[rtsan] Remove mkfifoat interceptor (#116997)
[llvm-project.git] / mlir / lib / AsmParser / AffineParser.cpp
blob1797611858c06062096aba8aeddb6a3909336b8c
1 //===- AffineParser.cpp - MLIR Affine Parser ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a parser for Affine structures.
11 //===----------------------------------------------------------------------===//
13 #include "Parser.h"
14 #include "ParserState.h"
15 #include "mlir/IR/AffineExpr.h"
16 #include "mlir/IR/AffineMap.h"
17 #include "mlir/IR/AsmState.h"
18 #include "mlir/IR/Diagnostics.h"
19 #include "mlir/IR/IntegerSet.h"
20 #include "mlir/IR/OpImplementation.h"
21 #include "mlir/Support/LLVM.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/SourceMgr.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <cassert>
27 #include <cstdint>
28 #include <utility>
30 using namespace mlir;
31 using namespace mlir::detail;
33 namespace {
35 /// Lower precedence ops (all at the same precedence level). LNoOp is false in
36 /// the boolean sense.
37 enum AffineLowPrecOp {
38 /// Null value.
39 LNoOp,
40 Add,
41 Sub
44 /// Higher precedence ops - all at the same precedence level. HNoOp is false
45 /// in the boolean sense.
46 enum AffineHighPrecOp {
47 /// Null value.
48 HNoOp,
49 Mul,
50 FloorDiv,
51 CeilDiv,
52 Mod
55 /// This is a specialized parser for affine structures (affine maps, affine
56 /// expressions, and integer sets), maintaining the state transient to their
57 /// bodies.
58 class AffineParser : public Parser {
59 public:
60 AffineParser(ParserState &state, bool allowParsingSSAIds = false,
61 function_ref<ParseResult(bool)> parseElement = nullptr)
62 : Parser(state), allowParsingSSAIds(allowParsingSSAIds),
63 parseElement(parseElement) {}
65 ParseResult parseAffineMapRange(unsigned numDims, unsigned numSymbols,
66 AffineMap &result);
67 ParseResult parseAffineMapOrIntegerSetInline(AffineMap &map, IntegerSet &set);
68 ParseResult
69 parseAffineExprInline(ArrayRef<std::pair<StringRef, AffineExpr>> symbolSet,
70 AffineExpr &expr);
71 ParseResult parseIntegerSetConstraints(unsigned numDims, unsigned numSymbols,
72 IntegerSet &result);
73 ParseResult parseAffineMapOfSSAIds(AffineMap &map,
74 OpAsmParser::Delimiter delimiter);
75 ParseResult parseAffineExprOfSSAIds(AffineExpr &expr);
77 private:
78 // Binary affine op parsing.
79 AffineLowPrecOp consumeIfLowPrecOp();
80 AffineHighPrecOp consumeIfHighPrecOp();
82 // Identifier lists for polyhedral structures.
83 ParseResult parseDimIdList(unsigned &numDims);
84 ParseResult parseSymbolIdList(unsigned &numSymbols);
85 ParseResult parseDimAndOptionalSymbolIdList(unsigned &numDims,
86 unsigned &numSymbols);
87 ParseResult parseIdentifierDefinition(AffineExpr idExpr);
89 AffineExpr parseAffineExpr();
90 AffineExpr parseParentheticalExpr();
91 AffineExpr parseNegateExpression(AffineExpr lhs);
92 AffineExpr parseIntegerExpr();
93 AffineExpr parseBareIdExpr();
94 AffineExpr parseSSAIdExpr(bool isSymbol);
95 AffineExpr parseSymbolSSAIdExpr();
97 AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
98 AffineExpr rhs, SMLoc opLoc);
99 AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
100 AffineExpr rhs);
101 AffineExpr parseAffineOperandExpr(AffineExpr lhs);
102 AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
103 AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
104 SMLoc llhsOpLoc);
105 AffineExpr parseAffineConstraint(bool *isEq);
107 private:
108 bool allowParsingSSAIds;
109 function_ref<ParseResult(bool)> parseElement;
110 unsigned numDimOperands = 0;
111 unsigned numSymbolOperands = 0;
112 SmallVector<std::pair<StringRef, AffineExpr>, 4> dimsAndSymbols;
114 } // namespace
116 /// Create an affine binary high precedence op expression (mul's, div's, mod).
