1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "UnwindInfoSection.h"
10 #include "InputSection.h"
12 #include "OutputSection.h"
13 #include "OutputSegment.h"
14 #include "SymbolTable.h"
16 #include "SyntheticSections.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/Support/Parallel.h"
26 #include "mach-o/compact_unwind_encoding.h"
31 using namespace llvm::MachO
;
32 using namespace llvm::support::endian
;
34 using namespace lld::macho
;
36 #define COMMON_ENCODINGS_MAX 127
37 #define COMPACT_ENCODINGS_MAX 256
39 #define SECOND_LEVEL_PAGE_BYTES 4096
40 #define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
41 #define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
42 ((SECOND_LEVEL_PAGE_BYTES - \
43 sizeof(unwind_info_regular_second_level_page_header)) / \
44 sizeof(unwind_info_regular_second_level_entry))
45 #define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
46 ((SECOND_LEVEL_PAGE_BYTES - \
47 sizeof(unwind_info_compressed_second_level_page_header)) / \
50 #define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
51 #define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
52 UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
54 static_assert(static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET
) ==
55 static_cast<uint32_t>(UNWIND_ARM64_DWARF_SECTION_OFFSET
) &&
56 static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET
) ==
57 static_cast<uint32_t>(UNWIND_X86_DWARF_SECTION_OFFSET
));
59 constexpr uint64_t DWARF_SECTION_OFFSET
= UNWIND_X86_64_DWARF_SECTION_OFFSET
;
61 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
62 // optimizes space and exception-time lookup. Most DWARF unwind
63 // entries can be replaced with Compact Unwind entries, but the ones
64 // that cannot are retained in DWARF form.
66 // This comment will address macro-level organization of the pre-link
67 // and post-link compact unwind tables. For micro-level organization
68 // pertaining to the bitfield layout of the 32-bit compact unwind
69 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
71 // Important clarifying factoids:
73 // * __LD,__compact_unwind is the compact unwind format for compiler
74 // output and linker input. It is never a final output. It could be
75 // an intermediate output with the `-r` option which retains relocs.
77 // * __TEXT,__unwind_info is the compact unwind format for final
78 // linker output. It is never an input.
80 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
82 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
83 // level) by ascending address, and the pages are referenced by an
84 // index (1st level) in the section header.
86 // * Following the headers in __TEXT,__unwind_info, the bulk of the
87 // section contains a vector of compact unwind entries
88 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
89 // Adjacent entries with the same encoding can be folded to great
90 // advantage, achieving a 3-order-of-magnitude reduction in the
93 // Refer to the definition of unwind_info_section_header in
94 // compact_unwind_encoding.h for an overview of the format we are encoding
97 // TODO(gkm): how do we align the 2nd-level pages?
99 // The various fields in the on-disk representation of each compact unwind
101 #define FOR_EACH_CU_FIELD(DO) \
102 DO(Ptr, functionAddress) \
103 DO(uint32_t, functionLength) \
104 DO(compact_unwind_encoding_t, encoding) \
105 DO(Ptr, personality) \
108 CREATE_LAYOUT_CLASS(CompactUnwind
, FOR_EACH_CU_FIELD
);
110 #undef FOR_EACH_CU_FIELD
112 // LLD's internal representation of a compact unwind entry.
113 struct CompactUnwindEntry
{
114 uint64_t functionAddress
;
115 uint32_t functionLength
;
116 compact_unwind_encoding_t encoding
;
121 using EncodingMap
= DenseMap
<compact_unwind_encoding_t
, size_t>;
123 struct SecondLevelPage
{
128 std::vector
<compact_unwind_encoding_t
> localEncodings
;
129 EncodingMap localEncodingIndexes
;
132 // UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
133 // lengthy definition of UnwindInfoSection.
