[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / Parse / ParseExpr.cpp
blob66d937ac5742d693fbe56f37cde5d1c26d8f42ff
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production. Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
23 #include "clang/Parse/Parser.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "clang/Parse/RAIIObjectsForParser.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include <optional>
34 using namespace clang;
36 /// Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production. C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession. In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce. Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 /// pm-expression: [C++ 5.5]
49 /// cast-expression
50 /// pm-expression '.*' cast-expression
51 /// pm-expression '->*' cast-expression
52 ///
53 /// multiplicative-expression: [C99 6.5.5]
54 /// Note: in C++, apply pm-expression instead of cast-expression
55 /// cast-expression
56 /// multiplicative-expression '*' cast-expression
57 /// multiplicative-expression '/' cast-expression
58 /// multiplicative-expression '%' cast-expression
59 ///
60 /// additive-expression: [C99 6.5.6]
61 /// multiplicative-expression
62 /// additive-expression '+' multiplicative-expression
63 /// additive-expression '-' multiplicative-expression
64 ///
65 /// shift-expression: [C99 6.5.7]
66 /// additive-expression
67 /// shift-expression '<<' additive-expression
68 /// shift-expression '>>' additive-expression
69 ///
70 /// compare-expression: [C++20 expr.spaceship]
71 /// shift-expression
72 /// compare-expression '<=>' shift-expression
73 ///
74 /// relational-expression: [C99 6.5.8]
75 /// compare-expression
76 /// relational-expression '<' compare-expression
77 /// relational-expression '>' compare-expression
78 /// relational-expression '<=' compare-expression
79 /// relational-expression '>=' compare-expression
80 ///
81 /// equality-expression: [C99 6.5.9]
82 /// relational-expression
83 /// equality-expression '==' relational-expression
84 /// equality-expression '!=' relational-expression
85 ///
86 /// AND-expression: [C99 6.5.10]
87 /// equality-expression
88 /// AND-expression '&' equality-expression
89 ///
90 /// exclusive-OR-expression: [C99 6.5.11]
91 /// AND-expression
92 /// exclusive-OR-expression '^' AND-expression
93 ///
94 /// inclusive-OR-expression: [C99 6.5.12]
95 /// exclusive-OR-expression
96 /// inclusive-OR-expression '|' exclusive-OR-expression
97 ///
98 /// logical-AND-expression: [C99 6.5.13]
99 /// inclusive-OR-expression
100 /// logical-AND-expression '&&' inclusive-OR-expression
102 /// logical-OR-expression: [C99 6.5.14]
103 /// logical-AND-expression
104 /// logical-OR-expression '||' logical-AND-expression
106 /// conditional-expression: [C99 6.5.15]
107 /// logical-OR-expression
108 /// logical-OR-expression '?' expression ':' conditional-expression
109 /// [GNU] logical-OR-expression '?' ':' conditional-expression
110 /// [C++] the third operand is an assignment-expression
112 /// assignment-expression: [C99 6.5.16]
113 /// conditional-expression
114 /// unary-expression assignment-operator assignment-expression
115 /// [C++] throw-expression [C++ 15]
117 /// assignment-operator: one of
118 /// = *= /= %= += -= <<= >>= &= ^= |=
120 /// expression: [C99 6.5.17]
121 /// assignment-expression ...[opt]
122 /// expression ',' assignment-expression ...[opt]
123 /// \endverbatim
124 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
125 ExprResult LHS(ParseAssignmentExpression(isTypeCast));
126 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
129 /// This routine is called when the '@' is seen and consumed.
130 /// Current token is an Identifier and is not a 'try'. This
131 /// routine is necessary to disambiguate \@try-statement from,
132 /// for example, \@encode-expression.
134 ExprResult
135 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
136 ExprResult LHS(ParseObjCAtExpression(AtLoc));
137 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
140 /// This routine is called when a leading '__extension__' is seen and
141 /// consumed. This is necessary because the token gets consumed in the
142 /// process of disambiguating between an expression and a declaration.
143 ExprResult
144 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
145 ExprResult LHS(true);
147 // Silence extension warnings in the sub-expression
148 ExtensionRAIIObject O(Diags);
150 LHS = ParseCastExpression(AnyCastExpr);
153 if (!LHS.isInvalid())
154 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
155 LHS.get());
157 return ParseRHSOfBinaryExpression(LHS, prec::Comma);
160 /// Parse an expr that doesn't include (top-level) commas.
161 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
162 if (Tok.is(tok::code_completion)) {
163 cutOffParsing();
164 Actions.CodeCompleteExpression(getCurScope(),
165 PreferredType.get(Tok.getLocation()));
166 return ExprError();
169 if (Tok.is(tok::kw_throw))
170 return ParseThrowExpression();
171 if (Tok.is(tok::kw_co_yield))
172 return ParseCoyieldExpression();
174 ExprResult LHS = ParseCastExpression(AnyCastExpr,
175 /*isAddressOfOperand=*/false,
176 isTypeCast);
177 return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
180 /// Parse an assignment expression where part of an Objective-C message
181 /// send has already been parsed.
183 /// In this case \p LBracLoc indicates the location of the '[' of the message
184 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
185 /// the receiver of the message.
187 /// Since this handles full assignment-expression's, it handles postfix
188 /// expressions and other binary operators for these expressions as well.
189 ExprResult
190 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
191 SourceLocation SuperLoc,
192 ParsedType ReceiverType,
193 Expr *ReceiverExpr) {
194 ExprResult R
195 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
196 ReceiverType, ReceiverExpr);
197 R = ParsePostfixExpressionSuffix(R);
198 return ParseRHSOfBinaryExpression(R, prec::Assignment);
201 ExprResult
202 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
203 assert(Actions.ExprEvalContexts.back().Context ==
204 Sema::ExpressionEvaluationContext::ConstantEvaluated &&
205 "Call this function only if your ExpressionEvaluationContext is "
206 "already ConstantEvaluated");
207 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
208 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
209 return Actions.ActOnConstantExpression(Res);
212 ExprResult Parser::ParseConstantExpression() {
213 // C++03 [basic.def.odr]p2:
214 // An expression is potentially evaluated unless it appears where an
215 // integral constant expression is required (see 5.19) [...].
216 // C++98 and C++11 have no such rule, but this is only a defect in C++98.
217 EnterExpressionEvaluationContext ConstantEvaluated(
218 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
219 return ParseConstantExpressionInExprEvalContext(NotTypeCast);
222 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
223 EnterExpressionEvaluationContext ConstantEvaluated(
224 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
225 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
226 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
227 return Actions.ActOnCaseExpr(CaseLoc, Res);
230 /// Parse a constraint-expression.
232 /// \verbatim
233 /// constraint-expression: C++2a[temp.constr.decl]p1
234 /// logical-or-expression
235 /// \endverbatim
236 ExprResult Parser::ParseConstraintExpression() {
237 EnterExpressionEvaluationContext ConstantEvaluated(
238 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
239 ExprResult LHS(ParseCastExpression(AnyCastExpr));
240 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
241 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
242 Actions.CorrectDelayedTyposInExpr(Res);
243 return ExprError();
245 return Res;
248 /// \brief Parse a constraint-logical-and-expression.
250 /// \verbatim
251 /// C++2a[temp.constr.decl]p1
252 /// constraint-logical-and-expression:
253 /// primary-expression
254 /// constraint-logical-and-expression '&&' primary-expression
256 /// \endverbatim
257 ExprResult
258 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
259 EnterExpressionEvaluationContext ConstantEvaluated(
260 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
261 bool NotPrimaryExpression = false;
262 auto ParsePrimary = [&] () {
263 ExprResult E = ParseCastExpression(PrimaryExprOnly,
264 /*isAddressOfOperand=*/false,
265 /*isTypeCast=*/NotTypeCast,
266 /*isVectorLiteral=*/false,
267 &NotPrimaryExpression);
268 if (E.isInvalid())
269 return ExprError();
270 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
271 E = ParsePostfixExpressionSuffix(E);
272 // Use InclusiveOr, the precedence just after '&&' to not parse the
273 // next arguments to the logical and.
274 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
275 if (!E.isInvalid())
276 Diag(E.get()->getExprLoc(),
277 Note
278 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
279 : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
280 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
281 << FixItHint::CreateInsertion(
282 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
283 << E.get()->getSourceRange();
284 return E;
287 if (NotPrimaryExpression ||
288 // Check if the following tokens must be a part of a non-primary
289 // expression
290 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
291 /*CPlusPlus11=*/true) > prec::LogicalAnd ||
292 // Postfix operators other than '(' (which will be checked for in
293 // CheckConstraintExpression).
294 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
295 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
296 E = RecoverFromNonPrimary(E, /*Note=*/false);
297 if (E.isInvalid())
298 return ExprError();
299 NotPrimaryExpression = false;
301 bool PossibleNonPrimary;
302 bool IsConstraintExpr =
303 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
304 IsTrailingRequiresClause);
305 if (!IsConstraintExpr || PossibleNonPrimary) {
306 // Atomic constraint might be an unparenthesized non-primary expression
307 // (such as a binary operator), in which case we might get here (e.g. in
308 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
309 // the rest of the addition expression). Try to parse the rest of it here.
310 if (PossibleNonPrimary)
311 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
312 Actions.CorrectDelayedTyposInExpr(E);
313 return ExprError();
315 return E;
317 ExprResult LHS = ParsePrimary();
318 if (LHS.isInvalid())
319 return ExprError();
320 while (Tok.is(tok::ampamp)) {
321 SourceLocation LogicalAndLoc = ConsumeToken();
322 ExprResult RHS = ParsePrimary();
323 if (RHS.isInvalid()) {
324 Actions.CorrectDelayedTyposInExpr(LHS);
325 return ExprError();
327 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
328 tok::ampamp, LHS.get(), RHS.get());
329 if (!Op.isUsable()) {
330 Actions.CorrectDelayedTyposInExpr(RHS);
331 Actions.CorrectDelayedTyposInExpr(LHS);
332 return ExprError();
334 LHS = Op;
336 return LHS;
339 /// \brief Parse a constraint-logical-or-expression.
341 /// \verbatim
342 /// C++2a[temp.constr.decl]p1
343 /// constraint-logical-or-expression:
344 /// constraint-logical-and-expression
345 /// constraint-logical-or-expression '||'
346 /// constraint-logical-and-expression
348 /// \endverbatim
349 ExprResult
350 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
351 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
352 if (!LHS.isUsable())
353 return ExprError();
354 while (Tok.is(tok::pipepipe)) {
355 SourceLocation LogicalOrLoc = ConsumeToken();
356 ExprResult RHS =
357 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
358 if (!RHS.isUsable()) {
359 Actions.CorrectDelayedTyposInExpr(LHS);
360 return ExprError();
362 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
363 tok::pipepipe, LHS.get(), RHS.get());
364 if (!Op.isUsable()) {
365 Actions.CorrectDelayedTyposInExpr(RHS);
366 Actions.CorrectDelayedTyposInExpr(LHS);
367 return ExprError();
369 LHS = Op;
371 return LHS;
374 bool Parser::isNotExpressionStart() {
375 tok::TokenKind K = Tok.getKind();
376 if (K == tok::l_brace || K == tok::r_brace ||
377 K == tok::kw_for || K == tok::kw_while ||
378 K == tok::kw_if || K == tok::kw_else ||
379 K == tok::kw_goto || K == tok::kw_try)
380 return true;
381 // If this is a decl-specifier, we can't be at the start of an expression.
382 return isKnownToBeDeclarationSpecifier();
385 bool Parser::isFoldOperator(prec::Level Level) const {
386 return Level > prec::Unknown && Level != prec::Conditional &&
387 Level != prec::Spaceship;
390 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
391 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
394 /// Parse a binary expression that starts with \p LHS and has a
395 /// precedence of at least \p MinPrec.
396 ExprResult
397 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
398 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
399 GreaterThanIsOperator,
400 getLangOpts().CPlusPlus11);
401 SourceLocation ColonLoc;
403 auto SavedType = PreferredType;
404 while (true) {
405 // Every iteration may rely on a preferred type for the whole expression.
406 PreferredType = SavedType;
407 // If this token has a lower precedence than we are allowed to parse (e.g.
408 // because we are called recursively, or because the token is not a binop),
409 // then we are done!
410 if (NextTokPrec < MinPrec)
411 return LHS;
413 // Consume the operator, saving the operator token for error reporting.
414 Token OpToken = Tok;
415 ConsumeToken();
417 if (OpToken.is(tok::caretcaret)) {
418 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
421 // If we're potentially in a template-id, we may now be able to determine
422 // whether we're actually in one or not.
423 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
424 tok::greatergreatergreater) &&
425 checkPotentialAngleBracketDelimiter(OpToken))
426 return ExprError();
428 // Bail out when encountering a comma followed by a token which can't
429 // possibly be the start of an expression. For instance:
430 // int f() { return 1, }
431 // We can't do this before consuming the comma, because
432 // isNotExpressionStart() looks at the token stream.
433 if (OpToken.is(tok::comma) && isNotExpressionStart()) {
434 PP.EnterToken(Tok, /*IsReinject*/true);
435 Tok = OpToken;
436 return LHS;
439 // If the next token is an ellipsis, then this is a fold-expression. Leave
440 // it alone so we can handle it in the paren expression.
441 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
442 // FIXME: We can't check this via lookahead before we consume the token
443 // because that tickles a lexer bug.
444 PP.EnterToken(Tok, /*IsReinject*/true);
445 Tok = OpToken;
446 return LHS;
449 // In Objective-C++, alternative operator tokens can be used as keyword args
450 // in message expressions. Unconsume the token so that it can reinterpreted
451 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
452 // [foo meth:0 and:0];
453 // [foo not_eq];
454 if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
455 Tok.isOneOf(tok::colon, tok::r_square) &&
456 OpToken.getIdentifierInfo() != nullptr) {
457 PP.EnterToken(Tok, /*IsReinject*/true);
458 Tok = OpToken;
459 return LHS;
462 // Special case handling for the ternary operator.
463 ExprResult TernaryMiddle(true);
464 if (NextTokPrec == prec::Conditional) {
465 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
466 // Parse a braced-init-list here for error recovery purposes.
467 SourceLocation BraceLoc = Tok.getLocation();
468 TernaryMiddle = ParseBraceInitializer();
469 if (!TernaryMiddle.isInvalid()) {
470 Diag(BraceLoc, diag::err_init_list_bin_op)
471 << /*RHS*/ 1 << PP.getSpelling(OpToken)
472 << Actions.getExprRange(TernaryMiddle.get());
473 TernaryMiddle = ExprError();
475 } else if (Tok.isNot(tok::colon)) {
476 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
477 ColonProtectionRAIIObject X(*this);
479 // Handle this production specially:
480 // logical-OR-expression '?' expression ':' conditional-expression
481 // In particular, the RHS of the '?' is 'expression', not
482 // 'logical-OR-expression' as we might expect.
483 TernaryMiddle = ParseExpression();
484 } else {
485 // Special case handling of "X ? Y : Z" where Y is empty:
486 // logical-OR-expression '?' ':' conditional-expression [GNU]
487 TernaryMiddle = nullptr;
488 Diag(Tok, diag::ext_gnu_conditional_expr);
491 if (TernaryMiddle.isInvalid()) {
492 Actions.CorrectDelayedTyposInExpr(LHS);
493 LHS = ExprError();
494 TernaryMiddle = nullptr;
497 if (!TryConsumeToken(tok::colon, ColonLoc)) {
498 // Otherwise, we're missing a ':'. Assume that this was a typo that
499 // the user forgot. If we're not in a macro expansion, we can suggest
500 // a fixit hint. If there were two spaces before the current token,
501 // suggest inserting the colon in between them, otherwise insert ": ".
