[clang] Handle __declspec() attributes in using
[llvm-project.git] / clang / lib / Sema / SemaDeclAttr.cpp
blob1a0bfb3d91bcc876fb22d846c9ae18f623de7096
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements decl-related attribute processing.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/DarwinSDKInfo.h"
27 #include "clang/Basic/HLSLRuntime.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetBuiltins.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/DelayedDiagnostic.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedAttr.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/StringExtras.h"
44 #include "llvm/IR/Assumptions.h"
45 #include "llvm/MC/MCSectionMachO.h"
46 #include "llvm/Support/Error.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <optional>
51 using namespace clang;
52 using namespace sema;
54 namespace AttributeLangSupport {
55 enum LANG {
57 Cpp,
58 ObjC
60 } // end namespace AttributeLangSupport
62 //===----------------------------------------------------------------------===//
63 // Helper functions
64 //===----------------------------------------------------------------------===//
66 /// isFunctionOrMethod - Return true if the given decl has function
67 /// type (function or function-typed variable) or an Objective-C
68 /// method.
69 static bool isFunctionOrMethod(const Decl *D) {
70 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
73 /// Return true if the given decl has function type (function or
74 /// function-typed variable) or an Objective-C method or a block.
75 static bool isFunctionOrMethodOrBlock(const Decl *D) {
76 return isFunctionOrMethod(D) || isa<BlockDecl>(D);
79 /// Return true if the given decl has a declarator that should have
80 /// been processed by Sema::GetTypeForDeclarator.
81 static bool hasDeclarator(const Decl *D) {
82 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
83 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
84 isa<ObjCPropertyDecl>(D);
87 /// hasFunctionProto - Return true if the given decl has a argument
88 /// information. This decl should have already passed
89 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
90 static bool hasFunctionProto(const Decl *D) {
91 if (const FunctionType *FnTy = D->getFunctionType())
92 return isa<FunctionProtoType>(FnTy);
93 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
96 /// getFunctionOrMethodNumParams - Return number of function or method
97 /// parameters. It is an error to call this on a K&R function (use
98 /// hasFunctionProto first).
99 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
100 if (const FunctionType *FnTy = D->getFunctionType())
101 return cast<FunctionProtoType>(FnTy)->getNumParams();
102 if (const auto *BD = dyn_cast<BlockDecl>(D))
103 return BD->getNumParams();
104 return cast<ObjCMethodDecl>(D)->param_size();
107 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
108 unsigned Idx) {
109 if (const auto *FD = dyn_cast<FunctionDecl>(D))
110 return FD->getParamDecl(Idx);
111 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
112 return MD->getParamDecl(Idx);
113 if (const auto *BD = dyn_cast<BlockDecl>(D))
114 return BD->getParamDecl(Idx);
115 return nullptr;
118 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
119 if (const FunctionType *FnTy = D->getFunctionType())
120 return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
121 if (const auto *BD = dyn_cast<BlockDecl>(D))
122 return BD->getParamDecl(Idx)->getType();
124 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
127 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
128 if (auto *PVD = getFunctionOrMethodParam(D, Idx))
129 return PVD->getSourceRange();
130 return SourceRange();
133 static QualType getFunctionOrMethodResultType(const Decl *D) {
134 if (const FunctionType *FnTy = D->getFunctionType())
135 return FnTy->getReturnType();
136 return cast<ObjCMethodDecl>(D)->getReturnType();
139 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
140 if (const auto *FD = dyn_cast<FunctionDecl>(D))
141 return FD->getReturnTypeSourceRange();
142 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
143 return MD->getReturnTypeSourceRange();
144 return SourceRange();
147 static bool isFunctionOrMethodVariadic(const Decl *D) {
148 if (const FunctionType *FnTy = D->getFunctionType())
149 return cast<FunctionProtoType>(FnTy)->isVariadic();
150 if (const auto *BD = dyn_cast<BlockDecl>(D))
151 return BD->isVariadic();
152 return cast<ObjCMethodDecl>(D)->isVariadic();
155 static bool isInstanceMethod(const Decl *D) {
156 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
157 return MethodDecl->isInstance();
158 return false;
161 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
162 bool AllowNSAttributedString = false) {
163 const auto *PT = T->getAs<ObjCObjectPointerType>();
164 if (!PT)
165 return false;
167 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
168 if (!Cls)
169 return false;
171 IdentifierInfo* ClsName = Cls->getIdentifier();
173 if (AllowNSAttributedString &&
174 ClsName == &Ctx.Idents.get("NSAttributedString"))
175 return true;
176 // FIXME: Should we walk the chain of classes?
177 return ClsName == &Ctx.Idents.get("NSString") ||
178 ClsName == &Ctx.Idents.get("NSMutableString");
181 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
182 const auto *PT = T->getAs<PointerType>();
183 if (!PT)
184 return false;
186 const auto *RT = PT->getPointeeType()->getAs<RecordType>();
187 if (!RT)
188 return false;
190 const RecordDecl *RD = RT->getDecl();
191 if (RD->getTagKind() != TTK_Struct)
192 return false;
194 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
197 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
198 // FIXME: Include the type in the argument list.
199 return AL.getNumArgs() + AL.hasParsedType();
202 /// A helper function to provide Attribute Location for the Attr types
203 /// AND the ParsedAttr.
204 template <typename AttrInfo>
205 static std::enable_if_t<std::is_base_of_v<Attr, AttrInfo>, SourceLocation>
206 getAttrLoc(const AttrInfo &AL) {
207 return AL.getLocation();
209 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
211 /// If Expr is a valid integer constant, get the value of the integer
212 /// expression and return success or failure. May output an error.
214 /// Negative argument is implicitly converted to unsigned, unless
215 /// \p StrictlyUnsigned is true.
216 template <typename AttrInfo>
217 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
218 uint32_t &Val, unsigned Idx = UINT_MAX,
219 bool StrictlyUnsigned = false) {
220 std::optional<llvm::APSInt> I = llvm::APSInt(32);
221 if (Expr->isTypeDependent() ||
222 !(I = Expr->getIntegerConstantExpr(S.Context))) {
223 if (Idx != UINT_MAX)
224 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
225 << &AI << Idx << AANT_ArgumentIntegerConstant
226 << Expr->getSourceRange();
227 else
228 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
229 << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
230 return false;
233 if (!I->isIntN(32)) {
234 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
235 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
236 return false;
239 if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
240 S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
241 << &AI << /*non-negative*/ 1;
242 return false;
245 Val = (uint32_t)I->getZExtValue();
246 return true;
249 /// Wrapper around checkUInt32Argument, with an extra check to be sure
250 /// that the result will fit into a regular (signed) int. All args have the same
251 /// purpose as they do in checkUInt32Argument.
252 template <typename AttrInfo>
253 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
254 int &Val, unsigned Idx = UINT_MAX) {
255 uint32_t UVal;
256 if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
257 return false;
259 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
260 llvm::APSInt I(32); // for toString
261 I = UVal;
262 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
263 << toString(I, 10, false) << 32 << /* Unsigned */ 0;
264 return false;
267 Val = UVal;
268 return true;
271 /// Diagnose mutually exclusive attributes when present on a given
272 /// declaration. Returns true if diagnosed.
273 template <typename AttrTy>
274 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
275 if (const auto *A = D->getAttr<AttrTy>()) {
276 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
277 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
278 return true;
280 return false;
283 template <typename AttrTy>
284 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
285 if (const auto *A = D->getAttr<AttrTy>()) {
286 S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
287 << A;
288 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
289 return true;
291 return false;
294 /// Check if IdxExpr is a valid parameter index for a function or
295 /// instance method D. May output an error.
297 /// \returns true if IdxExpr is a valid index.
298 template <typename AttrInfo>
299 static bool checkFunctionOrMethodParameterIndex(
300 Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
301 const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
302 assert(isFunctionOrMethodOrBlock(D));
304 // In C++ the implicit 'this' function parameter also counts.
305 // Parameters are counted from one.
306 bool HP = hasFunctionProto(D);
307 bool HasImplicitThisParam = isInstanceMethod(D);
308 bool IV = HP && isFunctionOrMethodVariadic(D);
309 unsigned NumParams =
310 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
312 std::optional<llvm::APSInt> IdxInt;
313 if (IdxExpr->isTypeDependent() ||
314 !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
315 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
316 << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
317 << IdxExpr->getSourceRange();
318 return false;
321 unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
322 if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
323 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
324 << &AI << AttrArgNum << IdxExpr->getSourceRange();
325 return false;
327 if (HasImplicitThisParam && !CanIndexImplicitThis) {
328 if (IdxSource == 1) {
329 S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
330 << &AI << IdxExpr->getSourceRange();
331 return false;
335 Idx = ParamIdx(IdxSource, D);
336 return true;
339 /// Check if the argument \p E is a ASCII string literal. If not emit an error
340 /// and return false, otherwise set \p Str to the value of the string literal
341 /// and return true.
342 bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI,
343 const Expr *E, StringRef &Str,
344 SourceLocation *ArgLocation) {
345 const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts());
346 if (ArgLocation)
347 *ArgLocation = E->getBeginLoc();
349 if (!Literal || !Literal->isOrdinary()) {
350 Diag(E->getBeginLoc(), diag::err_attribute_argument_type)
351 << CI << AANT_ArgumentString;
352 return false;
355 Str = Literal->getString();
356 return true;
359 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
360 /// If not emit an error and return false. If the argument is an identifier it
361 /// will emit an error with a fixit hint and treat it as if it was a string
362 /// literal.
363 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
364 StringRef &Str,
365 SourceLocation *ArgLocation) {
366 // Look for identifiers. If we have one emit a hint to fix it to a literal.
367 if (AL.isArgIdent(ArgNum)) {
368 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
369 Diag(Loc->Loc, diag::err_attribute_argument_type)
370 << AL << AANT_ArgumentString
371 << FixItHint::CreateInsertion(Loc->Loc, "\"")
372 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
373 Str = Loc->Ident->getName();
374 if (ArgLocation)
375 *ArgLocation = Loc->Loc;
376 return true;
379 // Now check for an actual string literal.
380 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
381 return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation);
384 /// Applies the given attribute to the Decl without performing any
385 /// additional semantic checking.
386 template <typename AttrType>
387 static void handleSimpleAttribute(Sema &S, Decl *D,
388 const AttributeCommonInfo &CI) {
389 D->addAttr(::new (S.Context) AttrType(S.Context, CI));
392 template <typename... DiagnosticArgs>
393 static const Sema::SemaDiagnosticBuilder&
394 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
395 return Bldr;
398 template <typename T, typename... DiagnosticArgs>
399 static const Sema::SemaDiagnosticBuilder&
400 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
401 DiagnosticArgs &&... ExtraArgs) {
402 return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
403 std::forward<DiagnosticArgs>(ExtraArgs)...);
406 /// Add an attribute @c AttrType to declaration @c D, provided that
407 /// @c PassesCheck is true.
408 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
409 /// specified in @c ExtraArgs.
410 template <typename AttrType, typename... DiagnosticArgs>
411 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
412 const AttributeCommonInfo &CI,
413 bool PassesCheck, unsigned DiagID,
414 DiagnosticArgs &&... ExtraArgs) {
415 if (!PassesCheck) {
416 Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
417 appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
418 return;
420 handleSimpleAttribute<AttrType>(S, D, CI);
423 /// Check if the passed-in expression is of type int or bool.
424 static bool isIntOrBool(Expr *Exp) {
425 QualType QT = Exp->getType();
426 return QT->isBooleanType() || QT->isIntegerType();
430 // Check to see if the type is a smart pointer of some kind. We assume
431 // it's a smart pointer if it defines both operator-> and operator*.
432 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
433 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
434 OverloadedOperatorKind Op) {
435 DeclContextLookupResult Result =
436 Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
437 return !Result.empty();
440 const RecordDecl *Record = RT->getDecl();
441 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
442 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
443 if (foundStarOperator && foundArrowOperator)
444 return true;
446 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
447 if (!CXXRecord)
448 return false;
450 for (auto BaseSpecifier : CXXRecord->bases()) {
451 if (!foundStarOperator)
452 foundStarOperator = IsOverloadedOperatorPresent(
453 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
454 if (!foundArrowOperator)
455 foundArrowOperator = IsOverloadedOperatorPresent(
456 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
459 if (foundStarOperator && foundArrowOperator)
460 return true;
462 return false;
465 /// Check if passed in Decl is a pointer type.
466 /// Note that this function may produce an error message.
467 /// \return true if the Decl is a pointer type; false otherwise
468 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
469 const ParsedAttr &AL) {
470 const auto *VD = cast<ValueDecl>(D);
471 QualType QT = VD->getType();
472 if (QT->isAnyPointerType())
473 return true;
475 if (const auto *RT = QT->getAs<RecordType>()) {
476 // If it's an incomplete type, it could be a smart pointer; skip it.
477 // (We don't want to force template instantiation if we can avoid it,
478 // since that would alter the order in which templates are instantiated.)
479 if (RT->isIncompleteType())
480 return true;
482 if (threadSafetyCheckIsSmartPointer(S, RT))
483 return true;
486 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
487 return false;
490 /// Checks that the passed in QualType either is of RecordType or points
491 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
492 static const RecordType *getRecordType(QualType QT) {
493 if (const auto *RT = QT->getAs<RecordType>())
494 return RT;
496 // Now check if we point to record type.
497 if (const auto *PT = QT->getAs<PointerType>())
498 return PT->getPointeeType()->getAs<RecordType>();
500 return nullptr;
503 template <typename AttrType>
504 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
505 // Check if the record itself has the attribute.
506 if (RD->hasAttr<AttrType>())
507 return true;
509 // Else check if any base classes have the attribute.
510 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
511 if (!CRD->forallBases([](const CXXRecordDecl *Base) {
512 return !Base->hasAttr<AttrType>();
514 return true;
516 return false;
519 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
520 const RecordType *RT = getRecordType(Ty);
522 if (!RT)
523 return false;
525 // Don't check for the capability if the class hasn't been defined yet.
526 if (RT->isIncompleteType())
527 return true;
529 // Allow smart pointers to be used as capability objects.
530 // FIXME -- Check the type that the smart pointer points to.
531 if (threadSafetyCheckIsSmartPointer(S, RT))
532 return true;
534 return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
537 static bool checkTypedefTypeForCapability(QualType Ty) {
538 const auto *TD = Ty->getAs<TypedefType>();
539 if (!TD)
540 return false;
542 TypedefNameDecl *TN = TD->getDecl();
543 if (!TN)
544 return false;
546 return TN->hasAttr<CapabilityAttr>();
549 static bool typeHasCapability(Sema &S, QualType Ty) {
550 if (checkTypedefTypeForCapability(Ty))
551 return true;
553 if (checkRecordTypeForCapability(S, Ty))
554 return true;
556 return false;
559 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
560 // Capability expressions are simple expressions involving the boolean logic
561 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
562 // a DeclRefExpr is found, its type should be checked to determine whether it
563 // is a capability or not.
565 if (const auto *E = dyn_cast<CastExpr>(Ex))
566 return isCapabilityExpr(S, E->getSubExpr());
567 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
568 return isCapabilityExpr(S, E->getSubExpr());
569 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
570 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
571 E->getOpcode() == UO_Deref)
572 return isCapabilityExpr(S, E->getSubExpr());
573 return false;
574 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
575 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
576 return isCapabilityExpr(S, E->getLHS()) &&
577 isCapabilityExpr(S, E->getRHS());
578 return false;
581 return typeHasCapability(S, Ex->getType());
584 /// Checks that all attribute arguments, starting from Sidx, resolve to
585 /// a capability object.
586 /// \param Sidx The attribute argument index to start checking with.
587 /// \param ParamIdxOk Whether an argument can be indexing into a function
588 /// parameter list.
589 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
590 const ParsedAttr &AL,
591 SmallVectorImpl<Expr *> &Args,
592 unsigned Sidx = 0,
593 bool ParamIdxOk = false) {
594 if (Sidx == AL.getNumArgs()) {
595 // If we don't have any capability arguments, the attribute implicitly
596 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
597 // a non-static method, and that the class is a (scoped) capability.
598 const auto *MD = dyn_cast<const CXXMethodDecl>(D);
599 if (MD && !MD->isStatic()) {
600 const CXXRecordDecl *RD = MD->getParent();
601 // FIXME -- need to check this again on template instantiation
602 if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
603 !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
604 S.Diag(AL.getLoc(),
605 diag::warn_thread_attribute_not_on_capability_member)
606 << AL << MD->getParent();
607 } else {
608 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
609 << AL;
613 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
614 Expr *ArgExp = AL.getArgAsExpr(Idx);
616 if (ArgExp->isTypeDependent()) {
617 // FIXME -- need to check this again on template instantiation
618 Args.push_back(ArgExp);
619 continue;
622 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
623 if (StrLit->getLength() == 0 ||
624 (StrLit->isOrdinary() && StrLit->getString() == StringRef("*"))) {
625 // Pass empty strings to the analyzer without warnings.
626 // Treat "*" as the universal lock.
627 Args.push_back(ArgExp);
628 continue;
631 // We allow constant strings to be used as a placeholder for expressions
632 // that are not valid C++ syntax, but warn that they are ignored.
633 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
634 Args.push_back(ArgExp);
635 continue;
638 QualType ArgTy = ArgExp->getType();
640 // A pointer to member expression of the form &MyClass::mu is treated
641 // specially -- we need to look at the type of the member.
642 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
643 if (UOp->getOpcode() == UO_AddrOf)
644 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
645 if (DRE->getDecl()->isCXXInstanceMember())
646 ArgTy = DRE->getDecl()->getType();
648 // First see if we can just cast to record type, or pointer to record type.
649 const RecordType *RT = getRecordType(ArgTy);
651 // Now check if we index into a record type function param.
652 if(!RT && ParamIdxOk) {
653 const auto *FD = dyn_cast<FunctionDecl>(D);
654 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
655 if(FD && IL) {
656 unsigned int NumParams = FD->getNumParams();
657 llvm::APInt ArgValue = IL->getValue();
658 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
659 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
660 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
661 S.Diag(AL.getLoc(),
662 diag::err_attribute_argument_out_of_bounds_extra_info)
663 << AL << Idx + 1 << NumParams;
664 continue;
666 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
670 // If the type does not have a capability, see if the components of the
671 // expression have capabilities. This allows for writing C code where the
672 // capability may be on the type, and the expression is a capability
673 // boolean logic expression. Eg) requires_capability(A || B && !C)
674 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
675 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
676 << AL << ArgTy;
678 Args.push_back(ArgExp);
682 //===----------------------------------------------------------------------===//
683 // Attribute Implementations
684 //===----------------------------------------------------------------------===//
686 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
687 if (!threadSafetyCheckIsPointer(S, D, AL))
688 return;
690 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
693 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
694 Expr *&Arg) {
695 SmallVector<Expr *, 1> Args;
696 // check that all arguments are lockable objects
697 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
698 unsigned Size = Args.size();
699 if (Size != 1)
700 return false;
702 Arg = Args[0];
704 return true;
707 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
708 Expr *Arg = nullptr;
709 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
710 return;
712 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
715 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
716 Expr *Arg = nullptr;
717 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
718 return;
720 if (!threadSafetyCheckIsPointer(S, D, AL))
721 return;
723 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
726 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
727 SmallVectorImpl<Expr *> &Args) {
728 if (!AL.checkAtLeastNumArgs(S, 1))
729 return false;
731 // Check that this attribute only applies to lockable types.
732 QualType QT = cast<ValueDecl>(D)->getType();
733 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
734 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
735 return false;
738 // Check that all arguments are lockable objects.
739 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
740 if (Args.empty())
741 return false;
743 return true;
746 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
747 SmallVector<Expr *, 1> Args;
748 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
749 return;
751 Expr **StartArg = &Args[0];
752 D->addAttr(::new (S.Context)
753 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
756 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
757 SmallVector<Expr *, 1> Args;
758 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
759 return;
761 Expr **StartArg = &Args[0];
762 D->addAttr(::new (S.Context)
763 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
766 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
767 SmallVectorImpl<Expr *> &Args) {
768 // zero or more arguments ok
769 // check that all arguments are lockable objects
770 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
772 return true;
775 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
776 SmallVector<Expr *, 1> Args;
777 if (!checkLockFunAttrCommon(S, D, AL, Args))
778 return;
780 unsigned Size = Args.size();
781 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
782 D->addAttr(::new (S.Context)
783 AssertSharedLockAttr(S.Context, AL, StartArg, Size));
786 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
787 const ParsedAttr &AL) {
788 SmallVector<Expr *, 1> Args;
789 if (!checkLockFunAttrCommon(S, D, AL, Args))
790 return;
792 unsigned Size = Args.size();
793 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
794 D->addAttr(::new (S.Context)
795 AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
798 /// Checks to be sure that the given parameter number is in bounds, and
799 /// is an integral type. Will emit appropriate diagnostics if this returns
800 /// false.
802 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
803 template <typename AttrInfo>
804 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
805 unsigned AttrArgNo) {
806 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
807 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
808 ParamIdx Idx;
809 if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
810 Idx))
811 return false;
813 QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
814 if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
815 SourceLocation SrcLoc = AttrArg->getBeginLoc();
816 S.Diag(SrcLoc, diag::err_attribute_integers_only)
817 << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
818 return false;
820 return true;
823 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
824 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
825 return;
827 assert(isFunctionOrMethod(D) && hasFunctionProto(D));
829 QualType RetTy = getFunctionOrMethodResultType(D);
830 if (!RetTy->isPointerType()) {
831 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
832 return;
835 const Expr *SizeExpr = AL.getArgAsExpr(0);
836 int SizeArgNoVal;
837 // Parameter indices are 1-indexed, hence Index=1
838 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
839 return;
840 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
841 return;
842 ParamIdx SizeArgNo(SizeArgNoVal, D);
844 ParamIdx NumberArgNo;
845 if (AL.getNumArgs() == 2) {
846 const Expr *NumberExpr = AL.getArgAsExpr(1);
847 int Val;
848 // Parameter indices are 1-based, hence Index=2
849 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
850 return;
851 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
852 return;
853 NumberArgNo = ParamIdx(Val, D);
856 D->addAttr(::new (S.Context)
857 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
860 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
861 SmallVectorImpl<Expr *> &Args) {
862 if (!AL.checkAtLeastNumArgs(S, 1))
863 return false;
865 if (!isIntOrBool(AL.getArgAsExpr(0))) {
866 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
867 << AL << 1 << AANT_ArgumentIntOrBool;
868 return false;
871 // check that all arguments are lockable objects
872 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
874 return true;
877 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
878 const ParsedAttr &AL) {
879 SmallVector<Expr*, 2> Args;
880 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
881 return;
883 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
884 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
887 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
888 const ParsedAttr &AL) {
889 SmallVector<Expr*, 2> Args;
890 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
891 return;
893 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
894 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
897 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
898 // check that the argument is lockable object
899 SmallVector<Expr*, 1> Args;
900 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
901 unsigned Size = Args.size();
902 if (Size == 0)
903 return;
905 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
908 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
909 if (!AL.checkAtLeastNumArgs(S, 1))
910 return;
912 // check that all arguments are lockable objects
913 SmallVector<Expr*, 1> Args;
914 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
915 unsigned Size = Args.size();
916 if (Size == 0)
917 return;
918 Expr **StartArg = &Args[0];
920 D->addAttr(::new (S.Context)
921 LocksExcludedAttr(S.Context, AL, StartArg, Size));
924 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
925 Expr *&Cond, StringRef &Msg) {
926 Cond = AL.getArgAsExpr(0);
927 if (!Cond->isTypeDependent()) {
928 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
929 if (Converted.isInvalid())
930 return false;
931 Cond = Converted.get();
934 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
935 return false;
937 if (Msg.empty())
938 Msg = "<no message provided>";
940 SmallVector<PartialDiagnosticAt, 8> Diags;
941 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
942 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
943 Diags)) {
944 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
945 for (const PartialDiagnosticAt &PDiag : Diags)
946 S.Diag(PDiag.first, PDiag.second);
947 return false;
949 return true;
952 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
953 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
955 Expr *Cond;
956 StringRef Msg;
957 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
958 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
961 static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
962 StringRef NewUserDiagnostic;
963 if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
964 return;
965 if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
966 D->addAttr(EA);
969 namespace {
970 /// Determines if a given Expr references any of the given function's
971 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
972 class ArgumentDependenceChecker
973 : public RecursiveASTVisitor<ArgumentDependenceChecker> {
974 #ifndef NDEBUG
975 const CXXRecordDecl *ClassType;
976 #endif
977 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
978 bool Result;
980 public:
981 ArgumentDependenceChecker(const FunctionDecl *FD) {
982 #ifndef NDEBUG
983 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
984 ClassType = MD->getParent();
985 else
986 ClassType = nullptr;
987 #endif
988 Parms.insert(FD->param_begin(), FD->param_end());
991 bool referencesArgs(Expr *E) {
992 Result = false;
993 TraverseStmt(E);
994 return Result;
997 bool VisitCXXThisExpr(CXXThisExpr *E) {
998 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
999 "`this` doesn't refer to the enclosing class?");
1000 Result = true;
1001 return false;
1004 bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1005 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1006 if (Parms.count(PVD)) {
1007 Result = true;
1008 return false;
1010 return true;
1015 static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D,
1016 const ParsedAttr &AL) {
1017 const auto *DeclFD = cast<FunctionDecl>(D);
1019 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
1020 if (!MethodDecl->isStatic()) {
1021 S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
1022 return;
1025 auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
1026 SourceLocation Loc = [&]() {
1027 auto Union = AL.getArg(Index - 1);
1028 if (Union.is<Expr *>())
1029 return Union.get<Expr *>()->getBeginLoc();
1030 return Union.get<IdentifierLoc *>()->Loc;
1031 }();
1033 S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
1036 FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
1037 if (!AL.isArgExpr(0))
1038 return nullptr;
1039 auto *F = dyn_cast_or_null<DeclRefExpr>(AL.getArgAsExpr(0));
1040 if (!F)
1041 return nullptr;
1042 return dyn_cast_or_null<FunctionDecl>(F->getFoundDecl());
1043 }();
1045 if (!AttrFD || !AttrFD->getBuiltinID(true)) {
1046 DiagnoseType(1, AANT_ArgumentBuiltinFunction);
1047 return;
1050 if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
1051 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
1052 << AL << AttrFD << AttrFD->getNumParams();
1053 return;
1056 SmallVector<unsigned, 8> Indices;
1058 for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
1059 if (!AL.isArgExpr(I)) {
1060 DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
1061 return;
1064 const Expr *IndexExpr = AL.getArgAsExpr(I);
1065 uint32_t Index;
1067 if (!checkUInt32Argument(S, AL, IndexExpr, Index, I + 1, false))
1068 return;
1070 if (Index > DeclFD->getNumParams()) {
1071 S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
1072 << AL << Index << DeclFD << DeclFD->getNumParams();
1073 return;
1076 QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
1077 QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
1079 if (T1.getCanonicalType().getUnqualifiedType() !=
1080 T2.getCanonicalType().getUnqualifiedType()) {
1081 S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
1082 << AL << Index << DeclFD << T2 << I << AttrFD << T1;
1083 return;
1086 Indices.push_back(Index - 1);
1089 D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
1090 S.Context, AL, AttrFD, Indices.data(), Indices.size()));
1093 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1094 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1096 Expr *Cond;
1097 StringRef Msg;
1098 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1099 return;
1101 StringRef DiagTypeStr;
1102 if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1103 return;
1105 DiagnoseIfAttr::DiagnosticType DiagType;
1106 if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1107 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1108 diag::err_diagnose_if_invalid_diagnostic_type);
1109 return;
1112 bool ArgDependent = false;
1113 if (const auto *FD = dyn_cast<FunctionDecl>(D))
1114 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1115 D->addAttr(::new (S.Context) DiagnoseIfAttr(
1116 S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1119 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1120 static constexpr const StringRef kWildcard = "*";
1122 llvm::SmallVector<StringRef, 16> Names;
1123 bool HasWildcard = false;
1125 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1126 if (Name == kWildcard)
1127 HasWildcard = true;
1128 Names.push_back(Name);
1131 // Add previously defined attributes.
1132 if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1133 for (StringRef BuiltinName : NBA->builtinNames())
1134 AddBuiltinName(BuiltinName);
1136 // Add current attributes.
1137 if (AL.getNumArgs() == 0)
1138 AddBuiltinName(kWildcard);
1139 else
1140 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1141 StringRef BuiltinName;
1142 SourceLocation LiteralLoc;
1143 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1144 return;
1146 if (Builtin::Context::isBuiltinFunc(BuiltinName))
1147 AddBuiltinName(BuiltinName);
1148 else
1149 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1150 << BuiltinName << AL;
1153 // Repeating the same attribute is fine.
1154 llvm::sort(Names);
1155 Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1157 // Empty no_builtin must be on its own.
1158 if (HasWildcard && Names.size() > 1)
1159 S.Diag(D->getLocation(),
1160 diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1161 << AL;
1163 if (D->hasAttr<NoBuiltinAttr>())
1164 D->dropAttr<NoBuiltinAttr>();
1165 D->addAttr(::new (S.Context)
1166 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1169 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1170 if (D->hasAttr<PassObjectSizeAttr>()) {
1171 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1172 return;
1175 Expr *E = AL.getArgAsExpr(0);
1176 uint32_t Type;
1177 if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1178 return;
1180 // pass_object_size's argument is passed in as the second argument of
1181 // __builtin_object_size. So, it has the same constraints as that second
1182 // argument; namely, it must be in the range [0, 3].
1183 if (Type > 3) {
1184 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1185 << AL << 0 << 3 << E->getSourceRange();
1186 return;
1189 // pass_object_size is only supported on constant pointer parameters; as a
1190 // kindness to users, we allow the parameter to be non-const for declarations.
1191 // At this point, we have no clue if `D` belongs to a function declaration or
1192 // definition, so we defer the constness check until later.
1193 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1194 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1195 return;
1198 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1201 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1202 ConsumableAttr::ConsumedState DefaultState;
1204 if (AL.isArgIdent(0)) {
1205 IdentifierLoc *IL = AL.getArgAsIdent(0);
1206 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1207 DefaultState)) {
1208 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1209 << IL->Ident;
1210 return;
1212 } else {
1213 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1214 << AL << AANT_ArgumentIdentifier;
1215 return;
1218 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1221 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1222 const ParsedAttr &AL) {
1223 QualType ThisType = MD->getThisType()->getPointeeType();
1225 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1226 if (!RD->hasAttr<ConsumableAttr>()) {
1227 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1229 return false;
1233 return true;
1236 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1237 if (!AL.checkAtLeastNumArgs(S, 1))
1238 return;
1240 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1241 return;
1243 SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1244 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1245 CallableWhenAttr::ConsumedState CallableState;
1247 StringRef StateString;
1248 SourceLocation Loc;
1249 if (AL.isArgIdent(ArgIndex)) {
1250 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1251 StateString = Ident->Ident->getName();
1252 Loc = Ident->Loc;
1253 } else {
1254 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1255 return;
1258 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1259 CallableState)) {
1260 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1261 return;
1264 States.push_back(CallableState);
1267 D->addAttr(::new (S.Context)
1268 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1271 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1272 ParamTypestateAttr::ConsumedState ParamState;
1274 if (AL.isArgIdent(0)) {
1275 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1276 StringRef StateString = Ident->Ident->getName();
1278 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1279 ParamState)) {
1280 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1281 << AL << StateString;
1282 return;
1284 } else {
1285 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1286 << AL << AANT_ArgumentIdentifier;
1287 return;
1290 // FIXME: This check is currently being done in the analysis. It can be
1291 // enabled here only after the parser propagates attributes at
1292 // template specialization definition, not declaration.
1293 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1294 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1296 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1297 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1298 // ReturnType.getAsString();
1299 // return;
1302 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1305 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1306 ReturnTypestateAttr::ConsumedState ReturnState;
1308 if (AL.isArgIdent(0)) {
1309 IdentifierLoc *IL = AL.getArgAsIdent(0);
1310 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1311 ReturnState)) {
1312 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1313 << IL->Ident;
1314 return;
1316 } else {
1317 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1318 << AL << AANT_ArgumentIdentifier;
1319 return;
1322 // FIXME: This check is currently being done in the analysis. It can be
1323 // enabled here only after the parser propagates attributes at
1324 // template specialization definition, not declaration.
