[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / EarlyIfConversion.cpp
blobc108f0088d43a12a8625ef96192f764c2ab4dd6b
1 //===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Early if-conversion is for out-of-order CPUs that don't have a lot of
10 // predicable instructions. The goal is to eliminate conditional branches that
11 // may mispredict.
13 // Instructions from both sides of the branch are executed specutatively, and a
14 // cmov instruction selects the result.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/MachineTraceMetrics.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
41 using namespace llvm;
43 #define DEBUG_TYPE "early-ifcvt"
45 // Absolute maximum number of instructions allowed per speculated block.
46 // This bypasses all other heuristics, so it should be set fairly high.
47 static cl::opt<unsigned>
48 BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden,
49 cl::desc("Maximum number of instructions per speculated block."));
51 // Stress testing mode - disable heuristics.
52 static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden,
53 cl::desc("Turn all knobs to 11"));
55 STATISTIC(NumDiamondsSeen, "Number of diamonds");
56 STATISTIC(NumDiamondsConv, "Number of diamonds converted");
57 STATISTIC(NumTrianglesSeen, "Number of triangles");
58 STATISTIC(NumTrianglesConv, "Number of triangles converted");
60 //===----------------------------------------------------------------------===//
61 // SSAIfConv
62 //===----------------------------------------------------------------------===//
64 // The SSAIfConv class performs if-conversion on SSA form machine code after
65 // determining if it is possible. The class contains no heuristics; external
66 // code should be used to determine when if-conversion is a good idea.
68 // SSAIfConv can convert both triangles and diamonds:
70 // Triangle: Head Diamond: Head
71 // | \ / \_
72 // | \ / |
73 // | [TF]BB FBB TBB
74 // | / \ /
75 // | / \ /
76 // Tail Tail
78 // Instructions in the conditional blocks TBB and/or FBB are spliced into the
79 // Head block, and phis in the Tail block are converted to select instructions.
81 namespace {
82 class SSAIfConv {
83 const TargetInstrInfo *TII;
84 const TargetRegisterInfo *TRI;
85 MachineRegisterInfo *MRI;
87 public:
88 /// The block containing the conditional branch.
89 MachineBasicBlock *Head;
91 /// The block containing phis after the if-then-else.
92 MachineBasicBlock *Tail;
94 /// The 'true' conditional block as determined by analyzeBranch.
95 MachineBasicBlock *TBB;
97 /// The 'false' conditional block as determined by analyzeBranch.
98 MachineBasicBlock *FBB;
100 /// isTriangle - When there is no 'else' block, either TBB or FBB will be
101 /// equal to Tail.
102 bool isTriangle() const { return TBB == Tail || FBB == Tail; }
104 /// Returns the Tail predecessor for the True side.
105 MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; }
107 /// Returns the Tail predecessor for the False side.
108 MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; }
110 /// Information about each phi in the Tail block.
111 struct PHIInfo {
112 MachineInstr *PHI;
113 unsigned TReg = 0, FReg = 0;
114 // Latencies from Cond+Branch, TReg, and FReg to DstReg.
115 int CondCycles = 0, TCycles = 0, FCycles = 0;
117 PHIInfo(MachineInstr *phi) : PHI(phi) {}
120 SmallVector<PHIInfo, 8> PHIs;
122 private:
123 /// The branch condition determined by analyzeBranch.
124 SmallVector<MachineOperand, 4> Cond;
126 /// Instructions in Head that define values used by the conditional blocks.
127 /// The hoisted instructions must be inserted after these instructions.
128 SmallPtrSet<MachineInstr*, 8> InsertAfter;
130 /// Register units clobbered by the conditional blocks.
131 BitVector ClobberedRegUnits;
133 // Scratch pad for findInsertionPoint.
134 SparseSet<unsigned> LiveRegUnits;
136 /// Insertion point in Head for speculatively executed instructions form TBB
137 /// and FBB.
138 MachineBasicBlock::iterator InsertionPoint;
140 /// Return true if all non-terminator instructions in MBB can be safely
141 /// speculated.
142 bool canSpeculateInstrs(MachineBasicBlock *MBB);
144 /// Return true if all non-terminator instructions in MBB can be safely
145 /// predicated.
146 bool canPredicateInstrs(MachineBasicBlock *MBB);
148 /// Scan through instruction dependencies and update InsertAfter array.
149 /// Return false if any dependency is incompatible with if conversion.
150 bool InstrDependenciesAllowIfConv(MachineInstr *I);
152 /// Predicate all instructions of the basic block with current condition
153 /// except for terminators. Reverse the condition if ReversePredicate is set.
154 void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate);
156 /// Find a valid insertion point in Head.
157 bool findInsertionPoint();
159 /// Replace PHI instructions in Tail with selects.
160 void replacePHIInstrs();
162 /// Insert selects and rewrite PHI operands to use them.
163 void rewritePHIOperands();
165 public:
166 /// runOnMachineFunction - Initialize per-function data structures.