502 SourceLocation FILoc = Tok.getLocation();
503 const char *FIText = ": ";
504 const SourceManager &SM = PP.getSourceManager();
505 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
506 assert(FILoc.isFileID());
507 bool IsInvalid = false;
508 const char *SourcePtr =
509 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
510 if (!IsInvalid && *SourcePtr == ' ') {
511 SourcePtr =
512 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
513 if (!IsInvalid && *SourcePtr == ' ') {
514 FILoc = FILoc.getLocWithOffset(-1);
515 FIText = ":";
520 Diag(Tok, diag::err_expected)
521 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
522 Diag(OpToken, diag::note_matching) << tok::question;
523 ColonLoc = Tok.getLocation();
527 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
528 OpToken.getKind());
529 // Parse another leaf here for the RHS of the operator.
530 // ParseCastExpression works here because all RHS expressions in C have it
531 // as a prefix, at least. However, in C++, an assignment-expression could
532 // be a throw-expression, which is not a valid cast-expression.
533 // Therefore we need some special-casing here.
534 // Also note that the third operand of the conditional operator is
535 // an assignment-expression in C++, and in C++11, we can have a
536 // braced-init-list on the RHS of an assignment. For better diagnostics,
537 // parse as if we were allowed braced-init-lists everywhere, and check that
538 // they only appear on the RHS of assignments later.
539 ExprResult RHS;
540 bool RHSIsInitList = false;
541 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
542 RHS = ParseBraceInitializer();
543 RHSIsInitList = true;
544 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
545 RHS = ParseAssignmentExpression();
546 else
547 RHS = ParseCastExpression(AnyCastExpr);
549 if (RHS.isInvalid()) {
550 // FIXME: Errors generated by the delayed typo correction should be
551 // printed before errors from parsing the RHS, not after.
552 Actions.CorrectDelayedTyposInExpr(LHS);
553 if (TernaryMiddle.isUsable())
554 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
555 LHS = ExprError();
558 // Remember the precedence of this operator and get the precedence of the
559 // operator immediately to the right of the RHS.
560 prec::Level ThisPrec = NextTokPrec;
561 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
562 getLangOpts().CPlusPlus11);
564 // Assignment and conditional expressions are right-associative.
565 bool isRightAssoc = ThisPrec == prec::Conditional ||
566 ThisPrec == prec::Assignment;
568 // Get the precedence of the operator to the right of the RHS. If it binds
569 // more tightly with RHS than we do, evaluate it completely first.
570 if (ThisPrec < NextTokPrec ||
571 (ThisPrec == NextTokPrec && isRightAssoc)) {
572 if (!RHS.isInvalid() && RHSIsInitList) {
573 Diag(Tok, diag::err_init_list_bin_op)
574 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
575 RHS = ExprError();
577 // If this is left-associative, only parse things on the RHS that bind
578 // more tightly than the current operator. If it is left-associative, it
579 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as
580 // A=(B=(C=D)), where each paren is a level of recursion here.
581 // The function takes ownership of the RHS.
582 RHS = ParseRHSOfBinaryExpression(RHS,
583 static_cast<prec::Level>(ThisPrec + !isRightAssoc));
584 RHSIsInitList = false;
586 if (RHS.isInvalid()) {
587 // FIXME: Errors generated by the delayed typo correction should be
588 // printed before errors from ParseRHSOfBinaryExpression, not after.
589 Actions.CorrectDelayedTyposInExpr(LHS);
590 if (TernaryMiddle.isUsable())
591 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
592 LHS = ExprError();
595 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
596 getLangOpts().CPlusPlus11);
599 if (!RHS.isInvalid() && RHSIsInitList) {
600 if (ThisPrec == prec::Assignment) {
601 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
602 << Actions.getExprRange(RHS.get());
603 } else if (ColonLoc.isValid()) {
604 Diag(ColonLoc, diag::err_init_list_bin_op)
605 << /*RHS*/1 << ":"
606 << Actions.getExprRange(RHS.get());
607 LHS = ExprError();
608 } else {
609 Diag(OpToken, diag::err_init_list_bin_op)
610 << /*RHS*/1 << PP.getSpelling(OpToken)
611 << Actions.getExprRange(RHS.get());
612 LHS = ExprError();
616 ExprResult OrigLHS = LHS;
617 if (!LHS.isInvalid()) {
618 // Combine the LHS and RHS into the LHS (e.g. build AST).
619 if (TernaryMiddle.isInvalid()) {
620 // If we're using '>>' as an operator within a template
621 // argument list (in C++98), suggest the addition of
622 // parentheses so that the code remains well-formed in C++0x.
623 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
624 SuggestParentheses(OpToken.getLocation(),
625 diag::warn_cxx11_right_shift_in_template_arg,
626 SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
627 Actions.getExprRange(RHS.get()).getEnd()));
629 ExprResult BinOp =
630 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
631 OpToken.getKind(), LHS.get(), RHS.get());
632 if (BinOp.isInvalid())
633 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
634 RHS.get()->getEndLoc(),
635 {LHS.get(), RHS.get()});
637 LHS = BinOp;
638 } else {
639 ExprResult CondOp = Actions.ActOnConditionalOp(
640 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
641 RHS.get());
642 if (CondOp.isInvalid()) {
643 std::vector<clang::Expr *> Args;
644 // TernaryMiddle can be null for the GNU conditional expr extension.
645 if (TernaryMiddle.get())
646 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
647 else
648 Args = {LHS.get(), RHS.get()};
649 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
650 RHS.get()->getEndLoc(), Args);
653 LHS = CondOp;
655 // In this case, ActOnBinOp or ActOnConditionalOp performed the
656 // CorrectDelayedTyposInExpr check.
657 if (!getLangOpts().CPlusPlus)
658 continue;
661 // Ensure potential typos aren't left undiagnosed.
662 if (LHS.isInvalid()) {
663 Actions.CorrectDelayedTyposInExpr(OrigLHS);
664 Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
665 Actions.CorrectDelayedTyposInExpr(RHS);
670 /// Parse a cast-expression, unary-expression or primary-expression, based
671 /// on \p ExprType.
673 /// \p isAddressOfOperand exists because an id-expression that is the
674 /// operand of address-of gets special treatment due to member pointers.
676 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
677 bool isAddressOfOperand,
678 TypeCastState isTypeCast,
679 bool isVectorLiteral,
680 bool *NotPrimaryExpression) {
681 bool NotCastExpr;
682 ExprResult Res = ParseCastExpression(ParseKind,
683 isAddressOfOperand,
684 NotCastExpr,
685 isTypeCast,
686 isVectorLiteral,
687 NotPrimaryExpression);
688 if (NotCastExpr)
689 Diag(Tok, diag::err_expected_expression);
690 return Res;
693 namespace {
694 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
695 public:
696 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
697 : NextToken(Next), AllowNonTypes(AllowNonTypes) {
698 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
701 bool ValidateCandidate(const TypoCorrection &candidate) override {
702 NamedDecl *ND = candidate.getCorrectionDecl();
703 if (!ND)
704 return candidate.isKeyword();
706 if (isa<TypeDecl>(ND))
707 return WantTypeSpecifiers;
709 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
710 return false;
712 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
713 return true;
715 for (auto *C : candidate) {
716 NamedDecl *ND = C->getUnderlyingDecl();
717 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
718 return true;
720 return false;
723 std::unique_ptr<CorrectionCandidateCallback> clone() override {
724 return std::make_unique<CastExpressionIdValidator>(*this);
727 private:
728 Token NextToken;
729 bool AllowNonTypes;
733 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
734 /// a unary-expression.
736 /// \p isAddressOfOperand exists because an id-expression that is the operand
737 /// of address-of gets special treatment due to member pointers. NotCastExpr
738 /// is set to true if the token is not the start of a cast-expression, and no
739 /// diagnostic is emitted in this case and no tokens are consumed.
741 /// \verbatim
742 /// cast-expression: [C99 6.5.4]
743 /// unary-expression
744 /// '(' type-name ')' cast-expression
746 /// unary-expression: [C99 6.5.3]
747 /// postfix-expression
748 /// '++' unary-expression
749 /// '--' unary-expression
750 /// [Coro] 'co_await' cast-expression
751 /// unary-operator cast-expression
752 /// 'sizeof' unary-expression
753 /// 'sizeof' '(' type-name ')'
754 /// [C++11] 'sizeof' '...' '(' identifier ')'
755 /// [GNU] '__alignof' unary-expression
756 /// [GNU] '__alignof' '(' type-name ')'
757 /// [C11] '_Alignof' '(' type-name ')'
758 /// [C++11] 'alignof' '(' type-id ')'
759 /// [GNU] '&&' identifier
760 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
761 /// [C++] new-expression
762 /// [C++] delete-expression
764 /// unary-operator: one of
765 /// '&' '*' '+' '-' '~' '!'
766 /// [GNU] '__extension__' '__real' '__imag'
768 /// primary-expression: [C99 6.5.1]
769 /// [C99] identifier
770 /// [C++] id-expression
771 /// constant
772 /// string-literal
773 /// [C++] boolean-literal [C++ 2.13.5]
774 /// [C++11] 'nullptr' [C++11 2.14.7]
775 /// [C++11] user-defined-literal
776 /// '(' expression ')'
777 /// [C11] generic-selection
778 /// [C++2a] requires-expression
779 /// '__func__' [C99 6.4.2.2]
780 /// [GNU] '__FUNCTION__'
781 /// [MS] '__FUNCDNAME__'
782 /// [MS] 'L__FUNCTION__'
783 /// [MS] '__FUNCSIG__'
784 /// [MS] 'L__FUNCSIG__'
785 /// [GNU] '__PRETTY_FUNCTION__'
786 /// [GNU] '(' compound-statement ')'
787 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
788 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
789 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
790 /// assign-expr ')'
791 /// [GNU] '__builtin_FILE' '(' ')'
792 /// [GNU] '__builtin_FUNCTION' '(' ')'
793 /// [GNU] '__builtin_LINE' '(' ')'
794 /// [CLANG] '__builtin_COLUMN' '(' ')'
795 /// [GNU] '__builtin_source_location' '(' ')'
796 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
797 /// [GNU] '__null'
798 /// [OBJC] '[' objc-message-expr ']'
799 /// [OBJC] '\@selector' '(' objc-selector-arg ')'
800 /// [OBJC] '\@protocol' '(' identifier ')'
801 /// [OBJC] '\@encode' '(' type-name ')'
802 /// [OBJC] objc-string-literal
803 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
804 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3]
805 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3]
806 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3]
807 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
808 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
809 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
810 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
811 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1]
812 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1]
813 /// [C++] 'this' [C++ 9.3.2]
814 /// [G++] unary-type-trait '(' type-id ')'
815 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO]
816 /// [EMBT] array-type-trait '(' type-id ',' integer ')'
817 /// [clang] '^' block-literal
819 /// constant: [C99 6.4.4]
820 /// integer-constant
821 /// floating-constant
822 /// enumeration-constant -> identifier
823 /// character-constant
825 /// id-expression: [C++ 5.1]
826 /// unqualified-id
827 /// qualified-id
829 /// unqualified-id: [C++ 5.1]
830 /// identifier
831 /// operator-function-id
832 /// conversion-function-id
833 /// '~' class-name
834 /// template-id
836 /// new-expression: [C++ 5.3.4]
837 /// '::'[opt] 'new' new-placement[opt] new-type-id
838 /// new-initializer[opt]
839 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
840 /// new-initializer[opt]
842 /// delete-expression: [C++ 5.3.5]
843 /// '::'[opt] 'delete' cast-expression
844 /// '::'[opt] 'delete' '[' ']' cast-expression
846 /// [GNU/Embarcadero] unary-type-trait:
847 /// '__is_arithmetic'
848 /// '__is_floating_point'
849 /// '__is_integral'
850 /// '__is_lvalue_expr'
851 /// '__is_rvalue_expr'
852 /// '__is_complete_type'
853 /// '__is_void'
854 /// '__is_array'
855 /// '__is_function'
856 /// '__is_reference'
857 /// '__is_lvalue_reference'
858 /// '__is_rvalue_reference'
859 /// '__is_fundamental'
860 /// '__is_object'
861 /// '__is_scalar'
862 /// '__is_compound'
863 /// '__is_pointer'
864 /// '__is_member_object_pointer'
865 /// '__is_member_function_pointer'
866 /// '__is_member_pointer'
867 /// '__is_const'
868 /// '__is_volatile'
869 /// '__is_trivial'
870 /// '__is_standard_layout'
871 /// '__is_signed'
872 /// '__is_unsigned'
874 /// [GNU] unary-type-trait:
875 /// '__has_nothrow_assign'
876 /// '__has_nothrow_copy'
877 /// '__has_nothrow_constructor'
878 /// '__has_trivial_assign' [TODO]
879 /// '__has_trivial_copy' [TODO]
880 /// '__has_trivial_constructor'
881 /// '__has_trivial_destructor'
882 /// '__has_virtual_destructor'
883 /// '__is_abstract' [TODO]
884 /// '__is_class'
885 /// '__is_empty' [TODO]
886 /// '__is_enum'
887 /// '__is_final'
888 /// '__is_pod'
889 /// '__is_polymorphic'
890 /// '__is_sealed' [MS]
891 /// '__is_trivial'
892 /// '__is_union'
893 /// '__has_unique_object_representations'
895 /// [Clang] unary-type-trait:
896 /// '__is_aggregate'
897 /// '__trivially_copyable'
899 /// binary-type-trait:
900 /// [GNU] '__is_base_of'
901 /// [MS] '__is_convertible_to'
902 /// '__is_convertible'
903 /// '__is_same'
905 /// [Embarcadero] array-type-trait:
906 /// '__array_rank'
907 /// '__array_extent'
909 /// [Embarcadero] expression-trait:
910 /// '__is_lvalue_expr'
911 /// '__is_rvalue_expr'
912 /// \endverbatim
914 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
915 bool isAddressOfOperand,
916 bool &NotCastExpr,
917 TypeCastState isTypeCast,
918 bool isVectorLiteral,
919 bool *NotPrimaryExpression) {
920 ExprResult Res;
921 tok::TokenKind SavedKind = Tok.getKind();
922 auto SavedType = PreferredType;
923 NotCastExpr = false;
925 // Are postfix-expression suffix operators permitted after this
926 // cast-expression? If not, and we find some, we'll parse them anyway and
927 // diagnose them.
928 bool AllowSuffix = true;
930 // This handles all of cast-expression, unary-expression, postfix-expression,
931 // and primary-expression. We handle them together like this for efficiency
932 // and to simplify handling of an expression starting with a '(' token: which
933 // may be one of a parenthesized expression, cast-expression, compound literal
934 // expression, or statement expression.
936 // If the parsed tokens consist of a primary-expression, the cases below
937 // break out of the switch; at the end we call ParsePostfixExpressionSuffix
938 // to handle the postfix expression suffixes. Cases that cannot be followed
939 // by postfix exprs should set AllowSuffix to false.
940 switch (SavedKind) {
941 case tok::l_paren: {
942 // If this expression is limited to being a unary-expression, the paren can
943 // not start a cast expression.