134 class UnwindInfoSectionImpl final
: public UnwindInfoSection
{
136 UnwindInfoSectionImpl() : cuLayout(target
->wordSize
) {}
137 uint64_t getSize() const override
{ return unwindInfoSize
; }
138 void prepare() override
;
139 void finalize() override
;
140 void writeTo(uint8_t *buf
) const override
;
143 void prepareRelocations(ConcatInputSection
*);
144 void relocateCompactUnwind(std::vector
<CompactUnwindEntry
> &);
145 void encodePersonalities();
146 Symbol
*canonicalizePersonality(Symbol
*);
148 uint64_t unwindInfoSize
= 0;
149 SmallVector
<decltype(symbols
)::value_type
, 0> symbolsVec
;
150 CompactUnwindLayout cuLayout
;
151 std::vector
<std::pair
<compact_unwind_encoding_t
, size_t>> commonEncodings
;
152 EncodingMap commonEncodingIndexes
;
153 // The entries here will be in the same order as their originating symbols
155 std::vector
<CompactUnwindEntry
> cuEntries
;
156 // Indices into the cuEntries vector.
157 std::vector
<size_t> cuIndices
;
158 std::vector
<Symbol
*> personalities
;
159 SmallDenseMap
<std::pair
<InputSection
*, uint64_t /* addend */>, Symbol
*>
161 // Indices into cuEntries for CUEs with a non-null LSDA.
162 std::vector
<size_t> entriesWithLsda
;
163 // Map of cuEntries index to an index within the LSDA array.
164 DenseMap
<size_t, uint32_t> lsdaIndex
;
165 std::vector
<SecondLevelPage
> secondLevelPages
;
166 uint64_t level2PagesOffset
= 0;
167 // The highest-address function plus its size. The unwinder needs this to
168 // determine the address range that is covered by unwind info.
169 uint64_t cueEndBoundary
= 0;
172 UnwindInfoSection::UnwindInfoSection()
173 : SyntheticSection(segment_names::text
, section_names::unwindInfo
) {
177 // Record function symbols that may need entries emitted in __unwind_info, which
178 // stores unwind data for address ranges.
180 // Note that if several adjacent functions have the same unwind encoding and
181 // personality function and no LSDA, they share one unwind entry. For this to
182 // work, functions without unwind info need explicit "no unwind info" unwind
183 // entries -- else the unwinder would think they have the unwind info of the
184 // closest function with unwind info right before in the image. Thus, we add
185 // function symbols for each unique address regardless of whether they have
186 // associated unwind info.
187 void UnwindInfoSection::addSymbol(const Defined
*d
) {
189 allEntriesAreOmitted
= false;
190 // We don't yet know the final output address of this symbol, but we know that
191 // they are uniquely determined by a combination of the isec and value, so
192 // we use that as the key here.
193 auto p
= symbols
.insert({{d
->isec
, d
->value
}, d
});
194 // If we have multiple symbols at the same address, only one of them can have
195 // an associated unwind entry.
196 if (!p
.second
&& d
->unwindEntry
) {
197 assert(p
.first
->second
== d
|| !p
.first
->second
->unwindEntry
);
202 void UnwindInfoSectionImpl::prepare() {
203 // This iteration needs to be deterministic, since prepareRelocations may add
204 // entries to the GOT. Hence the use of a MapVector for
205 // UnwindInfoSection::symbols.
206 for (const Defined
*d
: make_second_range(symbols
))
207 if (d
->unwindEntry
) {
208 if (d
->unwindEntry
->getName() == section_names::compactUnwind
) {
209 prepareRelocations(d
->unwindEntry
);
211 // We don't have to add entries to the GOT here because FDEs have
212 // explicit GOT relocations, so Writer::scanRelocations() will add those
213 // GOT entries. However, we still need to canonicalize the personality
214 // pointers (like prepareRelocations() does for CU entries) in order
215 // to avoid overflowing the 3-personality limit.
216 FDE
&fde
= cast
<ObjFile
>(d
->getFile())->fdes
[d
->unwindEntry
];
217 fde
.personality
= canonicalizePersonality(fde
.personality
);
222 // Compact unwind relocations have different semantics, so we handle them in a
223 // separate code path from regular relocations. First, we do not wish to add
224 // rebase opcodes for __LD,__compact_unwind, because that section doesn't
225 // actually end up in the final binary. Second, personality pointers always
226 // reside in the GOT and must be treated specially.