1325 //QualType ReturnType;
1327 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1328 // ReturnType = Param->getType();
1330 //} else if (const CXXConstructorDecl *Constructor =
1331 // dyn_cast<CXXConstructorDecl>(D)) {
1332 // ReturnType = Constructor->getThisType()->getPointeeType();
1334 //} else {
1336 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1339 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1341 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1342 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1343 // ReturnType.getAsString();
1344 // return;
1347 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1350 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1351 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1352 return;
1354 SetTypestateAttr::ConsumedState NewState;
1355 if (AL.isArgIdent(0)) {
1356 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1357 StringRef Param = Ident->Ident->getName();
1358 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1359 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1360 << Param;
1361 return;
1363 } else {
1364 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1365 << AL << AANT_ArgumentIdentifier;
1366 return;
1369 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1372 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1373 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1374 return;
1376 TestTypestateAttr::ConsumedState TestState;
1377 if (AL.isArgIdent(0)) {
1378 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1379 StringRef Param = Ident->Ident->getName();
1380 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1381 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1382 << Param;
1383 return;
1385 } else {
1386 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1387 << AL << AANT_ArgumentIdentifier;
1388 return;
1391 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1394 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1395 // Remember this typedef decl, we will need it later for diagnostics.
1396 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1399 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1400 if (auto *TD = dyn_cast<TagDecl>(D))
1401 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1402 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1403 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1404 !FD->getType()->isIncompleteType() &&
1405 FD->isBitField() &&
1406 S.Context.getTypeAlign(FD->getType()) <= 8);
1408 if (S.getASTContext().getTargetInfo().getTriple().isPS()) {
1409 if (BitfieldByteAligned)
1410 // The PS4/PS5 targets need to maintain ABI backwards compatibility.
1411 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1412 << AL << FD->getType();
1413 else
1414 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1415 } else {
1416 // Report warning about changed offset in the newer compiler versions.
1417 if (BitfieldByteAligned)
1418 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1420 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1423 } else
1424 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1427 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1428 auto *RD = cast<CXXRecordDecl>(D);
1429 ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1430 assert(CTD && "attribute does not appertain to this declaration");
1432 ParsedType PT = AL.getTypeArg();
1433 TypeSourceInfo *TSI = nullptr;
1434 QualType T = S.GetTypeFromParser(PT, &TSI);
1435 if (!TSI)
1436 TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1438 if (!T.hasQualifiers() && T->isTypedefNameType()) {
1439 // Find the template name, if this type names a template specialization.
1440 const TemplateDecl *Template = nullptr;
1441 if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1442 T->getAsCXXRecordDecl())) {
1443 Template = CTSD->getSpecializedTemplate();
1444 } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1445 while (TST && TST->isTypeAlias())
1446 TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1447 if (TST)
1448 Template = TST->getTemplateName().getAsTemplateDecl();
1451 if (Template && declaresSameEntity(Template, CTD)) {
1452 D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1453 return;
1457 S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1458 << T << CTD;
1459 if (const auto *TT = T->getAs<TypedefType>())
1460 S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1461 << TT->getDecl();
1464 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1465 // The IBOutlet/IBOutletCollection attributes only apply to instance
1466 // variables or properties of Objective-C classes. The outlet must also
1467 // have an object reference type.
1468 if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1469 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1470 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1471 << AL << VD->getType() << 0;
1472 return false;
1475 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1476 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1477 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1478 << AL << PD->getType() << 1;
1479 return false;
1482 else {
1483 S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1484 return false;
1487 return true;
1490 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1491 if (!checkIBOutletCommon(S, D, AL))
1492 return;
1494 D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1497 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1499 // The iboutletcollection attribute can have zero or one arguments.
1500 if (AL.getNumArgs() > 1) {
1501 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1502 return;
1505 if (!checkIBOutletCommon(S, D, AL))
1506 return;
1508 ParsedType PT;
1510 if (AL.hasParsedType())
1511 PT = AL.getTypeArg();
1512 else {
1513 PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1514 S.getScopeForContext(D->getDeclContext()->getParent()));
1515 if (!PT) {
1516 S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1517 return;
1521 TypeSourceInfo *QTLoc = nullptr;
1522 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1523 if (!QTLoc)
1524 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1526 // Diagnose use of non-object type in iboutletcollection attribute.
1527 // FIXME. Gnu attribute extension ignores use of builtin types in
1528 // attributes. So, __attribute__((iboutletcollection(char))) will be
1529 // treated as __attribute__((iboutletcollection())).
1530 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1531 S.Diag(AL.getLoc(),
1532 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1533 : diag::err_iboutletcollection_type) << QT;
1534 return;
1537 D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1540 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1541 if (RefOkay) {
1542 if (T->isReferenceType())
1543 return true;
1544 } else {
1545 T = T.getNonReferenceType();
1548 // The nonnull attribute, and other similar attributes, can be applied to a
1549 // transparent union that contains a pointer type.
1550 if (const RecordType *UT = T->getAsUnionType()) {
1551 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1552 RecordDecl *UD = UT->getDecl();
1553 for (const auto *I : UD->fields()) {
1554 QualType QT = I->getType();
1555 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1556 return true;
1561 return T->isAnyPointerType() || T->isBlockPointerType();
1564 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1565 SourceRange AttrParmRange,
1566 SourceRange TypeRange,
1567 bool isReturnValue = false) {
1568 if (!S.isValidPointerAttrType(T)) {
1569 if (isReturnValue)
1570 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1571 << AL << AttrParmRange << TypeRange;
1572 else
1573 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1574 << AL << AttrParmRange << TypeRange << 0;
1575 return false;
1577 return true;
1580 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1581 SmallVector<ParamIdx, 8> NonNullArgs;
1582 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1583 Expr *Ex = AL.getArgAsExpr(I);
1584 ParamIdx Idx;
1585 if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1586 return;
1588 // Is the function argument a pointer type?
1589 if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1590 !attrNonNullArgCheck(
1591 S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1592 Ex->getSourceRange(),
1593 getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1594 continue;
1596 NonNullArgs.push_back(Idx);
1599 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1600 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1601 // check if the attribute came from a macro expansion or a template
1602 // instantiation.
1603 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1604 !S.inTemplateInstantiation()) {
1605 bool AnyPointers = isFunctionOrMethodVariadic(D);
1606 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1607 I != E && !AnyPointers; ++I) {
1608 QualType T = getFunctionOrMethodParamType(D, I);
1609 if (T->isDependentType() || S.isValidPointerAttrType(T))
1610 AnyPointers = true;
1613 if (!AnyPointers)
1614 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1617 ParamIdx *Start = NonNullArgs.data();
1618 unsigned Size = NonNullArgs.size();
1619 llvm::array_pod_sort(Start, Start + Size);
1620 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1623 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1624 const ParsedAttr &AL) {
1625 if (AL.getNumArgs() > 0) {
1626 if (D->getFunctionType()) {
1627 handleNonNullAttr(S, D, AL);
1628 } else {
1629 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1630 << D->getSourceRange();
1632 return;
1635 // Is the argument a pointer type?
1636 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1637 D->getSourceRange()))
1638 return;
1640 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1643 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1644 QualType ResultType = getFunctionOrMethodResultType(D);
1645 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1646 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1647 /* isReturnValue */ true))
1648 return;
1650 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1653 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1654 if (D->isInvalidDecl())
1655 return;
1657 // noescape only applies to pointer types.
1658 QualType T = cast<ParmVarDecl>(D)->getType();
1659 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1660 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1661 << AL << AL.getRange() << 0;
1662 return;
1665 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1668 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1669 Expr *E = AL.getArgAsExpr(0),
1670 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1671 S.AddAssumeAlignedAttr(D, AL, E, OE);
1674 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1675 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1678 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1679 Expr *OE) {
1680 QualType ResultType = getFunctionOrMethodResultType(D);
1681 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1683 AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1684 SourceLocation AttrLoc = TmpAttr.getLocation();
1686 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1687 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1688 << &TmpAttr << TmpAttr.getRange() << SR;
1689 return;
1692 if (!E->isValueDependent()) {
1693 std::optional<llvm::APSInt> I = llvm::APSInt(64);
1694 if (!(I = E->getIntegerConstantExpr(Context))) {
1695 if (OE)
1696 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1697 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1698 << E->getSourceRange();
1699 else
1700 Diag(AttrLoc, diag::err_attribute_argument_type)
1701 << &TmpAttr << AANT_ArgumentIntegerConstant
1702 << E->getSourceRange();
1703 return;
1706 if (!I->isPowerOf2()) {
1707 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1708 << E->getSourceRange();
1709 return;
1712 if (*I > Sema::MaximumAlignment)
1713 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1714 << CI.getRange() << Sema::MaximumAlignment;
1717 if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1718 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1719 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1720 << OE->getSourceRange();
1721 return;
1724 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1727 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1728 Expr *ParamExpr) {
1729 QualType ResultType = getFunctionOrMethodResultType(D);
1731 AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1732 SourceLocation AttrLoc = CI.getLoc();
1734 if (!ResultType->isDependentType() &&
1735 !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1736 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1737 << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1738 return;
1741 ParamIdx Idx;
1742 const auto *FuncDecl = cast<FunctionDecl>(D);
1743 if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1744 /*AttrArgNum=*/1, ParamExpr, Idx))
1745 return;
1747 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1748 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1749 !Ty->isAlignValT()) {
1750 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1751 << &TmpAttr
1752 << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1753 return;
1756 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1759 /// Check if \p AssumptionStr is a known assumption and warn if not.
1760 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1761 StringRef AssumptionStr) {
1762 if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1763 return;
1765 unsigned BestEditDistance = 3;
1766 StringRef Suggestion;
1767 for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1768 unsigned EditDistance =
1769 AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1770 if (EditDistance < BestEditDistance) {
1771 Suggestion = KnownAssumptionIt.getKey();
1772 BestEditDistance = EditDistance;
1776 if (!Suggestion.empty())
1777 S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1778 << AssumptionStr << Suggestion;
1779 else
1780 S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1783 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1784 // Handle the case where the attribute has a text message.
1785 StringRef Str;
1786 SourceLocation AttrStrLoc;
1787 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1788 return;
1790 checkAssumptionAttr(S, AttrStrLoc, Str);
1792 D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1795 /// Normalize the attribute, __foo__ becomes foo.
1796 /// Returns true if normalization was applied.
1797 static bool normalizeName(StringRef &AttrName) {
1798 if (AttrName.size() > 4 && AttrName.startswith("__") &&
1799 AttrName.endswith("__")) {
1800 AttrName = AttrName.drop_front(2).drop_back(2);
1801 return true;
1803 return false;
1806 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1807 // This attribute must be applied to a function declaration. The first
1808 // argument to the attribute must be an identifier, the name of the resource,
1809 // for example: malloc. The following arguments must be argument indexes, the
1810 // arguments must be of integer type for Returns, otherwise of pointer type.
1811 // The difference between Holds and Takes is that a pointer may still be used
1812 // after being held. free() should be __attribute((ownership_takes)), whereas
1813 // a list append function may well be __attribute((ownership_holds)).
1815 if (!AL.isArgIdent(0)) {
1816 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1817 << AL << 1 << AANT_ArgumentIdentifier;
1818 return;
1821 // Figure out our Kind.
1822 OwnershipAttr::OwnershipKind K =
1823 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1825 // Check arguments.
1826 switch (K) {
1827 case OwnershipAttr::Takes:
1828 case OwnershipAttr::Holds:
1829 if (AL.getNumArgs() < 2) {
1830 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1831 return;
1833 break;
1834 case OwnershipAttr::Returns:
1835 if (AL.getNumArgs() > 2) {
1836 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1837 return;
1839 break;
1842 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1844 StringRef ModuleName = Module->getName();
1845 if (normalizeName(ModuleName)) {
1846 Module = &S.PP.getIdentifierTable().get(ModuleName);
1849 SmallVector<ParamIdx, 8> OwnershipArgs;
1850 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1851 Expr *Ex = AL.getArgAsExpr(i);
1852 ParamIdx Idx;
1853 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1854 return;
1856 // Is the function argument a pointer type?
1857 QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1858 int Err = -1; // No error
1859 switch (K) {
1860 case OwnershipAttr::Takes:
1861 case OwnershipAttr::Holds:
1862 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1863 Err = 0;
1864 break;
1865 case OwnershipAttr::Returns:
1866 if (!T->isIntegerType())
1867 Err = 1;
1868 break;
1870 if (-1 != Err) {
1871 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1872 << Ex->getSourceRange();
1873 return;
1876 // Check we don't have a conflict with another ownership attribute.
1877 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1878 // Cannot have two ownership attributes of different kinds for the same
1879 // index.
1880 if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) {
1881 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1882 return;
1883 } else if (K == OwnershipAttr::Returns &&
1884 I->getOwnKind() == OwnershipAttr::Returns) {
1885 // A returns attribute conflicts with any other returns attribute using
1886 // a different index.
1887 if (!llvm::is_contained(I->args(), Idx)) {
1888 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1889 << I->args_begin()->getSourceIndex();
1890 if (I->args_size())
1891 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1892 << Idx.getSourceIndex() << Ex->getSourceRange();
1893 return;
1897 OwnershipArgs.push_back(Idx);
1900 ParamIdx *Start = OwnershipArgs.data();
1901 unsigned Size = OwnershipArgs.size();
1902 llvm::array_pod_sort(Start, Start + Size);
1903 D->addAttr(::new (S.Context)
1904 OwnershipAttr(S.Context, AL, Module, Start, Size));
1907 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1908 // Check the attribute arguments.
1909 if (AL.getNumArgs() > 1) {
1910 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1911 return;
1914 // gcc rejects
1915 // class c {
1916 // static int a __attribute__((weakref ("v2")));
1917 // static int b() __attribute__((weakref ("f3")));
1918 // };
1919 // and ignores the attributes of
1920 // void f(void) {
1921 // static int a __attribute__((weakref ("v2")));
1922 // }
1923 // we reject them
1924 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1925 if (!Ctx->isFileContext()) {
1926 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1927 << cast<NamedDecl>(D);
1928 return;
1931 // The GCC manual says
1933 // At present, a declaration to which `weakref' is attached can only
1934 // be `static'.
1936 // It also says
1938 // Without a TARGET,
1939 // given as an argument to `weakref' or to `alias', `weakref' is
1940 // equivalent to `weak'.
1942 // gcc 4.4.1 will accept
1943 // int a7 __attribute__((weakref));
1944 // as
1945 // int a7 __attribute__((weak));
1946 // This looks like a bug in gcc. We reject that for now. We should revisit
1947 // it if this behaviour is actually used.
1949 // GCC rejects
1950 // static ((alias ("y"), weakref)).
1951 // Should we? How to check that weakref is before or after alias?
1953 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1954 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1955 // StringRef parameter it was given anyway.
1956 StringRef Str;
1957 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1958 // GCC will accept anything as the argument of weakref. Should we
1959 // check for an existing decl?
1960 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1962 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1965 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1966 StringRef Str;
1967 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1968 return;
1970 // Aliases should be on declarations, not definitions.
1971 const auto *FD = cast<FunctionDecl>(D);
1972 if (FD->isThisDeclarationADefinition()) {
1973 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1974 return;
1977 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1980 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1981 StringRef Str;
1982 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1983 return;
1985 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1986 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1987 return;
1989 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1990 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1993 // Aliases should be on declarations, not definitions.
1994 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1995 if (FD->isThisDeclarationADefinition()) {
1996 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1997 return;
1999 } else {
2000 const auto *VD = cast<VarDecl>(D);
2001 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
2002 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
2003 return;
2007 // Mark target used to prevent unneeded-internal-declaration warnings.
2008 if (!S.LangOpts.CPlusPlus) {
2009 // FIXME: demangle Str for C++, as the attribute refers to the mangled
2010 // linkage name, not the pre-mangled identifier.
2011 const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
2012 LookupResult LR(S, target, Sema::LookupOrdinaryName);
2013 if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
2014 for (NamedDecl *ND : LR)
2015 ND->markUsed(S.Context);
2018 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
2021 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2022 StringRef Model;
2023 SourceLocation LiteralLoc;
2024 // Check that it is a string.
2025 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
2026 return;
2028 // Check that the value.
2029 if (Model != "global-dynamic" && Model != "local-dynamic"
2030 && Model != "initial-exec" && Model != "local-exec") {
2031 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
2032 return;
2035 if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
2036 Model != "global-dynamic") {
2037 S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
2038 return;
2041 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
2044 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2045 QualType ResultType = getFunctionOrMethodResultType(D);
2046 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
2047 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
2048 return;
2051 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
2052 << AL << getFunctionOrMethodResultSourceRange(D);
2055 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2056 // Ensure we don't combine these with themselves, since that causes some
2057 // confusing behavior.
2058 if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
2059 if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL))
2060 return;
2062 if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
2063 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2064 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2065 return;
2067 } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
2068 if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL))
2069 return;
2071 if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
2072 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2073 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2074 return;
2078 FunctionDecl *FD = cast<FunctionDecl>(D);
2080 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2081 if (MD->getParent()->isLambda()) {
2082 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
2083 return;
2087 if (!AL.checkAtLeastNumArgs(S, 1))
2088 return;
2090 SmallVector<IdentifierInfo *, 8> CPUs;
2091 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
2092 if (!AL.isArgIdent(ArgNo)) {
2093 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2094 << AL << AANT_ArgumentIdentifier;
2095 return;
2098 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
2099 StringRef CPUName = CPUArg->Ident->getName().trim();
2101 if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
2102 S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
2103 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
2104 return;
2107 const TargetInfo &Target = S.Context.getTargetInfo();
2108 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
2109 return Target.CPUSpecificManglingCharacter(CPUName) ==
2110 Target.CPUSpecificManglingCharacter(Cur->getName());
2111 })) {
2112 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
2113 return;
2115 CPUs.push_back(CPUArg->Ident);
2118 FD->setIsMultiVersion(true);
2119 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2120 D->addAttr(::new (S.Context)
2121 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2122 else
2123 D->addAttr(::new (S.Context)
2124 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2127 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2128 if (S.LangOpts.CPlusPlus) {
2129 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2130 << AL << AttributeLangSupport::Cpp;
2131 return;
2134 D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2137 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2138 if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2139 S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2140 return;
2143 const auto *FD = cast<FunctionDecl>(D);
2144 if (!FD->isExternallyVisible()) {
2145 S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2146 return;
2149 D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2152 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2153 if (AL.isDeclspecAttribute()) {
2154 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2155 const auto &Arch = Triple.getArch();
2156 if (Arch != llvm::Triple::x86 &&
2157 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2158 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2159 << AL << Triple.getArchName();
2160 return;
2163 // This form is not allowed to be written on a member function (static or
2164 // nonstatic) when in Microsoft compatibility mode.
2165 if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) {
2166 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str)
2167 << AL << "non-member functions";
2168 return;
2172 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2175 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2176 if (hasDeclarator(D)) return;
2178 if (!isa<ObjCMethodDecl>(D)) {
2179 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2180 << Attrs << ExpectedFunctionOrMethod;
2181 return;
2184 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2187 static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) {
2188 // The [[_Noreturn]] spelling is deprecated in C2x, so if that was used,
2189 // issue an appropriate diagnostic. However, don't issue a diagnostic if the
2190 // attribute name comes from a macro expansion. We don't want to punish users
2191 // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn'
2192 // is defined as a macro which expands to '_Noreturn').
2193 if (!S.getLangOpts().CPlusPlus &&
2194 A.getSemanticSpelling() == CXX11NoReturnAttr::C2x_Noreturn &&
2195 !(A.getLoc().isMacroID() &&
2196 S.getSourceManager().isInSystemMacro(A.getLoc())))
2197 S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange();
2199 D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A));
2202 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2203 if (!S.getLangOpts().CFProtectionBranch)
2204 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2205 else
2206 handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2209 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2210 if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2211 Attrs.setInvalid();
2212 return true;
2215 return false;
2218 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2219 // Check whether the attribute is valid on the current target.
2220 if (!AL.existsInTarget(Context.getTargetInfo())) {
2221 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2222 << AL << AL.getRange();
2223 AL.setInvalid();
2224 return true;
2227 return false;
2230 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2232 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2233 // because 'analyzer_noreturn' does not impact the type.
2234 if (!isFunctionOrMethodOrBlock(D)) {
2235 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2236 if (!VD || (!VD->getType()->isBlockPointerType() &&
2237 !VD->getType()->isFunctionPointerType())) {
2238 S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2239 ? diag::err_attribute_wrong_decl_type
2240 : diag::warn_attribute_wrong_decl_type)
2241 << AL << ExpectedFunctionMethodOrBlock;
2242 return;
2246 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2249 // PS3 PPU-specific.
2250 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2252 Returning a Vector Class in Registers
2254 According to the PPU ABI specifications, a class with a single member of
2255 vector type is returned in memory when used as the return value of a
2256 function.
2257 This results in inefficient code when implementing vector classes. To return
2258 the value in a single vector register, add the vecreturn attribute to the
2259 class definition. This attribute is also applicable to struct types.
2261 Example:
2263 struct Vector
2265 __vector float xyzw;
2266 } __attribute__((vecreturn));
2268 Vector Add(Vector lhs, Vector rhs)
2270 Vector result;
2271 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2272 return result; // This will be returned in a register
2275 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2276 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2277 return;
2280 const auto *R = cast<RecordDecl>(D);
2281 int count = 0;
2283 if (!isa<CXXRecordDecl>(R)) {
2284 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2285 return;
2288 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2289 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2290 return;
2293 for (const auto *I : R->fields()) {
2294 if ((count == 1) || !I->getType()->isVectorType()) {
2295 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2296 return;
2298 count++;
2301 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2304 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2305 const ParsedAttr &AL) {
2306 if (isa<ParmVarDecl>(D)) {
2307 // [[carries_dependency]] can only be applied to a parameter if it is a
2308 // parameter of a function declaration or lambda.
2309 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2310 S.Diag(AL.getLoc(),
2311 diag::err_carries_dependency_param_not_function_decl);
2312 return;
2316 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2319 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2320 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2322 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2323 // about using it as an extension.
2324 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2325 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2327 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2330 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2331 uint32_t priority = ConstructorAttr::DefaultPriority;
2332 if (S.getLangOpts().HLSL && AL.getNumArgs()) {
2333 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
2334 return;
2336 if (AL.getNumArgs() &&
2337 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2338 return;
2340 D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2343 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2344 uint32_t priority = DestructorAttr::DefaultPriority;
2345 if (AL.getNumArgs() &&
2346 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2347 return;
2349 D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2352 template <typename AttrTy>
2353 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2354 // Handle the case where the attribute has a text message.
2355 StringRef Str;
2356 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2357 return;
2359 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2362 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2363 const ParsedAttr &AL) {
2364 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2365 S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2366 << AL << AL.getRange();
2367 return;
2370 D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2373 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2374 IdentifierInfo *Platform,
2375 VersionTuple Introduced,
2376 VersionTuple Deprecated,
2377 VersionTuple Obsoleted) {
2378 StringRef PlatformName
2379 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2380 if (PlatformName.empty())
2381 PlatformName = Platform->getName();
2383 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2384 // of these steps are needed).
2385 if (!Introduced.empty() && !Deprecated.empty() &&
2386 !(Introduced <= Deprecated)) {
2387 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2388 << 1 << PlatformName << Deprecated.getAsString()
2389 << 0 << Introduced.getAsString();
2390 return true;
2393 if (!Introduced.empty() && !Obsoleted.empty() &&
2394 !(Introduced <= Obsoleted)) {
2395 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2396 << 2 << PlatformName << Obsoleted.getAsString()
2397 << 0 << Introduced.getAsString();
2398 return true;
2401 if (!Deprecated.empty() && !Obsoleted.empty() &&
2402 !(Deprecated <= Obsoleted)) {
2403 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2404 << 2 << PlatformName << Obsoleted.getAsString()
2405 << 1 << Deprecated.getAsString();
2406 return true;
2409 return false;
2412 /// Check whether the two versions match.
2414 /// If either version tuple is empty, then they are assumed to match. If
2415 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2416 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2417 bool BeforeIsOkay) {
2418 if (X.empty() || Y.empty())
2419 return true;
2421 if (X == Y)
2422 return true;
2424 if (BeforeIsOkay && X < Y)
2425 return true;
2427 return false;
2430 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2431 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2432 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2433 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2434 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2435 int Priority) {
2436 VersionTuple MergedIntroduced = Introduced;
2437 VersionTuple MergedDeprecated = Deprecated;
2438 VersionTuple MergedObsoleted = Obsoleted;
2439 bool FoundAny = false;
2440 bool OverrideOrImpl = false;
2441 switch (AMK) {
2442 case AMK_None:
2443 case AMK_Redeclaration:
2444 OverrideOrImpl = false;
2445 break;
2447 case AMK_Override:
2448 case AMK_ProtocolImplementation:
2449 case AMK_OptionalProtocolImplementation:
2450 OverrideOrImpl = true;
2451 break;
2454 if (D->hasAttrs()) {
2455 AttrVec &Attrs = D->getAttrs();
2456 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2457 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2458 if (!OldAA) {
2459 ++i;
2460 continue;
2463 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2464 if (OldPlatform != Platform) {
2465 ++i;
2466 continue;
2469 // If there is an existing availability attribute for this platform that
2470 // has a lower priority use the existing one and discard the new
2471 // attribute.
2472 if (OldAA->getPriority() < Priority)
2473 return nullptr;
2475 // If there is an existing attribute for this platform that has a higher
2476 // priority than the new attribute then erase the old one and continue
2477 // processing the attributes.
2478 if (OldAA->getPriority() > Priority) {
2479 Attrs.erase(Attrs.begin() + i);
2480 --e;
2481 continue;
2484 FoundAny = true;
2485 VersionTuple OldIntroduced = OldAA->getIntroduced();
2486 VersionTuple OldDeprecated = OldAA->getDeprecated();
2487 VersionTuple OldObsoleted = OldAA->getObsoleted();
2488 bool OldIsUnavailable = OldAA->getUnavailable();
2490 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2491 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2492 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2493 !(OldIsUnavailable == IsUnavailable ||
2494 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2495 if (OverrideOrImpl) {
2496 int Which = -1;
2497 VersionTuple FirstVersion;
2498 VersionTuple SecondVersion;
2499 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2500 Which = 0;
2501 FirstVersion = OldIntroduced;
2502 SecondVersion = Introduced;
2503 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2504 Which = 1;
2505 FirstVersion = Deprecated;
2506 SecondVersion = OldDeprecated;
2507 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2508 Which = 2;
2509 FirstVersion = Obsoleted;
2510 SecondVersion = OldObsoleted;
2513 if (Which == -1) {
2514 Diag(OldAA->getLocation(),
2515 diag::warn_mismatched_availability_override_unavail)
2516 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2517 << (AMK == AMK_Override);
2518 } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2519 // Allow different 'introduced' / 'obsoleted' availability versions
2520 // on a method that implements an optional protocol requirement. It
2521 // makes less sense to allow this for 'deprecated' as the user can't
2522 // see if the method is 'deprecated' as 'respondsToSelector' will
2523 // still return true when the method is deprecated.
2524 ++i;
2525 continue;
2526 } else {
2527 Diag(OldAA->getLocation(),
2528 diag::warn_mismatched_availability_override)
2529 << Which
2530 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2531 << FirstVersion.getAsString() << SecondVersion.getAsString()
2532 << (AMK == AMK_Override);
2534 if (AMK == AMK_Override)
2535 Diag(CI.getLoc(), diag::note_overridden_method);
2536 else
2537 Diag(CI.getLoc(), diag::note_protocol_method);
2538 } else {
2539 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2540 Diag(CI.getLoc(), diag::note_previous_attribute);
2543 Attrs.erase(Attrs.begin() + i);
2544 --e;
2545 continue;
2548 VersionTuple MergedIntroduced2 = MergedIntroduced;
2549 VersionTuple MergedDeprecated2 = MergedDeprecated;
2550 VersionTuple MergedObsoleted2 = MergedObsoleted;
2552 if (MergedIntroduced2.empty())
2553 MergedIntroduced2 = OldIntroduced;
2554 if (MergedDeprecated2.empty())
2555 MergedDeprecated2 = OldDeprecated;
2556 if (MergedObsoleted2.empty())
2557 MergedObsoleted2 = OldObsoleted;
2559 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2560 MergedIntroduced2, MergedDeprecated2,
2561 MergedObsoleted2)) {
2562 Attrs.erase(Attrs.begin() + i);
2563 --e;
2564 continue;
2567 MergedIntroduced = MergedIntroduced2;
2568 MergedDeprecated = MergedDeprecated2;
2569 MergedObsoleted = MergedObsoleted2;
2570 ++i;
2574 if (FoundAny &&
2575 MergedIntroduced == Introduced &&
2576 MergedDeprecated == Deprecated &&
2577 MergedObsoleted == Obsoleted)
2578 return nullptr;
2580 // Only create a new attribute if !OverrideOrImpl, but we want to do
2581 // the checking.
2582 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2583 MergedDeprecated, MergedObsoleted) &&
2584 !OverrideOrImpl) {
2585 auto *Avail = ::new (Context) AvailabilityAttr(
2586 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2587 Message, IsStrict, Replacement, Priority);
2588 Avail->setImplicit(Implicit);
2589 return Avail;
2591 return nullptr;
2594 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2595 if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2596 D)) {
2597 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2598 << AL;
2599 return;
2602 if (!AL.checkExactlyNumArgs(S, 1))
2603 return;
2604 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2606 IdentifierInfo *II = Platform->Ident;
2607 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2608 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2609 << Platform->Ident;
2611 auto *ND = dyn_cast<NamedDecl>(D);
2612 if (!ND) // We warned about this already, so just return.
2613 return;
2615 AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2616 AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2617 AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2618 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2619 bool IsStrict = AL.getStrictLoc().isValid();
2620 StringRef Str;
2621 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2622 Str = SE->getString();
2623 StringRef Replacement;
2624 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2625 Replacement = SE->getString();
2627 if (II->isStr("swift")) {
2628 if (Introduced.isValid() || Obsoleted.isValid() ||
2629 (!IsUnavailable && !Deprecated.isValid())) {
2630 S.Diag(AL.getLoc(),
2631 diag::warn_availability_swift_unavailable_deprecated_only);
2632 return;
2636 if (II->isStr("fuchsia")) {
2637 std::optional<unsigned> Min, Sub;
2638 if ((Min = Introduced.Version.getMinor()) ||
2639 (Sub = Introduced.Version.getSubminor())) {
2640 S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2641 return;
2645 int PriorityModifier = AL.isPragmaClangAttribute()
2646 ? Sema::AP_PragmaClangAttribute
2647 : Sema::AP_Explicit;
2648 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2649 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2650 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2651 Sema::AMK_None, PriorityModifier);
2652 if (NewAttr)
2653 D->addAttr(NewAttr);
2655 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2656 // matches before the start of the watchOS platform.
2657 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2658 IdentifierInfo *NewII = nullptr;
2659 if (II->getName() == "ios")
2660 NewII = &S.Context.Idents.get("watchos");
2661 else if (II->getName() == "ios_app_extension")
2662 NewII = &S.Context.Idents.get("watchos_app_extension");
2664 if (NewII) {
2665 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2666 const auto *IOSToWatchOSMapping =
2667 SDKInfo ? SDKInfo->getVersionMapping(
2668 DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair())
2669 : nullptr;
2671 auto adjustWatchOSVersion =
2672 [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2673 if (Version.empty())
2674 return Version;
2675 auto MinimumWatchOSVersion = VersionTuple(2, 0);
2677 if (IOSToWatchOSMapping) {
2678 if (auto MappedVersion = IOSToWatchOSMapping->map(
2679 Version, MinimumWatchOSVersion, std::nullopt)) {
2680 return *MappedVersion;
2684 auto Major = Version.getMajor();
2685 auto NewMajor = Major >= 9 ? Major - 7 : 0;
2686 if (NewMajor >= 2) {
2687 if (Version.getMinor()) {
2688 if (Version.getSubminor())
2689 return VersionTuple(NewMajor, *Version.getMinor(),
2690 *Version.getSubminor());
2691 else
2692 return VersionTuple(NewMajor, *Version.getMinor());
2694 return VersionTuple(NewMajor);
2697 return MinimumWatchOSVersion;
2700 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2701 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2702 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2704 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2705 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2706 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2707 Sema::AMK_None,
2708 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2709 if (NewAttr)
2710 D->addAttr(NewAttr);
2712 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2713 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2714 // matches before the start of the tvOS platform.
