1 //===- CalcSpillWeights.cpp -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/CalcSpillWeights.h"
10 #include "llvm/ADT/SmallPtrSet.h"
11 #include "llvm/CodeGen/LiveInterval.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/CodeGen/MachineLoopInfo.h"
16 #include "llvm/CodeGen/MachineOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/StackMaps.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/TargetRegisterInfo.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/CodeGen/VirtRegMap.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
30 #define DEBUG_TYPE "calcspillweights"
32 void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
33 LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
34 << "********** Function: " << MF
.getName() << '\n');
36 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
37 for (unsigned I
= 0, E
= MRI
.getNumVirtRegs(); I
!= E
; ++I
) {
38 Register Reg
= Register::index2VirtReg(I
);
39 if (MRI
.reg_nodbg_empty(Reg
))
41 calculateSpillWeightAndHint(LIS
.getInterval(Reg
));
45 // Return the preferred allocation register for reg, given a COPY instruction.
46 Register
VirtRegAuxInfo::copyHint(const MachineInstr
*MI
, unsigned Reg
,
47 const TargetRegisterInfo
&TRI
,
48 const MachineRegisterInfo
&MRI
) {
51 if (MI
->getOperand(0).getReg() == Reg
) {
52 Sub
= MI
->getOperand(0).getSubReg();
53 HReg
= MI
->getOperand(1).getReg();
54 HSub
= MI
->getOperand(1).getSubReg();
56 Sub
= MI
->getOperand(1).getSubReg();
57 HReg
= MI
->getOperand(0).getReg();
58 HSub
= MI
->getOperand(0).getSubReg();
64 if (Register::isVirtualRegister(HReg
))
65 return Sub
== HSub
? HReg
: Register();
67 const TargetRegisterClass
*RC
= MRI
.getRegClass(Reg
);
68 MCRegister CopiedPReg
= HSub
? TRI
.getSubReg(HReg
, HSub
) : HReg
.asMCReg();
69 if (RC
->contains(CopiedPReg
))
72 // Check if reg:sub matches so that a super register could be hinted.
74 return TRI
.getMatchingSuperReg(CopiedPReg
, Sub
, RC
);
79 // Check if all values in LI are rematerializable
80 bool VirtRegAuxInfo::isRematerializable(const LiveInterval
&LI
,
81 const LiveIntervals
&LIS
,
82 const VirtRegMap
&VRM
,
83 const TargetInstrInfo
&TII
) {
84 Register Reg
= LI
.reg();
85 Register Original
= VRM
.getOriginal(Reg
);
86 for (LiveInterval::const_vni_iterator I
= LI
.vni_begin(), E
= LI
.vni_end();
88 const VNInfo
*VNI
= *I
;
94 MachineInstr
*MI
= LIS
.getInstructionFromIndex(VNI
->def
);
95 assert(MI
&& "Dead valno in interval");
97 // Trace copies introduced by live range splitting. The inline
98 // spiller can rematerialize through these copies, so the spill
99 // weight must reflect this.
100 while (MI
->isFullCopy()) {
101 // The copy destination must match the interval register.
102 if (MI
->getOperand(0).getReg() != Reg
)
105 // Get the source register.
106 Reg
= MI
->getOperand(1).getReg();
108 // If the original (pre-splitting) registers match this
109 // copy came from a split.
110 if (!Register::isVirtualRegister(Reg
) || VRM
.getOriginal(Reg
) != Original
)
113 // Follow the copy live-in value.
