though optnone subsumes
2063 // much of their semantics.
2064 if (D
->hasAttr
<NakedAttr
>())
2065 B
.addAttribute(llvm::Attribute::Naked
);
2067 // OptimizeNone wins over OptimizeForSize and MinSize.
2068 F
->removeFnAttr(llvm::Attribute::OptimizeForSize
);
2069 F
->removeFnAttr(llvm::Attribute::MinSize
);
2070 } else if (D
->hasAttr
<NakedAttr
>()) {
2071 // Naked implies noinline: we should not be inlining such functions.
2072 B
.addAttribute(llvm::Attribute::Naked
);
2073 B
.addAttribute(llvm::Attribute::NoInline
);
2074 } else if (D
->hasAttr
<NoDuplicateAttr
>()) {
2075 B
.addAttribute(llvm::Attribute::NoDuplicate
);
2076 } else if (D
->hasAttr
<NoInlineAttr
>() && !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2077 // Add noinline if the function isn't always_inline.
2078 B
.addAttribute(llvm::Attribute::NoInline
);
2079 } else if (D
->hasAttr
<AlwaysInlineAttr
>() &&
2080 !F
->hasFnAttribute(llvm::Attribute::NoInline
)) {
2081 // (noinline wins over always_inline, and we can't specify both in IR)
2082 B
.addAttribute(llvm::Attribute::AlwaysInline
);
2083 } else if (CodeGenOpts
.getInlining() == CodeGenOptions::OnlyAlwaysInlining
) {
2084 // If we're not inlining, then force everything that isn't always_inline to
2085 // carry an explicit noinline attribute.
2086 if (!F
->hasFnAttribute(llvm::Attribute::AlwaysInline
))
2087 B
.addAttribute(llvm::Attribute::NoInline
);
2089 // Otherwise, propagate the inline hint attribute and potentially use its
2090 // absence to mark things as noinline.
2091 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2092 // Search function and template pattern redeclarations for inline.
2093 auto CheckForInline
= [](const FunctionDecl
*FD
) {
2094 auto CheckRedeclForInline
= [](const FunctionDecl
*Redecl
) {
2095 return Redecl
->isInlineSpecified();
2097 if (any_of(FD
->redecls(), CheckRedeclForInline
))
2099 const FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern();
2102 return any_of(Pattern
->redecls(), CheckRedeclForInline
);
2104 if (CheckForInline(FD
)) {
2105 B
.addAttribute(llvm::Attribute::InlineHint
);
2106 } else if (CodeGenOpts
.getInlining() ==
2107 CodeGenOptions::OnlyHintInlining
&&
2109 !F
->hasFnAttribute(llvm::Attribute::AlwaysInline
)) {
2110 B
.addAttribute(llvm::Attribute::NoInline
);
2115 // Add other optimization related attributes if we are optimizing this
2117 if (!D
->hasAttr
<OptimizeNoneAttr
>()) {
2118 if (D
->hasAttr
<ColdAttr
>()) {
2119 if (!ShouldAddOptNone
)
2120 B
.addAttribute(llvm::Attribute::OptimizeForSize
);
2121 B
.addAttribute(llvm::Attribute::Cold
);
2123 if (D
->hasAttr
<HotAttr
>())
2124 B
.addAttribute(llvm::Attribute::Hot
);
2125 if (D
->hasAttr
<MinSizeAttr
>())
2126 B
.addAttribute(llvm::Attribute::MinSize
);
2131 unsigned alignment
= D
->getMaxAlignment() / Context
.getCharWidth();
2133 F
->setAlignment(llvm::Align(alignment
));
2135 if (!D
->hasAttr
<AlignedAttr
>())
2136 if (LangOpts
.FunctionAlignment
)
2137 F
->setAlignment(llvm::Align(1ull << LangOpts
.FunctionAlignment
));
2139 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2140 // reserve a bit for differentiating between virtual and non-virtual member
2141 // functions. If the current target's C++ ABI requires this and this is a
2142 // member function, set its alignment accordingly.
2143 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2144 if (F
->getAlignment() < 2 && isa
<CXXMethodDecl
>(D
))
2145 F
->setAlignment(llvm::Align(2));
2148 // In the cross-dso CFI mode with canonical jump tables, we want !type
2149 // attributes on definitions only.
2150 if (CodeGenOpts
.SanitizeCfiCrossDso
&&
2151 CodeGenOpts
.SanitizeCfiCanonicalJumpTables
) {
2152 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
2153 // Skip available_externally functions. They won't be codegen'ed in the
2154 // current module anyway.
2155 if (getContext().GetGVALinkageForFunction(FD
) != GVA_AvailableExternally
)
2156 CreateFunctionTypeMetadataForIcall(FD
, F
);
2160 // Emit type metadata on member functions for member function pointer checks.
2161 // These are only ever necessary on definitions; we're guaranteed that the
2162 // definition will be present in the LTO unit as a result of LTO visibility.
2163 auto *MD
= dyn_cast
<CXXMethodDecl
>(D
);
2164 if (MD
&& requiresMemberFunctionPointerTypeMetadata(*this, MD
)) {
2165 for (const CXXRecordDecl
*Base
: getMostBaseClasses(MD
->getParent())) {
2166 llvm::Metadata
*Id
=
2167 CreateMetadataIdentifierForType(Context
.getMemberPointerType(
2168 MD
->getType(), Context
.getRecordType(Base
).getTypePtr()));
2169 F
->addTypeMetadata(0, Id
);
2174 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl
*D
,
2175 llvm::Function
*F
) {
2176 if (D
->hasAttr
<StrictFPAttr
>()) {
2177 llvm::AttrBuilder
FuncAttrs(F
->getContext());
2178 FuncAttrs
.addAttribute("strictfp");
2179 F
->addFnAttrs(FuncAttrs
);
2183 void CodeGenModule::SetCommonAttributes(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
2184 const Decl
*D
= GD
.getDecl();
2185 if (isa_and_nonnull
<NamedDecl
>(D
))
2186 setGVProperties(GV
, GD
);
2188 GV
->setVisibility(llvm::GlobalValue::DefaultVisibility
);
2190 if (D
&& D
->hasAttr
<UsedAttr
>())
2191 addUsedOrCompilerUsedGlobal(GV
);
2193 if (CodeGenOpts
.KeepStaticConsts
&& D
&& isa
<VarDecl
>(D
)) {
2194 const auto *VD
= cast
<VarDecl
>(D
);
2195 if (VD
->getType().isConstQualified() &&
2196 VD
->getStorageDuration() == SD_Static
)
2197 addUsedOrCompilerUsedGlobal(GV
);
2201 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD
,
2202 llvm::AttrBuilder
&Attrs
) {
2203 // Add target-cpu and target-features attributes to functions. If
2204 // we have a decl for the function and it has a target attribute then
2205 // parse that and add it to the feature set.
2206 StringRef TargetCPU
= getTarget().getTargetOpts().CPU
;
2207 StringRef TuneCPU
= getTarget().getTargetOpts().TuneCPU
;
2208 std::vector
<std::string
> Features
;
2209 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(GD
.getDecl());
2210 FD
= FD
? FD
->getMostRecentDecl() : FD
;
2211 const auto *TD
= FD
? FD
->getAttr
<TargetAttr
>() : nullptr;
2212 const auto *TV
= FD
? FD
->getAttr
<TargetVersionAttr
>() : nullptr;
2213 assert((!TD
|| !TV
) && "both target_version and target specified");
2214 const auto *SD
= FD
? FD
->getAttr
<CPUSpecificAttr
>() : nullptr;
2215 const auto *TC
= FD
? FD
->getAttr
<TargetClonesAttr
>() : nullptr;
2216 bool AddedAttr
= false;
2217 if (TD
|| TV
|| SD
|| TC
) {
2218 llvm::StringMap
<bool> FeatureMap
;
2219 getContext().getFunctionFeatureMap(FeatureMap
, GD
);
2221 // Produce the canonical string for this set of features.
2222 for (const llvm::StringMap
<bool>::value_type
&Entry
: FeatureMap
)
2223 Features
.push_back((Entry
.getValue() ? "+" : "-") + Entry
.getKey().str());
2225 // Now add the target-cpu and target-features to the function.
2226 // While we populated the feature map above, we still need to
2227 // get and parse the target attribute so we can get the cpu for
2230 ParsedTargetAttr ParsedAttr
=
2231 Target
.parseTargetAttr(TD
->getFeaturesStr());
2232 if (!ParsedAttr
.CPU
.empty() &&
2233 getTarget().isValidCPUName(ParsedAttr
.CPU
)) {
2234 TargetCPU
= ParsedAttr
.CPU
;
2235 TuneCPU
= ""; // Clear the tune CPU.
2237 if (!ParsedAttr
.Tune
.empty() &&
2238 getTarget().isValidCPUName(ParsedAttr
.Tune
))
2239 TuneCPU
= ParsedAttr
.Tune
;
2243 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2244 // favor this processor.
2245 TuneCPU
= getTarget().getCPUSpecificTuneName(
2246 SD
->getCPUName(GD
.getMultiVersionIndex())->getName());
2249 // Otherwise just add the existing target cpu and target features to the
2251 Features
= getTarget().getTargetOpts().Features
;
2254 if (!TargetCPU
.empty()) {
2255 Attrs
.addAttribute("target-cpu", TargetCPU
);
2258 if (!TuneCPU
.empty()) {
2259 Attrs
.addAttribute("tune-cpu", TuneCPU
);
2262 if (!Features
.empty()) {
2263 llvm::sort(Features
);
2264 Attrs
.addAttribute("target-features", llvm::join(Features
, ","));
2271 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD
,
2272 llvm::GlobalObject
*GO
) {
2273 const Decl
*D
= GD
.getDecl();
2274 SetCommonAttributes(GD
, GO
);
2277 if (auto *GV
= dyn_cast
<llvm::GlobalVariable
>(GO
)) {
2278 if (D
->hasAttr
<RetainAttr
>())
2280 if (auto *SA
= D
->getAttr
<PragmaClangBSSSectionAttr
>())
2281 GV
->addAttribute("bss-section", SA
->getName());
2282 if (auto *SA
= D
->getAttr
<PragmaClangDataSectionAttr
>())
2283 GV
->addAttribute("data-section", SA
->getName());
2284 if (auto *SA
= D
->getAttr
<PragmaClangRodataSectionAttr
>())
2285 GV
->addAttribute("rodata-section", SA
->getName());
2286 if (auto *SA
= D
->getAttr
<PragmaClangRelroSectionAttr
>())
2287 GV
->addAttribute("relro-section", SA
->getName());
2290 if (auto *F
= dyn_cast
<llvm::Function
>(GO
)) {
2291 if (D
->hasAttr
<RetainAttr
>())
2293 if (auto *SA
= D
->getAttr
<PragmaClangTextSectionAttr
>())
2294 if (!D
->getAttr
<SectionAttr
>())
2295 F
->addFnAttr("implicit-section-name", SA
->getName());
2297 llvm::AttrBuilder
Attrs(F
->getContext());
2298 if (GetCPUAndFeaturesAttributes(GD
, Attrs
)) {
2299 // We know that GetCPUAndFeaturesAttributes will always have the
2300 // newest set, since it has the newest possible FunctionDecl, so the
2301 // new ones should replace the old.
2302 llvm::AttributeMask RemoveAttrs
;
2303 RemoveAttrs
.addAttribute("target-cpu");
2304 RemoveAttrs
.addAttribute("target-features");
2305 RemoveAttrs
.addAttribute("tune-cpu");
2306 F
->removeFnAttrs(RemoveAttrs
);
2307 F
->addFnAttrs(Attrs
);
2311 if (const auto *CSA
= D
->getAttr
<CodeSegAttr
>())
2312 GO
->setSection(CSA
->getName());
2313 else if (const auto *SA
= D
->getAttr
<SectionAttr
>())
2314 GO
->setSection(SA
->getName());
2317 getTargetCodeGenInfo().setTargetAttributes(D
, GO
, *this);
2320 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD
,
2322 const CGFunctionInfo
&FI
) {
2323 const Decl
*D
= GD
.getDecl();
2324 SetLLVMFunctionAttributes(GD
, FI
, F
, /*IsThunk=*/false);
2325 SetLLVMFunctionAttributesForDefinition(D
, F
);
2327 F
->setLinkage(llvm::Function::InternalLinkage
);
2329 setNonAliasAttributes(GD
, F
);
2332 static void setLinkageForGV(llvm::GlobalValue
*GV
, const NamedDecl
*ND
) {
2333 // Set linkage and visibility in case we never see a definition.
2334 LinkageInfo LV
= ND
->getLinkageAndVisibility();
2335 // Don't set internal linkage on declarations.
2336 // "extern_weak" is overloaded in LLVM; we probably should have
2337 // separate linkage types for this.
2338 if (isExternallyVisible(LV
.getLinkage()) &&
2339 (ND
->hasAttr
<WeakAttr
>() || ND
->isWeakImported()))
2340 GV
->setLinkage(llvm::GlobalValue::ExternalWeakLinkage
);
2343 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl
*FD
,
2344 llvm::Function
*F
) {
2345 // Only if we are checking indirect calls.
2346 if (!LangOpts
.Sanitize
.has(SanitizerKind::CFIICall
))
2349 // Non-static class methods are handled via vtable or member function pointer
2350 // checks elsewhere.
2351 if (isa
<CXXMethodDecl
>(FD
) && !cast
<CXXMethodDecl
>(FD
)->isStatic())
2354 llvm::Metadata
*MD
= CreateMetadataIdentifierForType(FD
->getType());
2355 F
->addTypeMetadata(0, MD
);
2356 F
->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD
->getType()));
2358 // Emit a hash-based bit set entry for cross-DSO calls.
2359 if (CodeGenOpts
.SanitizeCfiCrossDso
)
2360 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
2361 F
->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
2364 void CodeGenModule::setKCFIType(const FunctionDecl
*FD
, llvm::Function
*F
) {
2365 if (isa
<CXXMethodDecl
>(FD
) && !cast
<CXXMethodDecl
>(FD
)->isStatic())
2368 llvm::LLVMContext
&Ctx
= F
->getContext();
2369 llvm::MDBuilder
MDB(Ctx
);
2370 F
->setMetadata(llvm::LLVMContext::MD_kcfi_type
,
2372 Ctx
, MDB
.createConstant(CreateKCFITypeId(FD
->getType()))));
2375 static bool allowKCFIIdentifier(StringRef Name
) {
2376 // KCFI type identifier constants are only necessary for external assembly
2377 // functions, which means it's safe to skip unusual names. Subset of
2378 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2379 return llvm::all_of(Name
, [](const char &C
) {
2380 return llvm::isAlnum(C
) || C
== '_' || C
== '.';
2384 void CodeGenModule::finalizeKCFITypes() {
2385 llvm::Module
&M
= getModule();
2386 for (auto &F
: M
.functions()) {
2387 // Remove KCFI type metadata from non-address-taken local functions.
2388 bool AddressTaken
= F
.hasAddressTaken();
2389 if (!AddressTaken
&& F
.hasLocalLinkage())
2390 F
.eraseMetadata(llvm::LLVMContext::MD_kcfi_type
);
2392 // Generate a constant with the expected KCFI type identifier for all
2393 // address-taken function declarations to support annotating indirectly
2394 // called assembly functions.
2395 if (!AddressTaken
|| !F
.isDeclaration())
2398 const llvm::ConstantInt
*Type
;
2399 if (const llvm::MDNode
*MD
= F
.getMetadata(llvm::LLVMContext::MD_kcfi_type
))
2400 Type
= llvm::mdconst::extract
<llvm::ConstantInt
>(MD
->getOperand(0));
2404 StringRef Name
= F
.getName();
2405 if (!allowKCFIIdentifier(Name
))
2408 std::string Asm
= (".weak __kcfi_typeid_" + Name
+ "\n.set __kcfi_typeid_" +
2409 Name
+ ", " + Twine(Type
->getZExtValue()) + "\n")
2411 M
.appendModuleInlineAsm(Asm
);
2415 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD
, llvm::Function
*F
,
2416 bool IsIncompleteFunction
,
2419 if (llvm::Intrinsic::ID IID
= F
->getIntrinsicID()) {
2420 // If this is an intrinsic function, set the function's attributes
2421 // to the intrinsic's attributes.
2422 F
->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID
));
2426 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
2428 if (!IsIncompleteFunction
)
2429 SetLLVMFunctionAttributes(GD
, getTypes().arrangeGlobalDeclaration(GD
), F
,
2432 // Add the Returned attribute for "this", except for iOS 5 and earlier
2433 // where substantial code, including the libstdc++ dylib, was compiled with
2434 // GCC and does not actually return "this".
2435 if (!IsThunk
&& getCXXABI().HasThisReturn(GD
) &&
2436 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2437 assert(!F
->arg_empty() &&
2438 F
->arg_begin()->getType()
2439 ->canLosslesslyBitCastTo(F
->getReturnType()) &&
2440 "unexpected this return");
2441 F
->addParamAttr(0, llvm::Attribute::Returned
);
2444 // Only a few attributes are set on declarations; these may later be
2445 // overridden by a definition.
2447 setLinkageForGV(F
, FD
);
2448 setGVProperties(F
, FD
);
2450 // Setup target-specific attributes.
2451 if (!IsIncompleteFunction
&& F
->isDeclaration())
2452 getTargetCodeGenInfo().setTargetAttributes(FD
, F
, *this);
2454 if (const auto *CSA
= FD
->getAttr
<CodeSegAttr
>())
2455 F
->setSection(CSA
->getName());
2456 else if (const auto *SA
= FD
->getAttr
<SectionAttr
>())
2457 F
->setSection(SA
->getName());
2459 if (const auto *EA
= FD
->getAttr
<ErrorAttr
>()) {
2461 F
->addFnAttr("dontcall-error", EA
->getUserDiagnostic());
2462 else if (EA
->isWarning())
2463 F
->addFnAttr("dontcall-warn", EA
->getUserDiagnostic());
2466 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2467 if (FD
->isInlineBuiltinDeclaration()) {
2468 const FunctionDecl
*FDBody
;
2469 bool HasBody
= FD
->hasBody(FDBody
);
2471 assert(HasBody
&& "Inline builtin declarations should always have an "
2473 if (shouldEmitFunction(FDBody
))
2474 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2477 if (FD
->isReplaceableGlobalAllocationFunction()) {
2478 // A replaceable global allocation function does not act like a builtin by
2479 // default, only if it is invoked by a new-expression or delete-expression.
2480 F
->addFnAttr(llvm::Attribute::NoBuiltin
);
2483 if (isa
<CXXConstructorDecl
>(FD
) || isa
<CXXDestructorDecl
>(FD
))
2484 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2485 else if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
))
2486 if (MD
->isVirtual())
2487 F
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2489 // Don't emit entries for function declarations in the cross-DSO mode. This
2490 // is handled with better precision by the receiving DSO. But if jump tables
2491 // are non-canonical then we need type metadata in order to produce the local
2493 if (!CodeGenOpts
.SanitizeCfiCrossDso
||
2494 !CodeGenOpts
.SanitizeCfiCanonicalJumpTables
)
2495 CreateFunctionTypeMetadataForIcall(FD
, F
);
2497 if (LangOpts
.Sanitize
.has(SanitizerKind::KCFI
))
2500 if (getLangOpts().OpenMP
&& FD
->hasAttr
<OMPDeclareSimdDeclAttr
>())
2501 getOpenMPRuntime().emitDeclareSimdFunction(FD
, F
);
2503 if (CodeGenOpts
.InlineMaxStackSize
!= UINT_MAX
)
2504 F
->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts
.InlineMaxStackSize
));
2506 if (const auto *CB
= FD
->getAttr
<CallbackAttr
>()) {
2507 // Annotate the callback behavior as metadata:
2508 // - The callback callee (as argument number).
2509 // - The callback payloads (as argument numbers).
2510 llvm::LLVMContext
&Ctx
= F
->getContext();
2511 llvm::MDBuilder
MDB(Ctx
);
2513 // The payload indices are all but the first one in the encoding. The first
2514 // identifies the callback callee.
2515 int CalleeIdx
= *CB
->encoding_begin();
2516 ArrayRef
<int> PayloadIndices(CB
->encoding_begin() + 1, CB
->encoding_end());
2517 F
->addMetadata(llvm::LLVMContext::MD_callback
,
2518 *llvm::MDNode::get(Ctx
, {MDB
.createCallbackEncoding(
2519 CalleeIdx
, PayloadIndices
,
2520 /* VarArgsArePassed */ false)}));
2524 void CodeGenModule::addUsedGlobal(llvm::GlobalValue
*GV
) {
2525 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2526 "Only globals with definition can force usage.");
2527 LLVMUsed
.emplace_back(GV
);
2530 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2531 assert(!GV
->isDeclaration() &&
2532 "Only globals with definition can force usage.");
2533 LLVMCompilerUsed
.emplace_back(GV
);
2536 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue
*GV
) {
2537 assert((isa
<llvm::Function
>(GV
) || !GV
->isDeclaration()) &&
2538 "Only globals with definition can force usage.");
2539 if (getTriple().isOSBinFormatELF())
2540 LLVMCompilerUsed
.emplace_back(GV
);
2542 LLVMUsed
.emplace_back(GV
);
2545 static void emitUsed(CodeGenModule
&CGM
, StringRef Name
,
2546 std::vector
<llvm::WeakTrackingVH
> &List
) {
2547 // Don't create llvm.used if there is no need.
2551 // Convert List to what ConstantArray needs.
2552 SmallVector
<llvm::Constant
*, 8> UsedArray
;
2553 UsedArray
.resize(List
.size());
2554 for (unsigned i
= 0, e
= List
.size(); i
!= e
; ++i
) {
2556 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2557 cast
<llvm::Constant
>(&*List
[i
]), CGM
.Int8PtrTy
);
2560 if (UsedArray
.empty())
2562 llvm::ArrayType
*ATy
= llvm::ArrayType::get(CGM
.Int8PtrTy
, UsedArray
.size());
2564 auto *GV
= new llvm::GlobalVariable(
2565 CGM
.getModule(), ATy
, false, llvm::GlobalValue::AppendingLinkage
,
2566 llvm::ConstantArray::get(ATy
, UsedArray
), Name
);
2568 GV
->setSection("llvm.metadata");
2571 void CodeGenModule::emitLLVMUsed() {
2572 emitUsed(*this, "llvm.used", LLVMUsed
);
2573 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed
);
2576 void CodeGenModule::AppendLinkerOptions(StringRef Opts
) {
2577 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opts
);
2578 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2581 void CodeGenModule::AddDetectMismatch(StringRef Name
, StringRef Value
) {
2582 llvm::SmallString
<32> Opt
;
2583 getTargetCodeGenInfo().getDetectMismatchOption(Name
, Value
, Opt
);
2586 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
2587 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts
));
2590 void CodeGenModule::AddDependentLib(StringRef Lib
) {
2591 auto &C
= getLLVMContext();
2592 if (getTarget().getTriple().isOSBinFormatELF()) {
2593 ELFDependentLibraries
.push_back(
2594 llvm::MDNode::get(C
, llvm::MDString::get(C
, Lib
)));
2598 llvm::SmallString
<24> Opt
;
2599 getTargetCodeGenInfo().getDependentLibraryOption(Lib
, Opt
);
2600 auto *MDOpts
= llvm::MDString::get(getLLVMContext(), Opt
);
2601 LinkerOptionsMetadata
.push_back(llvm::MDNode::get(C
, MDOpts
));
2604 /// Add link options implied by the given module, including modules
2605 /// it depends on, using a postorder walk.
2606 static void addLinkOptionsPostorder(CodeGenModule
&CGM
, Module
*Mod
,
2607 SmallVectorImpl
<llvm::MDNode
*> &Metadata
,
2608 llvm::SmallPtrSet
<Module
*, 16> &Visited
) {
2609 // Import this module's parent.
2610 if (Mod
->Parent
&& Visited
.insert(Mod
->Parent
).second
) {
2611 addLinkOptionsPostorder(CGM
, Mod
->Parent
, Metadata
, Visited
);
2614 // Import this module's dependencies.
2615 for (Module
*Import
: llvm::reverse(Mod
->Imports
)) {
2616 if (Visited
.insert(Import
).second
)
2617 addLinkOptionsPostorder(CGM
, Import
, Metadata
, Visited
);
2620 // Add linker options to link against the libraries/frameworks
2621 // described by this module.
2622 llvm::LLVMContext
&Context
= CGM
.getLLVMContext();
2623 bool IsELF
= CGM
.getTarget().getTriple().isOSBinFormatELF();
2625 // For modules that use export_as for linking, use that module
2627 if (Mod
->UseExportAsModuleLinkName
)
2630 for (const Module::LinkLibrary
&LL
: llvm::reverse(Mod
->LinkLibraries
)) {
2631 // Link against a framework. Frameworks are currently Darwin only, so we
2632 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2633 if (LL
.IsFramework
) {
2634 llvm::Metadata
*Args
[2] = {llvm::MDString::get(Context
, "-framework"),
2635 llvm::MDString::get(Context
, LL
.Library
)};
2637 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
2641 // Link against a library.
2643 llvm::Metadata
*Args
[2] = {
2644 llvm::MDString::get(Context
, "lib"),
2645 llvm::MDString::get(Context
, LL
.Library
),
2647 Metadata
.push_back(llvm::MDNode::get(Context
, Args
));
2649 llvm::SmallString
<24> Opt
;
2650 CGM
.getTargetCodeGenInfo().getDependentLibraryOption(LL
.Library
, Opt
);
2651 auto *OptString
= llvm::MDString::get(Context
, Opt
);
2652 Metadata
.push_back(llvm::MDNode::get(Context
, OptString
));
2657 void CodeGenModule::EmitModuleInitializers(clang::Module
*Primary
) {
2658 // Emit the initializers in the order that sub-modules appear in the
2659 // source, first Global Module Fragments, if present.
2660 if (auto GMF
= Primary
->getGlobalModuleFragment()) {
2661 for (Decl
*D
: getContext().getModuleInitializers(GMF
)) {
2662 if (isa
<ImportDecl
>(D
))
2664 assert(isa
<VarDecl
>(D
) && "GMF initializer decl is not a var?");
2665 EmitTopLevelDecl(D
);
2668 // Second any associated with the module, itself.
