1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This is the code that handles AST -> LLVM type lowering.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenTypes.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
29 using namespace clang
;
30 using namespace CodeGen
;
32 CodeGenTypes::CodeGenTypes(CodeGenModule
&cgm
)
33 : CGM(cgm
), Context(cgm
.getContext()), TheModule(cgm
.getModule()),
34 Target(cgm
.getTarget()), TheCXXABI(cgm
.getCXXABI()),
35 TheABIInfo(cgm
.getTargetCodeGenInfo().getABIInfo()) {
36 SkippedLayout
= false;
39 CodeGenTypes::~CodeGenTypes() {
40 for (llvm::FoldingSet
<CGFunctionInfo
>::iterator
41 I
= FunctionInfos
.begin(), E
= FunctionInfos
.end(); I
!= E
; )
45 const CodeGenOptions
&CodeGenTypes::getCodeGenOpts() const {
46 return CGM
.getCodeGenOpts();
49 void CodeGenTypes::addRecordTypeName(const RecordDecl
*RD
,
52 SmallString
<256> TypeName
;
53 llvm::raw_svector_ostream
OS(TypeName
);
54 OS
<< RD
->getKindName() << '.';
56 // FIXME: We probably want to make more tweaks to the printing policy. For
57 // example, we should probably enable PrintCanonicalTypes and
58 // FullyQualifiedNames.
59 PrintingPolicy Policy
= RD
->getASTContext().getPrintingPolicy();
60 Policy
.SuppressInlineNamespace
= false;
62 // Name the codegen type after the typedef name
63 // if there is no tag type name available
64 if (RD
->getIdentifier()) {
65 // FIXME: We should not have to check for a null decl context here.
66 // Right now we do it because the implicit Obj-C decls don't have one.
67 if (RD
->getDeclContext())
68 RD
->printQualifiedName(OS
, Policy
);
70 RD
->printName(OS
, Policy
);
71 } else if (const TypedefNameDecl
*TDD
= RD
->getTypedefNameForAnonDecl()) {
72 // FIXME: We should not have to check for a null decl context here.
73 // Right now we do it because the implicit Obj-C decls don't have one.
74 if (TDD
->getDeclContext())
75 TDD
->printQualifiedName(OS
, Policy
);
84 Ty
->setName(OS
.str());
87 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
88 /// ConvertType in that it is used to convert to the memory representation for
89 /// a type. For example, the scalar representation for _Bool is i1, but the
90 /// memory representation is usually i8 or i32, depending on the target.
91 llvm::Type
*CodeGenTypes::ConvertTypeForMem(QualType T
, bool ForBitField
) {
92 if (T
->isConstantMatrixType()) {
93 const Type
*Ty
= Context
.getCanonicalType(T
).getTypePtr();
94 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
95 return llvm::ArrayType::get(ConvertType(MT
->getElementType()),
96 MT
->getNumRows() * MT
->getNumColumns());
99 llvm::Type
*R
= ConvertType(T
);
101 // Check for the boolean vector case.
102 if (T
->isExtVectorBoolType()) {
103 auto *FixedVT
= cast
<llvm::FixedVectorType
>(R
);
104 // Pad to at least one byte.
105 uint64_t BytePadded
= std::max
<uint64_t>(FixedVT
->getNumElements(), 8);
106 return llvm::IntegerType::get(FixedVT
->getContext(), BytePadded
);
109 // If this is a bool type, or a bit-precise integer type in a bitfield
110 // representation, map this integer to the target-specified size.
111 if ((ForBitField
&& T
->isBitIntType()) ||
112 (!T
->isBitIntType() && R
->isIntegerTy(1)))
113 return llvm::IntegerType::get(getLLVMContext(),
114 (unsigned)Context
.getTypeSize(T
));
116 // Else, don't map it.
120 /// isRecordLayoutComplete - Return true if the specified type is already
121 /// completely laid out.
122 bool CodeGenTypes::isRecordLayoutComplete(const Type
*Ty
) const {
123 llvm::DenseMap
<const Type
*, llvm::StructType
*>::const_iterator I
=
124 RecordDeclTypes
.find(Ty
);
125 return I
!= RecordDeclTypes
.end() && !I
->second
->isOpaque();
129 isSafeToConvert(QualType T
, CodeGenTypes
&CGT
,
130 llvm::SmallPtrSet
<const RecordDecl
*, 16> &AlreadyChecked
);
133 /// isSafeToConvert - Return true if it is safe to convert the specified record
134 /// decl to IR and lay it out, false if doing so would cause us to get into a
135 /// recursive compilation mess.
137 isSafeToConvert(const RecordDecl
*RD
, CodeGenTypes
&CGT
,
138 llvm::SmallPtrSet
<const RecordDecl
*, 16> &AlreadyChecked
) {
139 // If we have already checked this type (maybe the same type is used by-value
140 // multiple times in multiple structure fields, don't check again.
