1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AsmPrinter class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/TinyPtrVector.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/ConstantFolding.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/BinaryFormat/COFF.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/BinaryFormat/ELF.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/GCMetadataPrinter.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/Config/config.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GCStrategy.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalIFunc.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/MC/MCAsmInfo.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/MC/MCDirectives.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Remarks/RemarkStreamer.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/FileSystem.h"
108 #include "llvm/Support/Format.h"
109 #include "llvm/Support/MathExtras.h"
110 #include "llvm/Support/Path.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
126 using namespace llvm
;
128 #define DEBUG_TYPE "asm-printer"
130 const char DWARFGroupName
[] = "dwarf";
131 const char DWARFGroupDescription
[] = "DWARF Emission";
132 const char DbgTimerName
[] = "emit";
133 const char DbgTimerDescription
[] = "Debug Info Emission";
134 const char EHTimerName
[] = "write_exception";
135 const char EHTimerDescription
[] = "DWARF Exception Writer";
136 const char CFGuardName
[] = "Control Flow Guard";
137 const char CFGuardDescription
[] = "Control Flow Guard";
138 const char CodeViewLineTablesGroupName
[] = "linetables";
139 const char CodeViewLineTablesGroupDescription
[] = "CodeView Line Tables";
140 const char PPTimerName
[] = "emit";
141 const char PPTimerDescription
[] = "Pseudo Probe Emission";
142 const char PPGroupName
[] = "pseudo probe";
143 const char PPGroupDescription
[] = "Pseudo Probe Emission";
145 STATISTIC(EmittedInsts
, "Number of machine instrs printed");
147 char AsmPrinter::ID
= 0;
149 using gcp_map_type
= DenseMap
<GCStrategy
*, std::unique_ptr
<GCMetadataPrinter
>>;
151 static gcp_map_type
&getGCMap(void *&P
) {
153 P
= new gcp_map_type();
154 return *(gcp_map_type
*)P
;
158 class AddrLabelMapCallbackPtr final
: CallbackVH
{
159 AddrLabelMap
*Map
= nullptr;
162 AddrLabelMapCallbackPtr() = default;
163 AddrLabelMapCallbackPtr(Value
*V
) : CallbackVH(V
) {}
165 void setPtr(BasicBlock
*BB
) {
166 ValueHandleBase::operator=(BB
);
169 void setMap(AddrLabelMap
*map
) { Map
= map
; }
171 void deleted() override
;
172 void allUsesReplacedWith(Value
*V2
) override
;
176 class llvm::AddrLabelMap
{
178 struct AddrLabelSymEntry
{
179 /// The symbols for the label.
180 TinyPtrVector
<MCSymbol
*> Symbols
;
182 Function
*Fn
; // The containing function of the BasicBlock.
183 unsigned Index
; // The index in BBCallbacks for the BasicBlock.
186 DenseMap
<AssertingVH
<BasicBlock
>, AddrLabelSymEntry
> AddrLabelSymbols
;
188 /// Callbacks for the BasicBlock's that we have entries for. We use this so
189 /// we get notified if a block is deleted or RAUWd.
190 std::vector
<AddrLabelMapCallbackPtr
> BBCallbacks
;
192 /// This is a per-function list of symbols whose corresponding BasicBlock got
193 /// deleted. These symbols need to be emitted at some point in the file, so
194 /// AsmPrinter emits them after the function body.
195 DenseMap
<AssertingVH
<Function
>, std::vector
<MCSymbol
*>>
196 DeletedAddrLabelsNeedingEmission
;
199 AddrLabelMap(MCContext
&context
) : Context(context
) {}
202 assert(DeletedAddrLabelsNeedingEmission
.empty() &&
203 "Some labels for deleted blocks never got emitted");
206 ArrayRef
<MCSymbol
*> getAddrLabelSymbolToEmit(BasicBlock
*BB
);
208 void takeDeletedSymbolsForFunction(Function
*F
,
209 std::vector
<MCSymbol
*> &Result
);
211 void UpdateForDeletedBlock(BasicBlock
*BB
);
212 void UpdateForRAUWBlock(BasicBlock
*Old
, BasicBlock
*New
);
215 ArrayRef
<MCSymbol
*> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock
*BB
) {
216 assert(BB
->hasAddressTaken() &&
217 "Shouldn't get label for block without address taken");
218 AddrLabelSymEntry
&Entry
= AddrLabelSymbols
[BB
];
220 // If we already had an entry for this block, just return it.
221 if (!Entry
.Symbols
.empty()) {
222 assert(BB
->getParent() == Entry
.Fn
&& "Parent changed");
223 return Entry
.Symbols
;
226 // Otherwise, this is a new entry, create a new symbol for it and add an
227 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
228 BBCallbacks
.emplace_back(BB
);
229 BBCallbacks
.back().setMap(this);
230 Entry
.Index
= BBCallbacks
.size() - 1;
231 Entry
.Fn
= BB
->getParent();
232 MCSymbol
*Sym
= BB
->hasAddressTaken() ? Context
.createNamedTempSymbol()
233 : Context
.createTempSymbol();
234 Entry
.Symbols
.push_back(Sym
);
235 return Entry
.Symbols
;
238 /// If we have any deleted symbols for F, return them.
239 void AddrLabelMap::takeDeletedSymbolsForFunction(
240 Function
*F
, std::vector
<MCSymbol
*> &Result
) {
241 DenseMap
<AssertingVH
<Function
>, std::vector
<MCSymbol
*>>::iterator I
=
242 DeletedAddrLabelsNeedingEmission
.find(F
);
244 // If there are no entries for the function, just return.
245 if (I
== DeletedAddrLabelsNeedingEmission
.end())
248 // Otherwise, take the list.
249 std::swap(Result
, I
->second
);
250 DeletedAddrLabelsNeedingEmission
.erase(I
);
253 //===- Address of Block Management ----------------------------------------===//
256 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock
*BB
) {
257 // Lazily create AddrLabelSymbols.
258 if (!AddrLabelSymbols
)
259 AddrLabelSymbols
= std::make_unique
<AddrLabelMap
>(OutContext
);
260 return AddrLabelSymbols
->getAddrLabelSymbolToEmit(
261 const_cast<BasicBlock
*>(BB
));
264 void AsmPrinter::takeDeletedSymbolsForFunction(
265 const Function
*F
, std::vector
<MCSymbol
*> &Result
) {
266 // If no blocks have had their addresses taken, we're done.
267 if (!AddrLabelSymbols
)
269 return AddrLabelSymbols
->takeDeletedSymbolsForFunction(
270 const_cast<Function
*>(F
), Result
);
273 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock
*BB
) {
274 // If the block got deleted, there is no need for the symbol. If the symbol
275 // was already emitted, we can just forget about it, otherwise we need to
276 // queue it up for later emission when the function is output.
277 AddrLabelSymEntry Entry
= std::move(AddrLabelSymbols
[BB
]);
278 AddrLabelSymbols
.erase(BB
);
279 assert(!Entry
.Symbols
.empty() && "Didn't have a symbol, why a callback?");
280 BBCallbacks
[Entry
.Index
] = nullptr; // Clear the callback.
282 #if !LLVM_MEMORY_SANITIZER_BUILD
283 // BasicBlock is destroyed already, so this access is UB detectable by msan.
284 assert((BB
->getParent() == nullptr || BB
->getParent() == Entry
.Fn
) &&
285 "Block/parent mismatch");
288 for (MCSymbol
*Sym
: Entry
.Symbols
) {
289 if (Sym
->isDefined())
292 // If the block is not yet defined, we need to emit it at the end of the
293 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list
294 // for the containing Function. Since the block is being deleted, its
295 // parent may already be removed, we have to get the function from 'Entry'.
296 DeletedAddrLabelsNeedingEmission
[Entry
.Fn
].push_back(Sym
);
300 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock
*Old
, BasicBlock
*New
) {
301 // Get the entry for the RAUW'd block and remove it from our map.
302 AddrLabelSymEntry OldEntry
= std::move(AddrLabelSymbols
[Old
]);
303 AddrLabelSymbols
.erase(Old
);
304 assert(!OldEntry
.Symbols
.empty() && "Didn't have a symbol, why a callback?");
306 AddrLabelSymEntry
&NewEntry
= AddrLabelSymbols
[New
];
308 // If New is not address taken, just move our symbol over to it.
309 if (NewEntry
.Symbols
.empty()) {
310 BBCallbacks
[OldEntry
.Index
].setPtr(New
); // Update the callback.
311 NewEntry
= std::move(OldEntry
); // Set New's entry.
315 BBCallbacks
[OldEntry
.Index
] = nullptr; // Update the callback.
317 // Otherwise, we need to add the old symbols to the new block's set.
318 llvm::append_range(NewEntry
.Symbols
, OldEntry
.Symbols
);
321 void AddrLabelMapCallbackPtr::deleted() {
322 Map
->UpdateForDeletedBlock(cast
<BasicBlock
>(getValPtr()));
325 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value
*V2
) {
326 Map
->UpdateForRAUWBlock(cast
<BasicBlock
>(getValPtr()), cast
<BasicBlock
>(V2
));
329 /// getGVAlignment - Return the alignment to use for the specified global
330 /// value. This rounds up to the preferred alignment if possible and legal.
331 Align
AsmPrinter::getGVAlignment(const GlobalObject
*GV
, const DataLayout
&DL
,
334 if (const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
))
335 Alignment
= DL
.getPreferredAlign(GVar
);
337 // If InAlign is specified, round it to it.
338 if (InAlign
> Alignment
)
341 // If the GV has a specified alignment, take it into account.
342 const MaybeAlign
GVAlign(GV
->getAlign());
346 assert(GVAlign
&& "GVAlign must be set");
348 // If the GVAlign is larger than NumBits, or if we are required to obey
349 // NumBits because the GV has an assigned section, obey it.
350 if (*GVAlign
> Alignment
|| GV
->hasSection())
351 Alignment
= *GVAlign
;
355 AsmPrinter::AsmPrinter(TargetMachine
&tm
, std::unique_ptr
<MCStreamer
> Streamer
)
356 : MachineFunctionPass(ID
), TM(tm
), MAI(tm
.getMCAsmInfo()),
357 OutContext(Streamer
->getContext()), OutStreamer(std::move(Streamer
)) {
358 VerboseAsm
= OutStreamer
->isVerboseAsm();
361 AsmPrinter::~AsmPrinter() {
362 assert(!DD
&& Handlers
.size() == NumUserHandlers
&&
363 "Debug/EH info didn't get finalized");
365 if (GCMetadataPrinters
) {
366 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
369 GCMetadataPrinters
= nullptr;
373 bool AsmPrinter::isPositionIndependent() const {
374 return TM
.isPositionIndependent();
377 /// getFunctionNumber - Return a unique ID for the current function.
378 unsigned AsmPrinter::getFunctionNumber() const {
379 return MF
->getFunctionNumber();
382 const TargetLoweringObjectFile
&AsmPrinter::getObjFileLowering() const {
383 return *TM
.getObjFileLowering();
386 const DataLayout
&AsmPrinter::getDataLayout() const {
387 return MMI
->getModule()->getDataLayout();
390 // Do not use the cached DataLayout because some client use it without a Module
391 // (dsymutil, llvm-dwarfdump).
392 unsigned AsmPrinter::getPointerSize() const {
393 return TM
.getPointerSize(0); // FIXME: Default address space
396 const MCSubtargetInfo
&AsmPrinter::getSubtargetInfo() const {
397 assert(MF
&& "getSubtargetInfo requires a valid MachineFunction!");
398 return MF
->getSubtarget
<MCSubtargetInfo
>();
401 void AsmPrinter::EmitToStreamer(MCStreamer
&S
, const MCInst
&Inst
) {
402 S
.emitInstruction(Inst
, getSubtargetInfo());
405 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction
&MF
) {
407 assert(OutStreamer
->hasRawTextSupport() &&
408 "Expected assembly output mode.");
409 // This is NVPTX specific and it's unclear why.
410 // PR51079: If we have code without debug information we need to give up.
411 DISubprogram
*MFSP
= MF
.getFunction().getSubprogram();
414 (void)DD
->emitInitialLocDirective(MF
, /*CUID=*/0);
418 /// getCurrentSection() - Return the current section we are emitting to.
419 const MCSection
*AsmPrinter::getCurrentSection() const {
420 return OutStreamer
->getCurrentSectionOnly();
423 void AsmPrinter::getAnalysisUsage(AnalysisUsage
&AU
) const {
424 AU
.setPreservesAll();
425 MachineFunctionPass::getAnalysisUsage(AU
);
426 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
427 AU
.addRequired
<GCModuleInfo
>();
430 bool AsmPrinter::doInitialization(Module
&M
) {
431 auto *MMIWP
= getAnalysisIfAvailable
<MachineModuleInfoWrapperPass
>();
432 MMI
= MMIWP
? &MMIWP
->getMMI() : nullptr;
433 HasSplitStack
= false;
434 HasNoSplitStack
= false;
436 AddrLabelSymbols
= nullptr;
438 // Initialize TargetLoweringObjectFile.
439 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
440 .Initialize(OutContext
, TM
);
442 const_cast<TargetLoweringObjectFile
&>(getObjFileLowering())
443 .getModuleMetadata(M
);
445 OutStreamer
->initSections(false, *TM
.getMCSubtargetInfo());
447 // Emit the version-min deployment target directive if needed.
449 // FIXME: If we end up with a collection of these sorts of Darwin-specific
450 // or ELF-specific things, it may make sense to have a platform helper class
451 // that will work with the target helper class. For now keep it here, as the
452 // alternative is duplicated code in each of the target asm printers that
453 // use the directive, where it would need the same conditionalization
455 const Triple
&Target
= TM
.getTargetTriple();
456 Triple
TVT(M
.getDarwinTargetVariantTriple());
457 OutStreamer
->emitVersionForTarget(
458 Target
, M
.getSDKVersion(),
459 M
.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT
,
460 M
.getDarwinTargetVariantSDKVersion());
462 // Allow the target to emit any magic that it wants at the start of the file.
463 emitStartOfAsmFile(M
);
465 // Very minimal debug info. It is ignored if we emit actual debug info. If we
466 // don't, this at least helps the user find where a global came from.
467 if (MAI
->hasSingleParameterDotFile()) {
470 SmallString
<128> FileName
;
471 if (MAI
->hasBasenameOnlyForFileDirective())
472 FileName
= llvm::sys::path::filename(M
.getSourceFileName());
474 FileName
= M
.getSourceFileName();
475 if (MAI
->hasFourStringsDotFile()) {
476 #ifdef PACKAGE_VENDOR
477 const char VerStr
[] =
478 PACKAGE_VENDOR
" " PACKAGE_NAME
" version " PACKAGE_VERSION
;
480 const char VerStr
[] = PACKAGE_NAME
" version " PACKAGE_VERSION
;
482 // TODO: Add timestamp and description.
483 OutStreamer
->emitFileDirective(FileName
, VerStr
, "", "");
485 OutStreamer
->emitFileDirective(FileName
);
489 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
490 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
491 for (const auto &I
: *MI
)
492 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
493 MP
->beginAssembly(M
, *MI
, *this);
495 // Emit module-level inline asm if it exists.
496 if (!M
.getModuleInlineAsm().empty()) {
497 OutStreamer
->AddComment("Start of file scope inline assembly");
498 OutStreamer
->addBlankLine();
499 emitInlineAsm(M
.getModuleInlineAsm() + "\n", *TM
.getMCSubtargetInfo(),
500 TM
.Options
.MCOptions
);
501 OutStreamer
->AddComment("End of file scope inline assembly");
502 OutStreamer
->addBlankLine();
505 if (MAI
->doesSupportDebugInformation()) {
506 bool EmitCodeView
= M
.getCodeViewFlag();
507 if (EmitCodeView
&& TM
.getTargetTriple().isOSWindows()) {
508 Handlers
.emplace_back(std::make_unique
<CodeViewDebug
>(this),
509 DbgTimerName
, DbgTimerDescription
,
510 CodeViewLineTablesGroupName
,
511 CodeViewLineTablesGroupDescription
);
513 if (!EmitCodeView
|| M
.getDwarfVersion()) {
514 if (MMI
->hasDebugInfo()) {
515 DD
= new DwarfDebug(this);
516 Handlers
.emplace_back(std::unique_ptr
<DwarfDebug
>(DD
), DbgTimerName
,
517 DbgTimerDescription
, DWARFGroupName
,
518 DWARFGroupDescription
);
523 if (M
.getNamedMetadata(PseudoProbeDescMetadataName
)) {
524 PP
= new PseudoProbeHandler(this);
525 Handlers
.emplace_back(std::unique_ptr
<PseudoProbeHandler
>(PP
), PPTimerName
,
526 PPTimerDescription
, PPGroupName
, PPGroupDescription
);
529 switch (MAI
->getExceptionHandlingType()) {
530 case ExceptionHandling::None
:
531 // We may want to emit CFI for debug.
533 case ExceptionHandling::SjLj
:
534 case ExceptionHandling::DwarfCFI
:
535 case ExceptionHandling::ARM
:
536 for (auto &F
: M
.getFunctionList()) {
537 if (getFunctionCFISectionType(F
) != CFISection::None
)
538 ModuleCFISection
= getFunctionCFISectionType(F
);
539 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
540 // the module needs .eh_frame. If we have found that case, we are done.
541 if (ModuleCFISection
== CFISection::EH
)
544 assert(MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
||
545 ModuleCFISection
!= CFISection::EH
);
551 EHStreamer
*ES
= nullptr;
552 switch (MAI
->getExceptionHandlingType()) {
553 case ExceptionHandling::None
:
554 if (!needsCFIForDebug())
557 case ExceptionHandling::SjLj
:
558 case ExceptionHandling::DwarfCFI
:
559 ES
= new DwarfCFIException(this);
561 case ExceptionHandling::ARM
:
562 ES
= new ARMException(this);
564 case ExceptionHandling::WinEH
:
565 switch (MAI
->getWinEHEncodingType()) {
566 default: llvm_unreachable("unsupported unwinding information encoding");
567 case WinEH::EncodingType::Invalid
:
569 case WinEH::EncodingType::X86
:
570 case WinEH::EncodingType::Itanium
:
571 ES
= new WinException(this);
575 case ExceptionHandling::Wasm
:
576 ES
= new WasmException(this);
578 case ExceptionHandling::AIX
:
579 ES
= new AIXException(this);
583 Handlers
.emplace_back(std::unique_ptr
<EHStreamer
>(ES
), EHTimerName
,
584 EHTimerDescription
, DWARFGroupName
,
585 DWARFGroupDescription
);
587 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
588 if (mdconst::extract_or_null
<ConstantInt
>(M
.getModuleFlag("cfguard")))
589 Handlers
.emplace_back(std::make_unique
<WinCFGuard
>(this), CFGuardName
,
590 CFGuardDescription
, DWARFGroupName
,
591 DWARFGroupDescription
);
593 for (const HandlerInfo
&HI
: Handlers
) {
594 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
595 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
596 HI
.Handler
->beginModule(&M
);
602 static bool canBeHidden(const GlobalValue
*GV
, const MCAsmInfo
&MAI
) {
603 if (!MAI
.hasWeakDefCanBeHiddenDirective())
606 return GV
->canBeOmittedFromSymbolTable();
609 void AsmPrinter::emitLinkage(const GlobalValue
*GV
, MCSymbol
*GVSym
) const {
610 GlobalValue::LinkageTypes Linkage
= GV
->getLinkage();
612 case GlobalValue::CommonLinkage
:
613 case GlobalValue::LinkOnceAnyLinkage
:
614 case GlobalValue::LinkOnceODRLinkage
:
615 case GlobalValue::WeakAnyLinkage
:
616 case GlobalValue::WeakODRLinkage
:
617 if (MAI
->hasWeakDefDirective()) {
619 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_Global
);
621 if (!canBeHidden(GV
, *MAI
))
622 // .weak_definition _foo
623 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_WeakDefinition
);
625 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_WeakDefAutoPrivate
);
626 } else if (MAI
->avoidWeakIfComdat() && GV
->hasComdat()) {
628 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_Global
);
629 //NOTE: linkonce is handled by the section the symbol was assigned to.
