[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / AsmPrinter / AsmPrinter.cpp
blobf3100cc49e1bc384ef884815b0cc7ca7c93764fe
1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/TinyPtrVector.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/ConstantFolding.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/BinaryFormat/COFF.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/BinaryFormat/ELF.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/GCMetadataPrinter.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/Config/config.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GCStrategy.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalIFunc.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/MC/MCAsmInfo.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/MC/MCDirectives.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Remarks/RemarkStreamer.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/FileSystem.h"
108 #include "llvm/Support/Format.h"
109 #include "llvm/Support/MathExtras.h"
110 #include "llvm/Support/Path.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <memory>
122 #include <string>
123 #include <utility>
124 #include <vector>
126 using namespace llvm;
128 #define DEBUG_TYPE "asm-printer"
130 const char DWARFGroupName[] = "dwarf";
131 const char DWARFGroupDescription[] = "DWARF Emission";
132 const char DbgTimerName[] = "emit";
133 const char DbgTimerDescription[] = "Debug Info Emission";
134 const char EHTimerName[] = "write_exception";
135 const char EHTimerDescription[] = "DWARF Exception Writer";
136 const char CFGuardName[] = "Control Flow Guard";
137 const char CFGuardDescription[] = "Control Flow Guard";
138 const char CodeViewLineTablesGroupName[] = "linetables";
139 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
140 const char PPTimerName[] = "emit";
141 const char PPTimerDescription[] = "Pseudo Probe Emission";
142 const char PPGroupName[] = "pseudo probe";
143 const char PPGroupDescription[] = "Pseudo Probe Emission";
145 STATISTIC(EmittedInsts, "Number of machine instrs printed");
147 char AsmPrinter::ID = 0;
149 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
151 static gcp_map_type &getGCMap(void *&P) {
152 if (!P)
153 P = new gcp_map_type();
154 return *(gcp_map_type*)P;
157 namespace {
158 class AddrLabelMapCallbackPtr final : CallbackVH {
159 AddrLabelMap *Map = nullptr;
161 public:
162 AddrLabelMapCallbackPtr() = default;
163 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
165 void setPtr(BasicBlock *BB) {
166 ValueHandleBase::operator=(BB);
169 void setMap(AddrLabelMap *map) { Map = map; }
171 void deleted() override;
172 void allUsesReplacedWith(Value *V2) override;
174 } // namespace
176 class llvm::AddrLabelMap {
177 MCContext &Context;
178 struct AddrLabelSymEntry {
179 /// The symbols for the label.
180 TinyPtrVector<MCSymbol *> Symbols;
182 Function *Fn; // The containing function of the BasicBlock.
183 unsigned Index; // The index in BBCallbacks for the BasicBlock.
186 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
188 /// Callbacks for the BasicBlock's that we have entries for. We use this so
189 /// we get notified if a block is deleted or RAUWd.
190 std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
192 /// This is a per-function list of symbols whose corresponding BasicBlock got
193 /// deleted. These symbols need to be emitted at some point in the file, so
194 /// AsmPrinter emits them after the function body.
195 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
196 DeletedAddrLabelsNeedingEmission;
198 public:
199 AddrLabelMap(MCContext &context) : Context(context) {}
201 ~AddrLabelMap() {
202 assert(DeletedAddrLabelsNeedingEmission.empty() &&
203 "Some labels for deleted blocks never got emitted");
206 ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
208 void takeDeletedSymbolsForFunction(Function *F,
209 std::vector<MCSymbol *> &Result);
211 void UpdateForDeletedBlock(BasicBlock *BB);
212 void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
215 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
216 assert(BB->hasAddressTaken() &&
217 "Shouldn't get label for block without address taken");
218 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
220 // If we already had an entry for this block, just return it.
221 if (!Entry.Symbols.empty()) {
222 assert(BB->getParent() == Entry.Fn && "Parent changed");
223 return Entry.Symbols;
226 // Otherwise, this is a new entry, create a new symbol for it and add an
227 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
228 BBCallbacks.emplace_back(BB);
229 BBCallbacks.back().setMap(this);
230 Entry.Index = BBCallbacks.size() - 1;
231 Entry.Fn = BB->getParent();
232 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
233 : Context.createTempSymbol();
234 Entry.Symbols.push_back(Sym);
235 return Entry.Symbols;
238 /// If we have any deleted symbols for F, return them.
239 void AddrLabelMap::takeDeletedSymbolsForFunction(
240 Function *F, std::vector<MCSymbol *> &Result) {
241 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
242 DeletedAddrLabelsNeedingEmission.find(F);
244 // If there are no entries for the function, just return.
245 if (I == DeletedAddrLabelsNeedingEmission.end())
246 return;
248 // Otherwise, take the list.
249 std::swap(Result, I->second);
250 DeletedAddrLabelsNeedingEmission.erase(I);
253 //===- Address of Block Management ----------------------------------------===//
255 ArrayRef<MCSymbol *>
256 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
257 // Lazily create AddrLabelSymbols.
258 if (!AddrLabelSymbols)
259 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
260 return AddrLabelSymbols->getAddrLabelSymbolToEmit(
261 const_cast<BasicBlock *>(BB));
264 void AsmPrinter::takeDeletedSymbolsForFunction(
265 const Function *F, std::vector<MCSymbol *> &Result) {
266 // If no blocks have had their addresses taken, we're done.
267 if (!AddrLabelSymbols)
268 return;
269 return AddrLabelSymbols->takeDeletedSymbolsForFunction(
270 const_cast<Function *>(F), Result);
273 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
274 // If the block got deleted, there is no need for the symbol. If the symbol
275 // was already emitted, we can just forget about it, otherwise we need to
276 // queue it up for later emission when the function is output.
277 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
278 AddrLabelSymbols.erase(BB);
279 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
280 BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
282 #if !LLVM_MEMORY_SANITIZER_BUILD
283 // BasicBlock is destroyed already, so this access is UB detectable by msan.
284 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
285 "Block/parent mismatch");
286 #endif
288 for (MCSymbol *Sym : Entry.Symbols) {
289 if (Sym->isDefined())
290 return;
292 // If the block is not yet defined, we need to emit it at the end of the
293 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list
294 // for the containing Function. Since the block is being deleted, its
295 // parent may already be removed, we have to get the function from 'Entry'.
296 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
300 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
301 // Get the entry for the RAUW'd block and remove it from our map.
302 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
303 AddrLabelSymbols.erase(Old);
304 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
306 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
308 // If New is not address taken, just move our symbol over to it.
309 if (NewEntry.Symbols.empty()) {
310 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
311 NewEntry = std::move(OldEntry); // Set New's entry.
312 return;
315 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
317 // Otherwise, we need to add the old symbols to the new block's set.
318 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
321 void AddrLabelMapCallbackPtr::deleted() {
322 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
325 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
326 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
329 /// getGVAlignment - Return the alignment to use for the specified global
330 /// value. This rounds up to the preferred alignment if possible and legal.
331 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
332 Align InAlign) {
333 Align Alignment;
334 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
335 Alignment = DL.getPreferredAlign(GVar);
337 // If InAlign is specified, round it to it.
338 if (InAlign > Alignment)
339 Alignment = InAlign;
341 // If the GV has a specified alignment, take it into account.
342 const MaybeAlign GVAlign(GV->getAlign());
343 if (!GVAlign)
344 return Alignment;
346 assert(GVAlign && "GVAlign must be set");
348 // If the GVAlign is larger than NumBits, or if we are required to obey
349 // NumBits because the GV has an assigned section, obey it.
350 if (*GVAlign > Alignment || GV->hasSection())
351 Alignment = *GVAlign;
352 return Alignment;
355 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
356 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
357 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
358 VerboseAsm = OutStreamer->isVerboseAsm();
361 AsmPrinter::~AsmPrinter() {
362 assert(!DD && Handlers.size() == NumUserHandlers &&
363 "Debug/EH info didn't get finalized");
365 if (GCMetadataPrinters) {
366 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
368 delete &GCMap;
369 GCMetadataPrinters = nullptr;
373 bool AsmPrinter::isPositionIndependent() const {
374 return TM.isPositionIndependent();
377 /// getFunctionNumber - Return a unique ID for the current function.
378 unsigned AsmPrinter::getFunctionNumber() const {
379 return MF->getFunctionNumber();
382 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
383 return *TM.getObjFileLowering();
386 const DataLayout &AsmPrinter::getDataLayout() const {
387 return MMI->getModule()->getDataLayout();
390 // Do not use the cached DataLayout because some client use it without a Module
391 // (dsymutil, llvm-dwarfdump).
392 unsigned AsmPrinter::getPointerSize() const {
393 return TM.getPointerSize(0); // FIXME: Default address space
396 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
397 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
398 return MF->getSubtarget<MCSubtargetInfo>();
401 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
402 S.emitInstruction(Inst, getSubtargetInfo());
405 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
406 if (DD) {
407 assert(OutStreamer->hasRawTextSupport() &&
408 "Expected assembly output mode.");
409 // This is NVPTX specific and it's unclear why.
410 // PR51079: If we have code without debug information we need to give up.
411 DISubprogram *MFSP = MF.getFunction().getSubprogram();
412 if (!MFSP)
413 return;
414 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
418 /// getCurrentSection() - Return the current section we are emitting to.
419 const MCSection *AsmPrinter::getCurrentSection() const {
420 return OutStreamer->getCurrentSectionOnly();
423 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
424 AU.setPreservesAll();
425 MachineFunctionPass::getAnalysisUsage(AU);
426 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
427 AU.addRequired<GCModuleInfo>();
430 bool AsmPrinter::doInitialization(Module &M) {
431 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
432 MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
433 HasSplitStack = false;
434 HasNoSplitStack = false;
436 AddrLabelSymbols = nullptr;
438 // Initialize TargetLoweringObjectFile.
439 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
440 .Initialize(OutContext, TM);
442 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
443 .getModuleMetadata(M);
445 OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
447 // Emit the version-min deployment target directive if needed.
449 // FIXME: If we end up with a collection of these sorts of Darwin-specific
450 // or ELF-specific things, it may make sense to have a platform helper class
451 // that will work with the target helper class. For now keep it here, as the
452 // alternative is duplicated code in each of the target asm printers that
453 // use the directive, where it would need the same conditionalization
454 // anyway.
455 const Triple &Target = TM.getTargetTriple();
456 Triple TVT(M.getDarwinTargetVariantTriple());
457 OutStreamer->emitVersionForTarget(
458 Target, M.getSDKVersion(),
459 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
460 M.getDarwinTargetVariantSDKVersion());
462 // Allow the target to emit any magic that it wants at the start of the file.
463 emitStartOfAsmFile(M);
465 // Very minimal debug info. It is ignored if we emit actual debug info. If we
466 // don't, this at least helps the user find where a global came from.
467 if (MAI->hasSingleParameterDotFile()) {
468 // .file "foo.c"
470 SmallString<128> FileName;
471 if (MAI->hasBasenameOnlyForFileDirective())
472 FileName = llvm::sys::path::filename(M.getSourceFileName());
473 else
474 FileName = M.getSourceFileName();
475 if (MAI->hasFourStringsDotFile()) {
476 #ifdef PACKAGE_VENDOR
477 const char VerStr[] =
478 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
479 #else
480 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
481 #endif
482 // TODO: Add timestamp and description.
483 OutStreamer->emitFileDirective(FileName, VerStr, "", "");
484 } else {
485 OutStreamer->emitFileDirective(FileName);
489 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
490 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
491 for (const auto &I : *MI)
492 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
493 MP->beginAssembly(M, *MI, *this);
495 // Emit module-level inline asm if it exists.
496 if (!M.getModuleInlineAsm().empty()) {
497 OutStreamer->AddComment("Start of file scope inline assembly");
498 OutStreamer->addBlankLine();
499 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
500 TM.Options.MCOptions);
501 OutStreamer->AddComment("End of file scope inline assembly");
502 OutStreamer->addBlankLine();
505 if (MAI->doesSupportDebugInformation()) {
506 bool EmitCodeView = M.getCodeViewFlag();
507 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
508 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
509 DbgTimerName, DbgTimerDescription,
510 CodeViewLineTablesGroupName,
511 CodeViewLineTablesGroupDescription);
513 if (!EmitCodeView || M.getDwarfVersion()) {
514 if (MMI->hasDebugInfo()) {
515 DD = new DwarfDebug(this);
516 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
517 DbgTimerDescription, DWARFGroupName,
518 DWARFGroupDescription);
523 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
524 PP = new PseudoProbeHandler(this);
525 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
526 PPTimerDescription, PPGroupName, PPGroupDescription);
529 switch (MAI->getExceptionHandlingType()) {
530 case ExceptionHandling::None:
531 // We may want to emit CFI for debug.
532 [[fallthrough]];
533 case ExceptionHandling::SjLj:
534 case ExceptionHandling::DwarfCFI:
535 case ExceptionHandling::ARM:
536 for (auto &F : M.getFunctionList()) {
537 if (getFunctionCFISectionType(F) != CFISection::None)
538 ModuleCFISection = getFunctionCFISectionType(F);
539 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
540 // the module needs .eh_frame. If we have found that case, we are done.
541 if (ModuleCFISection == CFISection::EH)
542 break;
544 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
545 ModuleCFISection != CFISection::EH);
546 break;
547 default:
548 break;
551 EHStreamer *ES = nullptr;
552 switch (MAI->getExceptionHandlingType()) {
553 case ExceptionHandling::None:
554 if (!needsCFIForDebug())
555 break;
556 [[fallthrough]];
557 case ExceptionHandling::SjLj:
558 case ExceptionHandling::DwarfCFI:
559 ES = new DwarfCFIException(this);
560 break;
561 case ExceptionHandling::ARM:
562 ES = new ARMException(this);
563 break;
564 case ExceptionHandling::WinEH:
565 switch (MAI->getWinEHEncodingType()) {
566 default: llvm_unreachable("unsupported unwinding information encoding");
567 case WinEH::EncodingType::Invalid:
568 break;
569 case WinEH::EncodingType::X86:
570 case WinEH::EncodingType::Itanium:
571 ES = new WinException(this);
572 break;
574 break;
575 case ExceptionHandling::Wasm:
576 ES = new WasmException(this);
577 break;
578 case ExceptionHandling::AIX:
579 ES = new AIXException(this);
580 break;
582 if (ES)
583 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
584 EHTimerDescription, DWARFGroupName,
585 DWARFGroupDescription);
587 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
588 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
589 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
590 CFGuardDescription, DWARFGroupName,
591 DWARFGroupDescription);
593 for (const HandlerInfo &HI : Handlers) {
594 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
595 HI.TimerGroupDescription, TimePassesIsEnabled);
596 HI.Handler->beginModule(&M);
599 return false;
602 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
603 if (!MAI.hasWeakDefCanBeHiddenDirective())
604 return false;
606 return GV->canBeOmittedFromSymbolTable();
609 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
610 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
611 switch (Linkage) {
612 case GlobalValue::CommonLinkage:
613 case GlobalValue::LinkOnceAnyLinkage:
614 case GlobalValue::LinkOnceODRLinkage:
615 case GlobalValue::WeakAnyLinkage:
616 case GlobalValue::WeakODRLinkage:
617 if (MAI->hasWeakDefDirective()) {
618 // .globl _foo
619 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
621 if (!canBeHidden(GV, *MAI))
622 // .weak_definition _foo
623 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
624 else
625 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
626 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
627 // .globl _foo
628 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
629 //NOTE: linkonce is handled by the section the symbol was assigned to.