2715 IdentifierInfo *NewII = nullptr;
2716 if (II->getName() == "ios")
2717 NewII = &S.Context.Idents.get("tvos");
2718 else if (II->getName() == "ios_app_extension")
2719 NewII = &S.Context.Idents.get("tvos_app_extension");
2721 if (NewII) {
2722 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2723 const auto *IOSToTvOSMapping =
2724 SDKInfo ? SDKInfo->getVersionMapping(
2725 DarwinSDKInfo::OSEnvPair::iOStoTvOSPair())
2726 : nullptr;
2728 auto AdjustTvOSVersion =
2729 [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2730 if (Version.empty())
2731 return Version;
2733 if (IOSToTvOSMapping) {
2734 if (auto MappedVersion = IOSToTvOSMapping->map(
2735 Version, VersionTuple(0, 0), std::nullopt)) {
2736 return *MappedVersion;
2739 return Version;
2742 auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2743 auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2744 auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2746 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2747 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2748 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2749 Sema::AMK_None,
2750 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2751 if (NewAttr)
2752 D->addAttr(NewAttr);
2754 } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2755 llvm::Triple::IOS &&
2756 S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2757 auto GetSDKInfo = [&]() {
2758 return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2759 "macOS");
2762 // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2763 IdentifierInfo *NewII = nullptr;
2764 if (II->getName() == "ios")
2765 NewII = &S.Context.Idents.get("maccatalyst");
2766 else if (II->getName() == "ios_app_extension")
2767 NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2768 if (NewII) {
2769 auto MinMacCatalystVersion = [](const VersionTuple &V) {
2770 if (V.empty())
2771 return V;
2772 if (V.getMajor() < 13 ||
2773 (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2774 return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2775 return V;
2777 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2778 ND, AL.getRange(), NewII, true /*Implicit*/,
2779 MinMacCatalystVersion(Introduced.Version),
2780 MinMacCatalystVersion(Deprecated.Version),
2781 MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2782 IsStrict, Replacement, Sema::AMK_None,
2783 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2784 if (NewAttr)
2785 D->addAttr(NewAttr);
2786 } else if (II->getName() == "macos" && GetSDKInfo() &&
2787 (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2788 !Obsoleted.Version.empty())) {
2789 if (const auto *MacOStoMacCatalystMapping =
2790 GetSDKInfo()->getVersionMapping(
2791 DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2792 // Infer Mac Catalyst availability from the macOS availability attribute
2793 // if it has versioned availability. Don't infer 'unavailable'. This
2794 // inferred availability has lower priority than the other availability
2795 // attributes that are inferred from 'ios'.
2796 NewII = &S.Context.Idents.get("maccatalyst");
2797 auto RemapMacOSVersion =
2798 [&](const VersionTuple &V) -> std::optional<VersionTuple> {
2799 if (V.empty())
2800 return std::nullopt;
2801 // API_TO_BE_DEPRECATED is 100000.
2802 if (V.getMajor() == 100000)
2803 return VersionTuple(100000);
2804 // The minimum iosmac version is 13.1
2805 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1),
2806 std::nullopt);
2808 std::optional<VersionTuple> NewIntroduced =
2809 RemapMacOSVersion(Introduced.Version),
2810 NewDeprecated =
2811 RemapMacOSVersion(Deprecated.Version),
2812 NewObsoleted =
2813 RemapMacOSVersion(Obsoleted.Version);
2814 if (NewIntroduced || NewDeprecated || NewObsoleted) {
2815 auto VersionOrEmptyVersion =
2816 [](const std::optional<VersionTuple> &V) -> VersionTuple {
2817 return V ? *V : VersionTuple();
2819 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2820 ND, AL.getRange(), NewII, true /*Implicit*/,
2821 VersionOrEmptyVersion(NewIntroduced),
2822 VersionOrEmptyVersion(NewDeprecated),
2823 VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2824 IsStrict, Replacement, Sema::AMK_None,
2825 PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2826 Sema::AP_InferredFromOtherPlatform);
2827 if (NewAttr)
2828 D->addAttr(NewAttr);
2835 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2836 const ParsedAttr &AL) {
2837 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
2838 return;
2840 StringRef Language;
2841 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2842 Language = SE->getString();
2843 StringRef DefinedIn;
2844 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2845 DefinedIn = SE->getString();
2846 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2848 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2849 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2852 template <class T>
2853 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2854 typename T::VisibilityType value) {
2855 T *existingAttr = D->getAttr<T>();
2856 if (existingAttr) {
2857 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2858 if (existingValue == value)
2859 return nullptr;
2860 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2861 S.Diag(CI.getLoc(), diag::note_previous_attribute);
2862 D->dropAttr<T>();
2864 return ::new (S.Context) T(S.Context, CI, value);
2867 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2868 const AttributeCommonInfo &CI,
2869 VisibilityAttr::VisibilityType Vis) {
2870 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2873 TypeVisibilityAttr *
2874 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2875 TypeVisibilityAttr::VisibilityType Vis) {
2876 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2879 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2880 bool isTypeVisibility) {
2881 // Visibility attributes don't mean anything on a typedef.
2882 if (isa<TypedefNameDecl>(D)) {
2883 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2884 return;
2887 // 'type_visibility' can only go on a type or namespace.
2888 if (isTypeVisibility &&
2889 !(isa<TagDecl>(D) ||
2890 isa<ObjCInterfaceDecl>(D) ||
2891 isa<NamespaceDecl>(D))) {
2892 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2893 << AL << ExpectedTypeOrNamespace;
2894 return;
2897 // Check that the argument is a string literal.
2898 StringRef TypeStr;
2899 SourceLocation LiteralLoc;
2900 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2901 return;
2903 VisibilityAttr::VisibilityType type;
2904 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2905 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2906 << TypeStr;
2907 return;
2910 // Complain about attempts to use protected visibility on targets
2911 // (like Darwin) that don't support it.
2912 if (type == VisibilityAttr::Protected &&
2913 !S.Context.getTargetInfo().hasProtectedVisibility()) {
2914 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2915 type = VisibilityAttr::Default;
2918 Attr *newAttr;
2919 if (isTypeVisibility) {
2920 newAttr = S.mergeTypeVisibilityAttr(
2921 D, AL, (TypeVisibilityAttr::VisibilityType)type);
2922 } else {
2923 newAttr = S.mergeVisibilityAttr(D, AL, type);
2925 if (newAttr)
2926 D->addAttr(newAttr);
2929 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2930 // objc_direct cannot be set on methods declared in the context of a protocol
2931 if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2932 S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2933 return;
2936 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2937 handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2938 } else {
2939 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2943 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2944 const ParsedAttr &AL) {
2945 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2946 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2947 } else {
2948 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2952 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2953 const auto *M = cast<ObjCMethodDecl>(D);
2954 if (!AL.isArgIdent(0)) {
2955 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2956 << AL << 1 << AANT_ArgumentIdentifier;
2957 return;
2960 IdentifierLoc *IL = AL.getArgAsIdent(0);
2961 ObjCMethodFamilyAttr::FamilyKind F;
2962 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2963 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2964 return;
2967 if (F == ObjCMethodFamilyAttr::OMF_init &&
2968 !M->getReturnType()->isObjCObjectPointerType()) {
2969 S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2970 << M->getReturnType();
2971 // Ignore the attribute.
2972 return;
2975 D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2978 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2979 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2980 QualType T = TD->getUnderlyingType();
2981 if (!T->isCARCBridgableType()) {
2982 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2983 return;
2986 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2987 QualType T = PD->getType();
2988 if (!T->isCARCBridgableType()) {
2989 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2990 return;
2993 else {
2994 // It is okay to include this attribute on properties, e.g.:
2996 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2998 // In this case it follows tradition and suppresses an error in the above
2999 // case.
3000 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
3002 D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
3005 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
3006 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
3007 QualType T = TD->getUnderlyingType();
3008 if (!T->isObjCObjectPointerType()) {
3009 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
3010 return;
3012 } else {
3013 S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
3014 return;
3016 D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
3019 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3020 if (!AL.isArgIdent(0)) {
3021 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3022 << AL << 1 << AANT_ArgumentIdentifier;
3023 return;
3026 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3027 BlocksAttr::BlockType type;
3028 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
3029 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3030 return;
3033 D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
3036 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3037 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
3038 if (AL.getNumArgs() > 0) {
3039 Expr *E = AL.getArgAsExpr(0);
3040 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
3041 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3042 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3043 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3044 return;
3047 if (Idx->isSigned() && Idx->isNegative()) {
3048 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
3049 << E->getSourceRange();
3050 return;
3053 sentinel = Idx->getZExtValue();
3056 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
3057 if (AL.getNumArgs() > 1) {
3058 Expr *E = AL.getArgAsExpr(1);
3059 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
3060 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3061 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3062 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3063 return;
3065 nullPos = Idx->getZExtValue();
3067 if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
3068 // FIXME: This error message could be improved, it would be nice
3069 // to say what the bounds actually are.
3070 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
3071 << E->getSourceRange();
3072 return;
3076 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3077 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
3078 if (isa<FunctionNoProtoType>(FT)) {
3079 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
3080 return;
3083 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3084 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3085 return;
3087 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
3088 if (!MD->isVariadic()) {
3089 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3090 return;
3092 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3093 if (!BD->isVariadic()) {
3094 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
3095 return;
3097 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
3098 QualType Ty = V->getType();
3099 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
3100 const FunctionType *FT = Ty->isFunctionPointerType()
3101 ? D->getFunctionType()
3102 : Ty->castAs<BlockPointerType>()
3103 ->getPointeeType()
3104 ->castAs<FunctionType>();
3105 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3106 int m = Ty->isFunctionPointerType() ? 0 : 1;
3107 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
3108 return;
3110 } else {
3111 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3112 << AL << ExpectedFunctionMethodOrBlock;
3113 return;
3115 } else {
3116 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3117 << AL << ExpectedFunctionMethodOrBlock;
3118 return;
3120 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
3123 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
3124 if (D->getFunctionType() &&
3125 D->getFunctionType()->getReturnType()->isVoidType() &&
3126 !isa<CXXConstructorDecl>(D)) {
3127 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
3128 return;
3130 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
3131 if (MD->getReturnType()->isVoidType()) {
3132 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
3133 return;
3136 StringRef Str;
3137 if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
3138 // The standard attribute cannot be applied to variable declarations such
3139 // as a function pointer.
3140 if (isa<VarDecl>(D))
3141 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
3142 << AL << "functions, classes, or enumerations";
3144 // If this is spelled as the standard C++17 attribute, but not in C++17,
3145 // warn about using it as an extension. If there are attribute arguments,
3146 // then claim it's a C++2a extension instead.
3147 // FIXME: If WG14 does not seem likely to adopt the same feature, add an
3148 // extension warning for C2x mode.
3149 const LangOptions &LO = S.getLangOpts();
3150 if (AL.getNumArgs() == 1) {
3151 if (LO.CPlusPlus && !LO.CPlusPlus20)
3152 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
3154 // Since this is spelled [[nodiscard]], get the optional string
3155 // literal. If in C++ mode, but not in C++2a mode, diagnose as an
3156 // extension.
3157 // FIXME: C2x should support this feature as well, even as an extension.
3158 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3159 return;
3160 } else if (LO.CPlusPlus && !LO.CPlusPlus17)
3161 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
3164 if ((!AL.isGNUAttribute() &&
3165 !(AL.isStandardAttributeSyntax() && AL.isClangScope())) &&
3166 isa<TypedefNameDecl>(D)) {
3167 S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling)
3168 << AL.isGNUScope();
3169 return;
3172 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
3175 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3176 // weak_import only applies to variable & function declarations.
3177 bool isDef = false;
3178 if (!D->canBeWeakImported(isDef)) {
3179 if (isDef)
3180 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
3181 << "weak_import";
3182 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
3183 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
3184 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
3185 // Nothing to warn about here.
3186 } else
3187 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3188 << AL << ExpectedVariableOrFunction;
3190 return;
3193 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3196 // Handles reqd_work_group_size and work_group_size_hint.
3197 template <typename WorkGroupAttr>
3198 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3199 uint32_t WGSize[3];
3200 for (unsigned i = 0; i < 3; ++i) {
3201 const Expr *E = AL.getArgAsExpr(i);
3202 if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3203 /*StrictlyUnsigned=*/true))
3204 return;
3205 if (WGSize[i] == 0) {
3206 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3207 << AL << E->getSourceRange();
3208 return;
3212 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3213 if (Existing && !(Existing->getXDim() == WGSize[0] &&
3214 Existing->getYDim() == WGSize[1] &&
3215 Existing->getZDim() == WGSize[2]))
3216 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3218 D->addAttr(::new (S.Context)
3219 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3222 // Handles intel_reqd_sub_group_size.
3223 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3224 uint32_t SGSize;
3225 const Expr *E = AL.getArgAsExpr(0);
3226 if (!checkUInt32Argument(S, AL, E, SGSize))
3227 return;
3228 if (SGSize == 0) {
3229 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3230 << AL << E->getSourceRange();
3231 return;
3234 OpenCLIntelReqdSubGroupSizeAttr *Existing =
3235 D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3236 if (Existing && Existing->getSubGroupSize() != SGSize)
3237 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3239 D->addAttr(::new (S.Context)
3240 OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3243 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3244 if (!AL.hasParsedType()) {
3245 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3246 return;
3249 TypeSourceInfo *ParmTSI = nullptr;
3250 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3251 assert(ParmTSI && "no type source info for attribute argument");
3253 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3254 (ParmType->isBooleanType() ||
3255 !ParmType->isIntegralType(S.getASTContext()))) {
3256 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3257 return;
3260 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3261 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3262 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3263 return;
3267 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3270 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3271 StringRef Name) {
3272 // Explicit or partial specializations do not inherit
3273 // the section attribute from the primary template.
3274 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3275 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3276 FD->isFunctionTemplateSpecialization())
3277 return nullptr;
3279 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3280 if (ExistingAttr->getName() == Name)
3281 return nullptr;
3282 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3283 << 1 /*section*/;
3284 Diag(CI.getLoc(), diag::note_previous_attribute);
3285 return nullptr;
3287 return ::new (Context) SectionAttr(Context, CI, Name);
3290 /// Used to implement to perform semantic checking on
3291 /// attribute((section("foo"))) specifiers.
3293 /// In this case, "foo" is passed in to be checked. If the section
3294 /// specifier is invalid, return an Error that indicates the problem.
3296 /// This is a simple quality of implementation feature to catch errors
3297 /// and give good diagnostics in cases when the assembler or code generator
3298 /// would otherwise reject the section specifier.
3299 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3300 if (!Context.getTargetInfo().getTriple().isOSDarwin())
3301 return llvm::Error::success();
3303 // Let MCSectionMachO validate this.
3304 StringRef Segment, Section;
3305 unsigned TAA, StubSize;
3306 bool HasTAA;
3307 return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3308 TAA, HasTAA, StubSize);
3311 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3312 if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3313 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3314 << toString(std::move(E)) << 1 /*'section'*/;
3315 return false;
3317 return true;
3320 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3321 // Make sure that there is a string literal as the sections's single
3322 // argument.
3323 StringRef Str;
3324 SourceLocation LiteralLoc;
3325 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3326 return;
3328 if (!S.checkSectionName(LiteralLoc, Str))
3329 return;
3331 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3332 if (NewAttr) {
3333 D->addAttr(NewAttr);
3334 if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3335 ObjCPropertyDecl>(D))
3336 S.UnifySection(NewAttr->getName(),
3337 ASTContext::PSF_Execute | ASTContext::PSF_Read,
3338 cast<NamedDecl>(D));
3342 // This is used for `__declspec(code_seg("segname"))` on a decl.
3343 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3344 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3345 StringRef CodeSegName) {
3346 if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3347 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3348 << toString(std::move(E)) << 0 /*'code-seg'*/;
3349 return false;
3352 return true;
3355 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3356 StringRef Name) {
3357 // Explicit or partial specializations do not inherit
3358 // the code_seg attribute from the primary template.
3359 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3360 if (FD->isFunctionTemplateSpecialization())
3361 return nullptr;
3363 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3364 if (ExistingAttr->getName() == Name)
3365 return nullptr;
3366 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3367 << 0 /*codeseg*/;
3368 Diag(CI.getLoc(), diag::note_previous_attribute);
3369 return nullptr;
3371 return ::new (Context) CodeSegAttr(Context, CI, Name);
3374 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3375 StringRef Str;
3376 SourceLocation LiteralLoc;
3377 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3378 return;
3379 if (!checkCodeSegName(S, LiteralLoc, Str))
3380 return;
3381 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3382 if (!ExistingAttr->isImplicit()) {
3383 S.Diag(AL.getLoc(),
3384 ExistingAttr->getName() == Str
3385 ? diag::warn_duplicate_codeseg_attribute
3386 : diag::err_conflicting_codeseg_attribute);
3387 return;
3389 D->dropAttr<CodeSegAttr>();
3391 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3392 D->addAttr(CSA);
3395 // Check for things we'd like to warn about. Multiversioning issues are
3396 // handled later in the process, once we know how many exist.
3397 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3398 enum FirstParam { Unsupported, Duplicate, Unknown };
3399 enum SecondParam { None, CPU, Tune };
3400 enum ThirdParam { Target, TargetClones };
3401 if (AttrStr.contains("fpmath="))
3402 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3403 << Unsupported << None << "fpmath=" << Target;
3405 // Diagnose use of tune if target doesn't support it.
3406 if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3407 AttrStr.contains("tune="))
3408 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3409 << Unsupported << None << "tune=" << Target;
3411 ParsedTargetAttr ParsedAttrs =
3412 Context.getTargetInfo().parseTargetAttr(AttrStr);
3414 if (!ParsedAttrs.CPU.empty() &&
3415 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU))
3416 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3417 << Unknown << CPU << ParsedAttrs.CPU << Target;
3419 if (!ParsedAttrs.Tune.empty() &&
3420 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3421 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3422 << Unknown << Tune << ParsedAttrs.Tune << Target;
3424 if (ParsedAttrs.Duplicate != "")
3425 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3426 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3428 for (const auto &Feature : ParsedAttrs.Features) {
3429 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3430 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3431 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3432 << Unsupported << None << CurFeature << Target;
3435 TargetInfo::BranchProtectionInfo BPI;
3436 StringRef DiagMsg;
3437 if (ParsedAttrs.BranchProtection.empty())
3438 return false;
3439 if (!Context.getTargetInfo().validateBranchProtection(
3440 ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI, DiagMsg)) {
3441 if (DiagMsg.empty())
3442 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3443 << Unsupported << None << "branch-protection" << Target;
3444 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3445 << DiagMsg;
3447 if (!DiagMsg.empty())
3448 Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3450 return false;
3453 // Check Target Version attrs
3454 bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, StringRef &AttrStr,
3455 bool &isDefault) {
3456 enum FirstParam { Unsupported };
3457 enum SecondParam { None };
3458 enum ThirdParam { Target, TargetClones, TargetVersion };
3459 if (AttrStr.trim() == "default")
3460 isDefault = true;
3461 llvm::SmallVector<StringRef, 8> Features;
3462 AttrStr.split(Features, "+");
3463 for (auto &CurFeature : Features) {
3464 CurFeature = CurFeature.trim();
3465 if (CurFeature == "default")
3466 continue;
3467 if (!Context.getTargetInfo().validateCpuSupports(CurFeature))
3468 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3469 << Unsupported << None << CurFeature << TargetVersion;
3471 return false;
3474 static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3475 StringRef Str;
3476 SourceLocation LiteralLoc;
3477 bool isDefault = false;
3478 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3479 S.checkTargetVersionAttr(LiteralLoc, Str, isDefault))
3480 return;
3481 // Do not create default only target_version attribute
3482 if (!isDefault) {
3483 TargetVersionAttr *NewAttr =
3484 ::new (S.Context) TargetVersionAttr(S.Context, AL, Str);
3485 D->addAttr(NewAttr);
3489 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3490 StringRef Str;
3491 SourceLocation LiteralLoc;
3492 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3493 S.checkTargetAttr(LiteralLoc, Str))
3494 return;
3496 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3497 D->addAttr(NewAttr);
3500 bool Sema::checkTargetClonesAttrString(
3501 SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal,
3502 bool &HasDefault, bool &HasCommas, bool &HasNotDefault,
3503 SmallVectorImpl<SmallString<64>> &StringsBuffer) {
3504 enum FirstParam { Unsupported, Duplicate, Unknown };
3505 enum SecondParam { None, CPU, Tune };
3506 enum ThirdParam { Target, TargetClones };
3507 HasCommas = HasCommas || Str.contains(',');
3508 // Warn on empty at the beginning of a string.
3509 if (Str.size() == 0)
3510 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3511 << Unsupported << None << "" << TargetClones;
3513 std::pair<StringRef, StringRef> Parts = {{}, Str};
3514 while (!Parts.second.empty()) {
3515 Parts = Parts.second.split(',');
3516 StringRef Cur = Parts.first.trim();
3517 SourceLocation CurLoc = Literal->getLocationOfByte(
3518 Cur.data() - Literal->getString().data(), getSourceManager(),
3519 getLangOpts(), Context.getTargetInfo());
3521 bool DefaultIsDupe = false;
3522 bool HasCodeGenImpact = false;
3523 if (Cur.empty())
3524 return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3525 << Unsupported << None << "" << TargetClones;
3527 if (Context.getTargetInfo().getTriple().isAArch64()) {
3528 // AArch64 target clones specific
3529 if (Cur == "default") {
3530 DefaultIsDupe = HasDefault;
3531 HasDefault = true;
3532 if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe)
3533 Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3534 else
3535 StringsBuffer.push_back(Cur);
3536 } else {
3537 std::pair<StringRef, StringRef> CurParts = {{}, Cur};
3538 llvm::SmallVector<StringRef, 8> CurFeatures;
3539 while (!CurParts.second.empty()) {
3540 CurParts = CurParts.second.split('+');
3541 StringRef CurFeature = CurParts.first.trim();
3542 if (!Context.getTargetInfo().validateCpuSupports(CurFeature)) {
3543 Diag(CurLoc, diag::warn_unsupported_target_attribute)
3544 << Unsupported << None << CurFeature << TargetClones;
3545 continue;
3547 std::string Options;
3548 if (Context.getTargetInfo().getFeatureDepOptions(CurFeature, Options))
3549 HasCodeGenImpact = true;
3550 CurFeatures.push_back(CurFeature);
3552 // Canonize TargetClones Attributes
3553 llvm::sort(CurFeatures);
3554 SmallString<64> Res;
3555 for (auto &CurFeat : CurFeatures) {
3556 if (!Res.equals(""))
3557 Res.append("+");
3558 Res.append(CurFeat);
3560 if (llvm::is_contained(StringsBuffer, Res) || DefaultIsDupe)
3561 Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3562 else if (!HasCodeGenImpact)
3563 // Ignore features in target_clone attribute that don't impact
3564 // code generation
3565 Diag(CurLoc, diag::warn_target_clone_no_impact_options);
3566 else if (!Res.empty()) {
3567 StringsBuffer.push_back(Res);
3568 HasNotDefault = true;
3571 } else {
3572 // Other targets ( currently X86 )
3573 if (Cur.startswith("arch=")) {
3574 if (!Context.getTargetInfo().isValidCPUName(
3575 Cur.drop_front(sizeof("arch=") - 1)))
3576 return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3577 << Unsupported << CPU << Cur.drop_front(sizeof("arch=") - 1)
3578 << TargetClones;
3579 } else if (Cur == "default") {
3580 DefaultIsDupe = HasDefault;
3581 HasDefault = true;
3582 } else if (!Context.getTargetInfo().isValidFeatureName(Cur))
3583 return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3584 << Unsupported << None << Cur << TargetClones;
3585 if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe)
3586 Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3587 // Note: Add even if there are duplicates, since it changes name mangling.
3588 StringsBuffer.push_back(Cur);
3591 if (Str.rtrim().endswith(","))
3592 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3593 << Unsupported << None << "" << TargetClones;
3594 return false;
3597 static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3598 if (S.Context.getTargetInfo().getTriple().isAArch64() &&
3599 !S.Context.getTargetInfo().hasFeature("fmv"))
3600 return;
3602 // Ensure we don't combine these with themselves, since that causes some
3603 // confusing behavior.
3604 if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3605 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3606 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3607 return;
3609 if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL))
3610 return;
3612 SmallVector<StringRef, 2> Strings;
3613 SmallVector<SmallString<64>, 2> StringsBuffer;
3614 bool HasCommas = false, HasDefault = false, HasNotDefault = false;
3616 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3617 StringRef CurStr;
3618 SourceLocation LiteralLoc;
3619 if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) ||
3620 S.checkTargetClonesAttrString(
3621 LiteralLoc, CurStr,
3622 cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()),
3623 HasDefault, HasCommas, HasNotDefault, StringsBuffer))
3624 return;
3626 for (auto &SmallStr : StringsBuffer)
3627 Strings.push_back(SmallStr.str());
3629 if (HasCommas && AL.getNumArgs() > 1)
3630 S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values);
3632 if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) {
3633 // Add default attribute if there is no one
3634 HasDefault = true;
3635 Strings.push_back("default");
3638 if (!HasDefault) {
3639 S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default);
3640 return;
3643 // FIXME: We could probably figure out how to get this to work for lambdas
3644 // someday.
3645 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3646 if (MD->getParent()->isLambda()) {
3647 S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3648 << static_cast<unsigned>(MultiVersionKind::TargetClones)
3649 << /*Lambda*/ 9;
3650 return;
3654 // No multiversion if we have default version only.
3655 if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault)
3656 return;
3658 cast<FunctionDecl>(D)->setIsMultiVersion();
3659 TargetClonesAttr *NewAttr = ::new (S.Context)
3660 TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size());
3661 D->addAttr(NewAttr);
3664 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3665 Expr *E = AL.getArgAsExpr(0);
3666 uint32_t VecWidth;
3667 if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3668 AL.setInvalid();
3669 return;
3672 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3673 if (Existing && Existing->getVectorWidth() != VecWidth) {
3674 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3675 return;
3678 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3681 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3682 Expr *E = AL.getArgAsExpr(0);
3683 SourceLocation Loc = E->getExprLoc();
3684 FunctionDecl *FD = nullptr;
3685 DeclarationNameInfo NI;
3687 // gcc only allows for simple identifiers. Since we support more than gcc, we
3688 // will warn the user.
3689 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3690 if (DRE->hasQualifier())
3691 S.Diag(Loc, diag::warn_cleanup_ext);
3692 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3693 NI = DRE->getNameInfo();
3694 if (!FD) {
3695 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3696 << NI.getName();
3697 return;
3699 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3700 if (ULE->hasExplicitTemplateArgs())
3701 S.Diag(Loc, diag::warn_cleanup_ext);
3702 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3703 NI = ULE->getNameInfo();
3704 if (!FD) {
3705 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3706 << NI.getName();
3707 if (ULE->getType() == S.Context.OverloadTy)
3708 S.NoteAllOverloadCandidates(ULE);
3709 return;
3711 } else {
3712 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3713 return;
3716 if (FD->getNumParams() != 1) {
3717 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3718 << NI.getName();
3719 return;
3722 // We're currently more strict than GCC about what function types we accept.
3723 // If this ever proves to be a problem it should be easy to fix.
3724 QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3725 QualType ParamTy = FD->getParamDecl(0)->getType();
3726 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3727 ParamTy, Ty) != Sema::Compatible) {
3728 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3729 << NI.getName() << ParamTy << Ty;
3730 return;
3733 D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3736 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3737 const ParsedAttr &AL) {
3738 if (!AL.isArgIdent(0)) {
3739 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3740 << AL << 0 << AANT_ArgumentIdentifier;
3741 return;
3744 EnumExtensibilityAttr::Kind ExtensibilityKind;
3745 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3746 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3747 ExtensibilityKind)) {
3748 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3749 return;
3752 D->addAttr(::new (S.Context)
3753 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3756 /// Handle __attribute__((format_arg((idx)))) attribute based on
3757 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3758 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3759 Expr *IdxExpr = AL.getArgAsExpr(0);
3760 ParamIdx Idx;
3761 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3762 return;
3764 // Make sure the format string is really a string.
3765 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3767 bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3768 if (NotNSStringTy &&
3769 !isCFStringType(Ty, S.Context) &&
3770 (!Ty->isPointerType() ||
3771 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3772 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3773 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3774 return;
3776 Ty = getFunctionOrMethodResultType(D);
3777 // replace instancetype with the class type
3778 auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl();
3779 if (Ty->getAs<TypedefType>() == Instancetype)
3780 if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3781 if (auto *Interface = OMD->getClassInterface())
3782 Ty = S.Context.getObjCObjectPointerType(
3783 QualType(Interface->getTypeForDecl(), 0));
3784 if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3785 !isCFStringType(Ty, S.Context) &&
3786 (!Ty->isPointerType() ||
3787 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3788 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3789 << (NotNSStringTy ? "string type" : "NSString")
3790 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3791 return;
3794 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3797 enum FormatAttrKind {
3798 CFStringFormat,
3799 NSStringFormat,
3800 StrftimeFormat,
3801 SupportedFormat,
3802 IgnoredFormat,
3803 InvalidFormat
3806 /// getFormatAttrKind - Map from format attribute names to supported format
3807 /// types.
3808 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3809 return llvm::StringSwitch<FormatAttrKind>(Format)
3810 // Check for formats that get handled specially.
3811 .Case("NSString", NSStringFormat)
3812 .Case("CFString", CFStringFormat)
3813 .Case("strftime", StrftimeFormat)
3815 // Otherwise, check for supported formats.
3816 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3817 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3818 .Case("kprintf", SupportedFormat) // OpenBSD.
3819 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3820 .Case("os_trace", SupportedFormat)
3821 .Case("os_log", SupportedFormat)
3823 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3824 .Default(InvalidFormat);
3827 /// Handle __attribute__((init_priority(priority))) attributes based on
3828 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3829 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3830 if (!S.getLangOpts().CPlusPlus) {
3831 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3832 return;
3835 if (S.getLangOpts().HLSL) {
3836 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
3837 return;
3840 if (S.getCurFunctionOrMethodDecl()) {
3841 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3842 AL.setInvalid();
3843 return;
3845 QualType T = cast<VarDecl>(D)->getType();
3846 if (S.Context.getAsArrayType(T))
3847 T = S.Context.getBaseElementType(T);
3848 if (!T->getAs<RecordType>()) {
3849 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3850 AL.setInvalid();
3851 return;
3854 Expr *E = AL.getArgAsExpr(0);
3855 uint32_t prioritynum;
3856 if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3857 AL.setInvalid();
3858 return;
3861 // Only perform the priority check if the attribute is outside of a system
3862 // header. Values <= 100 are reserved for the implementation, and libc++
3863 // benefits from being able to specify values in that range.
3864 if ((prioritynum < 101 || prioritynum > 65535) &&
3865 !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3866 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3867 << E->getSourceRange() << AL << 101 << 65535;
3868 AL.setInvalid();
3869 return;
3871 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3874 ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3875 StringRef NewUserDiagnostic) {
3876 if (const auto *EA = D->getAttr<ErrorAttr>()) {
3877 std::string NewAttr = CI.getNormalizedFullName();
3878 assert((NewAttr == "error" || NewAttr == "warning") &&
3879 "unexpected normalized full name");
3880 bool Match = (EA->isError() && NewAttr == "error") ||
3881 (EA->isWarning() && NewAttr == "warning");
3882 if (!Match) {
3883 Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3884 << CI << EA;
3885 Diag(CI.getLoc(), diag::note_conflicting_attribute);
3886 return nullptr;
3888 if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3889 Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3890 Diag(EA->getLoc(), diag::note_previous_attribute);
3892 D->dropAttr<ErrorAttr>();
3894 return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3897 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3898 IdentifierInfo *Format, int FormatIdx,
3899 int FirstArg) {
3900 // Check whether we already have an equivalent format attribute.
3901 for (auto *F : D->specific_attrs<FormatAttr>()) {
3902 if (F->getType() == Format &&
3903 F->getFormatIdx() == FormatIdx &&
3904 F->getFirstArg() == FirstArg) {
3905 // If we don't have a valid location for this attribute, adopt the
3906 // location.
3907 if (F->getLocation().isInvalid())
3908 F->setRange(CI.getRange());
3909 return nullptr;
3913 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3916 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3917 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3918 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3919 if (!AL.isArgIdent(0)) {
3920 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3921 << AL << 1 << AANT_ArgumentIdentifier;
3922 return;
3925 // In C++ the implicit 'this' function parameter also counts, and they are
3926 // counted from one.
3927 bool HasImplicitThisParam = isInstanceMethod(D);
3928 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3930 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3931 StringRef Format = II->getName();
3933 if (normalizeName(Format)) {
3934 // If we've modified the string name, we need a new identifier for it.
3935 II = &S.Context.Idents.get(Format);
3938 // Check for supported formats.
3939 FormatAttrKind Kind = getFormatAttrKind(Format);
3941 if (Kind == IgnoredFormat)
3942 return;
3944 if (Kind == InvalidFormat) {
3945 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3946 << AL << II->getName();
3947 return;
3950 // checks for the 2nd argument
3951 Expr *IdxExpr = AL.getArgAsExpr(1);
3952 uint32_t Idx;
3953 if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3954 return;
3956 if (Idx < 1 || Idx > NumArgs) {
3957 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3958 << AL << 2 << IdxExpr->getSourceRange();
3959 return;
3962 // FIXME: Do we need to bounds check?
3963 unsigned ArgIdx = Idx - 1;
3965 if (HasImplicitThisParam) {
3966 if (ArgIdx == 0) {
3967 S.Diag(AL.getLoc(),
3968 diag::err_format_attribute_implicit_this_format_string)
3969 << IdxExpr->getSourceRange();
3970 return;
3972 ArgIdx--;
3975 // make sure the format string is really a string
3976 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3978 if (!isNSStringType(Ty, S.Context, true) &&
3979 !isCFStringType(Ty, S.Context) &&
3980 (!Ty->isPointerType() ||
3981 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3982 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3983 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx);
3984 return;
3987 // check the 3rd argument
3988 Expr *FirstArgExpr = AL.getArgAsExpr(2);
3989 uint32_t FirstArg;
3990 if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3991 return;
3993 // FirstArg == 0 is is always valid.