2669 for (Decl
*D
: getContext().getModuleInitializers(Primary
)) {
2670 // Skip import decls, the inits for those are called explicitly.
2671 if (isa
<ImportDecl
>(D
))
2673 EmitTopLevelDecl(D
);
2675 // Third any associated with the Privat eMOdule Fragment, if present.
2676 if (auto PMF
= Primary
->getPrivateModuleFragment()) {
2677 for (Decl
*D
: getContext().getModuleInitializers(PMF
)) {
2678 assert(isa
<VarDecl
>(D
) && "PMF initializer decl is not a var?");
2679 EmitTopLevelDecl(D
);
2684 void CodeGenModule::EmitModuleLinkOptions() {
2685 // Collect the set of all of the modules we want to visit to emit link
2686 // options, which is essentially the imported modules and all of their
2687 // non-explicit child modules.
2688 llvm::SetVector
<clang::Module
*> LinkModules
;
2689 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
2690 SmallVector
<clang::Module
*, 16> Stack
;
2692 // Seed the stack with imported modules.
2693 for (Module
*M
: ImportedModules
) {
2694 // Do not add any link flags when an implementation TU of a module imports
2695 // a header of that same module.
2696 if (M
->getTopLevelModuleName() == getLangOpts().CurrentModule
&&
2697 !getLangOpts().isCompilingModule())
2699 if (Visited
.insert(M
).second
)
2703 // Find all of the modules to import, making a little effort to prune
2704 // non-leaf modules.
2705 while (!Stack
.empty()) {
2706 clang::Module
*Mod
= Stack
.pop_back_val();
2708 bool AnyChildren
= false;
2710 // Visit the submodules of this module.
2711 for (const auto &SM
: Mod
->submodules()) {
2712 // Skip explicit children; they need to be explicitly imported to be
2717 if (Visited
.insert(SM
).second
) {
2718 Stack
.push_back(SM
);
2723 // We didn't find any children, so add this module to the list of
2724 // modules to link against.
2726 LinkModules
.insert(Mod
);
2730 // Add link options for all of the imported modules in reverse topological
2731 // order. We don't do anything to try to order import link flags with respect
2732 // to linker options inserted by things like #pragma comment().
2733 SmallVector
<llvm::MDNode
*, 16> MetadataArgs
;
2735 for (Module
*M
: LinkModules
)
2736 if (Visited
.insert(M
).second
)
2737 addLinkOptionsPostorder(*this, M
, MetadataArgs
, Visited
);
2738 std::reverse(MetadataArgs
.begin(), MetadataArgs
.end());
2739 LinkerOptionsMetadata
.append(MetadataArgs
.begin(), MetadataArgs
.end());
2741 // Add the linker options metadata flag.
2742 auto *NMD
= getModule().getOrInsertNamedMetadata("llvm.linker.options");
2743 for (auto *MD
: LinkerOptionsMetadata
)
2744 NMD
->addOperand(MD
);
2747 void CodeGenModule::EmitDeferred() {
2748 // Emit deferred declare target declarations.
2749 if (getLangOpts().OpenMP
&& !getLangOpts().OpenMPSimd
)
2750 getOpenMPRuntime().emitDeferredTargetDecls();
2752 // Emit code for any potentially referenced deferred decls. Since a
2753 // previously unused static decl may become used during the generation of code
2754 // for a static function, iterate until no changes are made.
2756 if (!DeferredVTables
.empty()) {
2757 EmitDeferredVTables();
2759 // Emitting a vtable doesn't directly cause more vtables to
2760 // become deferred, although it can cause functions to be
2761 // emitted that then need those vtables.
2762 assert(DeferredVTables
.empty());
2765 // Emit CUDA/HIP static device variables referenced by host code only.
2766 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2767 // needed for further handling.
2768 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
)
2769 llvm::append_range(DeferredDeclsToEmit
,
2770 getContext().CUDADeviceVarODRUsedByHost
);
2772 // Stop if we're out of both deferred vtables and deferred declarations.
2773 if (DeferredDeclsToEmit
.empty())
2776 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2777 // work, it will not interfere with this.
2778 std::vector
<GlobalDecl
> CurDeclsToEmit
;
2779 CurDeclsToEmit
.swap(DeferredDeclsToEmit
);
2781 for (GlobalDecl
&D
: CurDeclsToEmit
) {
2782 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2783 // to get GlobalValue with exactly the type we need, not something that
2784 // might had been created for another decl with the same mangled name but
2786 llvm::GlobalValue
*GV
= dyn_cast
<llvm::GlobalValue
>(
2787 GetAddrOfGlobal(D
, ForDefinition
));
2789 // In case of different address spaces, we may still get a cast, even with
2790 // IsForDefinition equal to true. Query mangled names table to get
2793 GV
= GetGlobalValue(getMangledName(D
));
2795 // Make sure GetGlobalValue returned non-null.
2798 // Check to see if we've already emitted this. This is necessary
2799 // for a couple of reasons: first, decls can end up in the
2800 // deferred-decls queue multiple times, and second, decls can end
2801 // up with definitions in unusual ways (e.g. by an extern inline
2802 // function acquiring a strong function redefinition). Just
2803 // ignore these cases.
2804 if (!GV
->isDeclaration())
2807 // If this is OpenMP, check if it is legal to emit this global normally.
2808 if (LangOpts
.OpenMP
&& OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(D
))
2811 // Otherwise, emit the definition and move on to the next one.
2812 EmitGlobalDefinition(D
, GV
);
2814 // If we found out that we need to emit more decls, do that recursively.
2815 // This has the advantage that the decls are emitted in a DFS and related
2816 // ones are close together, which is convenient for testing.
2817 if (!DeferredVTables
.empty() || !DeferredDeclsToEmit
.empty()) {
2819 assert(DeferredVTables
.empty() && DeferredDeclsToEmit
.empty());
2824 void CodeGenModule::EmitVTablesOpportunistically() {
2825 // Try to emit external vtables as available_externally if they have emitted
2826 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2827 // is not allowed to create new references to things that need to be emitted
2828 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2830 assert((OpportunisticVTables
.empty() || shouldOpportunisticallyEmitVTables())
2831 && "Only emit opportunistic vtables with optimizations");
2833 for (const CXXRecordDecl
*RD
: OpportunisticVTables
) {
2834 assert(getVTables().isVTableExternal(RD
) &&
2835 "This queue should only contain external vtables");
2836 if (getCXXABI().canSpeculativelyEmitVTable(RD
))
2837 VTables
.GenerateClassData(RD
);
2839 OpportunisticVTables
.clear();
2842 void CodeGenModule::EmitGlobalAnnotations() {
2843 if (Annotations
.empty())
2846 // Create a new global variable for the ConstantStruct in the Module.
2847 llvm::Constant
*Array
= llvm::ConstantArray::get(llvm::ArrayType::get(
2848 Annotations
[0]->getType(), Annotations
.size()), Annotations
);
2849 auto *gv
= new llvm::GlobalVariable(getModule(), Array
->getType(), false,
2850 llvm::GlobalValue::AppendingLinkage
,
2851 Array
, "llvm.global.annotations");
2852 gv
->setSection(AnnotationSection
);
2855 llvm::Constant
*CodeGenModule::EmitAnnotationString(StringRef Str
) {
2856 llvm::Constant
*&AStr
= AnnotationStrings
[Str
];
2860 // Not found yet, create a new global.
2861 llvm::Constant
*s
= llvm::ConstantDataArray::getString(getLLVMContext(), Str
);
2862 auto *gv
= new llvm::GlobalVariable(
2863 getModule(), s
->getType(), true, llvm::GlobalValue::PrivateLinkage
, s
,
2864 ".str", nullptr, llvm::GlobalValue::NotThreadLocal
,
2865 ConstGlobalsPtrTy
->getAddressSpace());
2866 gv
->setSection(AnnotationSection
);
2867 gv
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2872 llvm::Constant
*CodeGenModule::EmitAnnotationUnit(SourceLocation Loc
) {
2873 SourceManager
&SM
= getContext().getSourceManager();
2874 PresumedLoc PLoc
= SM
.getPresumedLoc(Loc
);
2876 return EmitAnnotationString(PLoc
.getFilename());
2877 return EmitAnnotationString(SM
.getBufferName(Loc
));
2880 llvm::Constant
*CodeGenModule::EmitAnnotationLineNo(SourceLocation L
) {
2881 SourceManager
&SM
= getContext().getSourceManager();
2882 PresumedLoc PLoc
= SM
.getPresumedLoc(L
);
2883 unsigned LineNo
= PLoc
.isValid() ? PLoc
.getLine() :
2884 SM
.getExpansionLineNumber(L
);
2885 return llvm::ConstantInt::get(Int32Ty
, LineNo
);
2888 llvm::Constant
*CodeGenModule::EmitAnnotationArgs(const AnnotateAttr
*Attr
) {
2889 ArrayRef
<Expr
*> Exprs
= {Attr
->args_begin(), Attr
->args_size()};
2891 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy
);
2893 llvm::FoldingSetNodeID ID
;
2894 for (Expr
*E
: Exprs
) {
2895 ID
.Add(cast
<clang::ConstantExpr
>(E
)->getAPValueResult());
2897 llvm::Constant
*&Lookup
= AnnotationArgs
[ID
.ComputeHash()];
2901 llvm::SmallVector
<llvm::Constant
*, 4> LLVMArgs
;
2902 LLVMArgs
.reserve(Exprs
.size());
2903 ConstantEmitter
ConstEmiter(*this);
2904 llvm::transform(Exprs
, std::back_inserter(LLVMArgs
), [&](const Expr
*E
) {
2905 const auto *CE
= cast
<clang::ConstantExpr
>(E
);
2906 return ConstEmiter
.emitAbstract(CE
->getBeginLoc(), CE
->getAPValueResult(),
2909 auto *Struct
= llvm::ConstantStruct::getAnon(LLVMArgs
);
2910 auto *GV
= new llvm::GlobalVariable(getModule(), Struct
->getType(), true,
2911 llvm::GlobalValue::PrivateLinkage
, Struct
,
2913 GV
->setSection(AnnotationSection
);
2914 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
2915 auto *Bitcasted
= llvm::ConstantExpr::getBitCast(GV
, GlobalsInt8PtrTy
);
2921 llvm::Constant
*CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue
*GV
,
2922 const AnnotateAttr
*AA
,
2924 // Get the globals for file name, annotation, and the line number.
2925 llvm::Constant
*AnnoGV
= EmitAnnotationString(AA
->getAnnotation()),
2926 *UnitGV
= EmitAnnotationUnit(L
),
2927 *LineNoCst
= EmitAnnotationLineNo(L
),
2928 *Args
= EmitAnnotationArgs(AA
);
2930 llvm::Constant
*GVInGlobalsAS
= GV
;
2931 if (GV
->getAddressSpace() !=
2932 getDataLayout().getDefaultGlobalsAddressSpace()) {
2933 GVInGlobalsAS
= llvm::ConstantExpr::getAddrSpaceCast(
2934 GV
, GV
->getValueType()->getPointerTo(
2935 getDataLayout().getDefaultGlobalsAddressSpace()));
2938 // Create the ConstantStruct for the global annotation.
2939 llvm::Constant
*Fields
[] = {
2940 llvm::ConstantExpr::getBitCast(GVInGlobalsAS
, GlobalsInt8PtrTy
),
2941 llvm::ConstantExpr::getBitCast(AnnoGV
, ConstGlobalsPtrTy
),
2942 llvm::ConstantExpr::getBitCast(UnitGV
, ConstGlobalsPtrTy
),
2946 return llvm::ConstantStruct::getAnon(Fields
);
2949 void CodeGenModule::AddGlobalAnnotations(const ValueDecl
*D
,
2950 llvm::GlobalValue
*GV
) {
2951 assert(D
->hasAttr
<AnnotateAttr
>() && "no annotate attribute");
2952 // Get the struct elements for these annotations.
2953 for (const auto *I
: D
->specific_attrs
<AnnotateAttr
>())
2954 Annotations
.push_back(EmitAnnotateAttr(GV
, I
, D
->getLocation()));
2957 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
, llvm::Function
*Fn
,
2958 SourceLocation Loc
) const {
2959 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
2960 // NoSanitize by function name.
2961 if (NoSanitizeL
.containsFunction(Kind
, Fn
->getName()))
2963 // NoSanitize by location. Check "mainfile" prefix.
2964 auto &SM
= Context
.getSourceManager();
2965 const FileEntry
&MainFile
= *SM
.getFileEntryForID(SM
.getMainFileID());
2966 if (NoSanitizeL
.containsMainFile(Kind
, MainFile
.getName()))
2969 // Check "src" prefix.
2971 return NoSanitizeL
.containsLocation(Kind
, Loc
);
2972 // If location is unknown, this may be a compiler-generated function. Assume
2973 // it's located in the main file.
2974 return NoSanitizeL
.containsFile(Kind
, MainFile
.getName());
2977 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind
,
2978 llvm::GlobalVariable
*GV
,
2979 SourceLocation Loc
, QualType Ty
,
2980 StringRef Category
) const {
2981 const auto &NoSanitizeL
= getContext().getNoSanitizeList();
2982 if (NoSanitizeL
.containsGlobal(Kind
, GV
->getName(), Category
))
2984 auto &SM
= Context
.getSourceManager();
2985 if (NoSanitizeL
.containsMainFile(
2986 Kind
, SM
.getFileEntryForID(SM
.getMainFileID())->getName(), Category
))
2988 if (NoSanitizeL
.containsLocation(Kind
, Loc
, Category
))
2991 // Check global type.
2993 // Drill down the array types: if global variable of a fixed type is
2994 // not sanitized, we also don't instrument arrays of them.
2995 while (auto AT
= dyn_cast
<ArrayType
>(Ty
.getTypePtr()))
2996 Ty
= AT
->getElementType();
2997 Ty
= Ty
.getCanonicalType().getUnqualifiedType();
2998 // Only record types (classes, structs etc.) are ignored.
2999 if (Ty
->isRecordType()) {
3000 std::string TypeStr
= Ty
.getAsString(getContext().getPrintingPolicy());
3001 if (NoSanitizeL
.containsType(Kind
, TypeStr
, Category
))
3008 bool CodeGenModule::imbueXRayAttrs(llvm::Function
*Fn
, SourceLocation Loc
,
3009 StringRef Category
) const {
3010 const auto &XRayFilter
= getContext().getXRayFilter();
3011 using ImbueAttr
= XRayFunctionFilter::ImbueAttribute
;
3012 auto Attr
= ImbueAttr::NONE
;
3014 Attr
= XRayFilter
.shouldImbueLocation(Loc
, Category
);
3015 if (Attr
== ImbueAttr::NONE
)
3016 Attr
= XRayFilter
.shouldImbueFunction(Fn
->getName());
3018 case ImbueAttr::NONE
:
3020 case ImbueAttr::ALWAYS
:
3021 Fn
->addFnAttr("function-instrument", "xray-always");
3023 case ImbueAttr::ALWAYS_ARG1
:
3024 Fn
->addFnAttr("function-instrument", "xray-always");
3025 Fn
->addFnAttr("xray-log-args", "1");
3027 case ImbueAttr::NEVER
:
3028 Fn
->addFnAttr("function-instrument", "xray-never");
3034 ProfileList::ExclusionType
3035 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function
*Fn
,
3036 SourceLocation Loc
) const {
3037 const auto &ProfileList
= getContext().getProfileList();
3038 // If the profile list is empty, then instrument everything.
3039 if (ProfileList
.isEmpty())
3040 return ProfileList::Allow
;
3041 CodeGenOptions::ProfileInstrKind Kind
= getCodeGenOpts().getProfileInstr();
3042 // First, check the function name.
3043 if (auto V
= ProfileList
.isFunctionExcluded(Fn
->getName(), Kind
))
3045 // Next, check the source location.
3047 if (auto V
= ProfileList
.isLocationExcluded(Loc
, Kind
))
3049 // If location is unknown, this may be a compiler-generated function. Assume
3050 // it's located in the main file.
3051 auto &SM
= Context
.getSourceManager();
3052 if (const auto *MainFile
= SM
.getFileEntryForID(SM
.getMainFileID()))
3053 if (auto V
= ProfileList
.isFileExcluded(MainFile
->getName(), Kind
))
3055 return ProfileList
.getDefault(Kind
);
3058 ProfileList::ExclusionType
3059 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function
*Fn
,
3060 SourceLocation Loc
) const {
3061 auto V
= isFunctionBlockedByProfileList(Fn
, Loc
);
3062 if (V
!= ProfileList::Allow
)
3065 auto NumGroups
= getCodeGenOpts().ProfileTotalFunctionGroups
;
3066 if (NumGroups
> 1) {
3067 auto Group
= llvm::crc32(arrayRefFromStringRef(Fn
->getName())) % NumGroups
;
3068 if (Group
!= getCodeGenOpts().ProfileSelectedFunctionGroup
)
3069 return ProfileList::Skip
;
3071 return ProfileList::Allow
;
3074 bool CodeGenModule::MustBeEmitted(const ValueDecl
*Global
) {
3075 // Never defer when EmitAllDecls is specified.
3076 if (LangOpts
.EmitAllDecls
)
3079 if (CodeGenOpts
.KeepStaticConsts
) {
3080 const auto *VD
= dyn_cast
<VarDecl
>(Global
);
3081 if (VD
&& VD
->getType().isConstQualified() &&
3082 VD
->getStorageDuration() == SD_Static
)
3086 return getContext().DeclMustBeEmitted(Global
);
3089 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl
*Global
) {
3090 // In OpenMP 5.0 variables and function may be marked as
3091 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3092 // that they must be emitted on the host/device. To be sure we need to have
3093 // seen a declare target with an explicit mentioning of the function, we know
3094 // we have if the level of the declare target attribute is -1. Note that we
3095 // check somewhere else if we should emit this at all.
3096 if (LangOpts
.OpenMP
>= 50 && !LangOpts
.OpenMPSimd
) {
3097 std::optional
<OMPDeclareTargetDeclAttr
*> ActiveAttr
=
3098 OMPDeclareTargetDeclAttr::getActiveAttr(Global
);
3099 if (!ActiveAttr
|| (*ActiveAttr
)->getLevel() != (unsigned)-1)
3103 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3104 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
3105 // Implicit template instantiations may change linkage if they are later
3106 // explicitly instantiated, so they should not be emitted eagerly.
3109 if (const auto *VD
= dyn_cast
<VarDecl
>(Global
)) {
3110 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3111 ASTContext::InlineVariableDefinitionKind::WeakUnknown
)
3112 // A definition of an inline constexpr static data member may change
3113 // linkage later if it's redeclared outside the class.
3115 if (CXX20ModuleInits
&& VD
->getOwningModule() &&
3116 !VD
->getOwningModule()->isModuleMapModule()) {
3117 // For CXX20, module-owned initializers need to be deferred, since it is
3118 // not known at this point if they will be run for the current module or
3119 // as part of the initializer for an imported one.
3123 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3124 // codegen for global variables, because they may be marked as threadprivate.
3125 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPUseTLS
&&
3126 getContext().getTargetInfo().isTLSSupported() && isa
<VarDecl
>(Global
) &&
3127 !isTypeConstant(Global
->getType(), false) &&
3128 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global
))
3134 ConstantAddress
CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl
*GD
) {
3135 StringRef Name
= getMangledName(GD
);
3137 // The UUID descriptor should be pointer aligned.
3138 CharUnits Alignment
= CharUnits::fromQuantity(PointerAlignInBytes
);
3140 // Look for an existing global.
3141 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3142 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3144 ConstantEmitter
Emitter(*this);
3145 llvm::Constant
*Init
;
3147 APValue
&V
= GD
->getAsAPValue();
3148 if (!V
.isAbsent()) {
3149 // If possible, emit the APValue version of the initializer. In particular,
3150 // this gets the type of the constant right.
3151 Init
= Emitter
.emitForInitializer(
3152 GD
->getAsAPValue(), GD
->getType().getAddressSpace(), GD
->getType());
3154 // As a fallback, directly construct the constant.
3155 // FIXME: This may get padding wrong under esoteric struct layout rules.
3156 // MSVC appears to create a complete type 'struct __s_GUID' that it
3157 // presumably uses to represent these constants.
3158 MSGuidDecl::Parts Parts
= GD
->getParts();
3159 llvm::Constant
*Fields
[4] = {
3160 llvm::ConstantInt::get(Int32Ty
, Parts
.Part1
),
3161 llvm::ConstantInt::get(Int16Ty
, Parts
.Part2
),
3162 llvm::ConstantInt::get(Int16Ty
, Parts
.Part3
),
3163 llvm::ConstantDataArray::getRaw(
3164 StringRef(reinterpret_cast<char *>(Parts
.Part4And5
), 8), 8,
3166 Init
= llvm::ConstantStruct::getAnon(Fields
);
3169 auto *GV
= new llvm::GlobalVariable(
3170 getModule(), Init
->getType(),
3171 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage
, Init
, Name
);
3172 if (supportsCOMDAT())
3173 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3176 if (!V
.isAbsent()) {
3177 Emitter
.finalize(GV
);
3178 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3181 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(GD
->getType());
3182 llvm::Constant
*Addr
= llvm::ConstantExpr::getBitCast(
3183 GV
, Ty
->getPointerTo(GV
->getAddressSpace()));
3184 return ConstantAddress(Addr
, Ty
, Alignment
);
3187 ConstantAddress
CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3188 const UnnamedGlobalConstantDecl
*GCD
) {
3189 CharUnits Alignment
= getContext().getTypeAlignInChars(GCD
->getType());
3191 llvm::GlobalVariable
**Entry
= nullptr;
3192 Entry
= &UnnamedGlobalConstantDeclMap
[GCD
];
3194 return ConstantAddress(*Entry
, (*Entry
)->getValueType(), Alignment
);
3196 ConstantEmitter
Emitter(*this);
3197 llvm::Constant
*Init
;
3199 const APValue
&V
= GCD
->getValue();
3201 assert(!V
.isAbsent());
3202 Init
= Emitter
.emitForInitializer(V
, GCD
->getType().getAddressSpace(),
3205 auto *GV
= new llvm::GlobalVariable(getModule(), Init
->getType(),
3206 /*isConstant=*/true,
3207 llvm::GlobalValue::PrivateLinkage
, Init
,
3209 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
3210 GV
->setAlignment(Alignment
.getAsAlign());
3212 Emitter
.finalize(GV
);
3215 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3218 ConstantAddress
CodeGenModule::GetAddrOfTemplateParamObject(
3219 const TemplateParamObjectDecl
*TPO
) {
3220 StringRef Name
= getMangledName(TPO
);
3221 CharUnits Alignment
= getNaturalTypeAlignment(TPO
->getType());
3223 if (llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
))
3224 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3226 ConstantEmitter
Emitter(*this);
3227 llvm::Constant
*Init
= Emitter
.emitForInitializer(
3228 TPO
->getValue(), TPO
->getType().getAddressSpace(), TPO
->getType());
3231 ErrorUnsupported(TPO
, "template parameter object");
3232 return ConstantAddress::invalid();
3235 auto *GV
= new llvm::GlobalVariable(
3236 getModule(), Init
->getType(),
3237 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage
, Init
, Name
);
3238 if (supportsCOMDAT())
3239 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
3240 Emitter
.finalize(GV
);
3242 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
3245 ConstantAddress
CodeGenModule::GetWeakRefReference(const ValueDecl
*VD
) {
3246 const AliasAttr
*AA
= VD
->getAttr
<AliasAttr
>();
3247 assert(AA
&& "No alias?");
3249 CharUnits Alignment
= getContext().getDeclAlign(VD
);
3250 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(VD
->getType());
3252 // See if there is already something with the target's name in the module.
3253 llvm::GlobalValue
*Entry
= GetGlobalValue(AA
->getAliasee());
3255 unsigned AS
= getTypes().getTargetAddressSpace(VD
->getType());
3256 auto Ptr
= llvm::ConstantExpr::getBitCast(Entry
, DeclTy
->getPointerTo(AS
));
3257 return ConstantAddress(Ptr
, DeclTy
, Alignment
);
3260 llvm::Constant
*Aliasee
;
3261 if (isa
<llvm::FunctionType
>(DeclTy
))
3262 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
,
3263 GlobalDecl(cast
<FunctionDecl
>(VD
)),
3264 /*ForVTable=*/false);
3266 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
3269 auto *F
= cast
<llvm::GlobalValue
>(Aliasee
);
3270 F
->setLinkage(llvm::Function::ExternalWeakLinkage
);
3271 WeakRefReferences
.insert(F
);
3273 return ConstantAddress(Aliasee
, DeclTy
, Alignment
);
3276 void CodeGenModule::EmitGlobal(GlobalDecl GD
) {
3277 const auto *Global
= cast
<ValueDecl
>(GD
.getDecl());
3279 // Weak references don't produce any output by themselves.
3280 if (Global
->hasAttr
<WeakRefAttr
>())
3283 // If this is an alias definition (which otherwise looks like a declaration)
3285 if (Global
->hasAttr
<AliasAttr
>())
3286 return EmitAliasDefinition(GD
);
3288 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3289 if (Global
->hasAttr
<IFuncAttr
>())
3290 return emitIFuncDefinition(GD
);
3292 // If this is a cpu_dispatch multiversion function, emit the resolver.
3293 if (Global
->hasAttr
<CPUDispatchAttr
>())
3294 return emitCPUDispatchDefinition(GD
);
3296 // If this is CUDA, be selective about which declarations we emit.
3297 if (LangOpts
.CUDA
) {
3298 if (LangOpts
.CUDAIsDevice
) {
3299 if (!Global
->hasAttr
<CUDADeviceAttr
>() &&
3300 !Global
->hasAttr
<CUDAGlobalAttr
>() &&
3301 !Global
->hasAttr
<CUDAConstantAttr
>() &&
3302 !Global
->hasAttr
<CUDASharedAttr
>() &&
3303 !Global
->getType()->isCUDADeviceBuiltinSurfaceType() &&
3304 !Global
->getType()->isCUDADeviceBuiltinTextureType())
3307 // We need to emit host-side 'shadows' for all global
3308 // device-side variables because the CUDA runtime needs their
3309 // size and host-side address in order to provide access to
3310 // their device-side incarnations.