630 } else {
631 // .weak _foo
632 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
634 return;
635 case GlobalValue::ExternalLinkage:
636 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
637 return;
638 case GlobalValue::PrivateLinkage:
639 case GlobalValue::InternalLinkage:
640 return;
641 case GlobalValue::ExternalWeakLinkage:
642 case GlobalValue::AvailableExternallyLinkage:
643 case GlobalValue::AppendingLinkage:
644 llvm_unreachable("Should never emit this");
646 llvm_unreachable("Unknown linkage type!");
649 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
650 const GlobalValue *GV) const {
651 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
654 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
655 return TM.getSymbol(GV);
658 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
659 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
660 // exact definion (intersection of GlobalValue::hasExactDefinition() and
661 // !isInterposable()). These linkages include: external, appending, internal,
662 // private. It may be profitable to use a local alias for external. The
663 // assembler would otherwise be conservative and assume a global default
664 // visibility symbol can be interposable, even if the code generator already
665 // assumed it.
666 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
667 const Module &M = *GV.getParent();
668 if (TM.getRelocationModel() != Reloc::Static &&
669 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
670 return getSymbolWithGlobalValueBase(&GV, "$local");
672 return TM.getSymbol(&GV);
675 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
676 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
677 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
678 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
679 "No emulated TLS variables in the common section");
681 // Never emit TLS variable xyz in emulated TLS model.
682 // The initialization value is in __emutls_t.xyz instead of xyz.
683 if (IsEmuTLSVar)
684 return;
686 if (GV->hasInitializer()) {
687 // Check to see if this is a special global used by LLVM, if so, emit it.
688 if (emitSpecialLLVMGlobal(GV))
689 return;
691 // Skip the emission of global equivalents. The symbol can be emitted later
692 // on by emitGlobalGOTEquivs in case it turns out to be needed.
693 if (GlobalGOTEquivs.count(getSymbol(GV)))
694 return;
696 if (isVerbose()) {
697 // When printing the control variable __emutls_v.*,
698 // we don't need to print the original TLS variable name.
699 GV->printAsOperand(OutStreamer->getCommentOS(),
700 /*PrintType=*/false, GV->getParent());
701 OutStreamer->getCommentOS() << '\n';
705 MCSymbol *GVSym = getSymbol(GV);
706 MCSymbol *EmittedSym = GVSym;
708 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
709 // attributes.
710 // GV's or GVSym's attributes will be used for the EmittedSym.
711 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
713 if (!GV->hasInitializer()) // External globals require no extra code.
714 return;
716 GVSym->redefineIfPossible();
717 if (GVSym->isDefined() || GVSym->isVariable())
718 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
719 "' is already defined");
721 if (MAI->hasDotTypeDotSizeDirective())
722 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
724 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
726 const DataLayout &DL = GV->getParent()->getDataLayout();
727 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
729 // If the alignment is specified, we *must* obey it. Overaligning a global
730 // with a specified alignment is a prompt way to break globals emitted to
731 // sections and expected to be contiguous (e.g. ObjC metadata).
732 const Align Alignment = getGVAlignment(GV, DL);
734 for (const HandlerInfo &HI : Handlers) {
735 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
736 HI.TimerGroupName, HI.TimerGroupDescription,
737 TimePassesIsEnabled);
738 HI.Handler->setSymbolSize(GVSym, Size);
741 // Handle common symbols
742 if (GVKind.isCommon()) {
743 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
744 // .comm _foo, 42, 4
745 const bool SupportsAlignment =
746 getObjFileLowering().getCommDirectiveSupportsAlignment();
747 OutStreamer->emitCommonSymbol(GVSym, Size,
748 SupportsAlignment ? Alignment.value() : 0);
749 return;
752 // Determine to which section this global should be emitted.
753 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
755 // If we have a bss global going to a section that supports the
756 // zerofill directive, do so here.
757 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
758 TheSection->isVirtualSection()) {
759 if (Size == 0)
760 Size = 1; // zerofill of 0 bytes is undefined.
761 emitLinkage(GV, GVSym);
762 // .zerofill __DATA, __bss, _foo, 400, 5
763 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
764 return;
767 // If this is a BSS local symbol and we are emitting in the BSS
768 // section use .lcomm/.comm directive.
769 if (GVKind.isBSSLocal() &&
770 getObjFileLowering().getBSSSection() == TheSection) {
771 if (Size == 0)
772 Size = 1; // .comm Foo, 0 is undefined, avoid it.
774 // Use .lcomm only if it supports user-specified alignment.
775 // Otherwise, while it would still be correct to use .lcomm in some
776 // cases (e.g. when Align == 1), the external assembler might enfore
777 // some -unknown- default alignment behavior, which could cause
778 // spurious differences between external and integrated assembler.
779 // Prefer to simply fall back to .local / .comm in this case.
780 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
781 // .lcomm _foo, 42
782 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
783 return;
786 // .local _foo
787 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
788 // .comm _foo, 42, 4
789 const bool SupportsAlignment =
790 getObjFileLowering().getCommDirectiveSupportsAlignment();
791 OutStreamer->emitCommonSymbol(GVSym, Size,
792 SupportsAlignment ? Alignment.value() : 0);
793 return;
796 // Handle thread local data for mach-o which requires us to output an
797 // additional structure of data and mangle the original symbol so that we
798 // can reference it later.
800 // TODO: This should become an "emit thread local global" method on TLOF.
801 // All of this macho specific stuff should be sunk down into TLOFMachO and
802 // stuff like "TLSExtraDataSection" should no longer be part of the parent
803 // TLOF class. This will also make it more obvious that stuff like
804 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
805 // specific code.
806 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
807 // Emit the .tbss symbol
808 MCSymbol *MangSym =
809 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
811 if (GVKind.isThreadBSS()) {
812 TheSection = getObjFileLowering().getTLSBSSSection();
813 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
814 } else if (GVKind.isThreadData()) {
815 OutStreamer->switchSection(TheSection);
817 emitAlignment(Alignment, GV);
818 OutStreamer->emitLabel(MangSym);
820 emitGlobalConstant(GV->getParent()->getDataLayout(),
821 GV->getInitializer());
824 OutStreamer->addBlankLine();
826 // Emit the variable struct for the runtime.
827 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
829 OutStreamer->switchSection(TLVSect);
830 // Emit the linkage here.
831 emitLinkage(GV, GVSym);
832 OutStreamer->emitLabel(GVSym);
834 // Three pointers in size:
835 // - __tlv_bootstrap - used to make sure support exists
836 // - spare pointer, used when mapped by the runtime
837 // - pointer to mangled symbol above with initializer
838 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
839 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
840 PtrSize);
841 OutStreamer->emitIntValue(0, PtrSize);
842 OutStreamer->emitSymbolValue(MangSym, PtrSize);
844 OutStreamer->addBlankLine();
845 return;
848 MCSymbol *EmittedInitSym = GVSym;
850 OutStreamer->switchSection(TheSection);
852 emitLinkage(GV, EmittedInitSym);
853 emitAlignment(Alignment, GV);
855 OutStreamer->emitLabel(EmittedInitSym);
856 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
857 if (LocalAlias != EmittedInitSym)
858 OutStreamer->emitLabel(LocalAlias);
860 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
862 if (MAI->hasDotTypeDotSizeDirective())
863 // .size foo, 42
864 OutStreamer->emitELFSize(EmittedInitSym,
865 MCConstantExpr::create(Size, OutContext));
867 OutStreamer->addBlankLine();
870 /// Emit the directive and value for debug thread local expression
872 /// \p Value - The value to emit.
873 /// \p Size - The size of the integer (in bytes) to emit.
874 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
875 OutStreamer->emitValue(Value, Size);
878 void AsmPrinter::emitFunctionHeaderComment() {}
880 /// EmitFunctionHeader - This method emits the header for the current
881 /// function.
882 void AsmPrinter::emitFunctionHeader() {
883 const Function &F = MF->getFunction();
885 if (isVerbose())
886 OutStreamer->getCommentOS()
887 << "-- Begin function "
888 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
890 // Print out constants referenced by the function
891 emitConstantPool();
893 // Print the 'header' of function.
894 // If basic block sections are desired, explicitly request a unique section
895 // for this function's entry block.
896 if (MF->front().isBeginSection())
897 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
898 else
899 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
900 OutStreamer->switchSection(MF->getSection());
902 if (!MAI->hasVisibilityOnlyWithLinkage())
903 emitVisibility(CurrentFnSym, F.getVisibility());
905 if (MAI->needsFunctionDescriptors())
906 emitLinkage(&F, CurrentFnDescSym);
908 emitLinkage(&F, CurrentFnSym);
909 if (MAI->hasFunctionAlignment())
910 emitAlignment(MF->getAlignment(), &F);
912 if (MAI->hasDotTypeDotSizeDirective())
913 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
915 if (F.hasFnAttribute(Attribute::Cold))
916 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
918 if (isVerbose()) {
919 F.printAsOperand(OutStreamer->getCommentOS(),
920 /*PrintType=*/false, F.getParent());
921 emitFunctionHeaderComment();
922 OutStreamer->getCommentOS() << '\n';
925 // Emit the prefix data.
926 if (F.hasPrefixData()) {
927 if (MAI->hasSubsectionsViaSymbols()) {
928 // Preserving prefix data on platforms which use subsections-via-symbols
929 // is a bit tricky. Here we introduce a symbol for the prefix data
930 // and use the .alt_entry attribute to mark the function's real entry point
931 // as an alternative entry point to the prefix-data symbol.
932 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
933 OutStreamer->emitLabel(PrefixSym);
935 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
937 // Emit an .alt_entry directive for the actual function symbol.
938 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
939 } else {
940 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
944 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
945 // place prefix data before NOPs.
946 unsigned PatchableFunctionPrefix = 0;
947 unsigned PatchableFunctionEntry = 0;
948 (void)F.getFnAttribute("patchable-function-prefix")
949 .getValueAsString()
950 .getAsInteger(10, PatchableFunctionPrefix);
951 (void)F.getFnAttribute("patchable-function-entry")
952 .getValueAsString()
953 .getAsInteger(10, PatchableFunctionEntry);
954 if (PatchableFunctionPrefix) {
955 CurrentPatchableFunctionEntrySym =
956 OutContext.createLinkerPrivateTempSymbol();
957 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
958 emitNops(PatchableFunctionPrefix);
959 } else if (PatchableFunctionEntry) {
960 // May be reassigned when emitting the body, to reference the label after
961 // the initial BTI (AArch64) or endbr32/endbr64 (x86).
962 CurrentPatchableFunctionEntrySym = CurrentFnBegin;
965 // Emit the function descriptor. This is a virtual function to allow targets
966 // to emit their specific function descriptor. Right now it is only used by
967 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
968 // descriptors and should be converted to use this hook as well.
969 if (MAI->needsFunctionDescriptors())
970 emitFunctionDescriptor();
972 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
973 // their wild and crazy things as required.
974 emitFunctionEntryLabel();
976 // If the function had address-taken blocks that got deleted, then we have
977 // references to the dangling symbols. Emit them at the start of the function
978 // so that we don't get references to undefined symbols.
979 std::vector<MCSymbol*> DeadBlockSyms;
980 takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
981 for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
982 OutStreamer->AddComment("Address taken block that was later removed");
983 OutStreamer->emitLabel(DeadBlockSym);
986 if (CurrentFnBegin) {
987 if (MAI->useAssignmentForEHBegin()) {
988 MCSymbol *CurPos = OutContext.createTempSymbol();
989 OutStreamer->emitLabel(CurPos);
990 OutStreamer->emitAssignment(CurrentFnBegin,
991 MCSymbolRefExpr::create(CurPos, OutContext));
992 } else {
993 OutStreamer->emitLabel(CurrentFnBegin);
997 // Emit pre-function debug and/or EH information.
998 for (const HandlerInfo &HI : Handlers) {
999 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1000 HI.TimerGroupDescription, TimePassesIsEnabled);
1001 HI.Handler->beginFunction(MF);
1004 // Emit the prologue data.
1005 if (F.hasPrologueData())
1006 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
1008 // Emit the function prologue data for the indirect call sanitizer.
1009 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) {
1010 assert(TM.getTargetTriple().getArch() == Triple::x86 ||
1011 TM.getTargetTriple().getArch() == Triple::x86_64);
1012 assert(MD->getNumOperands() == 2);
1014 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0));
1015 auto *FTRTTIProxy = mdconst::extract<Constant>(MD->getOperand(1));
1016 assert(PrologueSig && FTRTTIProxy);
1017 emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig);
1019 const MCExpr *Proxy = lowerConstant(FTRTTIProxy);
1020 const MCExpr *FnExp = MCSymbolRefExpr::create(CurrentFnSym, OutContext);
1021 const MCExpr *PCRel = MCBinaryExpr::createSub(Proxy, FnExp, OutContext);
1022 // Use 32 bit since only small code model is supported.
1023 OutStreamer->emitValue(PCRel, 4u);
1027 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1028 /// function. This can be overridden by targets as required to do custom stuff.
1029 void AsmPrinter::emitFunctionEntryLabel() {
1030 CurrentFnSym->redefineIfPossible();
1032 // The function label could have already been emitted if two symbols end up
1033 // conflicting due to asm renaming. Detect this and emit an error.