632 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_Weak
);
635 case GlobalValue::ExternalLinkage
:
636 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_Global
);
638 case GlobalValue::PrivateLinkage
:
639 case GlobalValue::InternalLinkage
:
641 case GlobalValue::ExternalWeakLinkage
:
642 case GlobalValue::AvailableExternallyLinkage
:
643 case GlobalValue::AppendingLinkage
:
644 llvm_unreachable("Should never emit this");
646 llvm_unreachable("Unknown linkage type!");
649 void AsmPrinter::getNameWithPrefix(SmallVectorImpl
<char> &Name
,
650 const GlobalValue
*GV
) const {
651 TM
.getNameWithPrefix(Name
, GV
, getObjFileLowering().getMangler());
654 MCSymbol
*AsmPrinter::getSymbol(const GlobalValue
*GV
) const {
655 return TM
.getSymbol(GV
);
658 MCSymbol
*AsmPrinter::getSymbolPreferLocal(const GlobalValue
&GV
) const {
659 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
660 // exact definion (intersection of GlobalValue::hasExactDefinition() and
661 // !isInterposable()). These linkages include: external, appending, internal,
662 // private. It may be profitable to use a local alias for external. The
663 // assembler would otherwise be conservative and assume a global default
664 // visibility symbol can be interposable, even if the code generator already
666 if (TM
.getTargetTriple().isOSBinFormatELF() && GV
.canBenefitFromLocalAlias()) {
667 const Module
&M
= *GV
.getParent();
668 if (TM
.getRelocationModel() != Reloc::Static
&&
669 M
.getPIELevel() == PIELevel::Default
&& GV
.isDSOLocal())
670 return getSymbolWithGlobalValueBase(&GV
, "$local");
672 return TM
.getSymbol(&GV
);
675 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
676 void AsmPrinter::emitGlobalVariable(const GlobalVariable
*GV
) {
677 bool IsEmuTLSVar
= TM
.useEmulatedTLS() && GV
->isThreadLocal();
678 assert(!(IsEmuTLSVar
&& GV
->hasCommonLinkage()) &&
679 "No emulated TLS variables in the common section");
681 // Never emit TLS variable xyz in emulated TLS model.
682 // The initialization value is in __emutls_t.xyz instead of xyz.
686 if (GV
->hasInitializer()) {
687 // Check to see if this is a special global used by LLVM, if so, emit it.
688 if (emitSpecialLLVMGlobal(GV
))
691 // Skip the emission of global equivalents. The symbol can be emitted later
692 // on by emitGlobalGOTEquivs in case it turns out to be needed.
693 if (GlobalGOTEquivs
.count(getSymbol(GV
)))
697 // When printing the control variable __emutls_v.*,
698 // we don't need to print the original TLS variable name.
699 GV
->printAsOperand(OutStreamer
->getCommentOS(),
700 /*PrintType=*/false, GV
->getParent());
701 OutStreamer
->getCommentOS() << '\n';
705 MCSymbol
*GVSym
= getSymbol(GV
);
706 MCSymbol
*EmittedSym
= GVSym
;
708 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
710 // GV's or GVSym's attributes will be used for the EmittedSym.
711 emitVisibility(EmittedSym
, GV
->getVisibility(), !GV
->isDeclaration());
713 if (!GV
->hasInitializer()) // External globals require no extra code.
716 GVSym
->redefineIfPossible();
717 if (GVSym
->isDefined() || GVSym
->isVariable())
718 OutContext
.reportError(SMLoc(), "symbol '" + Twine(GVSym
->getName()) +
719 "' is already defined");
721 if (MAI
->hasDotTypeDotSizeDirective())
722 OutStreamer
->emitSymbolAttribute(EmittedSym
, MCSA_ELF_TypeObject
);
724 SectionKind GVKind
= TargetLoweringObjectFile::getKindForGlobal(GV
, TM
);
726 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
727 uint64_t Size
= DL
.getTypeAllocSize(GV
->getValueType());
729 // If the alignment is specified, we *must* obey it. Overaligning a global
730 // with a specified alignment is a prompt way to break globals emitted to
731 // sections and expected to be contiguous (e.g. ObjC metadata).
732 const Align Alignment
= getGVAlignment(GV
, DL
);
734 for (const HandlerInfo
&HI
: Handlers
) {
735 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
,
736 HI
.TimerGroupName
, HI
.TimerGroupDescription
,
737 TimePassesIsEnabled
);
738 HI
.Handler
->setSymbolSize(GVSym
, Size
);
741 // Handle common symbols
742 if (GVKind
.isCommon()) {
743 if (Size
== 0) Size
= 1; // .comm Foo, 0 is undefined, avoid it.
745 const bool SupportsAlignment
=
746 getObjFileLowering().getCommDirectiveSupportsAlignment();
747 OutStreamer
->emitCommonSymbol(GVSym
, Size
,
748 SupportsAlignment
? Alignment
.value() : 0);
752 // Determine to which section this global should be emitted.
753 MCSection
*TheSection
= getObjFileLowering().SectionForGlobal(GV
, GVKind
, TM
);
755 // If we have a bss global going to a section that supports the
756 // zerofill directive, do so here.
757 if (GVKind
.isBSS() && MAI
->hasMachoZeroFillDirective() &&
758 TheSection
->isVirtualSection()) {
760 Size
= 1; // zerofill of 0 bytes is undefined.
761 emitLinkage(GV
, GVSym
);
762 // .zerofill __DATA, __bss, _foo, 400, 5
763 OutStreamer
->emitZerofill(TheSection
, GVSym
, Size
, Alignment
.value());
767 // If this is a BSS local symbol and we are emitting in the BSS
768 // section use .lcomm/.comm directive.
769 if (GVKind
.isBSSLocal() &&
770 getObjFileLowering().getBSSSection() == TheSection
) {
772 Size
= 1; // .comm Foo, 0 is undefined, avoid it.
774 // Use .lcomm only if it supports user-specified alignment.
775 // Otherwise, while it would still be correct to use .lcomm in some
776 // cases (e.g. when Align == 1), the external assembler might enfore
777 // some -unknown- default alignment behavior, which could cause
778 // spurious differences between external and integrated assembler.
779 // Prefer to simply fall back to .local / .comm in this case.
780 if (MAI
->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment
) {
782 OutStreamer
->emitLocalCommonSymbol(GVSym
, Size
, Alignment
.value());
787 OutStreamer
->emitSymbolAttribute(GVSym
, MCSA_Local
);
789 const bool SupportsAlignment
=
790 getObjFileLowering().getCommDirectiveSupportsAlignment();
791 OutStreamer
->emitCommonSymbol(GVSym
, Size
,
792 SupportsAlignment
? Alignment
.value() : 0);
796 // Handle thread local data for mach-o which requires us to output an
797 // additional structure of data and mangle the original symbol so that we
798 // can reference it later.
800 // TODO: This should become an "emit thread local global" method on TLOF.
801 // All of this macho specific stuff should be sunk down into TLOFMachO and
802 // stuff like "TLSExtraDataSection" should no longer be part of the parent
803 // TLOF class. This will also make it more obvious that stuff like
804 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
806 if (GVKind
.isThreadLocal() && MAI
->hasMachoTBSSDirective()) {
807 // Emit the .tbss symbol
809 OutContext
.getOrCreateSymbol(GVSym
->getName() + Twine("$tlv$init"));
811 if (GVKind
.isThreadBSS()) {
812 TheSection
= getObjFileLowering().getTLSBSSSection();
813 OutStreamer
->emitTBSSSymbol(TheSection
, MangSym
, Size
, Alignment
.value());
814 } else if (GVKind
.isThreadData()) {
815 OutStreamer
->switchSection(TheSection
);
817 emitAlignment(Alignment
, GV
);
818 OutStreamer
->emitLabel(MangSym
);
820 emitGlobalConstant(GV
->getParent()->getDataLayout(),
821 GV
->getInitializer());
824 OutStreamer
->addBlankLine();
826 // Emit the variable struct for the runtime.
827 MCSection
*TLVSect
= getObjFileLowering().getTLSExtraDataSection();
829 OutStreamer
->switchSection(TLVSect
);
830 // Emit the linkage here.
831 emitLinkage(GV
, GVSym
);
832 OutStreamer
->emitLabel(GVSym
);
834 // Three pointers in size:
835 // - __tlv_bootstrap - used to make sure support exists
836 // - spare pointer, used when mapped by the runtime
837 // - pointer to mangled symbol above with initializer
838 unsigned PtrSize
= DL
.getPointerTypeSize(GV
->getType());
839 OutStreamer
->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
841 OutStreamer
->emitIntValue(0, PtrSize
);
842 OutStreamer
->emitSymbolValue(MangSym
, PtrSize
);
844 OutStreamer
->addBlankLine();
848 MCSymbol
*EmittedInitSym
= GVSym
;
850 OutStreamer
->switchSection(TheSection
);
852 emitLinkage(GV
, EmittedInitSym
);
853 emitAlignment(Alignment
, GV
);
855 OutStreamer
->emitLabel(EmittedInitSym
);
856 MCSymbol
*LocalAlias
= getSymbolPreferLocal(*GV
);
857 if (LocalAlias
!= EmittedInitSym
)
858 OutStreamer
->emitLabel(LocalAlias
);
860 emitGlobalConstant(GV
->getParent()->getDataLayout(), GV
->getInitializer());
862 if (MAI
->hasDotTypeDotSizeDirective())
864 OutStreamer
->emitELFSize(EmittedInitSym
,
865 MCConstantExpr::create(Size
, OutContext
));
867 OutStreamer
->addBlankLine();
870 /// Emit the directive and value for debug thread local expression
872 /// \p Value - The value to emit.
873 /// \p Size - The size of the integer (in bytes) to emit.
874 void AsmPrinter::emitDebugValue(const MCExpr
*Value
, unsigned Size
) const {
875 OutStreamer
->emitValue(Value
, Size
);
878 void AsmPrinter::emitFunctionHeaderComment() {}
880 /// EmitFunctionHeader - This method emits the header for the current
882 void AsmPrinter::emitFunctionHeader() {
883 const Function
&F
= MF
->getFunction();
886 OutStreamer
->getCommentOS()
887 << "-- Begin function "
888 << GlobalValue::dropLLVMManglingEscape(F
.getName()) << '\n';
890 // Print out constants referenced by the function
893 // Print the 'header' of function.
894 // If basic block sections are desired, explicitly request a unique section
895 // for this function's entry block.
896 if (MF
->front().isBeginSection())
897 MF
->setSection(getObjFileLowering().getUniqueSectionForFunction(F
, TM
));
899 MF
->setSection(getObjFileLowering().SectionForGlobal(&F
, TM
));
900 OutStreamer
->switchSection(MF
->getSection());
902 if (!MAI
->hasVisibilityOnlyWithLinkage())
903 emitVisibility(CurrentFnSym
, F
.getVisibility());
905 if (MAI
->needsFunctionDescriptors())
906 emitLinkage(&F
, CurrentFnDescSym
);
908 emitLinkage(&F
, CurrentFnSym
);
909 if (MAI
->hasFunctionAlignment())
910 emitAlignment(MF
->getAlignment(), &F
);
912 if (MAI
->hasDotTypeDotSizeDirective())
913 OutStreamer
->emitSymbolAttribute(CurrentFnSym
, MCSA_ELF_TypeFunction
);
915 if (F
.hasFnAttribute(Attribute::Cold
))
916 OutStreamer
->emitSymbolAttribute(CurrentFnSym
, MCSA_Cold
);
919 F
.printAsOperand(OutStreamer
->getCommentOS(),
920 /*PrintType=*/false, F
.getParent());
921 emitFunctionHeaderComment();
922 OutStreamer
->getCommentOS() << '\n';
925 // Emit the prefix data.
926 if (F
.hasPrefixData()) {
927 if (MAI
->hasSubsectionsViaSymbols()) {
928 // Preserving prefix data on platforms which use subsections-via-symbols
929 // is a bit tricky. Here we introduce a symbol for the prefix data
930 // and use the .alt_entry attribute to mark the function's real entry point
931 // as an alternative entry point to the prefix-data symbol.
932 MCSymbol
*PrefixSym
= OutContext
.createLinkerPrivateTempSymbol();
933 OutStreamer
->emitLabel(PrefixSym
);
935 emitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
937 // Emit an .alt_entry directive for the actual function symbol.
938 OutStreamer
->emitSymbolAttribute(CurrentFnSym
, MCSA_AltEntry
);
940 emitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrefixData());
944 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
945 // place prefix data before NOPs.
946 unsigned PatchableFunctionPrefix
= 0;
947 unsigned PatchableFunctionEntry
= 0;
948 (void)F
.getFnAttribute("patchable-function-prefix")
950 .getAsInteger(10, PatchableFunctionPrefix
);
951 (void)F
.getFnAttribute("patchable-function-entry")
953 .getAsInteger(10, PatchableFunctionEntry
);
954 if (PatchableFunctionPrefix
) {
955 CurrentPatchableFunctionEntrySym
=
956 OutContext
.createLinkerPrivateTempSymbol();
957 OutStreamer
->emitLabel(CurrentPatchableFunctionEntrySym
);
958 emitNops(PatchableFunctionPrefix
);
959 } else if (PatchableFunctionEntry
) {
960 // May be reassigned when emitting the body, to reference the label after
961 // the initial BTI (AArch64) or endbr32/endbr64 (x86).
962 CurrentPatchableFunctionEntrySym
= CurrentFnBegin
;
965 // Emit the function descriptor. This is a virtual function to allow targets
966 // to emit their specific function descriptor. Right now it is only used by
967 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
968 // descriptors and should be converted to use this hook as well.
969 if (MAI
->needsFunctionDescriptors())
970 emitFunctionDescriptor();
972 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
973 // their wild and crazy things as required.
974 emitFunctionEntryLabel();
976 // If the function had address-taken blocks that got deleted, then we have
977 // references to the dangling symbols. Emit them at the start of the function
978 // so that we don't get references to undefined symbols.
979 std::vector
<MCSymbol
*> DeadBlockSyms
;
980 takeDeletedSymbolsForFunction(&F
, DeadBlockSyms
);
981 for (MCSymbol
*DeadBlockSym
: DeadBlockSyms
) {
982 OutStreamer
->AddComment("Address taken block that was later removed");
983 OutStreamer
->emitLabel(DeadBlockSym
);
986 if (CurrentFnBegin
) {
987 if (MAI
->useAssignmentForEHBegin()) {
988 MCSymbol
*CurPos
= OutContext
.createTempSymbol();
989 OutStreamer
->emitLabel(CurPos
);
990 OutStreamer
->emitAssignment(CurrentFnBegin
,
991 MCSymbolRefExpr::create(CurPos
, OutContext
));
993 OutStreamer
->emitLabel(CurrentFnBegin
);
997 // Emit pre-function debug and/or EH information.
998 for (const HandlerInfo
&HI
: Handlers
) {
999 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1000 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1001 HI
.Handler
->beginFunction(MF
);
1004 // Emit the prologue data.
1005 if (F
.hasPrologueData())
1006 emitGlobalConstant(F
.getParent()->getDataLayout(), F
.getPrologueData());
1008 // Emit the function prologue data for the indirect call sanitizer.
1009 if (const MDNode
*MD
= F
.getMetadata(LLVMContext::MD_func_sanitize
)) {
1010 assert(TM
.getTargetTriple().getArch() == Triple::x86
||
1011 TM
.getTargetTriple().getArch() == Triple::x86_64
);
1012 assert(MD
->getNumOperands() == 2);
1014 auto *PrologueSig
= mdconst::extract
<Constant
>(MD
->getOperand(0));
1015 auto *FTRTTIProxy
= mdconst::extract
<Constant
>(MD
->getOperand(1));
1016 assert(PrologueSig
&& FTRTTIProxy
);
1017 emitGlobalConstant(F
.getParent()->getDataLayout(), PrologueSig
);
1019 const MCExpr
*Proxy
= lowerConstant(FTRTTIProxy
);
1020 const MCExpr
*FnExp
= MCSymbolRefExpr::create(CurrentFnSym
, OutContext
);
1021 const MCExpr
*PCRel
= MCBinaryExpr::createSub(Proxy
, FnExp
, OutContext
);
1022 // Use 32 bit since only small code model is supported.
1023 OutStreamer
->emitValue(PCRel
, 4u);
1027 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1028 /// function. This can be overridden by targets as required to do custom stuff.
1029 void AsmPrinter::emitFunctionEntryLabel() {
1030 CurrentFnSym
->redefineIfPossible();
1032 // The function label could have already been emitted if two symbols end up
1033 // conflicting due to asm renaming. Detect this and emit an error.
1034 if (CurrentFnSym
->isVariable())
1035 report_fatal_error("'" + Twine(CurrentFnSym
->getName()) +
1036 "' is a protected alias");
1038 OutStreamer
->emitLabel(CurrentFnSym
);
1040 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1041 MCSymbol
*Sym
= getSymbolPreferLocal(MF
->getFunction());
1042 if (Sym
!= CurrentFnSym
)
1043 OutStreamer
->emitLabel(Sym
);
1047 /// emitComments - Pretty-print comments for instructions.
1048 static void emitComments(const MachineInstr
&MI
, raw_ostream
&CommentOS
) {
1049 const MachineFunction
*MF
= MI
.getMF();
1050 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1052 // Check for spills and reloads
1054 // We assume a single instruction only has a spill or reload, not
1056 Optional
<unsigned> Size
;
1057 if ((Size
= MI
.getRestoreSize(TII
))) {
1058 CommentOS
<< *Size
<< "-byte Reload\n";
1059 } else if ((Size
= MI
.getFoldedRestoreSize(TII
))) {
1061 if (*Size
== unsigned(MemoryLocation::UnknownSize
))
1062 CommentOS
<< "Unknown-size Folded Reload\n";
1064 CommentOS
<< *Size
<< "-byte Folded Reload\n";
1066 } else if ((Size
= MI
.getSpillSize(TII
))) {
1067 CommentOS
<< *Size
<< "-byte Spill\n";
1068 } else if ((Size
= MI
.getFoldedSpillSize(TII
))) {
1070 if (*Size
== unsigned(MemoryLocation::UnknownSize
))
1071 CommentOS
<< "Unknown-size Folded Spill\n";
1073 CommentOS
<< *Size
<< "-byte Folded Spill\n";
1077 // Check for spill-induced copies
1078 if (MI
.getAsmPrinterFlag(MachineInstr::ReloadReuse
))
1079 CommentOS
<< " Reload Reuse\n";
1082 /// emitImplicitDef - This method emits the specified machine instruction
1083 /// that is an implicit def.
1084 void AsmPrinter::emitImplicitDef(const MachineInstr
*MI
) const {
1085 Register RegNo
= MI
->getOperand(0).getReg();
1087 SmallString
<128> Str
;
1088 raw_svector_ostream
OS(Str
);
1089 OS
<< "implicit-def: "
1090 << printReg(RegNo
, MF
->getSubtarget().getRegisterInfo());
1092 OutStreamer
->AddComment(OS
.str());
1093 OutStreamer
->addBlankLine();
1096 static void emitKill(const MachineInstr
*MI
, AsmPrinter
&AP
) {
1098 raw_string_ostream
OS(Str
);
1100 for (const MachineOperand
&Op
: MI
->operands()) {
1101 assert(Op
.isReg() && "KILL instruction must have only register operands");
1102 OS
<< ' ' << (Op
.isDef() ? "def " : "killed ")
1103 << printReg(Op
.getReg(), AP
.MF
->getSubtarget().getRegisterInfo());
1105 AP
.OutStreamer
->AddComment(OS
.str());
1106 AP
.OutStreamer
->addBlankLine();
1109 /// emitDebugValueComment - This method handles the target-independent form
1110 /// of DBG_VALUE, returning true if it was able to do so. A false return
1111 /// means the target will need to handle MI in EmitInstruction.
1112 static bool emitDebugValueComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
1113 // This code handles only the 4-operand target-independent form.
1114 if (MI
->isNonListDebugValue() && MI
->getNumOperands() != 4)
1117 SmallString
<128> Str
;
1118 raw_svector_ostream
OS(Str
);
1119 OS
<< "DEBUG_VALUE: ";
1121 const DILocalVariable
*V
= MI
->getDebugVariable();
1122 if (auto *SP
= dyn_cast
<DISubprogram
>(V
->getScope())) {
1123 StringRef Name
= SP
->getName();
1130 const DIExpression
*Expr
= MI
->getDebugExpression();
1131 if (Expr
->getNumElements()) {
1134 for (auto Op
: Expr
->expr_ops()) {
1135 OS
<< LS
<< dwarf::OperationEncodingString(Op
.getOp());
1136 for (unsigned I
= 0; I
< Op
.getNumArgs(); ++I
)
1137 OS
<< ' ' << Op
.getArg(I
);
1142 // Register or immediate value. Register 0 means undef.
1143 for (const MachineOperand
&Op
: MI
->debug_operands()) {
1144 if (&Op
!= MI
->debug_operands().begin())
1146 switch (Op
.getType()) {
1147 case MachineOperand::MO_FPImmediate
: {
1148 APFloat APF
= APFloat(Op
.getFPImm()->getValueAPF());
1149 Type
*ImmTy
= Op
.getFPImm()->getType();
1150 if (ImmTy
->isBFloatTy() || ImmTy
->isHalfTy() || ImmTy
->isFloatTy() ||
1151 ImmTy
->isDoubleTy()) {
1152 OS
<< APF
.convertToDouble();
1154 // There is no good way to print long double. Convert a copy to
1155 // double. Ah well, it's only a comment.
1157 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
,
1159 OS
<< "(long double) " << APF
.convertToDouble();
1163 case MachineOperand::MO_Immediate
: {
1167 case MachineOperand::MO_CImmediate
: {
1168 Op
.getCImm()->getValue().print(OS
, false /*isSigned*/);
1171 case MachineOperand::MO_TargetIndex
: {
1172 OS
<< "!target-index(" << Op
.getIndex() << "," << Op
.getOffset() << ")";
1173 // NOTE: Want this comment at start of line, don't emit with AddComment.
1174 AP
.OutStreamer
->emitRawComment(OS
.str());
1177 case MachineOperand::MO_Register
:
1178 case MachineOperand::MO_FrameIndex
: {
1180 Optional
<StackOffset
> Offset
;
1184 const TargetFrameLowering
*TFI
=
1185 AP
.MF
->getSubtarget().getFrameLowering();
1186 Offset
= TFI
->getFrameIndexReference(*AP
.MF
, Op
.getIndex(), Reg
);
1189 // Suppress offset, it is not meaningful here.
1193 // The second operand is only an offset if it's an immediate.
1194 if (MI
->isIndirectDebugValue())
1195 Offset
= StackOffset::getFixed(MI
->getDebugOffset().getImm());
1198 OS
<< printReg(Reg
, AP
.MF
->getSubtarget().getRegisterInfo());
1200 OS
<< '+' << Offset
->getFixed() << ']';
1204 llvm_unreachable("Unknown operand type");
1208 // NOTE: Want this comment at start of line, don't emit with AddComment.
1209 AP
.OutStreamer
->emitRawComment(OS
.str());
1213 /// This method handles the target-independent form of DBG_LABEL, returning
1214 /// true if it was able to do so. A false return means the target will need
1215 /// to handle MI in EmitInstruction.
1216 static bool emitDebugLabelComment(const MachineInstr
*MI
, AsmPrinter
&AP
) {
1217 if (MI
->getNumOperands() != 1)
1220 SmallString
<128> Str
;
1221 raw_svector_ostream
OS(Str
);
1222 OS
<< "DEBUG_LABEL: ";
1224 const DILabel
*V
= MI
->getDebugLabel();
1225 if (auto *SP
= dyn_cast
<DISubprogram
>(
1226 V
->getScope()->getNonLexicalBlockFileScope())) {
1227 StringRef Name
= SP
->getName();
1233 // NOTE: Want this comment at start of line, don't emit with AddComment.
1234 AP
.OutStreamer
->emitRawComment(OS
.str());
1238 AsmPrinter::CFISection
1239 AsmPrinter::getFunctionCFISectionType(const Function
&F
) const {
1240 // Ignore functions that won't get emitted.
1241 if (F
.isDeclarationForLinker())
1242 return CFISection::None
;
1244 if (MAI
->getExceptionHandlingType() == ExceptionHandling::DwarfCFI
&&
1245 F
.needsUnwindTableEntry())
1246 return CFISection::EH
;
1248 if (MMI
->hasDebugInfo() || TM
.Options
.ForceDwarfFrameSection
)
1249 return CFISection::Debug
;
1251 return CFISection::None
;
1254 AsmPrinter::CFISection
1255 AsmPrinter::getFunctionCFISectionType(const MachineFunction
&MF
) const {
1256 return getFunctionCFISectionType(MF
.getFunction());
1259 bool AsmPrinter::needsSEHMoves() {
1260 return MAI
->usesWindowsCFI() && MF
->getFunction().needsUnwindTableEntry();
1263 bool AsmPrinter::needsCFIForDebug() const {
1264 return MAI
->getExceptionHandlingType() == ExceptionHandling::None
&&
1265 MAI
->doesUseCFIForDebug() && ModuleCFISection
== CFISection::Debug
;
1268 void AsmPrinter::emitCFIInstruction(const MachineInstr
&MI
) {
1269 ExceptionHandling ExceptionHandlingType
= MAI
->getExceptionHandlingType();
1270 if (!needsCFIForDebug() &&
1271 ExceptionHandlingType
!= ExceptionHandling::DwarfCFI
&&
1272 ExceptionHandlingType
!= ExceptionHandling::ARM
)
1275 if (getFunctionCFISectionType(*MF
) == CFISection::None
)
1278 // If there is no "real" instruction following this CFI instruction, skip
1279 // emitting it; it would be beyond the end of the function's FDE range.
1280 auto *MBB
= MI
.getParent();
1281 auto I
= std::next(MI
.getIterator());
1282 while (I
!= MBB
->end() && I
->isTransient())
1284 if (I
== MBB
->instr_end() &&
1285 MBB
->getReverseIterator() == MBB
->getParent()->rbegin())
1288 const std::vector
<MCCFIInstruction
> &Instrs
= MF
->getFrameInstructions();
1289 unsigned CFIIndex
= MI
.getOperand(0).getCFIIndex();
1290 const MCCFIInstruction
&CFI
= Instrs
[CFIIndex
];
1291 emitCFIInstruction(CFI
);
1294 void AsmPrinter::emitFrameAlloc(const MachineInstr
&MI
) {
1295 // The operands are the MCSymbol and the frame offset of the allocation.
1296 MCSymbol
*FrameAllocSym
= MI
.getOperand(0).getMCSymbol();
1297 int FrameOffset
= MI
.getOperand(1).getImm();
1299 // Emit a symbol assignment.
1300 OutStreamer
->emitAssignment(FrameAllocSym
,
1301 MCConstantExpr::create(FrameOffset
, OutContext
));
1304 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1305 /// given basic block. This can be used to capture more precise profile
1306 /// information. We use the last 4 bits (LSBs) to encode the following
1308 /// * (1): set if return block (ret or tail call).
1309 /// * (2): set if ends with a tail call.
1310 /// * (3): set if exception handling (EH) landing pad.
1311 /// * (4): set if the block can fall through to its next.
1312 /// The remaining bits are zero.
1313 static unsigned getBBAddrMapMetadata(const MachineBasicBlock
&MBB
) {
1314 const TargetInstrInfo
*TII
= MBB
.getParent()->getSubtarget().getInstrInfo();
1315 return ((unsigned)MBB
.isReturnBlock()) |
1316 ((!MBB
.empty() && TII
->isTailCall(MBB
.back())) << 1) |
1317 (MBB
.isEHPad() << 2) |
1318 (const_cast<MachineBasicBlock
&>(MBB
).canFallThrough() << 3);
1321 void AsmPrinter::emitBBAddrMapSection(const MachineFunction
&MF
) {
1322 MCSection
*BBAddrMapSection
=
1323 getObjFileLowering().getBBAddrMapSection(*MF
.getSection());
1324 assert(BBAddrMapSection
&& ".llvm_bb_addr_map section is not initialized.");
1326 const MCSymbol
*FunctionSymbol
= getFunctionBegin();
1328 OutStreamer
->pushSection();
1329 OutStreamer
->switchSection(BBAddrMapSection
);
1330 OutStreamer
->AddComment("version");
1331 OutStreamer
->emitInt8(OutStreamer
->getContext().getBBAddrMapVersion());
1332 OutStreamer
->AddComment("feature");
1333 OutStreamer
->emitInt8(0);
1334 OutStreamer
->AddComment("function address");
1335 OutStreamer
->emitSymbolValue(FunctionSymbol
, getPointerSize());
1336 OutStreamer
->AddComment("number of basic blocks");
1337 OutStreamer
->emitULEB128IntValue(MF
.size());
1338 const MCSymbol
*PrevMBBEndSymbol
= FunctionSymbol
;
1339 // Emit BB Information for each basic block in the funciton.
1340 for (const MachineBasicBlock
&MBB
: MF
) {
1341 const MCSymbol
*MBBSymbol
=
1342 MBB
.isEntryBlock() ? FunctionSymbol
: MBB
.getSymbol();
1343 // Emit the basic block offset relative to the end of the previous block.
1344 // This is zero unless the block is padded due to alignment.
1345 emitLabelDifferenceAsULEB128(MBBSymbol
, PrevMBBEndSymbol
);
1346 // Emit the basic block size. When BBs have alignments, their size cannot
1347 // always be computed from their offsets.
1348 emitLabelDifferenceAsULEB128(MBB
.getEndSymbol(), MBBSymbol
);
1349 OutStreamer
->emitULEB128IntValue(getBBAddrMapMetadata(MBB
));
1350 PrevMBBEndSymbol
= MBB
.getEndSymbol();
1352 OutStreamer
->popSection();
1355 void AsmPrinter::emitPseudoProbe(const MachineInstr
&MI
) {
1357 auto GUID
= MI
.getOperand(0).getImm();
1358 auto Index
= MI
.getOperand(1).getImm();
1359 auto Type
= MI
.getOperand(2).getImm();
1360 auto Attr
= MI
.getOperand(3).getImm();
1361 DILocation
*DebugLoc
= MI
.getDebugLoc();
1362 PP
->emitPseudoProbe(GUID
, Index
, Type
, Attr
, DebugLoc
);
1366 void AsmPrinter::emitStackSizeSection(const MachineFunction
&MF
) {
1367 if (!MF
.getTarget().Options
.EmitStackSizeSection
)
1370 MCSection
*StackSizeSection
=
1371 getObjFileLowering().getStackSizesSection(*getCurrentSection());
1372 if (!StackSizeSection
)
1375 const MachineFrameInfo
&FrameInfo
= MF
.getFrameInfo();
1376 // Don't emit functions with dynamic stack allocations.
1377 if (FrameInfo
.hasVarSizedObjects())
1380 OutStreamer
->pushSection();
1381 OutStreamer
->switchSection(StackSizeSection
);
1383 const MCSymbol
*FunctionSymbol
= getFunctionBegin();
1384 uint64_t StackSize
=
1385 FrameInfo
.getStackSize() + FrameInfo
.getUnsafeStackSize();
1386 OutStreamer
->emitSymbolValue(FunctionSymbol
, TM
.getProgramPointerSize());
1387 OutStreamer
->emitULEB128IntValue(StackSize
);
1389 OutStreamer
->popSection();
1392 void AsmPrinter::emitStackUsage(const MachineFunction
&MF
) {
1393 const std::string
&OutputFilename
= MF
.getTarget().Options
.StackUsageOutput
;
1395 // OutputFilename empty implies -fstack-usage is not passed.
1396 if (OutputFilename
.empty())
1399 const MachineFrameInfo
&FrameInfo
= MF
.getFrameInfo();
1400 uint64_t StackSize
=
1401 FrameInfo
.getStackSize() + FrameInfo
.getUnsafeStackSize();
1403 if (StackUsageStream
== nullptr) {
1406 std::make_unique
<raw_fd_ostream
>(OutputFilename
, EC
, sys::fs::OF_Text
);
1408 errs() << "Could not open file: " << EC
.message();
1413 *StackUsageStream
<< MF
.getFunction().getParent()->getName();
1414 if (const DISubprogram
*DSP
= MF
.getFunction().getSubprogram())
1415 *StackUsageStream
<< ':' << DSP
->getLine();
1417 *StackUsageStream
<< ':' << MF
.getName() << '\t' << StackSize
<< '\t';
1418 if (FrameInfo
.hasVarSizedObjects())
1419 *StackUsageStream
<< "dynamic\n";
1421 *StackUsageStream
<< "static\n";
1424 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction
&MF
) {
1425 MachineModuleInfo
&MMI
= MF
.getMMI();
1426 if (!MF
.getLandingPads().empty() || MF
.hasEHFunclets() || MMI
.hasDebugInfo())
1429 // We might emit an EH table that uses function begin and end labels even if
1430 // we don't have any landingpads.
1431 if (!MF
.getFunction().hasPersonalityFn())
1433 return !isNoOpWithoutInvoke(
1434 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
1437 /// EmitFunctionBody - This method emits the body and trailer for a
1439 void AsmPrinter::emitFunctionBody() {
1440 emitFunctionHeader();
1442 // Emit target-specific gunk before the function body.
1443 emitFunctionBodyStart();
1446 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1447 MDT
= getAnalysisIfAvailable
<MachineDominatorTree
>();
1449 OwnedMDT
= std::make_unique
<MachineDominatorTree
>();
1450 OwnedMDT
->getBase().recalculate(*MF
);
1451 MDT
= OwnedMDT
.get();
1454 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1455 MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
1457 OwnedMLI
= std::make_unique
<MachineLoopInfo
>();
1458 OwnedMLI
->getBase().analyze(MDT
->getBase());
1459 MLI
= OwnedMLI
.get();
1463 // Print out code for the function.
1464 bool HasAnyRealCode
= false;
1465 int NumInstsInFunction
= 0;
1467 bool CanDoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1468 for (auto &MBB
: *MF
) {
1469 // Print a label for the basic block.
1470 emitBasicBlockStart(MBB
);
1471 DenseMap
<StringRef
, unsigned> MnemonicCounts
;
1472 for (auto &MI
: MBB
) {
1473 // Print the assembly for the instruction.
1474 if (!MI
.isPosition() && !MI
.isImplicitDef() && !MI
.isKill() &&
1475 !MI
.isDebugInstr()) {
1476 HasAnyRealCode
= true;
1477 ++NumInstsInFunction
;
1480 // If there is a pre-instruction symbol, emit a label for it here.
1481 if (MCSymbol
*S
= MI
.getPreInstrSymbol())
1482 OutStreamer
->emitLabel(S
);
1484 for (const HandlerInfo
&HI
: Handlers
) {
1485 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1486 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1487 HI
.Handler
->beginInstruction(&MI
);
1491 emitComments(MI
, OutStreamer
->getCommentOS());
1493 switch (MI
.getOpcode()) {
1494 case TargetOpcode::CFI_INSTRUCTION
:
1495 emitCFIInstruction(MI
);
1497 case TargetOpcode::LOCAL_ESCAPE
:
1500 case TargetOpcode::ANNOTATION_LABEL
:
1501 case TargetOpcode::EH_LABEL
:
1502 case TargetOpcode::GC_LABEL
:
1503 OutStreamer
->emitLabel(MI
.getOperand(0).getMCSymbol());
1505 case TargetOpcode::INLINEASM
:
1506 case TargetOpcode::INLINEASM_BR
:
1509 case TargetOpcode::DBG_VALUE
:
1510 case TargetOpcode::DBG_VALUE_LIST
:
1512 if (!emitDebugValueComment(&MI
, *this))
1513 emitInstruction(&MI
);
1516 case TargetOpcode::DBG_INSTR_REF
:
1517 // This instruction reference will have been resolved to a machine
1518 // location, and a nearby DBG_VALUE created. We can safely ignore
1519 // the instruction reference.
1521 case TargetOpcode::DBG_PHI
:
1522 // This instruction is only used to label a program point, it's purely
1523 // meta information.
1525 case TargetOpcode::DBG_LABEL
:
1527 if (!emitDebugLabelComment(&MI
, *this))
1528 emitInstruction(&MI
);
1531 case TargetOpcode::IMPLICIT_DEF
:
1532 if (isVerbose()) emitImplicitDef(&MI
);
1534 case TargetOpcode::KILL
:
1535 if (isVerbose()) emitKill(&MI
, *this);
1537 case TargetOpcode::PSEUDO_PROBE
:
1538 emitPseudoProbe(MI
);
1540 case TargetOpcode::ARITH_FENCE
:
1542 OutStreamer
->emitRawComment("ARITH_FENCE");
1545 emitInstruction(&MI
);
1546 if (CanDoExtraAnalysis
) {
1548 MCI
.setOpcode(MI
.getOpcode());
1549 auto Name
= OutStreamer
->getMnemonic(MCI
);
1550 auto I
= MnemonicCounts
.insert({Name
, 0u});
1556 // If there is a post-instruction symbol, emit a label for it here.
1557 if (MCSymbol
*S
= MI
.getPostInstrSymbol())
1558 OutStreamer
->emitLabel(S
);
1560 for (const HandlerInfo
&HI
: Handlers
) {
1561 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1562 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1563 HI
.Handler
->endInstruction();
1567 // We must emit temporary symbol for the end of this basic block, if either
1568 // we have BBLabels enabled or if this basic blocks marks the end of a
1570 if (MF
->hasBBLabels() ||
1571 (MAI
->hasDotTypeDotSizeDirective() && MBB
.isEndSection()))
1572 OutStreamer
->emitLabel(MBB
.getEndSymbol());
1574 if (MBB
.isEndSection()) {
1575 // The size directive for the section containing the entry block is
1576 // handled separately by the function section.
1577 if (!MBB
.sameSection(&MF
->front())) {
1578 if (MAI
->hasDotTypeDotSizeDirective()) {
1579 // Emit the size directive for the basic block section.
1580 const MCExpr
*SizeExp
= MCBinaryExpr::createSub(
1581 MCSymbolRefExpr::create(MBB
.getEndSymbol(), OutContext
),
1582 MCSymbolRefExpr::create(CurrentSectionBeginSym
, OutContext
),
1584 OutStreamer
->emitELFSize(CurrentSectionBeginSym
, SizeExp
);
1586 MBBSectionRanges
[MBB
.getSectionIDNum()] =
1587 MBBSectionRange
{CurrentSectionBeginSym
, MBB
.getEndSymbol()};
1590 emitBasicBlockEnd(MBB
);
1592 if (CanDoExtraAnalysis
) {
1593 // Skip empty blocks.
1597 MachineOptimizationRemarkAnalysis
R(DEBUG_TYPE
, "InstructionMix",
1598 MBB
.begin()->getDebugLoc(), &MBB
);
1600 // Generate instruction mix remark. First, sort counts in descending order
1601 // by count and name.
1602 SmallVector
<std::pair
<StringRef
, unsigned>, 128> MnemonicVec
;
1603 for (auto &KV
: MnemonicCounts
)
1604 MnemonicVec
.emplace_back(KV
.first
, KV
.second
);
1606 sort(MnemonicVec
, [](const std::pair
<StringRef
, unsigned> &A
,
1607 const std::pair
<StringRef
, unsigned> &B
) {
1608 if (A
.second
> B
.second
)
1610 if (A
.second
== B
.second
)
1611 return StringRef(A
.first
) < StringRef(B
.first
);
1614 R
<< "BasicBlock: " << ore::NV("BasicBlock", MBB
.getName()) << "\n";
1615 for (auto &KV
: MnemonicVec
) {
1616 auto Name
= (Twine("INST_") + getToken(KV
.first
.trim()).first
).str();
1617 R
<< KV
.first
<< ": " << ore::NV(Name
, KV
.second
) << "\n";
1623 EmittedInsts
+= NumInstsInFunction
;
1624 MachineOptimizationRemarkAnalysis
R(DEBUG_TYPE
, "InstructionCount",
1625 MF
->getFunction().getSubprogram(),
1627 R
<< ore::NV("NumInstructions", NumInstsInFunction
)
1628 << " instructions in function";
1631 // If the function is empty and the object file uses .subsections_via_symbols,
1632 // then we need to emit *something* to the function body to prevent the
1633 // labels from collapsing together. Just emit a noop.
1634 // Similarly, don't emit empty functions on Windows either. It can lead to
1635 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1636 // after linking, causing the kernel not to load the binary:
1637 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1638 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1639 const Triple
&TT
= TM
.getTargetTriple();
1640 if (!HasAnyRealCode
&& (MAI
->hasSubsectionsViaSymbols() ||
1641 (TT
.isOSWindows() && TT
.isOSBinFormatCOFF()))) {
1642 MCInst Noop
= MF
->getSubtarget().getInstrInfo()->getNop();
1644 // Targets can opt-out of emitting the noop here by leaving the opcode
1646 if (Noop
.getOpcode()) {
1647 OutStreamer
->AddComment("avoids zero-length function");
1652 // Switch to the original section in case basic block sections was used.
1653 OutStreamer
->switchSection(MF
->getSection());
1655 const Function
&F
= MF
->getFunction();
1656 for (const auto &BB
: F
) {
1657 if (!BB
.hasAddressTaken())
1659 MCSymbol
*Sym
= GetBlockAddressSymbol(&BB
);
1660 if (Sym
->isDefined())
1662 OutStreamer
->AddComment("Address of block that was removed by CodeGen");
1663 OutStreamer
->emitLabel(Sym
);
1666 // Emit target-specific gunk after the function body.
1667 emitFunctionBodyEnd();
1669 if (needFuncLabelsForEHOrDebugInfo(*MF
) ||
1670 MAI
->hasDotTypeDotSizeDirective()) {
1671 // Create a symbol for the end of function.
1672 CurrentFnEnd
= createTempSymbol("func_end");
1673 OutStreamer
->emitLabel(CurrentFnEnd
);
1676 // If the target wants a .size directive for the size of the function, emit
1678 if (MAI
->hasDotTypeDotSizeDirective()) {
1679 // We can get the size as difference between the function label and the
1681 const MCExpr
*SizeExp
= MCBinaryExpr::createSub(
1682 MCSymbolRefExpr::create(CurrentFnEnd
, OutContext
),
1683 MCSymbolRefExpr::create(CurrentFnSymForSize
, OutContext
), OutContext
);
1684 OutStreamer
->emitELFSize(CurrentFnSym
, SizeExp
);
1687 for (const HandlerInfo
&HI
: Handlers
) {
1688 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1689 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1690 HI
.Handler
->markFunctionEnd();
1693 MBBSectionRanges
[MF
->front().getSectionIDNum()] =
1694 MBBSectionRange
{CurrentFnBegin
, CurrentFnEnd
};
1696 // Print out jump tables referenced by the function.
1697 emitJumpTableInfo();
1699 // Emit post-function debug and/or EH information.
1700 for (const HandlerInfo
&HI
: Handlers
) {
1701 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
1702 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
1703 HI
.Handler
->endFunction(MF
);
1706 // Emit section containing BB address offsets and their metadata, when
1707 // BB labels are requested for this function. Skip empty functions.
1708 if (MF
->hasBBLabels() && HasAnyRealCode
)
1709 emitBBAddrMapSection(*MF
);
1711 // Emit section containing stack size metadata.
1712 emitStackSizeSection(*MF
);
1714 // Emit .su file containing function stack size information.
1715 emitStackUsage(*MF
);
1717 emitPatchableFunctionEntries();
1720 OutStreamer
->getCommentOS() << "-- End function\n";
1722 OutStreamer
->addBlankLine();
1725 /// Compute the number of Global Variables that uses a Constant.
1726 static unsigned getNumGlobalVariableUses(const Constant
*C
) {
1730 if (isa
<GlobalVariable
>(C
))
1733 unsigned NumUses
= 0;
1734 for (const auto *CU
: C
->users())
1735 NumUses
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(CU
));
1740 /// Only consider global GOT equivalents if at least one user is a
1741 /// cstexpr inside an initializer of another global variables. Also, don't
1742 /// handle cstexpr inside instructions. During global variable emission,
1743 /// candidates are skipped and are emitted later in case at least one cstexpr
1744 /// isn't replaced by a PC relative GOT entry access.
1745 static bool isGOTEquivalentCandidate(const GlobalVariable
*GV
,
1746 unsigned &NumGOTEquivUsers
) {
1747 // Global GOT equivalents are unnamed private globals with a constant
1748 // pointer initializer to another global symbol. They must point to a
1749 // GlobalVariable or Function, i.e., as GlobalValue.
1750 if (!GV
->hasGlobalUnnamedAddr() || !GV
->hasInitializer() ||
1751 !GV
->isConstant() || !GV
->isDiscardableIfUnused() ||
1752 !isa
<GlobalValue
>(GV
->getOperand(0)))
1755 // To be a got equivalent, at least one of its users need to be a constant
1756 // expression used by another global variable.
1757 for (const auto *U
: GV
->users())
1758 NumGOTEquivUsers
+= getNumGlobalVariableUses(dyn_cast
<Constant
>(U
));
1760 return NumGOTEquivUsers
> 0;
1763 /// Unnamed constant global variables solely contaning a pointer to
1764 /// another globals variable is equivalent to a GOT table entry; it contains the
1765 /// the address of another symbol. Optimize it and replace accesses to these
1766 /// "GOT equivalents" by using the GOT entry for the final global instead.
1767 /// Compute GOT equivalent candidates among all global variables to avoid
1768 /// emitting them if possible later on, after it use is replaced by a GOT entry
1770 void AsmPrinter::computeGlobalGOTEquivs(Module
&M
) {
1771 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1774 for (const auto &G
: M
.globals()) {
1775 unsigned NumGOTEquivUsers
= 0;
1776 if (!isGOTEquivalentCandidate(&G
, NumGOTEquivUsers
))
1779 const MCSymbol
*GOTEquivSym
= getSymbol(&G
);
1780 GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(&G
, NumGOTEquivUsers
);
1784 /// Constant expressions using GOT equivalent globals may not be eligible
1785 /// for PC relative GOT entry conversion, in such cases we need to emit such
1786 /// globals we previously omitted in EmitGlobalVariable.
1787 void AsmPrinter::emitGlobalGOTEquivs() {
1788 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1791 SmallVector
<const GlobalVariable
*, 8> FailedCandidates
;
1792 for (auto &I
: GlobalGOTEquivs
) {
1793 const GlobalVariable
*GV
= I
.second
.first
;
1794 unsigned Cnt
= I
.second
.second
;
1796 FailedCandidates
.push_back(GV
);
1798 GlobalGOTEquivs
.clear();
1800 for (const auto *GV
: FailedCandidates
)
1801 emitGlobalVariable(GV
);
1804 void AsmPrinter::emitGlobalAlias(Module
&M
, const GlobalAlias
&GA
) {
1805 MCSymbol
*Name
= getSymbol(&GA
);
1806 bool IsFunction
= GA
.getValueType()->isFunctionTy();
1807 // Treat bitcasts of functions as functions also. This is important at least
1808 // on WebAssembly where object and function addresses can't alias each other.
1810 IsFunction
= isa
<Function
>(GA
.getAliasee()->stripPointerCasts());
1812 // AIX's assembly directive `.set` is not usable for aliasing purpose,
1813 // so AIX has to use the extra-label-at-definition strategy. At this
1814 // point, all the extra label is emitted, we just have to emit linkage for
1816 if (TM
.getTargetTriple().isOSBinFormatXCOFF()) {
1817 assert(MAI
->hasVisibilityOnlyWithLinkage() &&
1818 "Visibility should be handled with emitLinkage() on AIX.");
1820 // Linkage for alias of global variable has been emitted.
1821 if (isa
<GlobalVariable
>(GA
.getAliaseeObject()))
1824 emitLinkage(&GA
, Name
);
1825 // If it's a function, also emit linkage for aliases of function entry
1829 getObjFileLowering().getFunctionEntryPointSymbol(&GA
, TM
));
1833 if (GA
.hasExternalLinkage() || !MAI
->getWeakRefDirective())
1834 OutStreamer
->emitSymbolAttribute(Name
, MCSA_Global
);
1835 else if (GA
.hasWeakLinkage() || GA
.hasLinkOnceLinkage())
1836 OutStreamer
->emitSymbolAttribute(Name
, MCSA_WeakReference
);
1838 assert(GA
.hasLocalLinkage() && "Invalid alias linkage");
1840 // Set the symbol type to function if the alias has a function type.
1841 // This affects codegen when the aliasee is not a function.
1843 OutStreamer
->emitSymbolAttribute(Name
, MCSA_ELF_TypeFunction
);
1844 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
1845 OutStreamer
->beginCOFFSymbolDef(Name
);
1846 OutStreamer
->emitCOFFSymbolStorageClass(
1847 GA
.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
1848 : COFF::IMAGE_SYM_CLASS_EXTERNAL
);
1849 OutStreamer
->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
1850 << COFF::SCT_COMPLEX_TYPE_SHIFT
);
1851 OutStreamer
->endCOFFSymbolDef();
1855 emitVisibility(Name
, GA
.getVisibility());
1857 const MCExpr
*Expr
= lowerConstant(GA
.getAliasee());
1859 if (MAI
->hasAltEntry() && isa
<MCBinaryExpr
>(Expr
))
1860 OutStreamer
->emitSymbolAttribute(Name
, MCSA_AltEntry
);
1862 // Emit the directives as assignments aka .set:
1863 OutStreamer
->emitAssignment(Name
, Expr
);
1864 MCSymbol
*LocalAlias
= getSymbolPreferLocal(GA
);
1865 if (LocalAlias
!= Name
)
1866 OutStreamer
->emitAssignment(LocalAlias
, Expr
);
1868 // If the aliasee does not correspond to a symbol in the output, i.e. the
1869 // alias is not of an object or the aliased object is private, then set the
1870 // size of the alias symbol from the type of the alias. We don't do this in
1871 // other situations as the alias and aliasee having differing types but same
1872 // size may be intentional.
1873 const GlobalObject
*BaseObject
= GA
.getAliaseeObject();
1874 if (MAI
->hasDotTypeDotSizeDirective() && GA
.getValueType()->isSized() &&
1875 (!BaseObject
|| BaseObject
->hasPrivateLinkage())) {
1876 const DataLayout
&DL
= M
.getDataLayout();
1877 uint64_t Size
= DL
.getTypeAllocSize(GA
.getValueType());
1878 OutStreamer
->emitELFSize(Name
, MCConstantExpr::create(Size
, OutContext
));
1882 void AsmPrinter::emitGlobalIFunc(Module
&M
, const GlobalIFunc
&GI
) {
1883 assert(!TM
.getTargetTriple().isOSBinFormatXCOFF() &&
1884 "IFunc is not supported on AIX.");
1886 MCSymbol
*Name
= getSymbol(&GI
);
1888 if (GI
.hasExternalLinkage() || !MAI
->getWeakRefDirective())
1889 OutStreamer
->emitSymbolAttribute(Name
, MCSA_Global
);
1890 else if (GI
.hasWeakLinkage() || GI
.hasLinkOnceLinkage())
1891 OutStreamer
->emitSymbolAttribute(Name
, MCSA_WeakReference
);
1893 assert(GI
.hasLocalLinkage() && "Invalid ifunc linkage");
1895 OutStreamer
->emitSymbolAttribute(Name
, MCSA_ELF_TypeIndFunction
);
1896 emitVisibility(Name
, GI
.getVisibility());
1898 // Emit the directives as assignments aka .set:
1899 const MCExpr
*Expr
= lowerConstant(GI
.getResolver());
1900 OutStreamer
->emitAssignment(Name
, Expr
);
1901 MCSymbol
*LocalAlias
= getSymbolPreferLocal(GI
);
1902 if (LocalAlias
!= Name
)
1903 OutStreamer
->emitAssignment(LocalAlias
, Expr
);
1906 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer
&RS
) {
1907 if (!RS
.needsSection())
1910 remarks::RemarkSerializer
&RemarkSerializer
= RS
.getSerializer();
1912 Optional
<SmallString
<128>> Filename
;
1913 if (Optional
<StringRef
> FilenameRef
= RS
.getFilename()) {
1914 Filename
= *FilenameRef
;
1915 sys::fs::make_absolute(*Filename
);
1916 assert(!Filename
->empty() && "The filename can't be empty.");
1920 raw_string_ostream
OS(Buf
);
1921 std::unique_ptr
<remarks::MetaSerializer
> MetaSerializer
=
1922 Filename
? RemarkSerializer
.metaSerializer(OS
, Filename
->str())
1923 : RemarkSerializer
.metaSerializer(OS
);
1924 MetaSerializer
->emit();
1926 // Switch to the remarks section.
1927 MCSection
*RemarksSection
=
1928 OutContext
.getObjectFileInfo()->getRemarksSection();
1929 OutStreamer
->switchSection(RemarksSection
);
1931 OutStreamer
->emitBinaryData(OS
.str());
1934 bool AsmPrinter::doFinalization(Module
&M
) {
1935 // Set the MachineFunction to nullptr so that we can catch attempted
1936 // accesses to MF specific features at the module level and so that
1937 // we can conditionalize accesses based on whether or not it is nullptr.
1940 // Gather all GOT equivalent globals in the module. We really need two
1941 // passes over the globals: one to compute and another to avoid its emission
1942 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1943 // where the got equivalent shows up before its use.
1944 computeGlobalGOTEquivs(M
);
1946 // Emit global variables.
1947 for (const auto &G
: M
.globals())
1948 emitGlobalVariable(&G
);
1950 // Emit remaining GOT equivalent globals.
1951 emitGlobalGOTEquivs();
1953 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
1955 // Emit linkage(XCOFF) and visibility info for declarations
1956 for (const Function
&F
: M
) {
1957 if (!F
.isDeclarationForLinker())
1960 MCSymbol
*Name
= getSymbol(&F
);
1961 // Function getSymbol gives us the function descriptor symbol for XCOFF.
1963 if (!TM
.getTargetTriple().isOSBinFormatXCOFF()) {
1964 GlobalValue::VisibilityTypes V
= F
.getVisibility();
1965 if (V
== GlobalValue::DefaultVisibility
)
1968 emitVisibility(Name
, V
, false);
1972 if (F
.isIntrinsic())
1975 // Handle the XCOFF case.
1976 // Variable `Name` is the function descriptor symbol (see above). Get the
1977 // function entry point symbol.
1978 MCSymbol
*FnEntryPointSym
= TLOF
.getFunctionEntryPointSymbol(&F
, TM
);
1979 // Emit linkage for the function entry point.
1980 emitLinkage(&F
, FnEntryPointSym
);
1982 // Emit linkage for the function descriptor.
1983 emitLinkage(&F
, Name
);
1986 // Emit the remarks section contents.
1987 // FIXME: Figure out when is the safest time to emit this section. It should
1988 // not come after debug info.
1989 if (remarks::RemarkStreamer
*RS
= M
.getContext().getMainRemarkStreamer())
1990 emitRemarksSection(*RS
);
1992 TLOF
.emitModuleMetadata(*OutStreamer
, M
);
1994 if (TM
.getTargetTriple().isOSBinFormatELF()) {
1995 MachineModuleInfoELF
&MMIELF
= MMI
->getObjFileInfo
<MachineModuleInfoELF
>();
1997 // Output stubs for external and common global variables.
1998 MachineModuleInfoELF::SymbolListTy Stubs
= MMIELF
.GetGVStubList();
1999 if (!Stubs
.empty()) {
2000 OutStreamer
->switchSection(TLOF
.getDataSection());
2001 const DataLayout
&DL
= M
.getDataLayout();
2003 emitAlignment(Align(DL
.getPointerSize()));
2004 for (const auto &Stub
: Stubs
) {
2005 OutStreamer
->emitLabel(Stub
.first
);
2006 OutStreamer
->emitSymbolValue(Stub
.second
.getPointer(),
2007 DL
.getPointerSize());
2012 if (TM
.getTargetTriple().isOSBinFormatCOFF()) {
2013 MachineModuleInfoCOFF
&MMICOFF
=
2014 MMI
->getObjFileInfo
<MachineModuleInfoCOFF
>();
2016 // Output stubs for external and common global variables.
2017 MachineModuleInfoCOFF::SymbolListTy Stubs
= MMICOFF
.GetGVStubList();
2018 if (!Stubs
.empty()) {
2019 const DataLayout
&DL
= M
.getDataLayout();
2021 for (const auto &Stub
: Stubs
) {
2022 SmallString
<256> SectionName
= StringRef(".rdata$");
2023 SectionName
+= Stub
.first
->getName();
2024 OutStreamer
->switchSection(OutContext
.getCOFFSection(
2026 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
| COFF::IMAGE_SCN_MEM_READ
|
2027 COFF::IMAGE_SCN_LNK_COMDAT
,
2028 SectionKind::getReadOnly(), Stub
.first
->getName(),
2029 COFF::IMAGE_COMDAT_SELECT_ANY
));
2030 emitAlignment(Align(DL
.getPointerSize()));
2031 OutStreamer
->emitSymbolAttribute(Stub
.first
, MCSA_Global
);
2032 OutStreamer
->emitLabel(Stub
.first
);
2033 OutStreamer
->emitSymbolValue(Stub
.second
.getPointer(),
2034 DL
.getPointerSize());
2039 // This needs to happen before emitting debug information since that can end
2040 // arbitrary sections.
2041 if (auto *TS
= OutStreamer
->getTargetStreamer())
2042 TS
->emitConstantPools();
2044 // Finalize debug and EH information.
2045 for (const HandlerInfo
&HI
: Handlers
) {
2046 NamedRegionTimer
T(HI
.TimerName
, HI
.TimerDescription
, HI
.TimerGroupName
,
2047 HI
.TimerGroupDescription
, TimePassesIsEnabled
);
2048 HI
.Handler
->endModule();
2051 // This deletes all the ephemeral handlers that AsmPrinter added, while
2052 // keeping all the user-added handlers alive until the AsmPrinter is
2054 Handlers
.erase(Handlers
.begin() + NumUserHandlers
, Handlers
.end());
2057 // If the target wants to know about weak references, print them all.
2058 if (MAI
->getWeakRefDirective()) {
2059 // FIXME: This is not lazy, it would be nice to only print weak references
2060 // to stuff that is actually used. Note that doing so would require targets
2061 // to notice uses in operands (due to constant exprs etc). This should
2062 // happen with the MC stuff eventually.
2064 // Print out module-level global objects here.
2065 for (const auto &GO
: M
.global_objects()) {
2066 if (!GO
.hasExternalWeakLinkage())
2068 OutStreamer
->emitSymbolAttribute(getSymbol(&GO
), MCSA_WeakReference
);
2070 if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
2071 auto SymbolName
= "swift_async_extendedFramePointerFlags";
2072 auto Global
= M
.getGlobalVariable(SymbolName
);
2074 auto Int8PtrTy
= Type::getInt8PtrTy(M
.getContext());
2075 Global
= new GlobalVariable(M
, Int8PtrTy
, false,
2076 GlobalValue::ExternalWeakLinkage
, nullptr,
2078 OutStreamer
->emitSymbolAttribute(getSymbol(Global
), MCSA_WeakReference
);
2083 // Print aliases in topological order, that is, for each alias a = b,
2084 // b must be printed before a.
2085 // This is because on some targets (e.g. PowerPC) linker expects aliases in
2086 // such an order to generate correct TOC information.
2087 SmallVector
<const GlobalAlias
*, 16> AliasStack
;
2088 SmallPtrSet
<const GlobalAlias
*, 16> AliasVisited
;
2089 for (const auto &Alias
: M
.aliases()) {
2090 for (const GlobalAlias
*Cur
= &Alias
; Cur
;
2091 Cur
= dyn_cast
<GlobalAlias
>(Cur
->getAliasee())) {
2092 if (!AliasVisited
.insert(Cur
).second
)
2094 AliasStack
.push_back(Cur
);
2096 for (const GlobalAlias
*AncestorAlias
: llvm::reverse(AliasStack
))
2097 emitGlobalAlias(M
, *AncestorAlias
);
2100 for (const auto &IFunc
: M
.ifuncs())
2101 emitGlobalIFunc(M
, IFunc
);
2103 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
2104 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
2105 for (GCModuleInfo::iterator I
= MI
->end(), E
= MI
->begin(); I
!= E
; )
2106 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(**--I
))
2107 MP
->finishAssembly(M
, *MI
, *this);
2109 // Emit llvm.ident metadata in an '.ident' directive.
2110 emitModuleIdents(M
);
2112 // Emit bytes for llvm.commandline metadata.
2113 emitModuleCommandLines(M
);
2115 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2116 // split-stack is used.
2117 if (TM
.getTargetTriple().isOSBinFormatELF() && HasSplitStack
) {
2118 OutStreamer
->switchSection(OutContext
.getELFSection(".note.GNU-split-stack",
2119 ELF::SHT_PROGBITS
, 0));
2120 if (HasNoSplitStack
)
2121 OutStreamer
->switchSection(OutContext
.getELFSection(
2122 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS
, 0));
2125 // If we don't have any trampolines, then we don't require stack memory
2126 // to be executable. Some targets have a directive to declare this.
2127 Function
*InitTrampolineIntrinsic
= M
.getFunction("llvm.init.trampoline");
2128 if (!InitTrampolineIntrinsic
|| InitTrampolineIntrinsic
->use_empty())
2129 if (MCSection
*S
= MAI
->getNonexecutableStackSection(OutContext
))
2130 OutStreamer
->switchSection(S
);
2132 if (TM
.Options
.EmitAddrsig
) {
2133 // Emit address-significance attributes for all globals.
2134 OutStreamer
->emitAddrsig();
2135 for (const GlobalValue
&GV
: M
.global_values()) {
2136 if (!GV
.use_empty() && !GV
.isTransitiveUsedByMetadataOnly() &&
2137 !GV
.isThreadLocal() && !GV
.hasDLLImportStorageClass() &&
2138 !GV
.getName().startswith("llvm.") && !GV
.hasAtLeastLocalUnnamedAddr())
2139 OutStreamer
->emitAddrsigSym(getSymbol(&GV
));
2143 // Emit symbol partition specifications (ELF only).
2144 if (TM
.getTargetTriple().isOSBinFormatELF()) {
2145 unsigned UniqueID
= 0;
2146 for (const GlobalValue
&GV
: M
.global_values()) {
2147 if (!GV
.hasPartition() || GV
.isDeclarationForLinker() ||
2148 GV
.getVisibility() != GlobalValue::DefaultVisibility
)
2151 OutStreamer
->switchSection(
2152 OutContext
.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART
, 0, 0,
2153 "", false, ++UniqueID
, nullptr));
2154 OutStreamer
->emitBytes(GV
.getPartition());
2155 OutStreamer
->emitZeros(1);
2156 OutStreamer
->emitValue(
2157 MCSymbolRefExpr::create(getSymbol(&GV
), OutContext
),
2158 MAI
->getCodePointerSize());
2162 // Allow the target to emit any magic that it wants at the end of the file,
2163 // after everything else has gone out.
2164 emitEndOfAsmFile(M
);
2167 AddrLabelSymbols
= nullptr;
2169 OutStreamer
->finish();
2170 OutStreamer
->reset();
2177 MCSymbol
*AsmPrinter::getMBBExceptionSym(const MachineBasicBlock
&MBB
) {
2178 auto Res
= MBBSectionExceptionSyms
.try_emplace(MBB
.getSectionIDNum());
2180 Res
.first
->second
= createTempSymbol("exception");
2181 return Res
.first
->second
;
2184 void AsmPrinter::SetupMachineFunction(MachineFunction
&MF
) {
2186 const Function
&F
= MF
.getFunction();
2188 // Record that there are split-stack functions, so we will emit a special
2189 // section to tell the linker.
2190 if (MF
.shouldSplitStack()) {
2191 HasSplitStack
= true;
2193 if (!MF
.getFrameInfo().needsSplitStackProlog())
2194 HasNoSplitStack
= true;
2196 HasNoSplitStack
= true;
2198 // Get the function symbol.
2199 if (!MAI
->needsFunctionDescriptors()) {
2200 CurrentFnSym
= getSymbol(&MF
.getFunction());
2202 assert(TM
.getTargetTriple().isOSAIX() &&
2203 "Only AIX uses the function descriptor hooks.");
2204 // AIX is unique here in that the name of the symbol emitted for the
2205 // function body does not have the same name as the source function's
2207 assert(CurrentFnDescSym
&& "The function descriptor symbol needs to be"
2208 " initalized first.");
2210 // Get the function entry point symbol.
2211 CurrentFnSym
= getObjFileLowering().getFunctionEntryPointSymbol(&F
, TM
);
2214 CurrentFnSymForSize
= CurrentFnSym
;
2215 CurrentFnBegin
= nullptr;
2216 CurrentSectionBeginSym
= nullptr;
2217 MBBSectionRanges
.clear();
2218 MBBSectionExceptionSyms
.clear();
2219 bool NeedsLocalForSize
= MAI
->needsLocalForSize();
2220 if (F
.hasFnAttribute("patchable-function-entry") ||
2221 F
.hasFnAttribute("function-instrument") ||
2222 F
.hasFnAttribute("xray-instruction-threshold") ||
2223 needFuncLabelsForEHOrDebugInfo(MF
) || NeedsLocalForSize
||
2224 MF
.getTarget().Options
.EmitStackSizeSection
|| MF
.hasBBLabels()) {
2225 CurrentFnBegin
= createTempSymbol("func_begin");
2226 if (NeedsLocalForSize
)
2227 CurrentFnSymForSize
= CurrentFnBegin
;
2230 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
2235 // Keep track the alignment, constpool entries per Section.
2239 SmallVector
<unsigned, 4> CPEs
;
2241 SectionCPs(MCSection
*s
, Align a
) : S(s
), Alignment(a
) {}
2244 } // end anonymous namespace
2246 /// EmitConstantPool - Print to the current output stream assembly
2247 /// representations of the constants in the constant pool MCP. This is
2248 /// used to print out constants which have been "spilled to memory" by
2249 /// the code generator.
2250 void AsmPrinter::emitConstantPool() {
2251 const MachineConstantPool
*MCP
= MF
->getConstantPool();
2252 const std::vector
<MachineConstantPoolEntry
> &CP
= MCP
->getConstants();
2253 if (CP
.empty()) return;
2255 // Calculate sections for constant pool entries. We collect entries to go into
2256 // the same section together to reduce amount of section switch statements.
2257 SmallVector
<SectionCPs
, 4> CPSections
;
2258 for (unsigned i
= 0, e
= CP
.size(); i
!= e
; ++i
) {
2259 const MachineConstantPoolEntry
&CPE
= CP
[i
];
2260 Align Alignment
= CPE
.getAlign();
2262 SectionKind Kind
= CPE
.getSectionKind(&getDataLayout());
2264 const Constant
*C
= nullptr;
2265 if (!CPE
.isMachineConstantPoolEntry())
2266 C
= CPE
.Val
.ConstVal
;
2268 MCSection
*S
= getObjFileLowering().getSectionForConstant(
2269 getDataLayout(), Kind
, C
, Alignment
);
2271 // The number of sections are small, just do a linear search from the
2272 // last section to the first.
2274 unsigned SecIdx
= CPSections
.size();
2275 while (SecIdx
!= 0) {
2276 if (CPSections
[--SecIdx
].S
== S
) {
2282 SecIdx
= CPSections
.size();
2283 CPSections
.push_back(SectionCPs(S
, Alignment
));
2286 if (Alignment
> CPSections
[SecIdx
].Alignment
)
2287 CPSections
[SecIdx
].Alignment
= Alignment
;
2288 CPSections
[SecIdx
].CPEs
.push_back(i
);
2291 // Now print stuff into the calculated sections.
2292 const MCSection
*CurSection
= nullptr;
2293 unsigned Offset
= 0;
2294 for (unsigned i
= 0, e
= CPSections
.size(); i
!= e
; ++i
) {
2295 for (unsigned j
= 0, ee
= CPSections
[i
].CPEs
.size(); j
!= ee
; ++j
) {
2296 unsigned CPI
= CPSections
[i
].CPEs
[j
];
2297 MCSymbol
*Sym
= GetCPISymbol(CPI
);
2298 if (!Sym
->isUndefined())
2301 if (CurSection
!= CPSections
[i
].S
) {
2302 OutStreamer
->switchSection(CPSections
[i
].S
);
2303 emitAlignment(Align(CPSections
[i
].Alignment
));
2304 CurSection
= CPSections
[i
].S
;
2308 MachineConstantPoolEntry CPE
= CP
[CPI
];
2310 // Emit inter-object padding for alignment.
2311 unsigned NewOffset
= alignTo(Offset
, CPE
.getAlign());
2312 OutStreamer
->emitZeros(NewOffset
- Offset
);
2314 Offset
= NewOffset
+ CPE
.getSizeInBytes(getDataLayout());
2316 OutStreamer
->emitLabel(Sym
);
2317 if (CPE
.isMachineConstantPoolEntry())
2318 emitMachineConstantPoolValue(CPE
.Val
.MachineCPVal
);
2320 emitGlobalConstant(getDataLayout(), CPE
.Val
.ConstVal
);
2325 // Print assembly representations of the jump tables used by the current
2327 void AsmPrinter::emitJumpTableInfo() {
2328 const DataLayout
&DL
= MF
->getDataLayout();
2329 const MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
2331 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_Inline
) return;
2332 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
2333 if (JT
.empty()) return;
2335 // Pick the directive to use to print the jump table entries, and switch to
2336 // the appropriate section.
2337 const Function
&F
= MF
->getFunction();
2338 const TargetLoweringObjectFile
&TLOF
= getObjFileLowering();
2339 bool JTInDiffSection
= !TLOF
.shouldPutJumpTableInFunctionSection(
2340 MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
,
2342 if (JTInDiffSection
) {
2343 // Drop it in the readonly section.
2344 MCSection
*ReadOnlySection
= TLOF
.getSectionForJumpTable(F
, TM
);
2345 OutStreamer
->switchSection(ReadOnlySection
);
2348 emitAlignment(Align(MJTI
->getEntryAlignment(DL
)));
2350 // Jump tables in code sections are marked with a data_region directive
2351 // where that's supported.
2352 if (!JTInDiffSection
)
2353 OutStreamer
->emitDataRegion(MCDR_DataRegionJT32
);
2355 for (unsigned JTI
= 0, e
= JT
.size(); JTI
!= e
; ++JTI
) {
2356 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
2358 // If this jump table was deleted, ignore it.
2359 if (JTBBs
.empty()) continue;
2361 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2362 /// emit a .set directive for each unique entry.
2363 if (MJTI
->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32
&&
2364 MAI
->doesSetDirectiveSuppressReloc()) {
2365 SmallPtrSet
<const MachineBasicBlock
*, 16> EmittedSets
;
2366 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
2367 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
,JTI
,OutContext
);
2368 for (const MachineBasicBlock
*MBB
: JTBBs
) {
2369 if (!EmittedSets
.insert(MBB
).second
)
2372 // .set LJTSet, LBB32-base
2374 MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
2375 OutStreamer
->emitAssignment(GetJTSetSymbol(JTI
, MBB
->getNumber()),
2376 MCBinaryExpr::createSub(LHS
, Base
,
2381 // On some targets (e.g. Darwin) we want to emit two consecutive labels
2382 // before each jump table. The first label is never referenced, but tells
2383 // the assembler and linker the extents of the jump table object. The
2384 // second label is actually referenced by the code.
2385 if (JTInDiffSection
&& DL
.hasLinkerPrivateGlobalPrefix())
2386 // FIXME: This doesn't have to have any specific name, just any randomly
2387 // named and numbered local label started with 'l' would work. Simplify
2389 OutStreamer
->emitLabel(GetJTISymbol(JTI
, true));
2391 MCSymbol
* JTISymbol
= GetJTISymbol(JTI
);
2392 OutStreamer
->emitLabel(JTISymbol
);
2394 for (const MachineBasicBlock
*MBB
: JTBBs
)
2395 emitJumpTableEntry(MJTI
, MBB
, JTI
);
2397 if (!JTInDiffSection
)
2398 OutStreamer
->emitDataRegion(MCDR_DataRegionEnd
);
2401 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2403 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
2404 const MachineBasicBlock
*MBB
,
2405 unsigned UID
) const {
2406 assert(MBB
&& MBB
->getNumber() >= 0 && "Invalid basic block");
2407 const MCExpr
*Value
= nullptr;
2408 switch (MJTI
->getEntryKind()) {
2409 case MachineJumpTableInfo::EK_Inline
:
2410 llvm_unreachable("Cannot emit EK_Inline jump table entry");
2411 case MachineJumpTableInfo::EK_Custom32
:
2412 Value
= MF
->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2413 MJTI
, MBB
, UID
, OutContext
);
2415 case MachineJumpTableInfo::EK_BlockAddress
:
2416 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2418 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
2420 case MachineJumpTableInfo::EK_GPRel32BlockAddress
: {
2421 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2422 // with a relocation as gp-relative, e.g.:
2424 MCSymbol
*MBBSym
= MBB
->getSymbol();
2425 OutStreamer
->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
2429 case MachineJumpTableInfo::EK_GPRel64BlockAddress
: {
2430 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2431 // with a relocation as gp-relative, e.g.:
2433 MCSymbol
*MBBSym
= MBB
->getSymbol();
2434 OutStreamer
->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym
, OutContext
));
2438 case MachineJumpTableInfo::EK_LabelDifference32
: {
2439 // Each entry is the address of the block minus the address of the jump
2440 // table. This is used for PIC jump tables where gprel32 is not supported.
2442 // .word LBB123 - LJTI1_2
2443 // If the .set directive avoids relocations, this is emitted as:
2444 // .set L4_5_set_123, LBB123 - LJTI1_2
2445 // .word L4_5_set_123
2446 if (MAI
->doesSetDirectiveSuppressReloc()) {
2447 Value
= MCSymbolRefExpr::create(GetJTSetSymbol(UID
, MBB
->getNumber()),
2451 Value
= MCSymbolRefExpr::create(MBB
->getSymbol(), OutContext
);
2452 const TargetLowering
*TLI
= MF
->getSubtarget().getTargetLowering();
2453 const MCExpr
*Base
= TLI
->getPICJumpTableRelocBaseExpr(MF
, UID
, OutContext
);
2454 Value
= MCBinaryExpr::createSub(Value
, Base
, OutContext
);
2459 assert(Value
&& "Unknown entry kind!");
2461 unsigned EntrySize
= MJTI
->getEntrySize(getDataLayout());
2462 OutStreamer
->emitValue(Value
, EntrySize
);
2465 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2466 /// special global used by LLVM. If so, emit it and return true, otherwise
2467 /// do nothing and return false.
2468 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable
*GV
) {
2469 if (GV
->getName() == "llvm.used") {
2470 if (MAI
->hasNoDeadStrip()) // No need to emit this at all.
2471 emitLLVMUsedList(cast
<ConstantArray
>(GV
->getInitializer()));
2475 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
2476 if (GV
->getSection() == "llvm.metadata" ||
2477 GV
->hasAvailableExternallyLinkage())
2480 if (!GV
->hasAppendingLinkage()) return false;
2482 assert(GV
->hasInitializer() && "Not a special LLVM global!");
2484 if (GV
->getName() == "llvm.global_ctors") {
2485 emitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
2491 if (GV
->getName() == "llvm.global_dtors") {
2492 emitXXStructorList(GV
->getParent()->getDataLayout(), GV
->getInitializer(),
2493 /* isCtor */ false);
2498 report_fatal_error("unknown special variable");
2501 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2502 /// global in the specified llvm.used list.
2503 void AsmPrinter::emitLLVMUsedList(const ConstantArray
*InitList
) {
2504 // Should be an array of 'i8*'.
2505 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
) {
2506 const GlobalValue
*GV
=
2507 dyn_cast
<GlobalValue
>(InitList
->getOperand(i
)->stripPointerCasts());
2509 OutStreamer
->emitSymbolAttribute(getSymbol(GV
), MCSA_NoDeadStrip
);
2513 void AsmPrinter::preprocessXXStructorList(const DataLayout
&DL
,
2514 const Constant
*List
,
2515 SmallVector
<Structor
, 8> &Structors
) {
2516 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is
2517 // the init priority.
2518 if (!isa
<ConstantArray
>(List
))
2521 // Gather the structors in a form that's convenient for sorting by priority.
2522 for (Value
*O
: cast
<ConstantArray
>(List
)->operands()) {
2523 auto *CS
= cast
<ConstantStruct
>(O
);
2524 if (CS
->getOperand(1)->isNullValue())
2525 break; // Found a null terminator, skip the rest.
2526 ConstantInt
*Priority
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
2528 continue; // Malformed.
2529 Structors
.push_back(Structor());
2530 Structor
&S
= Structors
.back();
2531 S
.Priority
= Priority
->getLimitedValue(65535);
2532 S
.Func
= CS
->getOperand(1);
2533 if (!CS
->getOperand(2)->isNullValue()) {
2534 if (TM
.getTargetTriple().isOSAIX())
2535 llvm::report_fatal_error(
2536 "associated data of XXStructor list is not yet supported on AIX");
2538 dyn_cast
<GlobalValue
>(CS
->getOperand(2)->stripPointerCasts());
2542 // Emit the function pointers in the target-specific order
2543 llvm::stable_sort(Structors
, [](const Structor
&L
, const Structor
&R
) {
2544 return L
.Priority
< R
.Priority
;
2548 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2550 void AsmPrinter::emitXXStructorList(const DataLayout
&DL
, const Constant
*List
,
2552 SmallVector
<Structor
, 8> Structors
;
2553 preprocessXXStructorList(DL
, List
, Structors
);
2554 if (Structors
.empty())
2557 // Emit the structors in reverse order if we are using the .ctor/.dtor
2558 // initialization scheme.
2559 if (!TM
.Options
.UseInitArray
)
2560 std::reverse(Structors
.begin(), Structors
.end());
2562 const Align Align
= DL
.getPointerPrefAlignment();
2563 for (Structor
&S
: Structors
) {
2564 const TargetLoweringObjectFile
&Obj
= getObjFileLowering();
2565 const MCSymbol
*KeySym
= nullptr;
2566 if (GlobalValue
*GV
= S
.ComdatKey
) {
2567 if (GV
->isDeclarationForLinker())
2568 // If the associated variable is not defined in this module
2569 // (it might be available_externally, or have been an
2570 // available_externally definition that was dropped by the
2571 // EliminateAvailableExternally pass), some other TU
2572 // will provide its dynamic initializer.
2575 KeySym
= getSymbol(GV
);
2578 MCSection
*OutputSection
=
2579 (IsCtor
? Obj
.getStaticCtorSection(S
.Priority
, KeySym
)
2580 : Obj
.getStaticDtorSection(S
.Priority
, KeySym
));
2581 OutStreamer
->switchSection(OutputSection
);
2582 if (OutStreamer
->getCurrentSection() != OutStreamer
->getPreviousSection())
2583 emitAlignment(Align
);
2584 emitXXStructor(DL
, S
.Func
);
2588 void AsmPrinter::emitModuleIdents(Module
&M
) {
2589 if (!MAI
->hasIdentDirective())
2592 if (const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.ident")) {
2593 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
2594 const MDNode
*N
= NMD
->getOperand(i
);
2595 assert(N
->getNumOperands() == 1 &&
2596 "llvm.ident metadata entry can have only one operand");
2597 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
2598 OutStreamer
->emitIdent(S
->getString());
2603 void AsmPrinter::emitModuleCommandLines(Module
&M
) {
2604 MCSection
*CommandLine
= getObjFileLowering().getSectionForCommandLines();
2608 const NamedMDNode
*NMD
= M
.getNamedMetadata("llvm.commandline");
2609 if (!NMD
|| !NMD
->getNumOperands())
2612 OutStreamer
->pushSection();
2613 OutStreamer
->switchSection(CommandLine
);
2614 OutStreamer
->emitZeros(1);
2615 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
) {
2616 const MDNode
*N
= NMD
->getOperand(i
);
2617 assert(N
->getNumOperands() == 1 &&
2618 "llvm.commandline metadata entry can have only one operand");
2619 const MDString
*S
= cast
<MDString
>(N
->getOperand(0));
2620 OutStreamer
->emitBytes(S
->getString());
2621 OutStreamer
->emitZeros(1);
2623 OutStreamer
->popSection();
2626 //===--------------------------------------------------------------------===//
2627 // Emission and print routines
2630 /// Emit a byte directive and value.
2632 void AsmPrinter::emitInt8(int Value
) const { OutStreamer
->emitInt8(Value
); }
2634 /// Emit a short directive and value.
2635 void AsmPrinter::emitInt16(int Value
) const { OutStreamer
->emitInt16(Value
); }
2637 /// Emit a long directive and value.
2638 void AsmPrinter::emitInt32(int Value
) const { OutStreamer
->emitInt32(Value
); }
2640 /// Emit a long long directive and value.
2641 void AsmPrinter::emitInt64(uint64_t Value
) const {
2642 OutStreamer
->emitInt64(Value
);
2645 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2646 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2647 /// .set if it avoids relocations.
2648 void AsmPrinter::emitLabelDifference(const MCSymbol
*Hi
, const MCSymbol
*Lo
,
2649 unsigned Size
) const {
2650 OutStreamer
->emitAbsoluteSymbolDiff(Hi
, Lo
, Size
);
2653 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2654 /// where the size in bytes of the directive is specified by Size and Label
2655 /// specifies the label. This implicitly uses .set if it is available.
2656 void AsmPrinter::emitLabelPlusOffset(const MCSymbol
*Label
, uint64_t Offset
,
2658 bool IsSectionRelative
) const {
2659 if (MAI
->needsDwarfSectionOffsetDirective() && IsSectionRelative
) {
2660 OutStreamer
->emitCOFFSecRel32(Label
, Offset
);
2662 OutStreamer
->emitZeros(Size
- 4);
2666 // Emit Label+Offset (or just Label if Offset is zero)
2667 const MCExpr
*Expr
= MCSymbolRefExpr::create(Label
, OutContext
);
2669 Expr
= MCBinaryExpr::createAdd(
2670 Expr
, MCConstantExpr::create(Offset
, OutContext
), OutContext
);
2672 OutStreamer
->emitValue(Expr
, Size
);
2675 //===----------------------------------------------------------------------===//
2677 // EmitAlignment - Emit an alignment directive to the specified power of
2678 // two boundary. If a global value is specified, and if that global has
2679 // an explicit alignment requested, it will override the alignment request
2680 // if required for correctness.
2681 void AsmPrinter::emitAlignment(Align Alignment
, const GlobalObject
*GV
,
2682 unsigned MaxBytesToEmit
) const {
2684 Alignment
= getGVAlignment(GV
, GV
->getParent()->getDataLayout(), Alignment
);
2686 if (Alignment
== Align(1))
2687 return; // 1-byte aligned: no need to emit alignment.
2689 if (getCurrentSection()->getKind().isText()) {
2690 const MCSubtargetInfo
*STI
= nullptr;
2692 STI
= &getSubtargetInfo();
2694 STI
= TM
.getMCSubtargetInfo();
2695 OutStreamer
->emitCodeAlignment(Alignment
.value(), STI
, MaxBytesToEmit
);
2697 OutStreamer
->emitValueToAlignment(Alignment
.value(), 0, 1, MaxBytesToEmit
);
2700 //===----------------------------------------------------------------------===//
2701 // Constant emission.
2702 //===----------------------------------------------------------------------===//
2704 const MCExpr
*AsmPrinter::lowerConstant(const Constant
*CV
) {
2705 MCContext
&Ctx
= OutContext
;
2707 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
2708 return MCConstantExpr::create(0, Ctx
);
2710 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
))
2711 return MCConstantExpr::create(CI
->getZExtValue(), Ctx
);
2713 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
))
2714 return MCSymbolRefExpr::create(getSymbol(GV
), Ctx
);
2716 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(CV
))
2717 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA
), Ctx
);
2719 if (const auto *Equiv
= dyn_cast
<DSOLocalEquivalent
>(CV
))
2720 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv
, TM
);
2722 if (const NoCFIValue
*NC
= dyn_cast
<NoCFIValue
>(CV
))
2723 return MCSymbolRefExpr::create(getSymbol(NC
->getGlobalValue()), Ctx
);
2725 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
2727 llvm_unreachable("Unknown constant value to lower!");
2730 // The constant expression opcodes are limited to those that are necessary
2731 // to represent relocations on supported targets. Expressions involving only
2732 // constant addresses are constant folded instead.
2733 switch (CE
->getOpcode()) {
2736 case Instruction::AddrSpaceCast
: {
2737 const Constant
*Op
= CE
->getOperand(0);
2738 unsigned DstAS
= CE
->getType()->getPointerAddressSpace();
2739 unsigned SrcAS
= Op
->getType()->getPointerAddressSpace();
2740 if (TM
.isNoopAddrSpaceCast(SrcAS
, DstAS
))
2741 return lowerConstant(Op
);
2745 case Instruction::GetElementPtr
: {
2746 // Generate a symbolic expression for the byte address
2747 APInt
OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE
->getType()), 0);
2748 cast
<GEPOperator
>(CE
)->accumulateConstantOffset(getDataLayout(), OffsetAI
);
2750 const MCExpr
*Base
= lowerConstant(CE
->getOperand(0));
2754 int64_t Offset
= OffsetAI
.getSExtValue();
2755 return MCBinaryExpr::createAdd(Base
, MCConstantExpr::create(Offset
, Ctx
),
2759 case Instruction::Trunc
:
2760 // We emit the value and depend on the assembler to truncate the generated
2761 // expression properly. This is important for differences between
2762 // blockaddress labels. Since the two labels are in the same function, it
2763 // is reasonable to treat their delta as a 32-bit value.
2765 case Instruction::BitCast
:
2766 return lowerConstant(CE
->getOperand(0));
2768 case Instruction::IntToPtr
: {
2769 const DataLayout
&DL
= getDataLayout();
2771 // Handle casts to pointers by changing them into casts to the appropriate
2772 // integer type. This promotes constant folding and simplifies this code.
2773 Constant
*Op
= CE
->getOperand(0);
2774 Op
= ConstantExpr::getIntegerCast(Op
, DL
.getIntPtrType(CV
->getType()),
2776 return lowerConstant(Op
);
2779 case Instruction::PtrToInt
: {
2780 const DataLayout
&DL
= getDataLayout();
2782 // Support only foldable casts to/from pointers that can be eliminated by
2783 // changing the pointer to the appropriately sized integer type.
2784 Constant
*Op
= CE
->getOperand(0);
2785 Type
*Ty
= CE
->getType();
2787 const MCExpr
*OpExpr
= lowerConstant(Op
);
2789 // We can emit the pointer value into this slot if the slot is an
2790 // integer slot equal to the size of the pointer.
2792 // If the pointer is larger than the resultant integer, then
2793 // as with Trunc just depend on the assembler to truncate it.
2794 if (DL
.getTypeAllocSize(Ty
).getFixedSize() <=
2795 DL
.getTypeAllocSize(Op
->getType()).getFixedSize())
2801 case Instruction::Sub
: {
2804 DSOLocalEquivalent
*DSOEquiv
;
2805 if (IsConstantOffsetFromGlobal(CE
->getOperand(0), LHSGV
, LHSOffset
,
2806 getDataLayout(), &DSOEquiv
)) {
2809 if (IsConstantOffsetFromGlobal(CE
->getOperand(1), RHSGV
, RHSOffset
,
2811 const MCExpr
*RelocExpr
=
2812 getObjFileLowering().lowerRelativeReference(LHSGV
, RHSGV
, TM
);
2814 const MCExpr
*LHSExpr
=
2815 MCSymbolRefExpr::create(getSymbol(LHSGV
), Ctx
);
2817 getObjFileLowering().supportDSOLocalEquivalentLowering())
2819 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv
, TM
);
2820 RelocExpr
= MCBinaryExpr::createSub(
2821 LHSExpr
, MCSymbolRefExpr::create(getSymbol(RHSGV
), Ctx
), Ctx
);
2823 int64_t Addend
= (LHSOffset
- RHSOffset
).getSExtValue();
2825 RelocExpr
= MCBinaryExpr::createAdd(
2826 RelocExpr
, MCConstantExpr::create(Addend
, Ctx
), Ctx
);
2831 const MCExpr
*LHS
= lowerConstant(CE
->getOperand(0));
2832 const MCExpr
*RHS
= lowerConstant(CE
->getOperand(1));
2833 return MCBinaryExpr::createSub(LHS
, RHS
, Ctx
);
2837 case Instruction::Add
: {
2838 const MCExpr
*LHS
= lowerConstant(CE
->getOperand(0));
2839 const MCExpr
*RHS
= lowerConstant(CE
->getOperand(1));
2840 return MCBinaryExpr::createAdd(LHS
, RHS
, Ctx
);
2844 // If the code isn't optimized, there may be outstanding folding
2845 // opportunities. Attempt to fold the expression using DataLayout as a
2846 // last resort before giving up.
2847 Constant
*C
= ConstantFoldConstant(CE
, getDataLayout());
2849 return lowerConstant(C
);
2851 // Otherwise report the problem to the user.
2853 raw_string_ostream
OS(S
);
2854 OS
<< "Unsupported expression in static initializer: ";
2855 CE
->printAsOperand(OS
, /*PrintType=*/false,
2856 !MF
? nullptr : MF
->getFunction().getParent());
2857 report_fatal_error(Twine(OS
.str()));
2860 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*C
,
2862 const Constant
*BaseCV
= nullptr,
2863 uint64_t Offset
= 0,
2864 AsmPrinter::AliasMapTy
*AliasList
= nullptr);
2866 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
);
2867 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
);
2869 /// isRepeatedByteSequence - Determine whether the given value is
2870 /// composed of a repeated sequence of identical bytes and return the
2871 /// byte value. If it is not a repeated sequence, return -1.
2872 static int isRepeatedByteSequence(const ConstantDataSequential
*V
) {
2873 StringRef Data
= V
->getRawDataValues();
2874 assert(!Data
.empty() && "Empty aggregates should be CAZ node");
2876 for (unsigned i
= 1, e
= Data
.size(); i
!= e
; ++i
)
2877 if (Data
[i
] != C
) return -1;
2878 return static_cast<uint8_t>(C
); // Ensure 255 is not returned as -1.
2881 /// isRepeatedByteSequence - Determine whether the given value is
2882 /// composed of a repeated sequence of identical bytes and return the
2883 /// byte value. If it is not a repeated sequence, return -1.
2884 static int isRepeatedByteSequence(const Value
*V
, const DataLayout
&DL
) {
2885 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2886 uint64_t Size
= DL
.getTypeAllocSizeInBits(V
->getType());
2887 assert(Size
% 8 == 0);
2889 // Extend the element to take zero padding into account.
2890 APInt Value
= CI
->getValue().zext(Size
);
2891 if (!Value
.isSplat(8))
2894 return Value
.zextOrTrunc(8).getZExtValue();
2896 if (const ConstantArray
*CA
= dyn_cast
<ConstantArray
>(V
)) {
2897 // Make sure all array elements are sequences of the same repeated
2899 assert(CA
->getNumOperands() != 0 && "Should be a CAZ");
2900 Constant
*Op0
= CA
->getOperand(0);
2901 int Byte
= isRepeatedByteSequence(Op0
, DL
);
2905 // All array elements must be equal.
2906 for (unsigned i
= 1, e
= CA
->getNumOperands(); i
!= e
; ++i
)
2907 if (CA
->getOperand(i
) != Op0
)
2912 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(V
))
2913 return isRepeatedByteSequence(CDS
);
2918 static void emitGlobalAliasInline(AsmPrinter
&AP
, uint64_t Offset
,
2919 AsmPrinter::AliasMapTy
*AliasList
) {
2921 auto AliasIt
= AliasList
->find(Offset
);
2922 if (AliasIt
!= AliasList
->end()) {
2923 for (const GlobalAlias
*GA
: AliasIt
->second
)
2924 AP
.OutStreamer
->emitLabel(AP
.getSymbol(GA
));
2925 AliasList
->erase(Offset
);
2930 static void emitGlobalConstantDataSequential(
2931 const DataLayout
&DL
, const ConstantDataSequential
*CDS
, AsmPrinter
&AP
,
2932 AsmPrinter::AliasMapTy
*AliasList
) {
2933 // See if we can aggregate this into a .fill, if so, emit it as such.
2934 int Value
= isRepeatedByteSequence(CDS
, DL
);
2936 uint64_t Bytes
= DL
.getTypeAllocSize(CDS
->getType());
2937 // Don't emit a 1-byte object as a .fill.
2939 return AP
.OutStreamer
->emitFill(Bytes
, Value
);
2942 // If this can be emitted with .ascii/.asciz, emit it as such.
2943 if (CDS
->isString())
2944 return AP
.OutStreamer
->emitBytes(CDS
->getAsString());
2946 // Otherwise, emit the values in successive locations.
2947 unsigned ElementByteSize
= CDS
->getElementByteSize();
2948 if (isa
<IntegerType
>(CDS
->getElementType())) {
2949 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
) {
2950 emitGlobalAliasInline(AP
, ElementByteSize
* I
, AliasList
);
2952 AP
.OutStreamer
->getCommentOS()
2953 << format("0x%" PRIx64
"\n", CDS
->getElementAsInteger(I
));
2954 AP
.OutStreamer
->emitIntValue(CDS
->getElementAsInteger(I
),
2958 Type
*ET
= CDS
->getElementType();
2959 for (unsigned I
= 0, E
= CDS
->getNumElements(); I
!= E
; ++I
) {
2960 emitGlobalAliasInline(AP
, ElementByteSize
* I
, AliasList
);
2961 emitGlobalConstantFP(CDS
->getElementAsAPFloat(I
), ET
, AP
);
2965 unsigned Size
= DL
.getTypeAllocSize(CDS
->getType());
2966 unsigned EmittedSize
=
2967 DL
.getTypeAllocSize(CDS
->getElementType()) * CDS
->getNumElements();
2968 assert(EmittedSize
<= Size
&& "Size cannot be less than EmittedSize!");
2969 if (unsigned Padding
= Size
- EmittedSize
)
2970 AP
.OutStreamer
->emitZeros(Padding
);
2973 static void emitGlobalConstantArray(const DataLayout
&DL
,
2974 const ConstantArray
*CA
, AsmPrinter
&AP
,
2975 const Constant
*BaseCV
, uint64_t Offset
,
2976 AsmPrinter::AliasMapTy
*AliasList
) {
2977 // See if we can aggregate some values. Make sure it can be
2978 // represented as a series of bytes of the constant value.
2979 int Value
= isRepeatedByteSequence(CA
, DL
);
2982 uint64_t Bytes
= DL
.getTypeAllocSize(CA
->getType());
2983 AP
.OutStreamer
->emitFill(Bytes
, Value
);
2985 for (unsigned I
= 0, E
= CA
->getNumOperands(); I
!= E
; ++I
) {
2986 emitGlobalConstantImpl(DL
, CA
->getOperand(I
), AP
, BaseCV
, Offset
,
2988 Offset
+= DL
.getTypeAllocSize(CA
->getOperand(I
)->getType());
2993 static void emitGlobalConstantLargeInt(const ConstantInt
*CI
, AsmPrinter
&AP
);
2995 static void emitGlobalConstantVector(const DataLayout
&DL
,
2996 const ConstantVector
*CV
, AsmPrinter
&AP
,
2997 AsmPrinter::AliasMapTy
*AliasList
) {
2998 Type
*ElementType
= CV
->getType()->getElementType();
2999 uint64_t ElementSizeInBits
= DL
.getTypeSizeInBits(ElementType
);
3000 uint64_t ElementAllocSizeInBits
= DL
.getTypeAllocSizeInBits(ElementType
);
3001 uint64_t EmittedSize
;
3002 if (ElementSizeInBits
!= ElementAllocSizeInBits
) {
3003 // If the allocation size of an element is different from the size in bits,
3004 // printing each element separately will insert incorrect padding.
3006 // The general algorithm here is complicated; instead of writing it out
3007 // here, just use the existing code in ConstantFolding.
3009 IntegerType::get(CV
->getContext(), DL
.getTypeSizeInBits(CV
->getType()));
3010 ConstantInt
*CI
= dyn_cast_or_null
<ConstantInt
>(ConstantFoldConstant(
3011 ConstantExpr::getBitCast(const_cast<ConstantVector
*>(CV
), IntT
), DL
));
3014 "Cannot lower vector global with unusual element type");
3016 emitGlobalAliasInline(AP
, 0, AliasList
);
3017 emitGlobalConstantLargeInt(CI
, AP
);
3018 EmittedSize
= DL
.getTypeStoreSize(CV
->getType());
3020 for (unsigned I
= 0, E
= CV
->getType()->getNumElements(); I
!= E
; ++I
) {
3021 emitGlobalAliasInline(AP
, DL
.getTypeAllocSize(CV
->getType()) * I
, AliasList
);
3022 emitGlobalConstantImpl(DL
, CV
->getOperand(I
), AP
);
3025 DL
.getTypeAllocSize(ElementType
) * CV
->getType()->getNumElements();
3028 unsigned Size
= DL
.getTypeAllocSize(CV
->getType());
3029 if (unsigned Padding
= Size
- EmittedSize
)
3030 AP
.OutStreamer
->emitZeros(Padding
);
3033 static void emitGlobalConstantStruct(const DataLayout
&DL
,
3034 const ConstantStruct
*CS
, AsmPrinter
&AP
,
3035 const Constant
*BaseCV
, uint64_t Offset
,
3036 AsmPrinter::AliasMapTy
*AliasList
) {
3037 // Print the fields in successive locations. Pad to align if needed!
3038 unsigned Size
= DL
.getTypeAllocSize(CS
->getType());
3039 const StructLayout
*Layout
= DL
.getStructLayout(CS
->getType());
3040 uint64_t SizeSoFar
= 0;
3041 for (unsigned I
= 0, E
= CS
->getNumOperands(); I
!= E
; ++I
) {
3042 const Constant
*Field
= CS
->getOperand(I
);
3044 // Print the actual field value.
3045 emitGlobalConstantImpl(DL
, Field
, AP
, BaseCV
, Offset
+ SizeSoFar
,
3048 // Check if padding is needed and insert one or more 0s.
3049 uint64_t FieldSize
= DL
.getTypeAllocSize(Field
->getType());
3050 uint64_t PadSize
= ((I
== E
- 1 ? Size
: Layout
->getElementOffset(I
+ 1)) -
3051 Layout
->getElementOffset(I
)) -
3053 SizeSoFar
+= FieldSize
+ PadSize
;
3055 // Insert padding - this may include padding to increase the size of the
3056 // current field up to the ABI size (if the struct is not packed) as well
3057 // as padding to ensure that the next field starts at the right offset.
3058 AP
.OutStreamer
->emitZeros(PadSize
);
3060 assert(SizeSoFar
== Layout
->getSizeInBytes() &&
3061 "Layout of constant struct may be incorrect!");
3064 static void emitGlobalConstantFP(APFloat APF
, Type
*ET
, AsmPrinter
&AP
) {
3065 assert(ET
&& "Unknown float type");
3066 APInt API
= APF
.bitcastToAPInt();
3068 // First print a comment with what we think the original floating-point value
3069 // should have been.
3070 if (AP
.isVerbose()) {
3071 SmallString
<8> StrVal
;
3072 APF
.toString(StrVal
);
3073 ET
->print(AP
.OutStreamer
->getCommentOS());
3074 AP
.OutStreamer
->getCommentOS() << ' ' << StrVal
<< '\n';
3077 // Now iterate through the APInt chunks, emitting them in endian-correct
3078 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
3080 unsigned NumBytes
= API
.getBitWidth() / 8;
3081 unsigned TrailingBytes
= NumBytes
% sizeof(uint64_t);
3082 const uint64_t *p
= API
.getRawData();
3084 // PPC's long double has odd notions of endianness compared to how LLVM
3085 // handles it: p[0] goes first for *big* endian on PPC.
3086 if (AP
.getDataLayout().isBigEndian() && !ET
->isPPC_FP128Ty()) {
3087 int Chunk
= API
.getNumWords() - 1;
3090 AP
.OutStreamer
->emitIntValueInHexWithPadding(p
[Chunk
--], TrailingBytes
);
3092 for (; Chunk
>= 0; --Chunk
)
3093 AP
.OutStreamer
->emitIntValueInHexWithPadding(p
[Chunk
], sizeof(uint64_t));
3096 for (Chunk
= 0; Chunk
< NumBytes
/ sizeof(uint64_t); ++Chunk
)
3097 AP
.OutStreamer
->emitIntValueInHexWithPadding(p
[Chunk
], sizeof(uint64_t));
3100 AP
.OutStreamer
->emitIntValueInHexWithPadding(p
[Chunk
], TrailingBytes
);
3103 // Emit the tail padding for the long double.
3104 const DataLayout
&DL
= AP
.getDataLayout();
3105 AP
.OutStreamer
->emitZeros(DL
.getTypeAllocSize(ET
) - DL
.getTypeStoreSize(ET
));
3108 static void emitGlobalConstantFP(const ConstantFP
*CFP
, AsmPrinter
&AP
) {
3109 emitGlobalConstantFP(CFP
->getValueAPF(), CFP
->getType(), AP
);
3112 static void emitGlobalConstantLargeInt(const ConstantInt
*CI
, AsmPrinter
&AP
) {
3113 const DataLayout
&DL
= AP
.getDataLayout();
3114 unsigned BitWidth
= CI
->getBitWidth();
3116 // Copy the value as we may massage the layout for constants whose bit width
3117 // is not a multiple of 64-bits.
3118 APInt
Realigned(CI
->getValue());
3119 uint64_t ExtraBits
= 0;
3120 unsigned ExtraBitsSize
= BitWidth
& 63;
3122 if (ExtraBitsSize
) {
3123 // The bit width of the data is not a multiple of 64-bits.
3124 // The extra bits are expected to be at the end of the chunk of the memory.
3126 // * Nothing to be done, just record the extra bits to emit.
3128 // * Record the extra bits to emit.
3129 // * Realign the raw data to emit the chunks of 64-bits.
3130 if (DL
.isBigEndian()) {
3131 // Basically the structure of the raw data is a chunk of 64-bits cells:
3132 // 0 1 BitWidth / 64
3133 // [chunk1][chunk2] ... [chunkN].
3134 // The most significant chunk is chunkN and it should be emitted first.
3135 // However, due to the alignment issue chunkN contains useless bits.
3136 // Realign the chunks so that they contain only useful information:
3137 // ExtraBits 0 1 (BitWidth / 64) - 1
3138 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
3139 ExtraBitsSize
= alignTo(ExtraBitsSize
, 8);
3140 ExtraBits
= Realigned
.getRawData()[0] &
3141 (((uint64_t)-1) >> (64 - ExtraBitsSize
));
3142 Realigned
.lshrInPlace(ExtraBitsSize
);
3144 ExtraBits
= Realigned
.getRawData()[BitWidth
/ 64];
3147 // We don't expect assemblers to support integer data directives
3148 // for more than 64 bits, so we emit the data in at most 64-bit
3149 // quantities at a time.
3150 const uint64_t *RawData
= Realigned
.getRawData();
3151 for (unsigned i
= 0, e
= BitWidth
/ 64; i
!= e
; ++i
) {
3152 uint64_t Val
= DL
.isBigEndian() ? RawData
[e
- i
- 1] : RawData
[i
];
3153 AP
.OutStreamer
->emitIntValue(Val
, 8);
3156 if (ExtraBitsSize
) {
3157 // Emit the extra bits after the 64-bits chunks.
3159 // Emit a directive that fills the expected size.
3160 uint64_t Size
= AP
.getDataLayout().getTypeStoreSize(CI
->getType());
3161 Size
-= (BitWidth
/ 64) * 8;
3162 assert(Size
&& Size
* 8 >= ExtraBitsSize
&&
3163 (ExtraBits
& (((uint64_t)-1) >> (64 - ExtraBitsSize
)))
3164 == ExtraBits
&& "Directive too small for extra bits.");
3165 AP
.OutStreamer
->emitIntValue(ExtraBits
, Size
);
3169 /// Transform a not absolute MCExpr containing a reference to a GOT
3170 /// equivalent global, by a target specific GOT pc relative access to the
3172 static void handleIndirectSymViaGOTPCRel(AsmPrinter
&AP
, const MCExpr
**ME
,
3173 const Constant
*BaseCst
,
3175 // The global @foo below illustrates a global that uses a got equivalent.
3177 // @bar = global i32 42
3178 // @gotequiv = private unnamed_addr constant i32* @bar
3179 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
3180 // i64 ptrtoint (i32* @foo to i64))
3183 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
3184 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
3187 // foo = cstexpr, where
3188 // cstexpr := <gotequiv> - "." + <cst>
3189 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
3191 // After canonicalization by evaluateAsRelocatable `ME` turns into:
3193 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
3194 // gotpcrelcst := <offset from @foo base> + <cst>
3196 if (!(*ME
)->evaluateAsRelocatable(MV
, nullptr, nullptr) || MV
.isAbsolute())
3198 const MCSymbolRefExpr
*SymA
= MV
.getSymA();
3202 // Check that GOT equivalent symbol is cached.
3203 const MCSymbol
*GOTEquivSym
= &SymA
->getSymbol();
3204 if (!AP
.GlobalGOTEquivs
.count(GOTEquivSym
))
3207 const GlobalValue
*BaseGV
= dyn_cast_or_null
<GlobalValue
>(BaseCst
);
3211 // Check for a valid base symbol
3212 const MCSymbol
*BaseSym
= AP
.getSymbol(BaseGV
);
3213 const MCSymbolRefExpr
*SymB
= MV
.getSymB();
3215 if (!SymB
|| BaseSym
!= &SymB
->getSymbol())
3218 // Make sure to match:
3220 // gotpcrelcst := <offset from @foo base> + <cst>
3222 // If gotpcrelcst is positive it means that we can safely fold the pc rel
3223 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
3224 // if the target knows how to encode it.
3225 int64_t GOTPCRelCst
= Offset
+ MV
.getConstant();
3226 if (GOTPCRelCst
< 0)
3228 if (!AP
.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst
!= 0)
3231 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
3238 // .long gotequiv - "." + <cst>
3240 // is replaced by the target specific equivalent to:
3245 // .long bar@GOTPCREL+<gotpcrelcst>
3246 AsmPrinter::GOTEquivUsePair Result
= AP
.GlobalGOTEquivs
[GOTEquivSym
];
3247 const GlobalVariable
*GV
= Result
.first
;
3248 int NumUses
= (int)Result
.second
;
3249 const GlobalValue
*FinalGV
= dyn_cast
<GlobalValue
>(GV
->getOperand(0));
3250 const MCSymbol
*FinalSym
= AP
.getSymbol(FinalGV
);
3251 *ME
= AP
.getObjFileLowering().getIndirectSymViaGOTPCRel(
3252 FinalGV
, FinalSym
, MV
, Offset
, AP
.MMI
, *AP
.OutStreamer
);
3254 // Update GOT equivalent usage information
3257 AP
.GlobalGOTEquivs
[GOTEquivSym
] = std::make_pair(GV
, NumUses
);
3260 static void emitGlobalConstantImpl(const DataLayout
&DL
, const Constant
*CV
,
3261 AsmPrinter
&AP
, const Constant
*BaseCV
,
3263 AsmPrinter::AliasMapTy
*AliasList
) {
3264 emitGlobalAliasInline(AP
, Offset
, AliasList
);
3265 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
3267 // Globals with sub-elements such as combinations of arrays and structs
3268 // are handled recursively by emitGlobalConstantImpl. Keep track of the
3269 // constant symbol base and the current position with BaseCV and Offset.
3270 if (!BaseCV
&& CV
->hasOneUse())
3271 BaseCV
= dyn_cast
<Constant
>(CV
->user_back());
3273 if (isa
<ConstantAggregateZero
>(CV
) || isa
<UndefValue
>(CV
))
3274 return AP
.OutStreamer
->emitZeros(Size
);
3276 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
)) {
3277 const uint64_t StoreSize
= DL
.getTypeStoreSize(CV
->getType());
3279 if (StoreSize
<= 8) {
3281 AP
.OutStreamer
->getCommentOS()
3282 << format("0x%" PRIx64
"\n", CI
->getZExtValue());
3283 AP
.OutStreamer
->emitIntValue(CI
->getZExtValue(), StoreSize
);
3285 emitGlobalConstantLargeInt(CI
, AP
);
3288 // Emit tail padding if needed
3289 if (Size
!= StoreSize
)
3290 AP
.OutStreamer
->emitZeros(Size
- StoreSize
);
3295 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CV
))
3296 return emitGlobalConstantFP(CFP
, AP
);
3298 if (isa
<ConstantPointerNull
>(CV
)) {
3299 AP
.OutStreamer
->emitIntValue(0, Size
);
3303 if (const ConstantDataSequential
*CDS
= dyn_cast
<ConstantDataSequential
>(CV
))
3304 return emitGlobalConstantDataSequential(DL
, CDS
, AP
, AliasList
);
3306 if (const ConstantArray
*CVA
= dyn_cast
<ConstantArray
>(CV
))
3307 return emitGlobalConstantArray(DL
, CVA
, AP
, BaseCV
, Offset
, AliasList
);
3309 if (const ConstantStruct
*CVS
= dyn_cast
<ConstantStruct
>(CV
))
3310 return emitGlobalConstantStruct(DL
, CVS
, AP
, BaseCV
, Offset
, AliasList
);
3312 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
)) {
3313 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3315 if (CE
->getOpcode() == Instruction::BitCast
)
3316 return emitGlobalConstantImpl(DL
, CE
->getOperand(0), AP
);
3319 // If the constant expression's size is greater than 64-bits, then we have
3320 // to emit the value in chunks. Try to constant fold the value and emit it
3322 Constant
*New
= ConstantFoldConstant(CE
, DL
);
3324 return emitGlobalConstantImpl(DL
, New
, AP
);
3328 if (const ConstantVector
*V
= dyn_cast
<ConstantVector
>(CV
))
3329 return emitGlobalConstantVector(DL
, V
, AP
, AliasList
);
3331 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
3332 // thread the streamer with EmitValue.
3333 const MCExpr
*ME
= AP
.lowerConstant(CV
);
3335 // Since lowerConstant already folded and got rid of all IR pointer and
3336 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3338 if (AP
.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3339 handleIndirectSymViaGOTPCRel(AP
, &ME
, BaseCV
, Offset
);
3341 AP
.OutStreamer
->emitValue(ME
, Size
);
3344 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3345 void AsmPrinter::emitGlobalConstant(const DataLayout
&DL
, const Constant
*CV
,
3346 AliasMapTy
*AliasList
) {
3347 uint64_t Size
= DL
.getTypeAllocSize(CV
->getType());
3349 emitGlobalConstantImpl(DL
, CV
, *this, nullptr, 0, AliasList
);
3350 else if (MAI
->hasSubsectionsViaSymbols()) {
3351 // If the global has zero size, emit a single byte so that two labels don't
3352 // look like they are at the same location.
3353 OutStreamer
->emitIntValue(0, 1);
3357 // TODO: These remaining aliases are not emitted in the correct location. Need
3358 // to handle the case where the alias offset doesn't refer to any sub-element.
3359 for (auto &AliasPair
: *AliasList
) {
3360 for (const GlobalAlias
*GA
: AliasPair
.second
)
3361 OutStreamer
->emitLabel(getSymbol(GA
));
3365 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue
*MCPV
) {
3366 // Target doesn't support this yet!
3367 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3370 void AsmPrinter::printOffset(int64_t Offset
, raw_ostream
&OS
) const {
3372 OS
<< '+' << Offset
;
3373 else if (Offset
< 0)
3377 void AsmPrinter::emitNops(unsigned N
) {
3378 MCInst Nop
= MF
->getSubtarget().getInstrInfo()->getNop();
3380 EmitToStreamer(*OutStreamer
, Nop
);
3383 //===----------------------------------------------------------------------===//
3384 // Symbol Lowering Routines.
3385 //===----------------------------------------------------------------------===//
3387 MCSymbol
*AsmPrinter::createTempSymbol(const Twine
&Name
) const {
3388 return OutContext
.createTempSymbol(Name
, true);
3391 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BlockAddress
*BA
) const {
3392 return const_cast<AsmPrinter
*>(this)->getAddrLabelSymbol(
3393 BA
->getBasicBlock());
3396 MCSymbol
*AsmPrinter::GetBlockAddressSymbol(const BasicBlock
*BB
) const {
3397 return const_cast<AsmPrinter
*>(this)->getAddrLabelSymbol(BB
);
3400 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3401 MCSymbol
*AsmPrinter::GetCPISymbol(unsigned CPID
) const {
3402 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3403 const MachineConstantPoolEntry
&CPE
=
3404 MF
->getConstantPool()->getConstants()[CPID
];
3405 if (!CPE
.isMachineConstantPoolEntry()) {
3406 const DataLayout
&DL
= MF
->getDataLayout();
3407 SectionKind Kind
= CPE
.getSectionKind(&DL
);
3408 const Constant
*C
= CPE
.Val
.ConstVal
;
3409 Align Alignment
= CPE
.Alignment
;
3410 if (const MCSectionCOFF
*S
= dyn_cast
<MCSectionCOFF
>(
3411 getObjFileLowering().getSectionForConstant(DL
, Kind
, C
,
3413 if (MCSymbol
*Sym
= S
->getCOMDATSymbol()) {
3414 if (Sym
->isUndefined())
3415 OutStreamer
->emitSymbolAttribute(Sym
, MCSA_Global
);
3422 const DataLayout
&DL
= getDataLayout();
3423 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
3424 "CPI" + Twine(getFunctionNumber()) + "_" +
3428 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3429 MCSymbol
*AsmPrinter::GetJTISymbol(unsigned JTID
, bool isLinkerPrivate
) const {
3430 return MF
->getJTISymbol(JTID
, OutContext
, isLinkerPrivate
);
3433 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3434 /// FIXME: privatize to AsmPrinter.
3435 MCSymbol
*AsmPrinter::GetJTSetSymbol(unsigned UID
, unsigned MBBID
) const {
3436 const DataLayout
&DL
= getDataLayout();
3437 return OutContext
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
3438 Twine(getFunctionNumber()) + "_" +
3439 Twine(UID
) + "_set_" + Twine(MBBID
));
3442 MCSymbol
*AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue
*GV
,
3443 StringRef Suffix
) const {
3444 return getObjFileLowering().getSymbolWithGlobalValueBase(GV
, Suffix
, TM
);
3447 /// Return the MCSymbol for the specified ExternalSymbol.
3448 MCSymbol
*AsmPrinter::GetExternalSymbolSymbol(StringRef Sym
) const {
3449 SmallString
<60> NameStr
;
3450 Mangler::getNameWithPrefix(NameStr
, Sym
, getDataLayout());
3451 return OutContext
.getOrCreateSymbol(NameStr
);
3454 /// PrintParentLoopComment - Print comments about parent loops of this one.
3455 static void PrintParentLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
3456 unsigned FunctionNumber
) {
3458 PrintParentLoopComment(OS
, Loop
->getParentLoop(), FunctionNumber
);
3459 OS
.indent(Loop
->getLoopDepth()*2)
3460 << "Parent Loop BB" << FunctionNumber
<< "_"
3461 << Loop
->getHeader()->getNumber()
3462 << " Depth=" << Loop
->getLoopDepth() << '\n';
3465 /// PrintChildLoopComment - Print comments about child loops within
3466 /// the loop for this basic block, with nesting.
3467 static void PrintChildLoopComment(raw_ostream
&OS
, const MachineLoop
*Loop
,
3468 unsigned FunctionNumber
) {
3469 // Add child loop information
3470 for (const MachineLoop
*CL
: *Loop
) {
3471 OS
.indent(CL
->getLoopDepth()*2)
3472 << "Child Loop BB" << FunctionNumber
<< "_"
3473 << CL
->getHeader()->getNumber() << " Depth " << CL
->getLoopDepth()
3475 PrintChildLoopComment(OS
, CL
, FunctionNumber
);
3479 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3480 static void emitBasicBlockLoopComments(const MachineBasicBlock
&MBB
,
3481 const MachineLoopInfo
*LI
,
3482 const AsmPrinter
&AP
) {
3483 // Add loop depth information
3484 const MachineLoop
*Loop
= LI
->getLoopFor(&MBB
);
3487 MachineBasicBlock
*Header
= Loop
->getHeader();
3488 assert(Header
&& "No header for loop");
3490 // If this block is not a loop header, just print out what is the loop header
3492 if (Header
!= &MBB
) {
3493 AP
.OutStreamer
->AddComment(" in Loop: Header=BB" +
3494 Twine(AP
.getFunctionNumber())+"_" +
3495 Twine(Loop
->getHeader()->getNumber())+
3496 " Depth="+Twine(Loop
->getLoopDepth()));
3500 // Otherwise, it is a loop header. Print out information about child and
3502 raw_ostream
&OS
= AP
.OutStreamer
->getCommentOS();
3504 PrintParentLoopComment(OS
, Loop
->getParentLoop(), AP
.getFunctionNumber());
3507 OS
.indent(Loop
->getLoopDepth()*2-2);
3510 if (Loop
->isInnermost())
3512 OS
<< "Loop Header: Depth=" + Twine(Loop
->getLoopDepth()) << '\n';
3514 PrintChildLoopComment(OS
, Loop
, AP
.getFunctionNumber());
3517 /// emitBasicBlockStart - This method prints the label for the specified
3518 /// MachineBasicBlock, an alignment (if present) and a comment describing
3519 /// it if appropriate.
3520 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock
&MBB
) {
3521 // End the previous funclet and start a new one.
3522 if (MBB
.isEHFuncletEntry()) {
3523 for (const HandlerInfo
&HI
: Handlers
) {
3524 HI
.Handler
->endFunclet();
3525 HI
.Handler
->beginFunclet(MBB
);
3529 // Emit an alignment directive for this block, if needed.
3530 const Align Alignment
= MBB
.getAlignment();
3531 if (Alignment
!= Align(1))
3532 emitAlignment(Alignment
, nullptr, MBB
.getMaxBytesForAlignment());
3534 // Switch to a new section if this basic block must begin a section. The
3535 // entry block is always placed in the function section and is handled
3537 if (MBB
.isBeginSection() && !MBB
.isEntryBlock()) {
3538 OutStreamer
->switchSection(
3539 getObjFileLowering().getSectionForMachineBasicBlock(MF
->getFunction(),
3541 CurrentSectionBeginSym
= MBB
.getSymbol();
3544 // If the block has its address taken, emit any labels that were used to
3545 // reference the block. It is possible that there is more than one label
3546 // here, because multiple LLVM BB's may have been RAUW'd to this block after
3547 // the references were generated.
3548 if (MBB
.isIRBlockAddressTaken()) {
3550 OutStreamer
->AddComment("Block address taken");
3552 BasicBlock
*BB
= MBB
.getAddressTakenIRBlock();
3553 assert(BB
&& BB
->hasAddressTaken() && "Missing BB");
3554 for (MCSymbol
*Sym
: getAddrLabelSymbolToEmit(BB
))
3555 OutStreamer
->emitLabel(Sym
);
3556 } else if (isVerbose() && MBB
.isMachineBlockAddressTaken()) {
3557 OutStreamer
->AddComment("Block address taken");
3560 // Print some verbose block comments.
3562 if (const BasicBlock
*BB
= MBB
.getBasicBlock()) {
3563 if (BB
->hasName()) {
3564 BB
->printAsOperand(OutStreamer
->getCommentOS(),
3565 /*PrintType=*/false, BB
->getModule());
3566 OutStreamer
->getCommentOS() << '\n';
3570 assert(MLI
!= nullptr && "MachineLoopInfo should has been computed");
3571 emitBasicBlockLoopComments(MBB
, MLI
, *this);
3574 // Print the main label for the block.
3575 if (shouldEmitLabelForBasicBlock(MBB
)) {
3576 if (isVerbose() && MBB
.hasLabelMustBeEmitted())
3577 OutStreamer
->AddComment("Label of block must be emitted");
3578 OutStreamer
->emitLabel(MBB
.getSymbol());
3581 // NOTE: Want this comment at start of line, don't emit with AddComment.
3582 OutStreamer
->emitRawComment(" %bb." + Twine(MBB
.getNumber()) + ":",
3587 if (MBB
.isEHCatchretTarget() &&
3588 MAI
->getExceptionHandlingType() == ExceptionHandling::WinEH
) {
3589 OutStreamer
->emitLabel(MBB
.getEHCatchretSymbol());
3592 // With BB sections, each basic block must handle CFI information on its own
3593 // if it begins a section (Entry block is handled separately by
3594 // AsmPrinterHandler::beginFunction).
3595 if (MBB
.isBeginSection() && !MBB
.isEntryBlock())
3596 for (const HandlerInfo
&HI
: Handlers
)
3597 HI
.Handler
->beginBasicBlock(MBB
);
3600 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock
&MBB
) {
3601 // Check if CFI information needs to be updated for this MBB with basic block
3603 if (MBB
.isEndSection())
3604 for (const HandlerInfo
&HI
: Handlers
)
3605 HI
.Handler
->endBasicBlock(MBB
);
3608 void AsmPrinter::emitVisibility(MCSymbol
*Sym
, unsigned Visibility
,
3609 bool IsDefinition
) const {
3610 MCSymbolAttr Attr
= MCSA_Invalid
;
3612 switch (Visibility
) {
3614 case GlobalValue::HiddenVisibility
:
3616 Attr
= MAI
->getHiddenVisibilityAttr();
3618 Attr
= MAI
->getHiddenDeclarationVisibilityAttr();
3620 case GlobalValue::ProtectedVisibility
:
3621 Attr
= MAI
->getProtectedVisibilityAttr();
3625 if (Attr
!= MCSA_Invalid
)
3626 OutStreamer
->emitSymbolAttribute(Sym
, Attr
);
3629 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3630 const MachineBasicBlock
&MBB
) const {
3631 // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3632 // in the labels mode (option `=labels`) and every section beginning in the
3633 // sections mode (`=all` and `=list=`).
3634 if ((MF
->hasBBLabels() || MBB
.isBeginSection()) && !MBB
.isEntryBlock())
3636 // A label is needed for any block with at least one predecessor (when that
3637 // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3638 // entry, or if a label is forced).
3639 return !MBB
.pred_empty() &&
3640 (!isBlockOnlyReachableByFallthrough(&MBB
) || MBB
.isEHFuncletEntry() ||
3641 MBB
.hasLabelMustBeEmitted());
3644 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3645 /// exactly one predecessor and the control transfer mechanism between
3646 /// the predecessor and this block is a fall-through.
3648 isBlockOnlyReachableByFallthrough(const MachineBasicBlock
*MBB
) const {
3649 // If this is a landing pad, it isn't a fall through. If it has no preds,
3650 // then nothing falls through to it.
3651 if (MBB
->isEHPad() || MBB
->pred_empty())
3654 // If there isn't exactly one predecessor, it can't be a fall through.
3655 if (MBB
->pred_size() > 1)
3658 // The predecessor has to be immediately before this block.
3659 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
3660 if (!Pred
->isLayoutSuccessor(MBB
))
3663 // If the block is completely empty, then it definitely does fall through.
3667 // Check the terminators in the previous blocks
3668 for (const auto &MI
: Pred
->terminators()) {
3669 // If it is not a simple branch, we are in a table somewhere.
3670 if (!MI
.isBranch() || MI
.isIndirectBranch())
3673 // If we are the operands of one of the branches, this is not a fall
3674 // through. Note that targets with delay slots will usually bundle
3675 // terminators with the delay slot instruction.
3676 for (ConstMIBundleOperands
OP(MI
); OP
.isValid(); ++OP
) {
3679 if (OP
->isMBB() && OP
->getMBB() == MBB
)
3687 GCMetadataPrinter
*AsmPrinter::GetOrCreateGCPrinter(GCStrategy
&S
) {
3688 if (!S
.usesMetadata())
3691 gcp_map_type
&GCMap
= getGCMap(GCMetadataPrinters
);
3692 gcp_map_type::iterator GCPI
= GCMap
.find(&S
);
3693 if (GCPI
!= GCMap
.end())
3694 return GCPI
->second
.get();
3696 auto Name
= S
.getName();
3698 for (const GCMetadataPrinterRegistry::entry
&GCMetaPrinter
:
3699 GCMetadataPrinterRegistry::entries())
3700 if (Name
== GCMetaPrinter
.getName()) {
3701 std::unique_ptr
<GCMetadataPrinter
> GMP
= GCMetaPrinter
.instantiate();
3703 auto IterBool
= GCMap
.insert(std::make_pair(&S
, std::move(GMP
)));
3704 return IterBool
.first
->second
.get();
3707 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name
));
3710 void AsmPrinter::emitStackMaps(StackMaps
&SM
) {
3711 GCModuleInfo
*MI
= getAnalysisIfAvailable
<GCModuleInfo
>();
3712 assert(MI
&& "AsmPrinter didn't require GCModuleInfo?");
3713 bool NeedsDefault
= false;
3714 if (MI
->begin() == MI
->end())
3715 // No GC strategy, use the default format.
3716 NeedsDefault
= true;
3718 for (const auto &I
: *MI
) {
3719 if (GCMetadataPrinter
*MP
= GetOrCreateGCPrinter(*I
))
3720 if (MP
->emitStackMaps(SM
, *this))
3722 // The strategy doesn't have printer or doesn't emit custom stack maps.
3723 // Use the default format.
3724 NeedsDefault
= true;
3728 SM
.serializeToStackMapSection();
3731 /// Pin vtable to this file.
3732 AsmPrinterHandler::~AsmPrinterHandler() = default;
3734 void AsmPrinterHandler::markFunctionEnd() {}
3736 // In the binary's "xray_instr_map" section, an array of these function entries
3737 // describes each instrumentation point. When XRay patches your code, the index
3738 // into this table will be given to your handler as a patch point identifier.
3739 void AsmPrinter::XRayFunctionEntry::emit(int Bytes
, MCStreamer
*Out
) const {
3740 auto Kind8
= static_cast<uint8_t>(Kind
);
3741 Out
->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8
), 1));
3742 Out
->emitBinaryData(
3743 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument
), 1));
3744 Out
->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version
), 1));
3745 auto Padding
= (4 * Bytes
) - ((2 * Bytes
) + 3);
3746 assert(Padding
>= 0 && "Instrumentation map entry > 4 * Word Size");
3747 Out
->emitZeros(Padding
);
3750 void AsmPrinter::emitXRayTable() {
3754 auto PrevSection
= OutStreamer
->getCurrentSectionOnly();
3755 const Function
&F
= MF
->getFunction();
3756 MCSection
*InstMap
= nullptr;
3757 MCSection
*FnSledIndex
= nullptr;
3758 const Triple
&TT
= TM
.getTargetTriple();
3759 // Use PC-relative addresses on all targets.
3760 if (TT
.isOSBinFormatELF()) {
3761 auto LinkedToSym
= cast
<MCSymbolELF
>(CurrentFnSym
);
3762 auto Flags
= ELF::SHF_ALLOC
| ELF::SHF_LINK_ORDER
;
3763 StringRef GroupName
;
3764 if (F
.hasComdat()) {
3765 Flags
|= ELF::SHF_GROUP
;
3766 GroupName
= F
.getComdat()->getName();
3768 InstMap
= OutContext
.getELFSection("xray_instr_map", ELF::SHT_PROGBITS
,
3769 Flags
, 0, GroupName
, F
.hasComdat(),
3770 MCSection::NonUniqueID
, LinkedToSym
);
3772 if (!TM
.Options
.XRayOmitFunctionIndex
)
3773 FnSledIndex
= OutContext
.getELFSection(
3774 "xray_fn_idx", ELF::SHT_PROGBITS
, Flags
| ELF::SHF_WRITE
, 0,
3775 GroupName
, F
.hasComdat(), MCSection::NonUniqueID
, LinkedToSym
);
3776 } else if (MF
->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3777 InstMap
= OutContext
.getMachOSection("__DATA", "xray_instr_map", 0,
3778 SectionKind::getReadOnlyWithRel());
3779 if (!TM
.Options
.XRayOmitFunctionIndex
)
3780 FnSledIndex
= OutContext
.getMachOSection(
3781 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3783 llvm_unreachable("Unsupported target");
3786 auto WordSizeBytes
= MAI
->getCodePointerSize();
3788 // Now we switch to the instrumentation map section. Because this is done
3789 // per-function, we are able to create an index entry that will represent the
3790 // range of sleds associated with a function.
3791 auto &Ctx
= OutContext
;
3792 MCSymbol
*SledsStart
= OutContext
.createTempSymbol("xray_sleds_start", true);
3793 OutStreamer
->switchSection(InstMap
);
3794 OutStreamer
->emitLabel(SledsStart
);
3795 for (const auto &Sled
: Sleds
) {
3796 MCSymbol
*Dot
= Ctx
.createTempSymbol();
3797 OutStreamer
->emitLabel(Dot
);
3798 OutStreamer
->emitValueImpl(
3799 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled
.Sled
, Ctx
),
3800 MCSymbolRefExpr::create(Dot
, Ctx
), Ctx
),
3802 OutStreamer
->emitValueImpl(
3803 MCBinaryExpr::createSub(
3804 MCSymbolRefExpr::create(CurrentFnBegin
, Ctx
),
3805 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot
, Ctx
),
3806 MCConstantExpr::create(WordSizeBytes
, Ctx
),
3810 Sled
.emit(WordSizeBytes
, OutStreamer
.get());
3812 MCSymbol
*SledsEnd
= OutContext
.createTempSymbol("xray_sleds_end", true);
3813 OutStreamer
->emitLabel(SledsEnd
);
3815 // We then emit a single entry in the index per function. We use the symbols
3816 // that bound the instrumentation map as the range for a specific function.
3817 // Each entry here will be 2 * word size aligned, as we're writing down two
3818 // pointers. This should work for both 32-bit and 64-bit platforms.
3820 OutStreamer
->switchSection(FnSledIndex
);
3821 OutStreamer
->emitCodeAlignment(2 * WordSizeBytes
, &getSubtargetInfo());
3822 OutStreamer
->emitSymbolValue(SledsStart
, WordSizeBytes
, false);
3823 OutStreamer
->emitSymbolValue(SledsEnd
, WordSizeBytes
, false);
3824 OutStreamer
->switchSection(PrevSection
);
3829 void AsmPrinter::recordSled(MCSymbol
*Sled
, const MachineInstr
&MI
,
3830 SledKind Kind
, uint8_t Version
) {
3831 const Function
&F
= MI
.getMF()->getFunction();
3832 auto Attr
= F
.getFnAttribute("function-instrument");
3833 bool LogArgs
= F
.hasFnAttribute("xray-log-args");
3834 bool AlwaysInstrument
=
3835 Attr
.isStringAttribute() && Attr
.getValueAsString() == "xray-always";
3836 if (Kind
== SledKind::FUNCTION_ENTER
&& LogArgs
)
3837 Kind
= SledKind::LOG_ARGS_ENTER
;
3838 Sleds
.emplace_back(XRayFunctionEntry
{Sled
, CurrentFnSym
, Kind
,
3839 AlwaysInstrument
, &F
, Version
});
3842 void AsmPrinter::emitPatchableFunctionEntries() {
3843 const Function
&F
= MF
->getFunction();
3844 unsigned PatchableFunctionPrefix
= 0, PatchableFunctionEntry
= 0;
3845 (void)F
.getFnAttribute("patchable-function-prefix")
3847 .getAsInteger(10, PatchableFunctionPrefix
);
3848 (void)F
.getFnAttribute("patchable-function-entry")
3850 .getAsInteger(10, PatchableFunctionEntry
);
3851 if (!PatchableFunctionPrefix
&& !PatchableFunctionEntry
)
3853 const unsigned PointerSize
= getPointerSize();
3854 if (TM
.getTargetTriple().isOSBinFormatELF()) {
3855 auto Flags
= ELF::SHF_WRITE
| ELF::SHF_ALLOC
;
3856 const MCSymbolELF
*LinkedToSym
= nullptr;
3857 StringRef GroupName
;
3859 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3860 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3861 if (MAI
->useIntegratedAssembler() || MAI
->binutilsIsAtLeast(2, 36)) {
3862 Flags
|= ELF::SHF_LINK_ORDER
;
3863 if (F
.hasComdat()) {
3864 Flags
|= ELF::SHF_GROUP
;
3865 GroupName
= F
.getComdat()->getName();
3867 LinkedToSym
= cast
<MCSymbolELF
>(CurrentFnSym
);
3869 OutStreamer
->switchSection(OutContext
.getELFSection(
3870 "__patchable_function_entries", ELF::SHT_PROGBITS
, Flags
, 0, GroupName
,
3871 F
.hasComdat(), MCSection::NonUniqueID
, LinkedToSym
));
3872 emitAlignment(Align(PointerSize
));
3873 OutStreamer
->emitSymbolValue(CurrentPatchableFunctionEntrySym
, PointerSize
);
3877 uint16_t AsmPrinter::getDwarfVersion() const {
3878 return OutStreamer
->getContext().getDwarfVersion();
3881 void AsmPrinter::setDwarfVersion(uint16_t Version
) {
3882 OutStreamer
->getContext().setDwarfVersion(Version
);
3885 bool AsmPrinter::isDwarf64() const {
3886 return OutStreamer
->getContext().getDwarfFormat() == dwarf::DWARF64
;
3889 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3890 return dwarf::getDwarfOffsetByteSize(
3891 OutStreamer
->getContext().getDwarfFormat());
3894 dwarf::FormParams
AsmPrinter::getDwarfFormParams() const {
3895 return {getDwarfVersion(), uint8_t(getPointerSize()),
3896 OutStreamer
->getContext().getDwarfFormat(),
3897 MAI
->doesDwarfUseRelocationsAcrossSections()};
3900 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3901 return dwarf::getUnitLengthFieldByteSize(
3902 OutStreamer
->getContext().getDwarfFormat());