117 /// opLoc is the location of the op token to be used to report errors
118 /// for non-conforming expressions.
119 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
120 AffineExpr lhs, AffineExpr rhs,
121 SMLoc opLoc) {
122 // TODO: make the error location info accurate.
123 switch (op) {
124 case Mul:
125 if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
126 emitError(opLoc, "non-affine expression: at least one of the multiply "
127 "operands has to be either a constant or symbolic");
128 return nullptr;
130 return lhs * rhs;
131 case FloorDiv:
132 if (!rhs.isSymbolicOrConstant()) {
133 emitError(opLoc, "non-affine expression: right operand of floordiv "
134 "has to be either a constant or symbolic");
135 return nullptr;
137 return lhs.floorDiv(rhs);
138 case CeilDiv:
139 if (!rhs.isSymbolicOrConstant()) {
140 emitError(opLoc, "non-affine expression: right operand of ceildiv "
141 "has to be either a constant or symbolic");
142 return nullptr;
144 return lhs.ceilDiv(rhs);
145 case Mod:
146 if (!rhs.isSymbolicOrConstant()) {
147 emitError(opLoc, "non-affine expression: right operand of mod "
148 "has to be either a constant or symbolic");
149 return nullptr;
151 return lhs % rhs;
152 case HNoOp:
153 llvm_unreachable("can't create affine expression for null high prec op");
154 return nullptr;
156 llvm_unreachable("Unknown AffineHighPrecOp");
159 /// Create an affine binary low precedence op expression (add, sub).
160 AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
161 AffineExpr lhs, AffineExpr rhs) {
162 switch (op) {
163 case AffineLowPrecOp::Add:
164 return lhs + rhs;
165 case AffineLowPrecOp::Sub:
166 return lhs - rhs;
167 case AffineLowPrecOp::LNoOp:
168 llvm_unreachable("can't create affine expression for null low prec op");
169 return nullptr;
171 llvm_unreachable("Unknown AffineLowPrecOp");
174 /// Consume this token if it is a lower precedence affine op (there are only
175 /// two precedence levels).
176 AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
177 switch (getToken().getKind()) {
178 case Token::plus:
179 consumeToken(Token::plus);
180 return AffineLowPrecOp::Add;
181 case Token::minus:
182 consumeToken(Token::minus);
183 return AffineLowPrecOp::Sub;
184 default:
185 return AffineLowPrecOp::LNoOp;
189 /// Consume this token if it is a higher precedence affine op (there are only
190 /// two precedence levels)
191 AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
192 switch (getToken().getKind()) {
193 case Token::star:
194 consumeToken(Token::star);
195 return Mul;
196 case Token::kw_floordiv:
197 consumeToken(Token::kw_floordiv);
198 return FloorDiv;
199 case Token::kw_ceildiv:
200 consumeToken(Token::kw_ceildiv);
201 return CeilDiv;
202 case Token::kw_mod:
203 consumeToken(Token::kw_mod);
204 return Mod;
205 default:
206 return HNoOp;
210 /// Parse a high precedence op expression list: mul, div, and mod are high
211 /// precedence binary ops, i.e., parse a
212 /// expr_1 op_1 expr_2 op_2 ... expr_n
213 /// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
214 /// All affine binary ops are left associative.
215 /// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
216 /// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
217 /// null. llhsOpLoc is the location of the llhsOp token that will be used to
218 /// report an error for non-conforming expressions.
219 AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
220 AffineHighPrecOp llhsOp,
221 SMLoc llhsOpLoc) {
222 AffineExpr lhs = parseAffineOperandExpr(llhs);
223 if (!lhs)
224 return nullptr;
226 // Found an LHS. Parse the remaining expression.
227 auto opLoc = getToken().getLoc();
228 if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
229 if (llhs) {
230 AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
231 if (!expr)
232 return nullptr;
233 return parseAffineHighPrecOpExpr(expr, op, opLoc);
235 // No LLHS, get RHS
236 return parseAffineHighPrecOpExpr(lhs, op, opLoc);
239 // This is the last operand in this expression.
240 if (llhs)
241 return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
243 // No llhs, 'lhs' itself is the expression.