944 ParenParseOption ParenExprType;
945 switch (ParseKind) {
946 case CastParseKind::UnaryExprOnly:
947 assert(getLangOpts().CPlusPlus && "not possible to get here in C");
948 [[fallthrough]];
949 case CastParseKind::AnyCastExpr:
950 ParenExprType = ParenParseOption::CastExpr;
951 break;
952 case CastParseKind::PrimaryExprOnly:
953 ParenExprType = FoldExpr;
954 break;
956 ParsedType CastTy;
957 SourceLocation RParenLoc;
958 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
959 isTypeCast == IsTypeCast, CastTy, RParenLoc);
961 // FIXME: What should we do if a vector literal is followed by a
962 // postfix-expression suffix? Usually postfix operators are permitted on
963 // literals.
964 if (isVectorLiteral)
965 return Res;
967 switch (ParenExprType) {
968 case SimpleExpr: break; // Nothing else to do.
969 case CompoundStmt: break; // Nothing else to do.
970 case CompoundLiteral:
971 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of
972 // postfix-expression exist, parse them now.
973 break;
974 case CastExpr:
975 // We have parsed the cast-expression and no postfix-expr pieces are
976 // following.
977 return Res;
978 case FoldExpr:
979 // We only parsed a fold-expression. There might be postfix-expr pieces
980 // afterwards; parse them now.
981 break;
984 break;
987 // primary-expression
988 case tok::numeric_constant:
989 // constant: integer-constant
990 // constant: floating-constant
992 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
993 ConsumeToken();
994 break;
996 case tok::kw_true:
997 case tok::kw_false:
998 Res = ParseCXXBoolLiteral();
999 break;
1001 case tok::kw___objc_yes:
1002 case tok::kw___objc_no:
1003 Res = ParseObjCBoolLiteral();
1004 break;
1006 case tok::kw_nullptr:
1007 if (getLangOpts().CPlusPlus)
1008 Diag(Tok, diag::warn_cxx98_compat_nullptr);
1009 else
1010 Diag(Tok, getLangOpts().C2x ? diag::warn_c17_compat_nullptr
1011 : diag::ext_c_nullptr);
1013 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1014 break;
1016 case tok::annot_primary_expr:
1017 case tok::annot_overload_set:
1018 Res = getExprAnnotation(Tok);
1019 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1020 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1021 ConsumeAnnotationToken();
1022 if (!Res.isInvalid() && Tok.is(tok::less))
1023 checkPotentialAngleBracket(Res);
1024 break;
1026 case tok::annot_non_type:
1027 case tok::annot_non_type_dependent:
1028 case tok::annot_non_type_undeclared: {
1029 CXXScopeSpec SS;
1030 Token Replacement;
1031 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1032 assert(!Res.isUnset() &&
1033 "should not perform typo correction on annotation token");
1034 break;
1037 case tok::kw___super:
1038 case tok::kw_decltype:
1039 // Annotate the token and tail recurse.
1040 if (TryAnnotateTypeOrScopeToken())
1041 return ExprError();
1042 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1043 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1044 isVectorLiteral, NotPrimaryExpression);
1046 case tok::identifier:
1047 ParseIdentifier: { // primary-expression: identifier
1048 // unqualified-id: identifier
1049 // constant: enumeration-constant
1050 // Turn a potentially qualified name into a annot_typename or
1051 // annot_cxxscope if it would be valid. This handles things like x::y, etc.
1052 if (getLangOpts().CPlusPlus) {
1053 // Avoid the unnecessary parse-time lookup in the common case
1054 // where the syntax forbids a type.
1055 const Token &Next = NextToken();
1057 // If this identifier was reverted from a token ID, and the next token
1058 // is a parenthesis, this is likely to be a use of a type trait. Check
1059 // those tokens.
1060 if (Next.is(tok::l_paren) &&
1061 Tok.is(tok::identifier) &&
1062 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1063 IdentifierInfo *II = Tok.getIdentifierInfo();
1064 // Build up the mapping of revertible type traits, for future use.
1065 if (RevertibleTypeTraits.empty()) {
1066 #define RTT_JOIN(X,Y) X##Y
1067 #define REVERTIBLE_TYPE_TRAIT(Name) \
1068 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1069 = RTT_JOIN(tok::kw_,Name)
1071 REVERTIBLE_TYPE_TRAIT(__is_abstract);
1072 REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1073 REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1074 REVERTIBLE_TYPE_TRAIT(__is_array);
1075 REVERTIBLE_TYPE_TRAIT(__is_assignable);
1076 REVERTIBLE_TYPE_TRAIT(__is_base_of);
1077 REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
1078 REVERTIBLE_TYPE_TRAIT(__is_class);
1079 REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1080 REVERTIBLE_TYPE_TRAIT(__is_compound);
1081 REVERTIBLE_TYPE_TRAIT(__is_const);
1082 REVERTIBLE_TYPE_TRAIT(__is_constructible);
1083 REVERTIBLE_TYPE_TRAIT(__is_convertible);
1084 REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1085 REVERTIBLE_TYPE_TRAIT(__is_destructible);
1086 REVERTIBLE_TYPE_TRAIT(__is_empty);
1087 REVERTIBLE_TYPE_TRAIT(__is_enum);
1088 REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1089 REVERTIBLE_TYPE_TRAIT(__is_final);
1090 REVERTIBLE_TYPE_TRAIT(__is_function);
1091 REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1092 REVERTIBLE_TYPE_TRAIT(__is_integral);
1093 REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1094 REVERTIBLE_TYPE_TRAIT(__is_literal);
1095 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1096 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1097 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1098 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1099 REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1100 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1101 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1102 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1103 REVERTIBLE_TYPE_TRAIT(__is_nullptr);
1104 REVERTIBLE_TYPE_TRAIT(__is_object);
1105 REVERTIBLE_TYPE_TRAIT(__is_pod);
1106 REVERTIBLE_TYPE_TRAIT(__is_pointer);
1107 REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1108 REVERTIBLE_TYPE_TRAIT(__is_reference);
1109 REVERTIBLE_TYPE_TRAIT(__is_referenceable);
1110 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1111 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1112 REVERTIBLE_TYPE_TRAIT(__is_same);
1113 REVERTIBLE_TYPE_TRAIT(__is_scalar);
1114 REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
1115 REVERTIBLE_TYPE_TRAIT(__is_sealed);
1116 REVERTIBLE_TYPE_TRAIT(__is_signed);
1117 REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1118 REVERTIBLE_TYPE_TRAIT(__is_trivial);
1119 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1120 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1121 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1122 REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
1123 REVERTIBLE_TYPE_TRAIT(__is_union);
1124 REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1125 REVERTIBLE_TYPE_TRAIT(__is_void);
1126 REVERTIBLE_TYPE_TRAIT(__is_volatile);
1127 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \
1128 REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
1129 #include "clang/Basic/TransformTypeTraits.def"
1130 #undef REVERTIBLE_TYPE_TRAIT
1131 #undef RTT_JOIN
1134 // If we find that this is in fact the name of a type trait,
1135 // update the token kind in place and parse again to treat it as
1136 // the appropriate kind of type trait.
1137 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1138 = RevertibleTypeTraits.find(II);
1139 if (Known != RevertibleTypeTraits.end()) {
1140 Tok.setKind(Known->second);
1141 return ParseCastExpression(ParseKind, isAddressOfOperand,
1142 NotCastExpr, isTypeCast,
1143 isVectorLiteral, NotPrimaryExpression);
1147 if ((!ColonIsSacred && Next.is(tok::colon)) ||
1148 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1149 tok::l_brace)) {
1150 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1151 if (TryAnnotateTypeOrScopeToken())
1152 return ExprError();
1153 if (!Tok.is(tok::identifier))
1154 return ParseCastExpression(ParseKind, isAddressOfOperand,
1155 NotCastExpr, isTypeCast,
1156 isVectorLiteral,
1157 NotPrimaryExpression);
1161 // Consume the identifier so that we can see if it is followed by a '(' or
1162 // '.'.
1163 IdentifierInfo &II = *Tok.getIdentifierInfo();
1164 SourceLocation ILoc = ConsumeToken();
1166 // Support 'Class.property' and 'super.property' notation.
1167 if (getLangOpts().ObjC && Tok.is(tok::period) &&
1168 (Actions.getTypeName(II, ILoc, getCurScope()) ||
1169 // Allow the base to be 'super' if in an objc-method.
1170 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1171 ConsumeToken();
1173 if (Tok.is(tok::code_completion) && &II != Ident_super) {
1174 cutOffParsing();
1175 Actions.CodeCompleteObjCClassPropertyRefExpr(
1176 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1177 return ExprError();
1179 // Allow either an identifier or the keyword 'class' (in C++).
1180 if (Tok.isNot(tok::identifier) &&
1181 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1182 Diag(Tok, diag::err_expected_property_name);
1183 return ExprError();
1185 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1186 SourceLocation PropertyLoc = ConsumeToken();
1188 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1189 ILoc, PropertyLoc);
1190 break;
1193 // In an Objective-C method, if we have "super" followed by an identifier,
1194 // the token sequence is ill-formed. However, if there's a ':' or ']' after
1195 // that identifier, this is probably a message send with a missing open
1196 // bracket. Treat it as such.
1197 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1198 getCurScope()->isInObjcMethodScope() &&
1199 ((Tok.is(tok::identifier) &&
1200 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1201 Tok.is(tok::code_completion))) {
1202 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1203 nullptr);
1204 break;
1207 // If we have an Objective-C class name followed by an identifier
1208 // and either ':' or ']', this is an Objective-C class message
1209 // send that's missing the opening '['. Recovery
1210 // appropriately. Also take this path if we're performing code
1211 // completion after an Objective-C class name.
1212 if (getLangOpts().ObjC &&
1213 ((Tok.is(tok::identifier) && !InMessageExpression) ||
1214 Tok.is(tok::code_completion))) {
1215 const Token& Next = NextToken();
1216 if (Tok.is(tok::code_completion) ||
1217 Next.is(tok::colon) || Next.is(tok::r_square))
1218 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1219 if (Typ.get()->isObjCObjectOrInterfaceType()) {
1220 // Fake up a Declarator to use with ActOnTypeName.
1221 DeclSpec DS(AttrFactory);
1222 DS.SetRangeStart(ILoc);
1223 DS.SetRangeEnd(ILoc);
1224 const char *PrevSpec = nullptr;
1225 unsigned DiagID;
1226 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1227 Actions.getASTContext().getPrintingPolicy());
1229 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1230 DeclaratorContext::TypeName);
1231 TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1232 DeclaratorInfo);
1233 if (Ty.isInvalid())
1234 break;
1236 Res = ParseObjCMessageExpressionBody(SourceLocation(),
1237 SourceLocation(),
1238 Ty.get(), nullptr);
1239 break;
1243 // Make sure to pass down the right value for isAddressOfOperand.
1244 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1245 isAddressOfOperand = false;
1247 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1248 // need to know whether or not this identifier is a function designator or
1249 // not.
1250 UnqualifiedId Name;
1251 CXXScopeSpec ScopeSpec;
1252 SourceLocation TemplateKWLoc;
1253 Token Replacement;
1254 CastExpressionIdValidator Validator(
1255 /*Next=*/Tok,
1256 /*AllowTypes=*/isTypeCast != NotTypeCast,
1257 /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1258 Validator.IsAddressOfOperand = isAddressOfOperand;
1259 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1260 Validator.WantExpressionKeywords = false;
1261 Validator.WantRemainingKeywords = false;
1262 } else {
1263 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1265 Name.setIdentifier(&II, ILoc);
1266 Res = Actions.ActOnIdExpression(
1267 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1268 isAddressOfOperand, &Validator,
1269 /*IsInlineAsmIdentifier=*/false,
1270 Tok.is(tok::r_paren) ? nullptr : &Replacement);
1271 if (!Res.isInvalid() && Res.isUnset()) {
1272 UnconsumeToken(Replacement);
1273 return ParseCastExpression(ParseKind, isAddressOfOperand,
1274 NotCastExpr, isTypeCast,
1275 /*isVectorLiteral=*/false,
1276 NotPrimaryExpression);
1278 if (!Res.isInvalid() && Tok.is(tok::less))
1279 checkPotentialAngleBracket(Res);
1280 break;
1282 case tok::char_constant: // constant: character-constant
1283 case tok::wide_char_constant:
1284 case tok::utf8_char_constant:
1285 case tok::utf16_char_constant:
1286 case tok::utf32_char_constant:
1287 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1288 ConsumeToken();
1289 break;
1290 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2]
1291 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU]
1292 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS]
1293 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS]
1294 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS]
1295 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS]
1296 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU]
1297 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1298 ConsumeToken();
1299 break;
1300 case tok::string_literal: // primary-expression: string-literal
1301 case tok::wide_string_literal:
1302 case tok::utf8_string_literal:
1303 case tok::utf16_string_literal:
1304 case tok::utf32_string_literal:
1305 Res = ParseStringLiteralExpression(true);
1306 break;
1307 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1]
1308 Res = ParseGenericSelectionExpression();
1309 break;
1310 case tok::kw___builtin_available:
1311 Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1312 break;
1313 case tok::kw___builtin_va_arg:
1314 case tok::kw___builtin_offsetof:
1315 case tok::kw___builtin_choose_expr:
1316 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1317 case tok::kw___builtin_convertvector:
1318 case tok::kw___builtin_COLUMN:
1319 case tok::kw___builtin_FILE:
1320 case tok::kw___builtin_FUNCTION:
1321 case tok::kw___builtin_LINE:
1322 case tok::kw___builtin_source_location:
1323 if (NotPrimaryExpression)
1324 *NotPrimaryExpression = true;
1325 // This parses the complete suffix; we can return early.
1326 return ParseBuiltinPrimaryExpression();
1327 case tok::kw___null:
1328 Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1329 break;
1331 case tok::plusplus: // unary-expression: '++' unary-expression [C99]
1332 case tok::minusminus: { // unary-expression: '--' unary-expression [C99]
1333 if (NotPrimaryExpression)
1334 *NotPrimaryExpression = true;
1335 // C++ [expr.unary] has:
1336 // unary-expression:
1337 // ++ cast-expression
1338 // -- cast-expression
1339 Token SavedTok = Tok;
1340 ConsumeToken();
1342 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1343 SavedTok.getLocation());
1344 // One special case is implicitly handled here: if the preceding tokens are
1345 // an ambiguous cast expression, such as "(T())++", then we recurse to
1346 // determine whether the '++' is prefix or postfix.
1347 Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1348 UnaryExprOnly : AnyCastExpr,
1349 /*isAddressOfOperand*/false, NotCastExpr,
1350 NotTypeCast);
1351 if (NotCastExpr) {
1352 // If we return with NotCastExpr = true, we must not consume any tokens,
1353 // so put the token back where we found it.