227 void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection
*isec
) {
228 assert(!isec
->shouldOmitFromOutput() &&
229 "__compact_unwind section should not be omitted");
231 // FIXME: Make this skip relocations for CompactUnwindEntries that
232 // point to dead-stripped functions. That might save some amount of
233 // work. But since there are usually just few personality functions
234 // that are referenced from many places, at least some of them likely
235 // live, it wouldn't reduce number of got entries.
236 for (size_t i
= 0; i
< isec
->relocs
.size(); ++i
) {
237 Reloc
&r
= isec
->relocs
[i
];
238 assert(target
->hasAttr(r
.type
, RelocAttrBits::UNSIGNED
));
239 // Since compact unwind sections aren't part of the inputSections vector,
240 // they don't get canonicalized by scanRelocations(), so we have to do the
241 // canonicalization here.
242 if (auto *referentIsec
= r
.referent
.dyn_cast
<InputSection
*>())
243 r
.referent
= referentIsec
->canonical();
245 // Functions and LSDA entries always reside in the same object file as the
246 // compact unwind entries that references them, and thus appear as section
247 // relocs. There is no need to prepare them. We only prepare relocs for
248 // personality functions.
249 if (r
.offset
!= cuLayout
.personalityOffset
)
252 if (auto *s
= r
.referent
.dyn_cast
<Symbol
*>()) {
253 // Personality functions are nearly always system-defined (e.g.,
254 // ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
255 // application provides its own personality function, it might be
256 // referenced by an extern Defined symbol reloc, or a local section reloc.
257 if (auto *defined
= dyn_cast
<Defined
>(s
)) {
258 // XXX(vyng) This is a special case for handling duplicate personality
259 // symbols. Note that LD64's behavior is a bit different and it is
260 // inconsistent with how symbol resolution usually work
262 // So we've decided not to follow it. Instead, simply pick the symbol
263 // with the same name from the symbol table to replace the local one.
265 // (See discussions/alternatives already considered on D107533)
266 if (!defined
->isExternal())
267 if (Symbol
*sym
= symtab
->find(defined
->getName()))
269 r
.referent
= s
= sym
;
271 if (auto *undefined
= dyn_cast
<Undefined
>(s
)) {
272 treatUndefinedSymbol(*undefined
, isec
, r
.offset
);
273 // treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
274 if (isa
<Undefined
>(s
))
278 // Similar to canonicalizePersonality(), but we also register a GOT entry.
279 if (auto *defined
= dyn_cast
<Defined
>(s
)) {
280 // Check if we have created a synthetic symbol at the same address.
281 Symbol
*&personality
=
282 personalityTable
[{defined
->isec
, defined
->value
}];
283 if (personality
== nullptr) {
284 personality
= defined
;
285 in
.got
->addEntry(defined
);
286 } else if (personality
!= defined
) {
287 r
.referent
= personality
;
292 assert(isa
<DylibSymbol
>(s
));
297 if (auto *referentIsec
= r
.referent
.dyn_cast
<InputSection
*>()) {
298 assert(!isCoalescedWeak(referentIsec
));
299 // Personality functions can be referenced via section relocations
300 // if they live in the same object file. Create placeholder synthetic
301 // symbols for them in the GOT.
302 Symbol
*&s
= personalityTable
[{referentIsec
, r
.addend
}];
304 // This runs after dead stripping, so the noDeadStrip argument does not
306 s
= make
<Defined
>("<internal>", /*file=*/nullptr, referentIsec
,
307 r
.addend
, /*size=*/0, /*isWeakDef=*/false,
308 /*isExternal=*/false, /*isPrivateExtern=*/false,
309 /*includeInSymtab=*/true,
310 /*isReferencedDynamically=*/false,
311 /*noDeadStrip=*/false);
321 Symbol
*UnwindInfoSectionImpl::canonicalizePersonality(Symbol
*personality
) {
322 if (auto *defined
= dyn_cast_or_null
<Defined
>(personality
)) {
323 // Check if we have created a synthetic symbol at the same address.
324 Symbol
*&synth
= personalityTable
[{defined
->isec
, defined
->value
}];
325 if (synth
== nullptr)
327 else if (synth
!= defined
)
333 // We need to apply the relocations to the pre-link compact unwind section
334 // before converting it to post-link form. There should only be absolute
335 // relocations here: since we are not emitting the pre-link CU section, there
336 // is no source address to make a relative location meaningful.
337 void UnwindInfoSectionImpl::relocateCompactUnwind(
338 std::vector
<CompactUnwindEntry
> &cuEntries
) {
339 parallelFor(0, symbolsVec
.size(), [&](size_t i
) {
340 CompactUnwindEntry
&cu
= cuEntries
[i
];
341 const Defined
*d
= symbolsVec
[i
].second
;
342 cu
.functionAddress
= d
->getVA();
346 // If we have DWARF unwind info, create a slimmed-down CU entry that points
348 if (d
->unwindEntry
->getName() == section_names::ehFrame
) {
349 // The unwinder will look for the DWARF entry starting at the hint,
350 // assuming the hint points to a valid CFI record start. If it
351 // fails to find the record, it proceeds in a linear search through the
352 // contiguous CFI records from the hint until the end of the section.
353 // Ideally, in the case where the offset is too large to be encoded, we
354 // would instead encode the largest possible offset to a valid CFI record,
355 // but since we don't keep track of that, just encode zero -- the start of
356 // the section is always the start of a CFI record.
357 uint64_t dwarfOffsetHint
=
358 d
->unwindEntry
->outSecOff
<= DWARF_SECTION_OFFSET
359 ? d
->unwindEntry
->outSecOff
361 cu
.encoding
= target
->modeDwarfEncoding
| dwarfOffsetHint
;
362 const FDE
&fde
= cast
<ObjFile
>(d
->getFile())->fdes
[d
->unwindEntry
];
363 cu
.functionLength
= fde
.funcLength
;
364 // Omit the DWARF personality from compact-unwind entry so that we
365 // don't need to encode it.
366 cu
.personality
= nullptr;
371 assert(d
->unwindEntry
->getName() == section_names::compactUnwind
);
373 auto buf
= reinterpret_cast<const uint8_t *>(d
->unwindEntry
->data
.data()) -
376 support::endian::read32le(buf
+ cuLayout
.functionLengthOffset
);
377 cu
.encoding
= support::endian::read32le(buf
+ cuLayout
.encodingOffset
);
378 for (const Reloc
&r
: d
->unwindEntry
->relocs
) {
379 if (r
.offset
== cuLayout
.personalityOffset
)
380 cu
.personality
= r
.referent
.get
<Symbol
*>();
381 else if (r
.offset
== cuLayout
.lsdaOffset
)
382 cu
.lsda
= r
.getReferentInputSection();
387 // There should only be a handful of unique personality pointers, so we can
388 // encode them as 2-bit indices into a small array.
389 void UnwindInfoSectionImpl::encodePersonalities() {
390 for (size_t idx
: cuIndices
) {
391 CompactUnwindEntry
&cu
= cuEntries
[idx
];
392 if (cu
.personality
== nullptr)
394 // Linear search is fast enough for a small array.
395 auto it
= find(personalities
, cu
.personality
);
396 uint32_t personalityIndex
; // 1-based index
397 if (it
!= personalities
.end()) {
398 personalityIndex
= std::distance(personalities
.begin(), it
) + 1;
400 personalities
.push_back(cu
.personality
);
401 personalityIndex
= personalities
.size();
404 personalityIndex
<< llvm::countr_zero(
405 static_cast<compact_unwind_encoding_t
>(UNWIND_PERSONALITY_MASK
));
407 if (personalities
.size() > 3)
408 error("too many personalities (" + Twine(personalities
.size()) +
409 ") for compact unwind to encode");
412 static bool canFoldEncoding(compact_unwind_encoding_t encoding
) {
413 // From compact_unwind_encoding.h:
414 // UNWIND_X86_64_MODE_STACK_IND:
415 // A "frameless" (RBP not used as frame pointer) function large constant
416 // stack size. This case is like the previous, except the stack size is too
417 // large to encode in the compact unwind encoding. Instead it requires that
418 // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
419 // encoding contains the offset to the nnnnnnnn value in the function in
420 // UNWIND_X86_64_FRAMELESS_STACK_SIZE.
421 // Since this means the unwinder has to look at the `subq` in the function
422 // of the unwind info's unwind address, two functions that have identical
423 // unwind info can't be folded if it's using this encoding since both
424 // entries need unique addresses.
425 static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND
) ==
426 static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND
));
427 if ((target
->cpuType
== CPU_TYPE_X86_64
|| target
->cpuType
== CPU_TYPE_X86
) &&
428 (encoding
& UNWIND_MODE_MASK
) == UNWIND_X86_64_MODE_STACK_IND
) {
429 // FIXME: Consider passing in the two function addresses and getting
430 // their two stack sizes off the `subq` and only returning false if they're
431 // actually different.
437 // Scan the __LD,__compact_unwind entries and compute the space needs of
438 // __TEXT,__unwind_info and __TEXT,__eh_frame.
439 void UnwindInfoSectionImpl::finalize() {
443 // At this point, the address space for __TEXT,__text has been
444 // assigned, so we can relocate the __LD,__compact_unwind entries
445 // into a temporary buffer. Relocation is necessary in order to sort
446 // the CU entries by function address. Sorting is necessary so that
447 // we can fold adjacent CU entries with identical encoding+personality
448 // and without any LSDA. Folding is necessary because it reduces the
449 // number of CU entries by as much as 3 orders of magnitude!
450 cuEntries
.resize(symbols
.size());
451 // The "map" part of the symbols MapVector was only needed for deduplication
452 // in addSymbol(). Now that we are done adding, move the contents to a plain
453 // std::vector for indexed access.
454 symbolsVec
= symbols
.takeVector();
455 relocateCompactUnwind(cuEntries
);
457 // Rather than sort & fold the 32-byte entries directly, we create a
458 // vector of indices to entries and sort & fold that instead.
459 cuIndices
.resize(cuEntries
.size());
460 std::iota(cuIndices
.begin(), cuIndices
.end(), 0);
461 llvm::sort(cuIndices
, [&](size_t a
, size_t b
) {
462 return cuEntries
[a
].functionAddress
< cuEntries
[b
].functionAddress
;
465 // Record the ending boundary before we fold the entries.
466 cueEndBoundary
= cuEntries
[cuIndices
.back()].functionAddress
+
467 cuEntries
[cuIndices
.back()].functionLength
;
469 // Fold adjacent entries with matching encoding+personality and without LSDA
470 // We use three iterators on the same cuIndices to fold in-situ:
471 // (1) `foldBegin` is the first of a potential sequence of matching entries
472 // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
473 // The semi-open interval [ foldBegin .. foldEnd ) contains a range
474 // entries that can be folded into a single entry and written to ...