1034 if (CurrentFnSym->isVariable())
1035 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
1036 "' is a protected alias");
1038 OutStreamer->emitLabel(CurrentFnSym);
1040 if (TM.getTargetTriple().isOSBinFormatELF()) {
1041 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1042 if (Sym != CurrentFnSym)
1043 OutStreamer->emitLabel(Sym);
1047 /// emitComments - Pretty-print comments for instructions.
1048 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
1049 const MachineFunction *MF = MI.getMF();
1050 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1052 // Check for spills and reloads
1054 // We assume a single instruction only has a spill or reload, not
1055 // both.
1056 Optional<unsigned> Size;
1057 if ((Size = MI.getRestoreSize(TII))) {
1058 CommentOS << *Size << "-byte Reload\n";
1059 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1060 if (*Size) {
1061 if (*Size == unsigned(MemoryLocation::UnknownSize))
1062 CommentOS << "Unknown-size Folded Reload\n";
1063 else
1064 CommentOS << *Size << "-byte Folded Reload\n";
1066 } else if ((Size = MI.getSpillSize(TII))) {
1067 CommentOS << *Size << "-byte Spill\n";
1068 } else if ((Size = MI.getFoldedSpillSize(TII))) {
1069 if (*Size) {
1070 if (*Size == unsigned(MemoryLocation::UnknownSize))
1071 CommentOS << "Unknown-size Folded Spill\n";
1072 else
1073 CommentOS << *Size << "-byte Folded Spill\n";
1077 // Check for spill-induced copies
1078 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1079 CommentOS << " Reload Reuse\n";
1082 /// emitImplicitDef - This method emits the specified machine instruction
1083 /// that is an implicit def.
1084 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
1085 Register RegNo = MI->getOperand(0).getReg();
1087 SmallString<128> Str;
1088 raw_svector_ostream OS(Str);
1089 OS << "implicit-def: "
1090 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1092 OutStreamer->AddComment(OS.str());
1093 OutStreamer->addBlankLine();
1096 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1097 std::string Str;
1098 raw_string_ostream OS(Str);
1099 OS << "kill:";
1100 for (const MachineOperand &Op : MI->operands()) {
1101 assert(Op.isReg() && "KILL instruction must have only register operands");
1102 OS << ' ' << (Op.isDef() ? "def " : "killed ")
1103 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1105 AP.OutStreamer->AddComment(OS.str());
1106 AP.OutStreamer->addBlankLine();
1109 /// emitDebugValueComment - This method handles the target-independent form
1110 /// of DBG_VALUE, returning true if it was able to do so. A false return
1111 /// means the target will need to handle MI in EmitInstruction.
1112 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
1113 // This code handles only the 4-operand target-independent form.
1114 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1115 return false;
1117 SmallString<128> Str;
1118 raw_svector_ostream OS(Str);
1119 OS << "DEBUG_VALUE: ";
1121 const DILocalVariable *V = MI->getDebugVariable();
1122 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1123 StringRef Name = SP->getName();
1124 if (!Name.empty())
1125 OS << Name << ":";
1127 OS << V->getName();
1128 OS << " <- ";
1130 const DIExpression *Expr = MI->getDebugExpression();
1131 if (Expr->getNumElements()) {
1132 OS << '[';
1133 ListSeparator LS;
1134 for (auto Op : Expr->expr_ops()) {
1135 OS << LS << dwarf::OperationEncodingString(Op.getOp());
1136 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1137 OS << ' ' << Op.getArg(I);
1139 OS << "] ";
1142 // Register or immediate value. Register 0 means undef.
1143 for (const MachineOperand &Op : MI->debug_operands()) {
1144 if (&Op != MI->debug_operands().begin())
1145 OS << ", ";
1146 switch (Op.getType()) {
1147 case MachineOperand::MO_FPImmediate: {
1148 APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1149 Type *ImmTy = Op.getFPImm()->getType();
1150 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1151 ImmTy->isDoubleTy()) {
1152 OS << APF.convertToDouble();
1153 } else {
1154 // There is no good way to print long double. Convert a copy to
1155 // double. Ah well, it's only a comment.
1156 bool ignored;
1157 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1158 &ignored);
1159 OS << "(long double) " << APF.convertToDouble();
1161 break;
1163 case MachineOperand::MO_Immediate: {
1164 OS << Op.getImm();
1165 break;
1167 case MachineOperand::MO_CImmediate: {
1168 Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1169 break;
1171 case MachineOperand::MO_TargetIndex: {
1172 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1173 // NOTE: Want this comment at start of line, don't emit with AddComment.
1174 AP.OutStreamer->emitRawComment(OS.str());
1175 break;
1177 case MachineOperand::MO_Register:
1178 case MachineOperand::MO_FrameIndex: {
1179 Register Reg;
1180 Optional<StackOffset> Offset;
1181 if (Op.isReg()) {
1182 Reg = Op.getReg();
1183 } else {
1184 const TargetFrameLowering *TFI =
1185 AP.MF->getSubtarget().getFrameLowering();
1186 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1188 if (!Reg) {
1189 // Suppress offset, it is not meaningful here.
1190 OS << "undef";
1191 break;
1193 // The second operand is only an offset if it's an immediate.
1194 if (MI->isIndirectDebugValue())
1195 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1196 if (Offset)
1197 OS << '[';
1198 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1199 if (Offset)
1200 OS << '+' << Offset->getFixed() << ']';
1201 break;
1203 default:
1204 llvm_unreachable("Unknown operand type");
1208 // NOTE: Want this comment at start of line, don't emit with AddComment.
1209 AP.OutStreamer->emitRawComment(OS.str());
1210 return true;
1213 /// This method handles the target-independent form of DBG_LABEL, returning
1214 /// true if it was able to do so. A false return means the target will need
1215 /// to handle MI in EmitInstruction.
1216 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1217 if (MI->getNumOperands() != 1)
1218 return false;
1220 SmallString<128> Str;
1221 raw_svector_ostream OS(Str);
1222 OS << "DEBUG_LABEL: ";
1224 const DILabel *V = MI->getDebugLabel();
1225 if (auto *SP = dyn_cast<DISubprogram>(
1226 V->getScope()->getNonLexicalBlockFileScope())) {
1227 StringRef Name = SP->getName();
1228 if (!Name.empty())
1229 OS << Name << ":";
1231 OS << V->getName();
1233 // NOTE: Want this comment at start of line, don't emit with AddComment.
1234 AP.OutStreamer->emitRawComment(OS.str());
1235 return true;
1238 AsmPrinter::CFISection
1239 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1240 // Ignore functions that won't get emitted.
1241 if (F.isDeclarationForLinker())
1242 return CFISection::None;
1244 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1245 F.needsUnwindTableEntry())
1246 return CFISection::EH;
1248 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1249 return CFISection::Debug;
1251 return CFISection::None;
1254 AsmPrinter::CFISection
1255 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1256 return getFunctionCFISectionType(MF.getFunction());
1259 bool AsmPrinter::needsSEHMoves() {
1260 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1263 bool AsmPrinter::needsCFIForDebug() const {
1264 return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1265 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1268 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1269 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1270 if (!needsCFIForDebug() &&
1271 ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1272 ExceptionHandlingType != ExceptionHandling::ARM)
1273 return;
1275 if (getFunctionCFISectionType(*MF) == CFISection::None)
1276 return;
1278 // If there is no "real" instruction following this CFI instruction, skip
1279 // emitting it; it would be beyond the end of the function's FDE range.
1280 auto *MBB = MI.getParent();
1281 auto I = std::next(MI.getIterator());
1282 while (I != MBB->end() && I->isTransient())
1283 ++I;
1284 if (I == MBB->instr_end() &&
1285 MBB->getReverseIterator() == MBB->getParent()->rbegin())
1286 return;
1288 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1289 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1290 const MCCFIInstruction &CFI = Instrs[CFIIndex];
1291 emitCFIInstruction(CFI);
1294 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1295 // The operands are the MCSymbol and the frame offset of the allocation.
1296 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1297 int FrameOffset = MI.getOperand(1).getImm();
1299 // Emit a symbol assignment.
1300 OutStreamer->emitAssignment(FrameAllocSym,
1301 MCConstantExpr::create(FrameOffset, OutContext));
1304 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1305 /// given basic block. This can be used to capture more precise profile
1306 /// information. We use the last 4 bits (LSBs) to encode the following
1307 /// information:
1308 /// * (1): set if return block (ret or tail call).
1309 /// * (2): set if ends with a tail call.
1310 /// * (3): set if exception handling (EH) landing pad.
1311 /// * (4): set if the block can fall through to its next.
1312 /// The remaining bits are zero.
1313 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1314 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1315 return ((unsigned)MBB.isReturnBlock()) |
1316 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1317 (MBB.isEHPad() << 2) |
1318 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1321 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1322 MCSection *BBAddrMapSection =
1323 getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1324 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1326 const MCSymbol *FunctionSymbol = getFunctionBegin();
1328 OutStreamer->pushSection();
1329 OutStreamer->switchSection(BBAddrMapSection);
1330 OutStreamer->AddComment("version");
1331 OutStreamer->emitInt8(OutStreamer->getContext().getBBAddrMapVersion());
1332 OutStreamer->AddComment("feature");
1333 OutStreamer->emitInt8(0);
1334 OutStreamer->AddComment("function address");
1335 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1336 OutStreamer->AddComment("number of basic blocks");
1337 OutStreamer->emitULEB128IntValue(MF.size());
1338 const MCSymbol *PrevMBBEndSymbol = FunctionSymbol;
1339 // Emit BB Information for each basic block in the funciton.
1340 for (const MachineBasicBlock &MBB : MF) {
1341 const MCSymbol *MBBSymbol =
1342 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1343 // Emit the basic block offset relative to the end of the previous block.
1344 // This is zero unless the block is padded due to alignment.
1345 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol);
1346 // Emit the basic block size. When BBs have alignments, their size cannot
1347 // always be computed from their offsets.
1348 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1349 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1350 PrevMBBEndSymbol = MBB.getEndSymbol();
1352 OutStreamer->popSection();
1355 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1356 if (PP) {
1357 auto GUID = MI.getOperand(0).getImm();
1358 auto Index = MI.getOperand(1).getImm();
1359 auto Type = MI.getOperand(2).getImm();
1360 auto Attr = MI.getOperand(3).getImm();
1361 DILocation *DebugLoc = MI.getDebugLoc();
1362 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1366 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1367 if (!MF.getTarget().Options.EmitStackSizeSection)
1368 return;
1370 MCSection *StackSizeSection =
1371 getObjFileLowering().getStackSizesSection(*getCurrentSection());
1372 if (!StackSizeSection)
1373 return;
1375 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1376 // Don't emit functions with dynamic stack allocations.
1377 if (FrameInfo.hasVarSizedObjects())
1378 return;
1380 OutStreamer->pushSection();
1381 OutStreamer->switchSection(StackSizeSection);
1383 const MCSymbol *FunctionSymbol = getFunctionBegin();
1384 uint64_t StackSize =
1385 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1386 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1387 OutStreamer->emitULEB128IntValue(StackSize);
1389 OutStreamer->popSection();
1392 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1393 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1395 // OutputFilename empty implies -fstack-usage is not passed.
1396 if (OutputFilename.empty())
1397 return;
1399 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1400 uint64_t StackSize =
1401 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1403 if (StackUsageStream == nullptr) {
1404 std::error_code EC;
1405 StackUsageStream =
1406 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1407 if (EC) {
1408 errs() << "Could not open file: " << EC.message();
1409 return;
1413 *StackUsageStream << MF.getFunction().getParent()->getName();
1414 if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1415 *StackUsageStream << ':' << DSP->getLine();
1417 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1418 if (FrameInfo.hasVarSizedObjects())
1419 *StackUsageStream << "dynamic\n";
1420 else
1421 *StackUsageStream << "static\n";
1424 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1425 MachineModuleInfo &MMI = MF.getMMI();
1426 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1427 return true;
1429 // We might emit an EH table that uses function begin and end labels even if
1430 // we don't have any landingpads.
1431 if (!MF.getFunction().hasPersonalityFn())
1432 return false;
1433 return !isNoOpWithoutInvoke(
1434 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1437 /// EmitFunctionBody - This method emits the body and trailer for a
1438 /// function.
1439 void AsmPrinter::emitFunctionBody() {
1440 emitFunctionHeader();
1442 // Emit target-specific gunk before the function body.
1443 emitFunctionBodyStart();
1445 if (isVerbose()) {
1446 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1447 MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1448 if (!MDT) {
1449 OwnedMDT = std::make_unique<MachineDominatorTree>();
1450 OwnedMDT->getBase().recalculate(*MF);
1451 MDT = OwnedMDT.get();
1454 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1455 MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1456 if (!MLI) {
1457 OwnedMLI = std::make_unique<MachineLoopInfo>();
1458 OwnedMLI->getBase().analyze(MDT->getBase());
1459 MLI = OwnedMLI.get();
1463 // Print out code for the function.
1464 bool HasAnyRealCode = false;
1465 int NumInstsInFunction = 0;
1467 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1468 for (auto &MBB : *MF) {
1469 // Print a label for the basic block.
1470 emitBasicBlockStart(MBB);
1471 DenseMap<StringRef, unsigned> MnemonicCounts;
1472 for (auto &MI : MBB) {
1473 // Print the assembly for the instruction.
1474 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1475 !MI.isDebugInstr()) {
1476 HasAnyRealCode = true;
1477 ++NumInstsInFunction;
1480 // If there is a pre-instruction symbol, emit a label for it here.
1481 if (MCSymbol *S = MI.getPreInstrSymbol())
1482 OutStreamer->emitLabel(S);
1484 for (const HandlerInfo &HI : Handlers) {
1485 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1486 HI.TimerGroupDescription, TimePassesIsEnabled);
1487 HI.Handler->beginInstruction(&MI);
1490 if (isVerbose())
1491 emitComments(MI, OutStreamer->getCommentOS());
1493 switch (MI.getOpcode()) {
1494 case TargetOpcode::CFI_INSTRUCTION:
1495 emitCFIInstruction(MI);
1496 break;
1497 case TargetOpcode::LOCAL_ESCAPE:
1498 emitFrameAlloc(MI);
1499 break;
1500 case TargetOpcode::ANNOTATION_LABEL:
1501 case TargetOpcode::EH_LABEL:
1502 case TargetOpcode::GC_LABEL:
1503 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1504 break;
1505 case TargetOpcode::INLINEASM:
1506 case TargetOpcode::INLINEASM_BR:
1507 emitInlineAsm(&MI);
1508 break;
1509 case TargetOpcode::DBG_VALUE:
1510 case TargetOpcode::DBG_VALUE_LIST:
1511 if (isVerbose()) {
1512 if (!emitDebugValueComment(&MI, *this))
1513 emitInstruction(&MI);
1515 break;
1516 case TargetOpcode::DBG_INSTR_REF:
1517 // This instruction reference will have been resolved to a machine
1518 // location, and a nearby DBG_VALUE created. We can safely ignore
1519 // the instruction reference.
