1 //===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "gwp_asan/guarded_pool_allocator.h"
11 #include "gwp_asan/crash_handler.h"
12 #include "gwp_asan/options.h"
13 #include "gwp_asan/utilities.h"
18 using AllocationMetadata
= gwp_asan::AllocationMetadata
;
19 using Error
= gwp_asan::Error
;
23 // Forward declare the pointer to the singleton version of this class.
24 // Instantiated during initialisation, this allows the signal handler
25 // to find this class in order to deduce the root cause of failures. Must not be
26 // referenced by users outside this translation unit, in order to avoid
28 GuardedPoolAllocator
*SingletonPtr
= nullptr;
30 size_t roundUpTo(size_t Size
, size_t Boundary
) {
31 return (Size
+ Boundary
- 1) & ~(Boundary
- 1);
34 uintptr_t getPageAddr(uintptr_t Ptr
, uintptr_t PageSize
) {
35 return Ptr
& ~(PageSize
- 1);
38 bool isPowerOfTwo(uintptr_t X
) { return (X
& (X
- 1)) == 0; }
39 } // anonymous namespace
41 // Gets the singleton implementation of this class. Thread-compatible until
42 // init() is called, thread-safe afterwards.
43 GuardedPoolAllocator
*GuardedPoolAllocator::getSingleton() {
47 void GuardedPoolAllocator::init(const options::Options
&Opts
) {
48 // Note: We return from the constructor here if GWP-ASan is not available.
49 // This will stop heap-allocation of class members, as well as mmap() of the
51 if (!Opts
.Enabled
|| Opts
.SampleRate
== 0 ||
52 Opts
.MaxSimultaneousAllocations
== 0)
55 Check(Opts
.SampleRate
>= 0, "GWP-ASan Error: SampleRate is < 0.");
56 Check(Opts
.SampleRate
< (1 << 30), "GWP-ASan Error: SampleRate is >= 2^30.");
57 Check(Opts
.MaxSimultaneousAllocations
>= 0,
58 "GWP-ASan Error: MaxSimultaneousAllocations is < 0.");
61 Backtrace
= Opts
.Backtrace
;
63 State
.VersionMagic
= {{AllocatorVersionMagic::kAllocatorVersionMagic
[0],
64 AllocatorVersionMagic::kAllocatorVersionMagic
[1],
65 AllocatorVersionMagic::kAllocatorVersionMagic
[2],
66 AllocatorVersionMagic::kAllocatorVersionMagic
[3]},
67 AllocatorVersionMagic::kAllocatorVersion
,
70 State
.MaxSimultaneousAllocations
= Opts
.MaxSimultaneousAllocations
;
72 const size_t PageSize
= getPlatformPageSize();
73 // getPageAddr() and roundUpTo() assume the page size to be a power of 2.
74 assert((PageSize
& (PageSize
- 1)) == 0);
75 State
.PageSize
= PageSize
;
77 // Number of pages required =
78 // + MaxSimultaneousAllocations * maximumAllocationSize (N pages per slot)
79 // + MaxSimultaneousAllocations (one guard on the left side of each slot)
80 // + 1 (an extra guard page at the end of the pool, on the right side)
81 // + 1 (an extra page that's used for reporting internally-detected crashes,
82 // like double free and invalid free, to the signal handler; see
83 // raiseInternallyDetectedError() for more info)
84 size_t PoolBytesRequired
=
85 PageSize
* (2 + State
.MaxSimultaneousAllocations
) +
86 State
.MaxSimultaneousAllocations
* State
.maximumAllocationSize();
87 assert(PoolBytesRequired
% PageSize
== 0);
88 void *GuardedPoolMemory
= reserveGuardedPool(PoolBytesRequired
);
90 size_t BytesRequired
=
91 roundUpTo(State
.MaxSimultaneousAllocations
* sizeof(*Metadata
), PageSize
);
92 Metadata
= reinterpret_cast<AllocationMetadata
*>(
93 map(BytesRequired
, kGwpAsanMetadataName
));
95 // Allocate memory and set up the free pages queue.