167 void runOnMachineFunction(MachineFunction &MF) {
168 TII = MF.getSubtarget().getInstrInfo();
169 TRI = MF.getSubtarget().getRegisterInfo();
170 MRI = &MF.getRegInfo();
171 LiveRegUnits.clear();
172 LiveRegUnits.setUniverse(TRI->getNumRegUnits());
173 ClobberedRegUnits.clear();
174 ClobberedRegUnits.resize(TRI->getNumRegUnits());
177 /// canConvertIf - If the sub-CFG headed by MBB can be if-converted,
178 /// initialize the internal state, and return true.
179 /// If predicate is set try to predicate the block otherwise try to
180 /// speculatively execute it.
181 bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false);
183 /// convertIf - If-convert the last block passed to canConvertIf(), assuming
184 /// it is possible. Add any erased blocks to RemovedBlocks.
185 void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
186 bool Predicate = false);
188 } // end anonymous namespace
191 /// canSpeculateInstrs - Returns true if all the instructions in MBB can safely
192 /// be speculated. The terminators are not considered.
194 /// If instructions use any values that are defined in the head basic block,
195 /// the defining instructions are added to InsertAfter.
197 /// Any clobbered regunits are added to ClobberedRegUnits.
199 bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
200 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
201 // get right.
202 if (!MBB->livein_empty()) {
203 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
204 return false;
207 unsigned InstrCount = 0;
209 // Check all instructions, except the terminators. It is assumed that
210 // terminators never have side effects or define any used register values.
211 for (MachineInstr &MI :
212 llvm::make_range(MBB->begin(), MBB->getFirstTerminator())) {
213 if (MI.isDebugInstr())
214 continue;
216 if (++InstrCount > BlockInstrLimit && !Stress) {
217 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
218 << BlockInstrLimit << " instructions.\n");
219 return false;
222 // There shouldn't normally be any phis in a single-predecessor block.
223 if (MI.isPHI()) {
224 LLVM_DEBUG(dbgs() << "Can't hoist: " << MI);
225 return false;
228 // Don't speculate loads. Note that it may be possible and desirable to
229 // speculate GOT or constant pool loads that are guaranteed not to trap,
230 // but we don't support that for now.
231 if (MI.mayLoad()) {
232 LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI);
233 return false;
236 // We never speculate stores, so an AA pointer isn't necessary.
237 bool DontMoveAcrossStore = true;
238 if (!MI.isSafeToMove(nullptr, DontMoveAcrossStore)) {
239 LLVM_DEBUG(dbgs() << "Can't speculate: " << MI);
240 return false;
243 // Check for any dependencies on Head instructions.
244 if (!InstrDependenciesAllowIfConv(&MI))
245 return false;
247 return true;
250 /// Check that there is no dependencies preventing if conversion.
252 /// If instruction uses any values that are defined in the head basic block,
253 /// the defining instructions are added to InsertAfter.
254 bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) {
255 for (const MachineOperand &MO : I->operands()) {
256 if (MO.isRegMask()) {
257 LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I);
258 return false;
260 if (!MO.isReg())
261 continue;
262 Register Reg = MO.getReg();
264 // Remember clobbered regunits.
265 if (MO.isDef() && Register::isPhysicalRegister(Reg))
266 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
267 ++Units)
268 ClobberedRegUnits.set(*Units);
270 if (!MO.readsReg() || !Register::isVirtualRegister(Reg))
271 continue;
272 MachineInstr *DefMI = MRI->getVRegDef(Reg);
273 if (!DefMI || DefMI->getParent() != Head)
274 continue;
275 if (InsertAfter.insert(DefMI).second)
276 LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on "
277 << *DefMI);
278 if (DefMI->isTerminator()) {
279 LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
280 return false;
283 return true;
286 /// canPredicateInstrs - Returns true if all the instructions in MBB can safely
287 /// be predicates. The terminators are not considered.
289 /// If instructions use any values that are defined in the head basic block,
290 /// the defining instructions are added to InsertAfter.
292 /// Any clobbered regunits are added to ClobberedRegUnits.
294 bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) {
295 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
296 // get right.
297 if (!MBB->livein_empty()) {
298 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
299 return false;
302 unsigned InstrCount = 0;
304 // Check all instructions, except the terminators. It is assumed that
305 // terminators never have side effects or define any used register values.
306 for (MachineBasicBlock::iterator I = MBB->begin(),
307 E = MBB->getFirstTerminator();
308 I != E; ++I) {
309 if (I->isDebugInstr())
310 continue;
312 if (++InstrCount > BlockInstrLimit && !Stress) {
313 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
314 << BlockInstrLimit << " instructions.\n");
315 return false;
318 // There shouldn't normally be any phis in a single-predecessor block.
319 if (I->isPHI()) {
320 LLVM_DEBUG(dbgs() << "Can't predicate: " << *I);
321 return false;
324 // Check that instruction is predicable and that it is not already
325 // predicated.
326 if (!TII->isPredicable(*I) || TII->isPredicated(*I)) {
327 return false;
330 // Check for any dependencies on Head instructions.