3994 if (FirstArg != 0) {
3995 if (Kind == StrftimeFormat) {
3996 // If the kind is strftime, FirstArg must be 0 because strftime does not
3997 // use any variadic arguments.
3998 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3999 << FirstArgExpr->getSourceRange()
4000 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0");
4001 return;
4002 } else if (isFunctionOrMethodVariadic(D)) {
4003 // Else, if the function is variadic, then FirstArg must be 0 or the
4004 // "position" of the ... parameter. It's unusual to use 0 with variadic
4005 // functions, so the fixit proposes the latter.
4006 if (FirstArg != NumArgs + 1) {
4007 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4008 << AL << 3 << FirstArgExpr->getSourceRange()
4009 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(),
4010 std::to_string(NumArgs + 1));
4011 return;
4013 } else {
4014 // Inescapable GCC compatibility diagnostic.
4015 S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL;
4016 if (FirstArg <= Idx) {
4017 // Else, the function is not variadic, and FirstArg must be 0 or any
4018 // parameter after the format parameter. We don't offer a fixit because
4019 // there are too many possible good values.
4020 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4021 << AL << 3 << FirstArgExpr->getSourceRange();
4022 return;
4027 FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
4028 if (NewAttr)
4029 D->addAttr(NewAttr);
4032 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
4033 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4034 // The index that identifies the callback callee is mandatory.
4035 if (AL.getNumArgs() == 0) {
4036 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
4037 << AL.getRange();
4038 return;
4041 bool HasImplicitThisParam = isInstanceMethod(D);
4042 int32_t NumArgs = getFunctionOrMethodNumParams(D);
4044 FunctionDecl *FD = D->getAsFunction();
4045 assert(FD && "Expected a function declaration!");
4047 llvm::StringMap<int> NameIdxMapping;
4048 NameIdxMapping["__"] = -1;
4050 NameIdxMapping["this"] = 0;
4052 int Idx = 1;
4053 for (const ParmVarDecl *PVD : FD->parameters())
4054 NameIdxMapping[PVD->getName()] = Idx++;
4056 auto UnknownName = NameIdxMapping.end();
4058 SmallVector<int, 8> EncodingIndices;
4059 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
4060 SourceRange SR;
4061 int32_t ArgIdx;
4063 if (AL.isArgIdent(I)) {
4064 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4065 auto It = NameIdxMapping.find(IdLoc->Ident->getName());
4066 if (It == UnknownName) {
4067 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
4068 << IdLoc->Ident << IdLoc->Loc;
4069 return;
4072 SR = SourceRange(IdLoc->Loc);
4073 ArgIdx = It->second;
4074 } else if (AL.isArgExpr(I)) {
4075 Expr *IdxExpr = AL.getArgAsExpr(I);
4077 // If the expression is not parseable as an int32_t we have a problem.
4078 if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
4079 false)) {
4080 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4081 << AL << (I + 1) << IdxExpr->getSourceRange();
4082 return;
4085 // Check oob, excluding the special values, 0 and -1.
4086 if (ArgIdx < -1 || ArgIdx > NumArgs) {
4087 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4088 << AL << (I + 1) << IdxExpr->getSourceRange();
4089 return;
4092 SR = IdxExpr->getSourceRange();
4093 } else {
4094 llvm_unreachable("Unexpected ParsedAttr argument type!");
4097 if (ArgIdx == 0 && !HasImplicitThisParam) {
4098 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
4099 << (I + 1) << SR;
4100 return;
4103 // Adjust for the case we do not have an implicit "this" parameter. In this
4104 // case we decrease all positive values by 1 to get LLVM argument indices.
4105 if (!HasImplicitThisParam && ArgIdx > 0)
4106 ArgIdx -= 1;
4108 EncodingIndices.push_back(ArgIdx);
4111 int CalleeIdx = EncodingIndices.front();
4112 // Check if the callee index is proper, thus not "this" and not "unknown".
4113 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
4114 // is false and positive if "HasImplicitThisParam" is true.
4115 if (CalleeIdx < (int)HasImplicitThisParam) {
4116 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
4117 << AL.getRange();
4118 return;
4121 // Get the callee type, note the index adjustment as the AST doesn't contain
4122 // the this type (which the callee cannot reference anyway!).
4123 const Type *CalleeType =
4124 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
4125 .getTypePtr();
4126 if (!CalleeType || !CalleeType->isFunctionPointerType()) {
4127 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4128 << AL.getRange();
4129 return;
4132 const Type *CalleeFnType =
4133 CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
4135 // TODO: Check the type of the callee arguments.
4137 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
4138 if (!CalleeFnProtoType) {
4139 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4140 << AL.getRange();
4141 return;
4144 if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
4145 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4146 << AL << (unsigned)(EncodingIndices.size() - 1);
4147 return;
4150 if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
4151 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4152 << AL << (unsigned)(EncodingIndices.size() - 1);
4153 return;
4156 if (CalleeFnProtoType->isVariadic()) {
4157 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4158 return;
4161 // Do not allow multiple callback attributes.
4162 if (D->hasAttr<CallbackAttr>()) {
4163 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4164 return;
4167 D->addAttr(::new (S.Context) CallbackAttr(
4168 S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4171 static bool isFunctionLike(const Type &T) {
4172 // Check for explicit function types.
4173 // 'called_once' is only supported in Objective-C and it has
4174 // function pointers and block pointers.
4175 return T.isFunctionPointerType() || T.isBlockPointerType();
4178 /// Handle 'called_once' attribute.
4179 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4180 // 'called_once' only applies to parameters representing functions.
4181 QualType T = cast<ParmVarDecl>(D)->getType();
4183 if (!isFunctionLike(*T)) {
4184 S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4185 return;
4188 D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4191 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4192 // Try to find the underlying union declaration.
4193 RecordDecl *RD = nullptr;
4194 const auto *TD = dyn_cast<TypedefNameDecl>(D);
4195 if (TD && TD->getUnderlyingType()->isUnionType())
4196 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
4197 else
4198 RD = dyn_cast<RecordDecl>(D);
4200 if (!RD || !RD->isUnion()) {
4201 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
4202 << ExpectedUnion;
4203 return;
4206 if (!RD->isCompleteDefinition()) {
4207 if (!RD->isBeingDefined())
4208 S.Diag(AL.getLoc(),
4209 diag::warn_transparent_union_attribute_not_definition);
4210 return;
4213 RecordDecl::field_iterator Field = RD->field_begin(),
4214 FieldEnd = RD->field_end();
4215 if (Field == FieldEnd) {
4216 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4217 return;
4220 FieldDecl *FirstField = *Field;
4221 QualType FirstType = FirstField->getType();
4222 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4223 S.Diag(FirstField->getLocation(),
4224 diag::warn_transparent_union_attribute_floating)
4225 << FirstType->isVectorType() << FirstType;
4226 return;
4229 if (FirstType->isIncompleteType())
4230 return;
4231 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4232 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4233 for (; Field != FieldEnd; ++Field) {
4234 QualType FieldType = Field->getType();
4235 if (FieldType->isIncompleteType())
4236 return;
4237 // FIXME: this isn't fully correct; we also need to test whether the
4238 // members of the union would all have the same calling convention as the
4239 // first member of the union. Checking just the size and alignment isn't
4240 // sufficient (consider structs passed on the stack instead of in registers
4241 // as an example).
4242 if (S.Context.getTypeSize(FieldType) != FirstSize ||
4243 S.Context.getTypeAlign(FieldType) > FirstAlign) {
4244 // Warn if we drop the attribute.
4245 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4246 unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4247 : S.Context.getTypeAlign(FieldType);
4248 S.Diag(Field->getLocation(),
4249 diag::warn_transparent_union_attribute_field_size_align)
4250 << isSize << *Field << FieldBits;
4251 unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4252 S.Diag(FirstField->getLocation(),
4253 diag::note_transparent_union_first_field_size_align)
4254 << isSize << FirstBits;
4255 return;
4259 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4262 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
4263 StringRef Str, MutableArrayRef<Expr *> Args) {
4264 auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
4265 if (ConstantFoldAttrArgs(
4266 CI, MutableArrayRef<Expr *>(Attr->args_begin(), Attr->args_end()))) {
4267 D->addAttr(Attr);
4271 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4272 // Make sure that there is a string literal as the annotation's first
4273 // argument.
4274 StringRef Str;
4275 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
4276 return;
4278 llvm::SmallVector<Expr *, 4> Args;
4279 Args.reserve(AL.getNumArgs() - 1);
4280 for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
4281 assert(!AL.isArgIdent(Idx));
4282 Args.push_back(AL.getArgAsExpr(Idx));
4285 S.AddAnnotationAttr(D, AL, Str, Args);
4288 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4289 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4292 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
4293 AlignValueAttr TmpAttr(Context, CI, E);
4294 SourceLocation AttrLoc = CI.getLoc();
4296 QualType T;
4297 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4298 T = TD->getUnderlyingType();
4299 else if (const auto *VD = dyn_cast<ValueDecl>(D))
4300 T = VD->getType();
4301 else
4302 llvm_unreachable("Unknown decl type for align_value");
4304 if (!T->isDependentType() && !T->isAnyPointerType() &&
4305 !T->isReferenceType() && !T->isMemberPointerType()) {
4306 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4307 << &TmpAttr << T << D->getSourceRange();
4308 return;
4311 if (!E->isValueDependent()) {
4312 llvm::APSInt Alignment;
4313 ExprResult ICE = VerifyIntegerConstantExpression(
4314 E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4315 if (ICE.isInvalid())
4316 return;
4318 if (!Alignment.isPowerOf2()) {
4319 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4320 << E->getSourceRange();
4321 return;
4324 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4325 return;
4328 // Save dependent expressions in the AST to be instantiated.
4329 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4332 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4333 // check the attribute arguments.
4334 if (AL.getNumArgs() > 1) {
4335 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4336 return;
4339 if (AL.getNumArgs() == 0) {
4340 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4341 return;
4344 Expr *E = AL.getArgAsExpr(0);
4345 if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
4346 S.Diag(AL.getEllipsisLoc(),
4347 diag::err_pack_expansion_without_parameter_packs);
4348 return;
4351 if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
4352 return;
4354 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4357 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
4358 bool IsPackExpansion) {
4359 AlignedAttr TmpAttr(Context, CI, true, E);
4360 SourceLocation AttrLoc = CI.getLoc();
4362 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4363 if (TmpAttr.isAlignas()) {
4364 // C++11 [dcl.align]p1:
4365 // An alignment-specifier may be applied to a variable or to a class
4366 // data member, but it shall not be applied to a bit-field, a function
4367 // parameter, the formal parameter of a catch clause, or a variable
4368 // declared with the register storage class specifier. An
4369 // alignment-specifier may also be applied to the declaration of a class
4370 // or enumeration type.
4371 // CWG 2354:
4372 // CWG agreed to remove permission for alignas to be applied to
4373 // enumerations.
4374 // C11 6.7.5/2:
4375 // An alignment attribute shall not be specified in a declaration of
4376 // a typedef, or a bit-field, or a function, or a parameter, or an
4377 // object declared with the register storage-class specifier.
4378 int DiagKind = -1;
4379 if (isa<ParmVarDecl>(D)) {
4380 DiagKind = 0;
4381 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4382 if (VD->getStorageClass() == SC_Register)
4383 DiagKind = 1;
4384 if (VD->isExceptionVariable())
4385 DiagKind = 2;
4386 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4387 if (FD->isBitField())
4388 DiagKind = 3;
4389 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4390 if (ED->getLangOpts().CPlusPlus)
4391 DiagKind = 4;
4392 } else if (!isa<TagDecl>(D)) {
4393 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
4394 << (TmpAttr.isC11() ? ExpectedVariableOrField
4395 : ExpectedVariableFieldOrTag);
4396 return;
4398 if (DiagKind != -1) {
4399 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4400 << &TmpAttr << DiagKind;
4401 return;
4405 if (E->isValueDependent()) {
4406 // We can't support a dependent alignment on a non-dependent type,
4407 // because we have no way to model that a type is "alignment-dependent"
4408 // but not dependent in any other way.
4409 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4410 if (!TND->getUnderlyingType()->isDependentType()) {
4411 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4412 << E->getSourceRange();
4413 return;
4417 // Save dependent expressions in the AST to be instantiated.
4418 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4419 AA->setPackExpansion(IsPackExpansion);
4420 D->addAttr(AA);
4421 return;
4424 // FIXME: Cache the number on the AL object?
4425 llvm::APSInt Alignment;
4426 ExprResult ICE = VerifyIntegerConstantExpression(
4427 E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4428 if (ICE.isInvalid())
4429 return;
4431 uint64_t AlignVal = Alignment.getZExtValue();
4432 // C++11 [dcl.align]p2:
4433 // -- if the constant expression evaluates to zero, the alignment
4434 // specifier shall have no effect
4435 // C11 6.7.5p6:
4436 // An alignment specification of zero has no effect.
4437 if (!(TmpAttr.isAlignas() && !Alignment)) {
4438 if (!llvm::isPowerOf2_64(AlignVal)) {
4439 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4440 << E->getSourceRange();
4441 return;
4445 uint64_t MaximumAlignment = Sema::MaximumAlignment;
4446 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4447 MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4448 if (AlignVal > MaximumAlignment) {
4449 Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4450 << MaximumAlignment << E->getSourceRange();
4451 return;
4454 const auto *VD = dyn_cast<VarDecl>(D);
4455 if (VD) {
4456 unsigned MaxTLSAlign =
4457 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4458 .getQuantity();
4459 if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4460 VD->getTLSKind() != VarDecl::TLS_None) {
4461 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4462 << (unsigned)AlignVal << VD << MaxTLSAlign;
4463 return;
4467 // On AIX, an aligned attribute can not decrease the alignment when applied
4468 // to a variable declaration with vector type.
4469 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4470 const Type *Ty = VD->getType().getTypePtr();
4471 if (Ty->isVectorType() && AlignVal < 16) {
4472 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4473 << VD->getType() << 16;
4474 return;
4478 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4479 AA->setPackExpansion(IsPackExpansion);
4480 D->addAttr(AA);
4483 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4484 TypeSourceInfo *TS, bool IsPackExpansion) {
4485 // FIXME: Cache the number on the AL object if non-dependent?
4486 // FIXME: Perform checking of type validity
4487 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4488 AA->setPackExpansion(IsPackExpansion);
4489 D->addAttr(AA);
4492 void Sema::CheckAlignasUnderalignment(Decl *D) {
4493 assert(D->hasAttrs() && "no attributes on decl");
4495 QualType UnderlyingTy, DiagTy;
4496 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4497 UnderlyingTy = DiagTy = VD->getType();
4498 } else {
4499 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4500 if (const auto *ED = dyn_cast<EnumDecl>(D))
4501 UnderlyingTy = ED->getIntegerType();
4503 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4504 return;
4506 // C++11 [dcl.align]p5, C11 6.7.5/4:
4507 // The combined effect of all alignment attributes in a declaration shall
4508 // not specify an alignment that is less strict than the alignment that
4509 // would otherwise be required for the entity being declared.
4510 AlignedAttr *AlignasAttr = nullptr;
4511 AlignedAttr *LastAlignedAttr = nullptr;
4512 unsigned Align = 0;
4513 for (auto *I : D->specific_attrs<AlignedAttr>()) {
4514 if (I->isAlignmentDependent())
4515 return;
4516 if (I->isAlignas())
4517 AlignasAttr = I;
4518 Align = std::max(Align, I->getAlignment(Context));
4519 LastAlignedAttr = I;
4522 if (Align && DiagTy->isSizelessType()) {
4523 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4524 << LastAlignedAttr << DiagTy;
4525 } else if (AlignasAttr && Align) {
4526 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4527 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4528 if (NaturalAlign > RequestedAlign)
4529 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4530 << DiagTy << (unsigned)NaturalAlign.getQuantity();
4534 bool Sema::checkMSInheritanceAttrOnDefinition(
4535 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4536 MSInheritanceModel ExplicitModel) {
4537 assert(RD->hasDefinition() && "RD has no definition!");
4539 // We may not have seen base specifiers or any virtual methods yet. We will
4540 // have to wait until the record is defined to catch any mismatches.
4541 if (!RD->getDefinition()->isCompleteDefinition())
4542 return false;
4544 // The unspecified model never matches what a definition could need.
4545 if (ExplicitModel == MSInheritanceModel::Unspecified)
4546 return false;
4548 if (BestCase) {
4549 if (RD->calculateInheritanceModel() == ExplicitModel)
4550 return false;
4551 } else {
4552 if (RD->calculateInheritanceModel() <= ExplicitModel)
4553 return false;
4556 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4557 << 0 /*definition*/;
4558 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4559 return true;
4562 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4563 /// attribute.
4564 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4565 bool &IntegerMode, bool &ComplexMode,
4566 FloatModeKind &ExplicitType) {
4567 IntegerMode = true;
4568 ComplexMode = false;
4569 ExplicitType = FloatModeKind::NoFloat;
4570 switch (Str.size()) {
4571 case 2:
4572 switch (Str[0]) {
4573 case 'Q':
4574 DestWidth = 8;
4575 break;
4576 case 'H':
4577 DestWidth = 16;
4578 break;
4579 case 'S':
4580 DestWidth = 32;
4581 break;
4582 case 'D':
4583 DestWidth = 64;
4584 break;
4585 case 'X':
4586 DestWidth = 96;
4587 break;
4588 case 'K': // KFmode - IEEE quad precision (__float128)
4589 ExplicitType = FloatModeKind::Float128;
4590 DestWidth = Str[1] == 'I' ? 0 : 128;
4591 break;
4592 case 'T':
4593 ExplicitType = FloatModeKind::LongDouble;
4594 DestWidth = 128;
4595 break;
4596 case 'I':
4597 ExplicitType = FloatModeKind::Ibm128;
4598 DestWidth = Str[1] == 'I' ? 0 : 128;
4599 break;
4601 if (Str[1] == 'F') {
4602 IntegerMode = false;
4603 } else if (Str[1] == 'C') {
4604 IntegerMode = false;
4605 ComplexMode = true;
4606 } else if (Str[1] != 'I') {
4607 DestWidth = 0;
4609 break;
4610 case 4:
4611 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4612 // pointer on PIC16 and other embedded platforms.
4613 if (Str == "word")
4614 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4615 else if (Str == "byte")
4616 DestWidth = S.Context.getTargetInfo().getCharWidth();
4617 break;
4618 case 7:
4619 if (Str == "pointer")
4620 DestWidth = S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
4621 break;
4622 case 11:
4623 if (Str == "unwind_word")
4624 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4625 break;
4629 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4630 /// type.
4632 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4633 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4634 /// HImode, not an intermediate pointer.
4635 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4636 // This attribute isn't documented, but glibc uses it. It changes
4637 // the width of an int or unsigned int to the specified size.
4638 if (!AL.isArgIdent(0)) {
4639 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4640 << AL << AANT_ArgumentIdentifier;
4641 return;
4644 IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4646 S.AddModeAttr(D, AL, Name);
4649 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4650 IdentifierInfo *Name, bool InInstantiation) {
4651 StringRef Str = Name->getName();
4652 normalizeName(Str);
4653 SourceLocation AttrLoc = CI.getLoc();
4655 unsigned DestWidth = 0;
4656 bool IntegerMode = true;
4657 bool ComplexMode = false;
4658 FloatModeKind ExplicitType = FloatModeKind::NoFloat;
4659 llvm::APInt VectorSize(64, 0);
4660 if (Str.size() >= 4 && Str[0] == 'V') {
4661 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4662 size_t StrSize = Str.size();
4663 size_t VectorStringLength = 0;
4664 while ((VectorStringLength + 1) < StrSize &&
4665 isdigit(Str[VectorStringLength + 1]))
4666 ++VectorStringLength;
4667 if (VectorStringLength &&
4668 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4669 VectorSize.isPowerOf2()) {
4670 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4671 IntegerMode, ComplexMode, ExplicitType);
4672 // Avoid duplicate warning from template instantiation.
4673 if (!InInstantiation)
4674 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4675 } else {
4676 VectorSize = 0;
4680 if (!VectorSize)
4681 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4682 ExplicitType);
4684 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4685 // and friends, at least with glibc.
4686 // FIXME: Make sure floating-point mappings are accurate
4687 // FIXME: Support XF and TF types
4688 if (!DestWidth) {
4689 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4690 return;
4693 QualType OldTy;
4694 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4695 OldTy = TD->getUnderlyingType();
4696 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4697 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4698 // Try to get type from enum declaration, default to int.
4699 OldTy = ED->getIntegerType();
4700 if (OldTy.isNull())
4701 OldTy = Context.IntTy;
4702 } else
4703 OldTy = cast<ValueDecl>(D)->getType();
4705 if (OldTy->isDependentType()) {
4706 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4707 return;
4710 // Base type can also be a vector type (see PR17453).
4711 // Distinguish between base type and base element type.
4712 QualType OldElemTy = OldTy;
4713 if (const auto *VT = OldTy->getAs<VectorType>())
4714 OldElemTy = VT->getElementType();
4716 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4717 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4718 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4719 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4720 VectorSize.getBoolValue()) {
4721 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4722 return;
4724 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4725 !OldElemTy->isBitIntType()) ||
4726 OldElemTy->getAs<EnumType>();
4728 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4729 !IntegralOrAnyEnumType)
4730 Diag(AttrLoc, diag::err_mode_not_primitive);
4731 else if (IntegerMode) {
4732 if (!IntegralOrAnyEnumType)
4733 Diag(AttrLoc, diag::err_mode_wrong_type);
4734 } else if (ComplexMode) {
4735 if (!OldElemTy->isComplexType())
4736 Diag(AttrLoc, diag::err_mode_wrong_type);
4737 } else {
4738 if (!OldElemTy->isFloatingType())
4739 Diag(AttrLoc, diag::err_mode_wrong_type);
4742 QualType NewElemTy;
4744 if (IntegerMode)
4745 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4746 OldElemTy->isSignedIntegerType());
4747 else
4748 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4750 if (NewElemTy.isNull()) {
4751 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4752 return;
4755 if (ComplexMode) {
4756 NewElemTy = Context.getComplexType(NewElemTy);
4759 QualType NewTy = NewElemTy;
4760 if (VectorSize.getBoolValue()) {
4761 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4762 VectorType::GenericVector);
4763 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4764 // Complex machine mode does not support base vector types.
4765 if (ComplexMode) {
4766 Diag(AttrLoc, diag::err_complex_mode_vector_type);
4767 return;
4769 unsigned NumElements = Context.getTypeSize(OldElemTy) *
4770 OldVT->getNumElements() /
4771 Context.getTypeSize(NewElemTy);
4772 NewTy =
4773 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4776 if (NewTy.isNull()) {
4777 Diag(AttrLoc, diag::err_mode_wrong_type);
4778 return;
4781 // Install the new type.
4782 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4783 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4784 else if (auto *ED = dyn_cast<EnumDecl>(D))
4785 ED->setIntegerType(NewTy);
4786 else
4787 cast<ValueDecl>(D)->setType(NewTy);
4789 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4792 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4793 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4796 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4797 const AttributeCommonInfo &CI,
4798 const IdentifierInfo *Ident) {
4799 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4800 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4801 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4802 return nullptr;
4805 if (D->hasAttr<AlwaysInlineAttr>())
4806 return nullptr;
4808 return ::new (Context) AlwaysInlineAttr(Context, CI);
4811 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4812 const ParsedAttr &AL) {
4813 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4814 // Attribute applies to Var but not any subclass of it (like ParmVar,
4815 // ImplicitParm or VarTemplateSpecialization).
4816 if (VD->getKind() != Decl::Var) {
4817 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4818 << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4819 : ExpectedVariableOrFunction);
4820 return nullptr;
4822 // Attribute does not apply to non-static local variables.
4823 if (VD->hasLocalStorage()) {
4824 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4825 return nullptr;
4829 return ::new (Context) InternalLinkageAttr(Context, AL);
4831 InternalLinkageAttr *
4832 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4833 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4834 // Attribute applies to Var but not any subclass of it (like ParmVar,
4835 // ImplicitParm or VarTemplateSpecialization).
4836 if (VD->getKind() != Decl::Var) {
4837 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4838 << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4839 : ExpectedVariableOrFunction);
4840 return nullptr;
4842 // Attribute does not apply to non-static local variables.
4843 if (VD->hasLocalStorage()) {
4844 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4845 return nullptr;
4849 return ::new (Context) InternalLinkageAttr(Context, AL);
4852 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4853 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4854 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4855 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4856 return nullptr;
4859 if (D->hasAttr<MinSizeAttr>())
4860 return nullptr;
4862 return ::new (Context) MinSizeAttr(Context, CI);
4865 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4866 StringRef Name) {
4867 if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4868 if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4869 Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4870 << PrevSNA << &SNA;
4871 Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4874 D->dropAttr<SwiftNameAttr>();
4876 return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4879 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4880 const AttributeCommonInfo &CI) {
4881 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4882 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4883 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4884 D->dropAttr<AlwaysInlineAttr>();
4886 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4887 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4888 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4889 D->dropAttr<MinSizeAttr>();
4892 if (D->hasAttr<OptimizeNoneAttr>())
4893 return nullptr;
4895 return ::new (Context) OptimizeNoneAttr(Context, CI);
4898 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4899 if (AlwaysInlineAttr *Inline =
4900 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4901 D->addAttr(Inline);
4904 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4905 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4906 D->addAttr(MinSize);
4909 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4910 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4911 D->addAttr(Optnone);
4914 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4915 const auto *VD = cast<VarDecl>(D);
4916 if (VD->hasLocalStorage()) {
4917 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4918 return;
4920 // constexpr variable may already get an implicit constant attr, which should
4921 // be replaced by the explicit constant attr.
4922 if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4923 if (!A->isImplicit())
4924 return;
4925 D->dropAttr<CUDAConstantAttr>();
4927 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4930 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4931 const auto *VD = cast<VarDecl>(D);
4932 // extern __shared__ is only allowed on arrays with no length (e.g.
4933 // "int x[]").
4934 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4935 !isa<IncompleteArrayType>(VD->getType())) {
4936 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4937 return;
4939 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4940 S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4941 << S.CurrentCUDATarget())
4942 return;
4943 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4946 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4947 const auto *FD = cast<FunctionDecl>(D);
4948 if (!FD->getReturnType()->isVoidType() &&
4949 !FD->getReturnType()->getAs<AutoType>() &&
4950 !FD->getReturnType()->isInstantiationDependentType()) {
4951 SourceRange RTRange = FD->getReturnTypeSourceRange();
4952 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4953 << FD->getType()
4954 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4955 : FixItHint());
4956 return;
4958 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4959 if (Method->isInstance()) {
4960 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4961 << Method;
4962 return;
4964 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4966 // Only warn for "inline" when compiling for host, to cut down on noise.
4967 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4968 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4970 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4971 // In host compilation the kernel is emitted as a stub function, which is
4972 // a helper function for launching the kernel. The instructions in the helper
4973 // function has nothing to do with the source code of the kernel. Do not emit
4974 // debug info for the stub function to avoid confusing the debugger.
4975 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4976 D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4979 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4980 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4981 if (VD->hasLocalStorage()) {
4982 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4983 return;
4987 if (auto *A = D->getAttr<CUDADeviceAttr>()) {
4988 if (!A->isImplicit())
4989 return;
4990 D->dropAttr<CUDADeviceAttr>();
4992 D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
4995 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4996 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4997 if (VD->hasLocalStorage()) {
4998 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4999 return;
5002 if (!D->hasAttr<HIPManagedAttr>())
5003 D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
5004 if (!D->hasAttr<CUDADeviceAttr>())
5005 D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
5008 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5009 const auto *Fn = cast<FunctionDecl>(D);
5010 if (!Fn->isInlineSpecified()) {
5011 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
5012 return;
5015 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
5016 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
5018 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
5021 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5022 if (hasDeclarator(D)) return;
5024 // Diagnostic is emitted elsewhere: here we store the (valid) AL
5025 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
5026 CallingConv CC;
5027 if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
5028 return;
5030 if (!isa<ObjCMethodDecl>(D)) {
5031 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5032 << AL << ExpectedFunctionOrMethod;
5033 return;
5036 switch (AL.getKind()) {
5037 case ParsedAttr::AT_FastCall:
5038 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
5039 return;
5040 case ParsedAttr::AT_StdCall:
5041 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
5042 return;
5043 case ParsedAttr::AT_ThisCall:
5044 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
5045 return;
5046 case ParsedAttr::AT_CDecl:
5047 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
5048 return;
5049 case ParsedAttr::AT_Pascal:
5050 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
5051 return;
5052 case ParsedAttr::AT_SwiftCall:
5053 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
5054 return;
5055 case ParsedAttr::AT_SwiftAsyncCall:
5056 D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
5057 return;
5058 case ParsedAttr::AT_VectorCall:
5059 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
5060 return;
5061 case ParsedAttr::AT_MSABI:
5062 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
5063 return;
5064 case ParsedAttr::AT_SysVABI:
5065 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
5066 return;
5067 case ParsedAttr::AT_RegCall:
5068 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
5069 return;
5070 case ParsedAttr::AT_Pcs: {
5071 PcsAttr::PCSType PCS;
5072 switch (CC) {
5073 case CC_AAPCS:
5074 PCS = PcsAttr::AAPCS;
5075 break;
5076 case CC_AAPCS_VFP:
5077 PCS = PcsAttr::AAPCS_VFP;
5078 break;
5079 default:
5080 llvm_unreachable("unexpected calling convention in pcs attribute");
5083 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
5084 return;
5086 case ParsedAttr::AT_AArch64VectorPcs:
5087 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
5088 return;
5089 case ParsedAttr::AT_AArch64SVEPcs:
5090 D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL));
5091 return;
5092 case ParsedAttr::AT_AMDGPUKernelCall:
5093 D->addAttr(::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL));
5094 return;
5095 case ParsedAttr::AT_IntelOclBicc:
5096 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
5097 return;
5098 case ParsedAttr::AT_PreserveMost:
5099 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
5100 return;
5101 case ParsedAttr::AT_PreserveAll:
5102 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
5103 return;
5104 default:
5105 llvm_unreachable("unexpected attribute kind");
5109 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5110 if (!AL.checkAtLeastNumArgs(S, 1))
5111 return;
5113 std::vector<StringRef> DiagnosticIdentifiers;
5114 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5115 StringRef RuleName;
5117 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5118 return;
5120 // FIXME: Warn if the rule name is unknown. This is tricky because only
5121 // clang-tidy knows about available rules.
5122 DiagnosticIdentifiers.push_back(RuleName);
5124 D->addAttr(::new (S.Context)
5125 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5126 DiagnosticIdentifiers.size()));
5129 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5130 TypeSourceInfo *DerefTypeLoc = nullptr;
5131 QualType ParmType;
5132 if (AL.hasParsedType()) {
5133 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5135 unsigned SelectIdx = ~0U;
5136 if (ParmType->isReferenceType())
5137 SelectIdx = 0;
5138 else if (ParmType->isArrayType())
5139 SelectIdx = 1;
5141 if (SelectIdx != ~0U) {
5142 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5143 << SelectIdx << AL;
5144 return;
5148 // To check if earlier decl attributes do not conflict the newly parsed ones
5149 // we always add (and check) the attribute to the canonical decl. We need
5150 // to repeat the check for attribute mutual exclusion because we're attaching
5151 // all of the attributes to the canonical declaration rather than the current
5152 // declaration.
5153 D = D->getCanonicalDecl();
5154 if (AL.getKind() == ParsedAttr::AT_Owner) {
5155 if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
5156 return;
5157 if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5158 const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5159 ? OAttr->getDerefType().getTypePtr()
5160 : nullptr;
5161 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5162 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5163 << AL << OAttr;
5164 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5166 return;
5168 for (Decl *Redecl : D->redecls()) {
5169 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5171 } else {
5172 if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
5173 return;
5174 if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5175 const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5176 ? PAttr->getDerefType().getTypePtr()
5177 : nullptr;
5178 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5179 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5180 << AL << PAttr;
5181 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5183 return;
5185 for (Decl *Redecl : D->redecls()) {
5186 Redecl->addAttr(::new (S.Context)
5187 PointerAttr(S.Context, AL, DerefTypeLoc));
5192 static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5193 if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL))
5194 return;
5195 if (!D->hasAttr<RandomizeLayoutAttr>())
5196 D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL));
5199 static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D,
5200 const ParsedAttr &AL) {
5201 if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL))
5202 return;
5203 if (!D->hasAttr<NoRandomizeLayoutAttr>())
5204 D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL));
5207 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
5208 const FunctionDecl *FD) {
5209 if (Attrs.isInvalid())
5210 return true;
5212 if (Attrs.hasProcessingCache()) {
5213 CC = (CallingConv) Attrs.getProcessingCache();
5214 return false;
5217 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5218 if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5219 Attrs.setInvalid();
5220 return true;
5223 // TODO: diagnose uses of these conventions on the wrong target.