96 BytesRequired
= roundUpTo(
97 State
.MaxSimultaneousAllocations
* sizeof(*FreeSlots
), PageSize
);
99 reinterpret_cast<size_t *>(map(BytesRequired
, kGwpAsanFreeSlotsName
));
101 // Multiply the sample rate by 2 to give a good, fast approximation for (1 /
102 // SampleRate) chance of sampling.
103 if (Opts
.SampleRate
!= 1)
104 AdjustedSampleRatePlusOne
= static_cast<uint32_t>(Opts
.SampleRate
) * 2 + 1;
106 AdjustedSampleRatePlusOne
= 2;
109 getThreadLocals()->NextSampleCounter
=
110 ((getRandomUnsigned32() % (AdjustedSampleRatePlusOne
- 1)) + 1) &
111 ThreadLocalPackedVariables::NextSampleCounterMask
;
113 State
.GuardedPagePool
= reinterpret_cast<uintptr_t>(GuardedPoolMemory
);
114 State
.GuardedPagePoolEnd
=
115 reinterpret_cast<uintptr_t>(GuardedPoolMemory
) + PoolBytesRequired
;
117 if (Opts
.InstallForkHandlers
)
121 void GuardedPoolAllocator::disable() {
123 BacktraceMutex
.lock();
126 void GuardedPoolAllocator::enable() {
128 BacktraceMutex
.unlock();
131 void GuardedPoolAllocator::iterate(void *Base
, size_t Size
, iterate_callback Cb
,
133 uintptr_t Start
= reinterpret_cast<uintptr_t>(Base
);
134 for (size_t i
= 0; i
< State
.MaxSimultaneousAllocations
; ++i
) {
135 const AllocationMetadata
&Meta
= Metadata
[i
];
136 if (Meta
.Addr
&& !Meta
.IsDeallocated
&& Meta
.Addr
>= Start
&&
137 Meta
.Addr
< Start
+ Size
)
138 Cb(Meta
.Addr
, Meta
.RequestedSize
, Arg
);
142 void GuardedPoolAllocator::uninitTestOnly() {
143 if (State
.GuardedPagePool
) {
144 unreserveGuardedPool();
145 State
.GuardedPagePool
= 0;
146 State
.GuardedPagePoolEnd
= 0;
150 roundUpTo(State
.MaxSimultaneousAllocations
* sizeof(*Metadata
),
156 roundUpTo(State
.MaxSimultaneousAllocations
* sizeof(*FreeSlots
),
160 *getThreadLocals() = ThreadLocalPackedVariables();
163 // Note, minimum backing allocation size in GWP-ASan is always one page, and
164 // each slot could potentially be multiple pages (but always in
165 // page-increments). Thus, for anything that requires less than page size
166 // alignment, we don't need to allocate extra padding to ensure the alignment
168 size_t GuardedPoolAllocator::getRequiredBackingSize(size_t Size
,
171 assert(isPowerOfTwo(Alignment
) && "Alignment must be a power of two!");
172 assert(Alignment
!= 0 && "Alignment should be non-zero");
173 assert(Size
!= 0 && "Size should be non-zero");
175 if (Alignment
<= PageSize
)
178 return Size
+ Alignment
- PageSize
;
181 uintptr_t GuardedPoolAllocator::alignUp(uintptr_t Ptr
, size_t Alignment
) {
182 assert(isPowerOfTwo(Alignment
) && "Alignment must be a power of two!");
183 assert(Alignment
!= 0 && "Alignment should be non-zero");
184 if ((Ptr
& (Alignment
- 1)) == 0)
187 Ptr
+= Alignment
- (Ptr
& (Alignment
- 1));
191 uintptr_t GuardedPoolAllocator::alignDown(uintptr_t Ptr
, size_t Alignment
) {
192 assert(isPowerOfTwo(Alignment
) && "Alignment must be a power of two!");
193 assert(Alignment
!= 0 && "Alignment should be non-zero");
194 if ((Ptr
& (Alignment
- 1)) == 0)
197 Ptr
-= Ptr
& (Alignment
- 1);
201 void *GuardedPoolAllocator::allocate(size_t Size
, size_t Alignment
) {
202 // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
203 // back to the supporting allocator.