1354 assert(Res.isInvalid());
1355 UnconsumeToken(SavedTok);
1356 return ExprError();
1358 if (!Res.isInvalid()) {
1359 Expr *Arg = Res.get();
1360 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1361 SavedKind, Arg);
1362 if (Res.isInvalid())
1363 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1364 Arg->getEndLoc(), Arg);
1366 return Res;
1368 case tok::amp: { // unary-expression: '&' cast-expression
1369 if (NotPrimaryExpression)
1370 *NotPrimaryExpression = true;
1371 // Special treatment because of member pointers
1372 SourceLocation SavedLoc = ConsumeToken();
1373 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1375 Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1376 if (!Res.isInvalid()) {
1377 Expr *Arg = Res.get();
1378 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1379 if (Res.isInvalid())
1380 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1381 Arg);
1383 return Res;
1386 case tok::star: // unary-expression: '*' cast-expression
1387 case tok::plus: // unary-expression: '+' cast-expression
1388 case tok::minus: // unary-expression: '-' cast-expression
1389 case tok::tilde: // unary-expression: '~' cast-expression
1390 case tok::exclaim: // unary-expression: '!' cast-expression
1391 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU]
1392 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU]
1393 if (NotPrimaryExpression)
1394 *NotPrimaryExpression = true;
1395 SourceLocation SavedLoc = ConsumeToken();
1396 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1397 Res = ParseCastExpression(AnyCastExpr);
1398 if (!Res.isInvalid()) {
1399 Expr *Arg = Res.get();
1400 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1401 isAddressOfOperand);
1402 if (Res.isInvalid())
1403 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1405 return Res;
1408 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression
1409 if (NotPrimaryExpression)
1410 *NotPrimaryExpression = true;
1411 SourceLocation CoawaitLoc = ConsumeToken();
1412 Res = ParseCastExpression(AnyCastExpr);
1413 if (!Res.isInvalid())
1414 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1415 return Res;
1418 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1419 // __extension__ silences extension warnings in the subexpression.
1420 if (NotPrimaryExpression)
1421 *NotPrimaryExpression = true;
1422 ExtensionRAIIObject O(Diags); // Use RAII to do this.
1423 SourceLocation SavedLoc = ConsumeToken();
1424 Res = ParseCastExpression(AnyCastExpr);
1425 if (!Res.isInvalid())
1426 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1427 return Res;
1429 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')'
1430 if (!getLangOpts().C11)
1431 Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1432 [[fallthrough]];
1433 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')'
1434 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression
1435 // unary-expression: '__alignof' '(' type-name ')'
1436 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression
1437 // unary-expression: 'sizeof' '(' type-name ')'
1438 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression
1439 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1440 case tok::kw___builtin_omp_required_simd_align:
1441 if (NotPrimaryExpression)
1442 *NotPrimaryExpression = true;
1443 AllowSuffix = false;
1444 Res = ParseUnaryExprOrTypeTraitExpression();
1445 break;
1446 case tok::ampamp: { // unary-expression: '&&' identifier
1447 if (NotPrimaryExpression)
1448 *NotPrimaryExpression = true;
1449 SourceLocation AmpAmpLoc = ConsumeToken();
1450 if (Tok.isNot(tok::identifier))
1451 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1453 if (getCurScope()->getFnParent() == nullptr)
1454 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1456 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1457 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1458 Tok.getLocation());
1459 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1460 ConsumeToken();
1461 AllowSuffix = false;
1462 break;
1464 case tok::kw_const_cast:
1465 case tok::kw_dynamic_cast:
1466 case tok::kw_reinterpret_cast:
1467 case tok::kw_static_cast:
1468 case tok::kw_addrspace_cast:
1469 if (NotPrimaryExpression)
1470 *NotPrimaryExpression = true;
1471 Res = ParseCXXCasts();
1472 break;
1473 case tok::kw___builtin_bit_cast:
1474 if (NotPrimaryExpression)
1475 *NotPrimaryExpression = true;
1476 Res = ParseBuiltinBitCast();
1477 break;
1478 case tok::kw_typeid:
1479 if (NotPrimaryExpression)
1480 *NotPrimaryExpression = true;
1481 Res = ParseCXXTypeid();
1482 break;
1483 case tok::kw___uuidof:
1484 if (NotPrimaryExpression)
1485 *NotPrimaryExpression = true;
1486 Res = ParseCXXUuidof();
1487 break;
1488 case tok::kw_this:
1489 Res = ParseCXXThis();
1490 break;
1491 case tok::kw___builtin_sycl_unique_stable_name:
1492 Res = ParseSYCLUniqueStableNameExpression();
1493 break;
1495 case tok::annot_typename:
1496 if (isStartOfObjCClassMessageMissingOpenBracket()) {
1497 TypeResult Type = getTypeAnnotation(Tok);
1499 // Fake up a Declarator to use with ActOnTypeName.
1500 DeclSpec DS(AttrFactory);
1501 DS.SetRangeStart(Tok.getLocation());
1502 DS.SetRangeEnd(Tok.getLastLoc());
1504 const char *PrevSpec = nullptr;
1505 unsigned DiagID;
1506 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1507 PrevSpec, DiagID, Type,
1508 Actions.getASTContext().getPrintingPolicy());
1510 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1511 DeclaratorContext::TypeName);
1512 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1513 if (Ty.isInvalid())
1514 break;
1516 ConsumeAnnotationToken();
1517 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1518 Ty.get(), nullptr);
1519 break;
1521 [[fallthrough]];
1523 case tok::annot_decltype:
1524 case tok::kw_char:
1525 case tok::kw_wchar_t:
1526 case tok::kw_char8_t:
1527 case tok::kw_char16_t:
1528 case tok::kw_char32_t:
1529 case tok::kw_bool:
1530 case tok::kw_short:
1531 case tok::kw_int:
1532 case tok::kw_long:
1533 case tok::kw___int64:
1534 case tok::kw___int128:
1535 case tok::kw__ExtInt:
1536 case tok::kw__BitInt:
1537 case tok::kw_signed:
1538 case tok::kw_unsigned:
1539 case tok::kw_half:
1540 case tok::kw_float:
1541 case tok::kw_double:
1542 case tok::kw___bf16:
1543 case tok::kw__Float16:
1544 case tok::kw___float128:
1545 case tok::kw___ibm128:
1546 case tok::kw_void:
1547 case tok::kw_auto:
1548 case tok::kw_typename:
1549 case tok::kw_typeof:
1550 case tok::kw___vector:
1551 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1552 #include "clang/Basic/OpenCLImageTypes.def"
1554 if (!getLangOpts().CPlusPlus) {
1555 Diag(Tok, diag::err_expected_expression);
1556 return ExprError();
1559 // Everything henceforth is a postfix-expression.
1560 if (NotPrimaryExpression)
1561 *NotPrimaryExpression = true;
1563 if (SavedKind == tok::kw_typename) {
1564 // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1565 // typename-specifier braced-init-list
1566 if (TryAnnotateTypeOrScopeToken())
1567 return ExprError();
1569 if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1570 // We are trying to parse a simple-type-specifier but might not get such
1571 // a token after error recovery.
1572 return ExprError();
1575 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1576 // simple-type-specifier braced-init-list
1578 DeclSpec DS(AttrFactory);
1580 ParseCXXSimpleTypeSpecifier(DS);
1581 if (Tok.isNot(tok::l_paren) &&
1582 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1583 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1584 << DS.getSourceRange());
1586 if (Tok.is(tok::l_brace))
1587 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1589 Res = ParseCXXTypeConstructExpression(DS);
1590 break;
1593 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1594 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1595 // (We can end up in this situation after tentative parsing.)
1596 if (TryAnnotateTypeOrScopeToken())
1597 return ExprError();
1598 if (!Tok.is(tok::annot_cxxscope))
1599 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1600 isTypeCast, isVectorLiteral,
1601 NotPrimaryExpression);
1603 Token Next = NextToken();
1604 if (Next.is(tok::annot_template_id)) {
1605 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1606 if (TemplateId->Kind == TNK_Type_template) {
1607 // We have a qualified template-id that we know refers to a
1608 // type, translate it into a type and continue parsing as a
1609 // cast expression.
1610 CXXScopeSpec SS;
1611 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1612 /*ObjectHasErrors=*/false,
1613 /*EnteringContext=*/false);
1614 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1615 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1616 isTypeCast, isVectorLiteral,
1617 NotPrimaryExpression);
1621 // Parse as an id-expression.
1622 Res = ParseCXXIdExpression(isAddressOfOperand);
1623 break;
1626 case tok::annot_template_id: { // [C++] template-id
1627 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1628 if (TemplateId->Kind == TNK_Type_template) {
1629 // We have a template-id that we know refers to a type,
1630 // translate it into a type and continue parsing as a cast
1631 // expression.
1632 CXXScopeSpec SS;
1633 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1634 return ParseCastExpression(ParseKind, isAddressOfOperand,
1635 NotCastExpr, isTypeCast, isVectorLiteral,
1636 NotPrimaryExpression);
1639 // Fall through to treat the template-id as an id-expression.
1640 [[fallthrough]];
1643 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1644 Res = ParseCXXIdExpression(isAddressOfOperand);
1645 break;
1647 case tok::coloncolon: {
1648 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken
1649 // annotates the token, tail recurse.
1650 if (TryAnnotateTypeOrScopeToken())
1651 return ExprError();
1652 if (!Tok.is(tok::coloncolon))
1653 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1654 isVectorLiteral, NotPrimaryExpression);
1656 // ::new -> [C++] new-expression
1657 // ::delete -> [C++] delete-expression
1658 SourceLocation CCLoc = ConsumeToken();
1659 if (Tok.is(tok::kw_new)) {
1660 if (NotPrimaryExpression)
1661 *NotPrimaryExpression = true;
1662 Res = ParseCXXNewExpression(true, CCLoc);
1663 AllowSuffix = false;
1664 break;
1666 if (Tok.is(tok::kw_delete)) {
1667 if (NotPrimaryExpression)
1668 *NotPrimaryExpression = true;
1669 Res = ParseCXXDeleteExpression(true, CCLoc);
1670 AllowSuffix = false;
1671 break;
1674 // This is not a type name or scope specifier, it is an invalid expression.
1675 Diag(CCLoc, diag::err_expected_expression);
1676 return ExprError();
1679 case tok::kw_new: // [C++] new-expression
1680 if (NotPrimaryExpression)
1681 *NotPrimaryExpression = true;
1682 Res = ParseCXXNewExpression(false, Tok.getLocation());
1683 AllowSuffix = false;
1684 break;
1686 case tok::kw_delete: // [C++] delete-expression
1687 if (NotPrimaryExpression)
1688 *NotPrimaryExpression = true;
1689 Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1690 AllowSuffix = false;
1691 break;
1693 case tok::kw_requires: // [C++2a] requires-expression
1694 Res = ParseRequiresExpression();
1695 AllowSuffix = false;
1696 break;
1698 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1699 if (NotPrimaryExpression)
1700 *NotPrimaryExpression = true;
1701 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1702 SourceLocation KeyLoc = ConsumeToken();
1703 BalancedDelimiterTracker T(*this, tok::l_paren);
1705 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1706 return ExprError();
1707 // C++11 [expr.unary.noexcept]p1:
1708 // The noexcept operator determines whether the evaluation of its operand,
1709 // which is an unevaluated operand, can throw an exception.
1710 EnterExpressionEvaluationContext Unevaluated(
1711 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1712 Res = ParseExpression();
1714 T.consumeClose();
1716 if (!Res.isInvalid())
1717 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1718 T.getCloseLocation());
1719 AllowSuffix = false;
1720 break;
1723 #define TYPE_TRAIT(N,Spelling,K) \
1724 case tok::kw_##Spelling:
1725 #include "clang/Basic/TokenKinds.def"
1726 Res = ParseTypeTrait();
1727 break;
1729 case tok::kw___array_rank:
1730 case tok::kw___array_extent:
1731 if (NotPrimaryExpression)
1732 *NotPrimaryExpression = true;
1733 Res = ParseArrayTypeTrait();
1734 break;
1736 case tok::kw___is_lvalue_expr:
1737 case tok::kw___is_rvalue_expr:
1738 if (NotPrimaryExpression)
1739 *NotPrimaryExpression = true;
1740 Res = ParseExpressionTrait();
1741 break;
1743 case tok::at: {
1744 if (NotPrimaryExpression)
1745 *NotPrimaryExpression = true;
1746 SourceLocation AtLoc = ConsumeToken();
1747 return ParseObjCAtExpression(AtLoc);
1749 case tok::caret:
1750 Res = ParseBlockLiteralExpression();
1751 break;
1752 case tok::code_completion: {
1753 cutOffParsing();
1754 Actions.CodeCompleteExpression(getCurScope(),
1755 PreferredType.get(Tok.getLocation()));
1756 return ExprError();
1758 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1759 #include "clang/Basic/TransformTypeTraits.def"
1760 // HACK: libstdc++ uses some of the transform-type-traits as alias
1761 // templates, so we need to work around this.
1762 if (!NextToken().is(tok::l_paren)) {
1763 Tok.setKind(tok::identifier);
1764 Diag(Tok, diag::ext_keyword_as_ident)
1765 << Tok.getIdentifierInfo()->getName() << 0;
1766 goto ParseIdentifier;
1768 goto ExpectedExpression;
1769 case tok::l_square:
1770 if (getLangOpts().CPlusPlus11) {
1771 if (getLangOpts().ObjC) {
1772 // C++11 lambda expressions and Objective-C message sends both start with a
1773 // square bracket. There are three possibilities here:
1774 // we have a valid lambda expression, we have an invalid lambda
1775 // expression, or we have something that doesn't appear to be a lambda.
1776 // If we're in the last case, we fall back to ParseObjCMessageExpression.
1777 Res = TryParseLambdaExpression();
1778 if (!Res.isInvalid() && !Res.get()) {
1779 // We assume Objective-C++ message expressions are not
1780 // primary-expressions.
1781 if (NotPrimaryExpression)
1782 *NotPrimaryExpression = true;
1783 Res = ParseObjCMessageExpression();
1785 break;
1787 Res = ParseLambdaExpression();
1788 break;
1790 if (getLangOpts().ObjC) {
1791 Res = ParseObjCMessageExpression();
1792 break;
1794 [[fallthrough]];
1795 default:
1796 ExpectedExpression:
1797 NotCastExpr = true;
1798 return ExprError();
1801 // Check to see whether Res is a function designator only. If it is and we
1802 // are compiling for OpenCL, we need to return an error as this implies
1803 // that the address of the function is being taken, which is illegal in CL.
1805 if (ParseKind == PrimaryExprOnly)
1806 // This is strictly a primary-expression - no postfix-expr pieces should be
1807 // parsed.
1808 return Res;
1810 if (!AllowSuffix) {
1811 // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1812 // error already.
1813 if (Res.isInvalid())
1814 return Res;
1816 switch (Tok.getKind()) {
1817 case tok::l_square:
1818 case tok::l_paren:
1819 case tok::plusplus:
1820 case tok::minusminus:
1821 // "expected ';'" or similar is probably the right diagnostic here. Let
1822 // the caller decide what to do.
1823 if (Tok.isAtStartOfLine())
1824 return Res;
1826 [[fallthrough]];
1827 case tok::period:
1828 case tok::arrow:
1829 break;
1831 default:
1832 return Res;
1835 // This was a unary-expression for which a postfix-expression suffix is
1836 // not permitted by the grammar (eg, a sizeof expression or
1837 // new-expression or similar). Diagnose but parse the suffix anyway.
1838 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1839 << Tok.getKind() << Res.get()->getSourceRange()
1840 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1841 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1842 ")");
1845 // These can be followed by postfix-expr pieces.
