[clang] Handle __declspec() attributes in using
[llvm-project.git] / compiler-rt / lib / hwasan / hwasan_linux.cpp
blobd3e4b5390e827c8ddeefe3074077decaf36043b6
1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
18 # include <dlfcn.h>
19 # include <elf.h>
20 # include <errno.h>
21 # include <link.h>
22 # include <pthread.h>
23 # include <signal.h>
24 # include <stdio.h>
25 # include <stdlib.h>
26 # include <sys/prctl.h>
27 # include <sys/resource.h>
28 # include <sys/time.h>
29 # include <unistd.h>
30 # include <unwind.h>
32 # include "hwasan.h"
33 # include "hwasan_dynamic_shadow.h"
34 # include "hwasan_interface_internal.h"
35 # include "hwasan_mapping.h"
36 # include "hwasan_report.h"
37 # include "hwasan_thread.h"
38 # include "hwasan_thread_list.h"
39 # include "sanitizer_common/sanitizer_common.h"
40 # include "sanitizer_common/sanitizer_procmaps.h"
41 # include "sanitizer_common/sanitizer_stackdepot.h"
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 // Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 // Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 // Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 // Tested with check-hwasan on aarch64-linux-android.
53 # if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 # endif
58 namespace __hwasan {
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
65 static void ProtectGap(uptr addr, uptr size) {
66 __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67 kZeroBaseMaxShadowStart);
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kHighMemStart;
73 uptr kHighMemEnd;
75 static void PrintRange(uptr start, uptr end, const char *name) {
76 Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
79 static void PrintAddressSpaceLayout() {
80 PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81 if (kHighShadowEnd + 1 < kHighMemStart)
82 PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83 else
84 CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85 PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86 if (kLowShadowEnd + 1 < kHighShadowStart)
87 PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88 else
89 CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90 PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91 if (kLowMemEnd + 1 < kLowShadowStart)
92 PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93 else
94 CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95 PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96 CHECK_EQ(0, kLowMemStart);
99 static uptr GetHighMemEnd() {
100 // HighMem covers the upper part of the address space.
101 uptr max_address = GetMaxUserVirtualAddress();
102 // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103 // properly aligned:
104 max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105 return max_address;
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109 __hwasan_shadow_memory_dynamic_address =
110 FindDynamicShadowStart(shadow_size_bytes);
113 static void MaybeDieIfNoTaggingAbi(const char *message) {
114 if (!flags()->fail_without_syscall_abi)
115 return;
116 Printf("FATAL: %s\n", message);
117 Die();
120 # define PR_SET_TAGGED_ADDR_CTRL 55
121 # define PR_GET_TAGGED_ADDR_CTRL 56
122 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
123 # define ARCH_GET_UNTAG_MASK 0x4001
124 # define ARCH_ENABLE_TAGGED_ADDR 0x4002
125 # define ARCH_GET_MAX_TAG_BITS 0x4003
127 static bool CanUseTaggingAbi() {
128 # if defined(__x86_64__)
129 unsigned long num_bits = 0;
130 // Check for x86 LAM support. This API is based on a currently unsubmitted
131 // patch to the Linux kernel (as of August 2022) and is thus subject to
132 // change. The patch is here:
133 // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
135 // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
136 // bits the user can request, or zero if LAM is not supported by the hardware.
137 if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
138 reinterpret_cast<uptr>(&num_bits))))
139 return false;
140 // The platform must provide enough bits for HWASan tags.
141 if (num_bits < kTagBits)
142 return false;
143 return true;
144 # else
145 // Check for ARM TBI support.
146 return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
147 # endif // __x86_64__
150 static bool EnableTaggingAbi() {
151 # if defined(__x86_64__)
152 // Enable x86 LAM tagging for the process.
154 // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
155 // tag bits requested by the user does not exceed that provided by the system.
156 // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
157 // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
158 // is not supported by the hardware.
159 if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
160 return false;
161 unsigned long mask = 0;
162 // Make sure the tag bits are where we expect them to be.
163 if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
164 reinterpret_cast<uptr>(&mask))))
165 return false;
166 // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
167 // bits. Therefore these masks must not overlap.