141 if (!AlreadyChecked
.insert(RD
).second
)
144 const Type
*Key
= CGT
.getContext().getTagDeclType(RD
).getTypePtr();
146 // If this type is already laid out, converting it is a noop.
147 if (CGT
.isRecordLayoutComplete(Key
)) return true;
149 // If this type is currently being laid out, we can't recursively compile it.
150 if (CGT
.isRecordBeingLaidOut(Key
))
153 // If this type would require laying out bases that are currently being laid
154 // out, don't do it. This includes virtual base classes which get laid out
155 // when a class is translated, even though they aren't embedded by-value into
157 if (const CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
158 for (const auto &I
: CRD
->bases())
159 if (!isSafeToConvert(I
.getType()->castAs
<RecordType
>()->getDecl(), CGT
,
164 // If this type would require laying out members that are currently being laid
166 for (const auto *I
: RD
->fields())
167 if (!isSafeToConvert(I
->getType(), CGT
, AlreadyChecked
))
170 // If there are no problems, lets do it.
174 /// isSafeToConvert - Return true if it is safe to convert this field type,
175 /// which requires the structure elements contained by-value to all be
176 /// recursively safe to convert.
178 isSafeToConvert(QualType T
, CodeGenTypes
&CGT
,
179 llvm::SmallPtrSet
<const RecordDecl
*, 16> &AlreadyChecked
) {
180 // Strip off atomic type sugar.
181 if (const auto *AT
= T
->getAs
<AtomicType
>())
182 T
= AT
->getValueType();
184 // If this is a record, check it.
185 if (const auto *RT
= T
->getAs
<RecordType
>())
186 return isSafeToConvert(RT
->getDecl(), CGT
, AlreadyChecked
);
188 // If this is an array, check the elements, which are embedded inline.
189 if (const auto *AT
= CGT
.getContext().getAsArrayType(T
))
190 return isSafeToConvert(AT
->getElementType(), CGT
, AlreadyChecked
);
192 // Otherwise, there is no concern about transforming this. We only care about
193 // things that are contained by-value in a structure that can have another
194 // structure as a member.
199 /// isSafeToConvert - Return true if it is safe to convert the specified record
200 /// decl to IR and lay it out, false if doing so would cause us to get into a
201 /// recursive compilation mess.
202 static bool isSafeToConvert(const RecordDecl
*RD
, CodeGenTypes
&CGT
) {
203 // If no structs are being laid out, we can certainly do this one.
204 if (CGT
.noRecordsBeingLaidOut()) return true;
206 llvm::SmallPtrSet
<const RecordDecl
*, 16> AlreadyChecked
;
207 return isSafeToConvert(RD
, CGT
, AlreadyChecked
);
210 /// isFuncParamTypeConvertible - Return true if the specified type in a
211 /// function parameter or result position can be converted to an IR type at this
212 /// point. This boils down to being whether it is complete, as well as whether
213 /// we've temporarily deferred expanding the type because we're in a recursive
215 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty
) {
216 // Some ABIs cannot have their member pointers represented in IR unless
217 // certain circumstances have been reached.
218 if (const auto *MPT
= Ty
->getAs
<MemberPointerType
>())
219 return getCXXABI().isMemberPointerConvertible(MPT
);
221 // If this isn't a tagged type, we can convert it!
222 const TagType
*TT
= Ty
->getAs
<TagType
>();
223 if (!TT
) return true;
225 // Incomplete types cannot be converted.
226 if (TT
->isIncompleteType())
229 // If this is an enum, then it is always safe to convert.
230 const RecordType
*RT
= dyn_cast
<RecordType
>(TT
);
231 if (!RT
) return true;
233 // Otherwise, we have to be careful. If it is a struct that we're in the
234 // process of expanding, then we can't convert the function type. That's ok
235 // though because we must be in a pointer context under the struct, so we can
236 // just convert it to a dummy type.
238 // We decide this by checking whether ConvertRecordDeclType returns us an
239 // opaque type for a struct that we know is defined.
240 return isSafeToConvert(RT
->getDecl(), *this);
244 /// Code to verify a given function type is complete, i.e. the return type
245 /// and all of the parameter types are complete. Also check to see if we are in
246 /// a RS_StructPointer context, and if so whether any struct types have been
247 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
248 /// that cannot be converted to an IR type.
249 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType
*FT
) {
250 if (!isFuncParamTypeConvertible(FT
->getReturnType()))
253 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
254 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
255 if (!isFuncParamTypeConvertible(FPT
->getParamType(i
)))
261 /// UpdateCompletedType - When we find the full definition for a TagDecl,
262 /// replace the 'opaque' type we previously made for it if applicable.
263 void CodeGenTypes::UpdateCompletedType(const TagDecl
*TD
) {
264 // If this is an enum being completed, then we flush all non-struct types from
265 // the cache. This allows function types and other things that may be derived
266 // from the enum to be recomputed.