1846 PreferredType = SavedType;
1847 Res = ParsePostfixExpressionSuffix(Res);
1848 if (getLangOpts().OpenCL &&
1849 !getActions().getOpenCLOptions().isAvailableOption(
1850 "__cl_clang_function_pointers", getLangOpts()))
1851 if (Expr *PostfixExpr = Res.get()) {
1852 QualType Ty = PostfixExpr->getType();
1853 if (!Ty.isNull() && Ty->isFunctionType()) {
1854 Diag(PostfixExpr->getExprLoc(),
1855 diag::err_opencl_taking_function_address_parser);
1856 return ExprError();
1860 return Res;
1863 /// Once the leading part of a postfix-expression is parsed, this
1864 /// method parses any suffixes that apply.
1866 /// \verbatim
1867 /// postfix-expression: [C99 6.5.2]
1868 /// primary-expression
1869 /// postfix-expression '[' expression ']'
1870 /// postfix-expression '[' braced-init-list ']'
1871 /// postfix-expression '[' expression-list [opt] ']' [C++2b 12.4.5]
1872 /// postfix-expression '(' argument-expression-list[opt] ')'
1873 /// postfix-expression '.' identifier
1874 /// postfix-expression '->' identifier
1875 /// postfix-expression '++'
1876 /// postfix-expression '--'
1877 /// '(' type-name ')' '{' initializer-list '}'
1878 /// '(' type-name ')' '{' initializer-list ',' '}'
1880 /// argument-expression-list: [C99 6.5.2]
1881 /// argument-expression ...[opt]
1882 /// argument-expression-list ',' assignment-expression ...[opt]
1883 /// \endverbatim
1884 ExprResult
1885 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1886 // Now that the primary-expression piece of the postfix-expression has been
1887 // parsed, see if there are any postfix-expression pieces here.
1888 SourceLocation Loc;
1889 auto SavedType = PreferredType;
1890 while (true) {
1891 // Each iteration relies on preferred type for the whole expression.
1892 PreferredType = SavedType;
1893 switch (Tok.getKind()) {
1894 case tok::code_completion:
1895 if (InMessageExpression)
1896 return LHS;
1898 cutOffParsing();
1899 Actions.CodeCompletePostfixExpression(
1900 getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1901 return ExprError();
1903 case tok::identifier:
1904 // If we see identifier: after an expression, and we're not already in a
1905 // message send, then this is probably a message send with a missing
1906 // opening bracket '['.
1907 if (getLangOpts().ObjC && !InMessageExpression &&
1908 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1909 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1910 nullptr, LHS.get());
1911 break;
1913 // Fall through; this isn't a message send.
1914 [[fallthrough]];
1916 default: // Not a postfix-expression suffix.
1917 return LHS;
1918 case tok::l_square: { // postfix-expression: p-e '[' expression ']'
1919 // If we have a array postfix expression that starts on a new line and
1920 // Objective-C is enabled, it is highly likely that the user forgot a
1921 // semicolon after the base expression and that the array postfix-expr is
1922 // actually another message send. In this case, do some look-ahead to see
1923 // if the contents of the square brackets are obviously not a valid
1924 // expression and recover by pretending there is no suffix.
1925 if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1926 isSimpleObjCMessageExpression())
1927 return LHS;
1929 // Reject array indices starting with a lambda-expression. '[[' is
1930 // reserved for attributes.
1931 if (CheckProhibitedCXX11Attribute()) {
1932 (void)Actions.CorrectDelayedTyposInExpr(LHS);
1933 return ExprError();
1935 BalancedDelimiterTracker T(*this, tok::l_square);
1936 T.consumeOpen();
1937 Loc = T.getOpenLocation();
1938 ExprResult Length, Stride;
1939 SourceLocation ColonLocFirst, ColonLocSecond;
1940 ExprVector ArgExprs;
1941 bool HasError = false;
1942 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1944 // We try to parse a list of indexes in all language mode first
1945 // and, in we find 0 or one index, we try to parse an OpenMP array
1946 // section. This allow us to support C++2b multi dimensional subscript and
1947 // OpenMp sections in the same language mode.
1948 if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) {
1949 if (!getLangOpts().CPlusPlus2b) {
1950 ExprResult Idx;
1951 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1952 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1953 Idx = ParseBraceInitializer();
1954 } else {
1955 Idx = ParseExpression(); // May be a comma expression
1957 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1958 Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1959 if (Idx.isInvalid()) {
1960 HasError = true;
1961 } else {
1962 ArgExprs.push_back(Idx.get());
1964 } else if (Tok.isNot(tok::r_square)) {
1965 if (ParseExpressionList(ArgExprs)) {
1966 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1967 HasError = true;
1972 if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
1973 ColonProtectionRAIIObject RAII(*this);
1974 if (Tok.is(tok::colon)) {
1975 // Consume ':'
1976 ColonLocFirst = ConsumeToken();
1977 if (Tok.isNot(tok::r_square) &&
1978 (getLangOpts().OpenMP < 50 ||
1979 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
1980 Length = ParseExpression();
1981 Length = Actions.CorrectDelayedTyposInExpr(Length);
1984 if (getLangOpts().OpenMP >= 50 &&
1985 (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
1986 OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
1987 Tok.is(tok::colon)) {
1988 // Consume ':'
1989 ColonLocSecond = ConsumeToken();
1990 if (Tok.isNot(tok::r_square)) {
1991 Stride = ParseExpression();
1996 SourceLocation RLoc = Tok.getLocation();
1997 LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1999 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2000 !Stride.isInvalid() && Tok.is(tok::r_square)) {
2001 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2002 LHS = Actions.ActOnOMPArraySectionExpr(
2003 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2004 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc);
2005 } else {
2006 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2007 ArgExprs, RLoc);
2009 } else {
2010 LHS = ExprError();
2013 // Match the ']'.
2014 T.consumeClose();
2015 break;
2018 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')'
2019 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>'
2020 // '(' argument-expression-list[opt] ')'
2021 tok::TokenKind OpKind = Tok.getKind();
2022 InMessageExpressionRAIIObject InMessage(*this, false);
2024 Expr *ExecConfig = nullptr;
2026 BalancedDelimiterTracker PT(*this, tok::l_paren);
2028 if (OpKind == tok::lesslessless) {
2029 ExprVector ExecConfigExprs;
2030 SourceLocation OpenLoc = ConsumeToken();
2032 if (ParseSimpleExpressionList(ExecConfigExprs)) {
2033 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2034 LHS = ExprError();
2037 SourceLocation CloseLoc;
2038 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2039 } else if (LHS.isInvalid()) {
2040 SkipUntil(tok::greatergreatergreater, StopAtSemi);
2041 } else {
2042 // There was an error closing the brackets
2043 Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2044 Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2045 SkipUntil(tok::greatergreatergreater, StopAtSemi);
2046 LHS = ExprError();
2049 if (!LHS.isInvalid()) {
2050 if (ExpectAndConsume(tok::l_paren))
2051 LHS = ExprError();
2052 else
2053 Loc = PrevTokLocation;
2056 if (!LHS.isInvalid()) {
2057 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2058 OpenLoc,
2059 ExecConfigExprs,
2060 CloseLoc);
2061 if (ECResult.isInvalid())
2062 LHS = ExprError();
2063 else
2064 ExecConfig = ECResult.get();
2066 } else {
2067 PT.consumeOpen();
2068 Loc = PT.getOpenLocation();
2071 ExprVector ArgExprs;
2072 auto RunSignatureHelp = [&]() -> QualType {
2073 QualType PreferredType = Actions.ProduceCallSignatureHelp(
2074 LHS.get(), ArgExprs, PT.getOpenLocation());
2075 CalledSignatureHelp = true;
2076 return PreferredType;
2078 if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2079 if (Tok.isNot(tok::r_paren)) {
2080 if (ParseExpressionList(ArgExprs, [&] {
2081 PreferredType.enterFunctionArgument(Tok.getLocation(),
2082 RunSignatureHelp);
2083 })) {
2084 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2085 // If we got an error when parsing expression list, we don't call
2086 // the CodeCompleteCall handler inside the parser. So call it here
2087 // to make sure we get overload suggestions even when we are in the
2088 // middle of a parameter.
2089 if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2090 RunSignatureHelp();
2091 LHS = ExprError();
2092 } else if (LHS.isInvalid()) {
2093 for (auto &E : ArgExprs)
2094 Actions.CorrectDelayedTyposInExpr(E);
2099 // Match the ')'.
2100 if (LHS.isInvalid()) {
2101 SkipUntil(tok::r_paren, StopAtSemi);
2102 } else if (Tok.isNot(tok::r_paren)) {
2103 bool HadDelayedTypo = false;
2104 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2105 HadDelayedTypo = true;
2106 for (auto &E : ArgExprs)
2107 if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2108 HadDelayedTypo = true;
2109 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2110 // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2111 // the unmatched l_paren.
2112 if (HadDelayedTypo)
2113 SkipUntil(tok::r_paren, StopAtSemi);
2114 else
2115 PT.consumeClose();
2116 LHS = ExprError();
2117 } else {
2118 Expr *Fn = LHS.get();
2119 SourceLocation RParLoc = Tok.getLocation();
2120 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2121 ExecConfig);
2122 if (LHS.isInvalid()) {
2123 ArgExprs.insert(ArgExprs.begin(), Fn);
2124 LHS =
2125 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2127 PT.consumeClose();
2130 break;
2132 case tok::arrow:
2133 case tok::period: {
2134 // postfix-expression: p-e '->' template[opt] id-expression
2135 // postfix-expression: p-e '.' template[opt] id-expression
2136 tok::TokenKind OpKind = Tok.getKind();
2137 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token.
2139 CXXScopeSpec SS;
2140 ParsedType ObjectType;
2141 bool MayBePseudoDestructor = false;
2142 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2144 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2146 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2147 Expr *Base = OrigLHS;
2148 const Type* BaseType = Base->getType().getTypePtrOrNull();
2149 if (BaseType && Tok.is(tok::l_paren) &&
2150 (BaseType->isFunctionType() ||
2151 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2152 Diag(OpLoc, diag::err_function_is_not_record)
2153 << OpKind << Base->getSourceRange()
2154 << FixItHint::CreateRemoval(OpLoc);
2155 return ParsePostfixExpressionSuffix(Base);
2158 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2159 OpKind, ObjectType,
2160 MayBePseudoDestructor);
2161 if (LHS.isInvalid()) {
2162 // Clang will try to perform expression based completion as a
2163 // fallback, which is confusing in case of member references. So we
2164 // stop here without any completions.
2165 if (Tok.is(tok::code_completion)) {
2166 cutOffParsing();
2167 return ExprError();
2169 break;
2171 ParseOptionalCXXScopeSpecifier(
2172 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2173 /*EnteringContext=*/false, &MayBePseudoDestructor);
2174 if (SS.isNotEmpty())
2175 ObjectType = nullptr;
2178 if (Tok.is(tok::code_completion)) {
2179 tok::TokenKind CorrectedOpKind =
2180 OpKind == tok::arrow ? tok::period : tok::arrow;
2181 ExprResult CorrectedLHS(/*Invalid=*/true);
2182 if (getLangOpts().CPlusPlus && OrigLHS) {
2183 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2184 // hack.
2185 Sema::TentativeAnalysisScope Trap(Actions);
2186 CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2187 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2188 MayBePseudoDestructor);
2191 Expr *Base = LHS.get();
2192 Expr *CorrectedBase = CorrectedLHS.get();
2193 if (!CorrectedBase && !getLangOpts().CPlusPlus)
2194 CorrectedBase = Base;
2196 // Code completion for a member access expression.
2197 cutOffParsing();
2198 Actions.CodeCompleteMemberReferenceExpr(
2199 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2200 Base && ExprStatementTokLoc == Base->getBeginLoc(),
2201 PreferredType.get(Tok.getLocation()));
2203 return ExprError();
2206 if (MayBePseudoDestructor && !LHS.isInvalid()) {
2207 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2208 ObjectType);
2209 break;
2212 // Either the action has told us that this cannot be a
2213 // pseudo-destructor expression (based on the type of base
2214 // expression), or we didn't see a '~' in the right place. We
2215 // can still parse a destructor name here, but in that case it
2216 // names a real destructor.
2217 // Allow explicit constructor calls in Microsoft mode.
2218 // FIXME: Add support for explicit call of template constructor.
2219 SourceLocation TemplateKWLoc;
2220 UnqualifiedId Name;
2221 if (getLangOpts().ObjC && OpKind == tok::period &&
2222 Tok.is(tok::kw_class)) {
2223 // Objective-C++:
2224 // After a '.' in a member access expression, treat the keyword
2225 // 'class' as if it were an identifier.
2227 // This hack allows property access to the 'class' method because it is
2228 // such a common method name. For other C++ keywords that are
2229 // Objective-C method names, one must use the message send syntax.
2230 IdentifierInfo *Id = Tok.getIdentifierInfo();
2231 SourceLocation Loc = ConsumeToken();
2232 Name.setIdentifier(Id, Loc);
2233 } else if (ParseUnqualifiedId(
2234 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2235 /*EnteringContext=*/false,
2236 /*AllowDestructorName=*/true,
2237 /*AllowConstructorName=*/
2238 getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2239 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2240 (void)Actions.CorrectDelayedTyposInExpr(LHS);
2241 LHS = ExprError();
2244 if (!LHS.isInvalid())
2245 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2246 OpKind, SS, TemplateKWLoc, Name,
2247 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2248 : nullptr);
2249 if (!LHS.isInvalid()) {
2250 if (Tok.is(tok::less))
2251 checkPotentialAngleBracket(LHS);
2252 } else if (OrigLHS && Name.isValid()) {
2253 // Preserve the LHS if the RHS is an invalid member.
2254 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2255 Name.getEndLoc(), {OrigLHS});
2257 break;
2259 case tok::plusplus: // postfix-expression: postfix-expression '++'
2260 case tok::minusminus: // postfix-expression: postfix-expression '--'
2261 if (!LHS.isInvalid()) {
2262 Expr *Arg = LHS.get();
2263 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2264 Tok.getKind(), Arg);
2265 if (LHS.isInvalid())
2266 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2267 Tok.getLocation(), Arg);
2269 ConsumeToken();
2270 break;
2275 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2276 /// vec_step and we are at the start of an expression or a parenthesized
2277 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2278 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2280 /// \verbatim
2281 /// unary-expression: [C99 6.5.3]
2282 /// 'sizeof' unary-expression
2283 /// 'sizeof' '(' type-name ')'
2284 /// [GNU] '__alignof' unary-expression
2285 /// [GNU] '__alignof' '(' type-name ')'
2286 /// [C11] '_Alignof' '(' type-name ')'
2287 /// [C++0x] 'alignof' '(' type-id ')'
2289 /// [GNU] typeof-specifier:
2290 /// typeof ( expressions )
2291 /// typeof ( type-name )
2292 /// [GNU/C++] typeof unary-expression
2293 /// [C2x] typeof-specifier:
2294 /// typeof '(' typeof-specifier-argument ')'
2295 /// typeof_unqual '(' typeof-specifier-argument ')'
2297 /// typeof-specifier-argument:
2298 /// expression
2299 /// type-name
2301 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2302 /// vec_step ( expressions )
2303 /// vec_step ( type-name )
2304 /// \endverbatim
2305 ExprResult
2306 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2307 bool &isCastExpr,
2308 ParsedType &CastTy,
2309 SourceRange &CastRange) {
2311 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2312 tok::kw___alignof, tok::kw_alignof, tok::kw__Alignof,
2313 tok::kw_vec_step,
2314 tok::kw___builtin_omp_required_simd_align) &&
2315 "Not a typeof/sizeof/alignof/vec_step expression!");
2317 ExprResult Operand;
2319 // If the operand doesn't start with an '(', it must be an expression.