1520 break;
1521 case TargetOpcode::DBG_PHI:
1522 // This instruction is only used to label a program point, it's purely
1523 // meta information.
1524 break;
1525 case TargetOpcode::DBG_LABEL:
1526 if (isVerbose()) {
1527 if (!emitDebugLabelComment(&MI, *this))
1528 emitInstruction(&MI);
1530 break;
1531 case TargetOpcode::IMPLICIT_DEF:
1532 if (isVerbose()) emitImplicitDef(&MI);
1533 break;
1534 case TargetOpcode::KILL:
1535 if (isVerbose()) emitKill(&MI, *this);
1536 break;
1537 case TargetOpcode::PSEUDO_PROBE:
1538 emitPseudoProbe(MI);
1539 break;
1540 case TargetOpcode::ARITH_FENCE:
1541 if (isVerbose())
1542 OutStreamer->emitRawComment("ARITH_FENCE");
1543 break;
1544 default:
1545 emitInstruction(&MI);
1546 if (CanDoExtraAnalysis) {
1547 MCInst MCI;
1548 MCI.setOpcode(MI.getOpcode());
1549 auto Name = OutStreamer->getMnemonic(MCI);
1550 auto I = MnemonicCounts.insert({Name, 0u});
1551 I.first->second++;
1553 break;
1556 // If there is a post-instruction symbol, emit a label for it here.
1557 if (MCSymbol *S = MI.getPostInstrSymbol())
1558 OutStreamer->emitLabel(S);
1560 for (const HandlerInfo &HI : Handlers) {
1561 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1562 HI.TimerGroupDescription, TimePassesIsEnabled);
1563 HI.Handler->endInstruction();
1567 // We must emit temporary symbol for the end of this basic block, if either
1568 // we have BBLabels enabled or if this basic blocks marks the end of a
1569 // section.
1570 if (MF->hasBBLabels() ||
1571 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1572 OutStreamer->emitLabel(MBB.getEndSymbol());
1574 if (MBB.isEndSection()) {
1575 // The size directive for the section containing the entry block is
1576 // handled separately by the function section.
1577 if (!MBB.sameSection(&MF->front())) {
1578 if (MAI->hasDotTypeDotSizeDirective()) {
1579 // Emit the size directive for the basic block section.
1580 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1581 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1582 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1583 OutContext);
1584 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1586 MBBSectionRanges[MBB.getSectionIDNum()] =
1587 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1590 emitBasicBlockEnd(MBB);
1592 if (CanDoExtraAnalysis) {
1593 // Skip empty blocks.
1594 if (MBB.empty())
1595 continue;
1597 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1598 MBB.begin()->getDebugLoc(), &MBB);
1600 // Generate instruction mix remark. First, sort counts in descending order
1601 // by count and name.
1602 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1603 for (auto &KV : MnemonicCounts)
1604 MnemonicVec.emplace_back(KV.first, KV.second);
1606 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1607 const std::pair<StringRef, unsigned> &B) {
1608 if (A.second > B.second)
1609 return true;
1610 if (A.second == B.second)
1611 return StringRef(A.first) < StringRef(B.first);
1612 return false;
1614 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1615 for (auto &KV : MnemonicVec) {
1616 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
1617 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1619 ORE->emit(R);
1623 EmittedInsts += NumInstsInFunction;
1624 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1625 MF->getFunction().getSubprogram(),
1626 &MF->front());
1627 R << ore::NV("NumInstructions", NumInstsInFunction)
1628 << " instructions in function";
1629 ORE->emit(R);
1631 // If the function is empty and the object file uses .subsections_via_symbols,
1632 // then we need to emit *something* to the function body to prevent the
1633 // labels from collapsing together. Just emit a noop.
1634 // Similarly, don't emit empty functions on Windows either. It can lead to
1635 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1636 // after linking, causing the kernel not to load the binary:
1637 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1638 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1639 const Triple &TT = TM.getTargetTriple();
1640 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1641 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1642 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1644 // Targets can opt-out of emitting the noop here by leaving the opcode
1645 // unspecified.
1646 if (Noop.getOpcode()) {
1647 OutStreamer->AddComment("avoids zero-length function");
1648 emitNops(1);
1652 // Switch to the original section in case basic block sections was used.
1653 OutStreamer->switchSection(MF->getSection());
1655 const Function &F = MF->getFunction();
1656 for (const auto &BB : F) {
1657 if (!BB.hasAddressTaken())
1658 continue;
1659 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1660 if (Sym->isDefined())
1661 continue;
1662 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1663 OutStreamer->emitLabel(Sym);
1666 // Emit target-specific gunk after the function body.
1667 emitFunctionBodyEnd();
1669 if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1670 MAI->hasDotTypeDotSizeDirective()) {
1671 // Create a symbol for the end of function.
1672 CurrentFnEnd = createTempSymbol("func_end");
1673 OutStreamer->emitLabel(CurrentFnEnd);
1676 // If the target wants a .size directive for the size of the function, emit
1677 // it.
1678 if (MAI->hasDotTypeDotSizeDirective()) {
1679 // We can get the size as difference between the function label and the
1680 // temp label.
1681 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1682 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1683 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1684 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1687 for (const HandlerInfo &HI : Handlers) {
1688 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1689 HI.TimerGroupDescription, TimePassesIsEnabled);
1690 HI.Handler->markFunctionEnd();
1693 MBBSectionRanges[MF->front().getSectionIDNum()] =
1694 MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1696 // Print out jump tables referenced by the function.
1697 emitJumpTableInfo();
1699 // Emit post-function debug and/or EH information.
1700 for (const HandlerInfo &HI : Handlers) {
1701 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1702 HI.TimerGroupDescription, TimePassesIsEnabled);
1703 HI.Handler->endFunction(MF);
1706 // Emit section containing BB address offsets and their metadata, when
1707 // BB labels are requested for this function. Skip empty functions.
1708 if (MF->hasBBLabels() && HasAnyRealCode)
1709 emitBBAddrMapSection(*MF);
1711 // Emit section containing stack size metadata.
1712 emitStackSizeSection(*MF);
1714 // Emit .su file containing function stack size information.
1715 emitStackUsage(*MF);
1717 emitPatchableFunctionEntries();
1719 if (isVerbose())
1720 OutStreamer->getCommentOS() << "-- End function\n";
1722 OutStreamer->addBlankLine();
1725 /// Compute the number of Global Variables that uses a Constant.
1726 static unsigned getNumGlobalVariableUses(const Constant *C) {
1727 if (!C)
1728 return 0;
1730 if (isa<GlobalVariable>(C))
1731 return 1;
1733 unsigned NumUses = 0;
1734 for (const auto *CU : C->users())
1735 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1737 return NumUses;
1740 /// Only consider global GOT equivalents if at least one user is a
1741 /// cstexpr inside an initializer of another global variables. Also, don't
1742 /// handle cstexpr inside instructions. During global variable emission,
1743 /// candidates are skipped and are emitted later in case at least one cstexpr
1744 /// isn't replaced by a PC relative GOT entry access.
1745 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1746 unsigned &NumGOTEquivUsers) {
1747 // Global GOT equivalents are unnamed private globals with a constant
1748 // pointer initializer to another global symbol. They must point to a
1749 // GlobalVariable or Function, i.e., as GlobalValue.
1750 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1751 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1752 !isa<GlobalValue>(GV->getOperand(0)))
1753 return false;
1755 // To be a got equivalent, at least one of its users need to be a constant
1756 // expression used by another global variable.
1757 for (const auto *U : GV->users())
1758 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1760 return NumGOTEquivUsers > 0;
1763 /// Unnamed constant global variables solely contaning a pointer to
1764 /// another globals variable is equivalent to a GOT table entry; it contains the
1765 /// the address of another symbol. Optimize it and replace accesses to these
1766 /// "GOT equivalents" by using the GOT entry for the final global instead.
1767 /// Compute GOT equivalent candidates among all global variables to avoid
1768 /// emitting them if possible later on, after it use is replaced by a GOT entry
1769 /// access.
1770 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1771 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1772 return;
1774 for (const auto &G : M.globals()) {
1775 unsigned NumGOTEquivUsers = 0;
1776 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1777 continue;
1779 const MCSymbol *GOTEquivSym = getSymbol(&G);
1780 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1784 /// Constant expressions using GOT equivalent globals may not be eligible
1785 /// for PC relative GOT entry conversion, in such cases we need to emit such
1786 /// globals we previously omitted in EmitGlobalVariable.
1787 void AsmPrinter::emitGlobalGOTEquivs() {
1788 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1789 return;
1791 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1792 for (auto &I : GlobalGOTEquivs) {
1793 const GlobalVariable *GV = I.second.first;
1794 unsigned Cnt = I.second.second;
1795 if (Cnt)
1796 FailedCandidates.push_back(GV);
1798 GlobalGOTEquivs.clear();
1800 for (const auto *GV : FailedCandidates)
1801 emitGlobalVariable(GV);
1804 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) {
1805 MCSymbol *Name = getSymbol(&GA);
1806 bool IsFunction = GA.getValueType()->isFunctionTy();
1807 // Treat bitcasts of functions as functions also. This is important at least
1808 // on WebAssembly where object and function addresses can't alias each other.
1809 if (!IsFunction)
1810 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
1812 // AIX's assembly directive `.set` is not usable for aliasing purpose,
1813 // so AIX has to use the extra-label-at-definition strategy. At this
1814 // point, all the extra label is emitted, we just have to emit linkage for
1815 // those labels.
1816 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1817 assert(MAI->hasVisibilityOnlyWithLinkage() &&
1818 "Visibility should be handled with emitLinkage() on AIX.");
1820 // Linkage for alias of global variable has been emitted.
1821 if (isa<GlobalVariable>(GA.getAliaseeObject()))
1822 return;
1824 emitLinkage(&GA, Name);
1825 // If it's a function, also emit linkage for aliases of function entry
1826 // point.
1827 if (IsFunction)
1828 emitLinkage(&GA,
1829 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
1830 return;
1833 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
1834 OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1835 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
1836 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1837 else
1838 assert(GA.hasLocalLinkage() && "Invalid alias linkage");
1840 // Set the symbol type to function if the alias has a function type.
1841 // This affects codegen when the aliasee is not a function.
1842 if (IsFunction) {
1843 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1844 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1845 OutStreamer->beginCOFFSymbolDef(Name);
1846 OutStreamer->emitCOFFSymbolStorageClass(
1847 GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
1848 : COFF::IMAGE_SYM_CLASS_EXTERNAL);
1849 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
1850 << COFF::SCT_COMPLEX_TYPE_SHIFT);
1851 OutStreamer->endCOFFSymbolDef();
1855 emitVisibility(Name, GA.getVisibility());
1857 const MCExpr *Expr = lowerConstant(GA.getAliasee());
1859 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1860 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1862 // Emit the directives as assignments aka .set:
1863 OutStreamer->emitAssignment(Name, Expr);
1864 MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
1865 if (LocalAlias != Name)
1866 OutStreamer->emitAssignment(LocalAlias, Expr);
1868 // If the aliasee does not correspond to a symbol in the output, i.e. the
1869 // alias is not of an object or the aliased object is private, then set the
1870 // size of the alias symbol from the type of the alias. We don't do this in
1871 // other situations as the alias and aliasee having differing types but same
1872 // size may be intentional.
1873 const GlobalObject *BaseObject = GA.getAliaseeObject();
1874 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
1875 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1876 const DataLayout &DL = M.getDataLayout();
1877 uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
1878 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1882 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
1883 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
1884 "IFunc is not supported on AIX.");
1886 MCSymbol *Name = getSymbol(&GI);
1888 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
1889 OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1890 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
1891 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1892 else
1893 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
1895 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1896 emitVisibility(Name, GI.getVisibility());
1898 // Emit the directives as assignments aka .set:
1899 const MCExpr *Expr = lowerConstant(GI.getResolver());
1900 OutStreamer->emitAssignment(Name, Expr);
1901 MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
1902 if (LocalAlias != Name)
1903 OutStreamer->emitAssignment(LocalAlias, Expr);
1906 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1907 if (!RS.needsSection())
1908 return;
1910 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1912 Optional<SmallString<128>> Filename;
1913 if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1914 Filename = *FilenameRef;
1915 sys::fs::make_absolute(*Filename);
1916 assert(!Filename->empty() && "The filename can't be empty.");
1919 std::string Buf;
1920 raw_string_ostream OS(Buf);
1921 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1922 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
1923 : RemarkSerializer.metaSerializer(OS);
1924 MetaSerializer->emit();
1926 // Switch to the remarks section.
1927 MCSection *RemarksSection =
1928 OutContext.getObjectFileInfo()->getRemarksSection();
1929 OutStreamer->switchSection(RemarksSection);
1931 OutStreamer->emitBinaryData(OS.str());
1934 bool AsmPrinter::doFinalization(Module &M) {
1935 // Set the MachineFunction to nullptr so that we can catch attempted
1936 // accesses to MF specific features at the module level and so that
1937 // we can conditionalize accesses based on whether or not it is nullptr.
1938 MF = nullptr;
1940 // Gather all GOT equivalent globals in the module. We really need two
1941 // passes over the globals: one to compute and another to avoid its emission
1942 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1943 // where the got equivalent shows up before its use.
1944 computeGlobalGOTEquivs(M);
1946 // Emit global variables.
1947 for (const auto &G : M.globals())
1948 emitGlobalVariable(&G);
1950 // Emit remaining GOT equivalent globals.
1951 emitGlobalGOTEquivs();
1953 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1955 // Emit linkage(XCOFF) and visibility info for declarations
1956 for (const Function &F : M) {
1957 if (!F.isDeclarationForLinker())
1958 continue;
1960 MCSymbol *Name = getSymbol(&F);
1961 // Function getSymbol gives us the function descriptor symbol for XCOFF.
1963 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1964 GlobalValue::VisibilityTypes V = F.getVisibility();
1965 if (V == GlobalValue::DefaultVisibility)
1966 continue;
1968 emitVisibility(Name, V, false);
1969 continue;
1972 if (F.isIntrinsic())
1973 continue;
1975 // Handle the XCOFF case.