244 return lhs;
247 /// Parse an affine expression inside parentheses.
249 /// affine-expr ::= `(` affine-expr `)`
250 AffineExpr AffineParser::parseParentheticalExpr() {
251 if (parseToken(Token::l_paren, "expected '('"))
252 return nullptr;
253 if (getToken().is(Token::r_paren))
254 return emitError("no expression inside parentheses"), nullptr;
256 auto expr = parseAffineExpr();
257 if (!expr || parseToken(Token::r_paren, "expected ')'"))
258 return nullptr;
260 return expr;
263 /// Parse the negation expression.
265 /// affine-expr ::= `-` affine-expr
266 AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
267 if (parseToken(Token::minus, "expected '-'"))
268 return nullptr;
270 AffineExpr operand = parseAffineOperandExpr(lhs);
271 // Since negation has the highest precedence of all ops (including high
272 // precedence ops) but lower than parentheses, we are only going to use
273 // parseAffineOperandExpr instead of parseAffineExpr here.
274 if (!operand)
275 // Extra error message although parseAffineOperandExpr would have
276 // complained. Leads to a better diagnostic.
277 return emitError("missing operand of negation"), nullptr;
278 return (-1) * operand;
281 /// Returns true if the given token can be represented as an identifier.
282 static bool isIdentifier(const Token &token) {
283 // We include only `inttype` and `bare_identifier` here since they are the
284 // only non-keyword tokens that can be used to represent an identifier.
285 return token.isAny(Token::bare_identifier, Token::inttype) ||
286 token.isKeyword();
289 /// Parse a bare id that may appear in an affine expression.
291 /// affine-expr ::= bare-id
292 AffineExpr AffineParser::parseBareIdExpr() {
293 if (!isIdentifier(getToken()))
294 return emitWrongTokenError("expected bare identifier"), nullptr;
296 StringRef sRef = getTokenSpelling();
297 for (auto entry : dimsAndSymbols) {
298 if (entry.first == sRef) {
299 consumeToken();
300 return entry.second;
304 return emitWrongTokenError("use of undeclared identifier"), nullptr;
307 /// Parse an SSA id which may appear in an affine expression.
308 AffineExpr AffineParser::parseSSAIdExpr(bool isSymbol) {
309 if (!allowParsingSSAIds)
310 return emitWrongTokenError("unexpected ssa identifier"), nullptr;
311 if (getToken().isNot(Token::percent_identifier))
312 return emitWrongTokenError("expected ssa identifier"), nullptr;
313 auto name = getTokenSpelling();
314 // Check if we already parsed this SSA id.
315 for (auto entry : dimsAndSymbols) {
316 if (entry.first == name) {
317 consumeToken(Token::percent_identifier);
318 return entry.second;
321 // Parse the SSA id and add an AffineDim/SymbolExpr to represent it.
322 if (parseElement(isSymbol))
323 return nullptr;
324 auto idExpr = isSymbol
325 ? getAffineSymbolExpr(numSymbolOperands++, getContext())
326 : getAffineDimExpr(numDimOperands++, getContext());
327 dimsAndSymbols.push_back({name, idExpr});
328 return idExpr;
331 AffineExpr AffineParser::parseSymbolSSAIdExpr() {
332 if (parseToken(Token::kw_symbol, "expected symbol keyword") ||
333 parseToken(Token::l_paren, "expected '(' at start of SSA symbol"))
334 return nullptr;
335 AffineExpr symbolExpr = parseSSAIdExpr(/*isSymbol=*/true);
336 if (!symbolExpr)
337 return nullptr;
338 if (parseToken(Token::r_paren, "expected ')' at end of SSA symbol"))
339 return nullptr;
340 return symbolExpr;
343 /// Parse a positive integral constant appearing in an affine expression.
345 /// affine-expr ::= integer-literal
346 AffineExpr AffineParser::parseIntegerExpr() {
347 auto val = getToken().getUInt64IntegerValue();
348 if (!val.has_value() || (int64_t)*val < 0)
349 return emitError("constant too large for index"), nullptr;
351 consumeToken(Token::integer);
352 return builder.getAffineConstantExpr((int64_t)*val);
355 /// Parses an expression that can be a valid operand of an affine expression.