476 auto foldWrite
= cuIndices
.begin();
477 for (auto foldBegin
= cuIndices
.begin(); foldBegin
< cuIndices
.end();) {
478 auto foldEnd
= foldBegin
;
479 // Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
480 // a base address. The base address is normally not contained directly in
481 // the LSDA, and in that case, the personality function treats the starting
482 // address of the function (which is computed by the unwinder) as the base
483 // address and interprets the LSDA accordingly. The unwinder computes the
484 // starting address of a function as the address associated with its CU
485 // entry. For this reason, we cannot fold adjacent entries if they have an
486 // LSDA, because folding would make the unwinder compute the wrong starting
487 // address for the functions with the folded entries, which in turn would
488 // cause the personality function to misinterpret the LSDA for those
489 // functions. In the very rare case where the base address is encoded
490 // directly in the LSDA, two functions at different addresses would
491 // necessarily have different LSDAs, so their CU entries would not have been
493 while (++foldEnd
< cuIndices
.end() &&
494 cuEntries
[*foldBegin
].encoding
== cuEntries
[*foldEnd
].encoding
&&
495 !cuEntries
[*foldBegin
].lsda
&& !cuEntries
[*foldEnd
].lsda
&&
496 // If we've gotten to this point, we don't have an LSDA, which should
497 // also imply that we don't have a personality function, since in all
498 // likelihood a personality function needs the LSDA to do anything
499 // useful. It can be technically valid to have a personality function
500 // and no LSDA though (e.g. the C++ personality __gxx_personality_v0
501 // is just a no-op without LSDA), so we still check for personality
502 // function equivalence to handle that case.
503 cuEntries
[*foldBegin
].personality
==
504 cuEntries
[*foldEnd
].personality
&&
505 canFoldEncoding(cuEntries
[*foldEnd
].encoding
))
507 *foldWrite
++ = *foldBegin
;
510 cuIndices
.erase(foldWrite
, cuIndices
.end());
512 encodePersonalities();
514 // Count frequencies of the folded encodings
515 EncodingMap encodingFrequencies
;
516 for (size_t idx
: cuIndices
)
517 encodingFrequencies
[cuEntries
[idx
].encoding
]++;
519 // Make a vector of encodings, sorted by descending frequency
520 for (const auto &frequency
: encodingFrequencies
)
521 commonEncodings
.emplace_back(frequency
);
522 llvm::sort(commonEncodings
,
523 [](const std::pair
<compact_unwind_encoding_t
, size_t> &a
,
524 const std::pair
<compact_unwind_encoding_t
, size_t> &b
) {
525 if (a
.second
== b
.second
)
526 // When frequencies match, secondarily sort on encoding
527 // to maintain parity with validate-unwind-info.py
528 return a
.first
> b
.first
;
529 return a
.second
> b
.second
;
532 // Truncate the vector to 127 elements.
533 // Common encoding indexes are limited to 0..126, while encoding
534 // indexes 127..255 are local to each second-level page
535 if (commonEncodings
.size() > COMMON_ENCODINGS_MAX
)
536 commonEncodings
.resize(COMMON_ENCODINGS_MAX
);
538 // Create a map from encoding to common-encoding-table index
539 for (size_t i
= 0; i
< commonEncodings
.size(); i
++)
540 commonEncodingIndexes
[commonEncodings
[i
].first
] = i
;
542 // Split folded encodings into pages, where each page is limited by ...
543 // (a) 4 KiB capacity
544 // (b) 24-bit difference between first & final function address
545 // (c) 8-bit compact-encoding-table index,
546 // for which 0..126 references the global common-encodings table,
547 // and 127..255 references a local per-second-level-page table.
548 // First we try the compact format and determine how many entries fit.
549 // If more entries fit in the regular format, we use that.
550 for (size_t i
= 0; i
< cuIndices
.size();) {
551 size_t idx
= cuIndices
[i
];
552 secondLevelPages
.emplace_back();
553 SecondLevelPage
&page
= secondLevelPages
.back();
555 uint64_t functionAddressMax
=
556 cuEntries
[idx
].functionAddress
+ COMPRESSED_ENTRY_FUNC_OFFSET_MASK
;
557 size_t n
= commonEncodings
.size();
558 size_t wordsRemaining
=
559 SECOND_LEVEL_PAGE_WORDS
-
560 sizeof(unwind_info_compressed_second_level_page_header
) /
562 while (wordsRemaining
>= 1 && i
< cuIndices
.size()) {
564 const CompactUnwindEntry
*cuPtr
= &cuEntries
[idx
];
565 if (cuPtr
->functionAddress
>= functionAddressMax
)
567 if (commonEncodingIndexes
.count(cuPtr
->encoding
) ||
568 page
.localEncodingIndexes
.count(cuPtr
->encoding
)) {
571 } else if (wordsRemaining
>= 2 && n
< COMPACT_ENCODINGS_MAX
) {
572 page
.localEncodings
.emplace_back(cuPtr
->encoding
);
573 page
.localEncodingIndexes
[cuPtr
->encoding
] = n
++;
580 page
.entryCount
= i
- page
.entryIndex
;
582 // If this is not the final page, see if it's possible to fit more entries
583 // by using the regular format. This can happen when there are many unique
584 // encodings, and we saturated the local encoding table early.