3312 // So device-only functions are the only things we skip.
3313 if (isa
<FunctionDecl
>(Global
) && !Global
->hasAttr
<CUDAHostAttr
>() &&
3314 Global
->hasAttr
<CUDADeviceAttr
>())
3317 assert((isa
<FunctionDecl
>(Global
) || isa
<VarDecl
>(Global
)) &&
3318 "Expected Variable or Function");
3322 if (LangOpts
.OpenMP
) {
3323 // If this is OpenMP, check if it is legal to emit this global normally.
3324 if (OpenMPRuntime
&& OpenMPRuntime
->emitTargetGlobal(GD
))
3326 if (auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(Global
)) {
3327 if (MustBeEmitted(Global
))
3328 EmitOMPDeclareReduction(DRD
);
3331 if (auto *DMD
= dyn_cast
<OMPDeclareMapperDecl
>(Global
)) {
3332 if (MustBeEmitted(Global
))
3333 EmitOMPDeclareMapper(DMD
);
3338 // Ignore declarations, they will be emitted on their first use.
3339 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Global
)) {
3340 // Forward declarations are emitted lazily on first use.
3341 if (!FD
->doesThisDeclarationHaveABody()) {
3342 if (!FD
->doesDeclarationForceExternallyVisibleDefinition())
3345 StringRef MangledName
= getMangledName(GD
);
3347 // Compute the function info and LLVM type.
3348 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
3349 llvm::Type
*Ty
= getTypes().GetFunctionType(FI
);
3351 GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, /*ForVTable=*/false,
3352 /*DontDefer=*/false);
3356 const auto *VD
= cast
<VarDecl
>(Global
);
3357 assert(VD
->isFileVarDecl() && "Cannot emit local var decl as global.");
3358 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
&&
3359 !Context
.isMSStaticDataMemberInlineDefinition(VD
)) {
3360 if (LangOpts
.OpenMP
) {
3361 // Emit declaration of the must-be-emitted declare target variable.
3362 if (std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
3363 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
)) {
3364 bool UnifiedMemoryEnabled
=
3365 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3366 if ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3367 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3368 !UnifiedMemoryEnabled
) {
3369 (void)GetAddrOfGlobalVar(VD
);
3371 assert(((*Res
== OMPDeclareTargetDeclAttr::MT_Link
) ||
3372 ((*Res
== OMPDeclareTargetDeclAttr::MT_To
||
3373 *Res
== OMPDeclareTargetDeclAttr::MT_Enter
) &&
3374 UnifiedMemoryEnabled
)) &&
3375 "Link clause or to clause with unified memory expected.");
3376 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD
);
3382 // If this declaration may have caused an inline variable definition to
3383 // change linkage, make sure that it's emitted.
3384 if (Context
.getInlineVariableDefinitionKind(VD
) ==
3385 ASTContext::InlineVariableDefinitionKind::Strong
)
3386 GetAddrOfGlobalVar(VD
);
3391 // Defer code generation to first use when possible, e.g. if this is an inline
3392 // function. If the global must always be emitted, do it eagerly if possible
3393 // to benefit from cache locality.
3394 if (MustBeEmitted(Global
) && MayBeEmittedEagerly(Global
)) {
3395 // Emit the definition if it can't be deferred.
3396 EmitGlobalDefinition(GD
);
3400 // If we're deferring emission of a C++ variable with an
3401 // initializer, remember the order in which it appeared in the file.
3402 if (getLangOpts().CPlusPlus
&& isa
<VarDecl
>(Global
) &&
3403 cast
<VarDecl
>(Global
)->hasInit()) {
3404 DelayedCXXInitPosition
[Global
] = CXXGlobalInits
.size();
3405 CXXGlobalInits
.push_back(nullptr);
3408 StringRef MangledName
= getMangledName(GD
);
3409 if (GetGlobalValue(MangledName
) != nullptr) {
3410 // The value has already been used and should therefore be emitted.
3411 addDeferredDeclToEmit(GD
);
3412 } else if (MustBeEmitted(Global
)) {
3413 // The value must be emitted, but cannot be emitted eagerly.
3414 assert(!MayBeEmittedEagerly(Global
));
3415 addDeferredDeclToEmit(GD
);
3416 EmittedDeferredDecls
[MangledName
] = GD
;
3418 // Otherwise, remember that we saw a deferred decl with this name. The
3419 // first use of the mangled name will cause it to move into
3420 // DeferredDeclsToEmit.
3421 DeferredDecls
[MangledName
] = GD
;
3425 // Check if T is a class type with a destructor that's not dllimport.
3426 static bool HasNonDllImportDtor(QualType T
) {
3427 if (const auto *RT
= T
->getBaseElementTypeUnsafe()->getAs
<RecordType
>())
3428 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(RT
->getDecl()))
3429 if (RD
->getDestructor() && !RD
->getDestructor()->hasAttr
<DLLImportAttr
>())
3436 struct FunctionIsDirectlyRecursive
3437 : public ConstStmtVisitor
<FunctionIsDirectlyRecursive
, bool> {
3438 const StringRef Name
;
3439 const Builtin::Context
&BI
;
3440 FunctionIsDirectlyRecursive(StringRef N
, const Builtin::Context
&C
)
3443 bool VisitCallExpr(const CallExpr
*E
) {
3444 const FunctionDecl
*FD
= E
->getDirectCallee();
3447 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3448 if (Attr
&& Name
== Attr
->getLabel())
3450 unsigned BuiltinID
= FD
->getBuiltinID();
3451 if (!BuiltinID
|| !BI
.isLibFunction(BuiltinID
))
3453 StringRef BuiltinName
= BI
.getName(BuiltinID
);
3454 if (BuiltinName
.startswith("__builtin_") &&
3455 Name
== BuiltinName
.slice(strlen("__builtin_"), StringRef::npos
)) {
3461 bool VisitStmt(const Stmt
*S
) {
3462 for (const Stmt
*Child
: S
->children())
3463 if (Child
&& this->Visit(Child
))
3469 // Make sure we're not referencing non-imported vars or functions.
3470 struct DLLImportFunctionVisitor
3471 : public RecursiveASTVisitor
<DLLImportFunctionVisitor
> {
3472 bool SafeToInline
= true;
3474 bool shouldVisitImplicitCode() const { return true; }
3476 bool VisitVarDecl(VarDecl
*VD
) {
3477 if (VD
->getTLSKind()) {
3478 // A thread-local variable cannot be imported.
3479 SafeToInline
= false;
3480 return SafeToInline
;
3483 // A variable definition might imply a destructor call.
3484 if (VD
->isThisDeclarationADefinition())
3485 SafeToInline
= !HasNonDllImportDtor(VD
->getType());
3487 return SafeToInline
;
3490 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr
*E
) {
3491 if (const auto *D
= E
->getTemporary()->getDestructor())
3492 SafeToInline
= D
->hasAttr
<DLLImportAttr
>();
3493 return SafeToInline
;
3496 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
3497 ValueDecl
*VD
= E
->getDecl();
3498 if (isa
<FunctionDecl
>(VD
))
3499 SafeToInline
= VD
->hasAttr
<DLLImportAttr
>();
3500 else if (VarDecl
*V
= dyn_cast
<VarDecl
>(VD
))
3501 SafeToInline
= !V
->hasGlobalStorage() || V
->hasAttr
<DLLImportAttr
>();
3502 return SafeToInline
;
3505 bool VisitCXXConstructExpr(CXXConstructExpr
*E
) {
3506 SafeToInline
= E
->getConstructor()->hasAttr
<DLLImportAttr
>();
3507 return SafeToInline
;
3510 bool VisitCXXMemberCallExpr(CXXMemberCallExpr
*E
) {
3511 CXXMethodDecl
*M
= E
->getMethodDecl();
3513 // Call through a pointer to member function. This is safe to inline.
3514 SafeToInline
= true;
3516 SafeToInline
= M
->hasAttr
<DLLImportAttr
>();
3518 return SafeToInline
;
3521 bool VisitCXXDeleteExpr(CXXDeleteExpr
*E
) {
3522 SafeToInline
= E
->getOperatorDelete()->hasAttr
<DLLImportAttr
>();
3523 return SafeToInline
;
3526 bool VisitCXXNewExpr(CXXNewExpr
*E
) {
3527 SafeToInline
= E
->getOperatorNew()->hasAttr
<DLLImportAttr
>();
3528 return SafeToInline
;
3533 // isTriviallyRecursive - Check if this function calls another
3534 // decl that, because of the asm attribute or the other decl being a builtin,
3535 // ends up pointing to itself.
3537 CodeGenModule::isTriviallyRecursive(const FunctionDecl
*FD
) {
3539 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD
)) {
3540 // asm labels are a special kind of mangling we have to support.
3541 AsmLabelAttr
*Attr
= FD
->getAttr
<AsmLabelAttr
>();
3544 Name
= Attr
->getLabel();
3546 Name
= FD
->getName();
3549 FunctionIsDirectlyRecursive
Walker(Name
, Context
.BuiltinInfo
);
3550 const Stmt
*Body
= FD
->getBody();
3551 return Body
? Walker
.Visit(Body
) : false;
3554 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD
) {
3555 if (getFunctionLinkage(GD
) != llvm::Function::AvailableExternallyLinkage
)
3557 const auto *F
= cast
<FunctionDecl
>(GD
.getDecl());
3558 if (CodeGenOpts
.OptimizationLevel
== 0 && !F
->hasAttr
<AlwaysInlineAttr
>())
3561 if (F
->hasAttr
<DLLImportAttr
>() && !F
->hasAttr
<AlwaysInlineAttr
>()) {
3562 // Check whether it would be safe to inline this dllimport function.
3563 DLLImportFunctionVisitor Visitor
;
3564 Visitor
.TraverseFunctionDecl(const_cast<FunctionDecl
*>(F
));
3565 if (!Visitor
.SafeToInline
)
3568 if (const CXXDestructorDecl
*Dtor
= dyn_cast
<CXXDestructorDecl
>(F
)) {
3569 // Implicit destructor invocations aren't captured in the AST, so the
3570 // check above can't see them. Check for them manually here.
3571 for (const Decl
*Member
: Dtor
->getParent()->decls())
3572 if (isa
<FieldDecl
>(Member
))
3573 if (HasNonDllImportDtor(cast
<FieldDecl
>(Member
)->getType()))
3575 for (const CXXBaseSpecifier
&B
: Dtor
->getParent()->bases())
3576 if (HasNonDllImportDtor(B
.getType()))
3581 // Inline builtins declaration must be emitted. They often are fortified
3583 if (F
->isInlineBuiltinDeclaration())
3586 // PR9614. Avoid cases where the source code is lying to us. An available
3587 // externally function should have an equivalent function somewhere else,
3588 // but a function that calls itself through asm label/`__builtin_` trickery is
3589 // clearly not equivalent to the real implementation.
3590 // This happens in glibc's btowc and in some configure checks.
3591 return !isTriviallyRecursive(F
);
3594 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3595 return CodeGenOpts
.OptimizationLevel
> 0;
3598 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD
,
3599 llvm::GlobalValue
*GV
) {
3600 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3602 if (FD
->isCPUSpecificMultiVersion()) {
3603 auto *Spec
= FD
->getAttr
<CPUSpecificAttr
>();
3604 for (unsigned I
= 0; I
< Spec
->cpus_size(); ++I
)
3605 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
3606 } else if (FD
->isTargetClonesMultiVersion()) {
3607 auto *Clone
= FD
->getAttr
<TargetClonesAttr
>();
3608 for (unsigned I
= 0; I
< Clone
->featuresStrs_size(); ++I
)
3609 if (Clone
->isFirstOfVersion(I
))
3610 EmitGlobalFunctionDefinition(GD
.getWithMultiVersionIndex(I
), nullptr);
3611 // Ensure that the resolver function is also emitted.
3612 GetOrCreateMultiVersionResolver(GD
);
3614 EmitGlobalFunctionDefinition(GD
, GV
);
3617 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD
, llvm::GlobalValue
*GV
) {
3618 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
3620 PrettyStackTraceDecl
CrashInfo(const_cast<ValueDecl
*>(D
), D
->getLocation(),
3621 Context
.getSourceManager(),
3622 "Generating code for declaration");
3624 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
3625 // At -O0, don't generate IR for functions with available_externally
3627 if (!shouldEmitFunction(GD
))
3630 llvm::TimeTraceScope
TimeScope("CodeGen Function", [&]() {
3632 llvm::raw_string_ostream
OS(Name
);
3633 FD
->getNameForDiagnostic(OS
, getContext().getPrintingPolicy(),
3634 /*Qualified=*/true);
3638 if (const auto *Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
3639 // Make sure to emit the definition(s) before we emit the thunks.
3640 // This is necessary for the generation of certain thunks.
3641 if (isa
<CXXConstructorDecl
>(Method
) || isa
<CXXDestructorDecl
>(Method
))
3642 ABI
->emitCXXStructor(GD
);
3643 else if (FD
->isMultiVersion())
3644 EmitMultiVersionFunctionDefinition(GD
, GV
);
3646 EmitGlobalFunctionDefinition(GD
, GV
);
3648 if (Method
->isVirtual())
3649 getVTables().EmitThunks(GD
);
3654 if (FD
->isMultiVersion())
3655 return EmitMultiVersionFunctionDefinition(GD
, GV
);
3656 return EmitGlobalFunctionDefinition(GD
, GV
);
3659 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
3660 return EmitGlobalVarDefinition(VD
, !VD
->hasDefinition());
3662 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
3666 llvm::Function
*NewFn
);
3669 TargetMVPriority(const TargetInfo
&TI
,
3670 const CodeGenFunction::MultiVersionResolverOption
&RO
) {
3671 unsigned Priority
= 0;
3672 unsigned NumFeatures
= 0;
3673 for (StringRef Feat
: RO
.Conditions
.Features
) {
3674 Priority
= std::max(Priority
, TI
.multiVersionSortPriority(Feat
));
3678 if (!RO
.Conditions
.Architecture
.empty())
3679 Priority
= std::max(
3680 Priority
, TI
.multiVersionSortPriority(RO
.Conditions
.Architecture
));
3682 Priority
+= TI
.multiVersionFeatureCost() * NumFeatures
;
3687 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3688 // TU can forward declare the function without causing problems. Particularly
3689 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3690 // work with internal linkage functions, so that the same function name can be
3691 // used with internal linkage in multiple TUs.
3692 llvm::GlobalValue::LinkageTypes
getMultiversionLinkage(CodeGenModule
&CGM
,
3694 const FunctionDecl
*FD
= cast
<FunctionDecl
>(GD
.getDecl());
3695 if (FD
->getFormalLinkage() == InternalLinkage
)
3696 return llvm::GlobalValue::InternalLinkage
;
3697 return llvm::GlobalValue::WeakODRLinkage
;
3700 void CodeGenModule::emitMultiVersionFunctions() {
3701 std::vector
<GlobalDecl
> MVFuncsToEmit
;
3702 MultiVersionFuncs
.swap(MVFuncsToEmit
);
3703 for (GlobalDecl GD
: MVFuncsToEmit
) {
3704 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3705 assert(FD
&& "Expected a FunctionDecl");
3707 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
3708 if (FD
->isTargetMultiVersion()) {
3709 getContext().forEachMultiversionedFunctionVersion(
3710 FD
, [this, &GD
, &Options
](const FunctionDecl
*CurFD
) {
3712 (CurFD
->isDefined() ? CurFD
->getDefinition() : CurFD
)};
3713 StringRef MangledName
= getMangledName(CurGD
);
3714 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
3716 if (CurFD
->isDefined()) {
3717 EmitGlobalFunctionDefinition(CurGD
, nullptr);
3718 Func
= GetGlobalValue(MangledName
);
3720 const CGFunctionInfo
&FI
=
3721 getTypes().arrangeGlobalDeclaration(GD
);
3722 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
3723 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
3724 /*DontDefer=*/false, ForDefinition
);
3726 assert(Func
&& "This should have just been created");
3728 if (CurFD
->getMultiVersionKind() == MultiVersionKind::Target
) {
3729 const auto *TA
= CurFD
->getAttr
<TargetAttr
>();
3730 llvm::SmallVector
<StringRef
, 8> Feats
;
3731 TA
->getAddedFeatures(Feats
);
3732 Options
.emplace_back(cast
<llvm::Function
>(Func
),
3733 TA
->getArchitecture(), Feats
);
3735 const auto *TVA
= CurFD
->getAttr
<TargetVersionAttr
>();
3736 llvm::SmallVector
<StringRef
, 8> Feats
;
3737 TVA
->getFeatures(Feats
);
3738 Options
.emplace_back(cast
<llvm::Function
>(Func
),
3739 /*Architecture*/ "", Feats
);
3742 } else if (FD
->isTargetClonesMultiVersion()) {
3743 const auto *TC
= FD
->getAttr
<TargetClonesAttr
>();
3744 for (unsigned VersionIndex
= 0; VersionIndex
< TC
->featuresStrs_size();
3746 if (!TC
->isFirstOfVersion(VersionIndex
))
3748 GlobalDecl CurGD
{(FD
->isDefined() ? FD
->getDefinition() : FD
),
3750 StringRef Version
= TC
->getFeatureStr(VersionIndex
);
3751 StringRef MangledName
= getMangledName(CurGD
);
3752 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
3754 if (FD
->isDefined()) {
3755 EmitGlobalFunctionDefinition(CurGD
, nullptr);
3756 Func
= GetGlobalValue(MangledName
);
3758 const CGFunctionInfo
&FI
=
3759 getTypes().arrangeGlobalDeclaration(CurGD
);
3760 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
3761 Func
= GetAddrOfFunction(CurGD
, Ty
, /*ForVTable=*/false,
3762 /*DontDefer=*/false, ForDefinition
);
3764 assert(Func
&& "This should have just been created");
3767 StringRef Architecture
;
3768 llvm::SmallVector
<StringRef
, 1> Feature
;
3770 if (getTarget().getTriple().isAArch64()) {
3771 if (Version
!= "default") {
3772 llvm::SmallVector
<StringRef
, 8> VerFeats
;
3773 Version
.split(VerFeats
, "+");
3774 for (auto &CurFeat
: VerFeats
)
3775 Feature
.push_back(CurFeat
.trim());
3778 if (Version
.startswith("arch="))
3779 Architecture
= Version
.drop_front(sizeof("arch=") - 1);
3780 else if (Version
!= "default")
3781 Feature
.push_back(Version
);
3784 Options
.emplace_back(cast
<llvm::Function
>(Func
), Architecture
, Feature
);
3787 assert(0 && "Expected a target or target_clones multiversion function");
3791 llvm::Constant
*ResolverConstant
= GetOrCreateMultiVersionResolver(GD
);
3792 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(ResolverConstant
))
3793 ResolverConstant
= IFunc
->getResolver();
3794 llvm::Function
*ResolverFunc
= cast
<llvm::Function
>(ResolverConstant
);
3796 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
3798 if (supportsCOMDAT())
3799 ResolverFunc
->setComdat(
3800 getModule().getOrInsertComdat(ResolverFunc
->getName()));
3802 const TargetInfo
&TI
= getTarget();
3804 Options
, [&TI
](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
3805 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
3806 return TargetMVPriority(TI
, LHS
) > TargetMVPriority(TI
, RHS
);
3808 CodeGenFunction
CGF(*this);
3809 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
3812 // Ensure that any additions to the deferred decls list caused by emitting a
3813 // variant are emitted. This can happen when the variant itself is inline and
3814 // calls a function without linkage.
3815 if (!MVFuncsToEmit
.empty())
3818 // Ensure that any additions to the multiversion funcs list from either the
3819 // deferred decls or the multiversion functions themselves are emitted.
3820 if (!MultiVersionFuncs
.empty())
3821 emitMultiVersionFunctions();
3824 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD
) {
3825 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3826 assert(FD
&& "Not a FunctionDecl?");
3827 assert(FD
->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3828 const auto *DD
= FD
->getAttr
<CPUDispatchAttr
>();
3829 assert(DD
&& "Not a cpu_dispatch Function?");
3831 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
3832 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
3834 StringRef ResolverName
= getMangledName(GD
);
3835 UpdateMultiVersionNames(GD
, FD
, ResolverName
);
3837 llvm::Type
*ResolverType
;
3838 GlobalDecl ResolverGD
;
3839 if (getTarget().supportsIFunc()) {
3840 ResolverType
= llvm::FunctionType::get(
3841 llvm::PointerType::get(DeclTy
,
3842 getTypes().getTargetAddressSpace(FD
->getType())),
3846 ResolverType
= DeclTy
;
3850 auto *ResolverFunc
= cast
<llvm::Function
>(GetOrCreateLLVMFunction(
3851 ResolverName
, ResolverType
, ResolverGD
, /*ForVTable=*/false));
3852 ResolverFunc
->setLinkage(getMultiversionLinkage(*this, GD
));
3853 if (supportsCOMDAT())
3854 ResolverFunc
->setComdat(
3855 getModule().getOrInsertComdat(ResolverFunc
->getName()));
3857 SmallVector
<CodeGenFunction::MultiVersionResolverOption
, 10> Options
;
3858 const TargetInfo
&Target
= getTarget();
3860 for (const IdentifierInfo
*II
: DD
->cpus()) {
3861 // Get the name of the target function so we can look it up/create it.
3862 std::string MangledName
= getMangledNameImpl(*this, GD
, FD
, true) +
3863 getCPUSpecificMangling(*this, II
->getName());
3865 llvm::Constant
*Func
= GetGlobalValue(MangledName
);
3868 GlobalDecl ExistingDecl
= Manglings
.lookup(MangledName
);
3869 if (ExistingDecl
.getDecl() &&
3870 ExistingDecl
.getDecl()->getAsFunction()->isDefined()) {
3871 EmitGlobalFunctionDefinition(ExistingDecl
, nullptr);
3872 Func
= GetGlobalValue(MangledName
);
3874 if (!ExistingDecl
.getDecl())
3875 ExistingDecl
= GD
.getWithMultiVersionIndex(Index
);
3877 Func
= GetOrCreateLLVMFunction(
3878 MangledName
, DeclTy
, ExistingDecl
,
3879 /*ForVTable=*/false, /*DontDefer=*/true,
3880 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition
);
3884 llvm::SmallVector
<StringRef
, 32> Features
;
3885 Target
.getCPUSpecificCPUDispatchFeatures(II
->getName(), Features
);
3886 llvm::transform(Features
, Features
.begin(),
3887 [](StringRef Str
) { return Str
.substr(1); });
3888 llvm::erase_if(Features
, [&Target
](StringRef Feat
) {
3889 return !Target
.validateCpuSupports(Feat
);
3891 Options
.emplace_back(cast
<llvm::Function
>(Func
), StringRef
{}, Features
);
3896 Options
, [](const CodeGenFunction::MultiVersionResolverOption
&LHS
,
3897 const CodeGenFunction::MultiVersionResolverOption
&RHS
) {
3898 return llvm::X86::getCpuSupportsMask(LHS
.Conditions
.Features
) >
3899 llvm::X86::getCpuSupportsMask(RHS
.Conditions
.Features
);
3902 // If the list contains multiple 'default' versions, such as when it contains
3903 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3904 // always run on at least a 'pentium'). We do this by deleting the 'least
3905 // advanced' (read, lowest mangling letter).
3906 while (Options
.size() > 1 &&
3907 llvm::X86::getCpuSupportsMask(
3908 (Options
.end() - 2)->Conditions
.Features
) == 0) {
3909 StringRef LHSName
= (Options
.end() - 2)->Function
->getName();
3910 StringRef RHSName
= (Options
.end() - 1)->Function
->getName();
3911 if (LHSName
.compare(RHSName
) < 0)
3912 Options
.erase(Options
.end() - 2);
3914 Options
.erase(Options
.end() - 1);
3917 CodeGenFunction
CGF(*this);
3918 CGF
.EmitMultiVersionResolver(ResolverFunc
, Options
);
3920 if (getTarget().supportsIFunc()) {
3921 llvm::GlobalValue::LinkageTypes Linkage
= getMultiversionLinkage(*this, GD
);
3922 auto *IFunc
= cast
<llvm::GlobalValue
>(GetOrCreateMultiVersionResolver(GD
));
3924 // Fix up function declarations that were created for cpu_specific before
3925 // cpu_dispatch was known
3926 if (!isa
<llvm::GlobalIFunc
>(IFunc
)) {
3927 assert(cast
<llvm::Function
>(IFunc
)->isDeclaration());
3928 auto *GI
= llvm::GlobalIFunc::create(DeclTy
, 0, Linkage
, "", ResolverFunc
,
3930 GI
->takeName(IFunc
);
3931 IFunc
->replaceAllUsesWith(GI
);
3932 IFunc
->eraseFromParent();
3936 std::string AliasName
= getMangledNameImpl(
3937 *this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
3938 llvm::Constant
*AliasFunc
= GetGlobalValue(AliasName
);
3940 auto *GA
= llvm::GlobalAlias::create(DeclTy
, 0, Linkage
, AliasName
, IFunc
,
3942 SetCommonAttributes(GD
, GA
);
3947 /// If a dispatcher for the specified mangled name is not in the module, create
3948 /// and return an llvm Function with the specified type.
3949 llvm::Constant
*CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD
) {
3950 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
3951 assert(FD
&& "Not a FunctionDecl?");
3953 std::string MangledName
=
3954 getMangledNameImpl(*this, GD
, FD
, /*OmitMultiVersionMangling=*/true);
3956 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3957 // a separate resolver).
3958 std::string ResolverName
= MangledName
;
3959 if (getTarget().supportsIFunc())
3960 ResolverName
+= ".ifunc";
3961 else if (FD
->isTargetMultiVersion())
3962 ResolverName
+= ".resolver";
3964 // If the resolver has already been created, just return it.