1976 // Variable `Name` is the function descriptor symbol (see above). Get the
1977 // function entry point symbol.
1978 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1979 // Emit linkage for the function entry point.
1980 emitLinkage(&F, FnEntryPointSym);
1982 // Emit linkage for the function descriptor.
1983 emitLinkage(&F, Name);
1986 // Emit the remarks section contents.
1987 // FIXME: Figure out when is the safest time to emit this section. It should
1988 // not come after debug info.
1989 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1990 emitRemarksSection(*RS);
1992 TLOF.emitModuleMetadata(*OutStreamer, M);
1994 if (TM.getTargetTriple().isOSBinFormatELF()) {
1995 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1997 // Output stubs for external and common global variables.
1998 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1999 if (!Stubs.empty()) {
2000 OutStreamer->switchSection(TLOF.getDataSection());
2001 const DataLayout &DL = M.getDataLayout();
2003 emitAlignment(Align(DL.getPointerSize()));
2004 for (const auto &Stub : Stubs) {
2005 OutStreamer->emitLabel(Stub.first);
2006 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2007 DL.getPointerSize());
2012 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2013 MachineModuleInfoCOFF &MMICOFF =
2014 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
2016 // Output stubs for external and common global variables.
2017 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
2018 if (!Stubs.empty()) {
2019 const DataLayout &DL = M.getDataLayout();
2021 for (const auto &Stub : Stubs) {
2022 SmallString<256> SectionName = StringRef(".rdata$");
2023 SectionName += Stub.first->getName();
2024 OutStreamer->switchSection(OutContext.getCOFFSection(
2025 SectionName,
2026 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
2027 COFF::IMAGE_SCN_LNK_COMDAT,
2028 SectionKind::getReadOnly(), Stub.first->getName(),
2029 COFF::IMAGE_COMDAT_SELECT_ANY));
2030 emitAlignment(Align(DL.getPointerSize()));
2031 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2032 OutStreamer->emitLabel(Stub.first);
2033 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2034 DL.getPointerSize());
2039 // This needs to happen before emitting debug information since that can end
2040 // arbitrary sections.
2041 if (auto *TS = OutStreamer->getTargetStreamer())
2042 TS->emitConstantPools();
2044 // Finalize debug and EH information.
2045 for (const HandlerInfo &HI : Handlers) {
2046 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
2047 HI.TimerGroupDescription, TimePassesIsEnabled);
2048 HI.Handler->endModule();
2051 // This deletes all the ephemeral handlers that AsmPrinter added, while
2052 // keeping all the user-added handlers alive until the AsmPrinter is
2053 // destroyed.
2054 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2055 DD = nullptr;
2057 // If the target wants to know about weak references, print them all.
2058 if (MAI->getWeakRefDirective()) {
2059 // FIXME: This is not lazy, it would be nice to only print weak references
2060 // to stuff that is actually used. Note that doing so would require targets
2061 // to notice uses in operands (due to constant exprs etc). This should
2062 // happen with the MC stuff eventually.
2064 // Print out module-level global objects here.
2065 for (const auto &GO : M.global_objects()) {
2066 if (!GO.hasExternalWeakLinkage())
2067 continue;
2068 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2070 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
2071 auto SymbolName = "swift_async_extendedFramePointerFlags";
2072 auto Global = M.getGlobalVariable(SymbolName);
2073 if (!Global) {
2074 auto Int8PtrTy = Type::getInt8PtrTy(M.getContext());
2075 Global = new GlobalVariable(M, Int8PtrTy, false,
2076 GlobalValue::ExternalWeakLinkage, nullptr,
2077 SymbolName);
2078 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2083 // Print aliases in topological order, that is, for each alias a = b,
2084 // b must be printed before a.
2085 // This is because on some targets (e.g. PowerPC) linker expects aliases in
2086 // such an order to generate correct TOC information.
2087 SmallVector<const GlobalAlias *, 16> AliasStack;
2088 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
2089 for (const auto &Alias : M.aliases()) {
2090 for (const GlobalAlias *Cur = &Alias; Cur;
2091 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2092 if (!AliasVisited.insert(Cur).second)
2093 break;
2094 AliasStack.push_back(Cur);
2096 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2097 emitGlobalAlias(M, *AncestorAlias);
2098 AliasStack.clear();
2100 for (const auto &IFunc : M.ifuncs())
2101 emitGlobalIFunc(M, IFunc);
2103 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2104 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2105 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2106 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
2107 MP->finishAssembly(M, *MI, *this);
2109 // Emit llvm.ident metadata in an '.ident' directive.
2110 emitModuleIdents(M);
2112 // Emit bytes for llvm.commandline metadata.
2113 emitModuleCommandLines(M);
2115 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2116 // split-stack is used.
2117 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2118 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack",
2119 ELF::SHT_PROGBITS, 0));
2120 if (HasNoSplitStack)
2121 OutStreamer->switchSection(OutContext.getELFSection(
2122 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2125 // If we don't have any trampolines, then we don't require stack memory
2126 // to be executable. Some targets have a directive to declare this.
2127 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2128 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
2129 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
2130 OutStreamer->switchSection(S);
2132 if (TM.Options.EmitAddrsig) {
2133 // Emit address-significance attributes for all globals.
2134 OutStreamer->emitAddrsig();
2135 for (const GlobalValue &GV : M.global_values()) {
2136 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
2137 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
2138 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
2139 OutStreamer->emitAddrsigSym(getSymbol(&GV));
2143 // Emit symbol partition specifications (ELF only).
2144 if (TM.getTargetTriple().isOSBinFormatELF()) {
2145 unsigned UniqueID = 0;
2146 for (const GlobalValue &GV : M.global_values()) {
2147 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2148 GV.getVisibility() != GlobalValue::DefaultVisibility)
2149 continue;
2151 OutStreamer->switchSection(
2152 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2153 "", false, ++UniqueID, nullptr));
2154 OutStreamer->emitBytes(GV.getPartition());
2155 OutStreamer->emitZeros(1);
2156 OutStreamer->emitValue(
2157 MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
2158 MAI->getCodePointerSize());
2162 // Allow the target to emit any magic that it wants at the end of the file,
2163 // after everything else has gone out.
2164 emitEndOfAsmFile(M);
2166 MMI = nullptr;
2167 AddrLabelSymbols = nullptr;
2169 OutStreamer->finish();
2170 OutStreamer->reset();
2171 OwnedMLI.reset();
2172 OwnedMDT.reset();
2174 return false;
2177 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
2178 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
2179 if (Res.second)
2180 Res.first->second = createTempSymbol("exception");
2181 return Res.first->second;
2184 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2185 this->MF = &MF;
2186 const Function &F = MF.getFunction();
2188 // Record that there are split-stack functions, so we will emit a special
2189 // section to tell the linker.
2190 if (MF.shouldSplitStack()) {
2191 HasSplitStack = true;
2193 if (!MF.getFrameInfo().needsSplitStackProlog())
2194 HasNoSplitStack = true;
2195 } else
2196 HasNoSplitStack = true;
2198 // Get the function symbol.
2199 if (!MAI->needsFunctionDescriptors()) {
2200 CurrentFnSym = getSymbol(&MF.getFunction());
2201 } else {
2202 assert(TM.getTargetTriple().isOSAIX() &&
2203 "Only AIX uses the function descriptor hooks.");
2204 // AIX is unique here in that the name of the symbol emitted for the
2205 // function body does not have the same name as the source function's
2206 // C-linkage name.
2207 assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
2208 " initalized first.");
2210 // Get the function entry point symbol.
2211 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
2214 CurrentFnSymForSize = CurrentFnSym;
2215 CurrentFnBegin = nullptr;
2216 CurrentSectionBeginSym = nullptr;
2217 MBBSectionRanges.clear();
2218 MBBSectionExceptionSyms.clear();
2219 bool NeedsLocalForSize = MAI->needsLocalForSize();
2220 if (F.hasFnAttribute("patchable-function-entry") ||
2221 F.hasFnAttribute("function-instrument") ||
2222 F.hasFnAttribute("xray-instruction-threshold") ||
2223 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
2224 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
2225 CurrentFnBegin = createTempSymbol("func_begin");
2226 if (NeedsLocalForSize)
2227 CurrentFnSymForSize = CurrentFnBegin;
2230 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2233 namespace {
2235 // Keep track the alignment, constpool entries per Section.
2236 struct SectionCPs {
2237 MCSection *S;
2238 Align Alignment;
2239 SmallVector<unsigned, 4> CPEs;
2241 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2244 } // end anonymous namespace
2246 /// EmitConstantPool - Print to the current output stream assembly
2247 /// representations of the constants in the constant pool MCP. This is
2248 /// used to print out constants which have been "spilled to memory" by
2249 /// the code generator.
2250 void AsmPrinter::emitConstantPool() {
2251 const MachineConstantPool *MCP = MF->getConstantPool();
2252 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2253 if (CP.empty()) return;
2255 // Calculate sections for constant pool entries. We collect entries to go into
2256 // the same section together to reduce amount of section switch statements.
2257 SmallVector<SectionCPs, 4> CPSections;
2258 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2259 const MachineConstantPoolEntry &CPE = CP[i];
2260 Align Alignment = CPE.getAlign();
2262 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2264 const Constant *C = nullptr;
2265 if (!CPE.isMachineConstantPoolEntry())
2266 C = CPE.Val.ConstVal;
2268 MCSection *S = getObjFileLowering().getSectionForConstant(
2269 getDataLayout(), Kind, C, Alignment);
2271 // The number of sections are small, just do a linear search from the
2272 // last section to the first.
2273 bool Found = false;
2274 unsigned SecIdx = CPSections.size();
2275 while (SecIdx != 0) {
2276 if (CPSections[--SecIdx].S == S) {
2277 Found = true;
2278 break;
2281 if (!Found) {
2282 SecIdx = CPSections.size();
2283 CPSections.push_back(SectionCPs(S, Alignment));
2286 if (Alignment > CPSections[SecIdx].Alignment)
2287 CPSections[SecIdx].Alignment = Alignment;
2288 CPSections[SecIdx].CPEs.push_back(i);
2291 // Now print stuff into the calculated sections.
2292 const MCSection *CurSection = nullptr;
2293 unsigned Offset = 0;
2294 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2295 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2296 unsigned CPI = CPSections[i].CPEs[j];
2297 MCSymbol *Sym = GetCPISymbol(CPI);
2298 if (!Sym->isUndefined())
2299 continue;
2301 if (CurSection != CPSections[i].S) {
2302 OutStreamer->switchSection(CPSections[i].S);
2303 emitAlignment(Align(CPSections[i].Alignment));
2304 CurSection = CPSections[i].S;
2305 Offset = 0;
2308 MachineConstantPoolEntry CPE = CP[CPI];
2310 // Emit inter-object padding for alignment.
2311 unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2312 OutStreamer->emitZeros(NewOffset - Offset);
2314 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2316 OutStreamer->emitLabel(Sym);
2317 if (CPE.isMachineConstantPoolEntry())
2318 emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2319 else
2320 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2325 // Print assembly representations of the jump tables used by the current
2326 // function.
2327 void AsmPrinter::emitJumpTableInfo() {
2328 const DataLayout &DL = MF->getDataLayout();
2329 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2330 if (!MJTI) return;
2331 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2332 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2333 if (JT.empty()) return;
2335 // Pick the directive to use to print the jump table entries, and switch to
2336 // the appropriate section.
2337 const Function &F = MF->getFunction();
2338 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2339 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2340 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2342 if (JTInDiffSection) {
2343 // Drop it in the readonly section.
2344 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2345 OutStreamer->switchSection(ReadOnlySection);
2348 emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2350 // Jump tables in code sections are marked with a data_region directive
2351 // where that's supported.
2352 if (!JTInDiffSection)
2353 OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2355 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2356 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2358 // If this jump table was deleted, ignore it.
2359 if (JTBBs.empty()) continue;
2361 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2362 /// emit a .set directive for each unique entry.
2363 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2364 MAI->doesSetDirectiveSuppressReloc()) {
2365 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2366 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2367 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2368 for (const MachineBasicBlock *MBB : JTBBs) {
2369 if (!EmittedSets.insert(MBB).second)
2370 continue;
2372 // .set LJTSet, LBB32-base
2373 const MCExpr *LHS =
2374 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2375 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2376 MCBinaryExpr::createSub(LHS, Base,
2377 OutContext));
2381 // On some targets (e.g. Darwin) we want to emit two consecutive labels
2382 // before each jump table. The first label is never referenced, but tells
2383 // the assembler and linker the extents of the jump table object. The
2384 // second label is actually referenced by the code.
2385 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2386 // FIXME: This doesn't have to have any specific name, just any randomly
2387 // named and numbered local label started with 'l' would work. Simplify
2388 // GetJTISymbol.
2389 OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2391 MCSymbol* JTISymbol = GetJTISymbol(JTI);
2392 OutStreamer->emitLabel(JTISymbol);
2394 for (const MachineBasicBlock *MBB : JTBBs)
2395 emitJumpTableEntry(MJTI, MBB, JTI);
2397 if (!JTInDiffSection)
2398 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2401 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2402 /// current stream.
2403 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2404 const MachineBasicBlock *MBB,
2405 unsigned UID) const {
2406 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2407 const MCExpr *Value = nullptr;
2408 switch (MJTI->getEntryKind()) {
2409 case MachineJumpTableInfo::EK_Inline:
2410 llvm_unreachable("Cannot emit EK_Inline jump table entry");
2411 case MachineJumpTableInfo::EK_Custom32:
2412 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2413 MJTI, MBB, UID, OutContext);
2414 break;
2415 case MachineJumpTableInfo::EK_BlockAddress:
2416 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2417 // .word LBB123
2418 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2419 break;
2420 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2421 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2422 // with a relocation as gp-relative, e.g.:
2423 // .gprel32 LBB123
2424 MCSymbol *MBBSym = MBB->getSymbol();
2425 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2426 return;
2429 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2430 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2431 // with a relocation as gp-relative, e.g.:
2432 // .gpdword LBB123
2433 MCSymbol *MBBSym = MBB->getSymbol();
2434 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2435 return;
2438 case MachineJumpTableInfo::EK_LabelDifference32: {
2439 // Each entry is the address of the block minus the address of the jump
2440 // table. This is used for PIC jump tables where gprel32 is not supported.