267 if (const EnumDecl
*ED
= dyn_cast
<EnumDecl
>(TD
)) {
268 // Only flush the cache if we've actually already converted this type.
269 if (TypeCache
.count(ED
->getTypeForDecl())) {
270 // Okay, we formed some types based on this. We speculated that the enum
271 // would be lowered to i32, so we only need to flush the cache if this
273 if (!ConvertType(ED
->getIntegerType())->isIntegerTy(32))
276 // If necessary, provide the full definition of a type only used with a
277 // declaration so far.
278 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
279 DI
->completeType(ED
);
283 // If we completed a RecordDecl that we previously used and converted to an
284 // anonymous type, then go ahead and complete it now.
285 const RecordDecl
*RD
= cast
<RecordDecl
>(TD
);
286 if (RD
->isDependentType()) return;
288 // Only complete it if we converted it already. If we haven't converted it
289 // yet, we'll just do it lazily.
290 if (RecordDeclTypes
.count(Context
.getTagDeclType(RD
).getTypePtr()))
291 ConvertRecordDeclType(RD
);
293 // If necessary, provide the full definition of a type only used with a
294 // declaration so far.
295 if (CGDebugInfo
*DI
= CGM
.getModuleDebugInfo())
296 DI
->completeType(RD
);
299 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl
*RD
) {
300 QualType T
= Context
.getRecordType(RD
);
301 T
= Context
.getCanonicalType(T
);
303 const Type
*Ty
= T
.getTypePtr();
304 if (RecordsWithOpaqueMemberPointers
.count(Ty
)) {
306 RecordsWithOpaqueMemberPointers
.clear();
310 static llvm::Type
*getTypeForFormat(llvm::LLVMContext
&VMContext
,
311 const llvm::fltSemantics
&format
,
312 bool UseNativeHalf
= false) {
313 if (&format
== &llvm::APFloat::IEEEhalf()) {
315 return llvm::Type::getHalfTy(VMContext
);
317 return llvm::Type::getInt16Ty(VMContext
);
319 if (&format
== &llvm::APFloat::BFloat())
320 return llvm::Type::getBFloatTy(VMContext
);
321 if (&format
== &llvm::APFloat::IEEEsingle())
322 return llvm::Type::getFloatTy(VMContext
);
323 if (&format
== &llvm::APFloat::IEEEdouble())
324 return llvm::Type::getDoubleTy(VMContext
);
325 if (&format
== &llvm::APFloat::IEEEquad())
326 return llvm::Type::getFP128Ty(VMContext
);
327 if (&format
== &llvm::APFloat::PPCDoubleDouble())
328 return llvm::Type::getPPC_FP128Ty(VMContext
);
329 if (&format
== &llvm::APFloat::x87DoubleExtended())
330 return llvm::Type::getX86_FP80Ty(VMContext
);
331 llvm_unreachable("Unknown float format!");
334 llvm::Type
*CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT
) {
335 assert(QFT
.isCanonical());
336 const Type
*Ty
= QFT
.getTypePtr();
337 const FunctionType
*FT
= cast
<FunctionType
>(QFT
.getTypePtr());
338 // First, check whether we can build the full function type. If the
339 // function type depends on an incomplete type (e.g. a struct or enum), we
340 // cannot lower the function type.
341 if (!isFuncTypeConvertible(FT
)) {
342 // This function's type depends on an incomplete tag type.
344 // Force conversion of all the relevant record types, to make sure
345 // we re-convert the FunctionType when appropriate.
346 if (const RecordType
*RT
= FT
->getReturnType()->getAs
<RecordType
>())
347 ConvertRecordDeclType(RT
->getDecl());
348 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
))
349 for (unsigned i
= 0, e
= FPT
->getNumParams(); i
!= e
; i
++)
350 if (const RecordType
*RT
= FPT
->getParamType(i
)->getAs
<RecordType
>())
351 ConvertRecordDeclType(RT
->getDecl());
353 SkippedLayout
= true;
355 // Return a placeholder type.
356 return llvm::StructType::get(getLLVMContext());
359 // While we're converting the parameter types for a function, we don't want
360 // to recursively convert any pointed-to structs. Converting directly-used
361 // structs is ok though.
362 if (!RecordsBeingLaidOut
.insert(Ty
).second
) {
363 SkippedLayout
= true;
364 return llvm::StructType::get(getLLVMContext());
367 // The function type can be built; call the appropriate routines to
369 const CGFunctionInfo
*FI
;
370 if (const FunctionProtoType
*FPT
= dyn_cast
<FunctionProtoType
>(FT
)) {
371 FI
= &arrangeFreeFunctionType(
372 CanQual
<FunctionProtoType
>::CreateUnsafe(QualType(FPT
, 0)));
374 const FunctionNoProtoType
*FNPT
= cast
<FunctionNoProtoType
>(FT
);
375 FI
= &arrangeFreeFunctionType(
376 CanQual
<FunctionNoProtoType
>::CreateUnsafe(QualType(FNPT
, 0)));
379 llvm::Type
*ResultType
= nullptr;
380 // If there is something higher level prodding our CGFunctionInfo, then
381 // don't recurse into it again.