5224 switch (Attrs.getKind()) {
5225 case ParsedAttr::AT_CDecl:
5226 CC = CC_C;
5227 break;
5228 case ParsedAttr::AT_FastCall:
5229 CC = CC_X86FastCall;
5230 break;
5231 case ParsedAttr::AT_StdCall:
5232 CC = CC_X86StdCall;
5233 break;
5234 case ParsedAttr::AT_ThisCall:
5235 CC = CC_X86ThisCall;
5236 break;
5237 case ParsedAttr::AT_Pascal:
5238 CC = CC_X86Pascal;
5239 break;
5240 case ParsedAttr::AT_SwiftCall:
5241 CC = CC_Swift;
5242 break;
5243 case ParsedAttr::AT_SwiftAsyncCall:
5244 CC = CC_SwiftAsync;
5245 break;
5246 case ParsedAttr::AT_VectorCall:
5247 CC = CC_X86VectorCall;
5248 break;
5249 case ParsedAttr::AT_AArch64VectorPcs:
5250 CC = CC_AArch64VectorCall;
5251 break;
5252 case ParsedAttr::AT_AArch64SVEPcs:
5253 CC = CC_AArch64SVEPCS;
5254 break;
5255 case ParsedAttr::AT_AMDGPUKernelCall:
5256 CC = CC_AMDGPUKernelCall;
5257 break;
5258 case ParsedAttr::AT_RegCall:
5259 CC = CC_X86RegCall;
5260 break;
5261 case ParsedAttr::AT_MSABI:
5262 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
5263 CC_Win64;
5264 break;
5265 case ParsedAttr::AT_SysVABI:
5266 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
5267 CC_C;
5268 break;
5269 case ParsedAttr::AT_Pcs: {
5270 StringRef StrRef;
5271 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5272 Attrs.setInvalid();
5273 return true;
5275 if (StrRef == "aapcs") {
5276 CC = CC_AAPCS;
5277 break;
5278 } else if (StrRef == "aapcs-vfp") {
5279 CC = CC_AAPCS_VFP;
5280 break;
5283 Attrs.setInvalid();
5284 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5285 return true;
5287 case ParsedAttr::AT_IntelOclBicc:
5288 CC = CC_IntelOclBicc;
5289 break;
5290 case ParsedAttr::AT_PreserveMost:
5291 CC = CC_PreserveMost;
5292 break;
5293 case ParsedAttr::AT_PreserveAll:
5294 CC = CC_PreserveAll;
5295 break;
5296 default: llvm_unreachable("unexpected attribute kind");
5299 TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
5300 const TargetInfo &TI = Context.getTargetInfo();
5301 // CUDA functions may have host and/or device attributes which indicate
5302 // their targeted execution environment, therefore the calling convention
5303 // of functions in CUDA should be checked against the target deduced based
5304 // on their host/device attributes.
5305 if (LangOpts.CUDA) {
5306 auto *Aux = Context.getAuxTargetInfo();
5307 auto CudaTarget = IdentifyCUDATarget(FD);
5308 bool CheckHost = false, CheckDevice = false;
5309 switch (CudaTarget) {
5310 case CFT_HostDevice:
5311 CheckHost = true;
5312 CheckDevice = true;
5313 break;
5314 case CFT_Host:
5315 CheckHost = true;
5316 break;
5317 case CFT_Device:
5318 case CFT_Global:
5319 CheckDevice = true;
5320 break;
5321 case CFT_InvalidTarget:
5322 llvm_unreachable("unexpected cuda target");
5324 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5325 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5326 if (CheckHost && HostTI)
5327 A = HostTI->checkCallingConvention(CC);
5328 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5329 A = DeviceTI->checkCallingConvention(CC);
5330 } else {
5331 A = TI.checkCallingConvention(CC);
5334 switch (A) {
5335 case TargetInfo::CCCR_OK:
5336 break;
5338 case TargetInfo::CCCR_Ignore:
5339 // Treat an ignored convention as if it was an explicit C calling convention
5340 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5341 // that command line flags that change the default convention to
5342 // __vectorcall don't affect declarations marked __stdcall.
5343 CC = CC_C;
5344 break;
5346 case TargetInfo::CCCR_Error:
5347 Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5348 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5349 break;
5351 case TargetInfo::CCCR_Warning: {
5352 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5353 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5355 // This convention is not valid for the target. Use the default function or
5356 // method calling convention.
5357 bool IsCXXMethod = false, IsVariadic = false;
5358 if (FD) {
5359 IsCXXMethod = FD->isCXXInstanceMember();
5360 IsVariadic = FD->isVariadic();
5362 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5363 break;
5367 Attrs.setProcessingCache((unsigned) CC);
5368 return false;
5371 /// Pointer-like types in the default address space.
5372 static bool isValidSwiftContextType(QualType Ty) {
5373 if (!Ty->hasPointerRepresentation())
5374 return Ty->isDependentType();
5375 return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
5378 /// Pointers and references in the default address space.
5379 static bool isValidSwiftIndirectResultType(QualType Ty) {
5380 if (const auto *PtrType = Ty->getAs<PointerType>()) {
5381 Ty = PtrType->getPointeeType();
5382 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5383 Ty = RefType->getPointeeType();
5384 } else {
5385 return Ty->isDependentType();
5387 return Ty.getAddressSpace() == LangAS::Default;
5390 /// Pointers and references to pointers in the default address space.
5391 static bool isValidSwiftErrorResultType(QualType Ty) {
5392 if (const auto *PtrType = Ty->getAs<PointerType>()) {
5393 Ty = PtrType->getPointeeType();
5394 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5395 Ty = RefType->getPointeeType();
5396 } else {
5397 return Ty->isDependentType();
5399 if (!Ty.getQualifiers().empty())
5400 return false;
5401 return isValidSwiftContextType(Ty);
5404 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
5405 ParameterABI abi) {
5407 QualType type = cast<ParmVarDecl>(D)->getType();
5409 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
5410 if (existingAttr->getABI() != abi) {
5411 Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
5412 << getParameterABISpelling(abi) << existingAttr;
5413 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
5414 return;
5418 switch (abi) {
5419 case ParameterABI::Ordinary:
5420 llvm_unreachable("explicit attribute for ordinary parameter ABI?");
5422 case ParameterABI::SwiftContext:
5423 if (!isValidSwiftContextType(type)) {
5424 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5425 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5427 D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
5428 return;
5430 case ParameterABI::SwiftAsyncContext:
5431 if (!isValidSwiftContextType(type)) {
5432 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5433 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5435 D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5436 return;
5438 case ParameterABI::SwiftErrorResult:
5439 if (!isValidSwiftErrorResultType(type)) {
5440 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5441 << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5443 D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5444 return;
5446 case ParameterABI::SwiftIndirectResult:
5447 if (!isValidSwiftIndirectResultType(type)) {
5448 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5449 << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5451 D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5452 return;
5454 llvm_unreachable("bad parameter ABI attribute");
5457 /// Checks a regparm attribute, returning true if it is ill-formed and
5458 /// otherwise setting numParams to the appropriate value.
5459 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5460 if (AL.isInvalid())
5461 return true;
5463 if (!AL.checkExactlyNumArgs(*this, 1)) {
5464 AL.setInvalid();
5465 return true;
5468 uint32_t NP;
5469 Expr *NumParamsExpr = AL.getArgAsExpr(0);
5470 if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5471 AL.setInvalid();
5472 return true;
5475 if (Context.getTargetInfo().getRegParmMax() == 0) {
5476 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5477 << NumParamsExpr->getSourceRange();
5478 AL.setInvalid();
5479 return true;
5482 numParams = NP;
5483 if (numParams > Context.getTargetInfo().getRegParmMax()) {
5484 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5485 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5486 AL.setInvalid();
5487 return true;
5490 return false;
5493 // Checks whether an argument of launch_bounds attribute is
5494 // acceptable, performs implicit conversion to Rvalue, and returns
5495 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5496 // and may output an error.
5497 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5498 const CUDALaunchBoundsAttr &AL,
5499 const unsigned Idx) {
5500 if (S.DiagnoseUnexpandedParameterPack(E))
5501 return nullptr;
5503 // Accept template arguments for now as they depend on something else.
5504 // We'll get to check them when they eventually get instantiated.
5505 if (E->isValueDependent())
5506 return E;
5508 std::optional<llvm::APSInt> I = llvm::APSInt(64);
5509 if (!(I = E->getIntegerConstantExpr(S.Context))) {
5510 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5511 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5512 return nullptr;
5514 // Make sure we can fit it in 32 bits.
5515 if (!I->isIntN(32)) {
5516 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5517 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5518 return nullptr;
5520 if (*I < 0)
5521 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5522 << &AL << Idx << E->getSourceRange();
5524 // We may need to perform implicit conversion of the argument.
5525 InitializedEntity Entity = InitializedEntity::InitializeParameter(
5526 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5527 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5528 assert(!ValArg.isInvalid() &&
5529 "Unexpected PerformCopyInitialization() failure.");
5531 return ValArg.getAs<Expr>();
5534 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5535 Expr *MaxThreads, Expr *MinBlocks) {
5536 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
5537 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5538 if (MaxThreads == nullptr)
5539 return;
5541 if (MinBlocks) {
5542 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5543 if (MinBlocks == nullptr)
5544 return;
5547 D->addAttr(::new (Context)
5548 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
5551 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5552 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
5553 return;
5555 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5556 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
5559 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5560 const ParsedAttr &AL) {
5561 if (!AL.isArgIdent(0)) {
5562 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5563 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5564 return;
5567 ParamIdx ArgumentIdx;
5568 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5569 ArgumentIdx))
5570 return;
5572 ParamIdx TypeTagIdx;
5573 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5574 TypeTagIdx))
5575 return;
5577 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5578 if (IsPointer) {
5579 // Ensure that buffer has a pointer type.
5580 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5581 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5582 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5583 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5586 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5587 S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5588 IsPointer));
5591 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5592 const ParsedAttr &AL) {
5593 if (!AL.isArgIdent(0)) {
5594 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5595 << AL << 1 << AANT_ArgumentIdentifier;
5596 return;
5599 if (!AL.checkExactlyNumArgs(S, 1))
5600 return;
5602 if (!isa<VarDecl>(D)) {
5603 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5604 << AL << ExpectedVariable;
5605 return;
5608 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5609 TypeSourceInfo *MatchingCTypeLoc = nullptr;
5610 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5611 assert(MatchingCTypeLoc && "no type source info for attribute argument");
5613 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5614 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5615 AL.getMustBeNull()));
5618 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5619 ParamIdx ArgCount;
5621 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5622 ArgCount,
5623 true /* CanIndexImplicitThis */))
5624 return;
5626 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5627 D->addAttr(::new (S.Context)
5628 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5631 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5632 const ParsedAttr &AL) {
5633 uint32_t Count = 0, Offset = 0;
5634 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5635 return;
5636 if (AL.getNumArgs() == 2) {
5637 Expr *Arg = AL.getArgAsExpr(1);
5638 if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5639 return;
5640 if (Count < Offset) {
5641 S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5642 << &AL << 0 << Count << Arg->getBeginLoc();
5643 return;
5646 D->addAttr(::new (S.Context)
5647 PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5650 namespace {
5651 struct IntrinToName {
5652 uint32_t Id;
5653 int32_t FullName;
5654 int32_t ShortName;
5656 } // unnamed namespace
5658 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5659 ArrayRef<IntrinToName> Map,
5660 const char *IntrinNames) {
5661 if (AliasName.startswith("__arm_"))
5662 AliasName = AliasName.substr(6);
5663 const IntrinToName *It =
5664 llvm::lower_bound(Map, BuiltinID, [](const IntrinToName &L, unsigned Id) {
5665 return L.Id < Id;
5667 if (It == Map.end() || It->Id != BuiltinID)
5668 return false;
5669 StringRef FullName(&IntrinNames[It->FullName]);
5670 if (AliasName == FullName)
5671 return true;
5672 if (It->ShortName == -1)
5673 return false;
5674 StringRef ShortName(&IntrinNames[It->ShortName]);
5675 return AliasName == ShortName;
5678 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5679 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5680 // The included file defines:
5681 // - ArrayRef<IntrinToName> Map
5682 // - const char IntrinNames[]
5683 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5686 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5687 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5688 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5691 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5692 StringRef AliasName) {
5693 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5694 BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5695 return BuiltinID >= AArch64::FirstSVEBuiltin &&
5696 BuiltinID <= AArch64::LastSVEBuiltin;
5699 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5700 if (!AL.isArgIdent(0)) {
5701 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5702 << AL << 1 << AANT_ArgumentIdentifier;
5703 return;
5706 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5707 unsigned BuiltinID = Ident->getBuiltinID();
5708 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5710 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5711 if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5712 (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5713 !ArmCdeAliasValid(BuiltinID, AliasName))) {
5714 S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5715 return;
5718 D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5721 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5722 return BuiltinID >= RISCV::FirstRVVBuiltin &&
5723 BuiltinID <= RISCV::LastRVVBuiltin;
5726 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5727 const ParsedAttr &AL) {
5728 if (!AL.isArgIdent(0)) {
5729 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5730 << AL << 1 << AANT_ArgumentIdentifier;
5731 return;
5734 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5735 unsigned BuiltinID = Ident->getBuiltinID();
5736 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5738 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5739 bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5740 bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5741 bool IsHLSL = S.Context.getLangOpts().HLSL;
5742 if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5743 (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5744 !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5745 (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5746 (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) {
5747 S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5748 return;
5751 D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5754 //===----------------------------------------------------------------------===//
5755 // Checker-specific attribute handlers.
5756 //===----------------------------------------------------------------------===//
5757 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5758 return QT->isDependentType() || QT->isObjCRetainableType();
5761 static bool isValidSubjectOfNSAttribute(QualType QT) {
5762 return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5763 QT->isObjCNSObjectType();
5766 static bool isValidSubjectOfCFAttribute(QualType QT) {
5767 return QT->isDependentType() || QT->isPointerType() ||
5768 isValidSubjectOfNSAttribute(QT);
5771 static bool isValidSubjectOfOSAttribute(QualType QT) {
5772 if (QT->isDependentType())
5773 return true;
5774 QualType PT = QT->getPointeeType();
5775 return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5778 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5779 RetainOwnershipKind K,
5780 bool IsTemplateInstantiation) {
5781 ValueDecl *VD = cast<ValueDecl>(D);
5782 switch (K) {
5783 case RetainOwnershipKind::OS:
5784 handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5785 *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5786 diag::warn_ns_attribute_wrong_parameter_type,
5787 /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5788 return;
5789 case RetainOwnershipKind::NS:
5790 handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5791 *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5793 // These attributes are normally just advisory, but in ARC, ns_consumed
5794 // is significant. Allow non-dependent code to contain inappropriate
5795 // attributes even in ARC, but require template instantiations to be
5796 // set up correctly.
5797 ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5798 ? diag::err_ns_attribute_wrong_parameter_type
5799 : diag::warn_ns_attribute_wrong_parameter_type),
5800 /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5801 return;
5802 case RetainOwnershipKind::CF:
5803 handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5804 *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5805 diag::warn_ns_attribute_wrong_parameter_type,
5806 /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5807 return;
5811 static Sema::RetainOwnershipKind
5812 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5813 switch (AL.getKind()) {
5814 case ParsedAttr::AT_CFConsumed:
5815 case ParsedAttr::AT_CFReturnsRetained:
5816 case ParsedAttr::AT_CFReturnsNotRetained:
5817 return Sema::RetainOwnershipKind::CF;
5818 case ParsedAttr::AT_OSConsumesThis:
5819 case ParsedAttr::AT_OSConsumed:
5820 case ParsedAttr::AT_OSReturnsRetained:
5821 case ParsedAttr::AT_OSReturnsNotRetained:
5822 case ParsedAttr::AT_OSReturnsRetainedOnZero:
5823 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5824 return Sema::RetainOwnershipKind::OS;
5825 case ParsedAttr::AT_NSConsumesSelf:
5826 case ParsedAttr::AT_NSConsumed:
5827 case ParsedAttr::AT_NSReturnsRetained:
5828 case ParsedAttr::AT_NSReturnsNotRetained:
5829 case ParsedAttr::AT_NSReturnsAutoreleased:
5830 return Sema::RetainOwnershipKind::NS;
5831 default:
5832 llvm_unreachable("Wrong argument supplied");
5836 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5837 if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5838 return false;
5840 Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5841 << "'ns_returns_retained'" << 0 << 0;
5842 return true;
5845 /// \return whether the parameter is a pointer to OSObject pointer.
5846 static bool isValidOSObjectOutParameter(const Decl *D) {
5847 const auto *PVD = dyn_cast<ParmVarDecl>(D);
5848 if (!PVD)
5849 return false;
5850 QualType QT = PVD->getType();
5851 QualType PT = QT->getPointeeType();
5852 return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5855 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5856 const ParsedAttr &AL) {
5857 QualType ReturnType;
5858 Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5860 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5861 ReturnType = MD->getReturnType();
5862 } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5863 (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5864 return; // ignore: was handled as a type attribute
5865 } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5866 ReturnType = PD->getType();
5867 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5868 ReturnType = FD->getReturnType();
5869 } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5870 // Attributes on parameters are used for out-parameters,
5871 // passed as pointers-to-pointers.
5872 unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5873 ? /*pointer-to-CF-pointer*/2
5874 : /*pointer-to-OSObject-pointer*/3;
5875 ReturnType = Param->getType()->getPointeeType();
5876 if (ReturnType.isNull()) {
5877 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5878 << AL << DiagID << AL.getRange();
5879 return;
5881 } else if (AL.isUsedAsTypeAttr()) {
5882 return;
5883 } else {
5884 AttributeDeclKind ExpectedDeclKind;
5885 switch (AL.getKind()) {
5886 default: llvm_unreachable("invalid ownership attribute");
5887 case ParsedAttr::AT_NSReturnsRetained:
5888 case ParsedAttr::AT_NSReturnsAutoreleased:
5889 case ParsedAttr::AT_NSReturnsNotRetained:
5890 ExpectedDeclKind = ExpectedFunctionOrMethod;
5891 break;
5893 case ParsedAttr::AT_OSReturnsRetained:
5894 case ParsedAttr::AT_OSReturnsNotRetained:
5895 case ParsedAttr::AT_CFReturnsRetained:
5896 case ParsedAttr::AT_CFReturnsNotRetained:
5897 ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5898 break;
5900 S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5901 << AL.getRange() << AL << ExpectedDeclKind;
5902 return;
5905 bool TypeOK;
5906 bool Cf;
5907 unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5908 switch (AL.getKind()) {
5909 default: llvm_unreachable("invalid ownership attribute");
5910 case ParsedAttr::AT_NSReturnsRetained:
5911 TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5912 Cf = false;
5913 break;
5915 case ParsedAttr::AT_NSReturnsAutoreleased:
5916 case ParsedAttr::AT_NSReturnsNotRetained:
5917 TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5918 Cf = false;
5919 break;
5921 case ParsedAttr::AT_CFReturnsRetained:
5922 case ParsedAttr::AT_CFReturnsNotRetained:
5923 TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5924 Cf = true;
5925 break;
5927 case ParsedAttr::AT_OSReturnsRetained:
5928 case ParsedAttr::AT_OSReturnsNotRetained:
5929 TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5930 Cf = true;
5931 ParmDiagID = 3; // Pointer-to-OSObject-pointer
5932 break;
5935 if (!TypeOK) {
5936 if (AL.isUsedAsTypeAttr())
5937 return;
5939 if (isa<ParmVarDecl>(D)) {
5940 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5941 << AL << ParmDiagID << AL.getRange();
5942 } else {
5943 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5944 enum : unsigned {
5945 Function,
5946 Method,
5947 Property
5948 } SubjectKind = Function;
5949 if (isa<ObjCMethodDecl>(D))
5950 SubjectKind = Method;
5951 else if (isa<ObjCPropertyDecl>(D))
5952 SubjectKind = Property;
5953 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5954 << AL << SubjectKind << Cf << AL.getRange();
5956 return;
5959 switch (AL.getKind()) {
5960 default:
5961 llvm_unreachable("invalid ownership attribute");
5962 case ParsedAttr::AT_NSReturnsAutoreleased:
5963 handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5964 return;
5965 case ParsedAttr::AT_CFReturnsNotRetained:
5966 handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5967 return;
5968 case ParsedAttr::AT_NSReturnsNotRetained:
5969 handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5970 return;
5971 case ParsedAttr::AT_CFReturnsRetained:
5972 handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5973 return;
5974 case ParsedAttr::AT_NSReturnsRetained:
5975 handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5976 return;
5977 case ParsedAttr::AT_OSReturnsRetained:
5978 handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5979 return;
5980 case ParsedAttr::AT_OSReturnsNotRetained:
5981 handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5982 return;
5986 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5987 const ParsedAttr &Attrs) {
5988 const int EP_ObjCMethod = 1;
5989 const int EP_ObjCProperty = 2;
5991 SourceLocation loc = Attrs.getLoc();
5992 QualType resultType;
5993 if (isa<ObjCMethodDecl>(D))
5994 resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5995 else
5996 resultType = cast<ObjCPropertyDecl>(D)->getType();
5998 if (!resultType->isReferenceType() &&
5999 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
6000 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
6001 << SourceRange(loc) << Attrs
6002 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
6003 << /*non-retainable pointer*/ 2;
6005 // Drop the attribute.
6006 return;
6009 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
6012 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
6013 const ParsedAttr &Attrs) {
6014 const auto *Method = cast<ObjCMethodDecl>(D);
6016 const DeclContext *DC = Method->getDeclContext();
6017 if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
6018 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
6019 << 0;
6020 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
6021 return;
6023 if (Method->getMethodFamily() == OMF_dealloc) {
6024 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
6025 << 1;
6026 return;
6029 D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
6032 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
6033 auto *E = AL.getArgAsExpr(0);
6034 auto Loc = E ? E->getBeginLoc() : AL.getLoc();
6036 auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
6037 if (!DRE) {
6038 S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
6039 return;
6042 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6043 if (!VD) {
6044 S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
6045 return;
6048 if (!isNSStringType(VD->getType(), S.Context) &&
6049 !isCFStringType(VD->getType(), S.Context)) {
6050 S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
6051 return;
6054 D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
6057 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6058 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
6060 if (!Parm) {
6061 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6062 return;
6065 // Typedefs only allow objc_bridge(id) and have some additional checking.
6066 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
6067 if (!Parm->Ident->isStr("id")) {
6068 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
6069 return;
6072 // Only allow 'cv void *'.
6073 QualType T = TD->getUnderlyingType();
6074 if (!T->isVoidPointerType()) {
6075 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
6076 return;
6080 D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
6083 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
6084 const ParsedAttr &AL) {
6085 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
6087 if (!Parm) {
6088 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6089 return;
6092 D->addAttr(::new (S.Context)
6093 ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
6096 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
6097 const ParsedAttr &AL) {
6098 IdentifierInfo *RelatedClass =
6099 AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
6100 if (!RelatedClass) {
6101 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6102 return;
6104 IdentifierInfo *ClassMethod =
6105 AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
6106 IdentifierInfo *InstanceMethod =
6107 AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
6108 D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
6109 S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
6112 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
6113 const ParsedAttr &AL) {
6114 DeclContext *Ctx = D->getDeclContext();
6116 // This attribute can only be applied to methods in interfaces or class
6117 // extensions.
6118 if (!isa<ObjCInterfaceDecl>(Ctx) &&
6119 !(isa<ObjCCategoryDecl>(Ctx) &&
6120 cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
6121 S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
6122 return;
6125 ObjCInterfaceDecl *IFace;
6126 if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
6127 IFace = CatDecl->getClassInterface();
6128 else
6129 IFace = cast<ObjCInterfaceDecl>(Ctx);
6131 if (!IFace)
6132 return;
6134 IFace->setHasDesignatedInitializers();
6135 D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
6138 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
6139 StringRef MetaDataName;
6140 if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
6141 return;
6142 D->addAttr(::new (S.Context)
6143 ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
6146 // When a user wants to use objc_boxable with a union or struct
6147 // but they don't have access to the declaration (legacy/third-party code)
6148 // then they can 'enable' this feature with a typedef:
6149 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
6150 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
6151 bool notify = false;
6153 auto *RD = dyn_cast<RecordDecl>(D);
6154 if (RD && RD->getDefinition()) {
6155 RD = RD->getDefinition();
6156 notify = true;
6159 if (RD) {
6160 ObjCBoxableAttr *BoxableAttr =
6161 ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
6162 RD->addAttr(BoxableAttr);
6163 if (notify) {
6164 // we need to notify ASTReader/ASTWriter about
6165 // modification of existing declaration
6166 if (ASTMutationListener *L = S.getASTMutationListener())
6167 L->AddedAttributeToRecord(BoxableAttr, RD);
6172 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6173 if (hasDeclarator(D)) return;
6175 S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
6176 << AL.getRange() << AL << ExpectedVariable;
6179 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
6180 const ParsedAttr &AL) {
6181 const auto *VD = cast<ValueDecl>(D);
6182 QualType QT = VD->getType();
6184 if (!QT->isDependentType() &&
6185 !QT->isObjCLifetimeType()) {
6186 S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
6187 << QT;
6188 return;
6191 Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
6193 // If we have no lifetime yet, check the lifetime we're presumably
6194 // going to infer.
6195 if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
6196 Lifetime = QT->getObjCARCImplicitLifetime();
6198 switch (Lifetime) {
6199 case Qualifiers::OCL_None:
6200 assert(QT->isDependentType() &&
6201 "didn't infer lifetime for non-dependent type?");
6202 break;
6204 case Qualifiers::OCL_Weak: // meaningful
6205 case Qualifiers::OCL_Strong: // meaningful
6206 break;
6208 case Qualifiers::OCL_ExplicitNone:
6209 case Qualifiers::OCL_Autoreleasing:
6210 S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
6211 << (Lifetime == Qualifiers::OCL_Autoreleasing);
6212 break;
6215 D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
6218 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6219 // Make sure that there is a string literal as the annotation's single
6220 // argument.
6221 StringRef Str;
6222 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6223 return;
6225 D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
6228 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
6229 // Make sure that there is a string literal as the annotation's single
6230 // argument.
6231 StringRef BT;
6232 if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
6233 return;
6235 // Warn about duplicate attributes if they have different arguments, but drop
6236 // any duplicate attributes regardless.
6237 if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
6238 if (Other->getSwiftType() != BT)
6239 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
6240 return;
6243 D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
6246 static bool isErrorParameter(Sema &S, QualType QT) {
6247 const auto *PT = QT->getAs<PointerType>();
6248 if (!PT)
6249 return false;
6251 QualType Pointee = PT->getPointeeType();
6253 // Check for NSError**.
6254 if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
6255 if (const auto *ID = OPT->getInterfaceDecl())
6256 if (ID->getIdentifier() == S.getNSErrorIdent())
6257 return true;
6259 // Check for CFError**.
6260 if (const auto *PT = Pointee->getAs<PointerType>())
6261 if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
6262 if (S.isCFError(RT->getDecl()))
6263 return true;
6265 return false;
6268 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
6269 auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6270 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6271 if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
6272 return true;
6275 S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
6276 << AL << isa<ObjCMethodDecl>(D);
6277 return false;
6280 auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6281 // - C, ObjC, and block pointers are definitely okay.
6282 // - References are definitely not okay.
6283 // - nullptr_t is weird, but acceptable.
6284 QualType RT = getFunctionOrMethodResultType(D);
6285 if (RT->hasPointerRepresentation() && !RT->isReferenceType())
6286 return true;
6288 S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6289 << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6290 << /*pointer*/ 1;
6291 return false;
6294 auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6295 QualType RT = getFunctionOrMethodResultType(D);
6296 if (RT->isIntegralType(S.Context))
6297 return true;
6299 S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6300 << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6301 << /*integral*/ 0;
6302 return false;
6305 if (D->isInvalidDecl())
6306 return;
6308 IdentifierLoc *Loc = AL.getArgAsIdent(0);
6309 SwiftErrorAttr::ConventionKind Convention;
6310 if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
6311 Convention)) {
6312 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6313 << AL << Loc->Ident;
6314 return;
6317 switch (Convention) {
6318 case SwiftErrorAttr::None:
6319 // No additional validation required.
6320 break;
6322 case SwiftErrorAttr::NonNullError:
6323 if (!hasErrorParameter(S, D, AL))
6324 return;
6325 break;
6327 case SwiftErrorAttr::NullResult:
6328 if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
6329 return;
6330 break;
6332 case SwiftErrorAttr::NonZeroResult:
6333 case SwiftErrorAttr::ZeroResult:
6334 if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
6335 return;
6336 break;
6339 D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
6342 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
6343 const SwiftAsyncErrorAttr *ErrorAttr,
6344 const SwiftAsyncAttr *AsyncAttr) {
6345 if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
6346 if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
6347 S.Diag(AsyncAttr->getLocation(),
6348 diag::err_swift_async_error_without_swift_async)
6349 << AsyncAttr << isa<ObjCMethodDecl>(D);
6351 return;
6354 const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
6355 D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
6356 // handleSwiftAsyncAttr already verified the type is correct, so no need to
6357 // double-check it here.
6358 const auto *FuncTy = HandlerParam->getType()
6359 ->castAs<BlockPointerType>()
6360 ->getPointeeType()
6361 ->getAs<FunctionProtoType>();
6362 ArrayRef<QualType> BlockParams;
6363 if (FuncTy)
6364 BlockParams = FuncTy->getParamTypes();
6366 switch (ErrorAttr->getConvention()) {
6367 case SwiftAsyncErrorAttr::ZeroArgument:
6368 case SwiftAsyncErrorAttr::NonZeroArgument: {
6369 uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
6370 if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
6371 S.Diag(ErrorAttr->getLocation(),
6372 diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
6373 return;
6375 QualType ErrorParam = BlockParams[ParamIdx - 1];
6376 if (!ErrorParam->isIntegralType(S.Context)) {
6377 StringRef ConvStr =
6378 ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
6379 ? "zero_argument"
6380 : "nonzero_argument";
6381 S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
6382 << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
6383 return;
6385 break;
6387 case SwiftAsyncErrorAttr::NonNullError: {
6388 bool AnyErrorParams = false;
6389 for (QualType Param : BlockParams) {
6390 // Check for NSError *.
6391 if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
6392 if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
6393 if (ID->getIdentifier() == S.getNSErrorIdent()) {
6394 AnyErrorParams = true;
6395 break;
6399 // Check for CFError *.
6400 if (const auto *PtrTy = Param->getAs<PointerType>()) {
6401 if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
6402 if (S.isCFError(RT->getDecl())) {
6403 AnyErrorParams = true;
6404 break;
6410 if (!AnyErrorParams) {
6411 S.Diag(ErrorAttr->getLocation(),
6412 diag::err_swift_async_error_no_error_parameter)
6413 << ErrorAttr << isa<ObjCMethodDecl>(D);
6414 return;
6416 break;
6418 case SwiftAsyncErrorAttr::None:
6419 break;
6423 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
6424 IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
6425 SwiftAsyncErrorAttr::ConventionKind ConvKind;
6426 if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
6427 ConvKind)) {
6428 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6429 << AL << IDLoc->Ident;
6430 return;
6433 uint32_t ParamIdx = 0;
6434 switch (ConvKind) {
6435 case SwiftAsyncErrorAttr::ZeroArgument:
6436 case SwiftAsyncErrorAttr::NonZeroArgument: {
6437 if (!AL.checkExactlyNumArgs(S, 2))
6438 return;
6440 Expr *IdxExpr = AL.getArgAsExpr(1);
6441 if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6442 return;
6443 break;
6445 case SwiftAsyncErrorAttr::NonNullError:
6446 case SwiftAsyncErrorAttr::None: {
6447 if (!AL.checkExactlyNumArgs(S, 1))
6448 return;
6449 break;
6453 auto *ErrorAttr =
6454 ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6455 D->addAttr(ErrorAttr);
6457 if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6458 checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6461 // For a function, this will validate a compound Swift name, e.g.
6462 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6463 // the function will output the number of parameter names, and whether this is a
6464 // single-arg initializer.
6466 // For a type, enum constant, property, or variable declaration, this will
6467 // validate either a simple identifier, or a qualified
6468 // <code>context.identifier</code> name.
6469 static bool
6470 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6471 StringRef Name, unsigned &SwiftParamCount,
6472 bool &IsSingleParamInit) {
6473 SwiftParamCount = 0;
6474 IsSingleParamInit = false;
6476 // Check whether this will be mapped to a getter or setter of a property.
6477 bool IsGetter = false, IsSetter = false;
6478 if (Name.startswith("getter:")) {
6479 IsGetter = true;
6480 Name = Name.substr(7);
6481 } else if (Name.startswith("setter:")) {
6482 IsSetter = true;
6483 Name = Name.substr(7);
6486 if (Name.back() != ')') {
6487 S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6488 return false;
6491 bool IsMember = false;
6492 StringRef ContextName, BaseName, Parameters;
6494 std::tie(BaseName, Parameters) = Name.split('(');
6496 // Split at the first '.', if it exists, which separates the context name
6497 // from the base name.
6498 std::tie(ContextName, BaseName) = BaseName.split('.');
6499 if (BaseName.empty()) {
6500 BaseName = ContextName;
6501 ContextName = StringRef();
6502 } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
6503 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6504 << AL << /*context*/ 1;
6505 return false;
6506 } else {
6507 IsMember = true;
6510 if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
6511 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6512 << AL << /*basename*/ 0;
6513 return false;
6516 bool IsSubscript = BaseName == "subscript";
6517 // A subscript accessor must be a getter or setter.
6518 if (IsSubscript && !IsGetter && !IsSetter) {
6519 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6520 << AL << /* getter or setter */ 0;
6521 return false;
6524 if (Parameters.empty()) {
6525 S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6526 return false;
6529 assert(Parameters.back() == ')' && "expected ')'");
6530 Parameters = Parameters.drop_back(); // ')'
6532 if (Parameters.empty()) {
6533 // Setters and subscripts must have at least one parameter.
6534 if (IsSubscript) {
6535 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6536 << AL << /* have at least one parameter */1;
6537 return false;
6540 if (IsSetter) {
6541 S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6542 return false;
6545 return true;
6548 if (Parameters.back() != ':') {
6549 S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6550 return false;
6553 StringRef CurrentParam;
6554 std::optional<unsigned> SelfLocation;
6555 unsigned NewValueCount = 0;
6556 std::optional<unsigned> NewValueLocation;
6557 do {
6558 std::tie(CurrentParam, Parameters) = Parameters.split(':');
6560 if (!isValidAsciiIdentifier(CurrentParam)) {
6561 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6562 << AL << /*parameter*/2;
6563 return false;
6566 if (IsMember && CurrentParam == "self") {
6567 // "self" indicates the "self" argument for a member.
6569 // More than one "self"?
6570 if (SelfLocation) {
6571 S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6572 return false;
6575 // The "self" location is the current parameter.
6576 SelfLocation = SwiftParamCount;
6577 } else if (CurrentParam == "newValue") {
6578 // "newValue" indicates the "newValue" argument for a setter.
6580 // There should only be one 'newValue', but it's only significant for
6581 // subscript accessors, so don't error right away.
6582 ++NewValueCount;
6584 NewValueLocation = SwiftParamCount;
6587 ++SwiftParamCount;
6588 } while (!Parameters.empty());
6590 // Only instance subscripts are currently supported.
6591 if (IsSubscript && !SelfLocation) {
6592 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6593 << AL << /*have a 'self:' parameter*/2;
6594 return false;
6597 IsSingleParamInit =
6598 SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6600 // Check the number of parameters for a getter/setter.
6601 if (IsGetter || IsSetter) {
6602 // Setters have one parameter for the new value.
6603 unsigned NumExpectedParams = IsGetter ? 0 : 1;
6604 unsigned ParamDiag =
6605 IsGetter ? diag::warn_attr_swift_name_getter_parameters
6606 : diag::warn_attr_swift_name_setter_parameters;
6608 // Instance methods have one parameter for "self".
6609 if (SelfLocation)
6610 ++NumExpectedParams;
6612 // Subscripts may have additional parameters beyond the expected params for
6613 // the index.
6614 if (IsSubscript) {
6615 if (SwiftParamCount < NumExpectedParams) {
6616 S.Diag(Loc, ParamDiag) << AL;
6617 return false;
6620 // A subscript setter must explicitly label its newValue parameter to
6621 // distinguish it from index parameters.
6622 if (IsSetter) {
6623 if (!NewValueLocation) {
6624 S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6625 << AL;
6626 return false;
6628 if (NewValueCount > 1) {
6629 S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6630 << AL;
6631 return false;
6633 } else {
6634 // Subscript getters should have no 'newValue:' parameter.
6635 if (NewValueLocation) {
6636 S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6637 << AL;
6638 return false;
6641 } else {
6642 // Property accessors must have exactly the number of expected params.
6643 if (SwiftParamCount != NumExpectedParams) {
6644 S.Diag(Loc, ParamDiag) << AL;
6645 return false;
6650 return true;
6653 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6654 const ParsedAttr &AL, bool IsAsync) {
6655 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6656 ArrayRef<ParmVarDecl*> Params;
6657 unsigned ParamCount;
6659 if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6660 ParamCount = Method->getSelector().getNumArgs();
6661 Params = Method->parameters().slice(0, ParamCount);
6662 } else {
6663 const auto *F = cast<FunctionDecl>(D);
6665 ParamCount = F->getNumParams();
6666 Params = F->parameters();
6668 if (!F->hasWrittenPrototype()) {
6669 Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
6670 << ExpectedFunctionWithProtoType;
6671 return false;
6675 // The async name drops the last callback parameter.
6676 if (IsAsync) {
6677 if (ParamCount == 0) {
6678 Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6679 << AL << isa<ObjCMethodDecl>(D);
6680 return false;
6682 ParamCount -= 1;
6685 unsigned SwiftParamCount;
6686 bool IsSingleParamInit;
6687 if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6688 SwiftParamCount, IsSingleParamInit))
6689 return false;
6691 bool ParamCountValid;
6692 if (SwiftParamCount == ParamCount) {
6693 ParamCountValid = true;
6694 } else if (SwiftParamCount > ParamCount) {
6695 ParamCountValid = IsSingleParamInit && ParamCount == 0;
6696 } else {
6697 // We have fewer Swift parameters than Objective-C parameters, but that
6698 // might be because we've transformed some of them. Check for potential
6699 // "out" parameters and err on the side of not warning.
6700 unsigned MaybeOutParamCount =
6701 llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
6702 QualType ParamTy = Param->getType();
6703 if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6704 return !ParamTy->getPointeeType().isConstQualified();
6705 return false;
6708 ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6711 if (!ParamCountValid) {
6712 Diag(Loc, diag::warn_attr_swift_name_num_params)
6713 << (SwiftParamCount > ParamCount) << AL << ParamCount
6714 << SwiftParamCount;
6715 return false;
6717 } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6718 isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6719 isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6720 isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6721 !IsAsync) {
6722 StringRef ContextName, BaseName;
6724 std::tie(ContextName, BaseName) = Name.split('.');
6725 if (BaseName.empty()) {
6726 BaseName = ContextName;
6727 ContextName = StringRef();
6728 } else if (!isValidAsciiIdentifier(ContextName)) {
6729 Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6730 << /*context*/1;
6731 return false;
6734 if (!isValidAsciiIdentifier(BaseName)) {
6735 Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6736 << /*basename*/0;
6737 return false;
6739 } else {
6740 Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6741 return false;
6743 return true;
6746 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6747 StringRef Name;
6748 SourceLocation Loc;
6749 if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6750 return;
6752 if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6753 return;
6755 D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6758 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6759 StringRef Name;
6760 SourceLocation Loc;
6761 if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6762 return;
6764 if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6765 return;
6767 D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6770 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6771 // Make sure that there is an identifier as the annotation's single argument.
6772 if (!AL.checkExactlyNumArgs(S, 1))
6773 return;
6775 if (!AL.isArgIdent(0)) {
6776 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6777 << AL << AANT_ArgumentIdentifier;
6778 return;
6781 SwiftNewTypeAttr::NewtypeKind Kind;
6782 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6783 if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6784 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6785 return;
6788 if (!isa<TypedefNameDecl>(D)) {
6789 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6790 << AL << "typedefs";
6791 return;
6794 D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6797 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6798 if (!AL.isArgIdent(0)) {
6799 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6800 << AL << 1 << AANT_ArgumentIdentifier;
6801 return;
6804 SwiftAsyncAttr::Kind Kind;
6805 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6806 if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6807 S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6808 return;
6811 ParamIdx Idx;
6812 if (Kind == SwiftAsyncAttr::None) {
6813 // If this is 'none', then there shouldn't be any additional arguments.
6814 if (!AL.checkExactlyNumArgs(S, 1))
6815 return;
6816 } else {
6817 // Non-none swift_async requires a completion handler index argument.
6818 if (!AL.checkExactlyNumArgs(S, 2))
6819 return;
6821 Expr *HandlerIdx = AL.getArgAsExpr(1);
6822 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
6823 return;
6825 const ParmVarDecl *CompletionBlock =
6826 getFunctionOrMethodParam(D, Idx.getASTIndex());
6827 QualType CompletionBlockType = CompletionBlock->getType();
6828 if (!CompletionBlockType->isBlockPointerType()) {
6829 S.Diag(CompletionBlock->getLocation(),
6830 diag::err_swift_async_bad_block_type)
6831 << CompletionBlock->getType();
6832 return;
6834 QualType BlockTy =
6835 CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
6836 if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
6837 S.Diag(CompletionBlock->getLocation(),
6838 diag::err_swift_async_bad_block_type)
6839 << CompletionBlock->getType();
6840 return;
6844 auto *AsyncAttr =
6845 ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
6846 D->addAttr(AsyncAttr);
6848 if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
6849 checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6852 //===----------------------------------------------------------------------===//
6853 // Microsoft specific attribute handlers.
6854 //===----------------------------------------------------------------------===//
6856 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
6857 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6858 if (const auto *UA = D->getAttr<UuidAttr>()) {
6859 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6860 return nullptr;
6861 if (!UA->getGuid().empty()) {
6862 Diag(UA->getLocation(), diag::err_mismatched_uuid);
6863 Diag(CI.getLoc(), diag::note_previous_uuid);
6864 D->dropAttr<UuidAttr>();
6868 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6871 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6872 if (!S.LangOpts.CPlusPlus) {
6873 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6874 << AL << AttributeLangSupport::C;
6875 return;
6878 StringRef OrigStrRef;
6879 SourceLocation LiteralLoc;
6880 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6881 return;
6883 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6884 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6885 StringRef StrRef = OrigStrRef;
6886 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6887 StrRef = StrRef.drop_front().drop_back();
6889 // Validate GUID length.
6890 if (StrRef.size() != 36) {
6891 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6892 return;
6895 for (unsigned i = 0; i < 36; ++i) {
6896 if (i == 8 || i == 13 || i == 18 || i == 23) {
6897 if (StrRef[i] != '-') {
6898 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6899 return;
6901 } else if (!isHexDigit(StrRef[i])) {
6902 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6903 return;
6907 // Convert to our parsed format and canonicalize.
6908 MSGuidDecl::Parts Parsed;
6909 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6910 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6911 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6912 for (unsigned i = 0; i != 8; ++i)
6913 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6914 .getAsInteger(16, Parsed.Part4And5[i]);
6915 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6917 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6918 // the only thing in the [] list, the [] too), and add an insertion of
6919 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
6920 // separating attributes nor of the [ and the ] are in the AST.
6921 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6922 // on cfe-dev.
6923 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6924 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6926 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6927 if (UA)
6928 D->addAttr(UA);
6931 static void handleHLSLNumThreadsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6932 using llvm::Triple;
6933 Triple Target = S.Context.getTargetInfo().getTriple();
6934 auto Env = S.Context.getTargetInfo().getTriple().getEnvironment();
6935 if (!llvm::is_contained({Triple::Compute, Triple::Mesh, Triple::Amplification,
6936 Triple::Library},
6937 Env)) {
6938 uint32_t Pipeline =
6939 static_cast<uint32_t>(hlsl::getStageFromEnvironment(Env));
6940 S.Diag(AL.getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
6941 << AL << Pipeline << "Compute, Amplification, Mesh or Library";
6942 return;
6945 llvm::VersionTuple SMVersion = Target.getOSVersion();
6946 uint32_t ZMax = 1024;
6947 uint32_t ThreadMax = 1024;
6948 if (SMVersion.getMajor() <= 4) {
6949 ZMax = 1;
6950 ThreadMax = 768;
6951 } else if (SMVersion.getMajor() == 5) {
6952 ZMax = 64;
6953 ThreadMax = 1024;
6956 uint32_t X;
6957 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), X))
6958 return;
6959 if (X > 1024) {
6960 S.Diag(AL.getArgAsExpr(0)->getExprLoc(),
6961 diag::err_hlsl_numthreads_argument_oor) << 0 << 1024;
6962 return;
6964 uint32_t Y;
6965 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(1), Y))
6966 return;
6967 if (Y > 1024) {
6968 S.Diag(AL.getArgAsExpr(1)->getExprLoc(),
6969 diag::err_hlsl_numthreads_argument_oor) << 1 << 1024;
6970 return;
6972 uint32_t Z;
6973 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(2), Z))
6974 return;
6975 if (Z > ZMax) {
6976 S.Diag(AL.getArgAsExpr(2)->getExprLoc(),
6977 diag::err_hlsl_numthreads_argument_oor) << 2 << ZMax;
6978 return;
6981 if (X * Y * Z > ThreadMax) {
6982 S.Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax;
6983 return;
6986 HLSLNumThreadsAttr *NewAttr = S.mergeHLSLNumThreadsAttr(D, AL, X, Y, Z);
6987 if (NewAttr)
6988 D->addAttr(NewAttr);
6991 HLSLNumThreadsAttr *Sema::mergeHLSLNumThreadsAttr(Decl *D,
6992 const AttributeCommonInfo &AL,
6993 int X, int Y, int Z) {
6994 if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) {
6995 if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) {
6996 Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
6997 Diag(AL.getLoc(), diag::note_conflicting_attribute);
6999 return nullptr;
7001 return ::new (Context) HLSLNumThreadsAttr(Context, AL, X, Y, Z);
7004 static void handleHLSLSVGroupIndexAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7005 using llvm::Triple;
7006 auto Env = S.Context.getTargetInfo().getTriple().getEnvironment();
7007 if (Env != Triple::Compute && Env != Triple::Library) {
7008 // FIXME: it is OK for a compute shader entry and pixel shader entry live in
7009 // same HLSL file. Issue https://github.com/llvm/llvm-project/issues/57880.
7010 ShaderStage Pipeline = hlsl::getStageFromEnvironment(Env);
7011 S.Diag(AL.getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
7012 << AL << (uint32_t)Pipeline << "Compute";
7013 return;
7016 D->addAttr(::new (S.Context) HLSLSV_GroupIndexAttr(S.Context, AL));
7019 static bool isLegalTypeForHLSLSV_DispatchThreadID(QualType T) {
7020 if (!T->hasUnsignedIntegerRepresentation())
7021 return false;
7022 if (const auto *VT = T->getAs<VectorType>())
7023 return VT->getNumElements() <= 3;
7024 return true;
7027 static void handleHLSLSV_DispatchThreadIDAttr(Sema &S, Decl *D,
7028 const ParsedAttr &AL) {
7029 using llvm::Triple;
7030 Triple Target = S.Context.getTargetInfo().getTriple();
7031 // FIXME: it is OK for a compute shader entry and pixel shader entry live in
7032 // same HLSL file.Issue https://github.com/llvm/llvm-project/issues/57880.
7033 if (Target.getEnvironment() != Triple::Compute &&
7034 Target.getEnvironment() != Triple::Library) {
7035 uint32_t Pipeline =
7036 (uint32_t)S.Context.getTargetInfo().getTriple().getEnvironment() -
7037 (uint32_t)llvm::Triple::Pixel;
7038 S.Diag(AL.getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
7039 << AL << Pipeline << "Compute";
7040 return;
7043 // FIXME: report warning and ignore semantic when cannot apply on the Decl.
7044 // See https://github.com/llvm/llvm-project/issues/57916.
7046 // FIXME: support semantic on field.
7047 // See https://github.com/llvm/llvm-project/issues/57889.
7048 if (isa<FieldDecl>(D)) {
7049 S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node)
7050 << AL << "parameter";
7051 return;
7054 auto *VD = cast<ValueDecl>(D);
7055 if (!isLegalTypeForHLSLSV_DispatchThreadID(VD->getType())) {
7056 S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type)
7057 << AL << "uint/uint2/uint3";
7058 return;
7061 D->addAttr(::new (S.Context) HLSLSV_DispatchThreadIDAttr(S.Context, AL));
7064 static void handleHLSLShaderAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7065 StringRef Str;
7066 SourceLocation ArgLoc;
7067 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7068 return;
7070 HLSLShaderAttr::ShaderType ShaderType;
7071 if (!HLSLShaderAttr::ConvertStrToShaderType(Str, ShaderType) ||
7072 // Library is added to help convert HLSLShaderAttr::ShaderType to
7073 // llvm::Triple::EnviromentType. It is not a legal
7074 // HLSLShaderAttr::ShaderType.
7075 ShaderType == HLSLShaderAttr::Library) {
7076 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
7077 << AL << Str << ArgLoc;
7078 return;
7081 // FIXME: check function match the shader stage.
7083 HLSLShaderAttr *NewAttr = S.mergeHLSLShaderAttr(D, AL, ShaderType);
7084 if (NewAttr)
7085 D->addAttr(NewAttr);
7088 HLSLShaderAttr *
7089 Sema::mergeHLSLShaderAttr(Decl *D, const AttributeCommonInfo &AL,
7090 HLSLShaderAttr::ShaderType ShaderType) {
7091 if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) {
7092 if (NT->getType() != ShaderType) {
7093 Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
7094 Diag(AL.getLoc(), diag::note_conflicting_attribute);
7096 return nullptr;
7098 return HLSLShaderAttr::Create(Context, ShaderType, AL);
7101 static void handleHLSLResourceBindingAttr(Sema &S, Decl *D,
7102 const ParsedAttr &AL) {
7103 StringRef Space = "space0";
7104 StringRef Slot = "";
7106 if (!AL.isArgIdent(0)) {
7107 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7108 << AL << AANT_ArgumentIdentifier;
7109 return;
7112 IdentifierLoc *Loc = AL.getArgAsIdent(0);
7113 StringRef Str = Loc->Ident->getName();
7114 SourceLocation ArgLoc = Loc->Loc;
7116 SourceLocation SpaceArgLoc;
7117 if (AL.getNumArgs() == 2) {
7118 Slot = Str;
7119 if (!AL.isArgIdent(1)) {
7120 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7121 << AL << AANT_ArgumentIdentifier;
7122 return;
7125 IdentifierLoc *Loc = AL.getArgAsIdent(1);
7126 Space = Loc->Ident->getName();
7127 SpaceArgLoc = Loc->Loc;
7128 } else {
7129 Slot = Str;
7132 // Validate.
7133 if (!Slot.empty()) {
7134 switch (Slot[0]) {
7135 case 'u':
7136 case 'b':
7137 case 's':
7138 case 't':
7139 break;
7140 default:
7141 S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_type)
7142 << Slot.substr(0, 1);
7143 return;
7146 StringRef SlotNum = Slot.substr(1);
7147 unsigned Num = 0;
7148 if (SlotNum.getAsInteger(10, Num)) {
7149 S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_number);
7150 return;
7154 if (!Space.startswith("space")) {
7155 S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
7156 return;
7158 StringRef SpaceNum = Space.substr(5);
7159 unsigned Num = 0;
7160 if (SpaceNum.getAsInteger(10, Num)) {
7161 S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
7162 return;
7165 // FIXME: check reg type match decl. Issue
7166 // https://github.com/llvm/llvm-project/issues/57886.
7167 HLSLResourceBindingAttr *NewAttr =
7168 HLSLResourceBindingAttr::Create(S.getASTContext(), Slot, Space, AL);
7169 if (NewAttr)
7170 D->addAttr(NewAttr);
7173 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7174 if (!S.LangOpts.CPlusPlus) {
7175 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
7176 << AL << AttributeLangSupport::C;
7177 return;
7179 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
7180 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
7181 if (IA) {
7182 D->addAttr(IA);
7183 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
7187 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7188 const auto *VD = cast<VarDecl>(D);
7189 if (!S.Context.getTargetInfo().isTLSSupported()) {
7190 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
7191 return;
7193 if (VD->getTSCSpec() != TSCS_unspecified) {
7194 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
7195 return;
7197 if (VD->hasLocalStorage()) {
7198 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
7199 return;
7201 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
7204 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7205 SmallVector<StringRef, 4> Tags;
7206 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7207 StringRef Tag;
7208 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
7209 return;
7210 Tags.push_back(Tag);
7213 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
7214 if (!NS->isInline()) {
7215 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
7216 return;
7218 if (NS->isAnonymousNamespace()) {
7219 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
7220 return;
7222 if (AL.getNumArgs() == 0)
7223 Tags.push_back(NS->getName());
7224 } else if (!AL.checkAtLeastNumArgs(S, 1))
7225 return;
7227 // Store tags sorted and without duplicates.
7228 llvm::sort(Tags);
7229 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
7231 D->addAttr(::new (S.Context)
7232 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
7235 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7236 // Check the attribute arguments.
7237 if (AL.getNumArgs() > 1) {
7238 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
7239 return;
7242 StringRef Str;
7243 SourceLocation ArgLoc;
7245 if (AL.getNumArgs() == 0)
7246 Str = "";
7247 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7248 return;
7250 ARMInterruptAttr::InterruptType Kind;
7251 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7252 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7253 << ArgLoc;
7254 return;
7257 D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
7260 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7261 // MSP430 'interrupt' attribute is applied to
7262 // a function with no parameters and void return type.
7263 if (!isFunctionOrMethod(D)) {
7264 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7265 << "'interrupt'" << ExpectedFunctionOrMethod;
7266 return;
7269 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7270 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7271 << /*MSP430*/ 1 << 0;
7272 return;
7275 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7276 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7277 << /*MSP430*/ 1 << 1;
7278 return;
7281 // The attribute takes one integer argument.
7282 if (!AL.checkExactlyNumArgs(S, 1))
7283 return;
7285 if (!AL.isArgExpr(0)) {
7286 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7287 << AL << AANT_ArgumentIntegerConstant;
7288 return;
7291 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7292 std::optional<llvm::APSInt> NumParams = llvm::APSInt(32);
7293 if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
7294 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7295 << AL << AANT_ArgumentIntegerConstant
7296 << NumParamsExpr->getSourceRange();
7297 return;
7299 // The argument should be in range 0..63.
7300 unsigned Num = NumParams->getLimitedValue(255);
7301 if (Num > 63) {
7302 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7303 << AL << (int)NumParams->getSExtValue()
7304 << NumParamsExpr->getSourceRange();
7305 return;
7308 D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
7309 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7312 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7313 // Only one optional argument permitted.
7314 if (AL.getNumArgs() > 1) {
7315 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
7316 return;
7319 StringRef Str;
7320 SourceLocation ArgLoc;
7322 if (AL.getNumArgs() == 0)
7323 Str = "";
7324 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7325 return;
7327 // Semantic checks for a function with the 'interrupt' attribute for MIPS:
7328 // a) Must be a function.
7329 // b) Must have no parameters.
7330 // c) Must have the 'void' return type.
7331 // d) Cannot have the 'mips16' attribute, as that instruction set
7332 // lacks the 'eret' instruction.
7333 // e) The attribute itself must either have no argument or one of the
7334 // valid interrupt types, see [MipsInterruptDocs].
7336 if (!isFunctionOrMethod(D)) {
7337 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7338 << "'interrupt'" << ExpectedFunctionOrMethod;
7339 return;
7342 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7343 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7344 << /*MIPS*/ 0 << 0;
7345 return;
7348 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7349 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7350 << /*MIPS*/ 0 << 1;
7351 return;
7354 // We still have to do this manually because the Interrupt attributes are
7355 // a bit special due to sharing their spellings across targets.
7356 if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
7357 return;
7359 MipsInterruptAttr::InterruptType Kind;
7360 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7361 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
7362 << AL << "'" + std::string(Str) + "'";
7363 return;
7366 D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
7369 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7370 if (!AL.checkExactlyNumArgs(S, 1))
7371 return;
7373 if (!AL.isArgExpr(0)) {
7374 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7375 << AL << AANT_ArgumentIntegerConstant;
7376 return;
7379 // FIXME: Check for decl - it should be void ()(void).
7381 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7382 auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
7383 if (!MaybeNumParams) {
7384 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7385 << AL << AANT_ArgumentIntegerConstant
7386 << NumParamsExpr->getSourceRange();
7387 return;
7390 unsigned Num = MaybeNumParams->getLimitedValue(255);
7391 if ((Num & 1) || Num > 30) {
7392 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7393 << AL << (int)MaybeNumParams->getSExtValue()
7394 << NumParamsExpr->getSourceRange();
7395 return;
7398 D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
7399 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7402 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7403 // Semantic checks for a function with the 'interrupt' attribute.
7404 // a) Must be a function.
7405 // b) Must have the 'void' return type.
7406 // c) Must take 1 or 2 arguments.
7407 // d) The 1st argument must be a pointer.
7408 // e) The 2nd argument (if any) must be an unsigned integer.
7409 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
7410 CXXMethodDecl::isStaticOverloadedOperator(
7411 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
7412 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7413 << AL << ExpectedFunctionWithProtoType;
7414 return;
7416 // Interrupt handler must have void return type.
7417 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7418 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
7419 diag::err_anyx86_interrupt_attribute)
7420 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7422 : 1)
7423 << 0;
7424 return;
7426 // Interrupt handler must have 1 or 2 parameters.
7427 unsigned NumParams = getFunctionOrMethodNumParams(D);
7428 if (NumParams < 1 || NumParams > 2) {
7429 S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
7430 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7432 : 1)
7433 << 1;
7434 return;
7436 // The first argument must be a pointer.
7437 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
7438 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
7439 diag::err_anyx86_interrupt_attribute)
7440 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7442 : 1)
7443 << 2;
7444 return;
7446 // The second argument, if present, must be an unsigned integer.
7447 unsigned TypeSize =
7448 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
7449 ? 64
7450 : 32;
7451 if (NumParams == 2 &&
7452 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
7453 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
7454 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
7455 diag::err_anyx86_interrupt_attribute)
7456 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7458 : 1)
7459 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
7460 return;
7462 D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
7463 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7466 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7467 if (!isFunctionOrMethod(D)) {
7468 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7469 << "'interrupt'" << ExpectedFunction;
7470 return;
7473 if (!AL.checkExactlyNumArgs(S, 0))
7474 return;
7476 handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
7479 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7480 if (!isFunctionOrMethod(D)) {
7481 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7482 << "'signal'" << ExpectedFunction;
7483 return;
7486 if (!AL.checkExactlyNumArgs(S, 0))
7487 return;
7489 handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
7492 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
7493 // Add preserve_access_index attribute to all fields and inner records.
7494 for (auto *D : RD->decls()) {
7495 if (D->hasAttr<BPFPreserveAccessIndexAttr>())
7496 continue;
7498 D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
7499 if (auto *Rec = dyn_cast<RecordDecl>(D))
7500 handleBPFPreserveAIRecord(S, Rec);
7504 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
7505 const ParsedAttr &AL) {
7506 auto *Rec = cast<RecordDecl>(D);
7507 handleBPFPreserveAIRecord(S, Rec);
7508 Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
7511 static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
7512 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
7513 if (I->getBTFDeclTag() == Tag)
7514 return true;
7516 return false;
7519 static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7520 StringRef Str;
7521 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
7522 return;
7523 if (hasBTFDeclTagAttr(D, Str))
7524 return;
7526 D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
7529 BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
7530 if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
7531 return nullptr;
7532 return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
7535 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7536 if (!isFunctionOrMethod(D)) {
7537 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7538 << "'export_name'" << ExpectedFunction;
7539 return;
7542 auto *FD = cast<FunctionDecl>(D);
7543 if (FD->isThisDeclarationADefinition()) {
7544 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
7545 return;
7548 StringRef Str;
7549 SourceLocation ArgLoc;
7550 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7551 return;
7553 D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
7554 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7557 WebAssemblyImportModuleAttr *
7558 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
7559 auto *FD = cast<FunctionDecl>(D);
7561 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
7562 if (ExistingAttr->getImportModule() == AL.getImportModule())
7563 return nullptr;
7564 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
7565 << ExistingAttr->getImportModule() << AL.getImportModule();
7566 Diag(AL.getLoc(), diag::note_previous_attribute);
7567 return nullptr;
7569 if (FD->hasBody()) {
7570 Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7571 return nullptr;
7573 return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
7574 AL.getImportModule());
7577 WebAssemblyImportNameAttr *
7578 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
7579 auto *FD = cast<FunctionDecl>(D);
7581 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
7582 if (ExistingAttr->getImportName() == AL.getImportName())
7583 return nullptr;
7584 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
7585 << ExistingAttr->getImportName() << AL.getImportName();
7586 Diag(AL.getLoc(), diag::note_previous_attribute);
7587 return nullptr;
7589 if (FD->hasBody()) {
7590 Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7591 return nullptr;
7593 return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
7594 AL.getImportName());
7597 static void
7598 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7599 auto *FD = cast<FunctionDecl>(D);
7601 StringRef Str;
7602 SourceLocation ArgLoc;
7603 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7604 return;
7605 if (FD->hasBody()) {
7606 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7607 return;
7610 FD->addAttr(::new (S.Context)
7611 WebAssemblyImportModuleAttr(S.Context, AL, Str));
7614 static void
7615 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7616 auto *FD = cast<FunctionDecl>(D);
7618 StringRef Str;
7619 SourceLocation ArgLoc;
7620 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7621 return;
7622 if (FD->hasBody()) {
7623 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7624 return;
7627 FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
7630 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
7631 const ParsedAttr &AL) {
7632 // Warn about repeated attributes.
7633 if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
7634 S.Diag(AL.getRange().getBegin(),
7635 diag::warn_riscv_repeated_interrupt_attribute);
7636 S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
7637 return;
7640 // Check the attribute argument. Argument is optional.
7641 if (!AL.checkAtMostNumArgs(S, 1))
7642 return;
7644 StringRef Str;
7645 SourceLocation ArgLoc;
7647 // 'machine'is the default interrupt mode.
7648 if (AL.getNumArgs() == 0)
7649 Str = "machine";
7650 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7651 return;
7653 // Semantic checks for a function with the 'interrupt' attribute:
7654 // - Must be a function.
7655 // - Must have no parameters.
7656 // - Must have the 'void' return type.
7657 // - The attribute itself must either have no argument or one of the
7658 // valid interrupt types, see [RISCVInterruptDocs].
7660 if (D->getFunctionType() == nullptr) {
7661 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7662 << "'interrupt'" << ExpectedFunction;
7663 return;
7666 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7667 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7668 << /*RISC-V*/ 2 << 0;
7669 return;
7672 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7673 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7674 << /*RISC-V*/ 2 << 1;
7675 return;
7678 RISCVInterruptAttr::InterruptType Kind;
7679 if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7680 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7681 << ArgLoc;
7682 return;
7685 D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
7688 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7689 // Dispatch the interrupt attribute based on the current target.
7690 switch (S.Context.getTargetInfo().getTriple().getArch()) {
7691 case llvm::Triple::msp430:
7692 handleMSP430InterruptAttr(S, D, AL);
7693 break;
7694 case llvm::Triple::mipsel:
7695 case llvm::Triple::mips:
7696 handleMipsInterruptAttr(S, D, AL);
7697 break;
7698 case llvm::Triple::m68k:
7699 handleM68kInterruptAttr(S, D, AL);
7700 break;
7701 case llvm::Triple::x86:
7702 case llvm::Triple::x86_64:
7703 handleAnyX86InterruptAttr(S, D, AL);
7704 break;
7705 case llvm::Triple::avr:
7706 handleAVRInterruptAttr(S, D, AL);
7707 break;
7708 case llvm::Triple::riscv32:
7709 case llvm::Triple::riscv64:
7710 handleRISCVInterruptAttr(S, D, AL);
7711 break;
7712 default:
7713 handleARMInterruptAttr(S, D, AL);
7714 break;
7718 static bool
7719 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7720 const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7721 // Accept template arguments for now as they depend on something else.
7722 // We'll get to check them when they eventually get instantiated.
7723 if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7724 return false;
7726 uint32_t Min = 0;
7727 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7728 return true;
7730 uint32_t Max = 0;
7731 if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7732 return true;
7734 if (Min == 0 && Max != 0) {
7735 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7736 << &Attr << 0;
7737 return true;
7739 if (Min > Max) {
7740 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7741 << &Attr << 1;
7742 return true;
7745 return false;
7748 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7749 const AttributeCommonInfo &CI,
7750 Expr *MinExpr, Expr *MaxExpr) {
7751 AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7753 if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7754 return;
7756 D->addAttr(::new (Context)
7757 AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
7760 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7761 const ParsedAttr &AL) {
7762 Expr *MinExpr = AL.getArgAsExpr(0);
7763 Expr *MaxExpr = AL.getArgAsExpr(1);
7765 S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7768 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7769 Expr *MaxExpr,
7770 const AMDGPUWavesPerEUAttr &Attr) {
7771 if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7772 (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7773 return true;
7775 // Accept template arguments for now as they depend on something else.