331 if (!InstrDependenciesAllowIfConv(&(*I)))
332 return false;
334 return true;
337 // Apply predicate to all instructions in the machine block.
338 void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) {
339 auto Condition = Cond;
340 if (ReversePredicate)
341 TII->reverseBranchCondition(Condition);
342 // Terminators don't need to be predicated as they will be removed.
343 for (MachineBasicBlock::iterator I = MBB->begin(),
344 E = MBB->getFirstTerminator();
345 I != E; ++I) {
346 if (I->isDebugInstr())
347 continue;
348 TII->PredicateInstruction(*I, Condition);
352 /// Find an insertion point in Head for the speculated instructions. The
353 /// insertion point must be:
355 /// 1. Before any terminators.
356 /// 2. After any instructions in InsertAfter.
357 /// 3. Not have any clobbered regunits live.
359 /// This function sets InsertionPoint and returns true when successful, it
360 /// returns false if no valid insertion point could be found.
362 bool SSAIfConv::findInsertionPoint() {
363 // Keep track of live regunits before the current position.
364 // Only track RegUnits that are also in ClobberedRegUnits.
365 LiveRegUnits.clear();
366 SmallVector<MCRegister, 8> Reads;
367 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
368 MachineBasicBlock::iterator I = Head->end();
369 MachineBasicBlock::iterator B = Head->begin();
370 while (I != B) {
371 --I;
372 // Some of the conditional code depends in I.
373 if (InsertAfter.count(&*I)) {
374 LLVM_DEBUG(dbgs() << "Can't insert code after " << *I);
375 return false;
378 // Update live regunits.
379 for (const MachineOperand &MO : I->operands()) {
380 // We're ignoring regmask operands. That is conservatively correct.
381 if (!MO.isReg())
382 continue;
383 Register Reg = MO.getReg();
384 if (!Register::isPhysicalRegister(Reg))
385 continue;
386 // I clobbers Reg, so it isn't live before I.
387 if (MO.isDef())
388 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
389 ++Units)
390 LiveRegUnits.erase(*Units);
391 // Unless I reads Reg.
392 if (MO.readsReg())
393 Reads.push_back(Reg.asMCReg());
395 // Anything read by I is live before I.
396 while (!Reads.empty())
397 for (MCRegUnitIterator Units(Reads.pop_back_val(), TRI); Units.isValid();
398 ++Units)
399 if (ClobberedRegUnits.test(*Units))
400 LiveRegUnits.insert(*Units);
402 // We can't insert before a terminator.
403 if (I != FirstTerm && I->isTerminator())
404 continue;
406 // Some of the clobbered registers are live before I, not a valid insertion
407 // point.
408 if (!LiveRegUnits.empty()) {
409 LLVM_DEBUG({
410 dbgs() << "Would clobber";
411 for (unsigned LRU : LiveRegUnits)
412 dbgs() << ' ' << printRegUnit(LRU, TRI);
413 dbgs() << " live before " << *I;
415 continue;
418 // This is a valid insertion point.
419 InsertionPoint = I;
420 LLVM_DEBUG(dbgs() << "Can insert before " << *I);
421 return true;
423 LLVM_DEBUG(dbgs() << "No legal insertion point found.\n");
424 return false;
429 /// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is
430 /// a potential candidate for if-conversion. Fill out the internal state.
432 bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) {
433 Head = MBB;
434 TBB = FBB = Tail = nullptr;
436 if (Head->succ_size() != 2)
437 return false;
438 MachineBasicBlock *Succ0 = Head->succ_begin()[0];
439 MachineBasicBlock *Succ1 = Head->succ_begin()[1];
441 // Canonicalize so Succ0 has MBB as its single predecessor.
442 if (Succ0->pred_size() != 1)
443 std::swap(Succ0, Succ1);
445 if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1)
446 return false;
448 Tail = Succ0->succ_begin()[0];
450 // This is not a triangle.
451 if (Tail != Succ1) {
452 // Check for a diamond. We won't deal with any critical edges.
453 if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 ||
454 Succ1->succ_begin()[0] != Tail)
455 return false;
456 LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> "
457 << printMBBReference(*Succ0) << "/"
458 << printMBBReference(*Succ1) << " -> "
459 << printMBBReference(*Tail) << '\n');
461 // Live-in physregs are tricky to get right when speculating code.
462 if (!Tail->livein_empty()) {
463 LLVM_DEBUG(dbgs() << "Tail has live-ins.\n");
464 return false;
466 } else {
467 LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
468 << printMBBReference(*Succ0) << " -> "
469 << printMBBReference(*Tail) << '\n');
472 // This is a triangle or a diamond.
473 // Skip if we cannot predicate and there are no phis skip as there must be
474 // side effects that can only be handled with predication.
475 if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) {
476 LLVM_DEBUG(dbgs() << "No phis in tail.\n");
477 return false;
480 // The branch we're looking to eliminate must be analyzable.
481 Cond.clear();
482 if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) {
483 LLVM_DEBUG(dbgs() << "Branch not analyzable.\n");
484 return false;
487 // This is weird, probably some sort of degenerate CFG.