382 if (FunctionsBeingProcessed
.count(FI
)) {
384 ResultType
= llvm::StructType::get(getLLVMContext());
385 SkippedLayout
= true;
388 // Otherwise, we're good to go, go ahead and convert it.
389 ResultType
= GetFunctionType(*FI
);
392 RecordsBeingLaidOut
.erase(Ty
);
394 if (RecordsBeingLaidOut
.empty())
395 while (!DeferredRecords
.empty())
396 ConvertRecordDeclType(DeferredRecords
.pop_back_val());
400 /// ConvertType - Convert the specified type to its LLVM form.
401 llvm::Type
*CodeGenTypes::ConvertType(QualType T
) {
402 T
= Context
.getCanonicalType(T
);
404 const Type
*Ty
= T
.getTypePtr();
406 // For the device-side compilation, CUDA device builtin surface/texture types
407 // may be represented in different types.
408 if (Context
.getLangOpts().CUDAIsDevice
) {
409 if (T
->isCUDADeviceBuiltinSurfaceType()) {
410 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
411 .getCUDADeviceBuiltinSurfaceDeviceType())
413 } else if (T
->isCUDADeviceBuiltinTextureType()) {
414 if (auto *Ty
= CGM
.getTargetCodeGenInfo()
415 .getCUDADeviceBuiltinTextureDeviceType())
420 // RecordTypes are cached and processed specially.
421 if (const RecordType
*RT
= dyn_cast
<RecordType
>(Ty
))
422 return ConvertRecordDeclType(RT
->getDecl());
424 // The LLVM type we return for a given Clang type may not always be the same,
425 // most notably when dealing with recursive structs. We mark these potential
426 // cases with ShouldUseCache below. Builtin types cannot be recursive.
427 // TODO: when clang uses LLVM opaque pointers we won't be able to represent
428 // recursive types with LLVM types, making this logic much simpler.
429 llvm::Type
*CachedType
= nullptr;
430 bool ShouldUseCache
=
431 Ty
->isBuiltinType() ||
432 (noRecordsBeingLaidOut() && FunctionsBeingProcessed
.empty());
433 if (ShouldUseCache
) {
434 llvm::DenseMap
<const Type
*, llvm::Type
*>::iterator TCI
=
436 if (TCI
!= TypeCache
.end())
437 CachedType
= TCI
->second
;
438 // With expensive checks, check that the type we compute matches the
440 #ifndef EXPENSIVE_CHECKS
446 // If we don't have it in the cache, convert it now.
447 llvm::Type
*ResultType
= nullptr;
448 switch (Ty
->getTypeClass()) {
449 case Type::Record
: // Handled above.
450 #define TYPE(Class, Base)
451 #define ABSTRACT_TYPE(Class, Base)
452 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
453 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
454 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
455 #include "clang/AST/TypeNodes.inc"
456 llvm_unreachable("Non-canonical or dependent types aren't possible.");
458 case Type::Builtin
: {
459 switch (cast
<BuiltinType
>(Ty
)->getKind()) {
460 case BuiltinType::Void
:
461 case BuiltinType::ObjCId
:
462 case BuiltinType::ObjCClass
:
463 case BuiltinType::ObjCSel
:
464 // LLVM void type can only be used as the result of a function call. Just
465 // map to the same as char.
466 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
469 case BuiltinType::Bool
:
470 // Note that we always return bool as i1 for use as a scalar type.