204 if (State
.GuardedPagePoolEnd
== 0) {
205 getThreadLocals()->NextSampleCounter
=
206 (AdjustedSampleRatePlusOne
- 1) &
207 ThreadLocalPackedVariables::NextSampleCounterMask
;
214 Alignment
= alignof(max_align_t
);
216 if (!isPowerOfTwo(Alignment
) || Alignment
> State
.maximumAllocationSize() ||
217 Size
> State
.maximumAllocationSize())
220 size_t BackingSize
= getRequiredBackingSize(Size
, Alignment
, State
.PageSize
);
221 if (BackingSize
> State
.maximumAllocationSize())
224 // Protect against recursivity.
225 if (getThreadLocals()->RecursiveGuard
)
227 ScopedRecursiveGuard SRG
;
231 ScopedLock
L(PoolMutex
);
232 Index
= reserveSlot();
235 if (Index
== kInvalidSlotID
)
238 uintptr_t SlotStart
= State
.slotToAddr(Index
);
239 AllocationMetadata
*Meta
= addrToMetadata(SlotStart
);
240 uintptr_t SlotEnd
= State
.slotToAddr(Index
) + State
.maximumAllocationSize();
242 // Randomly choose whether to left-align or right-align the allocation, and
243 // then apply the necessary adjustments to get an aligned pointer.
244 if (getRandomUnsigned32() % 2 == 0)
245 UserPtr
= alignUp(SlotStart
, Alignment
);
247 UserPtr
= alignDown(SlotEnd
- Size
, Alignment
);
249 assert(UserPtr
>= SlotStart
);
250 assert(UserPtr
+ Size
<= SlotEnd
);
252 // If a slot is multiple pages in size, and the allocation takes up a single
253 // page, we can improve overflow detection by leaving the unused pages as
255 const size_t PageSize
= State
.PageSize
;
256 allocateInGuardedPool(
257 reinterpret_cast<void *>(getPageAddr(UserPtr
, PageSize
)),
258 roundUpTo(Size
, PageSize
));
260 Meta
->RecordAllocation(UserPtr
, Size
);
262 ScopedLock
UL(BacktraceMutex
);
263 Meta
->AllocationTrace
.RecordBacktrace(Backtrace
);
266 return reinterpret_cast<void *>(UserPtr
);
269 void GuardedPoolAllocator::raiseInternallyDetectedError(uintptr_t Address
,
271 // Disable the allocator before setting the internal failure state. In
272 // non-recoverable mode, the allocator will be permanently disabled, and so
273 // things will be accessed without locks.
276 // Races between internally- and externally-raised faults can happen. Right
277 // now, in this thread we've locked the allocator in order to raise an
278 // internally-detected fault, and another thread could SIGSEGV to raise an
279 // externally-detected fault. What will happen is that the other thread will
280 // wait in the signal handler, as we hold the allocator's locks from the
281 // disable() above. We'll trigger the signal handler by touching the
282 // internal-signal-raising address below, and the signal handler from our
283 // thread will get to run first as we will continue to hold the allocator
284 // locks until the enable() at the end of this function. Be careful though, if
285 // this thread receives another SIGSEGV after the disable() above, but before
286 // touching the internal-signal-raising address below, then this thread will
287 // get an "externally-raised" SIGSEGV while *also* holding the allocator
288 // locks, which means this thread's signal handler will deadlock. This could
289 // be resolved with a re-entrant lock, but asking platforms to implement this
290 // seems unnecessary given the only way to get a SIGSEGV in this critical
291 // section is either a memory safety bug in the couple lines of code below (be
292 // careful!), or someone outside uses `kill(this_thread, SIGSEGV)`, which
293 // really shouldn't happen.