488 if (!TBB) {
489 LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n");
490 return false;
493 // Make sure the analyzed branch is conditional; one of the successors
494 // could be a landing pad. (Empty landing pads can be generated on Windows.)
495 if (Cond.empty()) {
496 LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n");
497 return false;
500 // analyzeBranch doesn't set FBB on a fall-through branch.
501 // Make sure it is always set.
502 FBB = TBB == Succ0 ? Succ1 : Succ0;
504 // Any phis in the tail block must be convertible to selects.
505 PHIs.clear();
506 MachineBasicBlock *TPred = getTPred();
507 MachineBasicBlock *FPred = getFPred();
508 for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end();
509 I != E && I->isPHI(); ++I) {
510 PHIs.push_back(&*I);
511 PHIInfo &PI = PHIs.back();
512 // Find PHI operands corresponding to TPred and FPred.
513 for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) {
514 if (PI.PHI->getOperand(i+1).getMBB() == TPred)
515 PI.TReg = PI.PHI->getOperand(i).getReg();
516 if (PI.PHI->getOperand(i+1).getMBB() == FPred)
517 PI.FReg = PI.PHI->getOperand(i).getReg();
519 assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI");
520 assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI");
522 // Get target information.
523 if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(),
524 PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles,
525 PI.FCycles)) {
526 LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI);
527 return false;
531 // Check that the conditional instructions can be speculated.
532 InsertAfter.clear();
533 ClobberedRegUnits.reset();
534 if (Predicate) {
535 if (TBB != Tail && !canPredicateInstrs(TBB))
536 return false;
537 if (FBB != Tail && !canPredicateInstrs(FBB))
538 return false;
539 } else {
540 if (TBB != Tail && !canSpeculateInstrs(TBB))
541 return false;
542 if (FBB != Tail && !canSpeculateInstrs(FBB))
543 return false;
546 // Try to find a valid insertion point for the speculated instructions in the
547 // head basic block.
548 if (!findInsertionPoint())
549 return false;
551 if (isTriangle())
552 ++NumTrianglesSeen;
553 else
554 ++NumDiamondsSeen;
555 return true;
558 /// \return true iff the two registers are known to have the same value.
559 static bool hasSameValue(const MachineRegisterInfo &MRI,
560 const TargetInstrInfo *TII, Register TReg,
561 Register FReg) {
562 if (TReg == FReg)
563 return true;
565 if (!TReg.isVirtual() || !FReg.isVirtual())
566 return false;
568 const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg);
569 const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg);
570 if (!TDef || !FDef)
571 return false;
573 // If there are side-effects, all bets are off.
574 if (TDef->hasUnmodeledSideEffects())
575 return false;
577 // If the instruction could modify memory, or there may be some intervening
578 // store between the two, we can't consider them to be equal.
579 if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad())
580 return false;
582 // We also can't guarantee that they are the same if, for example, the
583 // instructions are both a copy from a physical reg, because some other
584 // instruction may have modified the value in that reg between the two
585 // defining insts.
586 if (any_of(TDef->uses(), [](const MachineOperand &MO) {
587 return MO.isReg() && MO.getReg().isPhysical();
589 return false;
591 // Check whether the two defining instructions produce the same value(s).
592 if (!TII->produceSameValue(*TDef, *FDef, &MRI))
593 return false;
595 // Further, check that the two defs come from corresponding operands.
596 int TIdx = TDef->findRegisterDefOperandIdx(TReg);
597 int FIdx = FDef->findRegisterDefOperandIdx(FReg);
598 if (TIdx == -1 || FIdx == -1)
599 return false;
601 return TIdx == FIdx;
604 /// replacePHIInstrs - Completely replace PHI instructions with selects.
605 /// This is possible when the only Tail predecessors are the if-converted
606 /// blocks.
607 void SSAIfConv::replacePHIInstrs() {
608 assert(Tail->pred_size() == 2 && "Cannot replace PHIs");
609 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
610 assert(FirstTerm != Head->end() && "No terminators");
611 DebugLoc HeadDL = FirstTerm->getDebugLoc();
613 // Convert all PHIs to select instructions inserted before FirstTerm.
614 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
615 PHIInfo &PI = PHIs[i];
616 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
617 Register DstReg = PI.PHI->getOperand(0).getReg();
618 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
619 // We do not need the select instruction if both incoming values are
620 // equal, but we do need a COPY.
621 BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg)
622 .addReg(PI.TReg);
623 } else {
624 TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg,
625 PI.FReg);
627 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
628 PI.PHI->eraseFromParent();
629 PI.PHI = nullptr;
633 /// rewritePHIOperands - When there are additional Tail predecessors, insert
634 /// select instructions in Head and rewrite PHI operands to use the selects.
635 /// Keep the PHI instructions in Tail to handle the other predecessors.
636 void SSAIfConv::rewritePHIOperands() {
637 MachineBasicBlock::iterator FirstTerm = Head->getFirstTerminator();
638 assert(FirstTerm != Head->end() && "No terminators");
639 DebugLoc HeadDL = FirstTerm->getDebugLoc();
641 // Convert all PHIs to select instructions inserted before FirstTerm.
