1 //===--- Mips.h - Declare Mips target feature support -----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares Mips TargetInfo objects.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H
14 #define LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Basic/TargetOptions.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Support/Compiler.h"
24 class LLVM_LIBRARY_VISIBILITY MipsTargetInfo
: public TargetInfo
{
25 void setDataLayout() {
29 Layout
= "m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64";
30 else if (ABI
== "n32")
31 Layout
= "m:e-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128";
32 else if (ABI
== "n64")
33 Layout
= "m:e-i8:8:32-i16:16:32-i64:64-n32:64-S128";
35 llvm_unreachable("Invalid ABI");
38 resetDataLayout(("E-" + Layout
).str());
40 resetDataLayout(("e-" + Layout
).str());
43 static const Builtin::Info BuiltinInfo
[];
51 bool CanUseBSDABICalls
;
52 enum MipsFloatABI
{ HardFloat
, SoftFloat
} FloatABI
;
53 enum DspRevEnum
{ NoDSP
, DSP1
, DSP2
} DspRev
;
56 bool UseIndirectJumpHazard
;
59 enum FPModeEnum
{ FPXX
, FP32
, FP64
} FPMode
;
63 MipsTargetInfo(const llvm::Triple
&Triple
, const TargetOptions
&)
64 : TargetInfo(Triple
), IsMips16(false), IsMicromips(false),
65 IsNan2008(false), IsAbs2008(false), IsSingleFloat(false),
66 IsNoABICalls(false), CanUseBSDABICalls(false), FloatABI(HardFloat
),
67 DspRev(NoDSP
), HasMSA(false), DisableMadd4(false),
68 UseIndirectJumpHazard(false), FPMode(FPXX
) {
69 TheCXXABI
.set(TargetCXXABI::GenericMIPS
);
71 if (Triple
.isMIPS32())
73 else if (Triple
.getEnvironment() == llvm::Triple::GNUABIN32
)
78 CPU
= ABI
== "o32" ? "mips32r2" : "mips64r2";
80 CanUseBSDABICalls
= Triple
.isOSFreeBSD() ||
84 bool isIEEE754_2008Default() const {
85 return CPU
== "mips32r6" || CPU
== "mips64r6";
88 bool isFP64Default() const {
89 return CPU
== "mips32r6" || ABI
== "n32" || ABI
== "n64" || ABI
== "64";
92 bool isNan2008() const override
{ return IsNan2008
; }
94 bool processorSupportsGPR64() const;
96 StringRef
getABI() const override
{ return ABI
; }
98 bool setABI(const std::string
&Name
) override
{
118 void setO32ABITypes() {
119 Int64Type
= SignedLongLong
;
120 IntMaxType
= Int64Type
;
121 LongDoubleFormat
= &llvm::APFloat::IEEEdouble();
122 LongDoubleWidth
= LongDoubleAlign
= 64;
123 LongWidth
= LongAlign
= 32;
124 MaxAtomicPromoteWidth
= MaxAtomicInlineWidth
= 32;
125 PointerWidth
= PointerAlign
= 32;
126 PtrDiffType
= SignedInt
;
127 SizeType
= UnsignedInt
;
131 void setN32N64ABITypes() {
132 LongDoubleWidth
= LongDoubleAlign
= 128;
133 LongDoubleFormat
= &llvm::APFloat::IEEEquad();
134 if (getTriple().isOSFreeBSD()) {
135 LongDoubleWidth
= LongDoubleAlign
= 64;
136 LongDoubleFormat
= &llvm::APFloat::IEEEdouble();
138 MaxAtomicPromoteWidth
= MaxAtomicInlineWidth
= 64;
142 void setN64ABITypes() {
144 if (getTriple().isOSOpenBSD()) {
145 Int64Type
= SignedLongLong
;
147 Int64Type
= SignedLong
;
149 IntMaxType
= Int64Type
;
150 LongWidth
= LongAlign
= 64;
151 PointerWidth
= PointerAlign
= 64;
152 PtrDiffType
= SignedLong
;
153 SizeType
= UnsignedLong
;
156 void setN32ABITypes() {
158 Int64Type
= SignedLongLong
;
159 IntMaxType
= Int64Type
;
160 LongWidth
= LongAlign
= 32;
161 PointerWidth
= PointerAlign
= 32;
162 PtrDiffType
= SignedInt
;
163 SizeType
= UnsignedInt
;
166 bool isValidCPUName(StringRef Name
) const override
;
167 void fillValidCPUList(SmallVectorImpl
<StringRef
> &Values
) const override
;
169 bool setCPU(const std::string
&Name
) override
{
171 return isValidCPUName(Name
);
174 const std::string
&getCPU() const { return CPU
; }
176 initFeatureMap(llvm::StringMap
<bool> &Features
, DiagnosticsEngine
&Diags
,