114 const LiveInterval
&SrcLI
= LIS
.getInterval(Reg
);
115 LiveQueryResult SrcQ
= SrcLI
.Query(VNI
->def
);
116 VNI
= SrcQ
.valueIn();
117 assert(VNI
&& "Copy from non-existing value");
120 MI
= LIS
.getInstructionFromIndex(VNI
->def
);
121 assert(MI
&& "Dead valno in interval");
124 if (!TII
.isTriviallyReMaterializable(*MI
))
130 bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval
&LI
) {
131 return any_of(VRM
.getRegInfo().reg_operands(LI
.reg()),
132 [](MachineOperand
&MO
) {
133 MachineInstr
*MI
= MO
.getParent();
134 if (MI
->getOpcode() != TargetOpcode::STATEPOINT
)
136 return StatepointOpers(MI
).getVarIdx() <= MI
->getOperandNo(&MO
);
140 void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval
&LI
) {
141 float Weight
= weightCalcHelper(LI
);
142 // Check if unspillable.
145 LI
.setWeight(Weight
);
148 float VirtRegAuxInfo::weightCalcHelper(LiveInterval
&LI
, SlotIndex
*Start
,
150 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
151 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
152 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
153 MachineBasicBlock
*MBB
= nullptr;
154 MachineLoop
*Loop
= nullptr;
155 bool IsExiting
= false;
156 float TotalWeight
= 0;
157 unsigned NumInstr
= 0; // Number of instructions using LI
158 SmallPtrSet
<MachineInstr
*, 8> Visited
;
160 std::pair
<Register
, Register
> TargetHint
= MRI
.getRegAllocationHint(LI
.reg());
162 if (LI
.isSpillable()) {
163 Register Reg
= LI
.reg();
164 Register Original
= VRM
.getOriginal(Reg
);
165 const LiveInterval
&OrigInt
= LIS
.getInterval(Original
);
166 // li comes from a split of OrigInt. If OrigInt was marked
167 // as not spillable, make sure the new interval is marked
168 // as not spillable as well.
169 if (!OrigInt
.isSpillable())
170 LI
.markNotSpillable();
173 // Don't recompute spill weight for an unspillable register.
174 bool IsSpillable
= LI
.isSpillable();
176 bool IsLocalSplitArtifact
= Start
&& End
;
178 // Do not update future local split artifacts.
179 bool ShouldUpdateLI
= !IsLocalSplitArtifact
;
181 if (IsLocalSplitArtifact
) {
182 MachineBasicBlock
*LocalMBB
= LIS
.getMBBFromIndex(*End
);
183 assert(LocalMBB
== LIS
.getMBBFromIndex(*Start
) &&
184 "start and end are expected to be in the same basic block");
186 // Local split artifact will have 2 additional copy instructions and they
187 // will be in the same BB.
188 // localLI = COPY other
190 // other = COPY localLI
191 TotalWeight
+= LiveIntervals::getSpillWeight(true, false, &MBFI
, LocalMBB
);
192 TotalWeight
+= LiveIntervals::getSpillWeight(false, true, &MBFI
, LocalMBB
);
197 // CopyHint is a sortable hint derived from a COPY instruction.
201 CopyHint(Register R
, float W
) : Reg(R
), Weight(W
) {}
202 bool operator<(const CopyHint
&Rhs
) const {
203 // Always prefer any physreg hint.
204 if (Reg
.isPhysical() != Rhs
.Reg
.isPhysical())
205 return Reg
.isPhysical();
206 if (Weight
!= Rhs
.Weight
)
207 return (Weight
> Rhs
.Weight
);
208 return Reg
.id() < Rhs
.Reg
.id(); // Tie-breaker.
212 std::set
<CopyHint
> CopyHints
;
213 DenseMap
<unsigned, float> Hint
;
214 for (MachineRegisterInfo::reg_instr_nodbg_iterator
215 I
= MRI
.reg_instr_nodbg_begin(LI
.reg()),
216 E
= MRI
.reg_instr_nodbg_end();
218 MachineInstr
*MI
= &*(I
++);
220 // For local split artifacts, we are interested only in instructions between
221 // the expected start and end of the range.
