1 // REQUIRES: x86-registered-target
2 // REQUIRES: nvptx-registered-target
4 // See the steps to create a fat archive are given at the end of the file.
6 // Given a FatArchive, clang-offload-bundler should be called to create a
7 // device specific archive, which should be passed to clang-nvlink-wrapper.
8 // RUN: %clang -O2 -### -fopenmp -fno-openmp-new-driver -fopenmp-targets=nvptx64-nvidia-cuda %s -L%S/Inputs/openmp_static_device_link -lFatArchive 2>&1 | FileCheck %s
9 // CHECK: "-cc1"{{.*}}"-triple" "nvptx64-nvidia-cuda"{{.*}}"-target-cpu" "[[GPU:sm_[0-9]+]]"{{.*}}"-o" "[[HOSTBC:.*.s]]" "-x" "c++"{{.*}}.cpp
10 // CHECK: clang-offload-bundler" "-unbundle" "-type=a" "-input={{.*}}/Inputs/openmp_static_device_link/libFatArchive.a" "-targets=openmp-nvptx64-nvidia-cuda-[[GPU]]" "-output=[[DEVICESPECIFICARCHIVE:.*.a]]" "-allow-missing-bundles"
11 // CHECK: clang-nvlink-wrapper{{.*}}"-o" "{{.*}}.out" "-arch" "[[GPU]]" "{{.*}}[[DEVICESPECIFICARCHIVE]]"
12 // RUN: not %clang -fopenmp -fno-openmp-new-driver -fopenmp-targets=nvptx64-nvidia-cuda %s %S/Inputs/openmp_static_device_link/empty.o --libomptarget-nvptx-bc-path=%S/Inputs/openmp_static_device_link/lib.bc 2>&1 | FileCheck %s --check-prefix=EMPTY
13 // EMPTY-NOT: Could not open input file
20 #pragma omp declare target
21 // Functions defined in Fat Archive.
22 extern "C" void func_present(float *, float *, unsigned);
25 // Function not defined in the fat archive.
26 extern "C" void func_missing(float *, float *, unsigned);
29 #pragma omp end declare target
32 float in
[N
], out
[N
], sum
= 0;
35 #pragma omp parallel for
36 for (i
= 0; i
< N
; ++i
) {
40 func_present(in
, out
, N
); // Returns out[i] = a[i] * 0
43 func_missing(in
, out
, N
); // Should throw an error here
46 #pragma omp parallel for reduction(+ \
48 for (i
= 0; i
< N
; ++i
)
58 /***********************************************
59 Steps to create Fat Archive (libFatArchive.a)
60 ************************************************
61 ***************** File: func_1.c ***************
62 void func_present(float* in, float* out, unsigned n){
64 #pragma omp target teams distribute parallel for map(to: in[0:n]) map(from: out[0:n])
69 *************************************************
70 1. Compile source file(s) to generate object file(s)
71 clang -O2 -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906 -c func_1.c -o func_1_gfx906.o
72 clang -O2 -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908 -c func_1.c -o func_1_gfx908.o
73 clang -O2 -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906 -c func_2.c -o func_2_gfx906.o
74 clang -O2 -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908 -c func_2.c -o func_2_gfx908.o
75 clang -O2 -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda -c func_1.c -o func_1_nvptx.o
76 clang -O2 -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda -c func_2.c -o func_2_nvptx.o
78 2. Create a fat archive by combining all the object file(s)
79 llvm-ar cr libFatArchive.a func_1_gfx906.o func_1_gfx908.o func_2_gfx906.o func_2_gfx908.o func_1_nvptx.o func_2_nvptx.o
80 ************************************************/