7776 // We'll get to check them when they eventually get instantiated.
7777 if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7778 return false;
7780 uint32_t Min = 0;
7781 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7782 return true;
7784 uint32_t Max = 0;
7785 if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7786 return true;
7788 if (Min == 0 && Max != 0) {
7789 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7790 << &Attr << 0;
7791 return true;
7793 if (Max != 0 && Min > Max) {
7794 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7795 << &Attr << 1;
7796 return true;
7799 return false;
7802 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7803 Expr *MinExpr, Expr *MaxExpr) {
7804 AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7806 if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7807 return;
7809 D->addAttr(::new (Context)
7810 AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
7813 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7814 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7815 return;
7817 Expr *MinExpr = AL.getArgAsExpr(0);
7818 Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7820 S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7823 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7824 uint32_t NumSGPR = 0;
7825 Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7826 if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7827 return;
7829 D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7832 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7833 uint32_t NumVGPR = 0;
7834 Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7835 if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7836 return;
7838 D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7841 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7842 const ParsedAttr &AL) {
7843 // If we try to apply it to a function pointer, don't warn, but don't
7844 // do anything, either. It doesn't matter anyway, because there's nothing
7845 // special about calling a force_align_arg_pointer function.
7846 const auto *VD = dyn_cast<ValueDecl>(D);
7847 if (VD && VD->getType()->isFunctionPointerType())
7848 return;
7849 // Also don't warn on function pointer typedefs.
7850 const auto *TD = dyn_cast<TypedefNameDecl>(D);
7851 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
7852 TD->getUnderlyingType()->isFunctionType()))
7853 return;
7854 // Attribute can only be applied to function types.
7855 if (!isa<FunctionDecl>(D)) {
7856 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7857 << AL << ExpectedFunction;
7858 return;
7861 D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
7864 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
7865 uint32_t Version;
7866 Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7867 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
7868 return;
7870 // TODO: Investigate what happens with the next major version of MSVC.
7871 if (Version != LangOptions::MSVC2015 / 100) {
7872 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7873 << AL << Version << VersionExpr->getSourceRange();
7874 return;
7877 // The attribute expects a "major" version number like 19, but new versions of
7878 // MSVC have moved to updating the "minor", or less significant numbers, so we
7879 // have to multiply by 100 now.
7880 Version *= 100;
7882 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
7885 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
7886 const AttributeCommonInfo &CI) {
7887 if (D->hasAttr<DLLExportAttr>()) {
7888 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
7889 return nullptr;
7892 if (D->hasAttr<DLLImportAttr>())
7893 return nullptr;
7895 return ::new (Context) DLLImportAttr(Context, CI);
7898 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
7899 const AttributeCommonInfo &CI) {
7900 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
7901 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
7902 D->dropAttr<DLLImportAttr>();
7905 if (D->hasAttr<DLLExportAttr>())
7906 return nullptr;
7908 return ::new (Context) DLLExportAttr(Context, CI);
7911 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7912 if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
7913 (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7914 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
7915 return;
7918 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7919 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
7920 !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7921 // MinGW doesn't allow dllimport on inline functions.
7922 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
7923 << A;
7924 return;
7928 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
7929 if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
7930 MD->getParent()->isLambda()) {
7931 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
7932 return;
7936 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
7937 ? (Attr *)S.mergeDLLExportAttr(D, A)
7938 : (Attr *)S.mergeDLLImportAttr(D, A);
7939 if (NewAttr)
7940 D->addAttr(NewAttr);
7943 MSInheritanceAttr *
7944 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
7945 bool BestCase,
7946 MSInheritanceModel Model) {
7947 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
7948 if (IA->getInheritanceModel() == Model)
7949 return nullptr;
7950 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
7951 << 1 /*previous declaration*/;
7952 Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
7953 D->dropAttr<MSInheritanceAttr>();
7956 auto *RD = cast<CXXRecordDecl>(D);
7957 if (RD->hasDefinition()) {
7958 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
7959 Model)) {
7960 return nullptr;
7962 } else {
7963 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
7964 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7965 << 1 /*partial specialization*/;
7966 return nullptr;
7968 if (RD->getDescribedClassTemplate()) {
7969 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7970 << 0 /*primary template*/;
7971 return nullptr;
7975 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
7978 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7979 // The capability attributes take a single string parameter for the name of
7980 // the capability they represent. The lockable attribute does not take any
7981 // parameters. However, semantically, both attributes represent the same
7982 // concept, and so they use the same semantic attribute. Eventually, the
7983 // lockable attribute will be removed.
7985 // For backward compatibility, any capability which has no specified string
7986 // literal will be considered a "mutex."
7987 StringRef N("mutex");
7988 SourceLocation LiteralLoc;
7989 if (AL.getKind() == ParsedAttr::AT_Capability &&
7990 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
7991 return;
7993 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
7996 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7997 SmallVector<Expr*, 1> Args;
7998 if (!checkLockFunAttrCommon(S, D, AL, Args))
7999 return;
8001 D->addAttr(::new (S.Context)
8002 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
8005 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
8006 const ParsedAttr &AL) {
8007 SmallVector<Expr*, 1> Args;
8008 if (!checkLockFunAttrCommon(S, D, AL, Args))
8009 return;
8011 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
8012 Args.size()));
8015 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
8016 const ParsedAttr &AL) {
8017 SmallVector<Expr*, 2> Args;
8018 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
8019 return;
8021 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
8022 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
8025 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
8026 const ParsedAttr &AL) {
8027 // Check that all arguments are lockable objects.
8028 SmallVector<Expr *, 1> Args;
8029 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
8031 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
8032 Args.size()));
8035 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
8036 const ParsedAttr &AL) {
8037 if (!AL.checkAtLeastNumArgs(S, 1))
8038 return;
8040 // check that all arguments are lockable objects
8041 SmallVector<Expr*, 1> Args;
8042 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
8043 if (Args.empty())
8044 return;
8046 RequiresCapabilityAttr *RCA = ::new (S.Context)
8047 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
8049 D->addAttr(RCA);
8052 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8053 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
8054 if (NSD->isAnonymousNamespace()) {
8055 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
8056 // Do not want to attach the attribute to the namespace because that will
8057 // cause confusing diagnostic reports for uses of declarations within the
8058 // namespace.
8059 return;
8061 } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
8062 UnresolvedUsingValueDecl>(D)) {
8063 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
8064 << AL;
8065 return;
8068 // Handle the cases where the attribute has a text message.
8069 StringRef Str, Replacement;
8070 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
8071 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
8072 return;
8074 // Support a single optional message only for Declspec and [[]] spellings.
8075 if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
8076 AL.checkAtMostNumArgs(S, 1);
8077 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
8078 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
8079 return;
8081 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
8082 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
8084 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
8087 static bool isGlobalVar(const Decl *D) {
8088 if (const auto *S = dyn_cast<VarDecl>(D))
8089 return S->hasGlobalStorage();
8090 return false;
8093 static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) {
8094 return Sanitizer == "address" || Sanitizer == "hwaddress" ||
8095 Sanitizer == "memtag";
8098 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8099 if (!AL.checkAtLeastNumArgs(S, 1))
8100 return;
8102 std::vector<StringRef> Sanitizers;
8104 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
8105 StringRef SanitizerName;
8106 SourceLocation LiteralLoc;
8108 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
8109 return;
8111 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
8112 SanitizerMask() &&
8113 SanitizerName != "coverage")
8114 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
8115 else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName))
8116 S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global)
8117 << AL << SanitizerName;
8118 Sanitizers.push_back(SanitizerName);
8121 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
8122 Sanitizers.size()));
8125 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
8126 const ParsedAttr &AL) {
8127 StringRef AttrName = AL.getAttrName()->getName();
8128 normalizeName(AttrName);
8129 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
8130 .Case("no_address_safety_analysis", "address")
8131 .Case("no_sanitize_address", "address")
8132 .Case("no_sanitize_thread", "thread")
8133 .Case("no_sanitize_memory", "memory");
8134 if (isGlobalVar(D) && SanitizerName != "address")
8135 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8136 << AL << ExpectedFunction;
8138 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
8139 // NoSanitizeAttr object; but we need to calculate the correct spelling list
8140 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
8141 // has the same spellings as the index for NoSanitizeAttr. We don't have a
8142 // general way to "translate" between the two, so this hack attempts to work
8143 // around the issue with hard-coded indices. This is critical for calling
8144 // getSpelling() or prettyPrint() on the resulting semantic attribute object
8145 // without failing assertions.
8146 unsigned TranslatedSpellingIndex = 0;
8147 if (AL.isStandardAttributeSyntax())
8148 TranslatedSpellingIndex = 1;
8150 AttributeCommonInfo Info = AL;
8151 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
8152 D->addAttr(::new (S.Context)
8153 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
8156 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8157 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
8158 D->addAttr(Internal);
8161 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8162 if (S.LangOpts.getOpenCLCompatibleVersion() < 200)
8163 S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
8164 << AL << "2.0" << 1;
8165 else
8166 S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
8167 << AL << S.LangOpts.getOpenCLVersionString();
8170 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8171 if (D->isInvalidDecl())
8172 return;
8174 // Check if there is only one access qualifier.
8175 if (D->hasAttr<OpenCLAccessAttr>()) {
8176 if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
8177 AL.getSemanticSpelling()) {
8178 S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
8179 << AL.getAttrName()->getName() << AL.getRange();
8180 } else {
8181 S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
8182 << D->getSourceRange();
8183 D->setInvalidDecl(true);
8184 return;
8188 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
8189 // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
8190 // cannot read from and write to the same pipe object. Using the read_write
8191 // (or __read_write) qualifier with the pipe qualifier is a compilation error.
8192 // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
8193 // __opencl_c_read_write_images feature, image objects specified as arguments
8194 // to a kernel can additionally be declared to be read-write.
8195 // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0.
8196 // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0.
8197 if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
8198 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
8199 if (AL.getAttrName()->getName().contains("read_write")) {
8200 bool ReadWriteImagesUnsupported =
8201 (S.getLangOpts().getOpenCLCompatibleVersion() < 200) ||
8202 (S.getLangOpts().getOpenCLCompatibleVersion() == 300 &&
8203 !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
8204 S.getLangOpts()));
8205 if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) {
8206 S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
8207 << AL << PDecl->getType() << DeclTy->isImageType();
8208 D->setInvalidDecl(true);
8209 return;
8214 D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
8217 static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8218 // Check that the argument is a string literal.
8219 StringRef KindStr;
8220 SourceLocation LiteralLoc;
8221 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
8222 return;
8224 ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind;
8225 if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) {
8226 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
8227 << AL << KindStr;
8228 return;
8231 D->dropAttr<ZeroCallUsedRegsAttr>();
8232 D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL));
8235 static void handleFunctionReturnThunksAttr(Sema &S, Decl *D,
8236 const ParsedAttr &AL) {
8237 StringRef KindStr;
8238 SourceLocation LiteralLoc;
8239 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
8240 return;
8242 FunctionReturnThunksAttr::Kind Kind;
8243 if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) {
8244 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
8245 << AL << KindStr;
8246 return;
8248 // FIXME: it would be good to better handle attribute merging rather than
8249 // silently replacing the existing attribute, so long as it does not break
8250 // the expected codegen tests.
8251 D->dropAttr<FunctionReturnThunksAttr>();
8252 D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL));
8255 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8256 // The 'sycl_kernel' attribute applies only to function templates.
8257 const auto *FD = cast<FunctionDecl>(D);
8258 const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
8259 assert(FT && "Function template is expected");
8261 // Function template must have at least two template parameters.
8262 const TemplateParameterList *TL = FT->getTemplateParameters();
8263 if (TL->size() < 2) {
8264 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
8265 return;
8268 // Template parameters must be typenames.
8269 for (unsigned I = 0; I < 2; ++I) {
8270 const NamedDecl *TParam = TL->getParam(I);
8271 if (isa<NonTypeTemplateParmDecl>(TParam)) {
8272 S.Diag(FT->getLocation(),
8273 diag::warn_sycl_kernel_invalid_template_param_type);
8274 return;
8278 // Function must have at least one argument.
8279 if (getFunctionOrMethodNumParams(D) != 1) {
8280 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
8281 return;
8284 // Function must return void.
8285 QualType RetTy = getFunctionOrMethodResultType(D);
8286 if (!RetTy->isVoidType()) {
8287 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
8288 return;
8291 handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
8294 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
8295 if (!cast<VarDecl>(D)->hasGlobalStorage()) {
8296 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
8297 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
8298 return;
8301 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
8302 handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
8303 else
8304 handleSimpleAttribute<NoDestroyAttr>(S, D, A);
8307 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8308 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
8309 "uninitialized is only valid on automatic duration variables");
8310 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
8313 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
8314 bool DiagnoseFailure) {
8315 QualType Ty = VD->getType();
8316 if (!Ty->isObjCRetainableType()) {
8317 if (DiagnoseFailure) {
8318 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8319 << 0;
8321 return false;
8324 Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
8326 // Sema::inferObjCARCLifetime must run after processing decl attributes
8327 // (because __block lowers to an attribute), so if the lifetime hasn't been
8328 // explicitly specified, infer it locally now.
8329 if (LifetimeQual == Qualifiers::OCL_None)
8330 LifetimeQual = Ty->getObjCARCImplicitLifetime();
8332 // The attributes only really makes sense for __strong variables; ignore any
8333 // attempts to annotate a parameter with any other lifetime qualifier.
8334 if (LifetimeQual != Qualifiers::OCL_Strong) {
8335 if (DiagnoseFailure) {
8336 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8337 << 1;
8339 return false;
8342 // Tampering with the type of a VarDecl here is a bit of a hack, but we need
8343 // to ensure that the variable is 'const' so that we can error on
8344 // modification, which can otherwise over-release.
8345 VD->setType(Ty.withConst());
8346 VD->setARCPseudoStrong(true);
8347 return true;
8350 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
8351 const ParsedAttr &AL) {
8352 if (auto *VD = dyn_cast<VarDecl>(D)) {
8353 assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
8354 if (!VD->hasLocalStorage()) {
8355 S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8356 << 0;
8357 return;
8360 if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
8361 return;
8363 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
8364 return;
8367 // If D is a function-like declaration (method, block, or function), then we
8368 // make every parameter psuedo-strong.
8369 unsigned NumParams =
8370 hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
8371 for (unsigned I = 0; I != NumParams; ++I) {
8372 auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
8373 QualType Ty = PVD->getType();
8375 // If a user wrote a parameter with __strong explicitly, then assume they
8376 // want "real" strong semantics for that parameter. This works because if
8377 // the parameter was written with __strong, then the strong qualifier will
8378 // be non-local.
8379 if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
8380 Qualifiers::OCL_Strong)
8381 continue;
8383 tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
8385 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
8388 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8389 // Check that the return type is a `typedef int kern_return_t` or a typedef
8390 // around it, because otherwise MIG convention checks make no sense.
8391 // BlockDecl doesn't store a return type, so it's annoying to check,
8392 // so let's skip it for now.
8393 if (!isa<BlockDecl>(D)) {
8394 QualType T = getFunctionOrMethodResultType(D);
8395 bool IsKernReturnT = false;
8396 while (const auto *TT = T->getAs<TypedefType>()) {
8397 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
8398 T = TT->desugar();
8400 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
8401 S.Diag(D->getBeginLoc(),
8402 diag::warn_mig_server_routine_does_not_return_kern_return_t);
8403 return;
8407 handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
8410 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8411 // Warn if the return type is not a pointer or reference type.
8412 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8413 QualType RetTy = FD->getReturnType();
8414 if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
8415 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
8416 << AL.getRange() << RetTy;
8417 return;
8421 handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
8424 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8425 if (AL.isUsedAsTypeAttr())
8426 return;
8427 // Warn if the parameter is definitely not an output parameter.
8428 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
8429 if (PVD->getType()->isIntegerType()) {
8430 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
8431 << AL.getRange();
8432 return;
8435 StringRef Argument;
8436 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8437 return;
8438 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
8441 template<typename Attr>
8442 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8443 StringRef Argument;
8444 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8445 return;
8446 D->addAttr(Attr::Create(S.Context, Argument, AL));
8449 template<typename Attr>
8450 static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) {
8451 D->addAttr(Attr::Create(S.Context, AL));
8454 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8455 // The guard attribute takes a single identifier argument.
8457 if (!AL.isArgIdent(0)) {
8458 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
8459 << AL << AANT_ArgumentIdentifier;
8460 return;
8463 CFGuardAttr::GuardArg Arg;
8464 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
8465 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
8466 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
8467 return;
8470 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
8474 template <typename AttrTy>
8475 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
8476 auto Attrs = D->specific_attrs<AttrTy>();
8477 auto I = llvm::find_if(Attrs,
8478 [Name](const AttrTy *A) {
8479 return A->getTCBName() == Name;
8481 return I == Attrs.end() ? nullptr : *I;
8484 template <typename AttrTy, typename ConflictingAttrTy>
8485 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8486 StringRef Argument;
8487 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8488 return;
8490 // A function cannot be have both regular and leaf membership in the same TCB.
8491 if (const ConflictingAttrTy *ConflictingAttr =
8492 findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
8493 // We could attach a note to the other attribute but in this case
8494 // there's no need given how the two are very close to each other.
8495 S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
8496 << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
8497 << Argument;
8499 // Error recovery: drop the non-leaf attribute so that to suppress
8500 // all future warnings caused by erroneous attributes. The leaf attribute
8501 // needs to be kept because it can only suppresses warnings, not cause them.
8502 D->dropAttr<EnforceTCBAttr>();
8503 return;
8506 D->addAttr(AttrTy::Create(S.Context, Argument, AL));
8509 template <typename AttrTy, typename ConflictingAttrTy>
8510 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
8511 // Check if the new redeclaration has different leaf-ness in the same TCB.
8512 StringRef TCBName = AL.getTCBName();
8513 if (const ConflictingAttrTy *ConflictingAttr =
8514 findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
8515 S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
8516 << ConflictingAttr->getAttrName()->getName()
8517 << AL.getAttrName()->getName() << TCBName;
8519 // Add a note so that the user could easily find the conflicting attribute.
8520 S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
8522 // More error recovery.
8523 D->dropAttr<EnforceTCBAttr>();
8524 return nullptr;
8527 ASTContext &Context = S.getASTContext();
8528 return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
8531 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
8532 return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
8533 *this, D, AL);
8536 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
8537 Decl *D, const EnforceTCBLeafAttr &AL) {
8538 return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
8539 *this, D, AL);
8542 //===----------------------------------------------------------------------===//
8543 // Top Level Sema Entry Points
8544 //===----------------------------------------------------------------------===//
8546 // Returns true if the attribute must delay setting its arguments until after
8547 // template instantiation, and false otherwise.
8548 static bool MustDelayAttributeArguments(const ParsedAttr &AL) {
8549 // Only attributes that accept expression parameter packs can delay arguments.
8550 if (!AL.acceptsExprPack())
8551 return false;
8553 bool AttrHasVariadicArg = AL.hasVariadicArg();
8554 unsigned AttrNumArgs = AL.getNumArgMembers();
8555 for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) {
8556 bool IsLastAttrArg = I == (AttrNumArgs - 1);
8557 // If the argument is the last argument and it is variadic it can contain
8558 // any expression.
8559 if (IsLastAttrArg && AttrHasVariadicArg)
8560 return false;
8561 Expr *E = AL.getArgAsExpr(I);
8562 bool ArgMemberCanHoldExpr = AL.isParamExpr(I);
8563 // If the expression is a pack expansion then arguments must be delayed
8564 // unless the argument is an expression and it is the last argument of the
8565 // attribute.
8566 if (isa<PackExpansionExpr>(E))
8567 return !(IsLastAttrArg && ArgMemberCanHoldExpr);
8568 // Last case is if the expression is value dependent then it must delay
8569 // arguments unless the corresponding argument is able to hold the
8570 // expression.
8571 if (E->isValueDependent() && !ArgMemberCanHoldExpr)
8572 return true;
8574 return false;
8577 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
8578 /// the attribute applies to decls. If the attribute is a type attribute, just
8579 /// silently ignore it if a GNU attribute.
8580 static void
8581 ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL,
8582 const Sema::ProcessDeclAttributeOptions &Options) {
8583 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
8584 return;
8586 // Ignore C++11 attributes on declarator chunks: they appertain to the type
8587 // instead.
8588 // FIXME: We currently check the attribute syntax directly instead of using
8589 // isCXX11Attribute(), which currently erroneously classifies the C11
8590 // `_Alignas` attribute as a C++11 attribute. `_Alignas` can appear on the
8591 // `DeclSpec`, so we need to let it through here to make sure it is processed
8592 // appropriately. Once the behavior of isCXX11Attribute() is fixed, we can
8593 // go back to using that here.
8594 if (AL.getSyntax() == ParsedAttr::AS_CXX11 && !Options.IncludeCXX11Attributes)
8595 return;
8597 // Unknown attributes are automatically warned on. Target-specific attributes
8598 // which do not apply to the current target architecture are treated as
8599 // though they were unknown attributes.
8600 if (AL.getKind() == ParsedAttr::UnknownAttribute ||
8601 !AL.existsInTarget(S.Context.getTargetInfo())) {
8602 S.Diag(AL.getLoc(),
8603 AL.isDeclspecAttribute()
8604 ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
8605 : (unsigned)diag::warn_unknown_attribute_ignored)
8606 << AL << AL.getRange();
8607 return;
8610 // Check if argument population must delayed to after template instantiation.
8611 bool MustDelayArgs = MustDelayAttributeArguments(AL);
8613 // Argument number check must be skipped if arguments are delayed.
8614 if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs))
8615 return;
8617 if (MustDelayArgs) {
8618 AL.handleAttrWithDelayedArgs(S, D);
8619 return;
8622 switch (AL.getKind()) {
8623 default:
8624 if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
8625 break;
8626 if (!AL.isStmtAttr()) {
8627 assert(AL.isTypeAttr() && "Non-type attribute not handled");
8629 if (AL.isTypeAttr()) {
8630 if (Options.IgnoreTypeAttributes)
8631 break;
8632 if (!AL.isStandardAttributeSyntax()) {
8633 // Non-[[]] type attributes are handled in processTypeAttrs(); silently
8634 // move on.
8635 break;
8638 // According to the C and C++ standards, we should never see a
8639 // [[]] type attribute on a declaration. However, we have in the past
8640 // allowed some type attributes to "slide" to the `DeclSpec`, so we need
8641 // to continue to support this legacy behavior. We only do this, however,
8642 // if
8643 // - we actually have a `DeclSpec`, i.e. if we're looking at a
8644 // `DeclaratorDecl`, or
8645 // - we are looking at an alias-declaration, where historically we have
8646 // allowed type attributes after the identifier to slide to the type.
8647 if (AL.slidesFromDeclToDeclSpecLegacyBehavior() &&
8648 isa<DeclaratorDecl, TypeAliasDecl>(D)) {
8649 // Suggest moving the attribute to the type instead, but only for our
8650 // own vendor attributes; moving other vendors' attributes might hurt
8651 // portability.
8652 if (AL.isClangScope()) {
8653 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
8654 << AL << D->getLocation();
8657 // Allow this type attribute to be handled in processTypeAttrs();
8658 // silently move on.
8659 break;
8662 if (AL.getKind() == ParsedAttr::AT_Regparm) {
8663 // `regparm` is a special case: It's a type attribute but we still want
8664 // to treat it as if it had been written on the declaration because that
8665 // way we'll be able to handle it directly in `processTypeAttr()`.
8666 // If we treated `regparm` it as if it had been written on the
8667 // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()`
8668 // would try to move it to the declarator, but that doesn't work: We
8669 // can't remove the attribute from the list of declaration attributes
8670 // because it might be needed by other declarators in the same
8671 // declaration.
8672 break;
8675 if (AL.getKind() == ParsedAttr::AT_VectorSize) {
8676 // `vector_size` is a special case: It's a type attribute semantically,
8677 // but GCC expects the [[]] syntax to be written on the declaration (and
8678 // warns that the attribute has no effect if it is placed on the
8679 // decl-specifier-seq).
8680 // Silently move on and allow the attribute to be handled in
8681 // processTypeAttr().
8682 break;
8685 if (AL.getKind() == ParsedAttr::AT_NoDeref) {
8686 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8687 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8688 // We allow processTypeAttrs() to emit a warning and silently move on.
8689 break;
8692 // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
8693 // statement attribute is not written on a declaration, but this code is
8694 // needed for type attributes as well as statement attributes in Attr.td
8695 // that do not list any subjects.