295 State
.FailureType
= E
;
296 State
.FailureAddress
= Address
;
298 // Raise a SEGV by touching a specific address that identifies to the crash
299 // handler that this is an internally-raised fault. Changing this address?
300 // Don't forget to update __gwp_asan_get_internal_crash_address.
302 reinterpret_cast<char *>(State
.internallyDetectedErrorFaultAddress());
305 // This should never be reached in non-recoverable mode. Ensure that the
306 // signal handler called handleRecoverablePostCrashReport(), which was
307 // responsible for re-setting these fields.
308 assert(State
.FailureType
== Error::UNKNOWN
);
309 assert(State
.FailureAddress
== 0u);
311 // In recoverable mode, the signal handler (after dumping the crash) marked
312 // the page containing the InternalFaultSegvAddress as read/writeable, to
313 // allow the second touch to succeed after returning from the signal handler.
314 // Now, we need to mark the page as non-read/write-able again, so future
315 // internal faults can be raised.
316 deallocateInGuardedPool(
317 reinterpret_cast<void *>(getPageAddr(
318 State
.internallyDetectedErrorFaultAddress(), State
.PageSize
)),
321 // And now we're done with patching ourselves back up, enable the allocator.
325 void GuardedPoolAllocator::deallocate(void *Ptr
) {
326 assert(pointerIsMine(Ptr
) && "Pointer is not mine!");
327 uintptr_t UPtr
= reinterpret_cast<uintptr_t>(Ptr
);
328 size_t Slot
= State
.getNearestSlot(UPtr
);
329 uintptr_t SlotStart
= State
.slotToAddr(Slot
);
330 AllocationMetadata
*Meta
= addrToMetadata(UPtr
);
332 // If this allocation is responsible for crash, never recycle it. Turn the
333 // deallocate() call into a no-op.
334 if (Meta
->HasCrashed
)
337 if (Meta
->Addr
!= UPtr
) {
338 raiseInternallyDetectedError(UPtr
, Error::INVALID_FREE
);
341 if (Meta
->IsDeallocated
) {
342 raiseInternallyDetectedError(UPtr
, Error::DOUBLE_FREE
);
346 // Intentionally scope the mutex here, so that other threads can access the
347 // pool during the expensive markInaccessible() call.
349 ScopedLock
L(PoolMutex
);
351 // Ensure that the deallocation is recorded before marking the page as
352 // inaccessible. Otherwise, a racy use-after-free will have inconsistent
354 Meta
->RecordDeallocation();
356 // Ensure that the unwinder is not called if the recursive flag is set,
357 // otherwise non-reentrant unwinders may deadlock.
358 if (!getThreadLocals()->RecursiveGuard
) {
359 ScopedRecursiveGuard SRG
;
360 ScopedLock
UL(BacktraceMutex
);
361 Meta
->DeallocationTrace
.RecordBacktrace(Backtrace
);
365 deallocateInGuardedPool(reinterpret_cast<void *>(SlotStart
),
366 State
.maximumAllocationSize());
368 // And finally, lock again to release the slot back into the pool.
369 ScopedLock
L(PoolMutex
);
373 // Thread-compatible, protected by PoolMutex.
374 static bool PreviousRecursiveGuard
;
376 void GuardedPoolAllocator::preCrashReport(void *Ptr
) {
377 assert(pointerIsMine(Ptr
) && "Pointer is not mine!");
378 uintptr_t InternalCrashAddr
= __gwp_asan_get_internal_crash_address(
379 &State
, reinterpret_cast<uintptr_t>(Ptr
));
380 if (!InternalCrashAddr
)
383 // If something in the signal handler calls malloc() while dumping the
384 // GWP-ASan report (e.g. backtrace_symbols()), make sure that GWP-ASan doesn't
385 // service that allocation. `PreviousRecursiveGuard` is protected by the
386 // allocator locks taken in disable(), either explicitly above for
387 // externally-raised errors, or implicitly in raiseInternallyDetectedError()
388 // for internally-detected errors.