356 /// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
357 /// operator, the rhs of which is being parsed. This is used to determine
358 /// whether an error should be emitted for a missing right operand.
359 // Eg: for an expression without parentheses (like i + j + k + l), each
360 // of the four identifiers is an operand. For i + j*k + l, j*k is not an
361 // operand expression, it's an op expression and will be parsed via
362 // parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
363 // -l are valid operands that will be parsed by this function.
364 AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
365 switch (getToken().getKind()) {
366 case Token::kw_symbol:
367 return parseSymbolSSAIdExpr();
368 case Token::percent_identifier:
369 return parseSSAIdExpr(/*isSymbol=*/false);
370 case Token::integer:
371 return parseIntegerExpr();
372 case Token::l_paren:
373 return parseParentheticalExpr();
374 case Token::minus:
375 return parseNegateExpression(lhs);
376 case Token::kw_ceildiv:
377 case Token::kw_floordiv:
378 case Token::kw_mod:
379 // Try to treat these tokens as identifiers.
380 return parseBareIdExpr();
381 case Token::plus:
382 case Token::star:
383 if (lhs)
384 emitError("missing right operand of binary operator");
385 else
386 emitError("missing left operand of binary operator");
387 return nullptr;
388 default:
389 // If nothing matches, we try to treat this token as an identifier.
390 if (isIdentifier(getToken()))
391 return parseBareIdExpr();
393 if (lhs)
394 emitError("missing right operand of binary operator");
395 else
396 emitError("expected affine expression");
397 return nullptr;
401 /// Parse affine expressions that are bare-id's, integer constants,
402 /// parenthetical affine expressions, and affine op expressions that are a
403 /// composition of those.
405 /// All binary op's associate from left to right.
407 /// {add, sub} have lower precedence than {mul, div, and mod}.
409 /// Add, sub'are themselves at the same precedence level. Mul, floordiv,
410 /// ceildiv, and mod are at the same higher precedence level. Negation has
411 /// higher precedence than any binary op.
413 /// llhs: the affine expression appearing on the left of the one being parsed.
414 /// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
415 /// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
416 /// if llhs is non-null; otherwise lhs is returned. This is to deal with left
417 /// associativity.
419 /// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
420 /// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
421 /// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
422 AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
423 AffineLowPrecOp llhsOp) {
424 AffineExpr lhs;
425 if (!(lhs = parseAffineOperandExpr(llhs)))
426 return nullptr;
428 // Found an LHS. Deal with the ops.
429 if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
430 if (llhs) {
431 AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
432 return parseAffineLowPrecOpExpr(sum, lOp);
434 // No LLHS, get RHS and form the expression.
435 return parseAffineLowPrecOpExpr(lhs, lOp);
437 auto opLoc = getToken().getLoc();
438 if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
439 // We have a higher precedence op here. Get the rhs operand for the llhs
440 // through parseAffineHighPrecOpExpr.
441 AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
442 if (!highRes)
443 return nullptr;
445 // If llhs is null, the product forms the first operand of the yet to be
446 // found expression. If non-null, the op to associate with llhs is llhsOp.
447 AffineExpr expr =
448 llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
450 // Recurse for subsequent low prec op's after the affine high prec op
451 // expression.
452 if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
453 return parseAffineLowPrecOpExpr(expr, nextOp);
454 return expr;
456 // Last operand in the expression list.
457 if (llhs)
458 return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
459 // No llhs, 'lhs' itself is the expression.
460 return lhs;
463 /// Parse an affine expression.
464 /// affine-expr ::= `(` affine-expr `)`
465 /// | `-` affine-expr
466 /// | affine-expr `+` affine-expr
467 /// | affine-expr `-` affine-expr
468 /// | affine-expr `*` affine-expr
469 /// | affine-expr `floordiv` affine-expr
470 /// | affine-expr `ceildiv` affine-expr
471 /// | affine-expr `mod` affine-expr
472 /// | bare-id
473 /// | integer-literal
475 /// Additional conditions are checked depending on the production. For eg.,
476 /// one of the operands for `*` has to be either constant/symbolic; the second
477 /// operand for floordiv, ceildiv, and mod has to be a positive integer.
478 AffineExpr AffineParser::parseAffineExpr() {
479 return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
482 /// Parse a dim or symbol from the lists appearing before the actual
483 /// expressions of the affine map. Update our state to store the
484 /// dimensional/symbolic identifier.