3965 if (llvm::GlobalValue
*ResolverGV
= GetGlobalValue(ResolverName
))
3968 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
3969 llvm::FunctionType
*DeclTy
= getTypes().GetFunctionType(FI
);
3971 // The resolver needs to be created. For target and target_clones, defer
3972 // creation until the end of the TU.
3973 if (FD
->isTargetMultiVersion() || FD
->isTargetClonesMultiVersion())
3974 MultiVersionFuncs
.push_back(GD
);
3976 // For cpu_specific, don't create an ifunc yet because we don't know if the
3977 // cpu_dispatch will be emitted in this translation unit.
3978 if (getTarget().supportsIFunc() && !FD
->isCPUSpecificMultiVersion()) {
3979 llvm::Type
*ResolverType
= llvm::FunctionType::get(
3980 llvm::PointerType::get(DeclTy
,
3981 getTypes().getTargetAddressSpace(FD
->getType())),
3983 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
3984 MangledName
+ ".resolver", ResolverType
, GlobalDecl
{},
3985 /*ForVTable=*/false);
3986 llvm::GlobalIFunc
*GIF
=
3987 llvm::GlobalIFunc::create(DeclTy
, 0, getMultiversionLinkage(*this, GD
),
3988 "", Resolver
, &getModule());
3989 GIF
->setName(ResolverName
);
3990 SetCommonAttributes(FD
, GIF
);
3995 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
3996 ResolverName
, DeclTy
, GlobalDecl
{}, /*ForVTable=*/false);
3997 assert(isa
<llvm::GlobalValue
>(Resolver
) &&
3998 "Resolver should be created for the first time");
3999 SetCommonAttributes(FD
, cast
<llvm::GlobalValue
>(Resolver
));
4003 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4004 /// module, create and return an llvm Function with the specified type. If there
4005 /// is something in the module with the specified name, return it potentially
4006 /// bitcasted to the right type.
4008 /// If D is non-null, it specifies a decl that correspond to this. This is used
4009 /// to set the attributes on the function when it is first created.
4010 llvm::Constant
*CodeGenModule::GetOrCreateLLVMFunction(
4011 StringRef MangledName
, llvm::Type
*Ty
, GlobalDecl GD
, bool ForVTable
,
4012 bool DontDefer
, bool IsThunk
, llvm::AttributeList ExtraAttrs
,
4013 ForDefinition_t IsForDefinition
) {
4014 const Decl
*D
= GD
.getDecl();
4016 // Any attempts to use a MultiVersion function should result in retrieving
4017 // the iFunc instead. Name Mangling will handle the rest of the changes.
4018 if (const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
)) {
4019 // For the device mark the function as one that should be emitted.
4020 if (getLangOpts().OpenMPIsDevice
&& OpenMPRuntime
&&
4021 !OpenMPRuntime
->markAsGlobalTarget(GD
) && FD
->isDefined() &&
4022 !DontDefer
&& !IsForDefinition
) {
4023 if (const FunctionDecl
*FDDef
= FD
->getDefinition()) {
4025 if (const auto *CD
= dyn_cast
<CXXConstructorDecl
>(FDDef
))
4026 GDDef
= GlobalDecl(CD
, GD
.getCtorType());
4027 else if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(FDDef
))
4028 GDDef
= GlobalDecl(DD
, GD
.getDtorType());
4030 GDDef
= GlobalDecl(FDDef
);
4035 if (FD
->isMultiVersion()) {
4036 UpdateMultiVersionNames(GD
, FD
, MangledName
);
4037 if (!IsForDefinition
)
4038 return GetOrCreateMultiVersionResolver(GD
);
4042 // Lookup the entry, lazily creating it if necessary.
4043 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4045 if (WeakRefReferences
.erase(Entry
)) {
4046 const FunctionDecl
*FD
= cast_or_null
<FunctionDecl
>(D
);
4047 if (FD
&& !FD
->hasAttr
<WeakAttr
>())
4048 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4051 // Handle dropped DLL attributes.
4052 if (D
&& !D
->hasAttr
<DLLImportAttr
>() && !D
->hasAttr
<DLLExportAttr
>() &&
4053 !shouldMapVisibilityToDLLExport(cast_or_null
<NamedDecl
>(D
))) {
4054 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4058 // If there are two attempts to define the same mangled name, issue an
4060 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4062 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4063 // to make sure that we issue an error only once.
4064 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4065 (GD
.getCanonicalDecl().getDecl() !=
4066 OtherGD
.getCanonicalDecl().getDecl()) &&
4067 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
4068 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4070 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4071 diag::note_previous_definition
);
4075 if ((isa
<llvm::Function
>(Entry
) || isa
<llvm::GlobalAlias
>(Entry
)) &&
4076 (Entry
->getValueType() == Ty
)) {
4080 // Make sure the result is of the correct type.
4081 // (If function is requested for a definition, we always need to create a new
4082 // function, not just return a bitcast.)
4083 if (!IsForDefinition
)
4084 return llvm::ConstantExpr::getBitCast(
4085 Entry
, Ty
->getPointerTo(Entry
->getAddressSpace()));
4088 // This function doesn't have a complete type (for example, the return
4089 // type is an incomplete struct). Use a fake type instead, and make
4090 // sure not to try to set attributes.
4091 bool IsIncompleteFunction
= false;
4093 llvm::FunctionType
*FTy
;
4094 if (isa
<llvm::FunctionType
>(Ty
)) {
4095 FTy
= cast
<llvm::FunctionType
>(Ty
);
4097 FTy
= llvm::FunctionType::get(VoidTy
, false);
4098 IsIncompleteFunction
= true;
4102 llvm::Function::Create(FTy
, llvm::Function::ExternalLinkage
,
4103 Entry
? StringRef() : MangledName
, &getModule());
4105 // If we already created a function with the same mangled name (but different
4106 // type) before, take its name and add it to the list of functions to be
4107 // replaced with F at the end of CodeGen.
4109 // This happens if there is a prototype for a function (e.g. "int f()") and
4110 // then a definition of a different type (e.g. "int f(int x)").
4114 // This might be an implementation of a function without a prototype, in
4115 // which case, try to do special replacement of calls which match the new
4116 // prototype. The really key thing here is that we also potentially drop
4117 // arguments from the call site so as to make a direct call, which makes the
4118 // inliner happier and suppresses a number of optimizer warnings (!) about
4119 // dropping arguments.
4120 if (!Entry
->use_empty()) {
4121 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry
, F
);
4122 Entry
->removeDeadConstantUsers();
4125 llvm::Constant
*BC
= llvm::ConstantExpr::getBitCast(
4126 F
, Entry
->getValueType()->getPointerTo(Entry
->getAddressSpace()));
4127 addGlobalValReplacement(Entry
, BC
);
4130 assert(F
->getName() == MangledName
&& "name was uniqued!");
4132 SetFunctionAttributes(GD
, F
, IsIncompleteFunction
, IsThunk
);
4133 if (ExtraAttrs
.hasFnAttrs()) {
4134 llvm::AttrBuilder
B(F
->getContext(), ExtraAttrs
.getFnAttrs());
4139 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4140 // each other bottoming out with the base dtor. Therefore we emit non-base
4141 // dtors on usage, even if there is no dtor definition in the TU.
4142 if (isa_and_nonnull
<CXXDestructorDecl
>(D
) &&
4143 getCXXABI().useThunkForDtorVariant(cast
<CXXDestructorDecl
>(D
),
4145 addDeferredDeclToEmit(GD
);
4147 // This is the first use or definition of a mangled name. If there is a
4148 // deferred decl with this name, remember that we need to emit it at the end
4150 auto DDI
= DeferredDecls
.find(MangledName
);
4151 if (DDI
!= DeferredDecls
.end()) {
4152 // Move the potentially referenced deferred decl to the
4153 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4154 // don't need it anymore).
4155 addDeferredDeclToEmit(DDI
->second
);
4156 EmittedDeferredDecls
[DDI
->first
] = DDI
->second
;
4157 DeferredDecls
.erase(DDI
);
4159 // Otherwise, there are cases we have to worry about where we're
4160 // using a declaration for which we must emit a definition but where
4161 // we might not find a top-level definition:
4162 // - member functions defined inline in their classes
4163 // - friend functions defined inline in some class
4164 // - special member functions with implicit definitions
4165 // If we ever change our AST traversal to walk into class methods,
4166 // this will be unnecessary.
4168 // We also don't emit a definition for a function if it's going to be an
4169 // entry in a vtable, unless it's already marked as used.
4170 } else if (getLangOpts().CPlusPlus
&& D
) {
4171 // Look for a declaration that's lexically in a record.
4172 for (const auto *FD
= cast
<FunctionDecl
>(D
)->getMostRecentDecl(); FD
;
4173 FD
= FD
->getPreviousDecl()) {
4174 if (isa
<CXXRecordDecl
>(FD
->getLexicalDeclContext())) {
4175 if (FD
->doesThisDeclarationHaveABody()) {
4176 addDeferredDeclToEmit(GD
.getWithDecl(FD
));
4184 // Make sure the result is of the requested type.
4185 if (!IsIncompleteFunction
) {
4186 assert(F
->getFunctionType() == Ty
);
4190 return llvm::ConstantExpr::getBitCast(F
,
4191 Ty
->getPointerTo(F
->getAddressSpace()));
4194 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4195 /// non-null, then this function will use the specified type if it has to
4196 /// create it (this occurs when we see a definition of the function).
4197 llvm::Constant
*CodeGenModule::GetAddrOfFunction(GlobalDecl GD
,
4201 ForDefinition_t IsForDefinition
) {
4202 assert(!cast
<FunctionDecl
>(GD
.getDecl())->isConsteval() &&
4203 "consteval function should never be emitted");
4204 // If there was no specific requested type, just convert it now.
4206 const auto *FD
= cast
<FunctionDecl
>(GD
.getDecl());
4207 Ty
= getTypes().ConvertType(FD
->getType());
4210 // Devirtualized destructor calls may come through here instead of via
4211 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4212 // of the complete destructor when necessary.
4213 if (const auto *DD
= dyn_cast
<CXXDestructorDecl
>(GD
.getDecl())) {
4214 if (getTarget().getCXXABI().isMicrosoft() &&
4215 GD
.getDtorType() == Dtor_Complete
&&
4216 DD
->getParent()->getNumVBases() == 0)
4217 GD
= GlobalDecl(DD
, Dtor_Base
);
4220 StringRef MangledName
= getMangledName(GD
);
4221 auto *F
= GetOrCreateLLVMFunction(MangledName
, Ty
, GD
, ForVTable
, DontDefer
,
4222 /*IsThunk=*/false, llvm::AttributeList(),
4224 // Returns kernel handle for HIP kernel stub function.
4225 if (LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
4226 cast
<FunctionDecl
>(GD
.getDecl())->hasAttr
<CUDAGlobalAttr
>()) {
4227 auto *Handle
= getCUDARuntime().getKernelHandle(
4228 cast
<llvm::Function
>(F
->stripPointerCasts()), GD
);
4229 if (IsForDefinition
)
4231 return llvm::ConstantExpr::getBitCast(Handle
, Ty
->getPointerTo());
4236 llvm::Constant
*CodeGenModule::GetFunctionStart(const ValueDecl
*Decl
) {
4237 llvm::GlobalValue
*F
=
4238 cast
<llvm::GlobalValue
>(GetAddrOfFunction(Decl
)->stripPointerCasts());
4240 return llvm::ConstantExpr::getBitCast(
4241 llvm::NoCFIValue::get(F
),
4242 llvm::Type::getInt8PtrTy(VMContext
, F
->getAddressSpace()));
4245 static const FunctionDecl
*
4246 GetRuntimeFunctionDecl(ASTContext
&C
, StringRef Name
) {
4247 TranslationUnitDecl
*TUDecl
= C
.getTranslationUnitDecl();
4248 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
4250 IdentifierInfo
&CII
= C
.Idents
.get(Name
);
4251 for (const auto *Result
: DC
->lookup(&CII
))
4252 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4255 if (!C
.getLangOpts().CPlusPlus
)
4258 // Demangle the premangled name from getTerminateFn()
4259 IdentifierInfo
&CXXII
=
4260 (Name
== "_ZSt9terminatev" || Name
== "?terminate@@YAXXZ")
4261 ? C
.Idents
.get("terminate")
4262 : C
.Idents
.get(Name
);
4264 for (const auto &N
: {"__cxxabiv1", "std"}) {
4265 IdentifierInfo
&NS
= C
.Idents
.get(N
);
4266 for (const auto *Result
: DC
->lookup(&NS
)) {
4267 const NamespaceDecl
*ND
= dyn_cast
<NamespaceDecl
>(Result
);
4268 if (auto *LSD
= dyn_cast
<LinkageSpecDecl
>(Result
))
4269 for (const auto *Result
: LSD
->lookup(&NS
))
4270 if ((ND
= dyn_cast
<NamespaceDecl
>(Result
)))
4274 for (const auto *Result
: ND
->lookup(&CXXII
))
4275 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Result
))
4283 /// CreateRuntimeFunction - Create a new runtime function with the specified
4285 llvm::FunctionCallee
4286 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType
*FTy
, StringRef Name
,
4287 llvm::AttributeList ExtraAttrs
, bool Local
,
4288 bool AssumeConvergent
) {
4289 if (AssumeConvergent
) {
4291 ExtraAttrs
.addFnAttribute(VMContext
, llvm::Attribute::Convergent
);
4295 GetOrCreateLLVMFunction(Name
, FTy
, GlobalDecl(), /*ForVTable=*/false,
4296 /*DontDefer=*/false, /*IsThunk=*/false,
4299 if (auto *F
= dyn_cast
<llvm::Function
>(C
)) {
4301 F
->setCallingConv(getRuntimeCC());
4303 // In Windows Itanium environments, try to mark runtime functions
4304 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4305 // will link their standard library statically or dynamically. Marking
4306 // functions imported when they are not imported can cause linker errors
4308 if (!Local
&& getTriple().isWindowsItaniumEnvironment() &&
4309 !getCodeGenOpts().LTOVisibilityPublicStd
) {
4310 const FunctionDecl
*FD
= GetRuntimeFunctionDecl(Context
, Name
);
4311 if (!FD
|| FD
->hasAttr
<DLLImportAttr
>()) {
4312 F
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
4313 F
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
4323 /// isTypeConstant - Determine whether an object of this type can be emitted
4326 /// If ExcludeCtor is true, the duration when the object's constructor runs
4327 /// will not be considered. The caller will need to verify that the object is
4328 /// not written to during its construction.
4329 bool CodeGenModule::isTypeConstant(QualType Ty
, bool ExcludeCtor
) {
4330 if (!Ty
.isConstant(Context
) && !Ty
->isReferenceType())
4333 if (Context
.getLangOpts().CPlusPlus
) {
4334 if (const CXXRecordDecl
*Record
4335 = Context
.getBaseElementType(Ty
)->getAsCXXRecordDecl())
4336 return ExcludeCtor
&& !Record
->hasMutableFields() &&
4337 Record
->hasTrivialDestructor();
4343 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4344 /// create and return an llvm GlobalVariable with the specified type and address
4345 /// space. If there is something in the module with the specified name, return
4346 /// it potentially bitcasted to the right type.
4348 /// If D is non-null, it specifies a decl that correspond to this. This is used
4349 /// to set the attributes on the global when it is first created.
4351 /// If IsForDefinition is true, it is guaranteed that an actual global with
4352 /// type Ty will be returned, not conversion of a variable with the same
4353 /// mangled name but some other type.
4355 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName
, llvm::Type
*Ty
,
4356 LangAS AddrSpace
, const VarDecl
*D
,
4357 ForDefinition_t IsForDefinition
) {
4358 // Lookup the entry, lazily creating it if necessary.
4359 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
4360 unsigned TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
4362 if (WeakRefReferences
.erase(Entry
)) {
4363 if (D
&& !D
->hasAttr
<WeakAttr
>())
4364 Entry
->setLinkage(llvm::Function::ExternalLinkage
);
4367 // Handle dropped DLL attributes.
4368 if (D
&& !D
->hasAttr
<DLLImportAttr
>() && !D
->hasAttr
<DLLExportAttr
>() &&
4369 !shouldMapVisibilityToDLLExport(D
))
4370 Entry
->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass
);
4372 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
&& D
)
4373 getOpenMPRuntime().registerTargetGlobalVariable(D
, Entry
);
4375 if (Entry
->getValueType() == Ty
&& Entry
->getAddressSpace() == TargetAS
)
4378 // If there are two attempts to define the same mangled name, issue an
4380 if (IsForDefinition
&& !Entry
->isDeclaration()) {
4382 const VarDecl
*OtherD
;
4384 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4385 // to make sure that we issue an error only once.
4386 if (D
&& lookupRepresentativeDecl(MangledName
, OtherGD
) &&
4387 (D
->getCanonicalDecl() != OtherGD
.getCanonicalDecl().getDecl()) &&
4388 (OtherD
= dyn_cast
<VarDecl
>(OtherGD
.getDecl())) &&
4389 OtherD
->hasInit() &&
4390 DiagnosedConflictingDefinitions
.insert(D
).second
) {
4391 getDiags().Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
4393 getDiags().Report(OtherGD
.getDecl()->getLocation(),
4394 diag::note_previous_definition
);
4398 // Make sure the result is of the correct type.
4399 if (Entry
->getType()->getAddressSpace() != TargetAS
) {
4400 return llvm::ConstantExpr::getAddrSpaceCast(Entry
,
4401 Ty
->getPointerTo(TargetAS
));
4404 // (If global is requested for a definition, we always need to create a new
4405 // global, not just return a bitcast.)
4406 if (!IsForDefinition
)
4407 return llvm::ConstantExpr::getBitCast(Entry
, Ty
->getPointerTo(TargetAS
));
4410 auto DAddrSpace
= GetGlobalVarAddressSpace(D
);
4412 auto *GV
= new llvm::GlobalVariable(
4413 getModule(), Ty
, false, llvm::GlobalValue::ExternalLinkage
, nullptr,
4414 MangledName
, nullptr, llvm::GlobalVariable::NotThreadLocal
,
4415 getContext().getTargetAddressSpace(DAddrSpace
));
4417 // If we already created a global with the same mangled name (but different
4418 // type) before, take its name and remove it from its parent.
4420 GV
->takeName(Entry
);
4422 if (!Entry
->use_empty()) {
4423 llvm::Constant
*NewPtrForOldDecl
=
4424 llvm::ConstantExpr::getBitCast(GV
, Entry
->getType());
4425 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
4428 Entry
->eraseFromParent();
4431 // This is the first use or definition of a mangled name. If there is a
4432 // deferred decl with this name, remember that we need to emit it at the end
4434 auto DDI
= DeferredDecls
.find(MangledName
);
4435 if (DDI
!= DeferredDecls
.end()) {
4436 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4437 // list, and remove it from DeferredDecls (since we don't need it anymore).
4438 addDeferredDeclToEmit(DDI
->second
);
4439 EmittedDeferredDecls
[DDI
->first
] = DDI
->second
;
4440 DeferredDecls
.erase(DDI
);
4443 // Handle things which are present even on external declarations.
4445 if (LangOpts
.OpenMP
&& !LangOpts
.OpenMPSimd
)
4446 getOpenMPRuntime().registerTargetGlobalVariable(D
, GV
);
4448 // FIXME: This code is overly simple and should be merged with other global
4450 GV
->setConstant(isTypeConstant(D
->getType(), false));
4452 GV
->setAlignment(getContext().getDeclAlign(D
).getAsAlign());
4454 setLinkageForGV(GV
, D
);
4456 if (D
->getTLSKind()) {
4457 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
4458 CXXThreadLocals
.push_back(D
);
4462 setGVProperties(GV
, D
);
4464 // If required by the ABI, treat declarations of static data members with
4465 // inline initializers as definitions.
4466 if (getContext().isMSStaticDataMemberInlineDefinition(D
)) {
4467 EmitGlobalVarDefinition(D
);
4470 // Emit section information for extern variables.
4471 if (D
->hasExternalStorage()) {
4472 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>())
4473 GV
->setSection(SA
->getName());
4476 // Handle XCore specific ABI requirements.
4477 if (getTriple().getArch() == llvm::Triple::xcore
&&
4478 D
->getLanguageLinkage() == CLanguageLinkage
&&
4479 D
->getType().isConstant(Context
) &&
4480 isExternallyVisible(D
->getLinkageAndVisibility().getLinkage()))
4481 GV
->setSection(".cp.rodata");
4483 // Check if we a have a const declaration with an initializer, we may be
4484 // able to emit it as available_externally to expose it's value to the
4486 if (Context
.getLangOpts().CPlusPlus
&& GV
->hasExternalLinkage() &&
4487 D
->getType().isConstQualified() && !GV
->hasInitializer() &&
4488 !D
->hasDefinition() && D
->hasInit() && !D
->hasAttr
<DLLImportAttr
>()) {
4489 const auto *Record
=
4490 Context
.getBaseElementType(D
->getType())->getAsCXXRecordDecl();
4491 bool HasMutableFields
= Record
&& Record
->hasMutableFields();
4492 if (!HasMutableFields
) {
4493 const VarDecl
*InitDecl
;
4494 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
4496 ConstantEmitter
emitter(*this);
4497 llvm::Constant
*Init
= emitter
.tryEmitForInitializer(*InitDecl
);
4499 auto *InitType
= Init
->getType();
4500 if (GV
->getValueType() != InitType
) {
4501 // The type of the initializer does not match the definition.
4502 // This happens when an initializer has a different type from
4503 // the type of the global (because of padding at the end of a
4504 // structure for instance).
4505 GV
->setName(StringRef());
4506 // Make a new global with the correct type, this is now guaranteed
4508 auto *NewGV
= cast
<llvm::GlobalVariable
>(
4509 GetAddrOfGlobalVar(D
, InitType
, IsForDefinition
)
4510 ->stripPointerCasts());
4512 // Erase the old global, since it is no longer used.
4513 GV
->eraseFromParent();
4516 GV
->setInitializer(Init
);
4517 GV
->setConstant(true);
4518 GV
->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage
);
4520 emitter
.finalize(GV
);
4527 if (GV
->isDeclaration()) {
4528 getTargetCodeGenInfo().setTargetAttributes(D
, GV
, *this);
4529 // External HIP managed variables needed to be recorded for transformation
4530 // in both device and host compilations.
4531 if (getLangOpts().CUDA
&& D
&& D
->hasAttr
<HIPManagedAttr
>() &&
4532 D
->hasExternalStorage())
4533 getCUDARuntime().handleVarRegistration(D
, *GV
);
4537 SanitizerMD
->reportGlobal(GV
, *D
);
4540 D
? D
->getType().getAddressSpace()
4541 : (LangOpts
.OpenCL
? LangAS::opencl_global
: LangAS::Default
);
4542 assert(getContext().getTargetAddressSpace(ExpectedAS
) == TargetAS
);
4543 if (DAddrSpace
!= ExpectedAS
) {
4544 return getTargetCodeGenInfo().performAddrSpaceCast(
4545 *this, GV
, DAddrSpace
, ExpectedAS
, Ty
->getPointerTo(TargetAS
));
4552 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD
, ForDefinition_t IsForDefinition
) {
4553 const Decl
*D
= GD
.getDecl();
4555 if (isa
<CXXConstructorDecl
>(D
) || isa
<CXXDestructorDecl
>(D
))
4556 return getAddrOfCXXStructor(GD
, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4557 /*DontDefer=*/false, IsForDefinition
);
4559 if (isa
<CXXMethodDecl
>(D
)) {
4561 &getTypes().arrangeCXXMethodDeclaration(cast
<CXXMethodDecl
>(D
));
4562 auto Ty
= getTypes().GetFunctionType(*FInfo
);
4563 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
4567 if (isa
<FunctionDecl
>(D
)) {
4568 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
4569 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
4570 return GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false, /*DontDefer=*/false,
4574 return GetAddrOfGlobalVar(cast
<VarDecl
>(D
), /*Ty=*/nullptr, IsForDefinition
);
4577 llvm::GlobalVariable
*CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4578 StringRef Name
, llvm::Type
*Ty
, llvm::GlobalValue::LinkageTypes Linkage
,
4579 llvm::Align Alignment
) {
4580 llvm::GlobalVariable
*GV
= getModule().getNamedGlobal(Name
);
4581 llvm::GlobalVariable
*OldGV
= nullptr;
4584 // Check if the variable has the right type.
4585 if (GV
->getValueType() == Ty
)
4588 // Because C++ name mangling, the only way we can end up with an already
4589 // existing global with the same name is if it has been declared extern "C".
4590 assert(GV
->isDeclaration() && "Declaration has wrong type!");
4594 // Create a new variable.
4595 GV
= new llvm::GlobalVariable(getModule(), Ty
, /*isConstant=*/true,
4596 Linkage
, nullptr, Name
);
4599 // Replace occurrences of the old variable if needed.
4600 GV
->takeName(OldGV
);
4602 if (!OldGV
->use_empty()) {
4603 llvm::Constant
*NewPtrForOldDecl
=
4604 llvm::ConstantExpr::getBitCast(GV
, OldGV
->getType());
4605 OldGV
->replaceAllUsesWith(NewPtrForOldDecl
);
4608 OldGV
->eraseFromParent();
4611 if (supportsCOMDAT() && GV
->isWeakForLinker() &&
4612 !GV
->hasAvailableExternallyLinkage())
4613 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
4615 GV
->setAlignment(Alignment
);
4620 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4621 /// given global variable. If Ty is non-null and if the global doesn't exist,
4622 /// then it will be created with the specified type instead of whatever the
4623 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4624 /// that an actual global with type Ty will be returned, not conversion of a
4625 /// variable with the same mangled name but some other type.
4626 llvm::Constant
*CodeGenModule::GetAddrOfGlobalVar(const VarDecl
*D
,
4628 ForDefinition_t IsForDefinition
) {
4629 assert(D
->hasGlobalStorage() && "Not a global variable");
4630 QualType ASTTy
= D
->getType();
4632 Ty
= getTypes().ConvertTypeForMem(ASTTy
);
4634 StringRef MangledName
= getMangledName(D
);
4635 return GetOrCreateLLVMGlobal(MangledName
, Ty
, ASTTy
.getAddressSpace(), D
,
4639 /// CreateRuntimeVariable - Create a new runtime global variable with the
4640 /// specified type and name.