8696 S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)
8697 << AL << D->getLocation();
8698 break;
8699 case ParsedAttr::AT_Interrupt:
8700 handleInterruptAttr(S, D, AL);
8701 break;
8702 case ParsedAttr::AT_X86ForceAlignArgPointer:
8703 handleX86ForceAlignArgPointerAttr(S, D, AL);
8704 break;
8705 case ParsedAttr::AT_ReadOnlyPlacement:
8706 handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, AL);
8707 break;
8708 case ParsedAttr::AT_DLLExport:
8709 case ParsedAttr::AT_DLLImport:
8710 handleDLLAttr(S, D, AL);
8711 break;
8712 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
8713 handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
8714 break;
8715 case ParsedAttr::AT_AMDGPUWavesPerEU:
8716 handleAMDGPUWavesPerEUAttr(S, D, AL);
8717 break;
8718 case ParsedAttr::AT_AMDGPUNumSGPR:
8719 handleAMDGPUNumSGPRAttr(S, D, AL);
8720 break;
8721 case ParsedAttr::AT_AMDGPUNumVGPR:
8722 handleAMDGPUNumVGPRAttr(S, D, AL);
8723 break;
8724 case ParsedAttr::AT_AVRSignal:
8725 handleAVRSignalAttr(S, D, AL);
8726 break;
8727 case ParsedAttr::AT_BPFPreserveAccessIndex:
8728 handleBPFPreserveAccessIndexAttr(S, D, AL);
8729 break;
8730 case ParsedAttr::AT_BTFDeclTag:
8731 handleBTFDeclTagAttr(S, D, AL);
8732 break;
8733 case ParsedAttr::AT_WebAssemblyExportName:
8734 handleWebAssemblyExportNameAttr(S, D, AL);
8735 break;
8736 case ParsedAttr::AT_WebAssemblyImportModule:
8737 handleWebAssemblyImportModuleAttr(S, D, AL);
8738 break;
8739 case ParsedAttr::AT_WebAssemblyImportName:
8740 handleWebAssemblyImportNameAttr(S, D, AL);
8741 break;
8742 case ParsedAttr::AT_IBOutlet:
8743 handleIBOutlet(S, D, AL);
8744 break;
8745 case ParsedAttr::AT_IBOutletCollection:
8746 handleIBOutletCollection(S, D, AL);
8747 break;
8748 case ParsedAttr::AT_IFunc:
8749 handleIFuncAttr(S, D, AL);
8750 break;
8751 case ParsedAttr::AT_Alias:
8752 handleAliasAttr(S, D, AL);
8753 break;
8754 case ParsedAttr::AT_Aligned:
8755 handleAlignedAttr(S, D, AL);
8756 break;
8757 case ParsedAttr::AT_AlignValue:
8758 handleAlignValueAttr(S, D, AL);
8759 break;
8760 case ParsedAttr::AT_AllocSize:
8761 handleAllocSizeAttr(S, D, AL);
8762 break;
8763 case ParsedAttr::AT_AlwaysInline:
8764 handleAlwaysInlineAttr(S, D, AL);
8765 break;
8766 case ParsedAttr::AT_AnalyzerNoReturn:
8767 handleAnalyzerNoReturnAttr(S, D, AL);
8768 break;
8769 case ParsedAttr::AT_TLSModel:
8770 handleTLSModelAttr(S, D, AL);
8771 break;
8772 case ParsedAttr::AT_Annotate:
8773 handleAnnotateAttr(S, D, AL);
8774 break;
8775 case ParsedAttr::AT_Availability:
8776 handleAvailabilityAttr(S, D, AL);
8777 break;
8778 case ParsedAttr::AT_CarriesDependency:
8779 handleDependencyAttr(S, scope, D, AL);
8780 break;
8781 case ParsedAttr::AT_CPUDispatch:
8782 case ParsedAttr::AT_CPUSpecific:
8783 handleCPUSpecificAttr(S, D, AL);
8784 break;
8785 case ParsedAttr::AT_Common:
8786 handleCommonAttr(S, D, AL);
8787 break;
8788 case ParsedAttr::AT_CUDAConstant:
8789 handleConstantAttr(S, D, AL);
8790 break;
8791 case ParsedAttr::AT_PassObjectSize:
8792 handlePassObjectSizeAttr(S, D, AL);
8793 break;
8794 case ParsedAttr::AT_Constructor:
8795 handleConstructorAttr(S, D, AL);
8796 break;
8797 case ParsedAttr::AT_Deprecated:
8798 handleDeprecatedAttr(S, D, AL);
8799 break;
8800 case ParsedAttr::AT_Destructor:
8801 handleDestructorAttr(S, D, AL);
8802 break;
8803 case ParsedAttr::AT_EnableIf:
8804 handleEnableIfAttr(S, D, AL);
8805 break;
8806 case ParsedAttr::AT_Error:
8807 handleErrorAttr(S, D, AL);
8808 break;
8809 case ParsedAttr::AT_DiagnoseIf:
8810 handleDiagnoseIfAttr(S, D, AL);
8811 break;
8812 case ParsedAttr::AT_DiagnoseAsBuiltin:
8813 handleDiagnoseAsBuiltinAttr(S, D, AL);
8814 break;
8815 case ParsedAttr::AT_NoBuiltin:
8816 handleNoBuiltinAttr(S, D, AL);
8817 break;
8818 case ParsedAttr::AT_ExtVectorType:
8819 handleExtVectorTypeAttr(S, D, AL);
8820 break;
8821 case ParsedAttr::AT_ExternalSourceSymbol:
8822 handleExternalSourceSymbolAttr(S, D, AL);
8823 break;
8824 case ParsedAttr::AT_MinSize:
8825 handleMinSizeAttr(S, D, AL);
8826 break;
8827 case ParsedAttr::AT_OptimizeNone:
8828 handleOptimizeNoneAttr(S, D, AL);
8829 break;
8830 case ParsedAttr::AT_EnumExtensibility:
8831 handleEnumExtensibilityAttr(S, D, AL);
8832 break;
8833 case ParsedAttr::AT_SYCLKernel:
8834 handleSYCLKernelAttr(S, D, AL);
8835 break;
8836 case ParsedAttr::AT_SYCLSpecialClass:
8837 handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, AL);
8838 break;
8839 case ParsedAttr::AT_Format:
8840 handleFormatAttr(S, D, AL);
8841 break;
8842 case ParsedAttr::AT_FormatArg:
8843 handleFormatArgAttr(S, D, AL);
8844 break;
8845 case ParsedAttr::AT_Callback:
8846 handleCallbackAttr(S, D, AL);
8847 break;
8848 case ParsedAttr::AT_CalledOnce:
8849 handleCalledOnceAttr(S, D, AL);
8850 break;
8851 case ParsedAttr::AT_CUDAGlobal:
8852 handleGlobalAttr(S, D, AL);
8853 break;
8854 case ParsedAttr::AT_CUDADevice:
8855 handleDeviceAttr(S, D, AL);
8856 break;
8857 case ParsedAttr::AT_HIPManaged:
8858 handleManagedAttr(S, D, AL);
8859 break;
8860 case ParsedAttr::AT_GNUInline:
8861 handleGNUInlineAttr(S, D, AL);
8862 break;
8863 case ParsedAttr::AT_CUDALaunchBounds:
8864 handleLaunchBoundsAttr(S, D, AL);
8865 break;
8866 case ParsedAttr::AT_Restrict:
8867 handleRestrictAttr(S, D, AL);
8868 break;
8869 case ParsedAttr::AT_Mode:
8870 handleModeAttr(S, D, AL);
8871 break;
8872 case ParsedAttr::AT_NonNull:
8873 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
8874 handleNonNullAttrParameter(S, PVD, AL);
8875 else
8876 handleNonNullAttr(S, D, AL);
8877 break;
8878 case ParsedAttr::AT_ReturnsNonNull:
8879 handleReturnsNonNullAttr(S, D, AL);
8880 break;
8881 case ParsedAttr::AT_NoEscape:
8882 handleNoEscapeAttr(S, D, AL);
8883 break;
8884 case ParsedAttr::AT_MaybeUndef:
8885 handleSimpleAttribute<MaybeUndefAttr>(S, D, AL);
8886 break;
8887 case ParsedAttr::AT_AssumeAligned:
8888 handleAssumeAlignedAttr(S, D, AL);
8889 break;
8890 case ParsedAttr::AT_AllocAlign:
8891 handleAllocAlignAttr(S, D, AL);
8892 break;
8893 case ParsedAttr::AT_Ownership:
8894 handleOwnershipAttr(S, D, AL);
8895 break;
8896 case ParsedAttr::AT_Naked:
8897 handleNakedAttr(S, D, AL);
8898 break;
8899 case ParsedAttr::AT_NoReturn:
8900 handleNoReturnAttr(S, D, AL);
8901 break;
8902 case ParsedAttr::AT_CXX11NoReturn:
8903 handleStandardNoReturnAttr(S, D, AL);
8904 break;
8905 case ParsedAttr::AT_AnyX86NoCfCheck:
8906 handleNoCfCheckAttr(S, D, AL);
8907 break;
8908 case ParsedAttr::AT_NoThrow:
8909 if (!AL.isUsedAsTypeAttr())
8910 handleSimpleAttribute<NoThrowAttr>(S, D, AL);
8911 break;
8912 case ParsedAttr::AT_CUDAShared:
8913 handleSharedAttr(S, D, AL);
8914 break;
8915 case ParsedAttr::AT_VecReturn:
8916 handleVecReturnAttr(S, D, AL);
8917 break;
8918 case ParsedAttr::AT_ObjCOwnership:
8919 handleObjCOwnershipAttr(S, D, AL);
8920 break;
8921 case ParsedAttr::AT_ObjCPreciseLifetime:
8922 handleObjCPreciseLifetimeAttr(S, D, AL);
8923 break;
8924 case ParsedAttr::AT_ObjCReturnsInnerPointer:
8925 handleObjCReturnsInnerPointerAttr(S, D, AL);
8926 break;
8927 case ParsedAttr::AT_ObjCRequiresSuper:
8928 handleObjCRequiresSuperAttr(S, D, AL);
8929 break;
8930 case ParsedAttr::AT_ObjCBridge:
8931 handleObjCBridgeAttr(S, D, AL);
8932 break;
8933 case ParsedAttr::AT_ObjCBridgeMutable:
8934 handleObjCBridgeMutableAttr(S, D, AL);
8935 break;
8936 case ParsedAttr::AT_ObjCBridgeRelated:
8937 handleObjCBridgeRelatedAttr(S, D, AL);
8938 break;
8939 case ParsedAttr::AT_ObjCDesignatedInitializer:
8940 handleObjCDesignatedInitializer(S, D, AL);
8941 break;
8942 case ParsedAttr::AT_ObjCRuntimeName:
8943 handleObjCRuntimeName(S, D, AL);
8944 break;
8945 case ParsedAttr::AT_ObjCBoxable:
8946 handleObjCBoxable(S, D, AL);
8947 break;
8948 case ParsedAttr::AT_NSErrorDomain:
8949 handleNSErrorDomain(S, D, AL);
8950 break;
8951 case ParsedAttr::AT_CFConsumed:
8952 case ParsedAttr::AT_NSConsumed:
8953 case ParsedAttr::AT_OSConsumed:
8954 S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
8955 /*IsTemplateInstantiation=*/false);
8956 break;
8957 case ParsedAttr::AT_OSReturnsRetainedOnZero:
8958 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
8959 S, D, AL, isValidOSObjectOutParameter(D),
8960 diag::warn_ns_attribute_wrong_parameter_type,
8961 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
8962 break;
8963 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
8964 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
8965 S, D, AL, isValidOSObjectOutParameter(D),
8966 diag::warn_ns_attribute_wrong_parameter_type,
8967 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
8968 break;
8969 case ParsedAttr::AT_NSReturnsAutoreleased:
8970 case ParsedAttr::AT_NSReturnsNotRetained:
8971 case ParsedAttr::AT_NSReturnsRetained:
8972 case ParsedAttr::AT_CFReturnsNotRetained:
8973 case ParsedAttr::AT_CFReturnsRetained:
8974 case ParsedAttr::AT_OSReturnsNotRetained:
8975 case ParsedAttr::AT_OSReturnsRetained:
8976 handleXReturnsXRetainedAttr(S, D, AL);
8977 break;
8978 case ParsedAttr::AT_WorkGroupSizeHint:
8979 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
8980 break;
8981 case ParsedAttr::AT_ReqdWorkGroupSize:
8982 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
8983 break;
8984 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
8985 handleSubGroupSize(S, D, AL);
8986 break;
8987 case ParsedAttr::AT_VecTypeHint:
8988 handleVecTypeHint(S, D, AL);
8989 break;
8990 case ParsedAttr::AT_InitPriority:
8991 handleInitPriorityAttr(S, D, AL);
8992 break;
8993 case ParsedAttr::AT_Packed:
8994 handlePackedAttr(S, D, AL);
8995 break;
8996 case ParsedAttr::AT_PreferredName:
8997 handlePreferredName(S, D, AL);
8998 break;
8999 case ParsedAttr::AT_Section:
9000 handleSectionAttr(S, D, AL);
9001 break;
9002 case ParsedAttr::AT_RandomizeLayout:
9003 handleRandomizeLayoutAttr(S, D, AL);
9004 break;
9005 case ParsedAttr::AT_NoRandomizeLayout:
9006 handleNoRandomizeLayoutAttr(S, D, AL);
9007 break;
9008 case ParsedAttr::AT_CodeSeg:
9009 handleCodeSegAttr(S, D, AL);
9010 break;
9011 case ParsedAttr::AT_Target:
9012 handleTargetAttr(S, D, AL);
9013 break;
9014 case ParsedAttr::AT_TargetVersion:
9015 handleTargetVersionAttr(S, D, AL);
9016 break;
9017 case ParsedAttr::AT_TargetClones:
9018 handleTargetClonesAttr(S, D, AL);
9019 break;
9020 case ParsedAttr::AT_MinVectorWidth:
9021 handleMinVectorWidthAttr(S, D, AL);
9022 break;
9023 case ParsedAttr::AT_Unavailable:
9024 handleAttrWithMessage<UnavailableAttr>(S, D, AL);
9025 break;
9026 case ParsedAttr::AT_Assumption:
9027 handleAssumumptionAttr(S, D, AL);
9028 break;
9029 case ParsedAttr::AT_ObjCDirect:
9030 handleObjCDirectAttr(S, D, AL);
9031 break;
9032 case ParsedAttr::AT_ObjCDirectMembers:
9033 handleObjCDirectMembersAttr(S, D, AL);
9034 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
9035 break;
9036 case ParsedAttr::AT_ObjCExplicitProtocolImpl:
9037 handleObjCSuppresProtocolAttr(S, D, AL);
9038 break;
9039 case ParsedAttr::AT_Unused:
9040 handleUnusedAttr(S, D, AL);
9041 break;
9042 case ParsedAttr::AT_Visibility:
9043 handleVisibilityAttr(S, D, AL, false);
9044 break;
9045 case ParsedAttr::AT_TypeVisibility:
9046 handleVisibilityAttr(S, D, AL, true);
9047 break;
9048 case ParsedAttr::AT_WarnUnusedResult:
9049 handleWarnUnusedResult(S, D, AL);
9050 break;
9051 case ParsedAttr::AT_WeakRef:
9052 handleWeakRefAttr(S, D, AL);
9053 break;
9054 case ParsedAttr::AT_WeakImport:
9055 handleWeakImportAttr(S, D, AL);
9056 break;
9057 case ParsedAttr::AT_TransparentUnion:
9058 handleTransparentUnionAttr(S, D, AL);
9059 break;
9060 case ParsedAttr::AT_ObjCMethodFamily:
9061 handleObjCMethodFamilyAttr(S, D, AL);
9062 break;
9063 case ParsedAttr::AT_ObjCNSObject:
9064 handleObjCNSObject(S, D, AL);
9065 break;
9066 case ParsedAttr::AT_ObjCIndependentClass:
9067 handleObjCIndependentClass(S, D, AL);
9068 break;
9069 case ParsedAttr::AT_Blocks:
9070 handleBlocksAttr(S, D, AL);
9071 break;
9072 case ParsedAttr::AT_Sentinel:
9073 handleSentinelAttr(S, D, AL);
9074 break;
9075 case ParsedAttr::AT_Cleanup:
9076 handleCleanupAttr(S, D, AL);
9077 break;
9078 case ParsedAttr::AT_NoDebug:
9079 handleNoDebugAttr(S, D, AL);
9080 break;
9081 case ParsedAttr::AT_CmseNSEntry:
9082 handleCmseNSEntryAttr(S, D, AL);
9083 break;
9084 case ParsedAttr::AT_StdCall:
9085 case ParsedAttr::AT_CDecl:
9086 case ParsedAttr::AT_FastCall:
9087 case ParsedAttr::AT_ThisCall:
9088 case ParsedAttr::AT_Pascal:
9089 case ParsedAttr::AT_RegCall:
9090 case ParsedAttr::AT_SwiftCall:
9091 case ParsedAttr::AT_SwiftAsyncCall:
9092 case ParsedAttr::AT_VectorCall:
9093 case ParsedAttr::AT_MSABI:
9094 case ParsedAttr::AT_SysVABI:
9095 case ParsedAttr::AT_Pcs:
9096 case ParsedAttr::AT_IntelOclBicc:
9097 case ParsedAttr::AT_PreserveMost:
9098 case ParsedAttr::AT_PreserveAll:
9099 case ParsedAttr::AT_AArch64VectorPcs:
9100 case ParsedAttr::AT_AArch64SVEPcs:
9101 case ParsedAttr::AT_AMDGPUKernelCall:
9102 handleCallConvAttr(S, D, AL);
9103 break;
9104 case ParsedAttr::AT_Suppress:
9105 handleSuppressAttr(S, D, AL);
9106 break;
9107 case ParsedAttr::AT_Owner:
9108 case ParsedAttr::AT_Pointer:
9109 handleLifetimeCategoryAttr(S, D, AL);
9110 break;
9111 case ParsedAttr::AT_OpenCLAccess:
9112 handleOpenCLAccessAttr(S, D, AL);
9113 break;
9114 case ParsedAttr::AT_OpenCLNoSVM:
9115 handleOpenCLNoSVMAttr(S, D, AL);
9116 break;
9117 case ParsedAttr::AT_SwiftContext:
9118 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
9119 break;
9120 case ParsedAttr::AT_SwiftAsyncContext:
9121 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
9122 break;
9123 case ParsedAttr::AT_SwiftErrorResult:
9124 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
9125 break;
9126 case ParsedAttr::AT_SwiftIndirectResult:
9127 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
9128 break;
9129 case ParsedAttr::AT_InternalLinkage:
9130 handleInternalLinkageAttr(S, D, AL);
9131 break;
9132 case ParsedAttr::AT_ZeroCallUsedRegs:
9133 handleZeroCallUsedRegsAttr(S, D, AL);
9134 break;
9135 case ParsedAttr::AT_FunctionReturnThunks:
9136 handleFunctionReturnThunksAttr(S, D, AL);
9137 break;
9139 // Microsoft attributes:
9140 case ParsedAttr::AT_LayoutVersion:
9141 handleLayoutVersion(S, D, AL);
9142 break;
9143 case ParsedAttr::AT_Uuid:
9144 handleUuidAttr(S, D, AL);
9145 break;
9146 case ParsedAttr::AT_MSInheritance:
9147 handleMSInheritanceAttr(S, D, AL);
9148 break;
9149 case ParsedAttr::AT_Thread:
9150 handleDeclspecThreadAttr(S, D, AL);
9151 break;
9153 // HLSL attributes:
9154 case ParsedAttr::AT_HLSLNumThreads:
9155 handleHLSLNumThreadsAttr(S, D, AL);
9156 break;
9157 case ParsedAttr::AT_HLSLSV_GroupIndex:
9158 handleHLSLSVGroupIndexAttr(S, D, AL);
9159 break;
9160 case ParsedAttr::AT_HLSLSV_DispatchThreadID:
9161 handleHLSLSV_DispatchThreadIDAttr(S, D, AL);
9162 break;
9163 case ParsedAttr::AT_HLSLShader:
9164 handleHLSLShaderAttr(S, D, AL);
9165 break;
9166 case ParsedAttr::AT_HLSLResourceBinding:
9167 handleHLSLResourceBindingAttr(S, D, AL);
9168 break;
9170 case ParsedAttr::AT_AbiTag:
9171 handleAbiTagAttr(S, D, AL);
9172 break;
9173 case ParsedAttr::AT_CFGuard:
9174 handleCFGuardAttr(S, D, AL);
9175 break;
9177 // Thread safety attributes:
9178 case ParsedAttr::AT_AssertExclusiveLock:
9179 handleAssertExclusiveLockAttr(S, D, AL);
9180 break;
9181 case ParsedAttr::AT_AssertSharedLock:
9182 handleAssertSharedLockAttr(S, D, AL);
9183 break;
9184 case ParsedAttr::AT_PtGuardedVar:
9185 handlePtGuardedVarAttr(S, D, AL);
9186 break;
9187 case ParsedAttr::AT_NoSanitize:
9188 handleNoSanitizeAttr(S, D, AL);
9189 break;
9190 case ParsedAttr::AT_NoSanitizeSpecific:
9191 handleNoSanitizeSpecificAttr(S, D, AL);
9192 break;
9193 case ParsedAttr::AT_GuardedBy:
9194 handleGuardedByAttr(S, D, AL);
9195 break;
9196 case ParsedAttr::AT_PtGuardedBy:
9197 handlePtGuardedByAttr(S, D, AL);
9198 break;
9199 case ParsedAttr::AT_ExclusiveTrylockFunction:
9200 handleExclusiveTrylockFunctionAttr(S, D, AL);
9201 break;
9202 case ParsedAttr::AT_LockReturned:
9203 handleLockReturnedAttr(S, D, AL);
9204 break;
9205 case ParsedAttr::AT_LocksExcluded:
9206 handleLocksExcludedAttr(S, D, AL);
9207 break;
9208 case ParsedAttr::AT_SharedTrylockFunction:
9209 handleSharedTrylockFunctionAttr(S, D, AL);
9210 break;
9211 case ParsedAttr::AT_AcquiredBefore:
9212 handleAcquiredBeforeAttr(S, D, AL);
9213 break;
9214 case ParsedAttr::AT_AcquiredAfter:
9215 handleAcquiredAfterAttr(S, D, AL);
9216 break;
9218 // Capability analysis attributes.
9219 case ParsedAttr::AT_Capability:
9220 case ParsedAttr::AT_Lockable:
9221 handleCapabilityAttr(S, D, AL);
9222 break;
9223 case ParsedAttr::AT_RequiresCapability:
9224 handleRequiresCapabilityAttr(S, D, AL);
9225 break;
9227 case ParsedAttr::AT_AssertCapability:
9228 handleAssertCapabilityAttr(S, D, AL);
9229 break;
9230 case ParsedAttr::AT_AcquireCapability:
9231 handleAcquireCapabilityAttr(S, D, AL);
9232 break;
9233 case ParsedAttr::AT_ReleaseCapability:
9234 handleReleaseCapabilityAttr(S, D, AL);
9235 break;
9236 case ParsedAttr::AT_TryAcquireCapability:
9237 handleTryAcquireCapabilityAttr(S, D, AL);
9238 break;
9240 // Consumed analysis attributes.
9241 case ParsedAttr::AT_Consumable:
9242 handleConsumableAttr(S, D, AL);
9243 break;
9244 case ParsedAttr::AT_CallableWhen:
9245 handleCallableWhenAttr(S, D, AL);
9246 break;
9247 case ParsedAttr::AT_ParamTypestate:
9248 handleParamTypestateAttr(S, D, AL);
9249 break;
9250 case ParsedAttr::AT_ReturnTypestate:
9251 handleReturnTypestateAttr(S, D, AL);
9252 break;
9253 case ParsedAttr::AT_SetTypestate:
9254 handleSetTypestateAttr(S, D, AL);
9255 break;
9256 case ParsedAttr::AT_TestTypestate:
9257 handleTestTypestateAttr(S, D, AL);
9258 break;
9260 // Type safety attributes.
9261 case ParsedAttr::AT_ArgumentWithTypeTag:
9262 handleArgumentWithTypeTagAttr(S, D, AL);
9263 break;
9264 case ParsedAttr::AT_TypeTagForDatatype:
9265 handleTypeTagForDatatypeAttr(S, D, AL);
9266 break;
9268 // Swift attributes.
9269 case ParsedAttr::AT_SwiftAsyncName:
9270 handleSwiftAsyncName(S, D, AL);
9271 break;
9272 case ParsedAttr::AT_SwiftAttr:
9273 handleSwiftAttrAttr(S, D, AL);
9274 break;
9275 case ParsedAttr::AT_SwiftBridge:
9276 handleSwiftBridge(S, D, AL);
9277 break;
9278 case ParsedAttr::AT_SwiftError:
9279 handleSwiftError(S, D, AL);
9280 break;
9281 case ParsedAttr::AT_SwiftName:
9282 handleSwiftName(S, D, AL);
9283 break;
9284 case ParsedAttr::AT_SwiftNewType:
9285 handleSwiftNewType(S, D, AL);
9286 break;
9287 case ParsedAttr::AT_SwiftAsync:
9288 handleSwiftAsyncAttr(S, D, AL);
9289 break;
9290 case ParsedAttr::AT_SwiftAsyncError:
9291 handleSwiftAsyncError(S, D, AL);
9292 break;
9294 // XRay attributes.
9295 case ParsedAttr::AT_XRayLogArgs:
9296 handleXRayLogArgsAttr(S, D, AL);
9297 break;
9299 case ParsedAttr::AT_PatchableFunctionEntry:
9300 handlePatchableFunctionEntryAttr(S, D, AL);
9301 break;
9303 case ParsedAttr::AT_AlwaysDestroy:
9304 case ParsedAttr::AT_NoDestroy:
9305 handleDestroyAttr(S, D, AL);
9306 break;
9308 case ParsedAttr::AT_Uninitialized:
9309 handleUninitializedAttr(S, D, AL);
9310 break;
9312 case ParsedAttr::AT_ObjCExternallyRetained:
9313 handleObjCExternallyRetainedAttr(S, D, AL);
9314 break;
9316 case ParsedAttr::AT_MIGServerRoutine:
9317 handleMIGServerRoutineAttr(S, D, AL);
9318 break;
9320 case ParsedAttr::AT_MSAllocator:
9321 handleMSAllocatorAttr(S, D, AL);
9322 break;
9324 case ParsedAttr::AT_ArmBuiltinAlias:
9325 handleArmBuiltinAliasAttr(S, D, AL);
9326 break;
9328 case ParsedAttr::AT_AcquireHandle:
9329 handleAcquireHandleAttr(S, D, AL);
9330 break;
9332 case ParsedAttr::AT_ReleaseHandle:
9333 handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
9334 break;
9336 case ParsedAttr::AT_UnsafeBufferUsage:
9337 handleUnsafeBufferUsage<UnsafeBufferUsageAttr>(S, D, AL);
9338 break;
9340 case ParsedAttr::AT_UseHandle:
9341 handleHandleAttr<UseHandleAttr>(S, D, AL);
9342 break;
9344 case ParsedAttr::AT_EnforceTCB:
9345 handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
9346 break;
9348 case ParsedAttr::AT_EnforceTCBLeaf:
9349 handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
9350 break;
9352 case ParsedAttr::AT_BuiltinAlias:
9353 handleBuiltinAliasAttr(S, D, AL);
9354 break;
9356 case ParsedAttr::AT_UsingIfExists:
9357 handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
9358 break;
9362 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
9363 /// attribute list to the specified decl, ignoring any type attributes.
9364 void Sema::ProcessDeclAttributeList(
9365 Scope *S, Decl *D, const ParsedAttributesView &AttrList,
9366 const ProcessDeclAttributeOptions &Options) {
9367 if (AttrList.empty())
9368 return;
9370 for (const ParsedAttr &AL : AttrList)
9371 ProcessDeclAttribute(*this, S, D, AL, Options);
9373 // FIXME: We should be able to handle these cases in TableGen.
9374 // GCC accepts
9375 // static int a9 __attribute__((weakref));
9376 // but that looks really pointless. We reject it.
9377 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
9378 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
9379 << cast<NamedDecl>(D);
9380 D->dropAttr<WeakRefAttr>();
9381 return;
9384 // FIXME: We should be able to handle this in TableGen as well. It would be
9385 // good to have a way to specify "these attributes must appear as a group",
9386 // for these. Additionally, it would be good to have a way to specify "these
9387 // attribute must never appear as a group" for attributes like cold and hot.
9388 if (!D->hasAttr<OpenCLKernelAttr>()) {
9389 // These attributes cannot be applied to a non-kernel function.
9390 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
9391 // FIXME: This emits a different error message than
9392 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
9393 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9394 D->setInvalidDecl();
9395 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
9396 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9397 D->setInvalidDecl();
9398 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
9399 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9400 D->setInvalidDecl();
9401 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
9402 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9403 D->setInvalidDecl();
9404 } else if (!D->hasAttr<CUDAGlobalAttr>()) {
9405 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
9406 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9407 << A << ExpectedKernelFunction;
9408 D->setInvalidDecl();
9409 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
9410 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9411 << A << ExpectedKernelFunction;
9412 D->setInvalidDecl();
9413 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
9414 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9415 << A << ExpectedKernelFunction;
9416 D->setInvalidDecl();
9417 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
9418 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9419 << A << ExpectedKernelFunction;
9420 D->setInvalidDecl();
9425 // Do this check after processing D's attributes because the attribute
9426 // objc_method_family can change whether the given method is in the init
9427 // family, and it can be applied after objc_designated_initializer. This is a
9428 // bit of a hack, but we need it to be compatible with versions of clang that
9429 // processed the attribute list in the wrong order.
9430 if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
9431 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
9432 Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
9433 D->dropAttr<ObjCDesignatedInitializerAttr>();
9437 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
9438 // attribute.
9439 void Sema::ProcessDeclAttributeDelayed(Decl *D,
9440 const ParsedAttributesView &AttrList) {
9441 for (const ParsedAttr &AL : AttrList)
9442 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
9443 handleTransparentUnionAttr(*this, D, AL);
9444 break;
9447 // For BPFPreserveAccessIndexAttr, we want to populate the attributes
9448 // to fields and inner records as well.
9449 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
9450 handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
9453 // Annotation attributes are the only attributes allowed after an access
9454 // specifier.
9455 bool Sema::ProcessAccessDeclAttributeList(
9456 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
9457 for (const ParsedAttr &AL : AttrList) {
9458 if (AL.getKind() == ParsedAttr::AT_Annotate) {
9459 ProcessDeclAttribute(*this, nullptr, ASDecl, AL,
9460 ProcessDeclAttributeOptions());
9461 } else {
9462 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
9463 return true;
9466 return false;
9469 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
9470 /// contains any decl attributes that we should warn about.
9471 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
9472 for (const ParsedAttr &AL : A) {
9473 // Only warn if the attribute is an unignored, non-type attribute.
9474 if (AL.isUsedAsTypeAttr() || AL.isInvalid())
9475 continue;
9476 if (AL.getKind() == ParsedAttr::IgnoredAttribute)
9477 continue;
9479 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
9480 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
9481 << AL << AL.getRange();
9482 } else {
9483 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
9484 << AL.getRange();
9489 /// checkUnusedDeclAttributes - Given a declarator which is not being
9490 /// used to build a declaration, complain about any decl attributes
9491 /// which might be lying around on it.
9492 void Sema::checkUnusedDeclAttributes(Declarator &D) {
9493 ::checkUnusedDeclAttributes(*this, D.getDeclarationAttributes());
9494 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
9495 ::checkUnusedDeclAttributes(*this, D.getAttributes());
9496 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
9497 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
9500 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
9501 /// \#pragma weak needs a non-definition decl and source may not have one.
9502 NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II,
9503 SourceLocation Loc) {
9504 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
9505 NamedDecl *NewD = nullptr;
9506 if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
9507 FunctionDecl *NewFD;
9508 // FIXME: Missing call to CheckFunctionDeclaration().
9509 // FIXME: Mangling?
9510 // FIXME: Is the qualifier info correct?
9511 // FIXME: Is the DeclContext correct?
9512 NewFD = FunctionDecl::Create(
9513 FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
9514 DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
9515 getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
9516 FD->hasPrototype(), ConstexprSpecKind::Unspecified,
9517 FD->getTrailingRequiresClause());
9518 NewD = NewFD;
9520 if (FD->getQualifier())
9521 NewFD->setQualifierInfo(FD->getQualifierLoc());
9523 // Fake up parameter variables; they are declared as if this were
9524 // a typedef.
9525 QualType FDTy = FD->getType();
9526 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
9527 SmallVector<ParmVarDecl*, 16> Params;
9528 for (const auto &AI : FT->param_types()) {
9529 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
9530 Param->setScopeInfo(0, Params.size());
9531 Params.push_back(Param);
9533 NewFD->setParams(Params);
9535 } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
9536 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
9537 VD->getInnerLocStart(), VD->getLocation(), II,
9538 VD->getType(), VD->getTypeSourceInfo(),
9539 VD->getStorageClass());
9540 if (VD->getQualifier())
9541 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
9543 return NewD;
9546 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
9547 /// applied to it, possibly with an alias.
9548 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) {
9549 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
9550 IdentifierInfo *NDId = ND->getIdentifier();
9551 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
9552 NewD->addAttr(
9553 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
9554 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
9555 AttributeCommonInfo::AS_Pragma));
9556 WeakTopLevelDecl.push_back(NewD);
9557 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
9558 // to insert Decl at TU scope, sorry.
9559 DeclContext *SavedContext = CurContext;
9560 CurContext = Context.getTranslationUnitDecl();
9561 NewD->setDeclContext(CurContext);
9562 NewD->setLexicalDeclContext(CurContext);
9563 PushOnScopeChains(NewD, S);
9564 CurContext = SavedContext;
9565 } else { // just add weak to existing
9566 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
9567 AttributeCommonInfo::AS_Pragma));
9571 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
9572 // It's valid to "forward-declare" #pragma weak, in which case we
9573 // have to do this.
9574 LoadExternalWeakUndeclaredIdentifiers();
9575 if (WeakUndeclaredIdentifiers.empty())
9576 return;
9577 NamedDecl *ND = nullptr;
9578 if (auto *VD = dyn_cast<VarDecl>(D))
9579 if (VD->isExternC())
9580 ND = VD;
9581 if (auto *FD = dyn_cast<FunctionDecl>(D))
9582 if (FD->isExternC())
9583 ND = FD;
9584 if (!ND)
9585 return;
9586 if (IdentifierInfo *Id = ND->getIdentifier()) {
9587 auto I = WeakUndeclaredIdentifiers.find(Id);
9588 if (I != WeakUndeclaredIdentifiers.end()) {
9589 auto &WeakInfos = I->second;
9590 for (const auto &W : WeakInfos)
9591 DeclApplyPragmaWeak(S, ND, W);
9592 std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos;
9593 WeakInfos.swap(EmptyWeakInfos);
9598 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
9599 /// it, apply them to D. This is a bit tricky because PD can have attributes
9600 /// specified in many different places, and we need to find and apply them all.
9601 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
9602 // Ordering of attributes can be important, so we take care to process
9603 // attributes in the order in which they appeared in the source code.
9605 // First, process attributes that appeared on the declaration itself (but
9606 // only if they don't have the legacy behavior of "sliding" to the DeclSepc).
9607 ParsedAttributesView NonSlidingAttrs;
9608 for (ParsedAttr &AL : PD.getDeclarationAttributes()) {
9609 if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
9610 // Skip processing the attribute, but do check if it appertains to the
9611 // declaration. This is needed for the `MatrixType` attribute, which,
9612 // despite being a type attribute, defines a `SubjectList` that only
9613 // allows it to be used on typedef declarations.
9614 AL.diagnoseAppertainsTo(*this, D);
9615 } else {
9616 NonSlidingAttrs.addAtEnd(&AL);
9619 ProcessDeclAttributeList(S, D, NonSlidingAttrs);
9621 // Apply decl attributes from the DeclSpec if present.
9622 if (!PD.getDeclSpec().getAttributes().empty()) {
9623 ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes(),
9624 ProcessDeclAttributeOptions()
9625 .WithIncludeCXX11Attributes(false)
9626 .WithIgnoreTypeAttributes(true));
9629 // Walk the declarator structure, applying decl attributes that were in a type
9630 // position to the decl itself. This handles cases like:
9631 // int *__attr__(x)** D;
9632 // when X is a decl attribute.
9633 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) {
9634 ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
9635 ProcessDeclAttributeOptions()
9636 .WithIncludeCXX11Attributes(false)
9637 .WithIgnoreTypeAttributes(true));
9640 // Finally, apply any attributes on the decl itself.
9641 ProcessDeclAttributeList(S, D, PD.getAttributes());
9643 // Apply additional attributes specified by '#pragma clang attribute'.
9644 AddPragmaAttributes(S, D);
9647 /// Is the given declaration allowed to use a forbidden type?
9648 /// If so, it'll still be annotated with an attribute that makes it
9649 /// illegal to actually use.
9650 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
9651 const DelayedDiagnostic &diag,
9652 UnavailableAttr::ImplicitReason &reason) {
9653 // Private ivars are always okay. Unfortunately, people don't
9654 // always properly make their ivars private, even in system headers.
9655 // Plus we need to make fields okay, too.
9656 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
9657 !isa<FunctionDecl>(D))
9658 return false;
9660 // Silently accept unsupported uses of __weak in both user and system
9661 // declarations when it's been disabled, for ease of integration with
9662 // -fno-objc-arc files. We do have to take some care against attempts
9663 // to define such things; for now, we've only done that for ivars
9664 // and properties.
9665 if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
9666 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
9667 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
9668 reason = UnavailableAttr::IR_ForbiddenWeak;
9669 return true;
9673 // Allow all sorts of things in system headers.
9674 if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
9675 // Currently, all the failures dealt with this way are due to ARC
9676 // restrictions.
9677 reason = UnavailableAttr::IR_ARCForbiddenType;
9678 return true;
9681 return false;
9684 /// Handle a delayed forbidden-type diagnostic.
9685 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
9686 Decl *D) {
9687 auto Reason = UnavailableAttr::IR_None;
9688 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
9689 assert(Reason && "didn't set reason?");
9690 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
9691 return;
9693 if (S.getLangOpts().ObjCAutoRefCount)
9694 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9695 // FIXME: we may want to suppress diagnostics for all
9696 // kind of forbidden type messages on unavailable functions.
9697 if (FD->hasAttr<UnavailableAttr>() &&
9698 DD.getForbiddenTypeDiagnostic() ==
9699 diag::err_arc_array_param_no_ownership) {
9700 DD.Triggered = true;
9701 return;
9705 S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
9706 << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
9707 DD.Triggered = true;
9711 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
9712 assert(DelayedDiagnostics.getCurrentPool());
9713 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
9714 DelayedDiagnostics.popWithoutEmitting(state);
9716 // When delaying diagnostics to run in the context of a parsed
9717 // declaration, we only want to actually emit anything if parsing
9718 // succeeds.
9719 if (!decl) return;
9721 // We emit all the active diagnostics in this pool or any of its
9722 // parents. In general, we'll get one pool for the decl spec
9723 // and a child pool for each declarator; in a decl group like:
9724 // deprecated_typedef foo, *bar, baz();
9725 // only the declarator pops will be passed decls. This is correct;
9726 // we really do need to consider delayed diagnostics from the decl spec
9727 // for each of the different declarations.
9728 const DelayedDiagnosticPool *pool = &poppedPool;
9729 do {
9730 bool AnyAccessFailures = false;
9731 for (DelayedDiagnosticPool::pool_iterator
9732 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
9733 // This const_cast is a bit lame. Really, Triggered should be mutable.
9734 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
9735 if (diag.Triggered)
9736 continue;
9738 switch (diag.Kind) {
9739 case DelayedDiagnostic::Availability:
9740 // Don't bother giving deprecation/unavailable diagnostics if
9741 // the decl is invalid.
9742 if (!decl->isInvalidDecl())
9743 handleDelayedAvailabilityCheck(diag, decl);
9744 break;
9746 case DelayedDiagnostic::Access:
9747 // Only produce one access control diagnostic for a structured binding
9748 // declaration: we don't need to tell the user that all the fields are
9749 // inaccessible one at a time.
9750 if (AnyAccessFailures && isa<DecompositionDecl>(decl))
9751 continue;
9752 HandleDelayedAccessCheck(diag, decl);
9753 if (diag.Triggered)
9754 AnyAccessFailures = true;
9755 break;
9757 case DelayedDiagnostic::ForbiddenType:
9758 handleDelayedForbiddenType(*this, diag, decl);
9759 break;
9762 } while ((pool = pool->getParent()));
9765 /// Given a set of delayed diagnostics, re-emit them as if they had
9766 /// been delayed in the current context instead of in the given pool.
9767 /// Essentially, this just moves them to the current pool.
9768 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
9769 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
9770 assert(curPool && "re-emitting in undelayed context not supported");
9771 curPool->steal(pool);