178 const std::vector
<std::string
> &FeaturesVec
) const override
{
182 Features
["mips64r2"] = Features
["cnmips"] = true;
183 else if (CPU
== "octeon+")
184 Features
["mips64r2"] = Features
["cnmips"] = Features
["cnmipsp"] = true;
186 Features
[CPU
] = true;
187 return TargetInfo::initFeatureMap(Features
, Diags
, CPU
, FeaturesVec
);
190 unsigned getISARev() const;
192 void getTargetDefines(const LangOptions
&Opts
,
193 MacroBuilder
&Builder
) const override
;
195 ArrayRef
<Builtin::Info
> getTargetBuiltins() const override
;
197 bool hasFeature(StringRef Feature
) const override
;
199 BuiltinVaListKind
getBuiltinVaListKind() const override
{
200 return TargetInfo::VoidPtrBuiltinVaList
;
203 ArrayRef
<const char *> getGCCRegNames() const override
{
204 static const char *const GCCRegNames
[] = {
205 // CPU register names
206 // Must match second column of GCCRegAliases
207 "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10",
208 "$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20",
209 "$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30",
211 // Floating point register names
212 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9",
213 "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18",
214 "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27",
215 "$f28", "$f29", "$f30", "$f31",
216 // Hi/lo and condition register names
217 "hi", "lo", "", "$fcc0", "$fcc1", "$fcc2", "$fcc3", "$fcc4", "$fcc5",
218 "$fcc6", "$fcc7", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo", "$ac3hi",
220 // MSA register names
221 "$w0", "$w1", "$w2", "$w3", "$w4", "$w5", "$w6", "$w7", "$w8", "$w9",
222 "$w10", "$w11", "$w12", "$w13", "$w14", "$w15", "$w16", "$w17", "$w18",
223 "$w19", "$w20", "$w21", "$w22", "$w23", "$w24", "$w25", "$w26", "$w27",
224 "$w28", "$w29", "$w30", "$w31",
225 // MSA control register names
226 "$msair", "$msacsr", "$msaaccess", "$msasave", "$msamodify",
227 "$msarequest", "$msamap", "$msaunmap"
229 return llvm::makeArrayRef(GCCRegNames
);
232 bool validateAsmConstraint(const char *&Name
,
233 TargetInfo::ConstraintInfo
&Info
) const override
{
237 case 'r': // CPU registers.
238 case 'd': // Equivalent to "r" unless generating MIPS16 code.
239 case 'y': // Equivalent to "r", backward compatibility only.
240 case 'f': // floating-point registers.
241 case 'c': // $25 for indirect jumps
242 case 'l': // lo register
243 case 'x': // hilo register pair
244 Info
.setAllowsRegister();
246 case 'I': // Signed 16-bit constant
247 case 'J': // Integer 0
248 case 'K': // Unsigned 16-bit constant
249 case 'L': // Signed 32-bit constant, lower 16-bit zeros (for lui)
250 case 'M': // Constants not loadable via lui, addiu, or ori
251 case 'N': // Constant -1 to -65535
252 case 'O': // A signed 15-bit constant
253 case 'P': // A constant between 1 go 65535
255 case 'R': // An address that can be used in a non-macro load or store
256 Info
.setAllowsMemory();
259 if (Name
[1] == 'C') { // An address usable by ll, and sc.
260 Info
.setAllowsMemory();
261 Name
++; // Skip over 'Z'.
268 std::string
convertConstraint(const char *&Constraint
) const override
{
270 switch (*Constraint
) {
271 case 'Z': // Two-character constraint; add "^" hint for later parsing.
272 if (Constraint
[1] == 'C') {
273 R
= std::string("^") + std::string(Constraint
, 2);
279 return TargetInfo::convertConstraint(Constraint
);
282 const char *getClobbers() const override
{
283 // In GCC, $1 is not widely used in generated code (it's used only in a few
284 // specific situations), so there is no real need for users to add it to
285 // the clobbers list if they want to use it in their inline assembly code.