168 if (mask & kAddressTagMask)
169 return false;
170 return true;
171 # else
172 // Enable ARM TBI tagging for the process. If for some reason tagging is not
173 // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
174 // -EINVAL.
175 if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
176 PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
177 return false;
178 // Ensure that TBI is enabled.
179 if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
180 PR_TAGGED_ADDR_ENABLE)
181 return false;
182 return true;
183 # endif // __x86_64__
186 void InitializeOsSupport() {
187 // Check we're running on a kernel that can use the tagged address ABI.
188 bool has_abi = CanUseTaggingAbi();
190 if (!has_abi) {
191 # if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
192 // Some older Android kernels have the tagged pointer ABI on
193 // unconditionally, and hence don't have the tagged-addr prctl while still
194 // allow the ABI.
195 // If targeting Android and the prctl is not around we assume this is the
196 // case.
197 return;
198 # else
199 MaybeDieIfNoTaggingAbi(
200 "HWAddressSanitizer requires a kernel with tagged address ABI.");
201 # endif
204 if (EnableTaggingAbi())
205 return;
207 # if SANITIZER_ANDROID
208 MaybeDieIfNoTaggingAbi(
209 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
210 "Check the `sysctl abi.tagged_addr_disabled` configuration.");
211 # else
212 MaybeDieIfNoTaggingAbi(
213 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
214 # endif
217 bool InitShadow() {
218 // Define the entire memory range.
219 kHighMemEnd = GetHighMemEnd();
221 // Determine shadow memory base offset.
222 InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
224 // Place the low memory first.
225 kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
226 kLowMemStart = 0;
228 // Define the low shadow based on the already placed low memory.
229 kLowShadowEnd = MemToShadow(kLowMemEnd);
230 kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
232 // High shadow takes whatever memory is left up there (making sure it is not
233 // interfering with low memory in the fixed case).
234 kHighShadowEnd = MemToShadow(kHighMemEnd);
235 kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
237 // High memory starts where allocated shadow allows.
238 kHighMemStart = ShadowToMem(kHighShadowStart);
240 // Check the sanity of the defined memory ranges (there might be gaps).
241 CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
242 CHECK_GT(kHighMemStart, kHighShadowEnd);
243 CHECK_GT(kHighShadowEnd, kHighShadowStart);
244 CHECK_GT(kHighShadowStart, kLowMemEnd);
245 CHECK_GT(kLowMemEnd, kLowMemStart);
246 CHECK_GT(kLowShadowEnd, kLowShadowStart);
247 CHECK_GT(kLowShadowStart, kLowMemEnd);
249 if (Verbosity())
250 PrintAddressSpaceLayout();
252 // Reserve shadow memory.
253 ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
254 ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
256 // Protect all the gaps.
257 ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
258 if (kLowMemEnd + 1 < kLowShadowStart)
259 ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
260 if (kLowShadowEnd + 1 < kHighShadowStart)
261 ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
262 if (kHighShadowEnd + 1 < kHighMemStart)
263 ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
265 return true;
268 void InitThreads() {
269 CHECK(__hwasan_shadow_memory_dynamic_address);
270 uptr guard_page_size = GetMmapGranularity();
271 uptr thread_space_start =
272 __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
273 uptr thread_space_end =
274 __hwasan_shadow_memory_dynamic_address - guard_page_size;
275 ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
276 "hwasan threads", /*madvise_shadow*/ false);
277 ProtectGap(thread_space_end,
278 __hwasan_shadow_memory_dynamic_address - thread_space_end);
279 InitThreadList(thread_space_start, thread_space_end - thread_space_start);
280 hwasanThreadList().CreateCurrentThread();
283 bool MemIsApp(uptr p) {
284 // Memory outside the alias range has non-zero tags.
285 # if !defined(HWASAN_ALIASING_MODE)
286 CHECK(GetTagFromPointer(p) == 0);
287 # endif
289 return (p >= kHighMemStart && p <= kHighMemEnd) ||
290 (p >= kLowMemStart && p <= kLowMemEnd);
293 void InstallAtExitHandler() { atexit(HwasanAtExit); }
295 // ---------------------- TSD ---------------- {{{1
297 extern "C" void __hwasan_thread_enter() {
298 hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
301 extern "C" void __hwasan_thread_exit() {
302 Thread *t = GetCurrentThread();
303 // Make sure that signal handler can not see a stale current thread pointer.