485 ParseResult AffineParser::parseIdentifierDefinition(AffineExpr idExpr) {
486 if (!isIdentifier(getToken()))
487 return emitWrongTokenError("expected bare identifier");
489 auto name = getTokenSpelling();
490 for (auto entry : dimsAndSymbols) {
491 if (entry.first == name)
492 return emitError("redefinition of identifier '" + name + "'");
494 consumeToken();
496 dimsAndSymbols.push_back({name, idExpr});
497 return success();
500 /// Parse the list of dimensional identifiers to an affine map.
501 ParseResult AffineParser::parseDimIdList(unsigned &numDims) {
502 auto parseElt = [&]() -> ParseResult {
503 auto dimension = getAffineDimExpr(numDims++, getContext());
504 return parseIdentifierDefinition(dimension);
506 return parseCommaSeparatedList(Delimiter::Paren, parseElt,
507 " in dimensional identifier list");
510 /// Parse the list of symbolic identifiers to an affine map.
511 ParseResult AffineParser::parseSymbolIdList(unsigned &numSymbols) {
512 auto parseElt = [&]() -> ParseResult {
513 auto symbol = getAffineSymbolExpr(numSymbols++, getContext());
514 return parseIdentifierDefinition(symbol);
516 return parseCommaSeparatedList(Delimiter::Square, parseElt,
517 " in symbol list");
520 /// Parse the list of symbolic identifiers to an affine map.
521 ParseResult
522 AffineParser::parseDimAndOptionalSymbolIdList(unsigned &numDims,
523 unsigned &numSymbols) {
524 if (parseDimIdList(numDims)) {
525 return failure();
527 if (!getToken().is(Token::l_square)) {
528 numSymbols = 0;
529 return success();
531 return parseSymbolIdList(numSymbols);
534 /// Parses an ambiguous affine map or integer set definition inline.
535 ParseResult AffineParser::parseAffineMapOrIntegerSetInline(AffineMap &map,
536 IntegerSet &set) {
537 unsigned numDims = 0, numSymbols = 0;
539 // List of dimensional and optional symbol identifiers.
540 if (parseDimAndOptionalSymbolIdList(numDims, numSymbols))
541 return failure();
543 if (consumeIf(Token::arrow))
544 return parseAffineMapRange(numDims, numSymbols, map);
546 if (parseToken(Token::colon, "expected '->' or ':'"))
547 return failure();
548 return parseIntegerSetConstraints(numDims, numSymbols, set);
551 /// Parse an affine expresion definition inline, with given symbols.
552 ParseResult AffineParser::parseAffineExprInline(
553 ArrayRef<std::pair<StringRef, AffineExpr>> symbolSet, AffineExpr &expr) {
554 dimsAndSymbols.assign(symbolSet.begin(), symbolSet.end());
555 expr = parseAffineExpr();
556 return success(expr != nullptr);
559 /// Parse an AffineMap where the dim and symbol identifiers are SSA ids.
560 ParseResult
561 AffineParser::parseAffineMapOfSSAIds(AffineMap &map,
562 OpAsmParser::Delimiter delimiter) {
564 SmallVector<AffineExpr, 4> exprs;
565 auto parseElt = [&]() -> ParseResult {
566 auto elt = parseAffineExpr();
567 exprs.push_back(elt);
568 return elt ? success() : failure();
571 // Parse a multi-dimensional affine expression (a comma-separated list of
572 // 1-d affine expressions); the list can be empty. Grammar:
573 // multi-dim-affine-expr ::= `(` `)`
574 // | `(` affine-expr (`,` affine-expr)* `)`
575 if (parseCommaSeparatedList(delimiter, parseElt, " in affine map"))
576 return failure();
578 // Parsed a valid affine map.
579 map = AffineMap::get(numDimOperands, dimsAndSymbols.size() - numDimOperands,
580 exprs, getContext());
581 return success();
584 /// Parse an AffineExpr where the dim and symbol identifiers are SSA ids.
585 ParseResult AffineParser::parseAffineExprOfSSAIds(AffineExpr &expr) {
586 expr = parseAffineExpr();
587 return success(expr != nullptr);
590 /// Parse the range and sizes affine map definition inline.