287 // In LLVM, $1 is treated as a normal GPR and is always allocatable during
288 // code generation, so using it in inline assembly without adding it to the
289 // clobbers list can cause conflicts between the inline assembly code and
290 // the surrounding generated code.
292 // Another problem is that LLVM is allowed to choose $1 for inline assembly
293 // operands, which will conflict with the ".set at" assembler option (which
294 // we use only for inline assembly, in order to maintain compatibility with
295 // GCC) and will also conflict with the user's usage of $1.
297 // The easiest way to avoid these conflicts and keep $1 as an allocatable
298 // register for generated code is to automatically clobber $1 for all inline
301 // FIXME: We should automatically clobber $1 only for inline assembly code
302 // which actually uses it. This would allow LLVM to use $1 for inline
303 // assembly operands if the user's assembly code doesn't use it.
307 bool handleTargetFeatures(std::vector
<std::string
> &Features
,
308 DiagnosticsEngine
&Diags
) override
{
311 IsNan2008
= isIEEE754_2008Default();
312 IsAbs2008
= isIEEE754_2008Default();
313 IsSingleFloat
= false;
314 FloatABI
= HardFloat
;
316 FPMode
= isFP64Default() ? FP64
: FPXX
;
318 for (const auto &Feature
: Features
) {
319 if (Feature
== "+single-float")
320 IsSingleFloat
= true;
321 else if (Feature
== "+soft-float")
322 FloatABI
= SoftFloat
;
323 else if (Feature
== "+mips16")
325 else if (Feature
== "+micromips")
327 else if (Feature
== "+dsp")
328 DspRev
= std::max(DspRev
, DSP1
);
329 else if (Feature
== "+dspr2")
330 DspRev
= std::max(DspRev
, DSP2
);
331 else if (Feature
== "+msa")
333 else if (Feature
== "+nomadd4")
335 else if (Feature
== "+fp64")
337 else if (Feature
== "-fp64")
339 else if (Feature
== "+fpxx")
341 else if (Feature
== "+nan2008")
343 else if (Feature
== "-nan2008")
345 else if (Feature
== "+abs2008")
347 else if (Feature
== "-abs2008")
349 else if (Feature
== "+noabicalls")
351 else if (Feature
== "+use-indirect-jump-hazard")
352 UseIndirectJumpHazard
= true;
360 int getEHDataRegisterNumber(unsigned RegNo
) const override
{
368 bool isCLZForZeroUndef() const override
{ return false; }
370 ArrayRef
<TargetInfo::GCCRegAlias
> getGCCRegAliases() const override
{
371 static const TargetInfo::GCCRegAlias O32RegAliases
[] = {
372 {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"},
373 {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"},
374 {{"a3"}, "$7"}, {{"t0"}, "$8"}, {{"t1"}, "$9"},
375 {{"t2"}, "$10"}, {{"t3"}, "$11"}, {{"t4"}, "$12"},
376 {{"t5"}, "$13"}, {{"t6"}, "$14"}, {{"t7"}, "$15"},
377 {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"},
378 {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"},
379 {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"},
380 {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"},
381 {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"},
384 static const TargetInfo::GCCRegAlias NewABIRegAliases
[] = {
385 {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"},
386 {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"},
387 {{"a3"}, "$7"}, {{"a4"}, "$8"}, {{"a5"}, "$9"},
388 {{"a6"}, "$10"}, {{"a7"}, "$11"}, {{"t0"}, "$12"},
389 {{"t1"}, "$13"}, {{"t2"}, "$14"}, {{"t3"}, "$15"},
390 {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"},
391 {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"},
392 {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"},
393 {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"},
394 {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"},
398 return llvm::makeArrayRef(O32RegAliases
);
399 return llvm::makeArrayRef(NewABIRegAliases
);
402 bool hasInt128Type() const override
{
403 return (ABI
== "n32" || ABI
== "n64") || getTargetOpts().ForceEnableInt128
;
406 unsigned getUnwindWordWidth() const override
;
408 bool validateTarget(DiagnosticsEngine
&Diags
) const override
;
409 bool hasBitIntType() const override
{ return true; }
411 } // namespace targets
414 #endif // LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H