642 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
643 PHIInfo &PI = PHIs[i];
644 unsigned DstReg = 0;
646 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
647 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
648 // We do not need the select instruction if both incoming values are
649 // equal.
650 DstReg = PI.TReg;
651 } else {
652 Register PHIDst = PI.PHI->getOperand(0).getReg();
653 DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst));
654 TII->insertSelect(*Head, FirstTerm, HeadDL,
655 DstReg, Cond, PI.TReg, PI.FReg);
656 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
659 // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred.
660 for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) {
661 MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB();
662 if (MBB == getTPred()) {
663 PI.PHI->getOperand(i-1).setMBB(Head);
664 PI.PHI->getOperand(i-2).setReg(DstReg);
665 } else if (MBB == getFPred()) {
666 PI.PHI->removeOperand(i-1);
667 PI.PHI->removeOperand(i-2);
670 LLVM_DEBUG(dbgs() << " --> " << *PI.PHI);
674 /// convertIf - Execute the if conversion after canConvertIf has determined the
675 /// feasibility.
677 /// Any basic blocks erased will be added to RemovedBlocks.
679 void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemovedBlocks,
680 bool Predicate) {
681 assert(Head && Tail && TBB && FBB && "Call canConvertIf first.");
683 // Update statistics.
684 if (isTriangle())
685 ++NumTrianglesConv;
686 else
687 ++NumDiamondsConv;
689 // Move all instructions into Head, except for the terminators.
690 if (TBB != Tail) {
691 if (Predicate)
692 PredicateBlock(TBB, /*ReversePredicate=*/false);
693 Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator());
695 if (FBB != Tail) {
696 if (Predicate)
697 PredicateBlock(FBB, /*ReversePredicate=*/true);
698 Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator());
700 // Are there extra Tail predecessors?
701 bool ExtraPreds = Tail->pred_size() != 2;
702 if (ExtraPreds)
703 rewritePHIOperands();
704 else
705 replacePHIInstrs();
707 // Fix up the CFG, temporarily leave Head without any successors.
708 Head->removeSuccessor(TBB);
709 Head->removeSuccessor(FBB, true);
710 if (TBB != Tail)
711 TBB->removeSuccessor(Tail, true);
712 if (FBB != Tail)
713 FBB->removeSuccessor(Tail, true);
715 // Fix up Head's terminators.
716 // It should become a single branch or a fallthrough.
717 DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
718 TII->removeBranch(*Head);
720 // Erase the now empty conditional blocks. It is likely that Head can fall
721 // through to Tail, and we can join the two blocks.
722 if (TBB != Tail) {
723 RemovedBlocks.push_back(TBB);
724 TBB->eraseFromParent();
726 if (FBB != Tail) {
727 RemovedBlocks.push_back(FBB);
728 FBB->eraseFromParent();
731 assert(Head->succ_empty() && "Additional head successors?");
732 if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) {
733 // Splice Tail onto the end of Head.
734 LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail)
735 << " into head " << printMBBReference(*Head) << '\n');
736 Head->splice(Head->end(), Tail,
737 Tail->begin(), Tail->end());
738 Head->transferSuccessorsAndUpdatePHIs(Tail);
739 RemovedBlocks.push_back(Tail);
740 Tail->eraseFromParent();
741 } else {
742 // We need a branch to Tail, let code placement work it out later.
743 LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n");
744 SmallVector<MachineOperand, 0> EmptyCond;
745 TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
746 Head->addSuccessor(Tail);
748 LLVM_DEBUG(dbgs() << *Head);
751 //===----------------------------------------------------------------------===//
752 // EarlyIfConverter Pass
753 //===----------------------------------------------------------------------===//
755 namespace {
756 class EarlyIfConverter : public MachineFunctionPass {
757 const TargetInstrInfo *TII;
758 const TargetRegisterInfo *TRI;
759 MCSchedModel SchedModel;
760 MachineRegisterInfo *MRI;
761 MachineDominatorTree *DomTree;
762 MachineLoopInfo *Loops;
763 MachineTraceMetrics *Traces;
764 MachineTraceMetrics::Ensemble *MinInstr;
765 SSAIfConv IfConv;
767 public:
768 static char ID;
769 EarlyIfConverter() : MachineFunctionPass(ID) {}
770 void getAnalysisUsage(AnalysisUsage &AU) const override;
771 bool runOnMachineFunction(MachineFunction &MF) override;
772 StringRef getPassName() const override { return "Early If-Conversion"; }
774 private:
775 bool tryConvertIf(MachineBasicBlock*);
776 void invalidateTraces();
777 bool shouldConvertIf();
779 } // end anonymous namespace
781 char EarlyIfConverter::ID = 0;
782 char &llvm::EarlyIfConverterID = EarlyIfConverter::ID;
784 INITIALIZE_PASS_BEGIN(EarlyIfConverter, DEBUG_TYPE,
785 "Early If Converter", false, false)
786 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
787 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
788 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
789 INITIALIZE_PASS_END(EarlyIfConverter, DEBUG_TYPE,
790 "Early If Converter", false, false)
792 void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const {
793 AU.addRequired<MachineBranchProbabilityInfo>();
794 AU.addRequired<MachineDominatorTree>();
795 AU.addPreserved<MachineDominatorTree>();
796 AU.addRequired<MachineLoopInfo>();
797 AU.addPreserved<MachineLoopInfo>();
798 AU.addRequired<MachineTraceMetrics>();
799 AU.addPreserved<MachineTraceMetrics>();
800 MachineFunctionPass::getAnalysisUsage(AU);
803 namespace {
804 /// Update the dominator tree after if-conversion erased some blocks.