2320 if (Tok.isNot(tok::l_paren)) {
2321 // If construct allows a form without parenthesis, user may forget to put
2322 // pathenthesis around type name.
2323 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2324 tok::kw__Alignof)) {
2325 if (isTypeIdUnambiguously()) {
2326 DeclSpec DS(AttrFactory);
2327 ParseSpecifierQualifierList(DS);
2328 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2329 DeclaratorContext::TypeName);
2330 ParseDeclarator(DeclaratorInfo);
2332 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2333 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2334 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2335 Diag(OpTok.getLocation(),
2336 diag::err_expected_parentheses_around_typename)
2337 << OpTok.getName();
2338 } else {
2339 Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2340 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2341 << FixItHint::CreateInsertion(RParenLoc, ")");
2343 isCastExpr = true;
2344 return ExprEmpty();
2348 isCastExpr = false;
2349 if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2350 !getLangOpts().CPlusPlus) {
2351 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2352 << tok::l_paren;
2353 return ExprError();
2356 Operand = ParseCastExpression(UnaryExprOnly);
2357 } else {
2358 // If it starts with a '(', we know that it is either a parenthesized
2359 // type-name, or it is a unary-expression that starts with a compound
2360 // literal, or starts with a primary-expression that is a parenthesized
2361 // expression.
2362 ParenParseOption ExprType = CastExpr;
2363 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2365 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2366 false, CastTy, RParenLoc);
2367 CastRange = SourceRange(LParenLoc, RParenLoc);
2369 // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2370 // a type.
2371 if (ExprType == CastExpr) {
2372 isCastExpr = true;
2373 return ExprEmpty();
2376 if (getLangOpts().CPlusPlus ||
2377 !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2378 // GNU typeof in C requires the expression to be parenthesized. Not so for
2379 // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2380 // the start of a unary-expression, but doesn't include any postfix
2381 // pieces. Parse these now if present.
2382 if (!Operand.isInvalid())
2383 Operand = ParsePostfixExpressionSuffix(Operand.get());
2387 // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2388 isCastExpr = false;
2389 return Operand;
2392 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as
2393 /// a parameter.
2394 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2395 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2396 "Not __builtin_sycl_unique_stable_name");
2398 SourceLocation OpLoc = ConsumeToken();
2399 BalancedDelimiterTracker T(*this, tok::l_paren);
2401 // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2402 if (T.expectAndConsume(diag::err_expected_lparen_after,
2403 "__builtin_sycl_unique_stable_name"))
2404 return ExprError();
2406 TypeResult Ty = ParseTypeName();
2408 if (Ty.isInvalid()) {
2409 T.skipToEnd();
2410 return ExprError();
2413 if (T.consumeClose())
2414 return ExprError();
2416 return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(),
2417 T.getCloseLocation(), Ty.get());
2420 /// Parse a sizeof or alignof expression.
2422 /// \verbatim
2423 /// unary-expression: [C99 6.5.3]
2424 /// 'sizeof' unary-expression
2425 /// 'sizeof' '(' type-name ')'
2426 /// [C++11] 'sizeof' '...' '(' identifier ')'
2427 /// [GNU] '__alignof' unary-expression
2428 /// [GNU] '__alignof' '(' type-name ')'
2429 /// [C11] '_Alignof' '(' type-name ')'
2430 /// [C++11] 'alignof' '(' type-id ')'
2431 /// \endverbatim
2432 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2433 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2434 tok::kw__Alignof, tok::kw_vec_step,
2435 tok::kw___builtin_omp_required_simd_align) &&
2436 "Not a sizeof/alignof/vec_step expression!");
2437 Token OpTok = Tok;
2438 ConsumeToken();
2440 // [C++11] 'sizeof' '...' '(' identifier ')'
2441 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2442 SourceLocation EllipsisLoc = ConsumeToken();
2443 SourceLocation LParenLoc, RParenLoc;
2444 IdentifierInfo *Name = nullptr;
2445 SourceLocation NameLoc;
2446 if (Tok.is(tok::l_paren)) {
2447 BalancedDelimiterTracker T(*this, tok::l_paren);
2448 T.consumeOpen();
2449 LParenLoc = T.getOpenLocation();
2450 if (Tok.is(tok::identifier)) {
2451 Name = Tok.getIdentifierInfo();
2452 NameLoc = ConsumeToken();
2453 T.consumeClose();
2454 RParenLoc = T.getCloseLocation();
2455 if (RParenLoc.isInvalid())
2456 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2457 } else {
2458 Diag(Tok, diag::err_expected_parameter_pack);
2459 SkipUntil(tok::r_paren, StopAtSemi);
2461 } else if (Tok.is(tok::identifier)) {
2462 Name = Tok.getIdentifierInfo();
2463 NameLoc = ConsumeToken();
2464 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2465 RParenLoc = PP.getLocForEndOfToken(NameLoc);
2466 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2467 << Name
2468 << FixItHint::CreateInsertion(LParenLoc, "(")
2469 << FixItHint::CreateInsertion(RParenLoc, ")");
2470 } else {
2471 Diag(Tok, diag::err_sizeof_parameter_pack);
2474 if (!Name)
2475 return ExprError();
2477 EnterExpressionEvaluationContext Unevaluated(
2478 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2479 Sema::ReuseLambdaContextDecl);
2481 return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2482 OpTok.getLocation(),
2483 *Name, NameLoc,
2484 RParenLoc);
2487 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2488 Diag(OpTok, diag::warn_cxx98_compat_alignof);
2490 EnterExpressionEvaluationContext Unevaluated(
2491 Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2492 Sema::ReuseLambdaContextDecl);
2494 bool isCastExpr;
2495 ParsedType CastTy;
2496 SourceRange CastRange;
2497 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2498 isCastExpr,
2499 CastTy,
2500 CastRange);
2502 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2503 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2504 ExprKind = UETT_AlignOf;
2505 else if (OpTok.is(tok::kw___alignof))
2506 ExprKind = UETT_PreferredAlignOf;
2507 else if (OpTok.is(tok::kw_vec_step))
2508 ExprKind = UETT_VecStep;
2509 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2510 ExprKind = UETT_OpenMPRequiredSimdAlign;
2512 if (isCastExpr)
2513 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2514 ExprKind,
2515 /*IsType=*/true,
2516 CastTy.getAsOpaquePtr(),
2517 CastRange);
2519 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2520 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2522 // If we get here, the operand to the sizeof/alignof was an expression.
2523 if (!Operand.isInvalid())
2524 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2525 ExprKind,
2526 /*IsType=*/false,
2527 Operand.get(),
2528 CastRange);
2529 return Operand;
2532 /// ParseBuiltinPrimaryExpression
2534 /// \verbatim
2535 /// primary-expression: [C99 6.5.1]
2536 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2537 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2538 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2539 /// assign-expr ')'
2540 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2541 /// [GNU] '__builtin_FILE' '(' ')'
2542 /// [GNU] '__builtin_FUNCTION' '(' ')'
2543 /// [GNU] '__builtin_LINE' '(' ')'
2544 /// [CLANG] '__builtin_COLUMN' '(' ')'
2545 /// [GNU] '__builtin_source_location' '(' ')'
2546 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')'
2548 /// [GNU] offsetof-member-designator:
2549 /// [GNU] identifier
2550 /// [GNU] offsetof-member-designator '.' identifier
2551 /// [GNU] offsetof-member-designator '[' expression ']'
2552 /// \endverbatim
2553 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2554 ExprResult Res;
2555 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2557 tok::TokenKind T = Tok.getKind();
2558 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier.
2560 // All of these start with an open paren.
2561 if (Tok.isNot(tok::l_paren))
2562 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2563 << tok::l_paren);
2565 BalancedDelimiterTracker PT(*this, tok::l_paren);
2566 PT.consumeOpen();
2568 // TODO: Build AST.
2570 switch (T) {
2571 default: llvm_unreachable("Not a builtin primary expression!");
2572 case tok::kw___builtin_va_arg: {
2573 ExprResult Expr(ParseAssignmentExpression());
2575 if (ExpectAndConsume(tok::comma)) {
2576 SkipUntil(tok::r_paren, StopAtSemi);
2577 Expr = ExprError();
2580 TypeResult Ty = ParseTypeName();
2582 if (Tok.isNot(tok::r_paren)) {
2583 Diag(Tok, diag::err_expected) << tok::r_paren;
2584 Expr = ExprError();
2587 if (Expr.isInvalid() || Ty.isInvalid())
2588 Res = ExprError();
2589 else
2590 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2591 break;
2593 case tok::kw___builtin_offsetof: {
2594 SourceLocation TypeLoc = Tok.getLocation();
2595 auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2596 if (Tok.getLocation().isMacroID()) {
2597 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2598 Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2599 if (MacroName == "offsetof")
2600 OOK = Sema::OffsetOfKind::OOK_Macro;
2602 TypeResult Ty;
2604 OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2605 Ty = ParseTypeName();
2606 if (Ty.isInvalid()) {
2607 SkipUntil(tok::r_paren, StopAtSemi);
2608 return ExprError();
2612 if (ExpectAndConsume(tok::comma)) {
2613 SkipUntil(tok::r_paren, StopAtSemi);
2614 return ExprError();
2617 // We must have at least one identifier here.
2618 if (Tok.isNot(tok::identifier)) {
2619 Diag(Tok, diag::err_expected) << tok::identifier;
2620 SkipUntil(tok::r_paren, StopAtSemi);
2621 return ExprError();
2624 // Keep track of the various subcomponents we see.
2625 SmallVector<Sema::OffsetOfComponent, 4> Comps;
2627 Comps.push_back(Sema::OffsetOfComponent());
2628 Comps.back().isBrackets = false;
2629 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2630 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2632 // FIXME: This loop leaks the index expressions on error.
2633 while (true) {
2634 if (Tok.is(tok::period)) {
2635 // offsetof-member-designator: offsetof-member-designator '.' identifier
2636 Comps.push_back(Sema::OffsetOfComponent());
2637 Comps.back().isBrackets = false;
2638 Comps.back().LocStart = ConsumeToken();
2640 if (Tok.isNot(tok::identifier)) {
2641 Diag(Tok, diag::err_expected) << tok::identifier;
2642 SkipUntil(tok::r_paren, StopAtSemi);
2643 return ExprError();
2645 Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2646 Comps.back().LocEnd = ConsumeToken();
2647 } else if (Tok.is(tok::l_square)) {
2648 if (CheckProhibitedCXX11Attribute())
2649 return ExprError();
2651 // offsetof-member-designator: offsetof-member-design '[' expression ']'
2652 Comps.push_back(Sema::OffsetOfComponent());
2653 Comps.back().isBrackets = true;
2654 BalancedDelimiterTracker ST(*this, tok::l_square);
2655 ST.consumeOpen();
2656 Comps.back().LocStart = ST.getOpenLocation();
2657 Res = ParseExpression();
2658 if (Res.isInvalid()) {
2659 SkipUntil(tok::r_paren, StopAtSemi);
2660 return Res;
2662 Comps.back().U.E = Res.get();
2664 ST.consumeClose();
2665 Comps.back().LocEnd = ST.getCloseLocation();
2666 } else {
2667 if (Tok.isNot(tok::r_paren)) {
2668 PT.consumeClose();
2669 Res = ExprError();
2670 } else if (Ty.isInvalid()) {
2671 Res = ExprError();
2672 } else {
2673 PT.consumeClose();
2674 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2675 Ty.get(), Comps,
2676 PT.getCloseLocation());
2678 break;
2681 break;
2683 case tok::kw___builtin_choose_expr: {
2684 ExprResult Cond(ParseAssignmentExpression());
2685 if (Cond.isInvalid()) {
2686 SkipUntil(tok::r_paren, StopAtSemi);
2687 return Cond;
2689 if (ExpectAndConsume(tok::comma)) {
2690 SkipUntil(tok::r_paren, StopAtSemi);
2691 return ExprError();
2694 ExprResult Expr1(ParseAssignmentExpression());
2695 if (Expr1.isInvalid()) {
2696 SkipUntil(tok::r_paren, StopAtSemi);
2697 return Expr1;
2699 if (ExpectAndConsume(tok::comma)) {
2700 SkipUntil(tok::r_paren, StopAtSemi);
2701 return ExprError();
2704 ExprResult Expr2(ParseAssignmentExpression());
2705 if (Expr2.isInvalid()) {
2706 SkipUntil(tok::r_paren, StopAtSemi);
2707 return Expr2;
2709 if (Tok.isNot(tok::r_paren)) {
2710 Diag(Tok, diag::err_expected) << tok::r_paren;
2711 return ExprError();
2713 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2714 Expr2.get(), ConsumeParen());
2715 break;
2717 case tok::kw___builtin_astype: {
2718 // The first argument is an expression to be converted, followed by a comma.
2719 ExprResult Expr(ParseAssignmentExpression());
2720 if (Expr.isInvalid()) {
2721 SkipUntil(tok::r_paren, StopAtSemi);
2722 return ExprError();
2725 if (ExpectAndConsume(tok::comma)) {
2726 SkipUntil(tok::r_paren, StopAtSemi);
2727 return ExprError();
2730 // Second argument is the type to bitcast to.
2731 TypeResult DestTy = ParseTypeName();
2732 if (DestTy.isInvalid())
2733 return ExprError();
2735 // Attempt to consume the r-paren.
2736 if (Tok.isNot(tok::r_paren)) {
2737 Diag(Tok, diag::err_expected) << tok::r_paren;
2738 SkipUntil(tok::r_paren, StopAtSemi);
2739 return ExprError();
2742 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2743 ConsumeParen());
2744 break;
2746 case tok::kw___builtin_convertvector: {
2747 // The first argument is an expression to be converted, followed by a comma.
2748 ExprResult Expr(ParseAssignmentExpression());
2749 if (Expr.isInvalid()) {
2750 SkipUntil(tok::r_paren, StopAtSemi);
2751 return ExprError();
2754 if (ExpectAndConsume(tok::comma)) {
2755 SkipUntil(tok::r_paren, StopAtSemi);
2756 return ExprError();
2759 // Second argument is the type to bitcast to.
2760 TypeResult DestTy = ParseTypeName();
2761 if (DestTy.isInvalid())
2762 return ExprError();
2764 // Attempt to consume the r-paren.
2765 if (Tok.isNot(tok::r_paren)) {
2766 Diag(Tok, diag::err_expected) << tok::r_paren;
2767 SkipUntil(tok::r_paren, StopAtSemi);
2768 return ExprError();
2771 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2772 ConsumeParen());
2773 break;
2775 case tok::kw___builtin_COLUMN:
2776 case tok::kw___builtin_FILE:
2777 case tok::kw___builtin_FUNCTION:
2778 case tok::kw___builtin_LINE:
2779 case tok::kw___builtin_source_location: {
2780 // Attempt to consume the r-paren.
2781 if (Tok.isNot(tok::r_paren)) {
2782 Diag(Tok, diag::err_expected) << tok::r_paren;
2783 SkipUntil(tok::r_paren, StopAtSemi);
2784 return ExprError();
2786 SourceLocExpr::IdentKind Kind = [&] {
2787 switch (T) {
2788 case tok::kw___builtin_FILE:
2789 return SourceLocExpr::File;
2790 case tok::kw___builtin_FUNCTION:
2791 return SourceLocExpr::Function;
2792 case tok::kw___builtin_LINE:
2793 return SourceLocExpr::Line;
2794 case tok::kw___builtin_COLUMN:
2795 return SourceLocExpr::Column;
2796 case tok::kw___builtin_source_location:
2797 return SourceLocExpr::SourceLocStruct;
2798 default:
2799 llvm_unreachable("invalid keyword");
2801 }();
2802 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2803 break;
2807 if (Res.isInvalid())
2808 return ExprError();
2810 // These can be followed by postfix-expr pieces because they are
2811 // primary-expressions.