592 /// affine-map ::= dim-and-symbol-id-lists `->` multi-dim-affine-expr
594 /// multi-dim-affine-expr ::= `(` `)`
595 /// multi-dim-affine-expr ::= `(` affine-expr (`,` affine-expr)* `)`
596 ParseResult AffineParser::parseAffineMapRange(unsigned numDims,
597 unsigned numSymbols,
598 AffineMap &result) {
599 SmallVector<AffineExpr, 4> exprs;
600 auto parseElt = [&]() -> ParseResult {
601 auto elt = parseAffineExpr();
602 ParseResult res = elt ? success() : failure();
603 exprs.push_back(elt);
604 return res;
607 // Parse a multi-dimensional affine expression (a comma-separated list of
608 // 1-d affine expressions). Grammar:
609 // multi-dim-affine-expr ::= `(` `)`
610 // | `(` affine-expr (`,` affine-expr)* `)`
611 if (parseCommaSeparatedList(Delimiter::Paren, parseElt,
612 " in affine map range"))
613 return failure();
615 // Parsed a valid affine map.
616 result = AffineMap::get(numDims, numSymbols, exprs, getContext());
617 return success();
620 /// Parse an affine constraint.
621 /// affine-constraint ::= affine-expr `>=` `affine-expr`
622 /// | affine-expr `<=` `affine-expr`
623 /// | affine-expr `==` `affine-expr`
625 /// The constraint is normalized to
626 /// affine-constraint ::= affine-expr `>=` `0`
627 /// | affine-expr `==` `0`
628 /// before returning.
630 /// isEq is set to true if the parsed constraint is an equality, false if it
631 /// is an inequality (greater than or equal).
633 AffineExpr AffineParser::parseAffineConstraint(bool *isEq) {
634 AffineExpr lhsExpr = parseAffineExpr();
635 if (!lhsExpr)
636 return nullptr;
638 // affine-constraint ::= `affine-expr` `>=` `affine-expr`
639 if (consumeIf(Token::greater) && consumeIf(Token::equal)) {
640 AffineExpr rhsExpr = parseAffineExpr();
641 if (!rhsExpr)
642 return nullptr;
643 *isEq = false;
644 return lhsExpr - rhsExpr;
647 // affine-constraint ::= `affine-expr` `<=` `affine-expr`
648 if (consumeIf(Token::less) && consumeIf(Token::equal)) {
649 AffineExpr rhsExpr = parseAffineExpr();
650 if (!rhsExpr)
651 return nullptr;
652 *isEq = false;
653 return rhsExpr - lhsExpr;
656 // affine-constraint ::= `affine-expr` `==` `affine-expr`
657 if (consumeIf(Token::equal) && consumeIf(Token::equal)) {
658 AffineExpr rhsExpr = parseAffineExpr();
659 if (!rhsExpr)
660 return nullptr;
661 *isEq = true;
662 return lhsExpr - rhsExpr;
665 return emitError("expected '== affine-expr' or '>= affine-expr' at end of "
666 "affine constraint"),
667 nullptr;
670 /// Parse the constraints that are part of an integer set definition.
671 /// integer-set-inline
672 /// ::= dim-and-symbol-id-lists `:`
673 /// '(' affine-constraint-conjunction? ')'
674 /// affine-constraint-conjunction ::= affine-constraint (`,`
675 /// affine-constraint)*
677 ParseResult AffineParser::parseIntegerSetConstraints(unsigned numDims,
678 unsigned numSymbols,
679 IntegerSet &result) {
680 SmallVector<AffineExpr, 4> constraints;
681 SmallVector<bool, 4> isEqs;
682 auto parseElt = [&]() -> ParseResult {
683 bool isEq;
684 auto elt = parseAffineConstraint(&isEq);
685 ParseResult res = elt ? success() : failure();
686 if (elt) {
687 constraints.push_back(elt);
688 isEqs.push_back(isEq);
690 return res;
693 // Parse a list of affine constraints (comma-separated).
694 if (parseCommaSeparatedList(Delimiter::Paren, parseElt,
695 " in integer set constraint list"))
696 return failure();
698 // If no constraints were parsed, then treat this as a degenerate 'true' case.