805 void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv,
806 ArrayRef<MachineBasicBlock *> Removed) {
807 // convertIf can remove TBB, FBB, and Tail can be merged into Head.
808 // TBB and FBB should not dominate any blocks.
809 // Tail children should be transferred to Head.
810 MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head);
811 for (auto *B : Removed) {
812 MachineDomTreeNode *Node = DomTree->getNode(B);
813 assert(Node != HeadNode && "Cannot erase the head node");
814 while (Node->getNumChildren()) {
815 assert(Node->getBlock() == IfConv.Tail && "Unexpected children");
816 DomTree->changeImmediateDominator(Node->back(), HeadNode);
818 DomTree->eraseNode(B);
822 /// Update LoopInfo after if-conversion.
823 void updateLoops(MachineLoopInfo *Loops,
824 ArrayRef<MachineBasicBlock *> Removed) {
825 if (!Loops)
826 return;
827 // If-conversion doesn't change loop structure, and it doesn't mess with back
828 // edges, so updating LoopInfo is simply removing the dead blocks.
829 for (auto *B : Removed)
830 Loops->removeBlock(B);
832 } // namespace
834 /// Invalidate MachineTraceMetrics before if-conversion.
835 void EarlyIfConverter::invalidateTraces() {
836 Traces->verifyAnalysis();
837 Traces->invalidate(IfConv.Head);
838 Traces->invalidate(IfConv.Tail);
839 Traces->invalidate(IfConv.TBB);
840 Traces->invalidate(IfConv.FBB);
841 Traces->verifyAnalysis();
844 // Adjust cycles with downward saturation.
845 static unsigned adjCycles(unsigned Cyc, int Delta) {
846 if (Delta < 0 && Cyc + Delta > Cyc)
847 return 0;
848 return Cyc + Delta;
851 namespace {
852 /// Helper class to simplify emission of cycle counts into optimization remarks.
853 struct Cycles {
854 const char *Key;
855 unsigned Value;
857 template <typename Remark> Remark &operator<<(Remark &R, Cycles C) {
858 return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles");
860 } // anonymous namespace
862 /// Apply cost model and heuristics to the if-conversion in IfConv.
863 /// Return true if the conversion is a good idea.
865 bool EarlyIfConverter::shouldConvertIf() {
866 // Stress testing mode disables all cost considerations.
867 if (Stress)
868 return true;
870 if (!MinInstr)
871 MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
873 MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred());
874 MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred());
875 LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
876 unsigned MinCrit = std::min(TBBTrace.getCriticalPath(),
877 FBBTrace.getCriticalPath());
879 // Set a somewhat arbitrary limit on the critical path extension we accept.
880 unsigned CritLimit = SchedModel.MispredictPenalty/2;
882 MachineBasicBlock &MBB = *IfConv.Head;
883 MachineOptimizationRemarkEmitter MORE(*MBB.getParent(), nullptr);
885 // If-conversion only makes sense when there is unexploited ILP. Compute the
886 // maximum-ILP resource length of the trace after if-conversion. Compare it
887 // to the shortest critical path.
888 SmallVector<const MachineBasicBlock*, 1> ExtraBlocks;
889 if (IfConv.TBB != IfConv.Tail)
890 ExtraBlocks.push_back(IfConv.TBB);
891 unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks);
892 LLVM_DEBUG(dbgs() << "Resource length " << ResLength
893 << ", minimal critical path " << MinCrit << '\n');
894 if (ResLength > MinCrit + CritLimit) {
895 LLVM_DEBUG(dbgs() << "Not enough available ILP.\n");
896 MORE.emit([&]() {
897 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
898 MBB.findDebugLoc(MBB.back()), &MBB);
899 R << "did not if-convert branch: the resulting critical path ("
900 << Cycles{"ResLength", ResLength}
901 << ") would extend the shorter leg's critical path ("
902 << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of "
903 << Cycles{"CritLimit", CritLimit}
904 << ", which cannot be hidden by available ILP.";
905 return R;
907 return false;
910 // Assume that the depth of the first head terminator will also be the depth
911 // of the select instruction inserted, as determined by the flag dependency.
912 // TBB / FBB data dependencies may delay the select even more.
913 MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head);
914 unsigned BranchDepth =
915 HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth;
916 LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n');
918 // Look at all the tail phis, and compute the critical path extension caused
919 // by inserting select instructions.