471 ResultType
= llvm::Type::getInt1Ty(getLLVMContext());
474 case BuiltinType::Char_S
:
475 case BuiltinType::Char_U
:
476 case BuiltinType::SChar
:
477 case BuiltinType::UChar
:
478 case BuiltinType::Short
:
479 case BuiltinType::UShort
:
480 case BuiltinType::Int
:
481 case BuiltinType::UInt
:
482 case BuiltinType::Long
:
483 case BuiltinType::ULong
:
484 case BuiltinType::LongLong
:
485 case BuiltinType::ULongLong
:
486 case BuiltinType::WChar_S
:
487 case BuiltinType::WChar_U
:
488 case BuiltinType::Char8
:
489 case BuiltinType::Char16
:
490 case BuiltinType::Char32
:
491 case BuiltinType::ShortAccum
:
492 case BuiltinType::Accum
:
493 case BuiltinType::LongAccum
:
494 case BuiltinType::UShortAccum
:
495 case BuiltinType::UAccum
:
496 case BuiltinType::ULongAccum
:
497 case BuiltinType::ShortFract
:
498 case BuiltinType::Fract
:
499 case BuiltinType::LongFract
:
500 case BuiltinType::UShortFract
:
501 case BuiltinType::UFract
:
502 case BuiltinType::ULongFract
:
503 case BuiltinType::SatShortAccum
:
504 case BuiltinType::SatAccum
:
505 case BuiltinType::SatLongAccum
:
506 case BuiltinType::SatUShortAccum
:
507 case BuiltinType::SatUAccum
:
508 case BuiltinType::SatULongAccum
:
509 case BuiltinType::SatShortFract
:
510 case BuiltinType::SatFract
:
511 case BuiltinType::SatLongFract
:
512 case BuiltinType::SatUShortFract
:
513 case BuiltinType::SatUFract
:
514 case BuiltinType::SatULongFract
:
515 ResultType
= llvm::IntegerType::get(getLLVMContext(),
516 static_cast<unsigned>(Context
.getTypeSize(T
)));
519 case BuiltinType::Float16
:
521 getTypeForFormat(getLLVMContext(), Context
.getFloatTypeSemantics(T
),
522 /* UseNativeHalf = */ true);
525 case BuiltinType::Half
:
526 // Half FP can either be storage-only (lowered to i16) or native.
527 ResultType
= getTypeForFormat(
528 getLLVMContext(), Context
.getFloatTypeSemantics(T
),
529 Context
.getLangOpts().NativeHalfType
||
530 !Context
.getTargetInfo().useFP16ConversionIntrinsics());
532 case BuiltinType::BFloat16
:
533 case BuiltinType::Float
:
534 case BuiltinType::Double
:
535 case BuiltinType::LongDouble
:
536 case BuiltinType::Float128
:
537 case BuiltinType::Ibm128
:
538 ResultType
= getTypeForFormat(getLLVMContext(),
539 Context
.getFloatTypeSemantics(T
),
540 /* UseNativeHalf = */ false);
543 case BuiltinType::NullPtr
:
544 // Model std::nullptr_t as i8*
545 ResultType
= llvm::Type::getInt8PtrTy(getLLVMContext());
548 case BuiltinType::UInt128
:
549 case BuiltinType::Int128
:
550 ResultType
= llvm::IntegerType::get(getLLVMContext(), 128);
553 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
554 case BuiltinType::Id:
555 #include "clang/Basic/OpenCLImageTypes.def"
556 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
557 case BuiltinType::Id:
558 #include "clang/Basic/OpenCLExtensionTypes.def"
559 case BuiltinType::OCLSampler
:
560 case BuiltinType::OCLEvent
:
561 case BuiltinType::OCLClkEvent
:
562 case BuiltinType::OCLQueue
:
563 case BuiltinType::OCLReserveID
:
564 ResultType
= CGM
.getOpenCLRuntime().convertOpenCLSpecificType(Ty
);
566 case BuiltinType::SveInt8
:
567 case BuiltinType::SveUint8
:
568 case BuiltinType::SveInt8x2
:
569 case BuiltinType::SveUint8x2
:
570 case BuiltinType::SveInt8x3
:
571 case BuiltinType::SveUint8x3
:
572 case BuiltinType::SveInt8x4
:
573 case BuiltinType::SveUint8x4
:
574 case BuiltinType::SveInt16
:
575 case BuiltinType::SveUint16
:
576 case BuiltinType::SveInt16x2
:
577 case BuiltinType::SveUint16x2
:
578 case BuiltinType::SveInt16x3
:
579 case BuiltinType::SveUint16x3
:
580 case BuiltinType::SveInt16x4
:
581 case BuiltinType::SveUint16x4
:
582 case BuiltinType::SveInt32
:
583 case BuiltinType::SveUint32
:
584 case BuiltinType::SveInt32x2
:
585 case BuiltinType::SveUint32x2
:
586 case BuiltinType::SveInt32x3
:
587 case BuiltinType::SveUint32x3
:
588 case BuiltinType::SveInt32x4
:
589 case BuiltinType::SveUint32x4
:
590 case BuiltinType::SveInt64
:
591 case BuiltinType::SveUint64
:
592 case BuiltinType::SveInt64x2
:
593 case BuiltinType::SveUint64x2
:
594 case BuiltinType::SveInt64x3
:
595 case BuiltinType::SveUint64x3
:
596 case BuiltinType::SveInt64x4
:
597 case BuiltinType::SveUint64x4
:
598 case BuiltinType::SveBool
:
599 case BuiltinType::SveFloat16
:
600 case BuiltinType::SveFloat16x2
:
601 case BuiltinType::SveFloat16x3
:
602 case BuiltinType::SveFloat16x4
:
603 case BuiltinType::SveFloat32
:
604 case BuiltinType::SveFloat32x2
:
605 case BuiltinType::SveFloat32x3
:
606 case BuiltinType::SveFloat32x4
:
607 case BuiltinType::SveFloat64
:
608 case BuiltinType::SveFloat64x2
:
609 case BuiltinType::SveFloat64x3
:
610 case BuiltinType::SveFloat64x4
:
611 case BuiltinType::SveBFloat16
:
612 case BuiltinType::SveBFloat16x2
:
613 case BuiltinType::SveBFloat16x3
:
614 case BuiltinType::SveBFloat16x4
: {
615 ASTContext::BuiltinVectorTypeInfo Info
=
616 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
617 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
618 Info
.EC
.getKnownMinValue() *
621 #define PPC_VECTOR_TYPE(Name, Id, Size) \
622 case BuiltinType::Id: \
624 llvm::FixedVectorType::get(ConvertType(Context.BoolTy), Size); \
626 #include "clang/Basic/PPCTypes.def"
627 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
628 #include "clang/Basic/RISCVVTypes.def"
630 ASTContext::BuiltinVectorTypeInfo Info
=
631 Context
.getBuiltinVectorTypeInfo(cast
<BuiltinType
>(Ty
));
632 return llvm::ScalableVectorType::get(ConvertType(Info
.ElementType
),
633 Info
.EC
.getKnownMinValue() *
636 case BuiltinType::Dependent
:
637 #define BUILTIN_TYPE(Id, SingletonId)
638 #define PLACEHOLDER_TYPE(Id, SingletonId) \
639 case BuiltinType::Id:
640 #include "clang/AST/BuiltinTypes.def"
641 llvm_unreachable("Unexpected placeholder builtin type!");
646 case Type::DeducedTemplateSpecialization
:
647 llvm_unreachable("Unexpected undeduced type!");
648 case Type::Complex
: {
649 llvm::Type
*EltTy
= ConvertType(cast
<ComplexType
>(Ty
)->getElementType());
650 ResultType
= llvm::StructType::get(EltTy
, EltTy
);
653 case Type::LValueReference
:
654 case Type::RValueReference
: {
655 const ReferenceType
*RTy
= cast
<ReferenceType
>(Ty
);
656 QualType ETy
= RTy
->getPointeeType();
657 llvm::Type
*PointeeType
= ConvertTypeForMem(ETy
);
658 unsigned AS
= getTargetAddressSpace(ETy
);
659 ResultType
= llvm::PointerType::get(PointeeType
, AS
);
662 case Type::Pointer
: {
663 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
664 QualType ETy
= PTy
->getPointeeType();
665 llvm::Type
*PointeeType
= ConvertTypeForMem(ETy
);
666 if (PointeeType
->isVoidTy())
667 PointeeType
= llvm::Type::getInt8Ty(getLLVMContext());
668 unsigned AS
= getTargetAddressSpace(ETy
);
669 ResultType
= llvm::PointerType::get(PointeeType
, AS
);
673 case Type::VariableArray
: {
674 const VariableArrayType
*A
= cast
<VariableArrayType
>(Ty
);
675 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
676 "FIXME: We only handle trivial array types so far!");
677 // VLAs resolve to the innermost element type; this matches
678 // the return of alloca, and there isn't any obviously better choice.
679 ResultType
= ConvertTypeForMem(A
->getElementType());
682 case Type::IncompleteArray
: {
683 const IncompleteArrayType
*A
= cast
<IncompleteArrayType
>(Ty
);
684 assert(A
->getIndexTypeCVRQualifiers() == 0 &&
685 "FIXME: We only handle trivial array types so far!");
686 // int X[] -> [0 x int], unless the element type is not sized. If it is
687 // unsized (e.g. an incomplete struct) just use [0 x i8].
688 ResultType
= ConvertTypeForMem(A
->getElementType());
689 if (!ResultType
->isSized()) {
690 SkippedLayout
= true;
691 ResultType
= llvm::Type::getInt8Ty(getLLVMContext());
693 ResultType
= llvm::ArrayType::get(ResultType
, 0);
696 case Type::ConstantArray
: {
697 const ConstantArrayType
*A
= cast
<ConstantArrayType
>(Ty
);
698 llvm::Type
*EltTy
= ConvertTypeForMem(A
->getElementType());
700 // Lower arrays of undefined struct type to arrays of i8 just to have a
702 if (!EltTy
->isSized()) {
703 SkippedLayout
= true;
704 EltTy
= llvm::Type::getInt8Ty(getLLVMContext());
707 ResultType
= llvm::ArrayType::get(EltTy
, A
->getSize().getZExtValue());
710 case Type::ExtVector
:
712 const auto *VT
= cast
<VectorType
>(Ty
);
713 // An ext_vector_type of Bool is really a vector of bits.