2441 // e.g.:
2442 // .word LBB123 - LJTI1_2
2443 // If the .set directive avoids relocations, this is emitted as:
2444 // .set L4_5_set_123, LBB123 - LJTI1_2
2445 // .word L4_5_set_123
2446 if (MAI->doesSetDirectiveSuppressReloc()) {
2447 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2448 OutContext);
2449 break;
2451 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2452 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2453 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2454 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2455 break;
2459 assert(Value && "Unknown entry kind!");
2461 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2462 OutStreamer->emitValue(Value, EntrySize);
2465 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2466 /// special global used by LLVM. If so, emit it and return true, otherwise
2467 /// do nothing and return false.
2468 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2469 if (GV->getName() == "llvm.used") {
2470 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
2471 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2472 return true;
2475 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
2476 if (GV->getSection() == "llvm.metadata" ||
2477 GV->hasAvailableExternallyLinkage())
2478 return true;
2480 if (!GV->hasAppendingLinkage()) return false;
2482 assert(GV->hasInitializer() && "Not a special LLVM global!");
2484 if (GV->getName() == "llvm.global_ctors") {
2485 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2486 /* isCtor */ true);
2488 return true;
2491 if (GV->getName() == "llvm.global_dtors") {
2492 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2493 /* isCtor */ false);
2495 return true;
2498 report_fatal_error("unknown special variable");
2501 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2502 /// global in the specified llvm.used list.
2503 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2504 // Should be an array of 'i8*'.
2505 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2506 const GlobalValue *GV =
2507 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2508 if (GV)
2509 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2513 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2514 const Constant *List,
2515 SmallVector<Structor, 8> &Structors) {
2516 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is
2517 // the init priority.
2518 if (!isa<ConstantArray>(List))
2519 return;
2521 // Gather the structors in a form that's convenient for sorting by priority.
2522 for (Value *O : cast<ConstantArray>(List)->operands()) {
2523 auto *CS = cast<ConstantStruct>(O);
2524 if (CS->getOperand(1)->isNullValue())
2525 break; // Found a null terminator, skip the rest.
2526 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2527 if (!Priority)
2528 continue; // Malformed.
2529 Structors.push_back(Structor());
2530 Structor &S = Structors.back();
2531 S.Priority = Priority->getLimitedValue(65535);
2532 S.Func = CS->getOperand(1);
2533 if (!CS->getOperand(2)->isNullValue()) {
2534 if (TM.getTargetTriple().isOSAIX())
2535 llvm::report_fatal_error(
2536 "associated data of XXStructor list is not yet supported on AIX");
2537 S.ComdatKey =
2538 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2542 // Emit the function pointers in the target-specific order
2543 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2544 return L.Priority < R.Priority;
2548 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2549 /// priority.
2550 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2551 bool IsCtor) {
2552 SmallVector<Structor, 8> Structors;
2553 preprocessXXStructorList(DL, List, Structors);
2554 if (Structors.empty())
2555 return;
2557 // Emit the structors in reverse order if we are using the .ctor/.dtor
2558 // initialization scheme.
2559 if (!TM.Options.UseInitArray)
2560 std::reverse(Structors.begin(), Structors.end());
2562 const Align Align = DL.getPointerPrefAlignment();
2563 for (Structor &S : Structors) {
2564 const TargetLoweringObjectFile &Obj = getObjFileLowering();
2565 const MCSymbol *KeySym = nullptr;
2566 if (GlobalValue *GV = S.ComdatKey) {
2567 if (GV->isDeclarationForLinker())
2568 // If the associated variable is not defined in this module
2569 // (it might be available_externally, or have been an
2570 // available_externally definition that was dropped by the
2571 // EliminateAvailableExternally pass), some other TU
2572 // will provide its dynamic initializer.
2573 continue;
2575 KeySym = getSymbol(GV);
2578 MCSection *OutputSection =
2579 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2580 : Obj.getStaticDtorSection(S.Priority, KeySym));
2581 OutStreamer->switchSection(OutputSection);
2582 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2583 emitAlignment(Align);
2584 emitXXStructor(DL, S.Func);
2588 void AsmPrinter::emitModuleIdents(Module &M) {
2589 if (!MAI->hasIdentDirective())
2590 return;
2592 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2593 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2594 const MDNode *N = NMD->getOperand(i);
2595 assert(N->getNumOperands() == 1 &&
2596 "llvm.ident metadata entry can have only one operand");
2597 const MDString *S = cast<MDString>(N->getOperand(0));
2598 OutStreamer->emitIdent(S->getString());
2603 void AsmPrinter::emitModuleCommandLines(Module &M) {
2604 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2605 if (!CommandLine)
2606 return;
2608 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2609 if (!NMD || !NMD->getNumOperands())
2610 return;
2612 OutStreamer->pushSection();
2613 OutStreamer->switchSection(CommandLine);
2614 OutStreamer->emitZeros(1);
2615 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2616 const MDNode *N = NMD->getOperand(i);
2617 assert(N->getNumOperands() == 1 &&
2618 "llvm.commandline metadata entry can have only one operand");
2619 const MDString *S = cast<MDString>(N->getOperand(0));
2620 OutStreamer->emitBytes(S->getString());
2621 OutStreamer->emitZeros(1);
2623 OutStreamer->popSection();
2626 //===--------------------------------------------------------------------===//
2627 // Emission and print routines
2630 /// Emit a byte directive and value.
2632 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2634 /// Emit a short directive and value.
2635 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2637 /// Emit a long directive and value.
2638 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2640 /// Emit a long long directive and value.
2641 void AsmPrinter::emitInt64(uint64_t Value) const {
2642 OutStreamer->emitInt64(Value);
2645 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2646 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2647 /// .set if it avoids relocations.
2648 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2649 unsigned Size) const {
2650 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2653 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2654 /// where the size in bytes of the directive is specified by Size and Label
2655 /// specifies the label. This implicitly uses .set if it is available.
2656 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2657 unsigned Size,
2658 bool IsSectionRelative) const {
2659 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2660 OutStreamer->emitCOFFSecRel32(Label, Offset);
2661 if (Size > 4)
2662 OutStreamer->emitZeros(Size - 4);
2663 return;
2666 // Emit Label+Offset (or just Label if Offset is zero)
2667 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2668 if (Offset)
2669 Expr = MCBinaryExpr::createAdd(
2670 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2672 OutStreamer->emitValue(Expr, Size);
2675 //===----------------------------------------------------------------------===//
2677 // EmitAlignment - Emit an alignment directive to the specified power of
2678 // two boundary. If a global value is specified, and if that global has
2679 // an explicit alignment requested, it will override the alignment request
2680 // if required for correctness.
2681 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV,
2682 unsigned MaxBytesToEmit) const {
2683 if (GV)
2684 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2686 if (Alignment == Align(1))
2687 return; // 1-byte aligned: no need to emit alignment.
2689 if (getCurrentSection()->getKind().isText()) {
2690 const MCSubtargetInfo *STI = nullptr;
2691 if (this->MF)
2692 STI = &getSubtargetInfo();
2693 else
2694 STI = TM.getMCSubtargetInfo();
2695 OutStreamer->emitCodeAlignment(Alignment.value(), STI, MaxBytesToEmit);
2696 } else
2697 OutStreamer->emitValueToAlignment(Alignment.value(), 0, 1, MaxBytesToEmit);
2700 //===----------------------------------------------------------------------===//
2701 // Constant emission.
2702 //===----------------------------------------------------------------------===//
2704 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2705 MCContext &Ctx = OutContext;
2707 if (CV->isNullValue() || isa<UndefValue>(CV))
2708 return MCConstantExpr::create(0, Ctx);
2710 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2711 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2713 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2714 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2716 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2717 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2719 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2720 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2722 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
2723 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
2725 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2726 if (!CE) {
2727 llvm_unreachable("Unknown constant value to lower!");
2730 // The constant expression opcodes are limited to those that are necessary
2731 // to represent relocations on supported targets. Expressions involving only
2732 // constant addresses are constant folded instead.
2733 switch (CE->getOpcode()) {
2734 default:
2735 break; // Error
2736 case Instruction::AddrSpaceCast: {
2737 const Constant *Op = CE->getOperand(0);
2738 unsigned DstAS = CE->getType()->getPointerAddressSpace();
2739 unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2740 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2741 return lowerConstant(Op);
2743 break; // Error
2745 case Instruction::GetElementPtr: {
2746 // Generate a symbolic expression for the byte address
2747 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2748 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2750 const MCExpr *Base = lowerConstant(CE->getOperand(0));
2751 if (!OffsetAI)
2752 return Base;
2754 int64_t Offset = OffsetAI.getSExtValue();
2755 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2756 Ctx);
2759 case Instruction::Trunc:
2760 // We emit the value and depend on the assembler to truncate the generated
2761 // expression properly. This is important for differences between
2762 // blockaddress labels. Since the two labels are in the same function, it
2763 // is reasonable to treat their delta as a 32-bit value.
2764 [[fallthrough]];
2765 case Instruction::BitCast:
2766 return lowerConstant(CE->getOperand(0));
2768 case Instruction::IntToPtr: {
2769 const DataLayout &DL = getDataLayout();
2771 // Handle casts to pointers by changing them into casts to the appropriate
2772 // integer type. This promotes constant folding and simplifies this code.
2773 Constant *Op = CE->getOperand(0);
2774 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2775 false/*ZExt*/);
2776 return lowerConstant(Op);
2779 case Instruction::PtrToInt: {
2780 const DataLayout &DL = getDataLayout();
2782 // Support only foldable casts to/from pointers that can be eliminated by
2783 // changing the pointer to the appropriately sized integer type.
2784 Constant *Op = CE->getOperand(0);
2785 Type *Ty = CE->getType();
2787 const MCExpr *OpExpr = lowerConstant(Op);
2789 // We can emit the pointer value into this slot if the slot is an
2790 // integer slot equal to the size of the pointer.
2792 // If the pointer is larger than the resultant integer, then
2793 // as with Trunc just depend on the assembler to truncate it.
2794 if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2795 DL.getTypeAllocSize(Op->getType()).getFixedSize())
2796 return OpExpr;
2798 break; // Error
2801 case Instruction::Sub: {
2802 GlobalValue *LHSGV;
2803 APInt LHSOffset;
2804 DSOLocalEquivalent *DSOEquiv;
2805 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2806 getDataLayout(), &DSOEquiv)) {
2807 GlobalValue *RHSGV;
2808 APInt RHSOffset;
2809 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2810 getDataLayout())) {
2811 const MCExpr *RelocExpr =
2812 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2813 if (!RelocExpr) {
2814 const MCExpr *LHSExpr =
2815 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2816 if (DSOEquiv &&
2817 getObjFileLowering().supportDSOLocalEquivalentLowering())
2818 LHSExpr =
2819 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2820 RelocExpr = MCBinaryExpr::createSub(
2821 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2823 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2824 if (Addend != 0)
2825 RelocExpr = MCBinaryExpr::createAdd(
2826 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2827 return RelocExpr;
2831 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2832 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2833 return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2834 break;
2837 case Instruction::Add: {
2838 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2839 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2840 return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2844 // If the code isn't optimized, there may be outstanding folding
2845 // opportunities. Attempt to fold the expression using DataLayout as a
2846 // last resort before giving up.
2847 Constant *C = ConstantFoldConstant(CE, getDataLayout());
2848 if (C != CE)
2849 return lowerConstant(C);
2851 // Otherwise report the problem to the user.
2852 std::string S;
2853 raw_string_ostream OS(S);
2854 OS << "Unsupported expression in static initializer: ";
2855 CE->printAsOperand(OS, /*PrintType=*/false,
2856 !MF ? nullptr : MF->getFunction().getParent());
2857 report_fatal_error(Twine(OS.str()));
2860 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2861 AsmPrinter &AP,
2862 const Constant *BaseCV = nullptr,
2863 uint64_t Offset = 0,
2864 AsmPrinter::AliasMapTy *AliasList = nullptr);
2866 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2867 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2869 /// isRepeatedByteSequence - Determine whether the given value is
2870 /// composed of a repeated sequence of identical bytes and return the
2871 /// byte value. If it is not a repeated sequence, return -1.
2872 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2873 StringRef Data = V->getRawDataValues();
2874 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2875 char C = Data[0];
2876 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2877 if (Data[i] != C) return -1;
2878 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2881 /// isRepeatedByteSequence - Determine whether the given value is
2882 /// composed of a repeated sequence of identical bytes and return the
2883 /// byte value. If it is not a repeated sequence, return -1.
2884 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2885 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2886 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2887 assert(Size % 8 == 0);
2889 // Extend the element to take zero padding into account.
2890 APInt Value = CI->getValue().zext(Size);
2891 if (!Value.isSplat(8))
2892 return -1;
2894 return Value.zextOrTrunc(8).getZExtValue();
2896 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2897 // Make sure all array elements are sequences of the same repeated
2898 // byte.
2899 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2900 Constant *Op0 = CA->getOperand(0);
2901 int Byte = isRepeatedByteSequence(Op0, DL);
2902 if (Byte == -1)
2903 return -1;
2905 // All array elements must be equal.
2906 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2907 if (CA->getOperand(i) != Op0)
2908 return -1;
2909 return Byte;
2912 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2913 return isRepeatedByteSequence(CDS);
2915 return -1;
2918 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset,
2919 AsmPrinter::AliasMapTy *AliasList) {
2920 if (AliasList) {
2921 auto AliasIt = AliasList->find(Offset);
2922 if (AliasIt != AliasList->end()) {
2923 for (const GlobalAlias *GA : AliasIt->second)
2924 AP.OutStreamer->emitLabel(AP.getSymbol(GA));
2925 AliasList->erase(Offset);
2930 static void emitGlobalConstantDataSequential(
2931 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP,
2932 AsmPrinter::AliasMapTy *AliasList) {
2933 // See if we can aggregate this into a .fill, if so, emit it as such.
2934 int Value = isRepeatedByteSequence(CDS, DL);
2935 if (Value != -1) {
2936 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2937 // Don't emit a 1-byte object as a .fill.
2938 if (Bytes > 1)
2939 return AP.OutStreamer->emitFill(Bytes, Value);
2942 // If this can be emitted with .ascii/.asciz, emit it as such.
2943 if (CDS->isString())
2944 return AP.OutStreamer->emitBytes(CDS->getAsString());
2946 // Otherwise, emit the values in successive locations.