920 MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail);
921 struct CriticalPathInfo {
922 unsigned Extra; // Count of extra cycles that the component adds.
923 unsigned Depth; // Absolute depth of the component in cycles.
925 CriticalPathInfo Cond{};
926 CriticalPathInfo TBlock{};
927 CriticalPathInfo FBlock{};
928 bool ShouldConvert = true;
929 for (unsigned i = 0, e = IfConv.PHIs.size(); i != e; ++i) {
930 SSAIfConv::PHIInfo &PI = IfConv.PHIs[i];
931 unsigned Slack = TailTrace.getInstrSlack(*PI.PHI);
932 unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth;
933 LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI);
935 // The condition is pulled into the critical path.
936 unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles);
937 if (CondDepth > MaxDepth) {
938 unsigned Extra = CondDepth - MaxDepth;
939 LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n");
940 if (Extra > Cond.Extra)
941 Cond = {Extra, CondDepth};
942 if (Extra > CritLimit) {
943 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
944 ShouldConvert = false;
948 // The TBB value is pulled into the critical path.
949 unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles);
950 if (TDepth > MaxDepth) {
951 unsigned Extra = TDepth - MaxDepth;
952 LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n");
953 if (Extra > TBlock.Extra)
954 TBlock = {Extra, TDepth};
955 if (Extra > CritLimit) {
956 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
957 ShouldConvert = false;
961 // The FBB value is pulled into the critical path.
962 unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles);
963 if (FDepth > MaxDepth) {
964 unsigned Extra = FDepth - MaxDepth;
965 LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n");
966 if (Extra > FBlock.Extra)
967 FBlock = {Extra, FDepth};
968 if (Extra > CritLimit) {
969 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
970 ShouldConvert = false;
975 // Organize by "short" and "long" legs, since the diagnostics get confusing
976 // when referring to the "true" and "false" sides of the branch, given that
977 // those don't always correlate with what the user wrote in source-terms.
978 const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock;
979 const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock;
981 if (ShouldConvert) {
982 MORE.emit([&]() {
983 MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion",
984 MBB.back().getDebugLoc(), &MBB);
985 R << "performing if-conversion on branch: the condition adds "
986 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
987 if (Short.Extra > 0)
988 R << ", and the short leg adds another "
989 << Cycles{"ShortCycles", Short.Extra};
990 if (Long.Extra > 0)
991 R << ", and the long leg adds another "
992 << Cycles{"LongCycles", Long.Extra};
993 R << ", each staying under the threshold of "
994 << Cycles{"CritLimit", CritLimit} << ".";
995 return R;
997 } else {
998 MORE.emit([&]() {
999 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "IfConversion",
1000 MBB.back().getDebugLoc(), &MBB);
1001 R << "did not if-convert branch: the condition would add "
1002 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1003 if (Cond.Extra > CritLimit)
1004 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1005 if (Short.Extra > 0) {
1006 R << ", and the short leg would add another "
1007 << Cycles{"ShortCycles", Short.Extra};
1008 if (Short.Extra > CritLimit)
1009 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1011 if (Long.Extra > 0) {
1012 R << ", and the long leg would add another "
1013 << Cycles{"LongCycles", Long.Extra};
1014 if (Long.Extra > CritLimit)
1015 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1017 R << ".";
1018 return R;
1022 return ShouldConvert;
1025 /// Attempt repeated if-conversion on MBB, return true if successful.
1027 bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) {
1028 bool Changed = false;
1029 while (IfConv.canConvertIf(MBB) && shouldConvertIf()) {
1030 // If-convert MBB and update analyses.
1031 invalidateTraces();
1032 SmallVector<MachineBasicBlock*, 4> RemovedBlocks;
1033 IfConv.convertIf(RemovedBlocks);
1034 Changed = true;
1035 updateDomTree(DomTree, IfConv, RemovedBlocks);
1036 updateLoops(Loops, RemovedBlocks);
1038 return Changed;
1041 bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) {
1042 LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n"
1043 << "********** Function: " << MF.getName() << '\n');
1044 if (skipFunction(MF.getFunction()))
1045 return false;
1047 // Only run if conversion if the target wants it.
1048 const TargetSubtargetInfo &STI = MF.getSubtarget();
1049 if (!STI.enableEarlyIfConversion())
1050 return false;
1052 TII = STI.getInstrInfo();
1053 TRI = STI.getRegisterInfo();
1054 SchedModel = STI.getSchedModel();
1055 MRI = &MF.getRegInfo();
1056 DomTree = &getAnalysis<MachineDominatorTree>();
1057 Loops = getAnalysisIfAvailable<MachineLoopInfo>();
1058 Traces = &getAnalysis<MachineTraceMetrics>();
1059 MinInstr = nullptr;
1061 bool Changed = false;
1062 IfConv.runOnMachineFunction(MF);
1064 // Visit blocks in dominator tree post-order. The post-order enables nested
1065 // if-conversion in a single pass. The tryConvertIf() function may erase
1066 // blocks, but only blocks dominated by the head block. This makes it safe to
1067 // update the dominator tree while the post-order iterator is still active.