585 if (i
< cuIndices
.size() &&
586 page
.entryCount
< REGULAR_SECOND_LEVEL_ENTRIES_MAX
) {
587 page
.kind
= UNWIND_SECOND_LEVEL_REGULAR
;
588 page
.entryCount
= std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX
,
589 cuIndices
.size() - page
.entryIndex
);
590 i
= page
.entryIndex
+ page
.entryCount
;
592 page
.kind
= UNWIND_SECOND_LEVEL_COMPRESSED
;
596 for (size_t idx
: cuIndices
) {
597 lsdaIndex
[idx
] = entriesWithLsda
.size();
598 if (cuEntries
[idx
].lsda
)
599 entriesWithLsda
.push_back(idx
);
602 // compute size of __TEXT,__unwind_info section
603 level2PagesOffset
= sizeof(unwind_info_section_header
) +
604 commonEncodings
.size() * sizeof(uint32_t) +
605 personalities
.size() * sizeof(uint32_t) +
606 // The extra second-level-page entry is for the sentinel
607 (secondLevelPages
.size() + 1) *
608 sizeof(unwind_info_section_header_index_entry
) +
609 entriesWithLsda
.size() *
610 sizeof(unwind_info_section_header_lsda_index_entry
);
612 level2PagesOffset
+ secondLevelPages
.size() * SECOND_LEVEL_PAGE_BYTES
;
615 // All inputs are relocated and output addresses are known, so write!
617 void UnwindInfoSectionImpl::writeTo(uint8_t *buf
) const {
618 assert(!cuIndices
.empty() && "call only if there is unwind info");
621 auto *uip
= reinterpret_cast<unwind_info_section_header
*>(buf
);
623 uip
->commonEncodingsArraySectionOffset
= sizeof(unwind_info_section_header
);
624 uip
->commonEncodingsArrayCount
= commonEncodings
.size();
625 uip
->personalityArraySectionOffset
=
626 uip
->commonEncodingsArraySectionOffset
+
627 (uip
->commonEncodingsArrayCount
* sizeof(uint32_t));
628 uip
->personalityArrayCount
= personalities
.size();
629 uip
->indexSectionOffset
= uip
->personalityArraySectionOffset
+
630 (uip
->personalityArrayCount
* sizeof(uint32_t));
631 uip
->indexCount
= secondLevelPages
.size() + 1;
634 auto *i32p
= reinterpret_cast<uint32_t *>(&uip
[1]);
635 for (const auto &encoding
: commonEncodings
)
636 *i32p
++ = encoding
.first
;
639 for (const Symbol
*personality
: personalities
)
640 *i32p
++ = personality
->getGotVA() - in
.header
->addr
;
642 // FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
643 // ranges. We should do the same too
646 uint32_t lsdaOffset
=
647 uip
->indexSectionOffset
+
648 uip
->indexCount
* sizeof(unwind_info_section_header_index_entry
);
649 uint64_t l2PagesOffset
= level2PagesOffset
;
650 auto *iep
= reinterpret_cast<unwind_info_section_header_index_entry
*>(i32p
);
651 for (const SecondLevelPage
&page
: secondLevelPages
) {
652 size_t idx
= cuIndices
[page
.entryIndex
];
653 iep
->functionOffset
= cuEntries
[idx
].functionAddress
- in
.header
->addr
;
654 iep
->secondLevelPagesSectionOffset
= l2PagesOffset
;
655 iep
->lsdaIndexArraySectionOffset
=
656 lsdaOffset
+ lsdaIndex
.lookup(idx
) *
657 sizeof(unwind_info_section_header_lsda_index_entry
);
659 l2PagesOffset
+= SECOND_LEVEL_PAGE_BYTES
;
662 // XXX(vyng): Note that LD64 adds +1 here.