699 if (constraints.empty()) {
700 /* 0 == 0 */
701 auto zero = getAffineConstantExpr(0, getContext());
702 result = IntegerSet::get(numDims, numSymbols, zero, true);
703 return success();
706 // Parsed a valid integer set.
707 result = IntegerSet::get(numDims, numSymbols, constraints, isEqs);
708 return success();
711 //===----------------------------------------------------------------------===//
712 // Parser
713 //===----------------------------------------------------------------------===//
715 /// Parse an ambiguous reference to either and affine map or an integer set.
716 ParseResult Parser::parseAffineMapOrIntegerSetReference(AffineMap &map,
717 IntegerSet &set) {
718 return AffineParser(state).parseAffineMapOrIntegerSetInline(map, set);
720 ParseResult Parser::parseAffineMapReference(AffineMap &map) {
721 SMLoc curLoc = getToken().getLoc();
722 IntegerSet set;
723 if (parseAffineMapOrIntegerSetReference(map, set))
724 return failure();
725 if (set)
726 return emitError(curLoc, "expected AffineMap, but got IntegerSet");
727 return success();
729 ParseResult Parser::parseAffineExprReference(
730 ArrayRef<std::pair<StringRef, AffineExpr>> symbolSet, AffineExpr &expr) {
731 return AffineParser(state).parseAffineExprInline(symbolSet, expr);
733 ParseResult Parser::parseIntegerSetReference(IntegerSet &set) {
734 SMLoc curLoc = getToken().getLoc();
735 AffineMap map;
736 if (parseAffineMapOrIntegerSetReference(map, set))
737 return failure();
738 if (map)
739 return emitError(curLoc, "expected IntegerSet, but got AffineMap");
740 return success();
743 /// Parse an AffineMap of SSA ids. The callback 'parseElement' is used to
744 /// parse SSA value uses encountered while parsing affine expressions.
745 ParseResult
746 Parser::parseAffineMapOfSSAIds(AffineMap &map,
747 function_ref<ParseResult(bool)> parseElement,
748 OpAsmParser::Delimiter delimiter) {
749 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
750 .parseAffineMapOfSSAIds(map, delimiter);
753 /// Parse an AffineExpr of SSA ids. The callback `parseElement` is used to parse
754 /// SSA value uses encountered while parsing.
755 ParseResult
756 Parser::parseAffineExprOfSSAIds(AffineExpr &expr,
757 function_ref<ParseResult(bool)> parseElement) {
758 return AffineParser(state, /*allowParsingSSAIds=*/true, parseElement)
759 .parseAffineExprOfSSAIds(expr);
762 static void parseAffineMapOrIntegerSet(StringRef inputStr, MLIRContext *context,
763 AffineMap &map, IntegerSet &set) {
764 llvm::SourceMgr sourceMgr;
765 auto memBuffer = llvm::MemoryBuffer::getMemBuffer(
766 inputStr, /*BufferName=*/"<mlir_parser_buffer>",
767 /*RequiresNullTerminator=*/false);
768 sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
769 SymbolState symbolState;
770 ParserConfig config(context);
771 ParserState state(sourceMgr, config, symbolState, /*asmState=*/nullptr,
772 /*codeCompleteContext=*/nullptr);
773 Parser parser(state);
775 SourceMgrDiagnosticHandler handler(sourceMgr, context, llvm::errs());
776 if (parser.parseAffineMapOrIntegerSetReference(map, set))
777 return;
779 Token endTok = parser.getToken();
780 if (endTok.isNot(Token::eof)) {
781 parser.emitError(endTok.getLoc(), "encountered unexpected token");
782 return;
786 AffineMap mlir::parseAffineMap(StringRef inputStr, MLIRContext *context) {
787 AffineMap map;
788 IntegerSet set;
789 parseAffineMapOrIntegerSet(inputStr, context, map, set);
790 assert(!set &&
791 "expected string to represent AffineMap, but got IntegerSet instead");
792 return map;
795 IntegerSet mlir::parseIntegerSet(StringRef inputStr, MLIRContext *context) {
796 AffineMap map;
797 IntegerSet set;
798 parseAffineMapOrIntegerSet(inputStr, context, map, set);
799 assert(!map &&
800 "expected string to represent IntegerSet, but got AffineMap instead");
801 return set;