1068 for (auto *DomNode : post_order(DomTree))
1069 if (tryConvertIf(DomNode->getBlock()))
1070 Changed = true;
1072 return Changed;
1075 //===----------------------------------------------------------------------===//
1076 // EarlyIfPredicator Pass
1077 //===----------------------------------------------------------------------===//
1079 namespace {
1080 class EarlyIfPredicator : public MachineFunctionPass {
1081 const TargetInstrInfo *TII;
1082 const TargetRegisterInfo *TRI;
1083 TargetSchedModel SchedModel;
1084 MachineRegisterInfo *MRI;
1085 MachineDominatorTree *DomTree;
1086 MachineBranchProbabilityInfo *MBPI;
1087 MachineLoopInfo *Loops;
1088 SSAIfConv IfConv;
1090 public:
1091 static char ID;
1092 EarlyIfPredicator() : MachineFunctionPass(ID) {}
1093 void getAnalysisUsage(AnalysisUsage &AU) const override;
1094 bool runOnMachineFunction(MachineFunction &MF) override;
1095 StringRef getPassName() const override { return "Early If-predicator"; }
1097 protected:
1098 bool tryConvertIf(MachineBasicBlock *);
1099 bool shouldConvertIf();
1101 } // end anonymous namespace
1103 #undef DEBUG_TYPE
1104 #define DEBUG_TYPE "early-if-predicator"
1106 char EarlyIfPredicator::ID = 0;
1107 char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID;
1109 INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator",
1110 false, false)
1111 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1112 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1113 INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false,
1114 false)
1116 void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const {
1117 AU.addRequired<MachineBranchProbabilityInfo>();
1118 AU.addRequired<MachineDominatorTree>();
1119 AU.addPreserved<MachineDominatorTree>();
1120 AU.addRequired<MachineLoopInfo>();
1121 AU.addPreserved<MachineLoopInfo>();
1122 MachineFunctionPass::getAnalysisUsage(AU);
1125 /// Apply the target heuristic to decide if the transformation is profitable.
1126 bool EarlyIfPredicator::shouldConvertIf() {
1127 auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB);
1128 if (IfConv.isTriangle()) {
1129 MachineBasicBlock &IfBlock =
1130 (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB;
1132 unsigned ExtraPredCost = 0;
1133 unsigned Cycles = 0;
1134 for (MachineInstr &I : IfBlock) {
1135 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1136 if (NumCycles > 1)
1137 Cycles += NumCycles - 1;
1138 ExtraPredCost += TII->getPredicationCost(I);
1141 return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost,
1142 TrueProbability);
1144 unsigned TExtra = 0;
1145 unsigned FExtra = 0;
1146 unsigned TCycle = 0;
1147 unsigned FCycle = 0;
1148 for (MachineInstr &I : *IfConv.TBB) {
1149 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1150 if (NumCycles > 1)
1151 TCycle += NumCycles - 1;
1152 TExtra += TII->getPredicationCost(I);
1154 for (MachineInstr &I : *IfConv.FBB) {
1155 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1156 if (NumCycles > 1)
1157 FCycle += NumCycles - 1;
1158 FExtra += TII->getPredicationCost(I);
1160 return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB,
1161 FCycle, FExtra, TrueProbability);
1164 /// Attempt repeated if-conversion on MBB, return true if successful.
1166 bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) {
1167 bool Changed = false;
1168 while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) {
1169 // If-convert MBB and update analyses.
1170 SmallVector<MachineBasicBlock *, 4> RemovedBlocks;
1171 IfConv.convertIf(RemovedBlocks, /*Predicate*/ true);
1172 Changed = true;
1173 updateDomTree(DomTree, IfConv, RemovedBlocks);
1174 updateLoops(Loops, RemovedBlocks);
1176 return Changed;
1179 bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) {
1180 LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n"
1181 << "********** Function: " << MF.getName() << '\n');
1182 if (skipFunction(MF.getFunction()))
1183 return false;
1185 const TargetSubtargetInfo &STI = MF.getSubtarget();
1186 TII = STI.getInstrInfo();
1187 TRI = STI.getRegisterInfo();
1188 MRI = &MF.getRegInfo();
1189 SchedModel.init(&STI);
1190 DomTree = &getAnalysis<MachineDominatorTree>();
1191 Loops = getAnalysisIfAvailable<MachineLoopInfo>();
1192 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1194 bool Changed = false;
1195 IfConv.runOnMachineFunction(MF);
1197 // Visit blocks in dominator tree post-order. The post-order enables nested
1198 // if-conversion in a single pass. The tryConvertIf() function may erase
1199 // blocks, but only blocks dominated by the head block. This makes it safe to
1200 // update the dominator tree while the post-order iterator is still active.
1201 for (auto *DomNode : post_order(DomTree))
1202 if (tryConvertIf(DomNode->getBlock()))
1203 Changed = true;
1205 return Changed;