2947 unsigned ElementByteSize = CDS->getElementByteSize();
2948 if (isa<IntegerType>(CDS->getElementType())) {
2949 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
2950 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
2951 if (AP.isVerbose())
2952 AP.OutStreamer->getCommentOS()
2953 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I));
2954 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I),
2955 ElementByteSize);
2957 } else {
2958 Type *ET = CDS->getElementType();
2959 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
2960 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
2961 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2965 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2966 unsigned EmittedSize =
2967 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2968 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2969 if (unsigned Padding = Size - EmittedSize)
2970 AP.OutStreamer->emitZeros(Padding);
2973 static void emitGlobalConstantArray(const DataLayout &DL,
2974 const ConstantArray *CA, AsmPrinter &AP,
2975 const Constant *BaseCV, uint64_t Offset,
2976 AsmPrinter::AliasMapTy *AliasList) {
2977 // See if we can aggregate some values. Make sure it can be
2978 // represented as a series of bytes of the constant value.
2979 int Value = isRepeatedByteSequence(CA, DL);
2981 if (Value != -1) {
2982 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2983 AP.OutStreamer->emitFill(Bytes, Value);
2984 } else {
2985 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) {
2986 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset,
2987 AliasList);
2988 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType());
2993 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP);
2995 static void emitGlobalConstantVector(const DataLayout &DL,
2996 const ConstantVector *CV, AsmPrinter &AP,
2997 AsmPrinter::AliasMapTy *AliasList) {
2998 Type *ElementType = CV->getType()->getElementType();
2999 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType);
3000 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType);
3001 uint64_t EmittedSize;
3002 if (ElementSizeInBits != ElementAllocSizeInBits) {
3003 // If the allocation size of an element is different from the size in bits,
3004 // printing each element separately will insert incorrect padding.
3006 // The general algorithm here is complicated; instead of writing it out
3007 // here, just use the existing code in ConstantFolding.
3008 Type *IntT =
3009 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType()));
3010 ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant(
3011 ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL));
3012 if (!CI) {
3013 report_fatal_error(
3014 "Cannot lower vector global with unusual element type");
3016 emitGlobalAliasInline(AP, 0, AliasList);
3017 emitGlobalConstantLargeInt(CI, AP);
3018 EmittedSize = DL.getTypeStoreSize(CV->getType());
3019 } else {
3020 for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) {
3021 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList);
3022 emitGlobalConstantImpl(DL, CV->getOperand(I), AP);
3024 EmittedSize =
3025 DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements();
3028 unsigned Size = DL.getTypeAllocSize(CV->getType());
3029 if (unsigned Padding = Size - EmittedSize)
3030 AP.OutStreamer->emitZeros(Padding);
3033 static void emitGlobalConstantStruct(const DataLayout &DL,
3034 const ConstantStruct *CS, AsmPrinter &AP,
3035 const Constant *BaseCV, uint64_t Offset,
3036 AsmPrinter::AliasMapTy *AliasList) {
3037 // Print the fields in successive locations. Pad to align if needed!
3038 unsigned Size = DL.getTypeAllocSize(CS->getType());
3039 const StructLayout *Layout = DL.getStructLayout(CS->getType());
3040 uint64_t SizeSoFar = 0;
3041 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) {
3042 const Constant *Field = CS->getOperand(I);
3044 // Print the actual field value.
3045 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar,
3046 AliasList);
3048 // Check if padding is needed and insert one or more 0s.
3049 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
3050 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) -
3051 Layout->getElementOffset(I)) -
3052 FieldSize;
3053 SizeSoFar += FieldSize + PadSize;
3055 // Insert padding - this may include padding to increase the size of the
3056 // current field up to the ABI size (if the struct is not packed) as well
3057 // as padding to ensure that the next field starts at the right offset.
3058 AP.OutStreamer->emitZeros(PadSize);
3060 assert(SizeSoFar == Layout->getSizeInBytes() &&
3061 "Layout of constant struct may be incorrect!");
3064 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
3065 assert(ET && "Unknown float type");
3066 APInt API = APF.bitcastToAPInt();
3068 // First print a comment with what we think the original floating-point value
3069 // should have been.
3070 if (AP.isVerbose()) {
3071 SmallString<8> StrVal;
3072 APF.toString(StrVal);
3073 ET->print(AP.OutStreamer->getCommentOS());
3074 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n';
3077 // Now iterate through the APInt chunks, emitting them in endian-correct
3078 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
3079 // floats).
3080 unsigned NumBytes = API.getBitWidth() / 8;
3081 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
3082 const uint64_t *p = API.getRawData();
3084 // PPC's long double has odd notions of endianness compared to how LLVM
3085 // handles it: p[0] goes first for *big* endian on PPC.
3086 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
3087 int Chunk = API.getNumWords() - 1;
3089 if (TrailingBytes)
3090 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
3092 for (; Chunk >= 0; --Chunk)
3093 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3094 } else {
3095 unsigned Chunk;
3096 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
3097 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3099 if (TrailingBytes)
3100 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
3103 // Emit the tail padding for the long double.
3104 const DataLayout &DL = AP.getDataLayout();
3105 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
3108 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
3109 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
3112 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
3113 const DataLayout &DL = AP.getDataLayout();
3114 unsigned BitWidth = CI->getBitWidth();
3116 // Copy the value as we may massage the layout for constants whose bit width
3117 // is not a multiple of 64-bits.
3118 APInt Realigned(CI->getValue());
3119 uint64_t ExtraBits = 0;
3120 unsigned ExtraBitsSize = BitWidth & 63;
3122 if (ExtraBitsSize) {
3123 // The bit width of the data is not a multiple of 64-bits.
3124 // The extra bits are expected to be at the end of the chunk of the memory.
3125 // Little endian:
3126 // * Nothing to be done, just record the extra bits to emit.
3127 // Big endian:
3128 // * Record the extra bits to emit.
3129 // * Realign the raw data to emit the chunks of 64-bits.
3130 if (DL.isBigEndian()) {
3131 // Basically the structure of the raw data is a chunk of 64-bits cells:
3132 // 0 1 BitWidth / 64
3133 // [chunk1][chunk2] ... [chunkN].
3134 // The most significant chunk is chunkN and it should be emitted first.
3135 // However, due to the alignment issue chunkN contains useless bits.
3136 // Realign the chunks so that they contain only useful information:
3137 // ExtraBits 0 1 (BitWidth / 64) - 1
3138 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
3139 ExtraBitsSize = alignTo(ExtraBitsSize, 8);
3140 ExtraBits = Realigned.getRawData()[0] &
3141 (((uint64_t)-1) >> (64 - ExtraBitsSize));
3142 Realigned.lshrInPlace(ExtraBitsSize);
3143 } else
3144 ExtraBits = Realigned.getRawData()[BitWidth / 64];
3147 // We don't expect assemblers to support integer data directives
3148 // for more than 64 bits, so we emit the data in at most 64-bit
3149 // quantities at a time.
3150 const uint64_t *RawData = Realigned.getRawData();
3151 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
3152 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
3153 AP.OutStreamer->emitIntValue(Val, 8);
3156 if (ExtraBitsSize) {
3157 // Emit the extra bits after the 64-bits chunks.
3159 // Emit a directive that fills the expected size.
3160 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
3161 Size -= (BitWidth / 64) * 8;
3162 assert(Size && Size * 8 >= ExtraBitsSize &&
3163 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
3164 == ExtraBits && "Directive too small for extra bits.");
3165 AP.OutStreamer->emitIntValue(ExtraBits, Size);
3169 /// Transform a not absolute MCExpr containing a reference to a GOT
3170 /// equivalent global, by a target specific GOT pc relative access to the
3171 /// final symbol.
3172 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
3173 const Constant *BaseCst,
3174 uint64_t Offset) {
3175 // The global @foo below illustrates a global that uses a got equivalent.
3177 // @bar = global i32 42
3178 // @gotequiv = private unnamed_addr constant i32* @bar
3179 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
3180 // i64 ptrtoint (i32* @foo to i64))
3181 // to i32)
3183 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
3184 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
3185 // form:
3187 // foo = cstexpr, where
3188 // cstexpr := <gotequiv> - "." + <cst>
3189 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
3191 // After canonicalization by evaluateAsRelocatable `ME` turns into:
3193 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
3194 // gotpcrelcst := <offset from @foo base> + <cst>
3195 MCValue MV;
3196 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
3197 return;
3198 const MCSymbolRefExpr *SymA = MV.getSymA();
3199 if (!SymA)
3200 return;
3202 // Check that GOT equivalent symbol is cached.
3203 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
3204 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
3205 return;
3207 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
3208 if (!BaseGV)
3209 return;
3211 // Check for a valid base symbol
3212 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
3213 const MCSymbolRefExpr *SymB = MV.getSymB();
3215 if (!SymB || BaseSym != &SymB->getSymbol())
3216 return;
3218 // Make sure to match:
3220 // gotpcrelcst := <offset from @foo base> + <cst>
3222 // If gotpcrelcst is positive it means that we can safely fold the pc rel
3223 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
3224 // if the target knows how to encode it.
3225 int64_t GOTPCRelCst = Offset + MV.getConstant();
3226 if (GOTPCRelCst < 0)
3227 return;
3228 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
3229 return;
3231 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
3233 // bar:
3234 // .long 42
3235 // gotequiv:
3236 // .quad bar
3237 // foo:
3238 // .long gotequiv - "." + <cst>
3240 // is replaced by the target specific equivalent to:
3242 // bar:
3243 // .long 42
3244 // foo:
3245 // .long bar@GOTPCREL+<gotpcrelcst>
3246 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
3247 const GlobalVariable *GV = Result.first;
3248 int NumUses = (int)Result.second;
3249 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
3250 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
3251 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
3252 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
3254 // Update GOT equivalent usage information
3255 --NumUses;
3256 if (NumUses >= 0)
3257 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
3260 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
3261 AsmPrinter &AP, const Constant *BaseCV,
3262 uint64_t Offset,
3263 AsmPrinter::AliasMapTy *AliasList) {
3264 emitGlobalAliasInline(AP, Offset, AliasList);
3265 uint64_t Size = DL.getTypeAllocSize(CV->getType());
3267 // Globals with sub-elements such as combinations of arrays and structs
3268 // are handled recursively by emitGlobalConstantImpl. Keep track of the
3269 // constant symbol base and the current position with BaseCV and Offset.
3270 if (!BaseCV && CV->hasOneUse())
3271 BaseCV = dyn_cast<Constant>(CV->user_back());
3273 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
3274 return AP.OutStreamer->emitZeros(Size);
3276 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3277 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3279 if (StoreSize <= 8) {
3280 if (AP.isVerbose())
3281 AP.OutStreamer->getCommentOS()
3282 << format("0x%" PRIx64 "\n", CI->getZExtValue());
3283 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3284 } else {
3285 emitGlobalConstantLargeInt(CI, AP);
3288 // Emit tail padding if needed
3289 if (Size != StoreSize)
3290 AP.OutStreamer->emitZeros(Size - StoreSize);
3292 return;
3295 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3296 return emitGlobalConstantFP(CFP, AP);
3298 if (isa<ConstantPointerNull>(CV)) {
3299 AP.OutStreamer->emitIntValue(0, Size);
3300 return;
3303 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3304 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList);
3306 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3307 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList);
3309 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3310 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList);
3312 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3313 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3314 // vectors).
3315 if (CE->getOpcode() == Instruction::BitCast)
3316 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3318 if (Size > 8) {
3319 // If the constant expression's size is greater than 64-bits, then we have
3320 // to emit the value in chunks. Try to constant fold the value and emit it
3321 // that way.
3322 Constant *New = ConstantFoldConstant(CE, DL);
3323 if (New != CE)
3324 return emitGlobalConstantImpl(DL, New, AP);
3328 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3329 return emitGlobalConstantVector(DL, V, AP, AliasList);
3331 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
3332 // thread the streamer with EmitValue.
3333 const MCExpr *ME = AP.lowerConstant(CV);
3335 // Since lowerConstant already folded and got rid of all IR pointer and
3336 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3337 // directly.
3338 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3339 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3341 AP.OutStreamer->emitValue(ME, Size);
3344 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3345 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV,
3346 AliasMapTy *AliasList) {
3347 uint64_t Size = DL.getTypeAllocSize(CV->getType());
3348 if (Size)
3349 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList);
3350 else if (MAI->hasSubsectionsViaSymbols()) {
3351 // If the global has zero size, emit a single byte so that two labels don't
3352 // look like they are at the same location.
3353 OutStreamer->emitIntValue(0, 1);
3355 if (!AliasList)
3356 return;
3357 // TODO: These remaining aliases are not emitted in the correct location. Need
3358 // to handle the case where the alias offset doesn't refer to any sub-element.
3359 for (auto &AliasPair : *AliasList) {
3360 for (const GlobalAlias *GA : AliasPair.second)
3361 OutStreamer->emitLabel(getSymbol(GA));
3365 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3366 // Target doesn't support this yet!
3367 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3370 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3371 if (Offset > 0)
3372 OS << '+' << Offset;
3373 else if (Offset < 0)
3374 OS << Offset;
3377 void AsmPrinter::emitNops(unsigned N) {
3378 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3379 for (; N; --N)
3380 EmitToStreamer(*OutStreamer, Nop);
3383 //===----------------------------------------------------------------------===//
3384 // Symbol Lowering Routines.
3385 //===----------------------------------------------------------------------===//
3387 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3388 return OutContext.createTempSymbol(Name, true);
3391 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3392 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
3393 BA->getBasicBlock());
3396 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3397 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
3400 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3401 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3402 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3403 const MachineConstantPoolEntry &CPE =
3404 MF->getConstantPool()->getConstants()[CPID];
3405 if (!CPE.isMachineConstantPoolEntry()) {
3406 const DataLayout &DL = MF->getDataLayout();
3407 SectionKind Kind = CPE.getSectionKind(&DL);
3408 const Constant *C = CPE.Val.ConstVal;
3409 Align Alignment = CPE.Alignment;
3410 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3411 getObjFileLowering().getSectionForConstant(DL, Kind, C,
3412 Alignment))) {
3413 if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3414 if (Sym->isUndefined())
3415 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3416 return Sym;
3422 const DataLayout &DL = getDataLayout();
3423 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3424 "CPI" + Twine(getFunctionNumber()) + "_" +
3425 Twine(CPID));
3428 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3429 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3430 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3433 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3434 /// FIXME: privatize to AsmPrinter.
3435 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3436 const DataLayout &DL = getDataLayout();
3437 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3438 Twine(getFunctionNumber()) + "_" +
3439 Twine(UID) + "_set_" + Twine(MBBID));
3442 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3443 StringRef Suffix) const {
3444 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3447 /// Return the MCSymbol for the specified ExternalSymbol.