663 // Unsure whether it's a bug or it's their workaround for something else.
664 // See comments from https://reviews.llvm.org/D138320.
665 iep
->functionOffset
= cueEndBoundary
- in
.header
->addr
;
666 iep
->secondLevelPagesSectionOffset
= 0;
667 iep
->lsdaIndexArraySectionOffset
=
668 lsdaOffset
+ entriesWithLsda
.size() *
669 sizeof(unwind_info_section_header_lsda_index_entry
);
674 reinterpret_cast<unwind_info_section_header_lsda_index_entry
*>(iep
);
675 for (size_t idx
: entriesWithLsda
) {
676 const CompactUnwindEntry
&cu
= cuEntries
[idx
];
677 lep
->lsdaOffset
= cu
.lsda
->getVA(/*off=*/0) - in
.header
->addr
;
678 lep
->functionOffset
= cu
.functionAddress
- in
.header
->addr
;
683 auto *pp
= reinterpret_cast<uint32_t *>(lep
);
684 for (const SecondLevelPage
&page
: secondLevelPages
) {
685 if (page
.kind
== UNWIND_SECOND_LEVEL_COMPRESSED
) {
686 uintptr_t functionAddressBase
=
687 cuEntries
[cuIndices
[page
.entryIndex
]].functionAddress
;
689 reinterpret_cast<unwind_info_compressed_second_level_page_header
*>(
691 p2p
->kind
= page
.kind
;
692 p2p
->entryPageOffset
=
693 sizeof(unwind_info_compressed_second_level_page_header
);
694 p2p
->entryCount
= page
.entryCount
;
695 p2p
->encodingsPageOffset
=
696 p2p
->entryPageOffset
+ p2p
->entryCount
* sizeof(uint32_t);
697 p2p
->encodingsCount
= page
.localEncodings
.size();
698 auto *ep
= reinterpret_cast<uint32_t *>(&p2p
[1]);
699 for (size_t i
= 0; i
< page
.entryCount
; i
++) {
700 const CompactUnwindEntry
&cue
=
701 cuEntries
[cuIndices
[page
.entryIndex
+ i
]];
702 auto it
= commonEncodingIndexes
.find(cue
.encoding
);
703 if (it
== commonEncodingIndexes
.end())
704 it
= page
.localEncodingIndexes
.find(cue
.encoding
);
705 *ep
++ = (it
->second
<< COMPRESSED_ENTRY_FUNC_OFFSET_BITS
) |
706 (cue
.functionAddress
- functionAddressBase
);
708 if (!page
.localEncodings
.empty())
709 memcpy(ep
, page
.localEncodings
.data(),
710 page
.localEncodings
.size() * sizeof(uint32_t));
713 reinterpret_cast<unwind_info_regular_second_level_page_header
*>(pp
);
714 p2p
->kind
= page
.kind
;
715 p2p
->entryPageOffset
=
716 sizeof(unwind_info_regular_second_level_page_header
);
717 p2p
->entryCount
= page
.entryCount
;
718 auto *ep
= reinterpret_cast<uint32_t *>(&p2p
[1]);
719 for (size_t i
= 0; i
< page
.entryCount
; i
++) {
720 const CompactUnwindEntry
&cue
=
721 cuEntries
[cuIndices
[page
.entryIndex
+ i
]];
722 *ep
++ = cue
.functionAddress
;
723 *ep
++ = cue
.encoding
;
726 pp
+= SECOND_LEVEL_PAGE_WORDS
;
730 UnwindInfoSection
*macho::makeUnwindInfoSection() {
731 return make
<UnwindInfoSectionImpl
>();