4642 CodeGenModule::CreateRuntimeVariable(llvm::Type
*Ty
,
4644 LangAS AddrSpace
= getContext().getLangOpts().OpenCL
? LangAS::opencl_global
4646 auto *Ret
= GetOrCreateLLVMGlobal(Name
, Ty
, AddrSpace
, nullptr);
4647 setDSOLocal(cast
<llvm::GlobalValue
>(Ret
->stripPointerCasts()));
4651 void CodeGenModule::EmitTentativeDefinition(const VarDecl
*D
) {
4652 assert(!D
->getInit() && "Cannot emit definite definitions here!");
4654 StringRef MangledName
= getMangledName(D
);
4655 llvm::GlobalValue
*GV
= GetGlobalValue(MangledName
);
4657 // We already have a definition, not declaration, with the same mangled name.
4658 // Emitting of declaration is not required (and actually overwrites emitted
4660 if (GV
&& !GV
->isDeclaration())
4663 // If we have not seen a reference to this variable yet, place it into the
4664 // deferred declarations table to be emitted if needed later.
4665 if (!MustBeEmitted(D
) && !GV
) {
4666 DeferredDecls
[MangledName
] = D
;
4670 // The tentative definition is the only definition.
4671 EmitGlobalVarDefinition(D
);
4674 void CodeGenModule::EmitExternalDeclaration(const VarDecl
*D
) {
4675 EmitExternalVarDeclaration(D
);
4678 CharUnits
CodeGenModule::GetTargetTypeStoreSize(llvm::Type
*Ty
) const {
4679 return Context
.toCharUnitsFromBits(
4680 getDataLayout().getTypeStoreSizeInBits(Ty
));
4683 LangAS
CodeGenModule::GetGlobalVarAddressSpace(const VarDecl
*D
) {
4684 if (LangOpts
.OpenCL
) {
4685 LangAS AS
= D
? D
->getType().getAddressSpace() : LangAS::opencl_global
;
4686 assert(AS
== LangAS::opencl_global
||
4687 AS
== LangAS::opencl_global_device
||
4688 AS
== LangAS::opencl_global_host
||
4689 AS
== LangAS::opencl_constant
||
4690 AS
== LangAS::opencl_local
||
4691 AS
>= LangAS::FirstTargetAddressSpace
);
4695 if (LangOpts
.SYCLIsDevice
&&
4696 (!D
|| D
->getType().getAddressSpace() == LangAS::Default
))
4697 return LangAS::sycl_global
;
4699 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
) {
4701 if (D
->hasAttr
<CUDAConstantAttr
>())
4702 return LangAS::cuda_constant
;
4703 if (D
->hasAttr
<CUDASharedAttr
>())
4704 return LangAS::cuda_shared
;
4705 if (D
->hasAttr
<CUDADeviceAttr
>())
4706 return LangAS::cuda_device
;
4707 if (D
->getType().isConstQualified())
4708 return LangAS::cuda_constant
;
4710 return LangAS::cuda_device
;
4713 if (LangOpts
.OpenMP
) {
4715 if (OpenMPRuntime
->hasAllocateAttributeForGlobalVar(D
, AS
))
4718 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D
);
4721 LangAS
CodeGenModule::GetGlobalConstantAddressSpace() const {
4722 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4723 if (LangOpts
.OpenCL
)
4724 return LangAS::opencl_constant
;
4725 if (LangOpts
.SYCLIsDevice
)
4726 return LangAS::sycl_global
;
4727 if (LangOpts
.HIP
&& LangOpts
.CUDAIsDevice
&& getTriple().isSPIRV())
4728 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4729 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4730 // with OpVariable instructions with Generic storage class which is not
4731 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4732 // UniformConstant storage class is not viable as pointers to it may not be
4733 // casted to Generic pointers which are used to model HIP's "flat" pointers.
4734 return LangAS::cuda_device
;
4735 if (auto AS
= getTarget().getConstantAddressSpace())
4737 return LangAS::Default
;
4740 // In address space agnostic languages, string literals are in default address
4741 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4742 // emitted in constant address space in LLVM IR. To be consistent with other
4743 // parts of AST, string literal global variables in constant address space
4744 // need to be casted to default address space before being put into address
4745 // map and referenced by other part of CodeGen.
4746 // In OpenCL, string literals are in constant address space in AST, therefore
4747 // they should not be casted to default address space.
4748 static llvm::Constant
*
4749 castStringLiteralToDefaultAddressSpace(CodeGenModule
&CGM
,
4750 llvm::GlobalVariable
*GV
) {
4751 llvm::Constant
*Cast
= GV
;
4752 if (!CGM
.getLangOpts().OpenCL
) {
4753 auto AS
= CGM
.GetGlobalConstantAddressSpace();
4754 if (AS
!= LangAS::Default
)
4755 Cast
= CGM
.getTargetCodeGenInfo().performAddrSpaceCast(
4756 CGM
, GV
, AS
, LangAS::Default
,
4757 GV
->getValueType()->getPointerTo(
4758 CGM
.getContext().getTargetAddressSpace(LangAS::Default
)));
4763 template<typename SomeDecl
>
4764 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl
*D
,
4765 llvm::GlobalValue
*GV
) {
4766 if (!getLangOpts().CPlusPlus
)
4769 // Must have 'used' attribute, or else inline assembly can't rely on
4770 // the name existing.
4771 if (!D
->template hasAttr
<UsedAttr
>())
4774 // Must have internal linkage and an ordinary name.
4775 if (!D
->getIdentifier() || D
->getFormalLinkage() != InternalLinkage
)
4778 // Must be in an extern "C" context. Entities declared directly within
4779 // a record are not extern "C" even if the record is in such a context.
4780 const SomeDecl
*First
= D
->getFirstDecl();
4781 if (First
->getDeclContext()->isRecord() || !First
->isInExternCContext())
4784 // OK, this is an internal linkage entity inside an extern "C" linkage
4785 // specification. Make a note of that so we can give it the "expected"
4786 // mangled name if nothing else is using that name.
4787 std::pair
<StaticExternCMap::iterator
, bool> R
=
4788 StaticExternCValues
.insert(std::make_pair(D
->getIdentifier(), GV
));
4790 // If we have multiple internal linkage entities with the same name
4791 // in extern "C" regions, none of them gets that name.
4793 R
.first
->second
= nullptr;
4796 static bool shouldBeInCOMDAT(CodeGenModule
&CGM
, const Decl
&D
) {
4797 if (!CGM
.supportsCOMDAT())
4800 if (D
.hasAttr
<SelectAnyAttr
>())
4804 if (auto *VD
= dyn_cast
<VarDecl
>(&D
))
4805 Linkage
= CGM
.getContext().GetGVALinkageForVariable(VD
);
4807 Linkage
= CGM
.getContext().GetGVALinkageForFunction(cast
<FunctionDecl
>(&D
));
4811 case GVA_AvailableExternally
:
4812 case GVA_StrongExternal
:
4814 case GVA_DiscardableODR
:
4818 llvm_unreachable("No such linkage");
4821 void CodeGenModule::maybeSetTrivialComdat(const Decl
&D
,
4822 llvm::GlobalObject
&GO
) {
4823 if (!shouldBeInCOMDAT(*this, D
))
4825 GO
.setComdat(TheModule
.getOrInsertComdat(GO
.getName()));
4828 /// Pass IsTentative as true if you want to create a tentative definition.
4829 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl
*D
,
4831 // OpenCL global variables of sampler type are translated to function calls,
4832 // therefore no need to be translated.
4833 QualType ASTTy
= D
->getType();
4834 if (getLangOpts().OpenCL
&& ASTTy
->isSamplerT())
4837 // If this is OpenMP device, check if it is legal to emit this global
4839 if (LangOpts
.OpenMPIsDevice
&& OpenMPRuntime
&&
4840 OpenMPRuntime
->emitTargetGlobalVariable(D
))
4843 llvm::TrackingVH
<llvm::Constant
> Init
;
4844 bool NeedsGlobalCtor
= false;
4845 // Whether the definition of the variable is available externally.
4846 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
4847 // since this is the job for its original source.
4848 bool IsDefinitionAvailableExternally
=
4849 getContext().GetGVALinkageForVariable(D
) == GVA_AvailableExternally
;
4850 bool NeedsGlobalDtor
=
4851 !IsDefinitionAvailableExternally
&&
4852 D
->needsDestruction(getContext()) == QualType::DK_cxx_destructor
;
4854 const VarDecl
*InitDecl
;
4855 const Expr
*InitExpr
= D
->getAnyInitializer(InitDecl
);
4857 std::optional
<ConstantEmitter
> emitter
;
4859 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4860 // as part of their declaration." Sema has already checked for
4861 // error cases, so we just need to set Init to UndefValue.
4862 bool IsCUDASharedVar
=
4863 getLangOpts().CUDAIsDevice
&& D
->hasAttr
<CUDASharedAttr
>();
4864 // Shadows of initialized device-side global variables are also left
4866 // Managed Variables should be initialized on both host side and device side.
4867 bool IsCUDAShadowVar
=
4868 !getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
4869 (D
->hasAttr
<CUDAConstantAttr
>() || D
->hasAttr
<CUDADeviceAttr
>() ||
4870 D
->hasAttr
<CUDASharedAttr
>());
4871 bool IsCUDADeviceShadowVar
=
4872 getLangOpts().CUDAIsDevice
&& !D
->hasAttr
<HIPManagedAttr
>() &&
4873 (D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
4874 D
->getType()->isCUDADeviceBuiltinTextureType());
4875 if (getLangOpts().CUDA
&&
4876 (IsCUDASharedVar
|| IsCUDAShadowVar
|| IsCUDADeviceShadowVar
))
4877 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
4878 else if (D
->hasAttr
<LoaderUninitializedAttr
>())
4879 Init
= llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy
));
4880 else if (!InitExpr
) {
4881 // This is a tentative definition; tentative definitions are
4882 // implicitly initialized with { 0 }.
4884 // Note that tentative definitions are only emitted at the end of
4885 // a translation unit, so they should never have incomplete
4886 // type. In addition, EmitTentativeDefinition makes sure that we
4887 // never attempt to emit a tentative definition if a real one
4888 // exists. A use may still exists, however, so we still may need
4890 assert(!ASTTy
->isIncompleteType() && "Unexpected incomplete type");
4891 Init
= EmitNullConstant(D
->getType());
4893 initializedGlobalDecl
= GlobalDecl(D
);
4894 emitter
.emplace(*this);
4895 llvm::Constant
*Initializer
= emitter
->tryEmitForInitializer(*InitDecl
);
4897 QualType T
= InitExpr
->getType();
4898 if (D
->getType()->isReferenceType())
4901 if (getLangOpts().CPlusPlus
) {
4902 if (InitDecl
->hasFlexibleArrayInit(getContext()))
4903 ErrorUnsupported(D
, "flexible array initializer");
4904 Init
= EmitNullConstant(T
);
4906 if (!IsDefinitionAvailableExternally
)
4907 NeedsGlobalCtor
= true;
4909 ErrorUnsupported(D
, "static initializer");
4910 Init
= llvm::UndefValue::get(getTypes().ConvertType(T
));
4914 // We don't need an initializer, so remove the entry for the delayed
4915 // initializer position (just in case this entry was delayed) if we
4916 // also don't need to register a destructor.
4917 if (getLangOpts().CPlusPlus
&& !NeedsGlobalDtor
)
4918 DelayedCXXInitPosition
.erase(D
);
4921 CharUnits VarSize
= getContext().getTypeSizeInChars(ASTTy
) +
4922 InitDecl
->getFlexibleArrayInitChars(getContext());
4923 CharUnits CstSize
= CharUnits::fromQuantity(
4924 getDataLayout().getTypeAllocSize(Init
->getType()));
4925 assert(VarSize
== CstSize
&& "Emitted constant has unexpected size");
4930 llvm::Type
* InitType
= Init
->getType();
4931 llvm::Constant
*Entry
=
4932 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
));
4934 // Strip off pointer casts if we got them.
4935 Entry
= Entry
->stripPointerCasts();
4937 // Entry is now either a Function or GlobalVariable.
4938 auto *GV
= dyn_cast
<llvm::GlobalVariable
>(Entry
);
4940 // We have a definition after a declaration with the wrong type.
4941 // We must make a new GlobalVariable* and update everything that used OldGV
4942 // (a declaration or tentative definition) with the new GlobalVariable*
4943 // (which will be a definition).
4945 // This happens if there is a prototype for a global (e.g.
4946 // "extern int x[];") and then a definition of a different type (e.g.
4947 // "int x[10];"). This also happens when an initializer has a different type
4948 // from the type of the global (this happens with unions).
4949 if (!GV
|| GV
->getValueType() != InitType
||
4950 GV
->getType()->getAddressSpace() !=
4951 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D
))) {
4953 // Move the old entry aside so that we'll create a new one.
4954 Entry
->setName(StringRef());
4956 // Make a new global with the correct type, this is now guaranteed to work.
4957 GV
= cast
<llvm::GlobalVariable
>(
4958 GetAddrOfGlobalVar(D
, InitType
, ForDefinition_t(!IsTentative
))
4959 ->stripPointerCasts());
4961 // Replace all uses of the old global with the new global
4962 llvm::Constant
*NewPtrForOldDecl
=
4963 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
,
4965 Entry
->replaceAllUsesWith(NewPtrForOldDecl
);
4967 // Erase the old global, since it is no longer used.
4968 cast
<llvm::GlobalValue
>(Entry
)->eraseFromParent();
4971 MaybeHandleStaticInExternC(D
, GV
);
4973 if (D
->hasAttr
<AnnotateAttr
>())
4974 AddGlobalAnnotations(D
, GV
);
4976 // Set the llvm linkage type as appropriate.
4977 llvm::GlobalValue::LinkageTypes Linkage
=
4978 getLLVMLinkageVarDefinition(D
, GV
->isConstant());
4980 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4981 // the device. [...]"
4982 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4983 // __device__, declares a variable that: [...]
4984 // Is accessible from all the threads within the grid and from the host
4985 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4986 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4987 if (GV
&& LangOpts
.CUDA
) {
4988 if (LangOpts
.CUDAIsDevice
) {
4989 if (Linkage
!= llvm::GlobalValue::InternalLinkage
&&
4990 (D
->hasAttr
<CUDADeviceAttr
>() || D
->hasAttr
<CUDAConstantAttr
>() ||
4991 D
->getType()->isCUDADeviceBuiltinSurfaceType() ||
4992 D
->getType()->isCUDADeviceBuiltinTextureType()))
4993 GV
->setExternallyInitialized(true);
4995 getCUDARuntime().internalizeDeviceSideVar(D
, Linkage
);
4997 getCUDARuntime().handleVarRegistration(D
, *GV
);
5000 GV
->setInitializer(Init
);
5002 emitter
->finalize(GV
);
5004 // If it is safe to mark the global 'constant', do so now.
5005 GV
->setConstant(!NeedsGlobalCtor
&& !NeedsGlobalDtor
&&
5006 isTypeConstant(D
->getType(), true));
5008 // If it is in a read-only section, mark it 'constant'.
5009 if (const SectionAttr
*SA
= D
->getAttr
<SectionAttr
>()) {
5010 const ASTContext::SectionInfo
&SI
= Context
.SectionInfos
[SA
->getName()];
5011 if ((SI
.SectionFlags
& ASTContext::PSF_Write
) == 0)
5012 GV
->setConstant(true);
5015 CharUnits AlignVal
= getContext().getDeclAlign(D
);
5016 // Check for alignment specifed in an 'omp allocate' directive.
5017 if (std::optional
<CharUnits
> AlignValFromAllocate
=
5018 getOMPAllocateAlignment(D
))
5019 AlignVal
= *AlignValFromAllocate
;
5020 GV
->setAlignment(AlignVal
.getAsAlign());
5022 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5023 // function is only defined alongside the variable, not also alongside
5024 // callers. Normally, all accesses to a thread_local go through the
5025 // thread-wrapper in order to ensure initialization has occurred, underlying
5026 // variable will never be used other than the thread-wrapper, so it can be
5027 // converted to internal linkage.
5029 // However, if the variable has the 'constinit' attribute, it _can_ be
5030 // referenced directly, without calling the thread-wrapper, so the linkage
5031 // must not be changed.
5033 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5034 // weak or linkonce, the de-duplication semantics are important to preserve,
5035 // so we don't change the linkage.
5036 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
&&
5037 Linkage
== llvm::GlobalValue::ExternalLinkage
&&
5038 Context
.getTargetInfo().getTriple().isOSDarwin() &&
5039 !D
->hasAttr
<ConstInitAttr
>())
5040 Linkage
= llvm::GlobalValue::InternalLinkage
;
5042 GV
->setLinkage(Linkage
);
5043 if (D
->hasAttr
<DLLImportAttr
>())
5044 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass
);
5045 else if (D
->hasAttr
<DLLExportAttr
>())
5046 GV
->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass
);
5048 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
5050 if (Linkage
== llvm::GlobalVariable::CommonLinkage
) {
5051 // common vars aren't constant even if declared const.
5052 GV
->setConstant(false);
5053 // Tentative definition of global variables may be initialized with
5054 // non-zero null pointers. In this case they should have weak linkage
5055 // since common linkage must have zero initializer and must not have
5056 // explicit section therefore cannot have non-zero initial value.
5057 if (!GV
->getInitializer()->isNullValue())
5058 GV
->setLinkage(llvm::GlobalVariable::WeakAnyLinkage
);
5061 setNonAliasAttributes(D
, GV
);
5063 if (D
->getTLSKind() && !GV
->isThreadLocal()) {
5064 if (D
->getTLSKind() == VarDecl::TLS_Dynamic
)
5065 CXXThreadLocals
.push_back(D
);
5069 maybeSetTrivialComdat(*D
, *GV
);
5071 // Emit the initializer function if necessary.
5072 if (NeedsGlobalCtor
|| NeedsGlobalDtor
)
5073 EmitCXXGlobalVarDeclInitFunc(D
, GV
, NeedsGlobalCtor
);
5075 SanitizerMD
->reportGlobal(GV
, *D
, NeedsGlobalCtor
);
5077 // Emit global variable debug information.
5078 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5079 if (getCodeGenOpts().hasReducedDebugInfo())
5080 DI
->EmitGlobalVariable(GV
, D
);
5083 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl
*D
) {
5084 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5085 if (getCodeGenOpts().hasReducedDebugInfo()) {
5086 QualType ASTTy
= D
->getType();
5087 llvm::Type
*Ty
= getTypes().ConvertTypeForMem(D
->getType());
5088 llvm::Constant
*GV
=
5089 GetOrCreateLLVMGlobal(D
->getName(), Ty
, ASTTy
.getAddressSpace(), D
);
5090 DI
->EmitExternalVariable(
5091 cast
<llvm::GlobalVariable
>(GV
->stripPointerCasts()), D
);
5095 static bool isVarDeclStrongDefinition(const ASTContext
&Context
,
5096 CodeGenModule
&CGM
, const VarDecl
*D
,
5098 // Don't give variables common linkage if -fno-common was specified unless it
5099 // was overridden by a NoCommon attribute.
5100 if ((NoCommon
|| D
->hasAttr
<NoCommonAttr
>()) && !D
->hasAttr
<CommonAttr
>())
5104 // A declaration of an identifier for an object that has file scope without
5105 // an initializer, and without a storage-class specifier or with the
5106 // storage-class specifier static, constitutes a tentative definition.
5107 if (D
->getInit() || D
->hasExternalStorage())
5110 // A variable cannot be both common and exist in a section.
5111 if (D
->hasAttr
<SectionAttr
>())
5114 // A variable cannot be both common and exist in a section.
5115 // We don't try to determine which is the right section in the front-end.
5116 // If no specialized section name is applicable, it will resort to default.
5117 if (D
->hasAttr
<PragmaClangBSSSectionAttr
>() ||
5118 D
->hasAttr
<PragmaClangDataSectionAttr
>() ||
5119 D
->hasAttr
<PragmaClangRelroSectionAttr
>() ||
5120 D
->hasAttr
<PragmaClangRodataSectionAttr
>())
5123 // Thread local vars aren't considered common linkage.
5124 if (D
->getTLSKind())
5127 // Tentative definitions marked with WeakImportAttr are true definitions.
5128 if (D
->hasAttr
<WeakImportAttr
>())
5131 // A variable cannot be both common and exist in a comdat.
5132 if (shouldBeInCOMDAT(CGM
, *D
))
5135 // Declarations with a required alignment do not have common linkage in MSVC
5137 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
5138 if (D
->hasAttr
<AlignedAttr
>())
5140 QualType VarType
= D
->getType();
5141 if (Context
.isAlignmentRequired(VarType
))
5144 if (const auto *RT
= VarType
->getAs
<RecordType
>()) {
5145 const RecordDecl
*RD
= RT
->getDecl();
5146 for (const FieldDecl
*FD
: RD
->fields()) {
5147 if (FD
->isBitField())
5149 if (FD
->hasAttr
<AlignedAttr
>())
5151 if (Context
.isAlignmentRequired(FD
->getType()))
5157 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5158 // common symbols, so symbols with greater alignment requirements cannot be
5160 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5161 // alignments for common symbols via the aligncomm directive, so this
5162 // restriction only applies to MSVC environments.
5163 if (Context
.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5164 Context
.getTypeAlignIfKnown(D
->getType()) >
5165 Context
.toBits(CharUnits::fromQuantity(32)))
5171 llvm::GlobalValue::LinkageTypes
CodeGenModule::getLLVMLinkageForDeclarator(
5172 const DeclaratorDecl
*D
, GVALinkage Linkage
, bool IsConstantVariable
) {
5173 if (Linkage
== GVA_Internal
)
5174 return llvm::Function::InternalLinkage
;
5176 if (D
->hasAttr
<WeakAttr
>())
5177 return llvm::GlobalVariable::WeakAnyLinkage
;
5179 if (const auto *FD
= D
->getAsFunction())
5180 if (FD
->isMultiVersion() && Linkage
== GVA_AvailableExternally
)
5181 return llvm::GlobalVariable::LinkOnceAnyLinkage
;
5183 // We are guaranteed to have a strong definition somewhere else,
5184 // so we can use available_externally linkage.
5185 if (Linkage
== GVA_AvailableExternally
)
5186 return llvm::GlobalValue::AvailableExternallyLinkage
;
5188 // Note that Apple's kernel linker doesn't support symbol
5189 // coalescing, so we need to avoid linkonce and weak linkages there.
5190 // Normally, this means we just map to internal, but for explicit
5191 // instantiations we'll map to external.
5193 // In C++, the compiler has to emit a definition in every translation unit
5194 // that references the function. We should use linkonce_odr because
5195 // a) if all references in this translation unit are optimized away, we
5196 // don't need to codegen it. b) if the function persists, it needs to be
5197 // merged with other definitions. c) C++ has the ODR, so we know the
5198 // definition is dependable.
5199 if (Linkage
== GVA_DiscardableODR
)
5200 return !Context
.getLangOpts().AppleKext
? llvm::Function::LinkOnceODRLinkage
5201 : llvm::Function::InternalLinkage
;
5203 // An explicit instantiation of a template has weak linkage, since
5204 // explicit instantiations can occur in multiple translation units
5205 // and must all be equivalent. However, we are not allowed to
5206 // throw away these explicit instantiations.
5208 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5209 // so say that CUDA templates are either external (for kernels) or internal.
5210 // This lets llvm perform aggressive inter-procedural optimizations. For
5211 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5212 // therefore we need to follow the normal linkage paradigm.
5213 if (Linkage
== GVA_StrongODR
) {
5214 if (getLangOpts().AppleKext
)
5215 return llvm::Function::ExternalLinkage
;
5216 if (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
&&
5217 !getLangOpts().GPURelocatableDeviceCode
)
5218 return D
->hasAttr
<CUDAGlobalAttr
>() ? llvm::Function::ExternalLinkage
5219 : llvm::Function::InternalLinkage
;
5220 return llvm::Function::WeakODRLinkage
;
5223 // C++ doesn't have tentative definitions and thus cannot have common
5225 if (!getLangOpts().CPlusPlus
&& isa
<VarDecl
>(D
) &&
5226 !isVarDeclStrongDefinition(Context
, *this, cast
<VarDecl
>(D
),
5227 CodeGenOpts
.NoCommon
))
5228 return llvm::GlobalVariable::CommonLinkage
;
5230 // selectany symbols are externally visible, so use weak instead of
5231 // linkonce. MSVC optimizes away references to const selectany globals, so
5232 // all definitions should be the same and ODR linkage should be used.
5233 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5234 if (D
->hasAttr
<SelectAnyAttr
>())
5235 return llvm::GlobalVariable::WeakODRLinkage
;
5237 // Otherwise, we have strong external linkage.
5238 assert(Linkage
== GVA_StrongExternal
);
5239 return llvm::GlobalVariable::ExternalLinkage
;
5242 llvm::GlobalValue::LinkageTypes
CodeGenModule::getLLVMLinkageVarDefinition(
5243 const VarDecl
*VD
, bool IsConstant
) {
5244 GVALinkage Linkage
= getContext().GetGVALinkageForVariable(VD
);
5245 return getLLVMLinkageForDeclarator(VD
, Linkage
, IsConstant
);
5248 /// Replace the uses of a function that was declared with a non-proto type.
5249 /// We want to silently drop extra arguments from call sites
5250 static void replaceUsesOfNonProtoConstant(llvm::Constant
*old
,
5251 llvm::Function
*newFn
) {
5253 if (old
->use_empty()) return;
5255 llvm::Type
*newRetTy
= newFn
->getReturnType();
5256 SmallVector
<llvm::Value
*, 4> newArgs
;
5258 for (llvm::Value::use_iterator ui
= old
->use_begin(), ue
= old
->use_end();
5260 llvm::Value::use_iterator use
= ui
++; // Increment before the use is erased.
5261 llvm::User
*user
= use
->getUser();
5263 // Recognize and replace uses of bitcasts. Most calls to
5264 // unprototyped functions will use bitcasts.