3448 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3449 SmallString<60> NameStr;
3450 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3451 return OutContext.getOrCreateSymbol(NameStr);
3454 /// PrintParentLoopComment - Print comments about parent loops of this one.
3455 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3456 unsigned FunctionNumber) {
3457 if (!Loop) return;
3458 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3459 OS.indent(Loop->getLoopDepth()*2)
3460 << "Parent Loop BB" << FunctionNumber << "_"
3461 << Loop->getHeader()->getNumber()
3462 << " Depth=" << Loop->getLoopDepth() << '\n';
3465 /// PrintChildLoopComment - Print comments about child loops within
3466 /// the loop for this basic block, with nesting.
3467 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3468 unsigned FunctionNumber) {
3469 // Add child loop information
3470 for (const MachineLoop *CL : *Loop) {
3471 OS.indent(CL->getLoopDepth()*2)
3472 << "Child Loop BB" << FunctionNumber << "_"
3473 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3474 << '\n';
3475 PrintChildLoopComment(OS, CL, FunctionNumber);
3479 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3480 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3481 const MachineLoopInfo *LI,
3482 const AsmPrinter &AP) {
3483 // Add loop depth information
3484 const MachineLoop *Loop = LI->getLoopFor(&MBB);
3485 if (!Loop) return;
3487 MachineBasicBlock *Header = Loop->getHeader();
3488 assert(Header && "No header for loop");
3490 // If this block is not a loop header, just print out what is the loop header
3491 // and return.
3492 if (Header != &MBB) {
3493 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
3494 Twine(AP.getFunctionNumber())+"_" +
3495 Twine(Loop->getHeader()->getNumber())+
3496 " Depth="+Twine(Loop->getLoopDepth()));
3497 return;
3500 // Otherwise, it is a loop header. Print out information about child and
3501 // parent loops.
3502 raw_ostream &OS = AP.OutStreamer->getCommentOS();
3504 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3506 OS << "=>";
3507 OS.indent(Loop->getLoopDepth()*2-2);
3509 OS << "This ";
3510 if (Loop->isInnermost())
3511 OS << "Inner ";
3512 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3514 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3517 /// emitBasicBlockStart - This method prints the label for the specified
3518 /// MachineBasicBlock, an alignment (if present) and a comment describing
3519 /// it if appropriate.
3520 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3521 // End the previous funclet and start a new one.
3522 if (MBB.isEHFuncletEntry()) {
3523 for (const HandlerInfo &HI : Handlers) {
3524 HI.Handler->endFunclet();
3525 HI.Handler->beginFunclet(MBB);
3529 // Emit an alignment directive for this block, if needed.
3530 const Align Alignment = MBB.getAlignment();
3531 if (Alignment != Align(1))
3532 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
3534 // Switch to a new section if this basic block must begin a section. The
3535 // entry block is always placed in the function section and is handled
3536 // separately.
3537 if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3538 OutStreamer->switchSection(
3539 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3540 MBB, TM));
3541 CurrentSectionBeginSym = MBB.getSymbol();
3544 // If the block has its address taken, emit any labels that were used to
3545 // reference the block. It is possible that there is more than one label
3546 // here, because multiple LLVM BB's may have been RAUW'd to this block after
3547 // the references were generated.
3548 if (MBB.isIRBlockAddressTaken()) {
3549 if (isVerbose())
3550 OutStreamer->AddComment("Block address taken");
3552 BasicBlock *BB = MBB.getAddressTakenIRBlock();
3553 assert(BB && BB->hasAddressTaken() && "Missing BB");
3554 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
3555 OutStreamer->emitLabel(Sym);
3556 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) {
3557 OutStreamer->AddComment("Block address taken");
3560 // Print some verbose block comments.
3561 if (isVerbose()) {
3562 if (const BasicBlock *BB = MBB.getBasicBlock()) {
3563 if (BB->hasName()) {
3564 BB->printAsOperand(OutStreamer->getCommentOS(),
3565 /*PrintType=*/false, BB->getModule());
3566 OutStreamer->getCommentOS() << '\n';
3570 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3571 emitBasicBlockLoopComments(MBB, MLI, *this);
3574 // Print the main label for the block.
3575 if (shouldEmitLabelForBasicBlock(MBB)) {
3576 if (isVerbose() && MBB.hasLabelMustBeEmitted())
3577 OutStreamer->AddComment("Label of block must be emitted");
3578 OutStreamer->emitLabel(MBB.getSymbol());
3579 } else {
3580 if (isVerbose()) {
3581 // NOTE: Want this comment at start of line, don't emit with AddComment.
3582 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3583 false);
3587 if (MBB.isEHCatchretTarget() &&
3588 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3589 OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3592 // With BB sections, each basic block must handle CFI information on its own
3593 // if it begins a section (Entry block is handled separately by
3594 // AsmPrinterHandler::beginFunction).
3595 if (MBB.isBeginSection() && !MBB.isEntryBlock())
3596 for (const HandlerInfo &HI : Handlers)
3597 HI.Handler->beginBasicBlock(MBB);
3600 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3601 // Check if CFI information needs to be updated for this MBB with basic block
3602 // sections.
3603 if (MBB.isEndSection())
3604 for (const HandlerInfo &HI : Handlers)
3605 HI.Handler->endBasicBlock(MBB);
3608 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3609 bool IsDefinition) const {
3610 MCSymbolAttr Attr = MCSA_Invalid;
3612 switch (Visibility) {
3613 default: break;
3614 case GlobalValue::HiddenVisibility:
3615 if (IsDefinition)
3616 Attr = MAI->getHiddenVisibilityAttr();
3617 else
3618 Attr = MAI->getHiddenDeclarationVisibilityAttr();
3619 break;
3620 case GlobalValue::ProtectedVisibility:
3621 Attr = MAI->getProtectedVisibilityAttr();
3622 break;
3625 if (Attr != MCSA_Invalid)
3626 OutStreamer->emitSymbolAttribute(Sym, Attr);
3629 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3630 const MachineBasicBlock &MBB) const {
3631 // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3632 // in the labels mode (option `=labels`) and every section beginning in the
3633 // sections mode (`=all` and `=list=`).
3634 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3635 return true;
3636 // A label is needed for any block with at least one predecessor (when that
3637 // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3638 // entry, or if a label is forced).
3639 return !MBB.pred_empty() &&
3640 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3641 MBB.hasLabelMustBeEmitted());
3644 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3645 /// exactly one predecessor and the control transfer mechanism between
3646 /// the predecessor and this block is a fall-through.
3647 bool AsmPrinter::
3648 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3649 // If this is a landing pad, it isn't a fall through. If it has no preds,
3650 // then nothing falls through to it.
3651 if (MBB->isEHPad() || MBB->pred_empty())
3652 return false;
3654 // If there isn't exactly one predecessor, it can't be a fall through.
3655 if (MBB->pred_size() > 1)
3656 return false;
3658 // The predecessor has to be immediately before this block.
3659 MachineBasicBlock *Pred = *MBB->pred_begin();
3660 if (!Pred->isLayoutSuccessor(MBB))
3661 return false;
3663 // If the block is completely empty, then it definitely does fall through.
3664 if (Pred->empty())
3665 return true;
3667 // Check the terminators in the previous blocks
3668 for (const auto &MI : Pred->terminators()) {
3669 // If it is not a simple branch, we are in a table somewhere.
3670 if (!MI.isBranch() || MI.isIndirectBranch())
3671 return false;
3673 // If we are the operands of one of the branches, this is not a fall
3674 // through. Note that targets with delay slots will usually bundle
3675 // terminators with the delay slot instruction.
3676 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3677 if (OP->isJTI())
3678 return false;
3679 if (OP->isMBB() && OP->getMBB() == MBB)
3680 return false;
3684 return true;
3687 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3688 if (!S.usesMetadata())
3689 return nullptr;
3691 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3692 gcp_map_type::iterator GCPI = GCMap.find(&S);
3693 if (GCPI != GCMap.end())
3694 return GCPI->second.get();
3696 auto Name = S.getName();
3698 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3699 GCMetadataPrinterRegistry::entries())
3700 if (Name == GCMetaPrinter.getName()) {
3701 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3702 GMP->S = &S;
3703 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3704 return IterBool.first->second.get();
3707 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3710 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3711 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3712 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3713 bool NeedsDefault = false;
3714 if (MI->begin() == MI->end())
3715 // No GC strategy, use the default format.
3716 NeedsDefault = true;
3717 else
3718 for (const auto &I : *MI) {
3719 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3720 if (MP->emitStackMaps(SM, *this))
3721 continue;
3722 // The strategy doesn't have printer or doesn't emit custom stack maps.
3723 // Use the default format.
3724 NeedsDefault = true;
3727 if (NeedsDefault)
3728 SM.serializeToStackMapSection();
3731 /// Pin vtable to this file.
3732 AsmPrinterHandler::~AsmPrinterHandler() = default;
3734 void AsmPrinterHandler::markFunctionEnd() {}
3736 // In the binary's "xray_instr_map" section, an array of these function entries
3737 // describes each instrumentation point. When XRay patches your code, the index
3738 // into this table will be given to your handler as a patch point identifier.
3739 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3740 auto Kind8 = static_cast<uint8_t>(Kind);
3741 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3742 Out->emitBinaryData(
3743 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3744 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3745 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3746 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3747 Out->emitZeros(Padding);
3750 void AsmPrinter::emitXRayTable() {
3751 if (Sleds.empty())
3752 return;
3754 auto PrevSection = OutStreamer->getCurrentSectionOnly();
3755 const Function &F = MF->getFunction();
3756 MCSection *InstMap = nullptr;
3757 MCSection *FnSledIndex = nullptr;
3758 const Triple &TT = TM.getTargetTriple();
3759 // Use PC-relative addresses on all targets.
3760 if (TT.isOSBinFormatELF()) {
3761 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3762 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3763 StringRef GroupName;
3764 if (F.hasComdat()) {
3765 Flags |= ELF::SHF_GROUP;
3766 GroupName = F.getComdat()->getName();
3768 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3769 Flags, 0, GroupName, F.hasComdat(),
3770 MCSection::NonUniqueID, LinkedToSym);
3772 if (!TM.Options.XRayOmitFunctionIndex)
3773 FnSledIndex = OutContext.getELFSection(
3774 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3775 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3776 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3777 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3778 SectionKind::getReadOnlyWithRel());
3779 if (!TM.Options.XRayOmitFunctionIndex)
3780 FnSledIndex = OutContext.getMachOSection(
3781 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3782 } else {
3783 llvm_unreachable("Unsupported target");
3786 auto WordSizeBytes = MAI->getCodePointerSize();
3788 // Now we switch to the instrumentation map section. Because this is done
3789 // per-function, we are able to create an index entry that will represent the
3790 // range of sleds associated with a function.
3791 auto &Ctx = OutContext;
3792 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3793 OutStreamer->switchSection(InstMap);
3794 OutStreamer->emitLabel(SledsStart);
3795 for (const auto &Sled : Sleds) {
3796 MCSymbol *Dot = Ctx.createTempSymbol();
3797 OutStreamer->emitLabel(Dot);
3798 OutStreamer->emitValueImpl(
3799 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3800 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3801 WordSizeBytes);
3802 OutStreamer->emitValueImpl(
3803 MCBinaryExpr::createSub(
3804 MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3805 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3806 MCConstantExpr::create(WordSizeBytes, Ctx),
3807 Ctx),
3808 Ctx),
3809 WordSizeBytes);
3810 Sled.emit(WordSizeBytes, OutStreamer.get());
3812 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3813 OutStreamer->emitLabel(SledsEnd);
3815 // We then emit a single entry in the index per function. We use the symbols
3816 // that bound the instrumentation map as the range for a specific function.
3817 // Each entry here will be 2 * word size aligned, as we're writing down two
3818 // pointers. This should work for both 32-bit and 64-bit platforms.
3819 if (FnSledIndex) {
3820 OutStreamer->switchSection(FnSledIndex);
3821 OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo());
3822 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3823 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3824 OutStreamer->switchSection(PrevSection);
3826 Sleds.clear();
3829 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3830 SledKind Kind, uint8_t Version) {
3831 const Function &F = MI.getMF()->getFunction();
3832 auto Attr = F.getFnAttribute("function-instrument");
3833 bool LogArgs = F.hasFnAttribute("xray-log-args");
3834 bool AlwaysInstrument =
3835 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3836 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3837 Kind = SledKind::LOG_ARGS_ENTER;
3838 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3839 AlwaysInstrument, &F, Version});
3842 void AsmPrinter::emitPatchableFunctionEntries() {
3843 const Function &F = MF->getFunction();
3844 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3845 (void)F.getFnAttribute("patchable-function-prefix")
3846 .getValueAsString()
3847 .getAsInteger(10, PatchableFunctionPrefix);
3848 (void)F.getFnAttribute("patchable-function-entry")
3849 .getValueAsString()
3850 .getAsInteger(10, PatchableFunctionEntry);
3851 if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3852 return;
3853 const unsigned PointerSize = getPointerSize();
3854 if (TM.getTargetTriple().isOSBinFormatELF()) {
3855 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3856 const MCSymbolELF *LinkedToSym = nullptr;
3857 StringRef GroupName;
3859 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3860 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3861 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3862 Flags |= ELF::SHF_LINK_ORDER;
3863 if (F.hasComdat()) {
3864 Flags |= ELF::SHF_GROUP;
3865 GroupName = F.getComdat()->getName();
3867 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3869 OutStreamer->switchSection(OutContext.getELFSection(
3870 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3871 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3872 emitAlignment(Align(PointerSize));
3873 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3877 uint16_t AsmPrinter::getDwarfVersion() const {
3878 return OutStreamer->getContext().getDwarfVersion();
3881 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3882 OutStreamer->getContext().setDwarfVersion(Version);
3885 bool AsmPrinter::isDwarf64() const {
3886 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3889 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3890 return dwarf::getDwarfOffsetByteSize(
3891 OutStreamer->getContext().getDwarfFormat());
3894 dwarf::FormParams AsmPrinter::getDwarfFormParams() const {
3895 return {getDwarfVersion(), uint8_t(getPointerSize()),
3896 OutStreamer->getContext().getDwarfFormat(),
3897 MAI->doesDwarfUseRelocationsAcrossSections()};
3900 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3901 return dwarf::getUnitLengthFieldByteSize(
3902 OutStreamer->getContext().getDwarfFormat());