304 atomic_signal_fence(memory_order_seq_cst);
305 if (t)
306 hwasanThreadList().ReleaseThread(t);
309 # if HWASAN_WITH_INTERCEPTORS
310 static pthread_key_t tsd_key;
311 static bool tsd_key_inited = false;
313 void HwasanTSDThreadInit() {
314 if (tsd_key_inited)
315 CHECK_EQ(0, pthread_setspecific(tsd_key,
316 (void *)GetPthreadDestructorIterations()));
319 void HwasanTSDDtor(void *tsd) {
320 uptr iterations = (uptr)tsd;
321 if (iterations > 1) {
322 CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
323 return;
325 __hwasan_thread_exit();
328 void HwasanTSDInit() {
329 CHECK(!tsd_key_inited);
330 tsd_key_inited = true;
331 CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
333 # else
334 void HwasanTSDInit() {}
335 void HwasanTSDThreadInit() {}
336 # endif
338 # if SANITIZER_ANDROID
339 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
340 # else
341 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
342 # endif
344 # if SANITIZER_ANDROID
345 void AndroidTestTlsSlot() {
346 uptr kMagicValue = 0x010203040A0B0C0D;
347 uptr *tls_ptr = GetCurrentThreadLongPtr();
348 uptr old_value = *tls_ptr;
349 *tls_ptr = kMagicValue;
350 dlerror();
351 if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
352 Printf(
353 "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
354 "for dlerror().\n");
355 Die();
357 *tls_ptr = old_value;
359 # else
360 void AndroidTestTlsSlot() {}
361 # endif
363 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
364 // Access type is passed in a platform dependent way (see below) and encoded
365 // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
366 // recoverable. Valid values of Y are 0 to 4, which are interpreted as
367 // log2(access_size), and 0xF, which means that access size is passed via
368 // platform dependent register (see below).
369 # if defined(__aarch64__)
370 // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
371 // access size is stored in X1 register. Access address is always in X0
372 // register.
373 uptr pc = (uptr)info->si_addr;
374 const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
375 if ((code & 0xff00) != 0x900)
376 return AccessInfo{}; // Not ours.
378 const bool is_store = code & 0x10;
379 const bool recover = code & 0x20;
380 const uptr addr = uc->uc_mcontext.regs[0];
381 const unsigned size_log = code & 0xf;
382 if (size_log > 4 && size_log != 0xf)
383 return AccessInfo{}; // Not ours.
384 const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
386 # elif defined(__x86_64__)
387 // Access type is encoded in the instruction following INT3 as
388 // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
389 // RSI register. Access address is always in RDI register.
390 uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
391 uint8_t *nop = (uint8_t *)pc;
392 if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
393 *(nop + 3) < 0x40)
394 return AccessInfo{}; // Not ours.
395 const unsigned code = *(nop + 3);
397 const bool is_store = code & 0x10;
398 const bool recover = code & 0x20;
399 const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
400 const unsigned size_log = code & 0xf;
401 if (size_log > 4 && size_log != 0xf)
402 return AccessInfo{}; // Not ours.
403 const uptr size =
404 size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
406 # elif SANITIZER_RISCV64
407 // Access type is encoded in the instruction following EBREAK as
408 // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
409 // X11 register. Access address is always in X10 register.