714 llvm::Type
*IRElemTy
= VT
->isExtVectorBoolType()
715 ? llvm::Type::getInt1Ty(getLLVMContext())
716 : ConvertType(VT
->getElementType());
717 ResultType
= llvm::FixedVectorType::get(IRElemTy
, VT
->getNumElements());
720 case Type::ConstantMatrix
: {
721 const ConstantMatrixType
*MT
= cast
<ConstantMatrixType
>(Ty
);
723 llvm::FixedVectorType::get(ConvertType(MT
->getElementType()),
724 MT
->getNumRows() * MT
->getNumColumns());
727 case Type::FunctionNoProto
:
728 case Type::FunctionProto
:
729 ResultType
= ConvertFunctionTypeInternal(T
);
731 case Type::ObjCObject
:
732 ResultType
= ConvertType(cast
<ObjCObjectType
>(Ty
)->getBaseType());
735 case Type::ObjCInterface
: {
736 // Objective-C interfaces are always opaque (outside of the
737 // runtime, which can do whatever it likes); we never refine
739 llvm::Type
*&T
= InterfaceTypes
[cast
<ObjCInterfaceType
>(Ty
)];
741 T
= llvm::StructType::create(getLLVMContext());
746 case Type::ObjCObjectPointer
: {
747 // Protocol qualifications do not influence the LLVM type, we just return a
748 // pointer to the underlying interface type. We don't need to worry about
749 // recursive conversion.
751 ConvertTypeForMem(cast
<ObjCObjectPointerType
>(Ty
)->getPointeeType());
752 ResultType
= T
->getPointerTo();
757 const EnumDecl
*ED
= cast
<EnumType
>(Ty
)->getDecl();
758 if (ED
->isCompleteDefinition() || ED
->isFixed())
759 return ConvertType(ED
->getIntegerType());
760 // Return a placeholder 'i32' type. This can be changed later when the
761 // type is defined (see UpdateCompletedType), but is likely to be the
763 ResultType
= llvm::Type::getInt32Ty(getLLVMContext());
767 case Type::BlockPointer
: {
768 const QualType FTy
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
769 llvm::Type
*PointeeType
= CGM
.getLangOpts().OpenCL
770 ? CGM
.getGenericBlockLiteralType()
771 : ConvertTypeForMem(FTy
);
772 // Block pointers lower to function type. For function type,
773 // getTargetAddressSpace() returns default address space for
774 // function pointer i.e. program address space. Therefore, for block
775 // pointers, it is important to pass the pointee AST address space when
776 // calling getTargetAddressSpace(), to ensure that we get the LLVM IR
777 // address space for data pointers and not function pointers.
778 unsigned AS
= Context
.getTargetAddressSpace(FTy
.getAddressSpace());
779 ResultType
= llvm::PointerType::get(PointeeType
, AS
);
783 case Type::MemberPointer
: {
784 auto *MPTy
= cast
<MemberPointerType
>(Ty
);
785 if (!getCXXABI().isMemberPointerConvertible(MPTy
)) {
786 auto *C
= MPTy
->getClass();
787 auto Insertion
= RecordsWithOpaqueMemberPointers
.insert({C
, nullptr});
788 if (Insertion
.second
)
789 Insertion
.first
->second
= llvm::StructType::create(getLLVMContext());
790 ResultType
= Insertion
.first
->second
;
792 ResultType
= getCXXABI().ConvertMemberPointerType(MPTy
);
798 QualType valueType
= cast
<AtomicType
>(Ty
)->getValueType();
799 ResultType
= ConvertTypeForMem(valueType
);
801 // Pad out to the inflated size if necessary.
802 uint64_t valueSize
= Context
.getTypeSize(valueType
);
803 uint64_t atomicSize
= Context
.getTypeSize(Ty
);
804 if (valueSize
!= atomicSize
) {
805 assert(valueSize
< atomicSize
);
806 llvm::Type
*elts
[] = {
808 llvm::ArrayType::get(CGM
.Int8Ty
, (atomicSize
- valueSize
) / 8)
811 llvm::StructType::get(getLLVMContext(), llvm::ArrayRef(elts
));
816 ResultType
= CGM
.getOpenCLRuntime().getPipeType(cast
<PipeType
>(Ty
));
820 const auto &EIT
= cast
<BitIntType
>(Ty
);
821 ResultType
= llvm::Type::getIntNTy(getLLVMContext(), EIT
->getNumBits());
826 assert(ResultType
&& "Didn't convert a type?");
827 assert((!CachedType
|| CachedType
== ResultType
) &&
828 "Cached type doesn't match computed type");
831 TypeCache
[Ty
] = ResultType
;
835 bool CodeGenModule::isPaddedAtomicType(QualType type
) {
836 return isPaddedAtomicType(type
->castAs
<AtomicType
>());
839 bool CodeGenModule::isPaddedAtomicType(const AtomicType
*type
) {
840 return Context
.getTypeSize(type
) != Context
.getTypeSize(type
->getValueType());
843 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
844 llvm::StructType
*CodeGenTypes::ConvertRecordDeclType(const RecordDecl
*RD
) {
845 // TagDecl's are not necessarily unique, instead use the (clang)
846 // type connected to the decl.