2812 return ParsePostfixExpressionSuffix(Res.get());
2815 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2816 assert(Tok.is(tok::l_square) && "Expected open bracket");
2817 bool ErrorFound = true;
2818 TentativeParsingAction TPA(*this);
2819 do {
2820 if (Tok.isNot(tok::l_square))
2821 break;
2822 // Consume '['
2823 ConsumeBracket();
2824 // Skip inner expression.
2825 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2826 StopAtSemi | StopBeforeMatch))
2828 if (Tok.isNot(tok::r_square))
2829 break;
2830 // Consume ']'
2831 ConsumeBracket();
2832 // Found ')' - done.
2833 if (Tok.is(tok::r_paren)) {
2834 ErrorFound = false;
2835 break;
2837 } while (Tok.isNot(tok::annot_pragma_openmp_end));
2838 TPA.Revert();
2839 return !ErrorFound;
2842 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2843 /// based on what is allowed by ExprType. The actual thing parsed is returned
2844 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2845 /// not the parsed cast-expression.
2847 /// \verbatim
2848 /// primary-expression: [C99 6.5.1]
2849 /// '(' expression ')'
2850 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly)
2851 /// postfix-expression: [C99 6.5.2]
2852 /// '(' type-name ')' '{' initializer-list '}'
2853 /// '(' type-name ')' '{' initializer-list ',' '}'
2854 /// cast-expression: [C99 6.5.4]
2855 /// '(' type-name ')' cast-expression
2856 /// [ARC] bridged-cast-expression
2857 /// [ARC] bridged-cast-expression:
2858 /// (__bridge type-name) cast-expression
2859 /// (__bridge_transfer type-name) cast-expression
2860 /// (__bridge_retained type-name) cast-expression
2861 /// fold-expression: [C++1z]
2862 /// '(' cast-expression fold-operator '...' ')'
2863 /// '(' '...' fold-operator cast-expression ')'
2864 /// '(' cast-expression fold-operator '...'
2865 /// fold-operator cast-expression ')'
2866 /// [OPENMP] Array shaping operation
2867 /// '(' '[' expression ']' { '[' expression ']' } cast-expression
2868 /// \endverbatim
2869 ExprResult
2870 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2871 bool isTypeCast, ParsedType &CastTy,
2872 SourceLocation &RParenLoc) {
2873 assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2874 ColonProtectionRAIIObject ColonProtection(*this, false);
2875 BalancedDelimiterTracker T(*this, tok::l_paren);
2876 if (T.consumeOpen())
2877 return ExprError();
2878 SourceLocation OpenLoc = T.getOpenLocation();
2880 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2882 ExprResult Result(true);
2883 bool isAmbiguousTypeId;
2884 CastTy = nullptr;
2886 if (Tok.is(tok::code_completion)) {
2887 cutOffParsing();
2888 Actions.CodeCompleteExpression(
2889 getCurScope(), PreferredType.get(Tok.getLocation()),
2890 /*IsParenthesized=*/ExprType >= CompoundLiteral);
2891 return ExprError();
2894 // Diagnose use of bridge casts in non-arc mode.
2895 bool BridgeCast = (getLangOpts().ObjC &&
2896 Tok.isOneOf(tok::kw___bridge,
2897 tok::kw___bridge_transfer,
2898 tok::kw___bridge_retained,
2899 tok::kw___bridge_retain));
2900 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2901 if (!TryConsumeToken(tok::kw___bridge)) {
2902 StringRef BridgeCastName = Tok.getName();
2903 SourceLocation BridgeKeywordLoc = ConsumeToken();
2904 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2905 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2906 << BridgeCastName
2907 << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2909 BridgeCast = false;
2912 // None of these cases should fall through with an invalid Result
2913 // unless they've already reported an error.
2914 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2915 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
2916 : diag::ext_gnu_statement_expr);
2918 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2920 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2921 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2922 } else {
2923 // Find the nearest non-record decl context. Variables declared in a
2924 // statement expression behave as if they were declared in the enclosing
2925 // function, block, or other code construct.
2926 DeclContext *CodeDC = Actions.CurContext;
2927 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2928 CodeDC = CodeDC->getParent();
2929 assert(CodeDC && !CodeDC->isFileContext() &&
2930 "statement expr not in code context");
2932 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2934 Actions.ActOnStartStmtExpr();
2936 StmtResult Stmt(ParseCompoundStatement(true));
2937 ExprType = CompoundStmt;
2939 // If the substmt parsed correctly, build the AST node.
2940 if (!Stmt.isInvalid()) {
2941 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2942 Tok.getLocation());
2943 } else {
2944 Actions.ActOnStmtExprError();
2947 } else if (ExprType >= CompoundLiteral && BridgeCast) {
2948 tok::TokenKind tokenKind = Tok.getKind();
2949 SourceLocation BridgeKeywordLoc = ConsumeToken();
2951 // Parse an Objective-C ARC ownership cast expression.
2952 ObjCBridgeCastKind Kind;
2953 if (tokenKind == tok::kw___bridge)
2954 Kind = OBC_Bridge;
2955 else if (tokenKind == tok::kw___bridge_transfer)
2956 Kind = OBC_BridgeTransfer;
2957 else if (tokenKind == tok::kw___bridge_retained)
2958 Kind = OBC_BridgeRetained;
2959 else {
2960 // As a hopefully temporary workaround, allow __bridge_retain as
2961 // a synonym for __bridge_retained, but only in system headers.
2962 assert(tokenKind == tok::kw___bridge_retain);
2963 Kind = OBC_BridgeRetained;
2964 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2965 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2966 << FixItHint::CreateReplacement(BridgeKeywordLoc,
2967 "__bridge_retained");
2970 TypeResult Ty = ParseTypeName();
2971 T.consumeClose();
2972 ColonProtection.restore();
2973 RParenLoc = T.getCloseLocation();
2975 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2976 ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
2978 if (Ty.isInvalid() || SubExpr.isInvalid())
2979 return ExprError();
2981 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2982 BridgeKeywordLoc, Ty.get(),
2983 RParenLoc, SubExpr.get());
2984 } else if (ExprType >= CompoundLiteral &&
2985 isTypeIdInParens(isAmbiguousTypeId)) {
2987 // Otherwise, this is a compound literal expression or cast expression.
2989 // In C++, if the type-id is ambiguous we disambiguate based on context.
2990 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2991 // in which case we should treat it as type-id.
2992 // if stopIfCastExpr is false, we need to determine the context past the
2993 // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2994 if (isAmbiguousTypeId && !stopIfCastExpr) {
2995 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2996 ColonProtection);
2997 RParenLoc = T.getCloseLocation();
2998 return res;
3001 // Parse the type declarator.
3002 DeclSpec DS(AttrFactory);
3003 ParseSpecifierQualifierList(DS);
3004 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3005 DeclaratorContext::TypeName);
3006 ParseDeclarator(DeclaratorInfo);
3008 // If our type is followed by an identifier and either ':' or ']', then
3009 // this is probably an Objective-C message send where the leading '[' is
3010 // missing. Recover as if that were the case.
3011 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3012 !InMessageExpression && getLangOpts().ObjC &&
3013 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3014 TypeResult Ty;
3016 InMessageExpressionRAIIObject InMessage(*this, false);
3017 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3019 Result = ParseObjCMessageExpressionBody(SourceLocation(),
3020 SourceLocation(),
3021 Ty.get(), nullptr);
3022 } else {
3023 // Match the ')'.
3024 T.consumeClose();
3025 ColonProtection.restore();
3026 RParenLoc = T.getCloseLocation();
3027 if (Tok.is(tok::l_brace)) {
3028 ExprType = CompoundLiteral;
3029 TypeResult Ty;
3031 InMessageExpressionRAIIObject InMessage(*this, false);
3032 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3034 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3037 if (Tok.is(tok::l_paren)) {
3038 // This could be OpenCL vector Literals
3039 if (getLangOpts().OpenCL)
3041 TypeResult Ty;
3043 InMessageExpressionRAIIObject InMessage(*this, false);
3044 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3046 if(Ty.isInvalid())
3048 return ExprError();
3050 QualType QT = Ty.get().get().getCanonicalType();
3051 if (QT->isVectorType())
3053 // We parsed '(' vector-type-name ')' followed by '('
3055 // Parse the cast-expression that follows it next.
3056 // isVectorLiteral = true will make sure we don't parse any
3057 // Postfix expression yet
3058 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3059 /*isAddressOfOperand=*/false,
3060 /*isTypeCast=*/IsTypeCast,
3061 /*isVectorLiteral=*/true);
3063 if (!Result.isInvalid()) {
3064 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3065 DeclaratorInfo, CastTy,
3066 RParenLoc, Result.get());
3069 // After we performed the cast we can check for postfix-expr pieces.
3070 if (!Result.isInvalid()) {
3071 Result = ParsePostfixExpressionSuffix(Result);
3074 return Result;
3079 if (ExprType == CastExpr) {
3080 // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3082 if (DeclaratorInfo.isInvalidType())
3083 return ExprError();
3085 // Note that this doesn't parse the subsequent cast-expression, it just
3086 // returns the parsed type to the callee.
3087 if (stopIfCastExpr) {
3088 TypeResult Ty;
3090 InMessageExpressionRAIIObject InMessage(*this, false);
3091 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3093 CastTy = Ty.get();
3094 return ExprResult();
3097 // Reject the cast of super idiom in ObjC.
3098 if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3099 Tok.getIdentifierInfo() == Ident_super &&
3100 getCurScope()->isInObjcMethodScope() &&
3101 GetLookAheadToken(1).isNot(tok::period)) {
3102 Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3103 << SourceRange(OpenLoc, RParenLoc);
3104 return ExprError();
3107 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3108 // Parse the cast-expression that follows it next.
3109 // TODO: For cast expression with CastTy.
3110 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3111 /*isAddressOfOperand=*/false,
3112 /*isTypeCast=*/IsTypeCast);
3113 if (!Result.isInvalid()) {
3114 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3115 DeclaratorInfo, CastTy,
3116 RParenLoc, Result.get());
3118 return Result;
3121 Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3122 return ExprError();
3124 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3125 isFoldOperator(NextToken().getKind())) {
3126 ExprType = FoldExpr;
3127 return ParseFoldExpression(ExprResult(), T);
3128 } else if (isTypeCast) {
3129 // Parse the expression-list.
3130 InMessageExpressionRAIIObject InMessage(*this, false);
3131 ExprVector ArgExprs;
3133 if (!ParseSimpleExpressionList(ArgExprs)) {
3134 // FIXME: If we ever support comma expressions as operands to
3135 // fold-expressions, we'll need to allow multiple ArgExprs here.
3136 if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3137 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3138 ExprType = FoldExpr;
3139 return ParseFoldExpression(ArgExprs[0], T);
3142 ExprType = SimpleExpr;
3143 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3144 ArgExprs);
3146 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3147 ExprType == CastExpr && Tok.is(tok::l_square) &&
3148 tryParseOpenMPArrayShapingCastPart()) {
3149 bool ErrorFound = false;
3150 SmallVector<Expr *, 4> OMPDimensions;
3151 SmallVector<SourceRange, 4> OMPBracketsRanges;
3152 do {
3153 BalancedDelimiterTracker TS(*this, tok::l_square);
3154 TS.consumeOpen();
3155 ExprResult NumElements =
3156 Actions.CorrectDelayedTyposInExpr(ParseExpression());
3157 if (!NumElements.isUsable()) {
3158 ErrorFound = true;
3159 while (!SkipUntil(tok::r_square, tok::r_paren,
3160 StopAtSemi | StopBeforeMatch))
3163 TS.consumeClose();
3164 OMPDimensions.push_back(NumElements.get());
3165 OMPBracketsRanges.push_back(TS.getRange());
3166 } while (Tok.isNot(tok::r_paren));
3167 // Match the ')'.
3168 T.consumeClose();
3169 RParenLoc = T.getCloseLocation();
3170 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3171 if (ErrorFound) {
3172 Result = ExprError();
3173 } else if (!Result.isInvalid()) {
3174 Result = Actions.ActOnOMPArrayShapingExpr(
3175 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3177 return Result;
3178 } else {
3179 InMessageExpressionRAIIObject InMessage(*this, false);
3181 Result = ParseExpression(MaybeTypeCast);
3182 if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3183 // Correct typos in non-C++ code earlier so that implicit-cast-like
3184 // expressions are parsed correctly.
3185 Result = Actions.CorrectDelayedTyposInExpr(Result);
3188 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3189 NextToken().is(tok::ellipsis)) {
3190 ExprType = FoldExpr;
3191 return ParseFoldExpression(Result, T);
3193 ExprType = SimpleExpr;
3195 // Don't build a paren expression unless we actually match a ')'.
3196 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3197 Result =
3198 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3201 // Match the ')'.
3202 if (Result.isInvalid()) {
3203 SkipUntil(tok::r_paren, StopAtSemi);
3204 return ExprError();
3207 T.consumeClose();
3208 RParenLoc = T.getCloseLocation();
3209 return Result;
3212 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3213 /// and we are at the left brace.
3215 /// \verbatim
3216 /// postfix-expression: [C99 6.5.2]
3217 /// '(' type-name ')' '{' initializer-list '}'
3218 /// '(' type-name ')' '{' initializer-list ',' '}'
3219 /// \endverbatim
3220 ExprResult
3221 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3222 SourceLocation LParenLoc,
3223 SourceLocation RParenLoc) {
3224 assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3225 if (!getLangOpts().C99) // Compound literals don't exist in C90.
3226 Diag(LParenLoc, diag::ext_c99_compound_literal);
3227 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3228 ExprResult Result = ParseInitializer();
3229 if (!Result.isInvalid() && Ty)
3230 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3231 return Result;
3234 /// ParseStringLiteralExpression - This handles the various token types that
3235 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3236 /// translation phase #6].
3238 /// \verbatim
3239 /// primary-expression: [C99 6.5.1]
3240 /// string-literal
3241 /// \verbatim
3242 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3243 assert(isTokenStringLiteral() && "Not a string literal!");
3245 // String concat. Note that keywords like __func__ and __FUNCTION__ are not
3246 // considered to be strings for concatenation purposes.
3247 SmallVector<Token, 4> StringToks;
3249 do {
3250 StringToks.push_back(Tok);
3251 ConsumeStringToken();
3252 } while (isTokenStringLiteral());
3254 // Pass the set of string tokens, ready for concatenation, to the actions.
3255 return Actions.ActOnStringLiteral(StringToks,
3256 AllowUserDefinedLiteral ? getCurScope()
3257 : nullptr);
3260 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3261 /// [C11 6.5.1.1].
3263 /// \verbatim
3264 /// generic-selection:
3265 /// _Generic ( assignment-expression , generic-assoc-list )
3266 /// generic-assoc-list:
3267 /// generic-association
3268 /// generic-assoc-list , generic-association
3269 /// generic-association:
3270 /// type-name : assignment-expression
3271 /// default : assignment-expression
3272 /// \endverbatim
3273 ExprResult Parser::ParseGenericSelectionExpression() {
3274 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3275 if (!getLangOpts().C11)
3276 Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3278 SourceLocation KeyLoc = ConsumeToken();
3279 BalancedDelimiterTracker T(*this, tok::l_paren);
3280 if (T.expectAndConsume())
3281 return ExprError();
3283 ExprResult ControllingExpr;
3285 // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3286 // not evaluated."
