1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Common functionality for different debug information format backends.
10 // LLVM currently supports DWARF and CodeView.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/DebugHandlerBase.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/CodeGen/AsmPrinter.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/MC/MCStreamer.h"
23 #include "llvm/Support/CommandLine.h"
27 #define DEBUG_TYPE "dwarfdebug"
29 /// If true, we drop variable location ranges which exist entirely outside the
30 /// variable's lexical scope instruction ranges.
31 static cl::opt
<bool> TrimVarLocs("trim-var-locs", cl::Hidden
, cl::init(true));
33 Optional
<DbgVariableLocation
>
34 DbgVariableLocation::extractFromMachineInstruction(
35 const MachineInstr
&Instruction
) {
36 DbgVariableLocation Location
;
37 // Variables calculated from multiple locations can't be represented here.
38 if (Instruction
.getNumDebugOperands() != 1)
40 if (!Instruction
.getDebugOperand(0).isReg())
42 Location
.Register
= Instruction
.getDebugOperand(0).getReg();
43 Location
.FragmentInfo
.reset();
44 // We only handle expressions generated by DIExpression::appendOffset,
45 // which doesn't require a full stack machine.
47 const DIExpression
*DIExpr
= Instruction
.getDebugExpression();
48 auto Op
= DIExpr
->expr_op_begin();
49 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
50 // appears exactly once at the start of the expression.
51 if (Instruction
.isDebugValueList()) {
52 if (Instruction
.getNumDebugOperands() == 1 &&
53 Op
->getOp() == dwarf::DW_OP_LLVM_arg
)
58 while (Op
!= DIExpr
->expr_op_end()) {
59 switch (Op
->getOp()) {
60 case dwarf::DW_OP_constu
: {
61 int Value
= Op
->getArg(0);
63 if (Op
!= DIExpr
->expr_op_end()) {
64 switch (Op
->getOp()) {
65 case dwarf::DW_OP_minus
:
68 case dwarf::DW_OP_plus
:
76 case dwarf::DW_OP_plus_uconst
:
77 Offset
+= Op
->getArg(0);
79 case dwarf::DW_OP_LLVM_fragment
:
80 Location
.FragmentInfo
= {Op
->getArg(1), Op
->getArg(0)};
82 case dwarf::DW_OP_deref
:
83 Location
.LoadChain
.push_back(Offset
);
92 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
94 // FIXME: Replace these with DIExpression.
95 if (Instruction
.isIndirectDebugValue())
96 Location
.LoadChain
.push_back(Offset
);
101 DebugHandlerBase::DebugHandlerBase(AsmPrinter
*A
) : Asm(A
), MMI(Asm
->MMI
) {}
103 void DebugHandlerBase::beginModule(Module
*M
) {
104 if (M
->debug_compile_units().empty())
108 // Each LexicalScope has first instruction and last instruction to mark
109 // beginning and end of a scope respectively. Create an inverse map that list
110 // scopes starts (and ends) with an instruction. One instruction may start (or
111 // end) multiple scopes. Ignore scopes that are not reachable.
112 void DebugHandlerBase::identifyScopeMarkers() {
113 SmallVector
<LexicalScope
*, 4> WorkList
;
114 WorkList
.push_back(LScopes
.getCurrentFunctionScope());
115 while (!WorkList
.empty()) {
116 LexicalScope
*S
= WorkList
.pop_back_val();
118 const SmallVectorImpl
<LexicalScope
*> &Children
= S
->getChildren();
119 if (!Children
.empty())
120 WorkList
.append(Children
.begin(), Children
.end());
122 if (S
->isAbstractScope())
125 for (const InsnRange
&R
: S
->getRanges()) {
126 assert(R
.first
&& "InsnRange does not have first instruction!");
127 assert(R
.second
&& "InsnRange does not have second instruction!");
128 requestLabelBeforeInsn(R
.first
);
129 requestLabelAfterInsn(R
.second
);
134 // Return Label preceding the instruction.
135 MCSymbol
*DebugHandlerBase::getLabelBeforeInsn(const MachineInstr
*MI
) {
136 MCSymbol
*Label
= LabelsBeforeInsn
.lookup(MI
);
137 assert(Label
&& "Didn't insert label before instruction");
141 // Return Label immediately following the instruction.
142 MCSymbol
*DebugHandlerBase::getLabelAfterInsn(const MachineInstr
*MI
) {
143 return LabelsAfterInsn
.lookup(MI
);
146 /// If this type is derived from a base type then return base type size.
147 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType
*Ty
) {
149 const DIDerivedType
*DDTy
= dyn_cast
<DIDerivedType
>(Ty
);
151 return Ty
->getSizeInBits();
153 unsigned Tag
= DDTy
->getTag();
155 if (Tag
!= dwarf::DW_TAG_member
&& Tag
!= dwarf::DW_TAG_typedef
&&
156 Tag
!= dwarf::DW_TAG_const_type
&& Tag
!= dwarf::DW_TAG_volatile_type
&&
157 Tag
!= dwarf::DW_TAG_restrict_type
&& Tag
!= dwarf::DW_TAG_atomic_type
&&
158 Tag
!= dwarf::DW_TAG_immutable_type
)
159 return DDTy
->getSizeInBits();
161 DIType
*BaseType
= DDTy
->getBaseType();
166 // If this is a derived type, go ahead and get the base type, unless it's a
167 // reference then it's just the size of the field. Pointer types have no need
168 // of this since they're a different type of qualification on the type.
169 if (BaseType
->getTag() == dwarf::DW_TAG_reference_type
||
170 BaseType
->getTag() == dwarf::DW_TAG_rvalue_reference_type
)
171 return Ty
->getSizeInBits();
173 return getBaseTypeSize(BaseType
);
176 bool DebugHandlerBase::isUnsignedDIType(const DIType
*Ty
) {
177 if (isa
<DIStringType
>(Ty
)) {
178 // Some transformations (e.g. instcombine) may decide to turn a Fortran
179 // character object into an integer, and later ones (e.g. SROA) may
180 // further inject a constant integer in a llvm.dbg.value call to track
181 // the object's value. Here we trust the transformations are doing the
182 // right thing, and treat the constant as unsigned to preserve that value
183 // (i.e. avoid sign extension).
187 if (auto *CTy
= dyn_cast
<DICompositeType
>(Ty
)) {
188 if (CTy
->getTag() == dwarf::DW_TAG_enumeration_type
) {
189 if (!(Ty
= CTy
->getBaseType()))
190 // FIXME: Enums without a fixed underlying type have unknown signedness
191 // here, leading to incorrectly emitted constants.
194 // (Pieces of) aggregate types that get hacked apart by SROA may be
195 // represented by a constant. Encode them as unsigned bytes.
199 if (auto *DTy
= dyn_cast
<DIDerivedType
>(Ty
)) {
200 dwarf::Tag T
= (dwarf::Tag
)Ty
->getTag();
201 // Encode pointer constants as unsigned bytes. This is used at least for
202 // null pointer constant emission.
203 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
204 // here, but accept them for now due to a bug in SROA producing bogus
206 if (T
== dwarf::DW_TAG_pointer_type
||
207 T
== dwarf::DW_TAG_ptr_to_member_type
||
208 T
== dwarf::DW_TAG_reference_type
||
209 T
== dwarf::DW_TAG_rvalue_reference_type
)
211 assert(T
== dwarf::DW_TAG_typedef
|| T
== dwarf::DW_TAG_const_type
||
212 T
== dwarf::DW_TAG_volatile_type
||
213 T
== dwarf::DW_TAG_restrict_type
|| T
== dwarf::DW_TAG_atomic_type
||
214 T
== dwarf::DW_TAG_immutable_type
);
215 assert(DTy
->getBaseType() && "Expected valid base type");
216 return isUnsignedDIType(DTy
->getBaseType());
219 auto *BTy
= cast
<DIBasicType
>(Ty
);
220 unsigned Encoding
= BTy
->getEncoding();
221 assert((Encoding
== dwarf::DW_ATE_unsigned
||
222 Encoding
== dwarf::DW_ATE_unsigned_char
||
223 Encoding
== dwarf::DW_ATE_signed
||
224 Encoding
== dwarf::DW_ATE_signed_char
||
225 Encoding
== dwarf::DW_ATE_float
|| Encoding
== dwarf::DW_ATE_UTF
||
226 Encoding
== dwarf::DW_ATE_boolean
||
227 (Ty
->getTag() == dwarf::DW_TAG_unspecified_type
&&
228 Ty
->getName() == "decltype(nullptr)")) &&
229 "Unsupported encoding");
230 return Encoding
== dwarf::DW_ATE_unsigned
||
231 Encoding
== dwarf::DW_ATE_unsigned_char
||
232 Encoding
== dwarf::DW_ATE_UTF
|| Encoding
== dwarf::DW_ATE_boolean
||
233 Ty
->getTag() == dwarf::DW_TAG_unspecified_type
;
236 static bool hasDebugInfo(const MachineModuleInfo
*MMI
,
237 const MachineFunction
*MF
) {
238 if (!MMI
->hasDebugInfo())
240 auto *SP
= MF
->getFunction().getSubprogram();
243 assert(SP
->getUnit());
244 auto EK
= SP
->getUnit()->getEmissionKind();
245 if (EK
== DICompileUnit::NoDebug
)
250 void DebugHandlerBase::beginFunction(const MachineFunction
*MF
) {
251 PrevInstBB
= nullptr;
253 if (!Asm
|| !hasDebugInfo(MMI
, MF
)) {
254 skippedNonDebugFunction();
258 // Grab the lexical scopes for the function, if we don't have any of those
259 // then we're not going to be able to do anything.
260 LScopes
.initialize(*MF
);
261 if (LScopes
.empty()) {
262 beginFunctionImpl(MF
);
266 // Make sure that each lexical scope will have a begin/end label.
267 identifyScopeMarkers();
269 // Calculate history for local variables.
270 assert(DbgValues
.empty() && "DbgValues map wasn't cleaned!");
271 assert(DbgLabels
.empty() && "DbgLabels map wasn't cleaned!");
272 calculateDbgEntityHistory(MF
, Asm
->MF
->getSubtarget().getRegisterInfo(),
273 DbgValues
, DbgLabels
);
274 InstOrdering
.initialize(*MF
);
276 DbgValues
.trimLocationRanges(*MF
, LScopes
, InstOrdering
);
277 LLVM_DEBUG(DbgValues
.dump());
279 // Request labels for the full history.
280 for (const auto &I
: DbgValues
) {
281 const auto &Entries
= I
.second
;
285 auto IsDescribedByReg
= [](const MachineInstr
*MI
) {
286 return any_of(MI
->debug_operands(),
287 [](auto &MO
) { return MO
.isReg() && MO
.getReg(); });
290 // The first mention of a function argument gets the CurrentFnBegin label,
291 // so arguments are visible when breaking at function entry.
293 // We do not change the label for values that are described by registers,
294 // as that could place them above their defining instructions. We should
295 // ideally not change the labels for constant debug values either, since
296 // doing that violates the ranges that are calculated in the history map.
297 // However, we currently do not emit debug values for constant arguments
298 // directly at the start of the function, so this code is still useful.
299 const DILocalVariable
*DIVar
=
300 Entries
.front().getInstr()->getDebugVariable();
301 if (DIVar
->isParameter() &&
302 getDISubprogram(DIVar
->getScope())->describes(&MF
->getFunction())) {
303 if (!IsDescribedByReg(Entries
.front().getInstr()))
304 LabelsBeforeInsn
[Entries
.front().getInstr()] = Asm
->getFunctionBegin();
305 if (Entries
.front().getInstr()->getDebugExpression()->isFragment()) {
306 // Mark all non-overlapping initial fragments.
307 for (const auto *I
= Entries
.begin(); I
!= Entries
.end(); ++I
) {
308 if (!I
->isDbgValue())
310 const DIExpression
*Fragment
= I
->getInstr()->getDebugExpression();
311 if (std::any_of(Entries
.begin(), I
,
312 [&](DbgValueHistoryMap::Entry Pred
) {
313 return Pred
.isDbgValue() &&
314 Fragment
->fragmentsOverlap(
315 Pred
.getInstr()->getDebugExpression());
318 // The code that generates location lists for DWARF assumes that the
319 // entries' start labels are monotonically increasing, and since we
320 // don't change the label for fragments that are described by
321 // registers, we must bail out when encountering such a fragment.
322 if (IsDescribedByReg(I
->getInstr()))
324 LabelsBeforeInsn
[I
->getInstr()] = Asm
->getFunctionBegin();
329 for (const auto &Entry
: Entries
) {
330 if (Entry
.isDbgValue())
331 requestLabelBeforeInsn(Entry
.getInstr());
333 requestLabelAfterInsn(Entry
.getInstr());
337 // Ensure there is a symbol before DBG_LABEL.
338 for (const auto &I
: DbgLabels
) {
339 const MachineInstr
*MI
= I
.second
;
340 requestLabelBeforeInsn(MI
);
343 PrevInstLoc
= DebugLoc();
344 PrevLabel
= Asm
->getFunctionBegin();
345 beginFunctionImpl(MF
);
348 void DebugHandlerBase::beginInstruction(const MachineInstr
*MI
) {
349 if (!Asm
|| !MMI
->hasDebugInfo())
352 assert(CurMI
== nullptr);
355 // Insert labels where requested.
356 DenseMap
<const MachineInstr
*, MCSymbol
*>::iterator I
=
357 LabelsBeforeInsn
.find(MI
);
360 if (I
== LabelsBeforeInsn
.end())
363 // Label already assigned.
368 PrevLabel
= MMI
->getContext().createTempSymbol();
369 Asm
->OutStreamer
->emitLabel(PrevLabel
);
371 I
->second
= PrevLabel
;
374 void DebugHandlerBase::endInstruction() {
375 if (!Asm
|| !MMI
->hasDebugInfo())
378 assert(CurMI
!= nullptr);
379 // Don't create a new label after DBG_VALUE and other instructions that don't
381 if (!CurMI
->isMetaInstruction()) {
383 PrevInstBB
= CurMI
->getParent();
386 DenseMap
<const MachineInstr
*, MCSymbol
*>::iterator I
=
387 LabelsAfterInsn
.find(CurMI
);
389 // No label needed or label already assigned.
390 if (I
== LabelsAfterInsn
.end() || I
->second
) {
395 // We need a label after this instruction. With basic block sections, just
396 // use the end symbol of the section if this is the last instruction of the
397 // section. This reduces the need for an additional label and also helps
399 if (CurMI
->getParent()->isEndSection() && CurMI
->getNextNode() == nullptr) {
400 PrevLabel
= CurMI
->getParent()->getEndSymbol();
401 } else if (!PrevLabel
) {
402 PrevLabel
= MMI
->getContext().createTempSymbol();
403 Asm
->OutStreamer
->emitLabel(PrevLabel
);
405 I
->second
= PrevLabel
;
409 void DebugHandlerBase::endFunction(const MachineFunction
*MF
) {
410 if (Asm
&& hasDebugInfo(MMI
, MF
))
414 LabelsBeforeInsn
.clear();
415 LabelsAfterInsn
.clear();
416 InstOrdering
.clear();
419 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock
&MBB
) {
420 if (!MBB
.isBeginSection())
423 PrevLabel
= MBB
.getSymbol();
426 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock
&MBB
) {
427 if (!MBB
.isEndSection())