5265 if (auto *bitcast
= dyn_cast
<llvm::ConstantExpr
>(user
)) {
5266 if (bitcast
->getOpcode() == llvm::Instruction::BitCast
)
5267 replaceUsesOfNonProtoConstant(bitcast
, newFn
);
5271 // Recognize calls to the function.
5272 llvm::CallBase
*callSite
= dyn_cast
<llvm::CallBase
>(user
);
5273 if (!callSite
) continue;
5274 if (!callSite
->isCallee(&*use
))
5277 // If the return types don't match exactly, then we can't
5278 // transform this call unless it's dead.
5279 if (callSite
->getType() != newRetTy
&& !callSite
->use_empty())
5282 // Get the call site's attribute list.
5283 SmallVector
<llvm::AttributeSet
, 8> newArgAttrs
;
5284 llvm::AttributeList oldAttrs
= callSite
->getAttributes();
5286 // If the function was passed too few arguments, don't transform.
5287 unsigned newNumArgs
= newFn
->arg_size();
5288 if (callSite
->arg_size() < newNumArgs
)
5291 // If extra arguments were passed, we silently drop them.
5292 // If any of the types mismatch, we don't transform.
5294 bool dontTransform
= false;
5295 for (llvm::Argument
&A
: newFn
->args()) {
5296 if (callSite
->getArgOperand(argNo
)->getType() != A
.getType()) {
5297 dontTransform
= true;
5301 // Add any parameter attributes.
5302 newArgAttrs
.push_back(oldAttrs
.getParamAttrs(argNo
));
5308 // Okay, we can transform this. Create the new call instruction and copy
5309 // over the required information.
5310 newArgs
.append(callSite
->arg_begin(), callSite
->arg_begin() + argNo
);
5312 // Copy over any operand bundles.
5313 SmallVector
<llvm::OperandBundleDef
, 1> newBundles
;
5314 callSite
->getOperandBundlesAsDefs(newBundles
);
5316 llvm::CallBase
*newCall
;
5317 if (isa
<llvm::CallInst
>(callSite
)) {
5319 llvm::CallInst::Create(newFn
, newArgs
, newBundles
, "", callSite
);
5321 auto *oldInvoke
= cast
<llvm::InvokeInst
>(callSite
);
5322 newCall
= llvm::InvokeInst::Create(newFn
, oldInvoke
->getNormalDest(),
5323 oldInvoke
->getUnwindDest(), newArgs
,
5324 newBundles
, "", callSite
);
5326 newArgs
.clear(); // for the next iteration
5328 if (!newCall
->getType()->isVoidTy())
5329 newCall
->takeName(callSite
);
5330 newCall
->setAttributes(
5331 llvm::AttributeList::get(newFn
->getContext(), oldAttrs
.getFnAttrs(),
5332 oldAttrs
.getRetAttrs(), newArgAttrs
));
5333 newCall
->setCallingConv(callSite
->getCallingConv());
5335 // Finally, remove the old call, replacing any uses with the new one.
5336 if (!callSite
->use_empty())
5337 callSite
->replaceAllUsesWith(newCall
);
5339 // Copy debug location attached to CI.
5340 if (callSite
->getDebugLoc())
5341 newCall
->setDebugLoc(callSite
->getDebugLoc());
5343 callSite
->eraseFromParent();
5347 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5348 /// implement a function with no prototype, e.g. "int foo() {}". If there are
5349 /// existing call uses of the old function in the module, this adjusts them to
5350 /// call the new function directly.
5352 /// This is not just a cleanup: the always_inline pass requires direct calls to
5353 /// functions to be able to inline them. If there is a bitcast in the way, it
5354 /// won't inline them. Instcombine normally deletes these calls, but it isn't
5356 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue
*Old
,
5357 llvm::Function
*NewFn
) {
5358 // If we're redefining a global as a function, don't transform it.
5359 if (!isa
<llvm::Function
>(Old
)) return;
5361 replaceUsesOfNonProtoConstant(Old
, NewFn
);
5364 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl
*VD
) {
5365 auto DK
= VD
->isThisDeclarationADefinition();
5366 if (DK
== VarDecl::Definition
&& VD
->hasAttr
<DLLImportAttr
>())
5369 TemplateSpecializationKind TSK
= VD
->getTemplateSpecializationKind();
5370 // If we have a definition, this might be a deferred decl. If the
5371 // instantiation is explicit, make sure we emit it at the end.
5372 if (VD
->getDefinition() && TSK
== TSK_ExplicitInstantiationDefinition
)
5373 GetAddrOfGlobalVar(VD
);
5375 EmitTopLevelDecl(VD
);
5378 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD
,
5379 llvm::GlobalValue
*GV
) {
5380 const auto *D
= cast
<FunctionDecl
>(GD
.getDecl());
5382 // Compute the function info and LLVM type.
5383 const CGFunctionInfo
&FI
= getTypes().arrangeGlobalDeclaration(GD
);
5384 llvm::FunctionType
*Ty
= getTypes().GetFunctionType(FI
);
5386 // Get or create the prototype for the function.
5387 if (!GV
|| (GV
->getValueType() != Ty
))
5388 GV
= cast
<llvm::GlobalValue
>(GetAddrOfFunction(GD
, Ty
, /*ForVTable=*/false,
5393 if (!GV
->isDeclaration())
5396 // We need to set linkage and visibility on the function before
5397 // generating code for it because various parts of IR generation
5398 // want to propagate this information down (e.g. to local static
5400 auto *Fn
= cast
<llvm::Function
>(GV
);
5401 setFunctionLinkage(GD
, Fn
);
5403 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5404 setGVProperties(Fn
, GD
);
5406 MaybeHandleStaticInExternC(D
, Fn
);
5408 maybeSetTrivialComdat(*D
, *Fn
);
5410 // Set CodeGen attributes that represent floating point environment.
5411 setLLVMFunctionFEnvAttributes(D
, Fn
);
5413 CodeGenFunction(*this).GenerateCode(GD
, Fn
, FI
);
5415 setNonAliasAttributes(GD
, Fn
);
5416 SetLLVMFunctionAttributesForDefinition(D
, Fn
);
5418 if (const ConstructorAttr
*CA
= D
->getAttr
<ConstructorAttr
>())
5419 AddGlobalCtor(Fn
, CA
->getPriority());
5420 if (const DestructorAttr
*DA
= D
->getAttr
<DestructorAttr
>())
5421 AddGlobalDtor(Fn
, DA
->getPriority(), true);
5422 if (D
->hasAttr
<AnnotateAttr
>())
5423 AddGlobalAnnotations(D
, Fn
);
5426 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD
) {
5427 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
5428 const AliasAttr
*AA
= D
->getAttr
<AliasAttr
>();
5429 assert(AA
&& "Not an alias?");
5431 StringRef MangledName
= getMangledName(GD
);
5433 if (AA
->getAliasee() == MangledName
) {
5434 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
5438 // If there is a definition in the module, then it wins over the alias.
5439 // This is dubious, but allow it to be safe. Just ignore the alias.
5440 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
5441 if (Entry
&& !Entry
->isDeclaration())
5444 Aliases
.push_back(GD
);
5446 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
5448 // Create a reference to the named value. This ensures that it is emitted
5449 // if a deferred decl.
5450 llvm::Constant
*Aliasee
;
5451 llvm::GlobalValue::LinkageTypes LT
;
5452 if (isa
<llvm::FunctionType
>(DeclTy
)) {
5453 Aliasee
= GetOrCreateLLVMFunction(AA
->getAliasee(), DeclTy
, GD
,
5454 /*ForVTable=*/false);
5455 LT
= getFunctionLinkage(GD
);
5457 Aliasee
= GetOrCreateLLVMGlobal(AA
->getAliasee(), DeclTy
, LangAS::Default
,
5459 if (const auto *VD
= dyn_cast
<VarDecl
>(GD
.getDecl()))
5460 LT
= getLLVMLinkageVarDefinition(VD
, D
->getType().isConstQualified());
5462 LT
= getFunctionLinkage(GD
);
5465 // Create the new alias itself, but don't set a name yet.
5466 unsigned AS
= Aliasee
->getType()->getPointerAddressSpace();
5468 llvm::GlobalAlias::create(DeclTy
, AS
, LT
, "", Aliasee
, &getModule());
5471 if (GA
->getAliasee() == Entry
) {
5472 Diags
.Report(AA
->getLocation(), diag::err_cyclic_alias
) << 0;
5476 assert(Entry
->isDeclaration());
5478 // If there is a declaration in the module, then we had an extern followed
5479 // by the alias, as in:
5480 // extern int test6();
5482 // int test6() __attribute__((alias("test7")));
5484 // Remove it and replace uses of it with the alias.
5485 GA
->takeName(Entry
);
5487 Entry
->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA
,
5489 Entry
->eraseFromParent();
5491 GA
->setName(MangledName
);
5494 // Set attributes which are particular to an alias; this is a
5495 // specialization of the attributes which may be set on a global
5496 // variable/function.
5497 if (D
->hasAttr
<WeakAttr
>() || D
->hasAttr
<WeakRefAttr
>() ||
5498 D
->isWeakImported()) {
5499 GA
->setLinkage(llvm::Function::WeakAnyLinkage
);
5502 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
5503 if (VD
->getTLSKind())
5504 setTLSMode(GA
, *VD
);
5506 SetCommonAttributes(GD
, GA
);
5508 // Emit global alias debug information.
5509 if (isa
<VarDecl
>(D
))
5510 if (CGDebugInfo
*DI
= getModuleDebugInfo())
5511 DI
->EmitGlobalAlias(cast
<llvm::GlobalValue
>(GA
->getAliasee()->stripPointerCasts()), GD
);
5514 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD
) {
5515 const auto *D
= cast
<ValueDecl
>(GD
.getDecl());
5516 const IFuncAttr
*IFA
= D
->getAttr
<IFuncAttr
>();
5517 assert(IFA
&& "Not an ifunc?");
5519 StringRef MangledName
= getMangledName(GD
);
5521 if (IFA
->getResolver() == MangledName
) {
5522 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
5526 // Report an error if some definition overrides ifunc.
5527 llvm::GlobalValue
*Entry
= GetGlobalValue(MangledName
);
5528 if (Entry
&& !Entry
->isDeclaration()) {
5530 if (lookupRepresentativeDecl(MangledName
, OtherGD
) &&
5531 DiagnosedConflictingDefinitions
.insert(GD
).second
) {
5532 Diags
.Report(D
->getLocation(), diag::err_duplicate_mangled_name
)
5534 Diags
.Report(OtherGD
.getDecl()->getLocation(),
5535 diag::note_previous_definition
);
5540 Aliases
.push_back(GD
);
5542 llvm::Type
*DeclTy
= getTypes().ConvertTypeForMem(D
->getType());
5543 llvm::Type
*ResolverTy
= llvm::GlobalIFunc::getResolverFunctionType(DeclTy
);
5544 llvm::Constant
*Resolver
=
5545 GetOrCreateLLVMFunction(IFA
->getResolver(), ResolverTy
, {},
5546 /*ForVTable=*/false);
5547 llvm::GlobalIFunc
*GIF
=
5548 llvm::GlobalIFunc::create(DeclTy
, 0, llvm::Function::ExternalLinkage
,
5549 "", Resolver
, &getModule());
5551 if (GIF
->getResolver() == Entry
) {
5552 Diags
.Report(IFA
->getLocation(), diag::err_cyclic_alias
) << 1;
5555 assert(Entry
->isDeclaration());
5557 // If there is a declaration in the module, then we had an extern followed
5558 // by the ifunc, as in:
5559 // extern int test();
5561 // int test() __attribute__((ifunc("resolver")));
5563 // Remove it and replace uses of it with the ifunc.
5564 GIF
->takeName(Entry
);
5566 Entry
->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF
,
5568 Entry
->eraseFromParent();
5570 GIF
->setName(MangledName
);
5572 SetCommonAttributes(GD
, GIF
);
5575 llvm::Function
*CodeGenModule::getIntrinsic(unsigned IID
,
5576 ArrayRef
<llvm::Type
*> Tys
) {
5577 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID
)IID
,
5581 static llvm::StringMapEntry
<llvm::GlobalVariable
*> &
5582 GetConstantCFStringEntry(llvm::StringMap
<llvm::GlobalVariable
*> &Map
,
5583 const StringLiteral
*Literal
, bool TargetIsLSB
,
5584 bool &IsUTF16
, unsigned &StringLength
) {
5585 StringRef String
= Literal
->getString();
5586 unsigned NumBytes
= String
.size();
5588 // Check for simple case.
5589 if (!Literal
->containsNonAsciiOrNull()) {
5590 StringLength
= NumBytes
;
5591 return *Map
.insert(std::make_pair(String
, nullptr)).first
;
5594 // Otherwise, convert the UTF8 literals into a string of shorts.
5597 SmallVector
<llvm::UTF16
, 128> ToBuf(NumBytes
+ 1); // +1 for ending nulls.
5598 const llvm::UTF8
*FromPtr
= (const llvm::UTF8
*)String
.data();
5599 llvm::UTF16
*ToPtr
= &ToBuf
[0];
5601 (void)llvm::ConvertUTF8toUTF16(&FromPtr
, FromPtr
+ NumBytes
, &ToPtr
,
5602 ToPtr
+ NumBytes
, llvm::strictConversion
);
5604 // ConvertUTF8toUTF16 returns the length in ToPtr.
5605 StringLength
= ToPtr
- &ToBuf
[0];
5607 // Add an explicit null.
5609 return *Map
.insert(std::make_pair(
5610 StringRef(reinterpret_cast<const char *>(ToBuf
.data()),
5611 (StringLength
+ 1) * 2),
5616 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral
*Literal
) {
5617 unsigned StringLength
= 0;
5618 bool isUTF16
= false;
5619 llvm::StringMapEntry
<llvm::GlobalVariable
*> &Entry
=
5620 GetConstantCFStringEntry(CFConstantStringMap
, Literal
,
5621 getDataLayout().isLittleEndian(), isUTF16
,
5624 if (auto *C
= Entry
.second
)
5625 return ConstantAddress(
5626 C
, C
->getValueType(), CharUnits::fromQuantity(C
->getAlignment()));
5628 llvm::Constant
*Zero
= llvm::Constant::getNullValue(Int32Ty
);
5629 llvm::Constant
*Zeros
[] = { Zero
, Zero
};
5631 const ASTContext
&Context
= getContext();
5632 const llvm::Triple
&Triple
= getTriple();
5634 const auto CFRuntime
= getLangOpts().CFRuntime
;
5635 const bool IsSwiftABI
=
5636 static_cast<unsigned>(CFRuntime
) >=
5637 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift
);
5638 const bool IsSwift4_1
= CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
;
5640 // If we don't already have it, get __CFConstantStringClassReference.
5641 if (!CFConstantStringClassRef
) {
5642 const char *CFConstantStringClassName
= "__CFConstantStringClassReference";
5643 llvm::Type
*Ty
= getTypes().ConvertType(getContext().IntTy
);
5644 Ty
= llvm::ArrayType::get(Ty
, 0);
5646 switch (CFRuntime
) {
5648 case LangOptions::CoreFoundationABI::Swift
: [[fallthrough
]];
5649 case LangOptions::CoreFoundationABI::Swift5_0
:
5650 CFConstantStringClassName
=
5651 Triple
.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5652 : "$s10Foundation19_NSCFConstantStringCN";
5655 case LangOptions::CoreFoundationABI::Swift4_2
:
5656 CFConstantStringClassName
=
5657 Triple
.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5658 : "$S10Foundation19_NSCFConstantStringCN";
5661 case LangOptions::CoreFoundationABI::Swift4_1
:
5662 CFConstantStringClassName
=
5663 Triple
.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5664 : "__T010Foundation19_NSCFConstantStringCN";
5669 llvm::Constant
*C
= CreateRuntimeVariable(Ty
, CFConstantStringClassName
);
5671 if (Triple
.isOSBinFormatELF() || Triple
.isOSBinFormatCOFF()) {
5672 llvm::GlobalValue
*GV
= nullptr;
5674 if ((GV
= dyn_cast
<llvm::GlobalValue
>(C
))) {
5675 IdentifierInfo
&II
= Context
.Idents
.get(GV
->getName());
5676 TranslationUnitDecl
*TUDecl
= Context
.getTranslationUnitDecl();
5677 DeclContext
*DC
= TranslationUnitDecl::castToDeclContext(TUDecl
);
5679 const VarDecl
*VD
= nullptr;
5680 for (const auto *Result
: DC
->lookup(&II
))
5681 if ((VD
= dyn_cast
<VarDecl
>(Result
)))
5684 if (Triple
.isOSBinFormatELF()) {
5686 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
5688 GV
->setLinkage(llvm::GlobalValue::ExternalLinkage
);
5689 if (!VD
|| !VD
->hasAttr
<DLLExportAttr
>())
5690 GV
->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass
);
5692 GV
->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass
);
5699 // Decay array -> ptr
5700 CFConstantStringClassRef
=
5701 IsSwiftABI
? llvm::ConstantExpr::getPtrToInt(C
, Ty
)
5702 : llvm::ConstantExpr::getGetElementPtr(Ty
, C
, Zeros
);
5705 QualType CFTy
= Context
.getCFConstantStringType();
5707 auto *STy
= cast
<llvm::StructType
>(getTypes().ConvertType(CFTy
));
5709 ConstantInitBuilder
Builder(*this);
5710 auto Fields
= Builder
.beginStruct(STy
);
5713 Fields
.add(cast
<llvm::Constant
>(CFConstantStringClassRef
));
5717 Fields
.addInt(IntPtrTy
, IsSwift4_1
? 0x05 : 0x01);
5718 Fields
.addInt(Int64Ty
, isUTF16
? 0x07d0 : 0x07c8);
5720 Fields
.addInt(IntTy
, isUTF16
? 0x07d0 : 0x07C8);
5724 llvm::Constant
*C
= nullptr;
5726 auto Arr
= llvm::ArrayRef(
5727 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry
.first().data())),
5728 Entry
.first().size() / 2);
5729 C
= llvm::ConstantDataArray::get(VMContext
, Arr
);
5731 C
= llvm::ConstantDataArray::getString(VMContext
, Entry
.first());
5734 // Note: -fwritable-strings doesn't make the backing store strings of
5735 // CFStrings writable. (See <rdar://problem/10657500>)
5737 new llvm::GlobalVariable(getModule(), C
->getType(), /*isConstant=*/true,
5738 llvm::GlobalValue::PrivateLinkage
, C
, ".str");
5739 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
5740 // Don't enforce the target's minimum global alignment, since the only use
5741 // of the string is via this class initializer.
5742 CharUnits Align
= isUTF16
? Context
.getTypeAlignInChars(Context
.ShortTy
)
5743 : Context
.getTypeAlignInChars(Context
.CharTy
);
5744 GV
->setAlignment(Align
.getAsAlign());
5746 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5747 // Without it LLVM can merge the string with a non unnamed_addr one during
5748 // LTO. Doing that changes the section it ends in, which surprises ld64.
5749 if (Triple
.isOSBinFormatMachO())
5750 GV
->setSection(isUTF16
? "__TEXT,__ustring"
5751 : "__TEXT,__cstring,cstring_literals");
5752 // Make sure the literal ends up in .rodata to allow for safe ICF and for
5753 // the static linker to adjust permissions to read-only later on.
5754 else if (Triple
.isOSBinFormatELF())
5755 GV
->setSection(".rodata");
5758 llvm::Constant
*Str
=
5759 llvm::ConstantExpr::getGetElementPtr(GV
->getValueType(), GV
, Zeros
);
5762 // Cast the UTF16 string to the correct type.
5763 Str
= llvm::ConstantExpr::getBitCast(Str
, Int8PtrTy
);
5767 llvm::IntegerType
*LengthTy
=
5768 llvm::IntegerType::get(getModule().getContext(),
5769 Context
.getTargetInfo().getLongWidth());
5771 if (CFRuntime
== LangOptions::CoreFoundationABI::Swift4_1
||
5772 CFRuntime
== LangOptions::CoreFoundationABI::Swift4_2
)
5775 LengthTy
= IntPtrTy
;
5777 Fields
.addInt(LengthTy
, StringLength
);
5779 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5780 // properly aligned on 32-bit platforms.
5781 CharUnits Alignment
=
5782 IsSwiftABI
? Context
.toCharUnitsFromBits(64) : getPointerAlign();
5785 GV
= Fields
.finishAndCreateGlobal("_unnamed_cfstring_", Alignment
,
5786 /*isConstant=*/false,
5787 llvm::GlobalVariable::PrivateLinkage
);
5788 GV
->addAttribute("objc_arc_inert");
5789 switch (Triple
.getObjectFormat()) {
5790 case llvm::Triple::UnknownObjectFormat
:
5791 llvm_unreachable("unknown file format");
5792 case llvm::Triple::DXContainer
:
5793 case llvm::Triple::GOFF
:
5794 case llvm::Triple::SPIRV
:
5795 case llvm::Triple::XCOFF
:
5796 llvm_unreachable("unimplemented");
5797 case llvm::Triple::COFF
:
5798 case llvm::Triple::ELF
:
5799 case llvm::Triple::Wasm
:
5800 GV
->setSection("cfstring");
5802 case llvm::Triple::MachO
:
5803 GV
->setSection("__DATA,__cfstring");
5808 return ConstantAddress(GV
, GV
->getValueType(), Alignment
);
5811 bool CodeGenModule::getExpressionLocationsEnabled() const {
5812 return !CodeGenOpts
.EmitCodeView
|| CodeGenOpts
.DebugColumnInfo
;
5815 QualType
CodeGenModule::getObjCFastEnumerationStateType() {
5816 if (ObjCFastEnumerationStateType
.isNull()) {
5817 RecordDecl
*D
= Context
.buildImplicitRecord("__objcFastEnumerationState");
5818 D
->startDefinition();
5820 QualType FieldTypes
[] = {
5821 Context
.UnsignedLongTy
,
5822 Context
.getPointerType(Context
.getObjCIdType()),
5823 Context
.getPointerType(Context
.UnsignedLongTy
),
5824 Context
.getConstantArrayType(Context
.UnsignedLongTy
,
5825 llvm::APInt(32, 5), nullptr, ArrayType::Normal
, 0)
5828 for (size_t i
= 0; i
< 4; ++i
) {
5829 FieldDecl
*Field
= FieldDecl::Create(Context
,
5832 SourceLocation(), nullptr,
5833 FieldTypes
[i
], /*TInfo=*/nullptr,
5834 /*BitWidth=*/nullptr,
5837 Field
->setAccess(AS_public
);
5841 D
->completeDefinition();
5842 ObjCFastEnumerationStateType
= Context
.getTagDeclType(D
);
5845 return ObjCFastEnumerationStateType
;
5849 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral
*E
) {
5850 assert(!E
->getType()->isPointerType() && "Strings are always arrays");
5852 // Don't emit it as the address of the string, emit the string data itself
5853 // as an inline array.
5854 if (E
->getCharByteWidth() == 1) {
5855 SmallString
<64> Str(E
->getString());
5857 // Resize the string to the right size, which is indicated by its type.
5858 const ConstantArrayType
*CAT
= Context
.getAsConstantArrayType(E
->getType());
5859 Str
.resize(CAT
->getSize().getZExtValue());
5860 return llvm::ConstantDataArray::getString(VMContext
, Str
, false);
5863 auto *AType
= cast
<llvm::ArrayType
>(getTypes().ConvertType(E
->getType()));
5864 llvm::Type
*ElemTy
= AType
->getElementType();
5865 unsigned NumElements
= AType
->getNumElements();
5867 // Wide strings have either 2-byte or 4-byte elements.
5868 if (ElemTy
->getPrimitiveSizeInBits() == 16) {
5869 SmallVector
<uint16_t, 32> Elements
;
5870 Elements
.reserve(NumElements
);
5872 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
5873 Elements
.push_back(E
->getCodeUnit(i
));
5874 Elements
.resize(NumElements
);
5875 return llvm::ConstantDataArray::get(VMContext
, Elements
);
5878 assert(ElemTy
->getPrimitiveSizeInBits() == 32);
5879 SmallVector
<uint32_t, 32> Elements
;
5880 Elements
.reserve(NumElements
);
5882 for(unsigned i
= 0, e
= E
->getLength(); i
!= e
; ++i
)
5883 Elements
.push_back(E
->getCodeUnit(i
));
5884 Elements
.resize(NumElements
);
5885 return llvm::ConstantDataArray::get(VMContext
, Elements
);
5888 static llvm::GlobalVariable
*
5889 GenerateStringLiteral(llvm::Constant
*C
, llvm::GlobalValue::LinkageTypes LT
,
5890 CodeGenModule
&CGM
, StringRef GlobalName
,
5891 CharUnits Alignment
) {
5892 unsigned AddrSpace
= CGM
.getContext().getTargetAddressSpace(
5893 CGM
.GetGlobalConstantAddressSpace());
5895 llvm::Module
&M
= CGM
.getModule();
5896 // Create a global variable for this string
5897 auto *GV
= new llvm::GlobalVariable(
5898 M
, C
->getType(), !CGM
.getLangOpts().WritableStrings
, LT
, C
, GlobalName
,
5899 nullptr, llvm::GlobalVariable::NotThreadLocal
, AddrSpace
);
5900 GV
->setAlignment(Alignment
.getAsAlign());
5901 GV
->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global
);
5902 if (GV
->isWeakForLinker()) {
5903 assert(CGM
.supportsCOMDAT() && "Only COFF uses weak string literals");
5904 GV
->setComdat(M
.getOrInsertComdat(GV
->getName()));
5906 CGM
.setDSOLocal(GV
);
5911 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5912 /// constant array for the given string literal.
5914 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral
*S
,
5916 CharUnits Alignment
= getContext().getAlignOfGlobalVarInChars(S
->getType());
5918 llvm::Constant
*C
= GetConstantArrayFromStringLiteral(S
);
5919 llvm::GlobalVariable
**Entry
= nullptr;
5920 if (!LangOpts
.WritableStrings
) {
5921 Entry
= &ConstantStringMap
[C
];
5922 if (auto GV
= *Entry
) {
5923 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
5924 GV
->setAlignment(Alignment
.getAsAlign());
5925 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
5926 GV
->getValueType(), Alignment
);
5930 SmallString
<256> MangledNameBuffer
;
5931 StringRef GlobalVariableName
;
5932 llvm::GlobalValue::LinkageTypes LT
;
5934 // Mangle the string literal if that's how the ABI merges duplicate strings.