3287 EnterExpressionEvaluationContext Unevaluated(
3288 Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3289 ControllingExpr =
3290 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3291 if (ControllingExpr.isInvalid()) {
3292 SkipUntil(tok::r_paren, StopAtSemi);
3293 return ExprError();
3297 if (ExpectAndConsume(tok::comma)) {
3298 SkipUntil(tok::r_paren, StopAtSemi);
3299 return ExprError();
3302 SourceLocation DefaultLoc;
3303 SmallVector<ParsedType, 12> Types;
3304 ExprVector Exprs;
3305 do {
3306 ParsedType Ty;
3307 if (Tok.is(tok::kw_default)) {
3308 // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3309 // generic association."
3310 if (!DefaultLoc.isInvalid()) {
3311 Diag(Tok, diag::err_duplicate_default_assoc);
3312 Diag(DefaultLoc, diag::note_previous_default_assoc);
3313 SkipUntil(tok::r_paren, StopAtSemi);
3314 return ExprError();
3316 DefaultLoc = ConsumeToken();
3317 Ty = nullptr;
3318 } else {
3319 ColonProtectionRAIIObject X(*this);
3320 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3321 if (TR.isInvalid()) {
3322 SkipUntil(tok::r_paren, StopAtSemi);
3323 return ExprError();
3325 Ty = TR.get();
3327 Types.push_back(Ty);
3329 if (ExpectAndConsume(tok::colon)) {
3330 SkipUntil(tok::r_paren, StopAtSemi);
3331 return ExprError();
3334 // FIXME: These expressions should be parsed in a potentially potentially
3335 // evaluated context.
3336 ExprResult ER(
3337 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3338 if (ER.isInvalid()) {
3339 SkipUntil(tok::r_paren, StopAtSemi);
3340 return ExprError();
3342 Exprs.push_back(ER.get());
3343 } while (TryConsumeToken(tok::comma));
3345 T.consumeClose();
3346 if (T.getCloseLocation().isInvalid())
3347 return ExprError();
3349 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
3350 T.getCloseLocation(),
3351 ControllingExpr.get(),
3352 Types, Exprs);
3355 /// Parse A C++1z fold-expression after the opening paren and optional
3356 /// left-hand-side expression.
3358 /// \verbatim
3359 /// fold-expression:
3360 /// ( cast-expression fold-operator ... )
3361 /// ( ... fold-operator cast-expression )
3362 /// ( cast-expression fold-operator ... fold-operator cast-expression )
3363 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3364 BalancedDelimiterTracker &T) {
3365 if (LHS.isInvalid()) {
3366 T.skipToEnd();
3367 return true;
3370 tok::TokenKind Kind = tok::unknown;
3371 SourceLocation FirstOpLoc;
3372 if (LHS.isUsable()) {
3373 Kind = Tok.getKind();
3374 assert(isFoldOperator(Kind) && "missing fold-operator");
3375 FirstOpLoc = ConsumeToken();
3378 assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3379 SourceLocation EllipsisLoc = ConsumeToken();
3381 ExprResult RHS;
3382 if (Tok.isNot(tok::r_paren)) {
3383 if (!isFoldOperator(Tok.getKind()))
3384 return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3386 if (Kind != tok::unknown && Tok.getKind() != Kind)
3387 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3388 << SourceRange(FirstOpLoc);
3389 Kind = Tok.getKind();
3390 ConsumeToken();
3392 RHS = ParseExpression();
3393 if (RHS.isInvalid()) {
3394 T.skipToEnd();
3395 return true;
3399 Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3400 ? diag::warn_cxx14_compat_fold_expression
3401 : diag::ext_fold_expression);
3403 T.consumeClose();
3404 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3405 Kind, EllipsisLoc, RHS.get(),
3406 T.getCloseLocation());
3409 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3411 /// \verbatim
3412 /// argument-expression-list:
3413 /// assignment-expression
3414 /// argument-expression-list , assignment-expression
3416 /// [C++] expression-list:
3417 /// [C++] assignment-expression
3418 /// [C++] expression-list , assignment-expression
3420 /// [C++0x] expression-list:
3421 /// [C++0x] initializer-list
3423 /// [C++0x] initializer-list
3424 /// [C++0x] initializer-clause ...[opt]
3425 /// [C++0x] initializer-list , initializer-clause ...[opt]
3427 /// [C++0x] initializer-clause:
3428 /// [C++0x] assignment-expression
3429 /// [C++0x] braced-init-list
3430 /// \endverbatim
3431 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3432 llvm::function_ref<void()> ExpressionStarts,
3433 bool FailImmediatelyOnInvalidExpr,
3434 bool EarlyTypoCorrection) {
3435 bool SawError = false;
3436 while (true) {
3437 if (ExpressionStarts)
3438 ExpressionStarts();
3440 ExprResult Expr;
3441 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3442 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3443 Expr = ParseBraceInitializer();
3444 } else
3445 Expr = ParseAssignmentExpression();
3447 if (EarlyTypoCorrection)
3448 Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3450 if (Tok.is(tok::ellipsis))
3451 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3452 else if (Tok.is(tok::code_completion)) {
3453 // There's nothing to suggest in here as we parsed a full expression.
3454 // Instead fail and propogate the error since caller might have something
3455 // the suggest, e.g. signature help in function call. Note that this is
3456 // performed before pushing the \p Expr, so that signature help can report
3457 // current argument correctly.
3458 SawError = true;
3459 cutOffParsing();
3460 break;
3462 if (Expr.isInvalid()) {
3463 SawError = true;
3464 if (FailImmediatelyOnInvalidExpr)
3465 break;
3466 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3467 } else {
3468 Exprs.push_back(Expr.get());
3471 if (Tok.isNot(tok::comma))
3472 break;
3473 // Move to the next argument, remember where the comma was.
3474 Token Comma = Tok;
3475 ConsumeToken();
3476 checkPotentialAngleBracketDelimiter(Comma);
3478 if (SawError) {
3479 // Ensure typos get diagnosed when errors were encountered while parsing the
3480 // expression list.
3481 for (auto &E : Exprs) {
3482 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3483 if (Expr.isUsable()) E = Expr.get();
3486 return SawError;
3489 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3490 /// used for misc language extensions.
3492 /// \verbatim
3493 /// simple-expression-list:
3494 /// assignment-expression
3495 /// simple-expression-list , assignment-expression
3496 /// \endverbatim
3497 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3498 while (true) {
3499 ExprResult Expr = ParseAssignmentExpression();
3500 if (Expr.isInvalid())
3501 return true;
3503 Exprs.push_back(Expr.get());
3505 // We might be parsing the LHS of a fold-expression. If we reached the fold
3506 // operator, stop.
3507 if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3508 return false;
3510 // Move to the next argument, remember where the comma was.
3511 Token Comma = Tok;
3512 ConsumeToken();
3513 checkPotentialAngleBracketDelimiter(Comma);
3517 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3519 /// \verbatim
3520 /// [clang] block-id:
3521 /// [clang] specifier-qualifier-list block-declarator
3522 /// \endverbatim
3523 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3524 if (Tok.is(tok::code_completion)) {
3525 cutOffParsing();
3526 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3527 return;
3530 // Parse the specifier-qualifier-list piece.
3531 DeclSpec DS(AttrFactory);
3532 ParseSpecifierQualifierList(DS);
3534 // Parse the block-declarator.
3535 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3536 DeclaratorContext::BlockLiteral);
3537 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3538 ParseDeclarator(DeclaratorInfo);
3540 MaybeParseGNUAttributes(DeclaratorInfo);
3542 // Inform sema that we are starting a block.
3543 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3546 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3547 /// like ^(int x){ return x+1; }
3549 /// \verbatim
3550 /// block-literal:
3551 /// [clang] '^' block-args[opt] compound-statement
3552 /// [clang] '^' block-id compound-statement
3553 /// [clang] block-args:
3554 /// [clang] '(' parameter-list ')'
3555 /// \endverbatim
3556 ExprResult Parser::ParseBlockLiteralExpression() {
3557 assert(Tok.is(tok::caret) && "block literal starts with ^");
3558 SourceLocation CaretLoc = ConsumeToken();
3560 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3561 "block literal parsing");
3563 // Enter a scope to hold everything within the block. This includes the
3564 // argument decls, decls within the compound expression, etc. This also
3565 // allows determining whether a variable reference inside the block is
3566 // within or outside of the block.
3567 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3568 Scope::CompoundStmtScope | Scope::DeclScope);
3570 // Inform sema that we are starting a block.
3571 Actions.ActOnBlockStart(CaretLoc, getCurScope());
3573 // Parse the return type if present.
3574 DeclSpec DS(AttrFactory);
3575 Declarator ParamInfo(DS, ParsedAttributesView::none(),
3576 DeclaratorContext::BlockLiteral);
3577 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3578 // FIXME: Since the return type isn't actually parsed, it can't be used to
3579 // fill ParamInfo with an initial valid range, so do it manually.
3580 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3582 // If this block has arguments, parse them. There is no ambiguity here with
3583 // the expression case, because the expression case requires a parameter list.
3584 if (Tok.is(tok::l_paren)) {
3585 ParseParenDeclarator(ParamInfo);
3586 // Parse the pieces after the identifier as if we had "int(...)".
3587 // SetIdentifier sets the source range end, but in this case we're past
3588 // that location.
3589 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3590 ParamInfo.SetIdentifier(nullptr, CaretLoc);
3591 ParamInfo.SetRangeEnd(Tmp);
3592 if (ParamInfo.isInvalidType()) {
3593 // If there was an error parsing the arguments, they may have
3594 // tried to use ^(x+y) which requires an argument list. Just
3595 // skip the whole block literal.
3596 Actions.ActOnBlockError(CaretLoc, getCurScope());
3597 return ExprError();
3600 MaybeParseGNUAttributes(ParamInfo);
3602 // Inform sema that we are starting a block.
3603 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3604 } else if (!Tok.is(tok::l_brace)) {
3605 ParseBlockId(CaretLoc);
3606 } else {
3607 // Otherwise, pretend we saw (void).
3608 SourceLocation NoLoc;
3609 ParamInfo.AddTypeInfo(
3610 DeclaratorChunk::getFunction(/*HasProto=*/true,
3611 /*IsAmbiguous=*/false,
3612 /*RParenLoc=*/NoLoc,
3613 /*ArgInfo=*/nullptr,
3614 /*NumParams=*/0,
3615 /*EllipsisLoc=*/NoLoc,
3616 /*RParenLoc=*/NoLoc,
3617 /*RefQualifierIsLvalueRef=*/true,
3618 /*RefQualifierLoc=*/NoLoc,
3619 /*MutableLoc=*/NoLoc, EST_None,
3620 /*ESpecRange=*/SourceRange(),
3621 /*Exceptions=*/nullptr,
3622 /*ExceptionRanges=*/nullptr,
3623 /*NumExceptions=*/0,
3624 /*NoexceptExpr=*/nullptr,
3625 /*ExceptionSpecTokens=*/nullptr,
3626 /*DeclsInPrototype=*/std::nullopt,
3627 CaretLoc, CaretLoc, ParamInfo),
3628 CaretLoc);
3630 MaybeParseGNUAttributes(ParamInfo);
3632 // Inform sema that we are starting a block.
3633 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3637 ExprResult Result(true);
3638 if (!Tok.is(tok::l_brace)) {
3639 // Saw something like: ^expr
3640 Diag(Tok, diag::err_expected_expression);
3641 Actions.ActOnBlockError(CaretLoc, getCurScope());
3642 return ExprError();
3645 StmtResult Stmt(ParseCompoundStatementBody());
3646 BlockScope.Exit();
3647 if (!Stmt.isInvalid())
3648 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3649 else
3650 Actions.ActOnBlockError(CaretLoc, getCurScope());
3651 return Result;
3654 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3656 /// '__objc_yes'
3657 /// '__objc_no'
3658 ExprResult Parser::ParseObjCBoolLiteral() {
3659 tok::TokenKind Kind = Tok.getKind();
3660 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3663 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3664 /// true if invalid.
3665 static bool CheckAvailabilitySpecList(Parser &P,
3666 ArrayRef<AvailabilitySpec> AvailSpecs) {
3667 llvm::SmallSet<StringRef, 4> Platforms;
3668 bool HasOtherPlatformSpec = false;
3669 bool Valid = true;
3670 for (const auto &Spec : AvailSpecs) {
3671 if (Spec.isOtherPlatformSpec()) {
3672 if (HasOtherPlatformSpec) {
3673 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3674 Valid = false;
3677 HasOtherPlatformSpec = true;
3678 continue;
3681 bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3682 if (!Inserted) {
3683 // Rule out multiple version specs referring to the same platform.
3684 // For example, we emit an error for:
3685 // @available(macos 10.10, macos 10.11, *)
3686 StringRef Platform = Spec.getPlatform();
3687 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3688 << Spec.getEndLoc() << Platform;
3689 Valid = false;
3693 if (!HasOtherPlatformSpec) {
3694 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3695 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3696 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3697 return true;
3700 return !Valid;
3703 /// Parse availability query specification.
3705 /// availability-spec:
3706 /// '*'
3707 /// identifier version-tuple
3708 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3709 if (Tok.is(tok::star)) {
3710 return AvailabilitySpec(ConsumeToken());
3711 } else {
3712 // Parse the platform name.
3713 if (Tok.is(tok::code_completion)) {
3714 cutOffParsing();
3715 Actions.CodeCompleteAvailabilityPlatformName();
3716 return std::nullopt;
3718 if (Tok.isNot(tok::identifier)) {
3719 Diag(Tok, diag::err_avail_query_expected_platform_name);
3720 return std::nullopt;
3723 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3724 SourceRange VersionRange;
3725 VersionTuple Version = ParseVersionTuple(VersionRange);
3727 if (Version.empty())
3728 return std::nullopt;
3730 StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3731 StringRef Platform =
3732 AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3734 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3735 Diag(PlatformIdentifier->Loc,
3736 diag::err_avail_query_unrecognized_platform_name)
3737 << GivenPlatform;
3738 return std::nullopt;
3741 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3742 VersionRange.getEnd());
3746 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3747 assert(Tok.is(tok::kw___builtin_available) ||
3748 Tok.isObjCAtKeyword(tok::objc_available));
3750 // Eat the available or __builtin_available.
3751 ConsumeToken();
3753 BalancedDelimiterTracker Parens(*this, tok::l_paren);
3754 if (Parens.expectAndConsume())
3755 return ExprError();
3757 SmallVector<AvailabilitySpec, 4> AvailSpecs;
3758 bool HasError = false;
3759 while (true) {
3760 std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3761 if (!Spec)
3762 HasError = true;
3763 else
3764 AvailSpecs.push_back(*Spec);
3766 if (!TryConsumeToken(tok::comma))
3767 break;
3770 if (HasError) {
3771 SkipUntil(tok::r_paren, StopAtSemi);
3772 return ExprError();
3775 CheckAvailabilitySpecList(*this, AvailSpecs);
3777 if (Parens.consumeClose())
3778 return ExprError();
3780 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3781 Parens.getCloseLocation());