222 SlotIndex SI
= LIS
.getInstructionIndex(*MI
);
223 if (IsLocalSplitArtifact
&& ((SI
< *Start
) || (SI
> *End
)))
227 if (MI
->isIdentityCopy() || MI
->isImplicitDef())
229 if (!Visited
.insert(MI
).second
)
232 // For terminators that produce values, ask the backend if the register is
234 if (TII
.isUnspillableTerminator(MI
) && MI
->definesRegister(LI
.reg())) {
235 LI
.markNotSpillable();
241 // Get loop info for mi.
242 if (MI
->getParent() != MBB
) {
243 MBB
= MI
->getParent();
244 Loop
= Loops
.getLoopFor(MBB
);
245 IsExiting
= Loop
? Loop
->isLoopExiting(MBB
) : false;
248 // Calculate instr weight.
250 std::tie(Reads
, Writes
) = MI
->readsWritesVirtualRegister(LI
.reg());
251 Weight
= LiveIntervals::getSpillWeight(Writes
, Reads
, &MBFI
, *MI
);
253 // Give extra weight to what looks like a loop induction variable update.
254 if (Writes
&& IsExiting
&& LIS
.isLiveOutOfMBB(LI
, MBB
))
257 TotalWeight
+= Weight
;
260 // Get allocation hints from copies.
263 Register HintReg
= copyHint(MI
, LI
.reg(), TRI
, MRI
);
266 // Force hweight onto the stack so that x86 doesn't add hidden precision,
267 // making the comparison incorrectly pass (i.e., 1 > 1 == true??).
269 // FIXME: we probably shouldn't use floats at all.
270 volatile float HWeight
= Hint
[HintReg
] += Weight
;
271 if (HintReg
.isVirtual() || MRI
.isAllocatable(HintReg
))
272 CopyHints
.insert(CopyHint(HintReg
, HWeight
));
275 // Pass all the sorted copy hints to mri.
276 if (ShouldUpdateLI
&& CopyHints
.size()) {
277 // Remove a generic hint if previously added by target.
278 if (TargetHint
.first
== 0 && TargetHint
.second
)
279 MRI
.clearSimpleHint(LI
.reg());
281 std::set
<Register
> HintedRegs
;
282 for (const auto &Hint
: CopyHints
) {
283 if (!HintedRegs
.insert(Hint
.Reg
).second
||
284 (TargetHint
.first
!= 0 && Hint
.Reg
== TargetHint
.second
))
285 // Don't add the same reg twice or the target-type hint again.
287 MRI
.addRegAllocationHint(LI
.reg(), Hint
.Reg
);
290 // Weakly boost the spill weight of hinted registers.
291 TotalWeight
*= 1.01F
;
294 // If the live interval was already unspillable, leave it that way.
298 // Mark li as unspillable if all live ranges are tiny and the interval
299 // is not live at any reg mask. If the interval is live at a reg mask
300 // spilling may be required. If li is live as use in statepoint instruction
301 // spilling may be required due to if we mark interval with use in statepoint
302 // as not spillable we are risky to end up with no register to allocate.
303 // At the same time STATEPOINT instruction is perfectly fine to have this
304 // operand on stack, so spilling such interval and folding its load from stack
305 // into instruction itself makes perfect sense.
306 if (ShouldUpdateLI
&& LI
.isZeroLength(LIS
.getSlotIndexes()) &&
307 !LI
.isLiveAtIndexes(LIS
.getRegMaskSlots()) &&
308 !isLiveAtStatepointVarArg(LI
)) {
309 LI
.markNotSpillable();
313 // If all of the definitions of the interval are re-materializable,
314 // it is a preferred candidate for spilling.
315 // FIXME: this gets much more complicated once we support non-trivial
316 // re-materialization.
317 if (isRematerializable(LI
, LIS
, VRM
, *MF
.getSubtarget().getInstrInfo()))
320 if (IsLocalSplitArtifact
)
321 return normalize(TotalWeight
, Start
->distance(*End
), NumInstr
);
322 return normalize(TotalWeight
, LI
.getSize(), NumInstr
);