5935 // Don't do it if they are writable, since we don't want writes in one TU to
5936 // affect strings in another.
5937 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S
) &&
5938 !LangOpts
.WritableStrings
) {
5939 llvm::raw_svector_ostream
Out(MangledNameBuffer
);
5940 getCXXABI().getMangleContext().mangleStringLiteral(S
, Out
);
5941 LT
= llvm::GlobalValue::LinkOnceODRLinkage
;
5942 GlobalVariableName
= MangledNameBuffer
;
5944 LT
= llvm::GlobalValue::PrivateLinkage
;
5945 GlobalVariableName
= Name
;
5948 auto GV
= GenerateStringLiteral(C
, LT
, *this, GlobalVariableName
, Alignment
);
5950 CGDebugInfo
*DI
= getModuleDebugInfo();
5951 if (DI
&& getCodeGenOpts().hasReducedDebugInfo())
5952 DI
->AddStringLiteralDebugInfo(GV
, S
);
5957 SanitizerMD
->reportGlobal(GV
, S
->getStrTokenLoc(0), "<string literal>");
5959 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
5960 GV
->getValueType(), Alignment
);
5963 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5964 /// array for the given ObjCEncodeExpr node.
5966 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr
*E
) {
5968 getContext().getObjCEncodingForType(E
->getEncodedType(), Str
);
5970 return GetAddrOfConstantCString(Str
);
5973 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5974 /// the literal and a terminating '\0' character.
5975 /// The result has pointer to array type.
5976 ConstantAddress
CodeGenModule::GetAddrOfConstantCString(
5977 const std::string
&Str
, const char *GlobalName
) {
5978 StringRef
StrWithNull(Str
.c_str(), Str
.size() + 1);
5979 CharUnits Alignment
=
5980 getContext().getAlignOfGlobalVarInChars(getContext().CharTy
);
5983 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull
, false);
5985 // Don't share any string literals if strings aren't constant.
5986 llvm::GlobalVariable
**Entry
= nullptr;
5987 if (!LangOpts
.WritableStrings
) {
5988 Entry
= &ConstantStringMap
[C
];
5989 if (auto GV
= *Entry
) {
5990 if (uint64_t(Alignment
.getQuantity()) > GV
->getAlignment())
5991 GV
->setAlignment(Alignment
.getAsAlign());
5992 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
5993 GV
->getValueType(), Alignment
);
5997 // Get the default prefix if a name wasn't specified.
5999 GlobalName
= ".str";
6000 // Create a global variable for this.
6001 auto GV
= GenerateStringLiteral(C
, llvm::GlobalValue::PrivateLinkage
, *this,
6002 GlobalName
, Alignment
);
6006 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV
),
6007 GV
->getValueType(), Alignment
);
6010 ConstantAddress
CodeGenModule::GetAddrOfGlobalTemporary(
6011 const MaterializeTemporaryExpr
*E
, const Expr
*Init
) {
6012 assert((E
->getStorageDuration() == SD_Static
||
6013 E
->getStorageDuration() == SD_Thread
) && "not a global temporary");
6014 const auto *VD
= cast
<VarDecl
>(E
->getExtendingDecl());
6016 // If we're not materializing a subobject of the temporary, keep the
6017 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6018 QualType MaterializedType
= Init
->getType();
6019 if (Init
== E
->getSubExpr())
6020 MaterializedType
= E
->getType();
6022 CharUnits Align
= getContext().getTypeAlignInChars(MaterializedType
);
6024 auto InsertResult
= MaterializedGlobalTemporaryMap
.insert({E
, nullptr});
6025 if (!InsertResult
.second
) {
6026 // We've seen this before: either we already created it or we're in the
6027 // process of doing so.
6028 if (!InsertResult
.first
->second
) {
6029 // We recursively re-entered this function, probably during emission of
6030 // the initializer. Create a placeholder. We'll clean this up in the
6031 // outer call, at the end of this function.
6032 llvm::Type
*Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6033 InsertResult
.first
->second
= new llvm::GlobalVariable(
6034 getModule(), Type
, false, llvm::GlobalVariable::InternalLinkage
,
6037 return ConstantAddress(InsertResult
.first
->second
,
6038 llvm::cast
<llvm::GlobalVariable
>(
6039 InsertResult
.first
->second
->stripPointerCasts())
6044 // FIXME: If an externally-visible declaration extends multiple temporaries,
6045 // we need to give each temporary the same name in every translation unit (and
6046 // we also need to make the temporaries externally-visible).
6047 SmallString
<256> Name
;
6048 llvm::raw_svector_ostream
Out(Name
);
6049 getCXXABI().getMangleContext().mangleReferenceTemporary(
6050 VD
, E
->getManglingNumber(), Out
);
6052 APValue
*Value
= nullptr;
6053 if (E
->getStorageDuration() == SD_Static
&& VD
&& VD
->evaluateValue()) {
6054 // If the initializer of the extending declaration is a constant
6055 // initializer, we should have a cached constant initializer for this
6056 // temporary. Note that this might have a different value from the value
6057 // computed by evaluating the initializer if the surrounding constant
6058 // expression modifies the temporary.
6059 Value
= E
->getOrCreateValue(false);
6062 // Try evaluating it now, it might have a constant initializer.
6063 Expr::EvalResult EvalResult
;
6064 if (!Value
&& Init
->EvaluateAsRValue(EvalResult
, getContext()) &&
6065 !EvalResult
.hasSideEffects())
6066 Value
= &EvalResult
.Val
;
6069 VD
? GetGlobalVarAddressSpace(VD
) : MaterializedType
.getAddressSpace();
6071 std::optional
<ConstantEmitter
> emitter
;
6072 llvm::Constant
*InitialValue
= nullptr;
6073 bool Constant
= false;
6076 // The temporary has a constant initializer, use it.
6077 emitter
.emplace(*this);
6078 InitialValue
= emitter
->emitForInitializer(*Value
, AddrSpace
,
6080 Constant
= isTypeConstant(MaterializedType
, /*ExcludeCtor*/Value
);
6081 Type
= InitialValue
->getType();
6083 // No initializer, the initialization will be provided when we
6084 // initialize the declaration which performed lifetime extension.
6085 Type
= getTypes().ConvertTypeForMem(MaterializedType
);
6088 // Create a global variable for this lifetime-extended temporary.
6089 llvm::GlobalValue::LinkageTypes Linkage
=
6090 getLLVMLinkageVarDefinition(VD
, Constant
);
6091 if (Linkage
== llvm::GlobalVariable::ExternalLinkage
) {
6092 const VarDecl
*InitVD
;
6093 if (VD
->isStaticDataMember() && VD
->getAnyInitializer(InitVD
) &&
6094 isa
<CXXRecordDecl
>(InitVD
->getLexicalDeclContext())) {
6095 // Temporaries defined inside a class get linkonce_odr linkage because the
6096 // class can be defined in multiple translation units.
6097 Linkage
= llvm::GlobalVariable::LinkOnceODRLinkage
;
6099 // There is no need for this temporary to have external linkage if the
6100 // VarDecl has external linkage.
6101 Linkage
= llvm::GlobalVariable::InternalLinkage
;
6104 auto TargetAS
= getContext().getTargetAddressSpace(AddrSpace
);
6105 auto *GV
= new llvm::GlobalVariable(
6106 getModule(), Type
, Constant
, Linkage
, InitialValue
, Name
.c_str(),
6107 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal
, TargetAS
);
6108 if (emitter
) emitter
->finalize(GV
);
6109 // Don't assign dllimport or dllexport to local linkage globals.
6110 if (!llvm::GlobalValue::isLocalLinkage(Linkage
)) {
6111 setGVProperties(GV
, VD
);
6112 if (GV
->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass
)
6113 // The reference temporary should never be dllexport.
6114 GV
->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass
);
6116 GV
->setAlignment(Align
.getAsAlign());
6117 if (supportsCOMDAT() && GV
->isWeakForLinker())
6118 GV
->setComdat(TheModule
.getOrInsertComdat(GV
->getName()));
6119 if (VD
->getTLSKind())
6120 setTLSMode(GV
, *VD
);
6121 llvm::Constant
*CV
= GV
;
6122 if (AddrSpace
!= LangAS::Default
)
6123 CV
= getTargetCodeGenInfo().performAddrSpaceCast(
6124 *this, GV
, AddrSpace
, LangAS::Default
,
6126 getContext().getTargetAddressSpace(LangAS::Default
)));
6128 // Update the map with the new temporary. If we created a placeholder above,
6129 // replace it with the new global now.
6130 llvm::Constant
*&Entry
= MaterializedGlobalTemporaryMap
[E
];
6132 Entry
->replaceAllUsesWith(
6133 llvm::ConstantExpr::getBitCast(CV
, Entry
->getType()));
6134 llvm::cast
<llvm::GlobalVariable
>(Entry
)->eraseFromParent();
6138 return ConstantAddress(CV
, Type
, Align
);
6141 /// EmitObjCPropertyImplementations - Emit information for synthesized
6142 /// properties for an implementation.
6143 void CodeGenModule::EmitObjCPropertyImplementations(const
6144 ObjCImplementationDecl
*D
) {
6145 for (const auto *PID
: D
->property_impls()) {
6146 // Dynamic is just for type-checking.
6147 if (PID
->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize
) {
6148 ObjCPropertyDecl
*PD
= PID
->getPropertyDecl();
6150 // Determine which methods need to be implemented, some may have
6151 // been overridden. Note that ::isPropertyAccessor is not the method
6152 // we want, that just indicates if the decl came from a
6153 // property. What we want to know is if the method is defined in
6154 // this implementation.
6155 auto *Getter
= PID
->getGetterMethodDecl();
6156 if (!Getter
|| Getter
->isSynthesizedAccessorStub())
6157 CodeGenFunction(*this).GenerateObjCGetter(
6158 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6159 auto *Setter
= PID
->getSetterMethodDecl();
6160 if (!PD
->isReadOnly() && (!Setter
|| Setter
->isSynthesizedAccessorStub()))
6161 CodeGenFunction(*this).GenerateObjCSetter(
6162 const_cast<ObjCImplementationDecl
*>(D
), PID
);
6167 static bool needsDestructMethod(ObjCImplementationDecl
*impl
) {
6168 const ObjCInterfaceDecl
*iface
= impl
->getClassInterface();
6169 for (const ObjCIvarDecl
*ivar
= iface
->all_declared_ivar_begin();
6170 ivar
; ivar
= ivar
->getNextIvar())
6171 if (ivar
->getType().isDestructedType())
6177 static bool AllTrivialInitializers(CodeGenModule
&CGM
,
6178 ObjCImplementationDecl
*D
) {
6179 CodeGenFunction
CGF(CGM
);
6180 for (ObjCImplementationDecl::init_iterator B
= D
->init_begin(),
6181 E
= D
->init_end(); B
!= E
; ++B
) {
6182 CXXCtorInitializer
*CtorInitExp
= *B
;
6183 Expr
*Init
= CtorInitExp
->getInit();
6184 if (!CGF
.isTrivialInitializer(Init
))
6190 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6191 /// for an implementation.
6192 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl
*D
) {
6193 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6194 if (needsDestructMethod(D
)) {
6195 IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_destruct");
6196 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6197 ObjCMethodDecl
*DTORMethod
= ObjCMethodDecl::Create(
6198 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6199 getContext().VoidTy
, nullptr, D
,
6200 /*isInstance=*/true, /*isVariadic=*/false,
6201 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6202 /*isImplicitlyDeclared=*/true,
6203 /*isDefined=*/false, ObjCMethodDecl::Required
);
6204 D
->addInstanceMethod(DTORMethod
);
6205 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, DTORMethod
, false);
6206 D
->setHasDestructors(true);
6209 // If the implementation doesn't have any ivar initializers, we don't need
6210 // a .cxx_construct.
6211 if (D
->getNumIvarInitializers() == 0 ||
6212 AllTrivialInitializers(*this, D
))
6215 IdentifierInfo
*II
= &getContext().Idents
.get(".cxx_construct");
6216 Selector cxxSelector
= getContext().Selectors
.getSelector(0, &II
);
6217 // The constructor returns 'self'.
6218 ObjCMethodDecl
*CTORMethod
= ObjCMethodDecl::Create(
6219 getContext(), D
->getLocation(), D
->getLocation(), cxxSelector
,
6220 getContext().getObjCIdType(), nullptr, D
, /*isInstance=*/true,
6221 /*isVariadic=*/false,
6222 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6223 /*isImplicitlyDeclared=*/true,
6224 /*isDefined=*/false, ObjCMethodDecl::Required
);
6225 D
->addInstanceMethod(CTORMethod
);
6226 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D
, CTORMethod
, true);
6227 D
->setHasNonZeroConstructors(true);
6230 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6231 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl
*LSD
) {
6232 if (LSD
->getLanguage() != LinkageSpecDecl::lang_c
&&
6233 LSD
->getLanguage() != LinkageSpecDecl::lang_cxx
) {
6234 ErrorUnsupported(LSD
, "linkage spec");
6238 EmitDeclContext(LSD
);
6241 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl
*D
) {
6242 std::unique_ptr
<CodeGenFunction
> &CurCGF
=
6243 GlobalTopLevelStmtBlockInFlight
.first
;
6245 // We emitted a top-level stmt but after it there is initialization.
6246 // Stop squashing the top-level stmts into a single function.
6247 if (CurCGF
&& CXXGlobalInits
.back() != CurCGF
->CurFn
) {
6248 CurCGF
->FinishFunction(D
->getEndLoc());
6253 // void __stmts__N(void)
6254 // FIXME: Ask the ABI name mangler to pick a name.
6255 std::string Name
= "__stmts__" + llvm::utostr(CXXGlobalInits
.size());
6256 FunctionArgList Args
;
6257 QualType RetTy
= getContext().VoidTy
;
6258 const CGFunctionInfo
&FnInfo
=
6259 getTypes().arrangeBuiltinFunctionDeclaration(RetTy
, Args
);
6260 llvm::FunctionType
*FnTy
= getTypes().GetFunctionType(FnInfo
);
6261 llvm::Function
*Fn
= llvm::Function::Create(
6262 FnTy
, llvm::GlobalValue::InternalLinkage
, Name
, &getModule());
6264 CurCGF
.reset(new CodeGenFunction(*this));
6265 GlobalTopLevelStmtBlockInFlight
.second
= D
;
6266 CurCGF
->StartFunction(GlobalDecl(), RetTy
, Fn
, FnInfo
, Args
,
6267 D
->getBeginLoc(), D
->getBeginLoc());
6268 CXXGlobalInits
.push_back(Fn
);
6271 CurCGF
->EmitStmt(D
->getStmt());
6274 void CodeGenModule::EmitDeclContext(const DeclContext
*DC
) {
6275 for (auto *I
: DC
->decls()) {
6276 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6277 // are themselves considered "top-level", so EmitTopLevelDecl on an
6278 // ObjCImplDecl does not recursively visit them. We need to do that in
6279 // case they're nested inside another construct (LinkageSpecDecl /
6280 // ExportDecl) that does stop them from being considered "top-level".
6281 if (auto *OID
= dyn_cast
<ObjCImplDecl
>(I
)) {
6282 for (auto *M
: OID
->methods())
6283 EmitTopLevelDecl(M
);
6286 EmitTopLevelDecl(I
);
6290 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6291 void CodeGenModule::EmitTopLevelDecl(Decl
*D
) {
6292 // Ignore dependent declarations.
6293 if (D
->isTemplated())
6296 // Consteval function shouldn't be emitted.
6297 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
6298 if (FD
->isConsteval())
6301 switch (D
->getKind()) {
6302 case Decl::CXXConversion
:
6303 case Decl::CXXMethod
:
6304 case Decl::Function
:
6305 EmitGlobal(cast
<FunctionDecl
>(D
));
6306 // Always provide some coverage mapping
6307 // even for the functions that aren't emitted.
6308 AddDeferredUnusedCoverageMapping(D
);
6311 case Decl::CXXDeductionGuide
:
6312 // Function-like, but does not result in code emission.
6316 case Decl::Decomposition
:
6317 case Decl::VarTemplateSpecialization
:
6318 EmitGlobal(cast
<VarDecl
>(D
));
6319 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
6320 for (auto *B
: DD
->bindings())
6321 if (auto *HD
= B
->getHoldingVar())
6325 // Indirect fields from global anonymous structs and unions can be
6326 // ignored; only the actual variable requires IR gen support.
6327 case Decl::IndirectField
:
6331 case Decl::Namespace
:
6332 EmitDeclContext(cast
<NamespaceDecl
>(D
));
6334 case Decl::ClassTemplateSpecialization
: {
6335 const auto *Spec
= cast
<ClassTemplateSpecializationDecl
>(D
);
6336 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6337 if (Spec
->getSpecializationKind() ==
6338 TSK_ExplicitInstantiationDefinition
&&
6339 Spec
->hasDefinition())
6340 DI
->completeTemplateDefinition(*Spec
);
6342 case Decl::CXXRecord
: {
6343 CXXRecordDecl
*CRD
= cast
<CXXRecordDecl
>(D
);
6344 if (CGDebugInfo
*DI
= getModuleDebugInfo()) {
6345 if (CRD
->hasDefinition())
6346 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6347 if (auto *ES
= D
->getASTContext().getExternalSource())
6348 if (ES
->hasExternalDefinitions(D
) == ExternalASTSource::EK_Never
)
6349 DI
->completeUnusedClass(*CRD
);
6351 // Emit any static data members, they may be definitions.
6352 for (auto *I
: CRD
->decls())
6353 if (isa
<VarDecl
>(I
) || isa
<CXXRecordDecl
>(I
))
6354 EmitTopLevelDecl(I
);
6357 // No code generation needed.
6358 case Decl::UsingShadow
:
6359 case Decl::ClassTemplate
:
6360 case Decl::VarTemplate
:
6362 case Decl::VarTemplatePartialSpecialization
:
6363 case Decl::FunctionTemplate
:
6364 case Decl::TypeAliasTemplate
:
6369 case Decl::Using
: // using X; [C++]
6370 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6371 DI
->EmitUsingDecl(cast
<UsingDecl
>(*D
));
6373 case Decl::UsingEnum
: // using enum X; [C++]
6374 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6375 DI
->EmitUsingEnumDecl(cast
<UsingEnumDecl
>(*D
));
6377 case Decl::NamespaceAlias
:
6378 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6379 DI
->EmitNamespaceAlias(cast
<NamespaceAliasDecl
>(*D
));
6381 case Decl::UsingDirective
: // using namespace X; [C++]
6382 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6383 DI
->EmitUsingDirective(cast
<UsingDirectiveDecl
>(*D
));
6385 case Decl::CXXConstructor
:
6386 getCXXABI().EmitCXXConstructors(cast
<CXXConstructorDecl
>(D
));
6388 case Decl::CXXDestructor
:
6389 getCXXABI().EmitCXXDestructors(cast
<CXXDestructorDecl
>(D
));
6392 case Decl::StaticAssert
:
6396 // Objective-C Decls
6398 // Forward declarations, no (immediate) code generation.
6399 case Decl::ObjCInterface
:
6400 case Decl::ObjCCategory
:
6403 case Decl::ObjCProtocol
: {
6404 auto *Proto
= cast
<ObjCProtocolDecl
>(D
);
6405 if (Proto
->isThisDeclarationADefinition())
6406 ObjCRuntime
->GenerateProtocol(Proto
);
6410 case Decl::ObjCCategoryImpl
:
6411 // Categories have properties but don't support synthesize so we
6412 // can ignore them here.
6413 ObjCRuntime
->GenerateCategory(cast
<ObjCCategoryImplDecl
>(D
));
6416 case Decl::ObjCImplementation
: {
6417 auto *OMD
= cast
<ObjCImplementationDecl
>(D
);
6418 EmitObjCPropertyImplementations(OMD
);
6419 EmitObjCIvarInitializations(OMD
);
6420 ObjCRuntime
->GenerateClass(OMD
);
6421 // Emit global variable debug information.
6422 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6423 if (getCodeGenOpts().hasReducedDebugInfo())
6424 DI
->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6425 OMD
->getClassInterface()), OMD
->getLocation());
6428 case Decl::ObjCMethod
: {
6429 auto *OMD
= cast
<ObjCMethodDecl
>(D
);
6430 // If this is not a prototype, emit the body.
6432 CodeGenFunction(*this).GenerateObjCMethod(OMD
);
6435 case Decl::ObjCCompatibleAlias
:
6436 ObjCRuntime
->RegisterAlias(cast
<ObjCCompatibleAliasDecl
>(D
));
6439 case Decl::PragmaComment
: {
6440 const auto *PCD
= cast
<PragmaCommentDecl
>(D
);
6441 switch (PCD
->getCommentKind()) {
6443 llvm_unreachable("unexpected pragma comment kind");
6445 AppendLinkerOptions(PCD
->getArg());
6448 AddDependentLib(PCD
->getArg());
6453 break; // We ignore all of these.
6458 case Decl::PragmaDetectMismatch
: {
6459 const auto *PDMD
= cast
<PragmaDetectMismatchDecl
>(D
);
6460 AddDetectMismatch(PDMD
->getName(), PDMD
->getValue());
6464 case Decl::LinkageSpec
:
6465 EmitLinkageSpec(cast
<LinkageSpecDecl
>(D
));
6468 case Decl::FileScopeAsm
: {
6469 // File-scope asm is ignored during device-side CUDA compilation.
6470 if (LangOpts
.CUDA
&& LangOpts
.CUDAIsDevice
)
6472 // File-scope asm is ignored during device-side OpenMP compilation.
6473 if (LangOpts
.OpenMPIsDevice
)
6475 // File-scope asm is ignored during device-side SYCL compilation.
6476 if (LangOpts
.SYCLIsDevice
)
6478 auto *AD
= cast
<FileScopeAsmDecl
>(D
);
6479 getModule().appendModuleInlineAsm(AD
->getAsmString()->getString());
6483 case Decl::TopLevelStmt
:
6484 EmitTopLevelStmt(cast
<TopLevelStmtDecl
>(D
));
6487 case Decl::Import
: {
6488 auto *Import
= cast
<ImportDecl
>(D
);
6490 // If we've already imported this module, we're done.
6491 if (!ImportedModules
.insert(Import
->getImportedModule()))
6494 // Emit debug information for direct imports.
6495 if (!Import
->getImportedOwningModule()) {
6496 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6497 DI
->EmitImportDecl(*Import
);
6500 // For C++ standard modules we are done - we will call the module
6501 // initializer for imported modules, and that will likewise call those for
6502 // any imports it has.
6503 if (CXX20ModuleInits
&& Import
->getImportedOwningModule() &&
6504 !Import
->getImportedOwningModule()->isModuleMapModule())
6507 // For clang C++ module map modules the initializers for sub-modules are
6510 // Find all of the submodules and emit the module initializers.
6511 llvm::SmallPtrSet
<clang::Module
*, 16> Visited
;
6512 SmallVector
<clang::Module
*, 16> Stack
;
6513 Visited
.insert(Import
->getImportedModule());
6514 Stack
.push_back(Import
->getImportedModule());
6516 while (!Stack
.empty()) {
6517 clang::Module
*Mod
= Stack
.pop_back_val();
6518 if (!EmittedModuleInitializers
.insert(Mod
).second
)
6521 for (auto *D
: Context
.getModuleInitializers(Mod
))
6522 EmitTopLevelDecl(D
);
6524 // Visit the submodules of this module.
6525 for (clang::Module::submodule_iterator Sub
= Mod
->submodule_begin(),
6526 SubEnd
= Mod
->submodule_end();
6527 Sub
!= SubEnd
; ++Sub
) {
6528 // Skip explicit children; they need to be explicitly imported to emit
6529 // the initializers.
6530 if ((*Sub
)->IsExplicit
)
6533 if (Visited
.insert(*Sub
).second
)
6534 Stack
.push_back(*Sub
);
6541 EmitDeclContext(cast
<ExportDecl
>(D
));
6544 case Decl::OMPThreadPrivate
:
6545 EmitOMPThreadPrivateDecl(cast
<OMPThreadPrivateDecl
>(D
));
6548 case Decl::OMPAllocate
:
6549 EmitOMPAllocateDecl(cast
<OMPAllocateDecl
>(D
));
6552 case Decl::OMPDeclareReduction
:
6553 EmitOMPDeclareReduction(cast
<OMPDeclareReductionDecl
>(D
));
6556 case Decl::OMPDeclareMapper
:
6557 EmitOMPDeclareMapper(cast
<OMPDeclareMapperDecl
>(D
));
6560 case Decl::OMPRequires
:
6561 EmitOMPRequiresDecl(cast
<OMPRequiresDecl
>(D
));
6565 case Decl::TypeAlias
: // using foo = bar; [C++11]
6566 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6567 DI
->EmitAndRetainType(
6568 getContext().getTypedefType(cast
<TypedefNameDecl
>(D
)));
6572 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6573 if (cast
<RecordDecl
>(D
)->getDefinition())
6574 DI
->EmitAndRetainType(getContext().getRecordType(cast
<RecordDecl
>(D
)));
6578 if (CGDebugInfo
*DI
= getModuleDebugInfo())
6579 if (cast
<EnumDecl
>(D
)->getDefinition())
6580 DI
->EmitAndRetainType(getContext().getEnumType(cast
<EnumDecl
>(D
)));
6583 case Decl::HLSLBuffer
:
6584 getHLSLRuntime().addBuffer(cast
<HLSLBufferDecl
>(D
));
6588 // Make sure we handled everything we should, every other kind is a
6589 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
6590 // function. Need to recode Decl::Kind to do that easily.
6591 assert(isa
<TypeDecl
>(D
) && "Unsupported decl kind");
6596 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl
*D
) {
6597 // Do we need to generate coverage mapping?