410 uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
411 uint8_t byte1 = *((u8 *)(pc + 0));
412 uint8_t byte2 = *((u8 *)(pc + 1));
413 uint8_t byte3 = *((u8 *)(pc + 2));
414 uint8_t byte4 = *((u8 *)(pc + 3));
415 uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
416 bool isFaultShort = false;
417 bool isEbreak = (ebreak == 0x100073);
418 bool isShortEbreak = false;
419 # if defined(__riscv_compressed)
420 isFaultShort = ((ebreak & 0x3) != 0x3);
421 isShortEbreak = ((ebreak & 0xffff) == 0x9002);
422 # endif
423 // faulted insn is not ebreak, not our case
424 if (!(isEbreak || isShortEbreak))
425 return AccessInfo{};
426 // advance pc to point after ebreak and reconstruct addi instruction
427 pc += isFaultShort ? 2 : 4;
428 byte1 = *((u8 *)(pc + 0));
429 byte2 = *((u8 *)(pc + 1));
430 byte3 = *((u8 *)(pc + 2));
431 byte4 = *((u8 *)(pc + 3));
432 // reconstruct instruction
433 uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
434 // check if this is really 32 bit instruction
435 // code is encoded in top 12 bits, since instruction is supposed to be with
436 // imm
437 const unsigned code = (instr >> 20) & 0xffff;
438 const uptr addr = uc->uc_mcontext.__gregs[10];
439 const bool is_store = code & 0x10;
440 const bool recover = code & 0x20;
441 const unsigned size_log = code & 0xf;
442 if (size_log > 4 && size_log != 0xf)
443 return AccessInfo{}; // Not our case
444 const uptr size =
445 size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
447 # else
448 # error Unsupported architecture
449 # endif
451 return AccessInfo{addr, size, is_store, !is_store, recover};
454 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
455 AccessInfo ai = GetAccessInfo(info, uc);
456 if (!ai.is_store && !ai.is_load)
457 return false;
459 SignalContext sig{info, uc};
460 HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
462 # if defined(__aarch64__)
463 uc->uc_mcontext.pc += 4;
464 # elif defined(__x86_64__)
465 # elif SANITIZER_RISCV64
466 // pc points to EBREAK which is 2 bytes long
467 uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
468 uint8_t byte1 = (uint8_t)(*(exception_source + 0));
469 uint8_t byte2 = (uint8_t)(*(exception_source + 1));
470 uint8_t byte3 = (uint8_t)(*(exception_source + 2));
471 uint8_t byte4 = (uint8_t)(*(exception_source + 3));
472 uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
473 bool isFaultShort = false;
474 # if defined(__riscv_compressed)
475 isFaultShort = ((faulted & 0x3) != 0x3);
476 # endif
477 uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
478 # else
479 # error Unsupported architecture
480 # endif
481 return true;
484 static void OnStackUnwind(const SignalContext &sig, const void *,
485 BufferedStackTrace *stack) {
486 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
487 common_flags()->fast_unwind_on_fatal);
490 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
491 // Probably a tag mismatch.
492 if (signo == SIGTRAP)
493 if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
494 return;
496 HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
499 void Thread::InitStackAndTls(const InitState *) {
500 uptr tls_size;
501 uptr stack_size;
502 GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
503 &tls_size);
504 stack_top_ = stack_bottom_ + stack_size;
505 tls_end_ = tls_begin_ + tls_size;
508 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
509 CHECK(IsAligned(p, kShadowAlignment));
510 CHECK(IsAligned(size, kShadowAlignment));
511 uptr shadow_start = MemToShadow(p);
512 uptr shadow_size = MemToShadowSize(size);
514 uptr page_size = GetPageSizeCached();
515 uptr page_start = RoundUpTo(shadow_start, page_size);
516 uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
517 uptr threshold = common_flags()->clear_shadow_mmap_threshold;
518 if (SANITIZER_LINUX &&
519 UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
520 internal_memset((void *)shadow_start, tag, page_start - shadow_start);
521 internal_memset((void *)page_end, tag,
522 shadow_start + shadow_size - page_end);
523 // For an anonymous private mapping MADV_DONTNEED will return a zero page on
524 // Linux.
525 ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
526 } else {
527 internal_memset((void *)shadow_start, tag, shadow_size);
529 return AddTagToPointer(p, tag);
532 void HwasanInstallAtForkHandler() {
533 auto before = []() {
534 HwasanAllocatorLock();
535 StackDepotLockAll();
537 auto after = []() {
538 StackDepotUnlockAll();
539 HwasanAllocatorUnlock();
541 pthread_atfork(before, after, after);
544 void InstallAtExitCheckLeaks() {
545 if (CAN_SANITIZE_LEAKS) {
546 if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
547 if (flags()->halt_on_error)
548 Atexit(__lsan::DoLeakCheck);
549 else
550 Atexit(__lsan::DoRecoverableLeakCheckVoid);
555 } // namespace __hwasan
557 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD