1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block. This pass often results in dead MBB's, which
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
17 //===----------------------------------------------------------------------===//
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ProfileSummaryInfo.h"
26 #include "llvm/CodeGen/Analysis.h"
27 #include "llvm/CodeGen/MBFIWrapper.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineSizeOpts.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetOpcodes.h"
41 #include "llvm/CodeGen/TargetPassConfig.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/BlockFrequency.h"
52 #include "llvm/Support/BranchProbability.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
65 #define DEBUG_TYPE "branch-folder"
67 STATISTIC(NumDeadBlocks
, "Number of dead blocks removed");
68 STATISTIC(NumBranchOpts
, "Number of branches optimized");
69 STATISTIC(NumTailMerge
, "Number of block tails merged");
70 STATISTIC(NumHoist
, "Number of times common instructions are hoisted");
71 STATISTIC(NumTailCalls
, "Number of tail calls optimized");
73 static cl::opt
<cl::boolOrDefault
> FlagEnableTailMerge("enable-tail-merge",
74 cl::init(cl::BOU_UNSET
), cl::Hidden
);
76 // Throttle for huge numbers of predecessors (compile speed problems)
77 static cl::opt
<unsigned>
78 TailMergeThreshold("tail-merge-threshold",
79 cl::desc("Max number of predecessors to consider tail merging"),
80 cl::init(150), cl::Hidden
);
82 // Heuristic for tail merging (and, inversely, tail duplication).
83 // TODO: This should be replaced with a target query.
84 static cl::opt
<unsigned>
85 TailMergeSize("tail-merge-size",
86 cl::desc("Min number of instructions to consider tail merging"),
87 cl::init(3), cl::Hidden
);
91 /// BranchFolderPass - Wrap branch folder in a machine function pass.
92 class BranchFolderPass
: public MachineFunctionPass
{
96 explicit BranchFolderPass(): MachineFunctionPass(ID
) {}
98 bool runOnMachineFunction(MachineFunction
&MF
) override
;
100 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
101 AU
.addRequired
<MachineBlockFrequencyInfo
>();
102 AU
.addRequired
<MachineBranchProbabilityInfo
>();
103 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
104 AU
.addRequired
<TargetPassConfig
>();
105 MachineFunctionPass::getAnalysisUsage(AU
);
108 MachineFunctionProperties
getRequiredProperties() const override
{
109 return MachineFunctionProperties().set(
110 MachineFunctionProperties::Property::NoPHIs
);
114 } // end anonymous namespace
116 char BranchFolderPass::ID
= 0;
118 char &llvm::BranchFolderPassID
= BranchFolderPass::ID
;
120 INITIALIZE_PASS(BranchFolderPass
, DEBUG_TYPE
,
121 "Control Flow Optimizer", false, false)
123 bool BranchFolderPass::runOnMachineFunction(MachineFunction
&MF
) {
124 if (skipFunction(MF
.getFunction()))
127 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
128 // TailMerge can create jump into if branches that make CFG irreducible for
129 // HW that requires structurized CFG.
130 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
131 PassConfig
->getEnableTailMerge();
132 MBFIWrapper
MBBFreqInfo(
133 getAnalysis
<MachineBlockFrequencyInfo
>());
134 BranchFolder
Folder(EnableTailMerge
, /*CommonHoist=*/true, MBBFreqInfo
,
135 getAnalysis
<MachineBranchProbabilityInfo
>(),
136 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI());
137 return Folder
.OptimizeFunction(MF
, MF
.getSubtarget().getInstrInfo(),
138 MF
.getSubtarget().getRegisterInfo());
141 BranchFolder::BranchFolder(bool DefaultEnableTailMerge
, bool CommonHoist
,
142 MBFIWrapper
&FreqInfo
,
143 const MachineBranchProbabilityInfo
&ProbInfo
,
144 ProfileSummaryInfo
*PSI
, unsigned MinTailLength
)
145 : EnableHoistCommonCode(CommonHoist
), MinCommonTailLength(MinTailLength
),
146 MBBFreqInfo(FreqInfo
), MBPI(ProbInfo
), PSI(PSI
) {
147 if (MinCommonTailLength
== 0)
148 MinCommonTailLength
= TailMergeSize
;
149 switch (FlagEnableTailMerge
) {
151 EnableTailMerge
= DefaultEnableTailMerge
;
153 case cl::BOU_TRUE
: EnableTailMerge
= true; break;
154 case cl::BOU_FALSE
: EnableTailMerge
= false; break;
158 void BranchFolder::RemoveDeadBlock(MachineBasicBlock
*MBB
) {
159 assert(MBB
->pred_empty() && "MBB must be dead!");
160 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB
);
162 MachineFunction
*MF
= MBB
->getParent();
163 // drop all successors.
164 while (!MBB
->succ_empty())
165 MBB
->removeSuccessor(MBB
->succ_end()-1);
167 // Avoid matching if this pointer gets reused.
168 TriedMerging
.erase(MBB
);
170 // Update call site info.
171 for (const MachineInstr
&MI
: *MBB
)
172 if (MI
.shouldUpdateCallSiteInfo())
173 MF
->eraseCallSiteInfo(&MI
);
177 EHScopeMembership
.erase(MBB
);
179 MLI
->removeBlock(MBB
);
182 bool BranchFolder::OptimizeFunction(MachineFunction
&MF
,
183 const TargetInstrInfo
*tii
,
184 const TargetRegisterInfo
*tri
,
185 MachineLoopInfo
*mli
, bool AfterPlacement
) {
186 if (!tii
) return false;
188 TriedMerging
.clear();
190 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
191 AfterBlockPlacement
= AfterPlacement
;
197 UpdateLiveIns
= MRI
.tracksLiveness() && TRI
->trackLivenessAfterRegAlloc(MF
);
199 MRI
.invalidateLiveness();
201 bool MadeChange
= false;
203 // Recalculate EH scope membership.
204 EHScopeMembership
= getEHScopeMembership(MF
);
206 bool MadeChangeThisIteration
= true;
207 while (MadeChangeThisIteration
) {
208 MadeChangeThisIteration
= TailMergeBlocks(MF
);
209 // No need to clean up if tail merging does not change anything after the
211 if (!AfterBlockPlacement
|| MadeChangeThisIteration
)
212 MadeChangeThisIteration
|= OptimizeBranches(MF
);
213 if (EnableHoistCommonCode
)
214 MadeChangeThisIteration
|= HoistCommonCode(MF
);
215 MadeChange
|= MadeChangeThisIteration
;
218 // See if any jump tables have become dead as the code generator
220 MachineJumpTableInfo
*JTI
= MF
.getJumpTableInfo();
224 // Walk the function to find jump tables that are live.
225 BitVector
JTIsLive(JTI
->getJumpTables().size());
226 for (const MachineBasicBlock
&BB
: MF
) {
227 for (const MachineInstr
&I
: BB
)
228 for (const MachineOperand
&Op
: I
.operands()) {
229 if (!Op
.isJTI()) continue;
231 // Remember that this JT is live.
232 JTIsLive
.set(Op
.getIndex());
236 // Finally, remove dead jump tables. This happens when the
237 // indirect jump was unreachable (and thus deleted).
238 for (unsigned i
= 0, e
= JTIsLive
.size(); i
!= e
; ++i
)
239 if (!JTIsLive
.test(i
)) {
240 JTI
->RemoveJumpTable(i
);
247 //===----------------------------------------------------------------------===//
248 // Tail Merging of Blocks
249 //===----------------------------------------------------------------------===//
251 /// HashMachineInstr - Compute a hash value for MI and its operands.
252 static unsigned HashMachineInstr(const MachineInstr
&MI
) {
253 unsigned Hash
= MI
.getOpcode();
254 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
255 const MachineOperand
&Op
= MI
.getOperand(i
);
257 // Merge in bits from the operand if easy. We can't use MachineOperand's
258 // hash_code here because it's not deterministic and we sort by hash value
260 unsigned OperandHash
= 0;
261 switch (Op
.getType()) {
262 case MachineOperand::MO_Register
:
263 OperandHash
= Op
.getReg();
265 case MachineOperand::MO_Immediate
:
266 OperandHash
= Op
.getImm();
268 case MachineOperand::MO_MachineBasicBlock
:
269 OperandHash
= Op
.getMBB()->getNumber();
271 case MachineOperand::MO_FrameIndex
:
272 case MachineOperand::MO_ConstantPoolIndex
:
273 case MachineOperand::MO_JumpTableIndex
:
274 OperandHash
= Op
.getIndex();
276 case MachineOperand::MO_GlobalAddress
:
277 case MachineOperand::MO_ExternalSymbol
:
278 // Global address / external symbol are too hard, don't bother, but do
279 // pull in the offset.
280 OperandHash
= Op
.getOffset();
286 Hash
+= ((OperandHash
<< 3) | Op
.getType()) << (i
& 31);
291 /// HashEndOfMBB - Hash the last instruction in the MBB.
292 static unsigned HashEndOfMBB(const MachineBasicBlock
&MBB
) {
293 MachineBasicBlock::const_iterator I
= MBB
.getLastNonDebugInstr(false);
297 return HashMachineInstr(*I
);
300 /// Whether MI should be counted as an instruction when calculating common tail.
301 static bool countsAsInstruction(const MachineInstr
&MI
) {
302 return !(MI
.isDebugInstr() || MI
.isCFIInstruction());
305 /// Iterate backwards from the given iterator \p I, towards the beginning of the
306 /// block. If a MI satisfying 'countsAsInstruction' is found, return an iterator
307 /// pointing to that MI. If no such MI is found, return the end iterator.
308 static MachineBasicBlock::iterator
309 skipBackwardPastNonInstructions(MachineBasicBlock::iterator I
,
310 MachineBasicBlock
*MBB
) {
311 while (I
!= MBB
->begin()) {
313 if (countsAsInstruction(*I
))
319 /// Given two machine basic blocks, return the number of instructions they
320 /// actually have in common together at their end. If a common tail is found (at
321 /// least by one instruction), then iterators for the first shared instruction
322 /// in each block are returned as well.
324 /// Non-instructions according to countsAsInstruction are ignored.
325 static unsigned ComputeCommonTailLength(MachineBasicBlock
*MBB1
,
326 MachineBasicBlock
*MBB2
,
327 MachineBasicBlock::iterator
&I1
,
328 MachineBasicBlock::iterator
&I2
) {
329 MachineBasicBlock::iterator MBBI1
= MBB1
->end();
330 MachineBasicBlock::iterator MBBI2
= MBB2
->end();
332 unsigned TailLen
= 0;
334 MBBI1
= skipBackwardPastNonInstructions(MBBI1
, MBB1
);
335 MBBI2
= skipBackwardPastNonInstructions(MBBI2
, MBB2
);
336 if (MBBI1
== MBB1
->end() || MBBI2
== MBB2
->end())
338 if (!MBBI1
->isIdenticalTo(*MBBI2
) ||
339 // FIXME: This check is dubious. It's used to get around a problem where
340 // people incorrectly expect inline asm directives to remain in the same
341 // relative order. This is untenable because normal compiler
342 // optimizations (like this one) may reorder and/or merge these
344 MBBI1
->isInlineAsm()) {
347 if (MBBI1
->getFlag(MachineInstr::NoMerge
) ||
348 MBBI2
->getFlag(MachineInstr::NoMerge
))
358 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
359 MachineBasicBlock
&NewDest
) {
361 // OldInst should always point to an instruction.
362 MachineBasicBlock
&OldMBB
= *OldInst
->getParent();
364 LiveRegs
.addLiveOuts(OldMBB
);
365 // Move backward to the place where will insert the jump.
366 MachineBasicBlock::iterator I
= OldMBB
.end();
369 LiveRegs
.stepBackward(*I
);
370 } while (I
!= OldInst
);
372 // Merging the tails may have switched some undef operand to non-undef ones.
373 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
375 for (MachineBasicBlock::RegisterMaskPair P
: NewDest
.liveins()) {
376 // We computed the liveins with computeLiveIn earlier and should only see
378 assert(P
.LaneMask
== LaneBitmask::getAll() &&
379 "Can only handle full register.");
380 MCPhysReg Reg
= P
.PhysReg
;
381 if (!LiveRegs
.available(*MRI
, Reg
))
384 BuildMI(OldMBB
, OldInst
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
), Reg
);
388 TII
->ReplaceTailWithBranchTo(OldInst
, &NewDest
);
392 MachineBasicBlock
*BranchFolder::SplitMBBAt(MachineBasicBlock
&CurMBB
,
393 MachineBasicBlock::iterator BBI1
,
394 const BasicBlock
*BB
) {
395 if (!TII
->isLegalToSplitMBBAt(CurMBB
, BBI1
))
398 MachineFunction
&MF
= *CurMBB
.getParent();
400 // Create the fall-through block.
401 MachineFunction::iterator MBBI
= CurMBB
.getIterator();
402 MachineBasicBlock
*NewMBB
= MF
.CreateMachineBasicBlock(BB
);
403 CurMBB
.getParent()->insert(++MBBI
, NewMBB
);
405 // Move all the successors of this block to the specified block.
406 NewMBB
->transferSuccessors(&CurMBB
);
408 // Add an edge from CurMBB to NewMBB for the fall-through.
409 CurMBB
.addSuccessor(NewMBB
);
411 // Splice the code over.
412 NewMBB
->splice(NewMBB
->end(), &CurMBB
, BBI1
, CurMBB
.end());
414 // NewMBB belongs to the same loop as CurMBB.
416 if (MachineLoop
*ML
= MLI
->getLoopFor(&CurMBB
))
417 ML
->addBasicBlockToLoop(NewMBB
, MLI
->getBase());
419 // NewMBB inherits CurMBB's block frequency.
420 MBBFreqInfo
.setBlockFreq(NewMBB
, MBBFreqInfo
.getBlockFreq(&CurMBB
));
423 computeAndAddLiveIns(LiveRegs
, *NewMBB
);
425 // Add the new block to the EH scope.
426 const auto &EHScopeI
= EHScopeMembership
.find(&CurMBB
);
427 if (EHScopeI
!= EHScopeMembership
.end()) {
428 auto n
= EHScopeI
->second
;
429 EHScopeMembership
[NewMBB
] = n
;
435 /// EstimateRuntime - Make a rough estimate for how long it will take to run
436 /// the specified code.
437 static unsigned EstimateRuntime(MachineBasicBlock::iterator I
,
438 MachineBasicBlock::iterator E
) {
440 for (; I
!= E
; ++I
) {
441 if (!countsAsInstruction(*I
))
445 else if (I
->mayLoadOrStore())
453 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
454 // branches temporarily for tail merging). In the case where CurMBB ends
455 // with a conditional branch to the next block, optimize by reversing the
456 // test and conditionally branching to SuccMBB instead.
457 static void FixTail(MachineBasicBlock
*CurMBB
, MachineBasicBlock
*SuccBB
,
458 const TargetInstrInfo
*TII
) {
459 MachineFunction
*MF
= CurMBB
->getParent();
460 MachineFunction::iterator I
= std::next(MachineFunction::iterator(CurMBB
));
461 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
462 SmallVector
<MachineOperand
, 4> Cond
;
463 DebugLoc dl
= CurMBB
->findBranchDebugLoc();
464 if (I
!= MF
->end() && !TII
->analyzeBranch(*CurMBB
, TBB
, FBB
, Cond
, true)) {
465 MachineBasicBlock
*NextBB
= &*I
;
466 if (TBB
== NextBB
&& !Cond
.empty() && !FBB
) {
467 if (!TII
->reverseBranchCondition(Cond
)) {
468 TII
->removeBranch(*CurMBB
);
469 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr, Cond
, dl
);
474 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr,
475 SmallVector
<MachineOperand
, 0>(), dl
);
479 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt
&o
) const {
480 if (getHash() < o
.getHash())
482 if (getHash() > o
.getHash())
484 if (getBlock()->getNumber() < o
.getBlock()->getNumber())
486 if (getBlock()->getNumber() > o
.getBlock()->getNumber())
488 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
489 // an object with itself.
490 #ifndef _GLIBCXX_DEBUG
491 llvm_unreachable("Predecessor appears twice");
497 /// CountTerminators - Count the number of terminators in the given
498 /// block and set I to the position of the first non-terminator, if there
499 /// is one, or MBB->end() otherwise.
500 static unsigned CountTerminators(MachineBasicBlock
*MBB
,
501 MachineBasicBlock::iterator
&I
) {
503 unsigned NumTerms
= 0;
505 if (I
== MBB
->begin()) {
510 if (!I
->isTerminator()) break;
516 /// A no successor, non-return block probably ends in unreachable and is cold.
517 /// Also consider a block that ends in an indirect branch to be a return block,
518 /// since many targets use plain indirect branches to return.
519 static bool blockEndsInUnreachable(const MachineBasicBlock
*MBB
) {
520 if (!MBB
->succ_empty())
524 return !(MBB
->back().isReturn() || MBB
->back().isIndirectBranch());
527 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
528 /// and decide if it would be profitable to merge those tails. Return the
529 /// length of the common tail and iterators to the first common instruction
531 /// MBB1, MBB2 The blocks to check
532 /// MinCommonTailLength Minimum size of tail block to be merged.
533 /// CommonTailLen Out parameter to record the size of the shared tail between
535 /// I1, I2 Iterator references that will be changed to point to the first
536 /// instruction in the common tail shared by MBB1,MBB2
537 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
538 /// relative to SuccBB
539 /// PredBB The layout predecessor of SuccBB, if any.
540 /// EHScopeMembership map from block to EH scope #.
541 /// AfterPlacement True if we are merging blocks after layout. Stricter
542 /// thresholds apply to prevent undoing tail-duplication.
544 ProfitableToMerge(MachineBasicBlock
*MBB1
, MachineBasicBlock
*MBB2
,
545 unsigned MinCommonTailLength
, unsigned &CommonTailLen
,
546 MachineBasicBlock::iterator
&I1
,
547 MachineBasicBlock::iterator
&I2
, MachineBasicBlock
*SuccBB
,
548 MachineBasicBlock
*PredBB
,
549 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
,
551 MBFIWrapper
&MBBFreqInfo
,
552 ProfileSummaryInfo
*PSI
) {
553 // It is never profitable to tail-merge blocks from two different EH scopes.
554 if (!EHScopeMembership
.empty()) {
555 auto EHScope1
= EHScopeMembership
.find(MBB1
);
556 assert(EHScope1
!= EHScopeMembership
.end());
557 auto EHScope2
= EHScopeMembership
.find(MBB2
);
558 assert(EHScope2
!= EHScopeMembership
.end());
559 if (EHScope1
->second
!= EHScope2
->second
)
563 CommonTailLen
= ComputeCommonTailLength(MBB1
, MBB2
, I1
, I2
);
564 if (CommonTailLen
== 0)
566 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1
)
567 << " and " << printMBBReference(*MBB2
) << " is "
568 << CommonTailLen
<< '\n');
570 // Move the iterators to the beginning of the MBB if we only got debug
571 // instructions before the tail. This is to avoid splitting a block when we
572 // only got debug instructions before the tail (to be invariant on -g).
573 if (skipDebugInstructionsForward(MBB1
->begin(), MBB1
->end(), false) == I1
)
575 if (skipDebugInstructionsForward(MBB2
->begin(), MBB2
->end(), false) == I2
)
578 bool FullBlockTail1
= I1
== MBB1
->begin();
579 bool FullBlockTail2
= I2
== MBB2
->begin();
581 // It's almost always profitable to merge any number of non-terminator
582 // instructions with the block that falls through into the common successor.
583 // This is true only for a single successor. For multiple successors, we are
584 // trading a conditional branch for an unconditional one.
585 // TODO: Re-visit successor size for non-layout tail merging.
586 if ((MBB1
== PredBB
|| MBB2
== PredBB
) &&
587 (!AfterPlacement
|| MBB1
->succ_size() == 1)) {
588 MachineBasicBlock::iterator I
;
589 unsigned NumTerms
= CountTerminators(MBB1
== PredBB
? MBB2
: MBB1
, I
);
590 if (CommonTailLen
> NumTerms
)
594 // If these are identical non-return blocks with no successors, merge them.
595 // Such blocks are typically cold calls to noreturn functions like abort, and
596 // are unlikely to become a fallthrough target after machine block placement.
597 // Tail merging these blocks is unlikely to create additional unconditional
598 // branches, and will reduce the size of this cold code.
599 if (FullBlockTail1
&& FullBlockTail2
&&
600 blockEndsInUnreachable(MBB1
) && blockEndsInUnreachable(MBB2
))
603 // If one of the blocks can be completely merged and happens to be in
604 // a position where the other could fall through into it, merge any number
605 // of instructions, because it can be done without a branch.
606 // TODO: If the blocks are not adjacent, move one of them so that they are?
607 if (MBB1
->isLayoutSuccessor(MBB2
) && FullBlockTail2
)
609 if (MBB2
->isLayoutSuccessor(MBB1
) && FullBlockTail1
)
612 // If both blocks are identical and end in a branch, merge them unless they
613 // both have a fallthrough predecessor and successor.
614 // We can only do this after block placement because it depends on whether
615 // there are fallthroughs, and we don't know until after layout.
616 if (AfterPlacement
&& FullBlockTail1
&& FullBlockTail2
) {
617 auto BothFallThrough
= [](MachineBasicBlock
*MBB
) {
618 if (!MBB
->succ_empty() && !MBB
->canFallThrough())
620 MachineFunction::iterator
I(MBB
);
621 MachineFunction
*MF
= MBB
->getParent();
622 return (MBB
!= &*MF
->begin()) && std::prev(I
)->canFallThrough();
624 if (!BothFallThrough(MBB1
) || !BothFallThrough(MBB2
))
628 // If both blocks have an unconditional branch temporarily stripped out,
629 // count that as an additional common instruction for the following
630 // heuristics. This heuristic is only accurate for single-succ blocks, so to
631 // make sure that during layout merging and duplicating don't crash, we check
632 // for that when merging during layout.
633 unsigned EffectiveTailLen
= CommonTailLen
;
634 if (SuccBB
&& MBB1
!= PredBB
&& MBB2
!= PredBB
&&
635 (MBB1
->succ_size() == 1 || !AfterPlacement
) &&
636 !MBB1
->back().isBarrier() &&
637 !MBB2
->back().isBarrier())
640 // Check if the common tail is long enough to be worthwhile.
641 if (EffectiveTailLen
>= MinCommonTailLength
)
644 // If we are optimizing for code size, 2 instructions in common is enough if
645 // we don't have to split a block. At worst we will be introducing 1 new
646 // branch instruction, which is likely to be smaller than the 2
647 // instructions that would be deleted in the merge.
648 MachineFunction
*MF
= MBB1
->getParent();
650 MF
->getFunction().hasOptSize() ||
651 (llvm::shouldOptimizeForSize(MBB1
, PSI
, &MBBFreqInfo
) &&
652 llvm::shouldOptimizeForSize(MBB2
, PSI
, &MBBFreqInfo
));
653 return EffectiveTailLen
>= 2 && OptForSize
&&
654 (FullBlockTail1
|| FullBlockTail2
);
657 unsigned BranchFolder::ComputeSameTails(unsigned CurHash
,
658 unsigned MinCommonTailLength
,
659 MachineBasicBlock
*SuccBB
,
660 MachineBasicBlock
*PredBB
) {
661 unsigned maxCommonTailLength
= 0U;
663 MachineBasicBlock::iterator TrialBBI1
, TrialBBI2
;
664 MPIterator HighestMPIter
= std::prev(MergePotentials
.end());
665 for (MPIterator CurMPIter
= std::prev(MergePotentials
.end()),
666 B
= MergePotentials
.begin();
667 CurMPIter
!= B
&& CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
668 for (MPIterator I
= std::prev(CurMPIter
); I
->getHash() == CurHash
; --I
) {
669 unsigned CommonTailLen
;
670 if (ProfitableToMerge(CurMPIter
->getBlock(), I
->getBlock(),
672 CommonTailLen
, TrialBBI1
, TrialBBI2
,
675 AfterBlockPlacement
, MBBFreqInfo
, PSI
)) {
676 if (CommonTailLen
> maxCommonTailLength
) {
678 maxCommonTailLength
= CommonTailLen
;
679 HighestMPIter
= CurMPIter
;
680 SameTails
.push_back(SameTailElt(CurMPIter
, TrialBBI1
));
682 if (HighestMPIter
== CurMPIter
&&
683 CommonTailLen
== maxCommonTailLength
)
684 SameTails
.push_back(SameTailElt(I
, TrialBBI2
));
690 return maxCommonTailLength
;
693 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash
,
694 MachineBasicBlock
*SuccBB
,
695 MachineBasicBlock
*PredBB
) {
696 MPIterator CurMPIter
, B
;
697 for (CurMPIter
= std::prev(MergePotentials
.end()),
698 B
= MergePotentials
.begin();
699 CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
700 // Put the unconditional branch back, if we need one.
701 MachineBasicBlock
*CurMBB
= CurMPIter
->getBlock();
702 if (SuccBB
&& CurMBB
!= PredBB
)
703 FixTail(CurMBB
, SuccBB
, TII
);
707 if (CurMPIter
->getHash() != CurHash
)
709 MergePotentials
.erase(CurMPIter
, MergePotentials
.end());
712 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
713 MachineBasicBlock
*SuccBB
,
714 unsigned maxCommonTailLength
,
715 unsigned &commonTailIndex
) {
717 unsigned TimeEstimate
= ~0U;
718 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
719 // Use PredBB if possible; that doesn't require a new branch.
720 if (SameTails
[i
].getBlock() == PredBB
) {
724 // Otherwise, make a (fairly bogus) choice based on estimate of
725 // how long it will take the various blocks to execute.
726 unsigned t
= EstimateRuntime(SameTails
[i
].getBlock()->begin(),
727 SameTails
[i
].getTailStartPos());
728 if (t
<= TimeEstimate
) {
734 MachineBasicBlock::iterator BBI
=
735 SameTails
[commonTailIndex
].getTailStartPos();
736 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
738 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB
) << ", size "
739 << maxCommonTailLength
);
741 // If the split block unconditionally falls-thru to SuccBB, it will be
742 // merged. In control flow terms it should then take SuccBB's name. e.g. If
743 // SuccBB is an inner loop, the common tail is still part of the inner loop.
744 const BasicBlock
*BB
= (SuccBB
&& MBB
->succ_size() == 1) ?
745 SuccBB
->getBasicBlock() : MBB
->getBasicBlock();
746 MachineBasicBlock
*newMBB
= SplitMBBAt(*MBB
, BBI
, BB
);
748 LLVM_DEBUG(dbgs() << "... failed!");
752 SameTails
[commonTailIndex
].setBlock(newMBB
);
753 SameTails
[commonTailIndex
].setTailStartPos(newMBB
->begin());
755 // If we split PredBB, newMBB is the new predecessor.
763 mergeOperations(MachineBasicBlock::iterator MBBIStartPos
,
764 MachineBasicBlock
&MBBCommon
) {
765 MachineBasicBlock
*MBB
= MBBIStartPos
->getParent();
766 // Note CommonTailLen does not necessarily matches the size of
767 // the common BB nor all its instructions because of debug
768 // instructions differences.
769 unsigned CommonTailLen
= 0;
770 for (auto E
= MBB
->end(); MBBIStartPos
!= E
; ++MBBIStartPos
)
773 MachineBasicBlock::reverse_iterator MBBI
= MBB
->rbegin();
774 MachineBasicBlock::reverse_iterator MBBIE
= MBB
->rend();
775 MachineBasicBlock::reverse_iterator MBBICommon
= MBBCommon
.rbegin();
776 MachineBasicBlock::reverse_iterator MBBIECommon
= MBBCommon
.rend();
778 while (CommonTailLen
--) {
779 assert(MBBI
!= MBBIE
&& "Reached BB end within common tail length!");
782 if (!countsAsInstruction(*MBBI
)) {
787 while ((MBBICommon
!= MBBIECommon
) && !countsAsInstruction(*MBBICommon
))
790 assert(MBBICommon
!= MBBIECommon
&&
791 "Reached BB end within common tail length!");
792 assert(MBBICommon
->isIdenticalTo(*MBBI
) && "Expected matching MIIs!");
794 // Merge MMOs from memory operations in the common block.
795 if (MBBICommon
->mayLoadOrStore())
796 MBBICommon
->cloneMergedMemRefs(*MBB
->getParent(), {&*MBBICommon
, &*MBBI
});
797 // Drop undef flags if they aren't present in all merged instructions.
798 for (unsigned I
= 0, E
= MBBICommon
->getNumOperands(); I
!= E
; ++I
) {
799 MachineOperand
&MO
= MBBICommon
->getOperand(I
);
800 if (MO
.isReg() && MO
.isUndef()) {
801 const MachineOperand
&OtherMO
= MBBI
->getOperand(I
);
802 if (!OtherMO
.isUndef())
803 MO
.setIsUndef(false);
812 void BranchFolder::mergeCommonTails(unsigned commonTailIndex
) {
813 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
815 std::vector
<MachineBasicBlock::iterator
> NextCommonInsts(SameTails
.size());
816 for (unsigned int i
= 0 ; i
!= SameTails
.size() ; ++i
) {
817 if (i
!= commonTailIndex
) {
818 NextCommonInsts
[i
] = SameTails
[i
].getTailStartPos();
819 mergeOperations(SameTails
[i
].getTailStartPos(), *MBB
);
821 assert(SameTails
[i
].getTailStartPos() == MBB
->begin() &&
822 "MBB is not a common tail only block");
826 for (auto &MI
: *MBB
) {
827 if (!countsAsInstruction(MI
))
829 DebugLoc DL
= MI
.getDebugLoc();
830 for (unsigned int i
= 0 ; i
< NextCommonInsts
.size() ; i
++) {
831 if (i
== commonTailIndex
)
834 auto &Pos
= NextCommonInsts
[i
];
835 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
836 "Reached BB end within common tail");
837 while (!countsAsInstruction(*Pos
)) {
839 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
840 "Reached BB end within common tail");
842 assert(MI
.isIdenticalTo(*Pos
) && "Expected matching MIIs!");
843 DL
= DILocation::getMergedLocation(DL
, Pos
->getDebugLoc());
844 NextCommonInsts
[i
] = ++Pos
;
850 LivePhysRegs
NewLiveIns(*TRI
);
851 computeLiveIns(NewLiveIns
, *MBB
);
854 // The flag merging may lead to some register uses no longer using the
855 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
856 for (MachineBasicBlock
*Pred
: MBB
->predecessors()) {
858 LiveRegs
.addLiveOuts(*Pred
);
859 MachineBasicBlock::iterator InsertBefore
= Pred
->getFirstTerminator();
860 for (Register Reg
: NewLiveIns
) {
861 if (!LiveRegs
.available(*MRI
, Reg
))
864 BuildMI(*Pred
, InsertBefore
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
),
870 addLiveIns(*MBB
, NewLiveIns
);
874 // See if any of the blocks in MergePotentials (which all have SuccBB as a
875 // successor, or all have no successor if it is null) can be tail-merged.
876 // If there is a successor, any blocks in MergePotentials that are not
877 // tail-merged and are not immediately before Succ must have an unconditional
878 // branch to Succ added (but the predecessor/successor lists need no
879 // adjustment). The lone predecessor of Succ that falls through into Succ,
880 // if any, is given in PredBB.
881 // MinCommonTailLength - Except for the special cases below, tail-merge if
882 // there are at least this many instructions in common.
883 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock
*SuccBB
,
884 MachineBasicBlock
*PredBB
,
885 unsigned MinCommonTailLength
) {
886 bool MadeChange
= false;
889 dbgs() << "\nTryTailMergeBlocks: ";
890 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
) dbgs()
891 << printMBBReference(*MergePotentials
[i
].getBlock())
892 << (i
== e
- 1 ? "" : ", ");
893 dbgs() << "\n"; if (SuccBB
) {
894 dbgs() << " with successor " << printMBBReference(*SuccBB
) << '\n';
896 dbgs() << " which has fall-through from "
897 << printMBBReference(*PredBB
) << "\n";
898 } dbgs() << "Looking for common tails of at least "
899 << MinCommonTailLength
<< " instruction"
900 << (MinCommonTailLength
== 1 ? "" : "s") << '\n';);
902 // Sort by hash value so that blocks with identical end sequences sort
904 array_pod_sort(MergePotentials
.begin(), MergePotentials
.end());
906 // Walk through equivalence sets looking for actual exact matches.
907 while (MergePotentials
.size() > 1) {
908 unsigned CurHash
= MergePotentials
.back().getHash();
910 // Build SameTails, identifying the set of blocks with this hash code
911 // and with the maximum number of instructions in common.
912 unsigned maxCommonTailLength
= ComputeSameTails(CurHash
,
916 // If we didn't find any pair that has at least MinCommonTailLength
917 // instructions in common, remove all blocks with this hash code and retry.
918 if (SameTails
.empty()) {
919 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
923 // If one of the blocks is the entire common tail (and is not the entry
924 // block/an EH pad, which we can't jump to), we can treat all blocks with
925 // this same tail at once. Use PredBB if that is one of the possibilities,
926 // as that will not introduce any extra branches.
927 MachineBasicBlock
*EntryBB
=
928 &MergePotentials
.front().getBlock()->getParent()->front();
929 unsigned commonTailIndex
= SameTails
.size();
930 // If there are two blocks, check to see if one can be made to fall through
932 if (SameTails
.size() == 2 &&
933 SameTails
[0].getBlock()->isLayoutSuccessor(SameTails
[1].getBlock()) &&
934 SameTails
[1].tailIsWholeBlock() && !SameTails
[1].getBlock()->isEHPad())
936 else if (SameTails
.size() == 2 &&
937 SameTails
[1].getBlock()->isLayoutSuccessor(
938 SameTails
[0].getBlock()) &&
939 SameTails
[0].tailIsWholeBlock() &&
940 !SameTails
[0].getBlock()->isEHPad())
943 // Otherwise just pick one, favoring the fall-through predecessor if
945 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
946 MachineBasicBlock
*MBB
= SameTails
[i
].getBlock();
947 if ((MBB
== EntryBB
|| MBB
->isEHPad()) &&
948 SameTails
[i
].tailIsWholeBlock())
954 if (SameTails
[i
].tailIsWholeBlock())
959 if (commonTailIndex
== SameTails
.size() ||
960 (SameTails
[commonTailIndex
].getBlock() == PredBB
&&
961 !SameTails
[commonTailIndex
].tailIsWholeBlock())) {
962 // None of the blocks consist entirely of the common tail.
963 // Split a block so that one does.
964 if (!CreateCommonTailOnlyBlock(PredBB
, SuccBB
,
965 maxCommonTailLength
, commonTailIndex
)) {
966 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
971 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
973 // Recompute common tail MBB's edge weights and block frequency.
974 setCommonTailEdgeWeights(*MBB
);
976 // Merge debug locations, MMOs and undef flags across identical instructions
978 mergeCommonTails(commonTailIndex
);
980 // MBB is common tail. Adjust all other BB's to jump to this one.
981 // Traversal must be forwards so erases work.
982 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB
)
984 for (unsigned int i
=0, e
= SameTails
.size(); i
!= e
; ++i
) {
985 if (commonTailIndex
== i
)
987 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails
[i
].getBlock())
988 << (i
== e
- 1 ? "" : ", "));
989 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
990 replaceTailWithBranchTo(SameTails
[i
].getTailStartPos(), *MBB
);
991 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
992 MergePotentials
.erase(SameTails
[i
].getMPIter());
994 LLVM_DEBUG(dbgs() << "\n");
995 // We leave commonTailIndex in the worklist in case there are other blocks
996 // that match it with a smaller number of instructions.
1002 bool BranchFolder::TailMergeBlocks(MachineFunction
&MF
) {
1003 bool MadeChange
= false;
1004 if (!EnableTailMerge
)
1007 // First find blocks with no successors.
1008 // Block placement may create new tail merging opportunities for these blocks.
1009 MergePotentials
.clear();
1010 for (MachineBasicBlock
&MBB
: MF
) {
1011 if (MergePotentials
.size() == TailMergeThreshold
)
1013 if (!TriedMerging
.count(&MBB
) && MBB
.succ_empty())
1014 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(MBB
), &MBB
));
1017 // If this is a large problem, avoid visiting the same basic blocks
1019 if (MergePotentials
.size() == TailMergeThreshold
)
1020 for (const MergePotentialsElt
&Elt
: MergePotentials
)
1021 TriedMerging
.insert(Elt
.getBlock());
1023 // See if we can do any tail merging on those.
1024 if (MergePotentials
.size() >= 2)
1025 MadeChange
|= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength
);
1027 // Look at blocks (IBB) with multiple predecessors (PBB).
1028 // We change each predecessor to a canonical form, by
1029 // (1) temporarily removing any unconditional branch from the predecessor
1031 // (2) alter conditional branches so they branch to the other block
1032 // not IBB; this may require adding back an unconditional branch to IBB
1033 // later, where there wasn't one coming in. E.g.
1035 // fallthrough to QBB
1038 // with a conceptual B to IBB after that, which never actually exists.
1039 // With those changes, we see whether the predecessors' tails match,
1040 // and merge them if so. We change things out of canonical form and
1041 // back to the way they were later in the process. (OptimizeBranches
1042 // would undo some of this, but we can't use it, because we'd get into
1043 // a compile-time infinite loop repeatedly doing and undoing the same
1044 // transformations.)
1046 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1048 if (I
->pred_size() < 2) continue;
1049 SmallPtrSet
<MachineBasicBlock
*, 8> UniquePreds
;
1050 MachineBasicBlock
*IBB
= &*I
;
1051 MachineBasicBlock
*PredBB
= &*std::prev(I
);
1052 MergePotentials
.clear();
1055 // Bail if merging after placement and IBB is the loop header because
1056 // -- If merging predecessors that belong to the same loop as IBB, the
1057 // common tail of merged predecessors may become the loop top if block
1058 // placement is called again and the predecessors may branch to this common
1059 // tail and require more branches. This can be relaxed if
1060 // MachineBlockPlacement::findBestLoopTop is more flexible.
1061 // --If merging predecessors that do not belong to the same loop as IBB, the
1062 // loop info of IBB's loop and the other loops may be affected. Calling the
1063 // block placement again may make big change to the layout and eliminate the
1064 // reason to do tail merging here.
1065 if (AfterBlockPlacement
&& MLI
) {
1066 ML
= MLI
->getLoopFor(IBB
);
1067 if (ML
&& IBB
== ML
->getHeader())
1071 for (MachineBasicBlock
*PBB
: I
->predecessors()) {
1072 if (MergePotentials
.size() == TailMergeThreshold
)
1075 if (TriedMerging
.count(PBB
))
1078 // Skip blocks that loop to themselves, can't tail merge these.
1082 // Visit each predecessor only once.
1083 if (!UniquePreds
.insert(PBB
).second
)
1086 // Skip blocks which may jump to a landing pad or jump from an asm blob.
1087 // Can't tail merge these.
1088 if (PBB
->hasEHPadSuccessor() || PBB
->mayHaveInlineAsmBr())
1091 // After block placement, only consider predecessors that belong to the
1092 // same loop as IBB. The reason is the same as above when skipping loop
1094 if (AfterBlockPlacement
&& MLI
)
1095 if (ML
!= MLI
->getLoopFor(PBB
))
1098 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1099 SmallVector
<MachineOperand
, 4> Cond
;
1100 if (!TII
->analyzeBranch(*PBB
, TBB
, FBB
, Cond
, true)) {
1101 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1103 SmallVector
<MachineOperand
, 4> NewCond(Cond
);
1104 if (!Cond
.empty() && TBB
== IBB
) {
1105 if (TII
->reverseBranchCondition(NewCond
))
1107 // This is the QBB case described above
1109 auto Next
= ++PBB
->getIterator();
1110 if (Next
!= MF
.end())
1115 // Remove the unconditional branch at the end, if any.
1116 if (TBB
&& (Cond
.empty() || FBB
)) {
1117 DebugLoc dl
= PBB
->findBranchDebugLoc();
1118 TII
->removeBranch(*PBB
);
1120 // reinsert conditional branch only, for now
1121 TII
->insertBranch(*PBB
, (TBB
== IBB
) ? FBB
: TBB
, nullptr,
1125 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(*PBB
), PBB
));
1129 // If this is a large problem, avoid visiting the same basic blocks multiple
1131 if (MergePotentials
.size() == TailMergeThreshold
)
1132 for (MergePotentialsElt
&Elt
: MergePotentials
)
1133 TriedMerging
.insert(Elt
.getBlock());
1135 if (MergePotentials
.size() >= 2)
1136 MadeChange
|= TryTailMergeBlocks(IBB
, PredBB
, MinCommonTailLength
);
1138 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1139 // result of removing blocks in TryTailMergeBlocks.
1140 PredBB
= &*std::prev(I
); // this may have been changed in TryTailMergeBlocks
1141 if (MergePotentials
.size() == 1 &&
1142 MergePotentials
.begin()->getBlock() != PredBB
)
1143 FixTail(MergePotentials
.begin()->getBlock(), IBB
, TII
);
1149 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock
&TailMBB
) {
1150 SmallVector
<BlockFrequency
, 2> EdgeFreqLs(TailMBB
.succ_size());
1151 BlockFrequency AccumulatedMBBFreq
;
1153 // Aggregate edge frequency of successor edge j:
1154 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1155 // where bb is a basic block that is in SameTails.
1156 for (const auto &Src
: SameTails
) {
1157 const MachineBasicBlock
*SrcMBB
= Src
.getBlock();
1158 BlockFrequency BlockFreq
= MBBFreqInfo
.getBlockFreq(SrcMBB
);
1159 AccumulatedMBBFreq
+= BlockFreq
;
1161 // It is not necessary to recompute edge weights if TailBB has less than two
1163 if (TailMBB
.succ_size() <= 1)
1166 auto EdgeFreq
= EdgeFreqLs
.begin();
1168 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1169 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
)
1170 *EdgeFreq
+= BlockFreq
* MBPI
.getEdgeProbability(SrcMBB
, *SuccI
);
1173 MBBFreqInfo
.setBlockFreq(&TailMBB
, AccumulatedMBBFreq
);
1175 if (TailMBB
.succ_size() <= 1)
1179 std::accumulate(EdgeFreqLs
.begin(), EdgeFreqLs
.end(), BlockFrequency(0))
1181 auto EdgeFreq
= EdgeFreqLs
.begin();
1183 if (SumEdgeFreq
> 0) {
1184 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1185 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
) {
1186 auto Prob
= BranchProbability::getBranchProbability(
1187 EdgeFreq
->getFrequency(), SumEdgeFreq
);
1188 TailMBB
.setSuccProbability(SuccI
, Prob
);
1193 //===----------------------------------------------------------------------===//
1194 // Branch Optimization
1195 //===----------------------------------------------------------------------===//
1197 bool BranchFolder::OptimizeBranches(MachineFunction
&MF
) {
1198 bool MadeChange
= false;
1200 // Make sure blocks are numbered in order
1201 MF
.RenumberBlocks();
1202 // Renumbering blocks alters EH scope membership, recalculate it.
1203 EHScopeMembership
= getEHScopeMembership(MF
);
1205 for (MachineBasicBlock
&MBB
:
1206 llvm::make_early_inc_range(llvm::drop_begin(MF
))) {
1207 MadeChange
|= OptimizeBlock(&MBB
);
1209 // If it is dead, remove it.
1210 if (MBB
.pred_empty()) {
1211 RemoveDeadBlock(&MBB
);
1220 // Blocks should be considered empty if they contain only debug info;
1221 // else the debug info would affect codegen.
1222 static bool IsEmptyBlock(MachineBasicBlock
*MBB
) {
1223 return MBB
->getFirstNonDebugInstr(true) == MBB
->end();
1226 // Blocks with only debug info and branches should be considered the same
1227 // as blocks with only branches.
1228 static bool IsBranchOnlyBlock(MachineBasicBlock
*MBB
) {
1229 MachineBasicBlock::iterator I
= MBB
->getFirstNonDebugInstr();
1230 assert(I
!= MBB
->end() && "empty block!");
1231 return I
->isBranch();
1234 /// IsBetterFallthrough - Return true if it would be clearly better to
1235 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1236 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1237 /// result in infinite loops.
1238 static bool IsBetterFallthrough(MachineBasicBlock
*MBB1
,
1239 MachineBasicBlock
*MBB2
) {
1240 assert(MBB1
&& MBB2
&& "Unknown MachineBasicBlock");
1242 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1243 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1244 // optimize branches that branch to either a return block or an assert block
1245 // into a fallthrough to the return.
1246 MachineBasicBlock::iterator MBB1I
= MBB1
->getLastNonDebugInstr();
1247 MachineBasicBlock::iterator MBB2I
= MBB2
->getLastNonDebugInstr();
1248 if (MBB1I
== MBB1
->end() || MBB2I
== MBB2
->end())
1251 // If there is a clear successor ordering we make sure that one block
1252 // will fall through to the next
1253 if (MBB1
->isSuccessor(MBB2
)) return true;
1254 if (MBB2
->isSuccessor(MBB1
)) return false;
1256 return MBB2I
->isCall() && !MBB1I
->isCall();
1259 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1260 /// instructions on the block.
1261 static DebugLoc
getBranchDebugLoc(MachineBasicBlock
&MBB
) {
1262 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
1263 if (I
!= MBB
.end() && I
->isBranch())
1264 return I
->getDebugLoc();
1268 static void copyDebugInfoToPredecessor(const TargetInstrInfo
*TII
,
1269 MachineBasicBlock
&MBB
,
1270 MachineBasicBlock
&PredMBB
) {
1271 auto InsertBefore
= PredMBB
.getFirstTerminator();
1272 for (MachineInstr
&MI
: MBB
.instrs())
1273 if (MI
.isDebugInstr()) {
1274 TII
->duplicate(PredMBB
, InsertBefore
, MI
);
1275 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1280 static void copyDebugInfoToSuccessor(const TargetInstrInfo
*TII
,
1281 MachineBasicBlock
&MBB
,
1282 MachineBasicBlock
&SuccMBB
) {
1283 auto InsertBefore
= SuccMBB
.SkipPHIsAndLabels(SuccMBB
.begin());
1284 for (MachineInstr
&MI
: MBB
.instrs())
1285 if (MI
.isDebugInstr()) {
1286 TII
->duplicate(SuccMBB
, InsertBefore
, MI
);
1287 LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1292 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1293 // a basic block is removed we would lose the debug information unless we have
1294 // copied the information to a predecessor/successor.
1296 // TODO: This function only handles some simple cases. An alternative would be
1297 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1299 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo
*TII
,
1300 MachineBasicBlock
&MBB
) {
1301 assert(IsEmptyBlock(&MBB
) && "Expected an empty block (except debug info).");
1302 // If this MBB is the only predecessor of a successor it is legal to copy
1303 // DBG_VALUE instructions to the beginning of the successor.
1304 for (MachineBasicBlock
*SuccBB
: MBB
.successors())
1305 if (SuccBB
->pred_size() == 1)
1306 copyDebugInfoToSuccessor(TII
, MBB
, *SuccBB
);
1307 // If this MBB is the only successor of a predecessor it is legal to copy the
1308 // DBG_VALUE instructions to the end of the predecessor (just before the
1309 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1310 for (MachineBasicBlock
*PredBB
: MBB
.predecessors())
1311 if (PredBB
->succ_size() == 1)
1312 copyDebugInfoToPredecessor(TII
, MBB
, *PredBB
);
1315 bool BranchFolder::OptimizeBlock(MachineBasicBlock
*MBB
) {
1316 bool MadeChange
= false;
1317 MachineFunction
&MF
= *MBB
->getParent();
1320 MachineFunction::iterator FallThrough
= MBB
->getIterator();
1323 // Make sure MBB and FallThrough belong to the same EH scope.
1324 bool SameEHScope
= true;
1325 if (!EHScopeMembership
.empty() && FallThrough
!= MF
.end()) {
1326 auto MBBEHScope
= EHScopeMembership
.find(MBB
);
1327 assert(MBBEHScope
!= EHScopeMembership
.end());
1328 auto FallThroughEHScope
= EHScopeMembership
.find(&*FallThrough
);
1329 assert(FallThroughEHScope
!= EHScopeMembership
.end());
1330 SameEHScope
= MBBEHScope
->second
== FallThroughEHScope
->second
;
1333 // Analyze the branch in the current block. As a side-effect, this may cause
1334 // the block to become empty.
1335 MachineBasicBlock
*CurTBB
= nullptr, *CurFBB
= nullptr;
1336 SmallVector
<MachineOperand
, 4> CurCond
;
1337 bool CurUnAnalyzable
=
1338 TII
->analyzeBranch(*MBB
, CurTBB
, CurFBB
, CurCond
, true);
1340 // If this block is empty, make everyone use its fall-through, not the block
1341 // explicitly. Landing pads should not do this since the landing-pad table
1342 // points to this block. Blocks with their addresses taken shouldn't be
1344 if (IsEmptyBlock(MBB
) && !MBB
->isEHPad() && !MBB
->hasAddressTaken() &&
1346 salvageDebugInfoFromEmptyBlock(TII
, *MBB
);
1347 // Dead block? Leave for cleanup later.
1348 if (MBB
->pred_empty()) return MadeChange
;
1350 if (FallThrough
== MF
.end()) {
1351 // TODO: Simplify preds to not branch here if possible!
1352 } else if (FallThrough
->isEHPad()) {
1353 // Don't rewrite to a landing pad fallthough. That could lead to the case
1354 // where a BB jumps to more than one landing pad.
1355 // TODO: Is it ever worth rewriting predecessors which don't already
1356 // jump to a landing pad, and so can safely jump to the fallthrough?
1357 } else if (MBB
->isSuccessor(&*FallThrough
)) {
1358 // Rewrite all predecessors of the old block to go to the fallthrough
1360 while (!MBB
->pred_empty()) {
1361 MachineBasicBlock
*Pred
= *(MBB
->pred_end()-1);
1362 Pred
->ReplaceUsesOfBlockWith(MBB
, &*FallThrough
);
1364 // If MBB was the target of a jump table, update jump tables to go to the
1365 // fallthrough instead.
1366 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1367 MJTI
->ReplaceMBBInJumpTables(MBB
, &*FallThrough
);
1373 // Check to see if we can simplify the terminator of the block before this
1375 MachineBasicBlock
&PrevBB
= *std::prev(MachineFunction::iterator(MBB
));
1377 MachineBasicBlock
*PriorTBB
= nullptr, *PriorFBB
= nullptr;
1378 SmallVector
<MachineOperand
, 4> PriorCond
;
1379 bool PriorUnAnalyzable
=
1380 TII
->analyzeBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, true);
1381 if (!PriorUnAnalyzable
) {
1382 // If the previous branch is conditional and both conditions go to the same
1383 // destination, remove the branch, replacing it with an unconditional one or
1385 if (PriorTBB
&& PriorTBB
== PriorFBB
) {
1386 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1387 TII
->removeBranch(PrevBB
);
1389 if (PriorTBB
!= MBB
)
1390 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1393 goto ReoptimizeBlock
;
1396 // If the previous block unconditionally falls through to this block and
1397 // this block has no other predecessors, move the contents of this block
1398 // into the prior block. This doesn't usually happen when SimplifyCFG
1399 // has been used, but it can happen if tail merging splits a fall-through
1400 // predecessor of a block.
1401 // This has to check PrevBB->succ_size() because EH edges are ignored by
1403 if (PriorCond
.empty() && !PriorTBB
&& MBB
->pred_size() == 1 &&
1404 PrevBB
.succ_size() == 1 &&
1405 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1406 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1407 << "From MBB: " << *MBB
);
1408 // Remove redundant DBG_VALUEs first.
1409 if (!PrevBB
.empty()) {
1410 MachineBasicBlock::iterator PrevBBIter
= PrevBB
.end();
1412 MachineBasicBlock::iterator MBBIter
= MBB
->begin();
1413 // Check if DBG_VALUE at the end of PrevBB is identical to the
1414 // DBG_VALUE at the beginning of MBB.
1415 while (PrevBBIter
!= PrevBB
.begin() && MBBIter
!= MBB
->end()
1416 && PrevBBIter
->isDebugInstr() && MBBIter
->isDebugInstr()) {
1417 if (!MBBIter
->isIdenticalTo(*PrevBBIter
))
1419 MachineInstr
&DuplicateDbg
= *MBBIter
;
1420 ++MBBIter
; -- PrevBBIter
;
1421 DuplicateDbg
.eraseFromParent();
1424 PrevBB
.splice(PrevBB
.end(), MBB
, MBB
->begin(), MBB
->end());
1425 PrevBB
.removeSuccessor(PrevBB
.succ_begin());
1426 assert(PrevBB
.succ_empty());
1427 PrevBB
.transferSuccessors(MBB
);
1432 // If the previous branch *only* branches to *this* block (conditional or
1433 // not) remove the branch.
1434 if (PriorTBB
== MBB
&& !PriorFBB
) {
1435 TII
->removeBranch(PrevBB
);
1438 goto ReoptimizeBlock
;
1441 // If the prior block branches somewhere else on the condition and here if
1442 // the condition is false, remove the uncond second branch.
1443 if (PriorFBB
== MBB
) {
1444 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1445 TII
->removeBranch(PrevBB
);
1446 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1449 goto ReoptimizeBlock
;
1452 // If the prior block branches here on true and somewhere else on false, and
1453 // if the branch condition is reversible, reverse the branch to create a
1455 if (PriorTBB
== MBB
) {
1456 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1457 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1458 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1459 TII
->removeBranch(PrevBB
);
1460 TII
->insertBranch(PrevBB
, PriorFBB
, nullptr, NewPriorCond
, dl
);
1463 goto ReoptimizeBlock
;
1467 // If this block has no successors (e.g. it is a return block or ends with
1468 // a call to a no-return function like abort or __cxa_throw) and if the pred
1469 // falls through into this block, and if it would otherwise fall through
1470 // into the block after this, move this block to the end of the function.
1472 // We consider it more likely that execution will stay in the function (e.g.
1473 // due to loops) than it is to exit it. This asserts in loops etc, moving
1474 // the assert condition out of the loop body.
1475 if (MBB
->succ_empty() && !PriorCond
.empty() && !PriorFBB
&&
1476 MachineFunction::iterator(PriorTBB
) == FallThrough
&&
1477 !MBB
->canFallThrough()) {
1478 bool DoTransform
= true;
1480 // We have to be careful that the succs of PredBB aren't both no-successor
1481 // blocks. If neither have successors and if PredBB is the second from
1482 // last block in the function, we'd just keep swapping the two blocks for
1483 // last. Only do the swap if one is clearly better to fall through than
1485 if (FallThrough
== --MF
.end() &&
1486 !IsBetterFallthrough(PriorTBB
, MBB
))
1487 DoTransform
= false;
1490 // Reverse the branch so we will fall through on the previous true cond.
1491 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1492 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1493 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1494 << "To make fallthrough to: " << *PriorTBB
<< "\n");
1496 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1497 TII
->removeBranch(PrevBB
);
1498 TII
->insertBranch(PrevBB
, MBB
, nullptr, NewPriorCond
, dl
);
1500 // Move this block to the end of the function.
1501 MBB
->moveAfter(&MF
.back());
1511 MF
.getFunction().hasOptSize() ||
1512 llvm::shouldOptimizeForSize(MBB
, PSI
, &MBBFreqInfo
);
1513 if (!IsEmptyBlock(MBB
) && MBB
->pred_size() == 1 && OptForSize
) {
1514 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1515 // direction, thereby defeating careful block placement and regressing
1516 // performance. Therefore, only consider this for optsize functions.
1517 MachineInstr
&TailCall
= *MBB
->getFirstNonDebugInstr();
1518 if (TII
->isUnconditionalTailCall(TailCall
)) {
1519 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
1520 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1521 SmallVector
<MachineOperand
, 4> PredCond
;
1522 bool PredAnalyzable
=
1523 !TII
->analyzeBranch(*Pred
, PredTBB
, PredFBB
, PredCond
, true);
1525 if (PredAnalyzable
&& !PredCond
.empty() && PredTBB
== MBB
&&
1526 PredTBB
!= PredFBB
) {
1527 // The predecessor has a conditional branch to this block which consists
1528 // of only a tail call. Try to fold the tail call into the conditional
1530 if (TII
->canMakeTailCallConditional(PredCond
, TailCall
)) {
1531 // TODO: It would be nice if analyzeBranch() could provide a pointer
1532 // to the branch instruction so replaceBranchWithTailCall() doesn't
1533 // have to search for it.
1534 TII
->replaceBranchWithTailCall(*Pred
, PredCond
, TailCall
);
1536 Pred
->removeSuccessor(MBB
);
1541 // If the predecessor is falling through to this block, we could reverse
1542 // the branch condition and fold the tail call into that. However, after
1543 // that we might have to re-arrange the CFG to fall through to the other
1544 // block and there is a high risk of regressing code size rather than
1549 if (!CurUnAnalyzable
) {
1550 // If this is a two-way branch, and the FBB branches to this block, reverse
1551 // the condition so the single-basic-block loop is faster. Instead of:
1552 // Loop: xxx; jcc Out; jmp Loop
1554 // Loop: xxx; jncc Loop; jmp Out
1555 if (CurTBB
&& CurFBB
&& CurFBB
== MBB
&& CurTBB
!= MBB
) {
1556 SmallVector
<MachineOperand
, 4> NewCond(CurCond
);
1557 if (!TII
->reverseBranchCondition(NewCond
)) {
1558 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1559 TII
->removeBranch(*MBB
);
1560 TII
->insertBranch(*MBB
, CurFBB
, CurTBB
, NewCond
, dl
);
1563 goto ReoptimizeBlock
;
1567 // If this branch is the only thing in its block, see if we can forward
1568 // other blocks across it.
1569 if (CurTBB
&& CurCond
.empty() && !CurFBB
&&
1570 IsBranchOnlyBlock(MBB
) && CurTBB
!= MBB
&&
1571 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1572 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1573 // This block may contain just an unconditional branch. Because there can
1574 // be 'non-branch terminators' in the block, try removing the branch and
1575 // then seeing if the block is empty.
1576 TII
->removeBranch(*MBB
);
1577 // If the only things remaining in the block are debug info, remove these
1578 // as well, so this will behave the same as an empty block in non-debug
1580 if (IsEmptyBlock(MBB
)) {
1581 // Make the block empty, losing the debug info (we could probably
1582 // improve this in some cases.)
1583 MBB
->erase(MBB
->begin(), MBB
->end());
1585 // If this block is just an unconditional branch to CurTBB, we can
1586 // usually completely eliminate the block. The only case we cannot
1587 // completely eliminate the block is when the block before this one
1588 // falls through into MBB and we can't understand the prior block's branch
1591 bool PredHasNoFallThrough
= !PrevBB
.canFallThrough();
1592 if (PredHasNoFallThrough
|| !PriorUnAnalyzable
||
1593 !PrevBB
.isSuccessor(MBB
)) {
1594 // If the prior block falls through into us, turn it into an
1595 // explicit branch to us to make updates simpler.
1596 if (!PredHasNoFallThrough
&& PrevBB
.isSuccessor(MBB
) &&
1597 PriorTBB
!= MBB
&& PriorFBB
!= MBB
) {
1599 assert(PriorCond
.empty() && !PriorFBB
&&
1600 "Bad branch analysis");
1603 assert(!PriorFBB
&& "Machine CFG out of date!");
1606 DebugLoc pdl
= getBranchDebugLoc(PrevBB
);
1607 TII
->removeBranch(PrevBB
);
1608 TII
->insertBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, pdl
);
1611 // Iterate through all the predecessors, revectoring each in-turn.
1613 bool DidChange
= false;
1614 bool HasBranchToSelf
= false;
1615 while(PI
!= MBB
->pred_size()) {
1616 MachineBasicBlock
*PMBB
= *(MBB
->pred_begin() + PI
);
1618 // If this block has an uncond branch to itself, leave it.
1620 HasBranchToSelf
= true;
1623 PMBB
->ReplaceUsesOfBlockWith(MBB
, CurTBB
);
1624 // If this change resulted in PMBB ending in a conditional
1625 // branch where both conditions go to the same destination,
1626 // change this to an unconditional branch.
1627 MachineBasicBlock
*NewCurTBB
= nullptr, *NewCurFBB
= nullptr;
1628 SmallVector
<MachineOperand
, 4> NewCurCond
;
1629 bool NewCurUnAnalyzable
= TII
->analyzeBranch(
1630 *PMBB
, NewCurTBB
, NewCurFBB
, NewCurCond
, true);
1631 if (!NewCurUnAnalyzable
&& NewCurTBB
&& NewCurTBB
== NewCurFBB
) {
1632 DebugLoc pdl
= getBranchDebugLoc(*PMBB
);
1633 TII
->removeBranch(*PMBB
);
1635 TII
->insertBranch(*PMBB
, NewCurTBB
, nullptr, NewCurCond
, pdl
);
1642 // Change any jumptables to go to the new MBB.
1643 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1644 MJTI
->ReplaceMBBInJumpTables(MBB
, CurTBB
);
1648 if (!HasBranchToSelf
) return MadeChange
;
1653 // Add the branch back if the block is more than just an uncond branch.
1654 TII
->insertBranch(*MBB
, CurTBB
, nullptr, CurCond
, dl
);
1658 // If the prior block doesn't fall through into this block, and if this
1659 // block doesn't fall through into some other block, see if we can find a
1660 // place to move this block where a fall-through will happen.
1661 if (!PrevBB
.canFallThrough()) {
1662 // Now we know that there was no fall-through into this block, check to
1663 // see if it has a fall-through into its successor.
1664 bool CurFallsThru
= MBB
->canFallThrough();
1666 if (!MBB
->isEHPad()) {
1667 // Check all the predecessors of this block. If one of them has no fall
1668 // throughs, and analyzeBranch thinks it _could_ fallthrough to this
1669 // block, move this block right after it.
1670 for (MachineBasicBlock
*PredBB
: MBB
->predecessors()) {
1671 // Analyze the branch at the end of the pred.
1672 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1673 SmallVector
<MachineOperand
, 4> PredCond
;
1674 if (PredBB
!= MBB
&& !PredBB
->canFallThrough() &&
1675 !TII
->analyzeBranch(*PredBB
, PredTBB
, PredFBB
, PredCond
, true) &&
1676 (PredTBB
== MBB
|| PredFBB
== MBB
) &&
1677 (!CurFallsThru
|| !CurTBB
|| !CurFBB
) &&
1678 (!CurFallsThru
|| MBB
->getNumber() >= PredBB
->getNumber())) {
1679 // If the current block doesn't fall through, just move it.
1680 // If the current block can fall through and does not end with a
1681 // conditional branch, we need to append an unconditional jump to
1682 // the (current) next block. To avoid a possible compile-time
1683 // infinite loop, move blocks only backward in this case.
1684 // Also, if there are already 2 branches here, we cannot add a third;
1685 // this means we have the case
1690 MachineBasicBlock
*NextBB
= &*std::next(MBB
->getIterator());
1692 TII
->insertBranch(*MBB
, NextBB
, nullptr, CurCond
, DebugLoc());
1694 MBB
->moveAfter(PredBB
);
1696 goto ReoptimizeBlock
;
1701 if (!CurFallsThru
) {
1702 // Check analyzable branch-successors to see if we can move this block
1704 if (!CurUnAnalyzable
) {
1705 for (MachineBasicBlock
*SuccBB
: {CurFBB
, CurTBB
}) {
1708 // Analyze the branch at the end of the block before the succ.
1709 MachineFunction::iterator SuccPrev
= --SuccBB
->getIterator();
1711 // If this block doesn't already fall-through to that successor, and
1712 // if the succ doesn't already have a block that can fall through into
1713 // it, we can arrange for the fallthrough to happen.
1714 if (SuccBB
!= MBB
&& &*SuccPrev
!= MBB
&&
1715 !SuccPrev
->canFallThrough()) {
1716 MBB
->moveBefore(SuccBB
);
1718 goto ReoptimizeBlock
;
1723 // Okay, there is no really great place to put this block. If, however,
1724 // the block before this one would be a fall-through if this block were
1725 // removed, move this block to the end of the function. There is no real
1726 // advantage in "falling through" to an EH block, so we don't want to
1727 // perform this transformation for that case.
1729 // Also, Windows EH introduced the possibility of an arbitrary number of
1730 // successors to a given block. The analyzeBranch call does not consider
1731 // exception handling and so we can get in a state where a block
1732 // containing a call is followed by multiple EH blocks that would be
1733 // rotated infinitely at the end of the function if the transformation
1734 // below were performed for EH "FallThrough" blocks. Therefore, even if
1735 // that appears not to be happening anymore, we should assume that it is
1736 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1737 MachineBasicBlock
*PrevTBB
= nullptr, *PrevFBB
= nullptr;
1738 SmallVector
<MachineOperand
, 4> PrevCond
;
1739 if (FallThrough
!= MF
.end() &&
1740 !FallThrough
->isEHPad() &&
1741 !TII
->analyzeBranch(PrevBB
, PrevTBB
, PrevFBB
, PrevCond
, true) &&
1742 PrevBB
.isSuccessor(&*FallThrough
)) {
1743 MBB
->moveAfter(&MF
.back());
1753 //===----------------------------------------------------------------------===//
1754 // Hoist Common Code
1755 //===----------------------------------------------------------------------===//
1757 bool BranchFolder::HoistCommonCode(MachineFunction
&MF
) {
1758 bool MadeChange
= false;
1759 for (MachineBasicBlock
&MBB
: llvm::make_early_inc_range(MF
))
1760 MadeChange
|= HoistCommonCodeInSuccs(&MBB
);
1765 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1766 /// its 'true' successor.
1767 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
1768 MachineBasicBlock
*TrueBB
) {
1769 for (MachineBasicBlock
*SuccBB
: BB
->successors())
1770 if (SuccBB
!= TrueBB
)
1775 template <class Container
>
1776 static void addRegAndItsAliases(Register Reg
, const TargetRegisterInfo
*TRI
,
1778 if (Reg
.isPhysical()) {
1779 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
1786 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1787 /// in successors to. The location is usually just before the terminator,
1788 /// however if the terminator is a conditional branch and its previous
1789 /// instruction is the flag setting instruction, the previous instruction is
1790 /// the preferred location. This function also gathers uses and defs of the
1791 /// instructions from the insertion point to the end of the block. The data is
1792 /// used by HoistCommonCodeInSuccs to ensure safety.
1794 MachineBasicBlock::iterator
findHoistingInsertPosAndDeps(MachineBasicBlock
*MBB
,
1795 const TargetInstrInfo
*TII
,
1796 const TargetRegisterInfo
*TRI
,
1797 SmallSet
<Register
, 4> &Uses
,
1798 SmallSet
<Register
, 4> &Defs
) {
1799 MachineBasicBlock::iterator Loc
= MBB
->getFirstTerminator();
1800 if (!TII
->isUnpredicatedTerminator(*Loc
))
1803 for (const MachineOperand
&MO
: Loc
->operands()) {
1806 Register Reg
= MO
.getReg();
1810 addRegAndItsAliases(Reg
, TRI
, Uses
);
1813 // Don't try to hoist code in the rare case the terminator defines a
1814 // register that is later used.
1817 // If the terminator defines a register, make sure we don't hoist
1818 // the instruction whose def might be clobbered by the terminator.
1819 addRegAndItsAliases(Reg
, TRI
, Defs
);
1825 // If the terminator is the only instruction in the block and Uses is not
1826 // empty (or we would have returned above), we can still safely hoist
1827 // instructions just before the terminator as long as the Defs/Uses are not
1828 // violated (which is checked in HoistCommonCodeInSuccs).
1829 if (Loc
== MBB
->begin())
1832 // The terminator is probably a conditional branch, try not to separate the
1833 // branch from condition setting instruction.
1834 MachineBasicBlock::iterator PI
= prev_nodbg(Loc
, MBB
->begin());
1837 for (const MachineOperand
&MO
: PI
->operands()) {
1838 // If PI has a regmask operand, it is probably a call. Separate away.
1841 if (!MO
.isReg() || MO
.isUse())
1843 Register Reg
= MO
.getReg();
1846 if (Uses
.count(Reg
)) {
1852 // The condition setting instruction is not just before the conditional
1856 // Be conservative, don't insert instruction above something that may have
1857 // side-effects. And since it's potentially bad to separate flag setting
1858 // instruction from the conditional branch, just abort the optimization
1860 // Also avoid moving code above predicated instruction since it's hard to
1861 // reason about register liveness with predicated instruction.
1862 bool DontMoveAcrossStore
= true;
1863 if (!PI
->isSafeToMove(nullptr, DontMoveAcrossStore
) || TII
->isPredicated(*PI
))
1866 // Find out what registers are live. Note this routine is ignoring other live
1867 // registers which are only used by instructions in successor blocks.
1868 for (const MachineOperand
&MO
: PI
->operands()) {
1871 Register Reg
= MO
.getReg();
1875 addRegAndItsAliases(Reg
, TRI
, Uses
);
1877 if (Uses
.erase(Reg
)) {
1878 if (Register::isPhysicalRegister(Reg
)) {
1879 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid(); ++SubRegs
)
1880 Uses
.erase(*SubRegs
); // Use sub-registers to be conservative
1883 addRegAndItsAliases(Reg
, TRI
, Defs
);
1890 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock
*MBB
) {
1891 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1892 SmallVector
<MachineOperand
, 4> Cond
;
1893 if (TII
->analyzeBranch(*MBB
, TBB
, FBB
, Cond
, true) || !TBB
|| Cond
.empty())
1896 if (!FBB
) FBB
= findFalseBlock(MBB
, TBB
);
1898 // Malformed bcc? True and false blocks are the same?
1901 // Restrict the optimization to cases where MBB is the only predecessor,
1902 // it is an obvious win.
1903 if (TBB
->pred_size() > 1 || FBB
->pred_size() > 1)
1906 // Find a suitable position to hoist the common instructions to. Also figure
1907 // out which registers are used or defined by instructions from the insertion
1908 // point to the end of the block.
1909 SmallSet
<Register
, 4> Uses
, Defs
;
1910 MachineBasicBlock::iterator Loc
=
1911 findHoistingInsertPosAndDeps(MBB
, TII
, TRI
, Uses
, Defs
);
1912 if (Loc
== MBB
->end())
1915 bool HasDups
= false;
1916 SmallSet
<Register
, 4> ActiveDefsSet
, AllDefsSet
;
1917 MachineBasicBlock::iterator TIB
= TBB
->begin();
1918 MachineBasicBlock::iterator FIB
= FBB
->begin();
1919 MachineBasicBlock::iterator TIE
= TBB
->end();
1920 MachineBasicBlock::iterator FIE
= FBB
->end();
1921 while (TIB
!= TIE
&& FIB
!= FIE
) {
1922 // Skip dbg_value instructions. These do not count.
1923 TIB
= skipDebugInstructionsForward(TIB
, TIE
, false);
1924 FIB
= skipDebugInstructionsForward(FIB
, FIE
, false);
1925 if (TIB
== TIE
|| FIB
== FIE
)
1928 if (!TIB
->isIdenticalTo(*FIB
, MachineInstr::CheckKillDead
))
1931 if (TII
->isPredicated(*TIB
))
1932 // Hard to reason about register liveness with predicated instruction.
1936 for (MachineOperand
&MO
: TIB
->operands()) {
1937 // Don't attempt to hoist instructions with register masks.
1938 if (MO
.isRegMask()) {
1944 Register Reg
= MO
.getReg();
1948 if (Uses
.count(Reg
)) {
1949 // Avoid clobbering a register that's used by the instruction at
1950 // the point of insertion.
1955 if (Defs
.count(Reg
) && !MO
.isDead()) {
1956 // Don't hoist the instruction if the def would be clobber by the
1957 // instruction at the point insertion. FIXME: This is overly
1958 // conservative. It should be possible to hoist the instructions
1959 // in BB2 in the following example:
1961 // r1, eflag = op1 r2, r3
1970 } else if (!ActiveDefsSet
.count(Reg
)) {
1971 if (Defs
.count(Reg
)) {
1972 // Use is defined by the instruction at the point of insertion.
1977 if (MO
.isKill() && Uses
.count(Reg
))
1978 // Kills a register that's read by the instruction at the point of
1979 // insertion. Remove the kill marker.
1980 MO
.setIsKill(false);
1986 bool DontMoveAcrossStore
= true;
1987 if (!TIB
->isSafeToMove(nullptr, DontMoveAcrossStore
))
1990 // Remove kills from ActiveDefsSet, these registers had short live ranges.
1991 for (const MachineOperand
&MO
: TIB
->operands()) {
1992 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
1994 Register Reg
= MO
.getReg();
1997 if (!AllDefsSet
.count(Reg
)) {
2000 if (Reg
.isPhysical()) {
2001 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
2002 ActiveDefsSet
.erase(*AI
);
2004 ActiveDefsSet
.erase(Reg
);
2008 // Track local defs so we can update liveins.
2009 for (const MachineOperand
&MO
: TIB
->operands()) {
2010 if (!MO
.isReg() || !MO
.isDef() || MO
.isDead())
2012 Register Reg
= MO
.getReg();
2013 if (!Reg
|| Reg
.isVirtual())
2015 addRegAndItsAliases(Reg
, TRI
, ActiveDefsSet
);
2016 addRegAndItsAliases(Reg
, TRI
, AllDefsSet
);
2027 MBB
->splice(Loc
, TBB
, TBB
->begin(), TIB
);
2028 FBB
->erase(FBB
->begin(), FIB
);
2030 if (UpdateLiveIns
) {
2031 recomputeLiveIns(*TBB
);
2032 recomputeLiveIns(*FBB
);