389 PreviousRecursiveGuard
= getThreadLocals()->RecursiveGuard
;
390 getThreadLocals()->RecursiveGuard
= true;
393 void GuardedPoolAllocator::postCrashReportRecoverableOnly(void *SignalPtr
) {
394 uintptr_t SignalUPtr
= reinterpret_cast<uintptr_t>(SignalPtr
);
395 uintptr_t InternalCrashAddr
=
396 __gwp_asan_get_internal_crash_address(&State
, SignalUPtr
);
397 uintptr_t ErrorUptr
= InternalCrashAddr
?: SignalUPtr
;
399 AllocationMetadata
*Metadata
= addrToMetadata(ErrorUptr
);
400 Metadata
->HasCrashed
= true;
402 allocateInGuardedPool(
403 reinterpret_cast<void *>(getPageAddr(SignalUPtr
, State
.PageSize
)),
406 // Clear the internal state in order to not confuse the crash handler if a
407 // use-after-free or buffer-overflow comes from a different allocation in the
409 if (InternalCrashAddr
) {
410 State
.FailureType
= Error::UNKNOWN
;
411 State
.FailureAddress
= 0;
414 size_t Slot
= State
.getNearestSlot(ErrorUptr
);
415 // If the slot is available, remove it permanently.
416 for (size_t i
= 0; i
< FreeSlotsLength
; ++i
) {
417 if (FreeSlots
[i
] == Slot
) {
418 FreeSlots
[i
] = FreeSlots
[FreeSlotsLength
- 1];
419 FreeSlotsLength
-= 1;
424 getThreadLocals()->RecursiveGuard
= PreviousRecursiveGuard
;
425 if (!InternalCrashAddr
)
429 size_t GuardedPoolAllocator::getSize(const void *Ptr
) {
430 assert(pointerIsMine(Ptr
));
431 ScopedLock
L(PoolMutex
);
432 AllocationMetadata
*Meta
= addrToMetadata(reinterpret_cast<uintptr_t>(Ptr
));
433 assert(Meta
->Addr
== reinterpret_cast<uintptr_t>(Ptr
));
434 return Meta
->RequestedSize
;
437 AllocationMetadata
*GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr
) const {
438 return &Metadata
[State
.getNearestSlot(Ptr
)];
441 size_t GuardedPoolAllocator::reserveSlot() {
442 // Avoid potential reuse of a slot before we have made at least a single
443 // allocation in each slot. Helps with our use-after-free detection.
444 if (NumSampledAllocations
< State
.MaxSimultaneousAllocations
)
445 return NumSampledAllocations
++;
447 if (FreeSlotsLength
== 0)
448 return kInvalidSlotID
;
450 size_t ReservedIndex
= getRandomUnsigned32() % FreeSlotsLength
;
451 size_t SlotIndex
= FreeSlots
[ReservedIndex
];
452 FreeSlots
[ReservedIndex
] = FreeSlots
[--FreeSlotsLength
];
456 void GuardedPoolAllocator::freeSlot(size_t SlotIndex
) {
457 assert(FreeSlotsLength
< State
.MaxSimultaneousAllocations
);
458 FreeSlots
[FreeSlotsLength
++] = SlotIndex
;
461 uint32_t GuardedPoolAllocator::getRandomUnsigned32() {
462 uint32_t RandomState
= getThreadLocals()->RandomState
;
463 RandomState
^= RandomState
<< 13;
464 RandomState
^= RandomState
>> 17;
465 RandomState
^= RandomState
<< 5;
466 getThreadLocals()->RandomState
= RandomState
;
469 } // namespace gwp_asan