847 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
849 llvm::StructType
*&Entry
= RecordDeclTypes
[Key
];
851 // If we don't have a StructType at all yet, create the forward declaration.
853 Entry
= llvm::StructType::create(getLLVMContext());
854 addRecordTypeName(RD
, Entry
, "");
856 llvm::StructType
*Ty
= Entry
;
858 // If this is still a forward declaration, or the LLVM type is already
859 // complete, there's nothing more to do.
860 RD
= RD
->getDefinition();
861 if (!RD
|| !RD
->isCompleteDefinition() || !Ty
->isOpaque())
864 // If converting this type would cause us to infinitely loop, don't do it!
865 if (!isSafeToConvert(RD
, *this)) {
866 DeferredRecords
.push_back(RD
);
870 // Okay, this is a definition of a type. Compile the implementation now.
871 bool InsertResult
= RecordsBeingLaidOut
.insert(Key
).second
;
873 assert(InsertResult
&& "Recursively compiling a struct?");
875 // Force conversion of non-virtual base classes recursively.
876 if (const CXXRecordDecl
*CRD
= dyn_cast
<CXXRecordDecl
>(RD
)) {
877 for (const auto &I
: CRD
->bases()) {
878 if (I
.isVirtual()) continue;
879 ConvertRecordDeclType(I
.getType()->castAs
<RecordType
>()->getDecl());
884 std::unique_ptr
<CGRecordLayout
> Layout
= ComputeRecordLayout(RD
, Ty
);
885 CGRecordLayouts
[Key
] = std::move(Layout
);
887 // We're done laying out this struct.
888 bool EraseResult
= RecordsBeingLaidOut
.erase(Key
); (void)EraseResult
;
889 assert(EraseResult
&& "struct not in RecordsBeingLaidOut set?");
891 // If this struct blocked a FunctionType conversion, then recompute whatever
892 // was derived from that.
893 // FIXME: This is hugely overconservative.
897 // If we're done converting the outer-most record, then convert any deferred
899 if (RecordsBeingLaidOut
.empty())
900 while (!DeferredRecords
.empty())
901 ConvertRecordDeclType(DeferredRecords
.pop_back_val());
906 /// getCGRecordLayout - Return record layout info for the given record decl.
907 const CGRecordLayout
&
908 CodeGenTypes::getCGRecordLayout(const RecordDecl
*RD
) {
909 const Type
*Key
= Context
.getTagDeclType(RD
).getTypePtr();
911 auto I
= CGRecordLayouts
.find(Key
);
912 if (I
!= CGRecordLayouts
.end())
914 // Compute the type information.
915 ConvertRecordDeclType(RD
);
918 I
= CGRecordLayouts
.find(Key
);
920 assert(I
!= CGRecordLayouts
.end() &&
921 "Unable to find record layout information for type");
925 bool CodeGenTypes::isPointerZeroInitializable(QualType T
) {
926 assert((T
->isAnyPointerType() || T
->isBlockPointerType()) && "Invalid type");
927 return isZeroInitializable(T
);
930 bool CodeGenTypes::isZeroInitializable(QualType T
) {
931 if (T
->getAs
<PointerType
>())
932 return Context
.getTargetNullPointerValue(T
) == 0;
934 if (const auto *AT
= Context
.getAsArrayType(T
)) {
935 if (isa
<IncompleteArrayType
>(AT
))
937 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(AT
))
938 if (Context
.getConstantArrayElementCount(CAT
) == 0)
940 T
= Context
.getBaseElementType(T
);
943 // Records are non-zero-initializable if they contain any
944 // non-zero-initializable subobjects.
945 if (const RecordType
*RT
= T
->getAs
<RecordType
>()) {
946 const RecordDecl
*RD
= RT
->getDecl();
947 return isZeroInitializable(RD
);
950 // We have to ask the ABI about member pointers.
951 if (const MemberPointerType
*MPT
= T
->getAs
<MemberPointerType
>())
952 return getCXXABI().isZeroInitializable(MPT
);
954 // Everything else is okay.
958 bool CodeGenTypes::isZeroInitializable(const RecordDecl
*RD
) {
959 return getCGRecordLayout(RD
).isZeroInitializable();
962 unsigned CodeGenTypes::getTargetAddressSpace(QualType T
) const {
963 // Return the address space for the type. If the type is a
964 // function type without an address space qualifier, the
965 // program address space is used. Otherwise, the target picks
966 // the best address space based on the type information
967 return T
->isFunctionType() && !T
.hasAddressSpace()
968 ? getDataLayout().getProgramAddressSpace()
969 : getContext().getTargetAddressSpace(T
.getAddressSpace());