6598 if (!CodeGenOpts
.CoverageMapping
)
6600 switch (D
->getKind()) {
6601 case Decl::CXXConversion
:
6602 case Decl::CXXMethod
:
6603 case Decl::Function
:
6604 case Decl::ObjCMethod
:
6605 case Decl::CXXConstructor
:
6606 case Decl::CXXDestructor
: {
6607 if (!cast
<FunctionDecl
>(D
)->doesThisDeclarationHaveABody())
6609 SourceManager
&SM
= getContext().getSourceManager();
6610 if (LimitedCoverage
&& SM
.getMainFileID() != SM
.getFileID(D
->getBeginLoc()))
6612 auto I
= DeferredEmptyCoverageMappingDecls
.find(D
);
6613 if (I
== DeferredEmptyCoverageMappingDecls
.end())
6614 DeferredEmptyCoverageMappingDecls
[D
] = true;
6622 void CodeGenModule::ClearUnusedCoverageMapping(const Decl
*D
) {
6623 // Do we need to generate coverage mapping?
6624 if (!CodeGenOpts
.CoverageMapping
)
6626 if (const auto *Fn
= dyn_cast
<FunctionDecl
>(D
)) {
6627 if (Fn
->isTemplateInstantiation())
6628 ClearUnusedCoverageMapping(Fn
->getTemplateInstantiationPattern());
6630 auto I
= DeferredEmptyCoverageMappingDecls
.find(D
);
6631 if (I
== DeferredEmptyCoverageMappingDecls
.end())
6632 DeferredEmptyCoverageMappingDecls
[D
] = false;
6637 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6638 // We call takeVector() here to avoid use-after-free.
6639 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6640 // we deserialize function bodies to emit coverage info for them, and that
6641 // deserializes more declarations. How should we handle that case?
6642 for (const auto &Entry
: DeferredEmptyCoverageMappingDecls
.takeVector()) {
6645 const Decl
*D
= Entry
.first
;
6646 switch (D
->getKind()) {
6647 case Decl::CXXConversion
:
6648 case Decl::CXXMethod
:
6649 case Decl::Function
:
6650 case Decl::ObjCMethod
: {
6651 CodeGenPGO
PGO(*this);
6652 GlobalDecl
GD(cast
<FunctionDecl
>(D
));
6653 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6654 getFunctionLinkage(GD
));
6657 case Decl::CXXConstructor
: {
6658 CodeGenPGO
PGO(*this);
6659 GlobalDecl
GD(cast
<CXXConstructorDecl
>(D
), Ctor_Base
);
6660 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6661 getFunctionLinkage(GD
));
6664 case Decl::CXXDestructor
: {
6665 CodeGenPGO
PGO(*this);
6666 GlobalDecl
GD(cast
<CXXDestructorDecl
>(D
), Dtor_Base
);
6667 PGO
.emitEmptyCounterMapping(D
, getMangledName(GD
),
6668 getFunctionLinkage(GD
));
6677 void CodeGenModule::EmitMainVoidAlias() {
6678 // In order to transition away from "__original_main" gracefully, emit an
6679 // alias for "main" in the no-argument case so that libc can detect when
6680 // new-style no-argument main is in used.
6681 if (llvm::Function
*F
= getModule().getFunction("main")) {
6682 if (!F
->isDeclaration() && F
->arg_size() == 0 && !F
->isVarArg() &&
6683 F
->getReturnType()->isIntegerTy(Context
.getTargetInfo().getIntWidth())) {
6684 auto *GA
= llvm::GlobalAlias::create("__main_void", F
);
6685 GA
->setVisibility(llvm::GlobalValue::HiddenVisibility
);
6690 /// Turns the given pointer into a constant.
6691 static llvm::Constant
*GetPointerConstant(llvm::LLVMContext
&Context
,
6693 uintptr_t PtrInt
= reinterpret_cast<uintptr_t>(Ptr
);
6694 llvm::Type
*i64
= llvm::Type::getInt64Ty(Context
);
6695 return llvm::ConstantInt::get(i64
, PtrInt
);
6698 static void EmitGlobalDeclMetadata(CodeGenModule
&CGM
,
6699 llvm::NamedMDNode
*&GlobalMetadata
,
6701 llvm::GlobalValue
*Addr
) {
6702 if (!GlobalMetadata
)
6704 CGM
.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6706 // TODO: should we report variant information for ctors/dtors?
6707 llvm::Metadata
*Ops
[] = {llvm::ConstantAsMetadata::get(Addr
),
6708 llvm::ConstantAsMetadata::get(GetPointerConstant(
6709 CGM
.getLLVMContext(), D
.getDecl()))};
6710 GlobalMetadata
->addOperand(llvm::MDNode::get(CGM
.getLLVMContext(), Ops
));
6713 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue
*Elem
,
6714 llvm::GlobalValue
*CppFunc
) {
6715 // Store the list of ifuncs we need to replace uses in.
6716 llvm::SmallVector
<llvm::GlobalIFunc
*> IFuncs
;
6717 // List of ConstantExprs that we should be able to delete when we're done
6719 llvm::SmallVector
<llvm::ConstantExpr
*> CEs
;
6721 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6722 if (Elem
== CppFunc
)
6725 // First make sure that all users of this are ifuncs (or ifuncs via a
6726 // bitcast), and collect the list of ifuncs and CEs so we can work on them
6728 for (llvm::User
*User
: Elem
->users()) {
6729 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6730 // ifunc directly. In any other case, just give up, as we don't know what we
6731 // could break by changing those.
6732 if (auto *ConstExpr
= dyn_cast
<llvm::ConstantExpr
>(User
)) {
6733 if (ConstExpr
->getOpcode() != llvm::Instruction::BitCast
)
6736 for (llvm::User
*CEUser
: ConstExpr
->users()) {
6737 if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(CEUser
)) {
6738 IFuncs
.push_back(IFunc
);
6743 CEs
.push_back(ConstExpr
);
6744 } else if (auto *IFunc
= dyn_cast
<llvm::GlobalIFunc
>(User
)) {
6745 IFuncs
.push_back(IFunc
);
6747 // This user is one we don't know how to handle, so fail redirection. This
6748 // will result in an ifunc retaining a resolver name that will ultimately
6749 // fail to be resolved to a defined function.
6754 // Now we know this is a valid case where we can do this alias replacement, we
6755 // need to remove all of the references to Elem (and the bitcasts!) so we can
6757 for (llvm::GlobalIFunc
*IFunc
: IFuncs
)
6758 IFunc
->setResolver(nullptr);
6759 for (llvm::ConstantExpr
*ConstExpr
: CEs
)
6760 ConstExpr
->destroyConstant();
6762 // We should now be out of uses for the 'old' version of this function, so we
6763 // can erase it as well.
6764 Elem
->eraseFromParent();
6766 for (llvm::GlobalIFunc
*IFunc
: IFuncs
) {
6767 // The type of the resolver is always just a function-type that returns the
6768 // type of the IFunc, so create that here. If the type of the actual
6769 // resolver doesn't match, it just gets bitcast to the right thing.
6771 llvm::FunctionType::get(IFunc
->getType(), /*isVarArg*/ false);
6772 llvm::Constant
*Resolver
= GetOrCreateLLVMFunction(
6773 CppFunc
->getName(), ResolverTy
, {}, /*ForVTable*/ false);
6774 IFunc
->setResolver(Resolver
);
6779 /// For each function which is declared within an extern "C" region and marked
6780 /// as 'used', but has internal linkage, create an alias from the unmangled
6781 /// name to the mangled name if possible. People expect to be able to refer
6782 /// to such functions with an unmangled name from inline assembly within the
6783 /// same translation unit.
6784 void CodeGenModule::EmitStaticExternCAliases() {
6785 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6787 for (auto &I
: StaticExternCValues
) {
6788 IdentifierInfo
*Name
= I
.first
;
6789 llvm::GlobalValue
*Val
= I
.second
;
6791 // If Val is null, that implies there were multiple declarations that each
6792 // had a claim to the unmangled name. In this case, generation of the alias
6793 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6797 llvm::GlobalValue
*ExistingElem
=
6798 getModule().getNamedValue(Name
->getName());
6800 // If there is either not something already by this name, or we were able to
6801 // replace all uses from IFuncs, create the alias.
6802 if (!ExistingElem
|| CheckAndReplaceExternCIFuncs(ExistingElem
, Val
))
6803 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name
->getName(), Val
));
6807 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName
,
6808 GlobalDecl
&Result
) const {
6809 auto Res
= Manglings
.find(MangledName
);
6810 if (Res
== Manglings
.end())
6812 Result
= Res
->getValue();
6816 /// Emits metadata nodes associating all the global values in the
6817 /// current module with the Decls they came from. This is useful for
6818 /// projects using IR gen as a subroutine.
6820 /// Since there's currently no way to associate an MDNode directly
6821 /// with an llvm::GlobalValue, we create a global named metadata
6822 /// with the name 'clang.global.decl.ptrs'.
6823 void CodeGenModule::EmitDeclMetadata() {
6824 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
6826 for (auto &I
: MangledDeclNames
) {
6827 llvm::GlobalValue
*Addr
= getModule().getNamedValue(I
.second
);
6828 // Some mangled names don't necessarily have an associated GlobalValue
6829 // in this module, e.g. if we mangled it for DebugInfo.
6831 EmitGlobalDeclMetadata(*this, GlobalMetadata
, I
.first
, Addr
);
6835 /// Emits metadata nodes for all the local variables in the current
6837 void CodeGenFunction::EmitDeclMetadata() {
6838 if (LocalDeclMap
.empty()) return;
6840 llvm::LLVMContext
&Context
= getLLVMContext();
6842 // Find the unique metadata ID for this name.
6843 unsigned DeclPtrKind
= Context
.getMDKindID("clang.decl.ptr");
6845 llvm::NamedMDNode
*GlobalMetadata
= nullptr;
6847 for (auto &I
: LocalDeclMap
) {
6848 const Decl
*D
= I
.first
;
6849 llvm::Value
*Addr
= I
.second
.getPointer();
6850 if (auto *Alloca
= dyn_cast
<llvm::AllocaInst
>(Addr
)) {
6851 llvm::Value
*DAddr
= GetPointerConstant(getLLVMContext(), D
);
6852 Alloca
->setMetadata(
6853 DeclPtrKind
, llvm::MDNode::get(
6854 Context
, llvm::ValueAsMetadata::getConstant(DAddr
)));
6855 } else if (auto *GV
= dyn_cast
<llvm::GlobalValue
>(Addr
)) {
6856 GlobalDecl GD
= GlobalDecl(cast
<VarDecl
>(D
));
6857 EmitGlobalDeclMetadata(CGM
, GlobalMetadata
, GD
, GV
);
6862 void CodeGenModule::EmitVersionIdentMetadata() {
6863 llvm::NamedMDNode
*IdentMetadata
=
6864 TheModule
.getOrInsertNamedMetadata("llvm.ident");
6865 std::string Version
= getClangFullVersion();
6866 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
6868 llvm::Metadata
*IdentNode
[] = {llvm::MDString::get(Ctx
, Version
)};
6869 IdentMetadata
->addOperand(llvm::MDNode::get(Ctx
, IdentNode
));
6872 void CodeGenModule::EmitCommandLineMetadata() {
6873 llvm::NamedMDNode
*CommandLineMetadata
=
6874 TheModule
.getOrInsertNamedMetadata("llvm.commandline");
6875 std::string CommandLine
= getCodeGenOpts().RecordCommandLine
;
6876 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
6878 llvm::Metadata
*CommandLineNode
[] = {llvm::MDString::get(Ctx
, CommandLine
)};
6879 CommandLineMetadata
->addOperand(llvm::MDNode::get(Ctx
, CommandLineNode
));
6882 void CodeGenModule::EmitCoverageFile() {
6883 if (getCodeGenOpts().CoverageDataFile
.empty() &&
6884 getCodeGenOpts().CoverageNotesFile
.empty())
6887 llvm::NamedMDNode
*CUNode
= TheModule
.getNamedMetadata("llvm.dbg.cu");
6891 llvm::NamedMDNode
*GCov
= TheModule
.getOrInsertNamedMetadata("llvm.gcov");
6892 llvm::LLVMContext
&Ctx
= TheModule
.getContext();
6893 auto *CoverageDataFile
=
6894 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageDataFile
);
6895 auto *CoverageNotesFile
=
6896 llvm::MDString::get(Ctx
, getCodeGenOpts().CoverageNotesFile
);
6897 for (int i
= 0, e
= CUNode
->getNumOperands(); i
!= e
; ++i
) {
6898 llvm::MDNode
*CU
= CUNode
->getOperand(i
);
6899 llvm::Metadata
*Elts
[] = {CoverageNotesFile
, CoverageDataFile
, CU
};
6900 GCov
->addOperand(llvm::MDNode::get(Ctx
, Elts
));
6904 llvm::Constant
*CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty
,
6906 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6907 // FIXME: should we even be calling this method if RTTI is disabled
6908 // and it's not for EH?
6909 if ((!ForEH
&& !getLangOpts().RTTI
) || getLangOpts().CUDAIsDevice
||
6910 (getLangOpts().OpenMP
&& getLangOpts().OpenMPIsDevice
&&
6911 getTriple().isNVPTX()))
6912 return llvm::Constant::getNullValue(Int8PtrTy
);
6914 if (ForEH
&& Ty
->isObjCObjectPointerType() &&
6915 LangOpts
.ObjCRuntime
.isGNUFamily())
6916 return ObjCRuntime
->GetEHType(Ty
);
6918 return getCXXABI().getAddrOfRTTIDescriptor(Ty
);
6921 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl
*D
) {
6922 // Do not emit threadprivates in simd-only mode.
6923 if (LangOpts
.OpenMP
&& LangOpts
.OpenMPSimd
)
6925 for (auto RefExpr
: D
->varlists()) {
6926 auto *VD
= cast
<VarDecl
>(cast
<DeclRefExpr
>(RefExpr
)->getDecl());
6928 VD
->getAnyInitializer() &&
6929 !VD
->getAnyInitializer()->isConstantInitializer(getContext(),
6932 Address
Addr(GetAddrOfGlobalVar(VD
),
6933 getTypes().ConvertTypeForMem(VD
->getType()),
6934 getContext().getDeclAlign(VD
));
6935 if (auto InitFunction
= getOpenMPRuntime().emitThreadPrivateVarDefinition(
6936 VD
, Addr
, RefExpr
->getBeginLoc(), PerformInit
))
6937 CXXGlobalInits
.push_back(InitFunction
);
6942 CodeGenModule::CreateMetadataIdentifierImpl(QualType T
, MetadataTypeMap
&Map
,
6944 if (auto *FnType
= T
->getAs
<FunctionProtoType
>())
6945 T
= getContext().getFunctionType(
6946 FnType
->getReturnType(), FnType
->getParamTypes(),
6947 FnType
->getExtProtoInfo().withExceptionSpec(EST_None
));
6949 llvm::Metadata
*&InternalId
= Map
[T
.getCanonicalType()];
6953 if (isExternallyVisible(T
->getLinkage())) {
6954 std::string OutName
;
6955 llvm::raw_string_ostream
Out(OutName
);
6956 getCXXABI().getMangleContext().mangleTypeName(
6957 T
, Out
, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
);
6959 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers
)
6960 Out
<< ".normalized";
6964 InternalId
= llvm::MDString::get(getLLVMContext(), Out
.str());
6966 InternalId
= llvm::MDNode::getDistinct(getLLVMContext(),
6967 llvm::ArrayRef
<llvm::Metadata
*>());
6973 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierForType(QualType T
) {
6974 return CreateMetadataIdentifierImpl(T
, MetadataIdMap
, "");
6978 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T
) {
6979 return CreateMetadataIdentifierImpl(T
, VirtualMetadataIdMap
, ".virtual");
6982 // Generalize pointer types to a void pointer with the qualifiers of the
6983 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6984 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6986 static QualType
GeneralizeType(ASTContext
&Ctx
, QualType Ty
) {
6987 if (!Ty
->isPointerType())
6990 return Ctx
.getPointerType(
6991 QualType(Ctx
.VoidTy
).withCVRQualifiers(
6992 Ty
->getPointeeType().getCVRQualifiers()));
6995 // Apply type generalization to a FunctionType's return and argument types
6996 static QualType
GeneralizeFunctionType(ASTContext
&Ctx
, QualType Ty
) {
6997 if (auto *FnType
= Ty
->getAs
<FunctionProtoType
>()) {
6998 SmallVector
<QualType
, 8> GeneralizedParams
;
6999 for (auto &Param
: FnType
->param_types())
7000 GeneralizedParams
.push_back(GeneralizeType(Ctx
, Param
));
7002 return Ctx
.getFunctionType(
7003 GeneralizeType(Ctx
, FnType
->getReturnType()),
7004 GeneralizedParams
, FnType
->getExtProtoInfo());
7007 if (auto *FnType
= Ty
->getAs
<FunctionNoProtoType
>())
7008 return Ctx
.getFunctionNoProtoType(
7009 GeneralizeType(Ctx
, FnType
->getReturnType()));
7011 llvm_unreachable("Encountered unknown FunctionType");
7014 llvm::Metadata
*CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T
) {
7015 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T
),
7016 GeneralizedMetadataIdMap
, ".generalized");
7019 /// Returns whether this module needs the "all-vtables" type identifier.
7020 bool CodeGenModule::NeedAllVtablesTypeId() const {
7021 // Returns true if at least one of vtable-based CFI checkers is enabled and
7022 // is not in the trapping mode.
7023 return ((LangOpts
.Sanitize
.has(SanitizerKind::CFIVCall
) &&
7024 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIVCall
)) ||
7025 (LangOpts
.Sanitize
.has(SanitizerKind::CFINVCall
) &&
7026 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFINVCall
)) ||
7027 (LangOpts
.Sanitize
.has(SanitizerKind::CFIDerivedCast
) &&
7028 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIDerivedCast
)) ||
7029 (LangOpts
.Sanitize
.has(SanitizerKind::CFIUnrelatedCast
) &&
7030 !CodeGenOpts
.SanitizeTrap
.has(SanitizerKind::CFIUnrelatedCast
)));
7033 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable
*VTable
,
7035 const CXXRecordDecl
*RD
) {
7036 llvm::Metadata
*MD
=
7037 CreateMetadataIdentifierForType(QualType(RD
->getTypeForDecl(), 0));
7038 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7040 if (CodeGenOpts
.SanitizeCfiCrossDso
)
7041 if (auto CrossDsoTypeId
= CreateCrossDsoCfiTypeId(MD
))
7042 VTable
->addTypeMetadata(Offset
.getQuantity(),
7043 llvm::ConstantAsMetadata::get(CrossDsoTypeId
));
7045 if (NeedAllVtablesTypeId()) {
7046 llvm::Metadata
*MD
= llvm::MDString::get(getLLVMContext(), "all-vtables");
7047 VTable
->addTypeMetadata(Offset
.getQuantity(), MD
);
7051 llvm::SanitizerStatReport
&CodeGenModule::getSanStats() {
7053 SanStats
= std::make_unique
<llvm::SanitizerStatReport
>(&getModule());
7059 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr
*E
,
7060 CodeGenFunction
&CGF
) {
7061 llvm::Constant
*C
= ConstantEmitter(CGF
).emitAbstract(E
, E
->getType());
7062 auto *SamplerT
= getOpenCLRuntime().getSamplerType(E
->getType().getTypePtr());
7063 auto *FTy
= llvm::FunctionType::get(SamplerT
, {C
->getType()}, false);
7064 auto *Call
= CGF
.EmitRuntimeCall(
7065 CreateRuntimeFunction(FTy
, "__translate_sampler_initializer"), {C
});
7069 CharUnits
CodeGenModule::getNaturalPointeeTypeAlignment(
7070 QualType T
, LValueBaseInfo
*BaseInfo
, TBAAAccessInfo
*TBAAInfo
) {
7071 return getNaturalTypeAlignment(T
->getPointeeType(), BaseInfo
, TBAAInfo
,
7072 /* forPointeeType= */ true);
7075 CharUnits
CodeGenModule::getNaturalTypeAlignment(QualType T
,
7076 LValueBaseInfo
*BaseInfo
,
7077 TBAAAccessInfo
*TBAAInfo
,
7078 bool forPointeeType
) {
7080 *TBAAInfo
= getTBAAAccessInfo(T
);
7082 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7083 // that doesn't return the information we need to compute BaseInfo.
7085 // Honor alignment typedef attributes even on incomplete types.
7086 // We also honor them straight for C++ class types, even as pointees;
7087 // there's an expressivity gap here.
7088 if (auto TT
= T
->getAs
<TypedefType
>()) {
7089 if (auto Align
= TT
->getDecl()->getMaxAlignment()) {
7091 *BaseInfo
= LValueBaseInfo(AlignmentSource::AttributedType
);
7092 return getContext().toCharUnitsFromBits(Align
);
7096 bool AlignForArray
= T
->isArrayType();
7098 // Analyze the base element type, so we don't get confused by incomplete
7100 T
= getContext().getBaseElementType(T
);
7102 if (T
->isIncompleteType()) {
7103 // We could try to replicate the logic from
7104 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7105 // type is incomplete, so it's impossible to test. We could try to reuse
7106 // getTypeAlignIfKnown, but that doesn't return the information we need
7107 // to set BaseInfo. So just ignore the possibility that the alignment is
7108 // greater than one.
7110 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7111 return CharUnits::One();
7115 *BaseInfo
= LValueBaseInfo(AlignmentSource::Type
);
7117 CharUnits Alignment
;
7118 const CXXRecordDecl
*RD
;
7119 if (T
.getQualifiers().hasUnaligned()) {
7120 Alignment
= CharUnits::One();
7121 } else if (forPointeeType
&& !AlignForArray
&&
7122 (RD
= T
->getAsCXXRecordDecl())) {
7123 // For C++ class pointees, we don't know whether we're pointing at a
7124 // base or a complete object, so we generally need to use the
7125 // non-virtual alignment.
7126 Alignment
= getClassPointerAlignment(RD
);
7128 Alignment
= getContext().getTypeAlignInChars(T
);
7131 // Cap to the global maximum type alignment unless the alignment
7132 // was somehow explicit on the type.
7133 if (unsigned MaxAlign
= getLangOpts().MaxTypeAlign
) {
7134 if (Alignment
.getQuantity() > MaxAlign
&&
7135 !getContext().isAlignmentRequired(T
))
7136 Alignment
= CharUnits::fromQuantity(MaxAlign
);
7141 bool CodeGenModule::stopAutoInit() {
7142 unsigned StopAfter
= getContext().getLangOpts().TrivialAutoVarInitStopAfter
;
7144 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7146 if (NumAutoVarInit
>= StopAfter
) {
7149 if (!NumAutoVarInit
) {
7150 unsigned DiagID
= getDiags().getCustomDiagID(
7151 DiagnosticsEngine::Warning
,
7152 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7153 "number of times ftrivial-auto-var-init=%1 gets applied.");
7154 getDiags().Report(DiagID
)
7156 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7157 LangOptions::TrivialAutoVarInitKind::Zero
7166 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream
&OS
,
7167 const Decl
*D
) const {
7168 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7169 // postfix beginning with '.' since the symbol name can be demangled.
7171 OS
<< (isa
<VarDecl
>(D
) ? ".static." : ".intern.");
7173 OS
<< (isa
<VarDecl
>(D
) ? "__static__" : "__intern__");
7175 // If the CUID is not specified we try to generate a unique postfix.
7176 if (getLangOpts().CUID
.empty()) {
7177 SourceManager
&SM
= getContext().getSourceManager();
7178 PresumedLoc PLoc
= SM
.getPresumedLoc(D
->getLocation());
7179 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7181 // Get the hash of the user defined macros.
7183 llvm::MD5::MD5Result Result
;
7184 for (const auto &Arg
: PreprocessorOpts
.Macros
)
7185 Hash
.update(Arg
.first
);
7188 // Get the UniqueID for the file containing the decl.
7189 llvm::sys::fs::UniqueID ID
;
7190 if (auto EC
= llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
)) {
7191 PLoc
= SM
.getPresumedLoc(D
->getLocation(), /*UseLineDirectives=*/false);
7192 assert(PLoc
.isValid() && "Source location is expected to be valid.");
7193 if (auto EC
= llvm::sys::fs::getUniqueID(PLoc
.getFilename(), ID
))
7194 SM
.getDiagnostics().Report(diag::err_cannot_open_file
)
7195 << PLoc
.getFilename() << EC
.message();
7197 OS
<< llvm::format("%x", ID
.getFile()) << llvm::format("%x", ID
.getDevice())
7198 << "_" << llvm::utohexstr(Result
.low(), /*LowerCase=*/true, /*Width=*/8);
7200 OS
<< getContext().getCUIDHash();
7204 void CodeGenModule::moveLazyEmissionStates(CodeGenModule
*NewBuilder
) {
7205 assert(DeferredDeclsToEmit
.empty() &&
7206 "Should have emitted all decls deferred to emit.");
7207 assert(NewBuilder
->DeferredDecls
.empty() &&
7208 "Newly created module should not have deferred decls");
7209 NewBuilder
->DeferredDecls
= std::move(DeferredDecls
);
7211 assert(NewBuilder
->DeferredVTables
.empty() &&
7212 "Newly created module should not have deferred vtables");
7213 NewBuilder
->DeferredVTables
= std::move(DeferredVTables
);
7215 assert(NewBuilder
->MangledDeclNames
.empty() &&
7216 "Newly created module should not have mangled decl names");
7217 assert(NewBuilder
->Manglings
.empty() &&
7218 "Newly created module should not have manglings");
7219 NewBuilder
->Manglings
= std::move(Manglings
);
7221 assert(WeakRefReferences
.empty() && "Not all WeakRefRefs have been applied");
7222 NewBuilder
->WeakRefReferences
= std::move(WeakRefReferences
);
7224 NewBuilder
->TBAA
= std::move(TBAA
);
7226 assert(NewBuilder
->EmittedDeferredDecls
.empty() &&
7227 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7229 NewBuilder
->EmittedDeferredDecls
= std::move(EmittedDeferredDecls
);
7231 NewBuilder
->ABI
->MangleCtx
= std::move(ABI
->MangleCtx
);