[docs] Add LICENSE.txt to the root of the mono-repo
[llvm-project.git] / llvm / lib / CodeGen / IfConversion.cpp
blob105ab908d3fab66d173d013b08c1c406d2e58510
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MBFIWrapper.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <functional>
51 #include <iterator>
52 #include <memory>
53 #include <utility>
54 #include <vector>
56 using namespace llvm;
58 #define DEBUG_TYPE "if-converter"
60 // Hidden options for help debugging.
61 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
62 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
63 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
64 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
65 cl::init(false), cl::Hidden);
66 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
67 cl::init(false), cl::Hidden);
68 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
69 cl::init(false), cl::Hidden);
70 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
71 cl::init(false), cl::Hidden);
72 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
75 cl::init(false), cl::Hidden);
76 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
77 cl::init(false), cl::Hidden);
78 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
79 cl::init(false), cl::Hidden);
80 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
81 cl::init(true), cl::Hidden);
83 STATISTIC(NumSimple, "Number of simple if-conversions performed");
84 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
85 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
86 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
87 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
88 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
89 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
90 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
91 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
92 STATISTIC(NumDupBBs, "Number of duplicated blocks");
93 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
95 namespace {
97 class IfConverter : public MachineFunctionPass {
98 enum IfcvtKind {
99 ICNotClassfied, // BB data valid, but not classified.
100 ICSimpleFalse, // Same as ICSimple, but on the false path.
101 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
102 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
103 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
104 ICTriangleFalse, // Same as ICTriangle, but on the false path.
105 ICTriangle, // BB is entry of a triangle sub-CFG.
106 ICDiamond, // BB is entry of a diamond sub-CFG.
107 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
108 // common tail that can be shared.
111 /// One per MachineBasicBlock, this is used to cache the result
112 /// if-conversion feasibility analysis. This includes results from
113 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
114 /// classification, and common tail block of its successors (if it's a
115 /// diamond shape), its size, whether it's predicable, and whether any
116 /// instruction can clobber the 'would-be' predicate.
118 /// IsDone - True if BB is not to be considered for ifcvt.
119 /// IsBeingAnalyzed - True if BB is currently being analyzed.
120 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
121 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
122 /// IsBrAnalyzable - True if analyzeBranch() returns false.
123 /// HasFallThrough - True if BB may fallthrough to the following BB.
124 /// IsUnpredicable - True if BB is known to be unpredicable.
125 /// ClobbersPred - True if BB could modify predicates (e.g. has
126 /// cmp, call, etc.)
127 /// NonPredSize - Number of non-predicated instructions.
128 /// ExtraCost - Extra cost for multi-cycle instructions.
129 /// ExtraCost2 - Some instructions are slower when predicated
130 /// BB - Corresponding MachineBasicBlock.
131 /// TrueBB / FalseBB- See analyzeBranch().
132 /// BrCond - Conditions for end of block conditional branches.
133 /// Predicate - Predicate used in the BB.
134 struct BBInfo {
135 bool IsDone : 1;
136 bool IsBeingAnalyzed : 1;
137 bool IsAnalyzed : 1;
138 bool IsEnqueued : 1;
139 bool IsBrAnalyzable : 1;
140 bool IsBrReversible : 1;
141 bool HasFallThrough : 1;
142 bool IsUnpredicable : 1;
143 bool CannotBeCopied : 1;
144 bool ClobbersPred : 1;
145 unsigned NonPredSize = 0;
146 unsigned ExtraCost = 0;
147 unsigned ExtraCost2 = 0;
148 MachineBasicBlock *BB = nullptr;
149 MachineBasicBlock *TrueBB = nullptr;
150 MachineBasicBlock *FalseBB = nullptr;
151 SmallVector<MachineOperand, 4> BrCond;
152 SmallVector<MachineOperand, 4> Predicate;
154 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
155 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
156 IsBrReversible(false), HasFallThrough(false),
157 IsUnpredicable(false), CannotBeCopied(false),
158 ClobbersPred(false) {}
161 /// Record information about pending if-conversions to attempt:
162 /// BBI - Corresponding BBInfo.
163 /// Kind - Type of block. See IfcvtKind.
164 /// NeedSubsumption - True if the to-be-predicated BB has already been
165 /// predicated.
166 /// NumDups - Number of instructions that would be duplicated due
167 /// to this if-conversion. (For diamonds, the number of
168 /// identical instructions at the beginnings of both
169 /// paths).
170 /// NumDups2 - For diamonds, the number of identical instructions
171 /// at the ends of both paths.
172 struct IfcvtToken {
173 BBInfo &BBI;
174 IfcvtKind Kind;
175 unsigned NumDups;
176 unsigned NumDups2;
177 bool NeedSubsumption : 1;
178 bool TClobbersPred : 1;
179 bool FClobbersPred : 1;
181 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
182 bool tc = false, bool fc = false)
183 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
184 TClobbersPred(tc), FClobbersPred(fc) {}
187 /// Results of if-conversion feasibility analysis indexed by basic block
188 /// number.
189 std::vector<BBInfo> BBAnalysis;
190 TargetSchedModel SchedModel;
192 const TargetLoweringBase *TLI;
193 const TargetInstrInfo *TII;
194 const TargetRegisterInfo *TRI;
195 const MachineBranchProbabilityInfo *MBPI;
196 MachineRegisterInfo *MRI;
198 LivePhysRegs Redefs;
200 bool PreRegAlloc;
201 bool MadeChange;
202 int FnNum = -1;
203 std::function<bool(const MachineFunction &)> PredicateFtor;
205 public:
206 static char ID;
208 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
209 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
210 initializeIfConverterPass(*PassRegistry::getPassRegistry());
213 void getAnalysisUsage(AnalysisUsage &AU) const override {
214 AU.addRequired<MachineBlockFrequencyInfo>();
215 AU.addRequired<MachineBranchProbabilityInfo>();
216 AU.addRequired<ProfileSummaryInfoWrapperPass>();
217 MachineFunctionPass::getAnalysisUsage(AU);
220 bool runOnMachineFunction(MachineFunction &MF) override;
222 MachineFunctionProperties getRequiredProperties() const override {
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs);
227 private:
228 bool reverseBranchCondition(BBInfo &BBI) const;
229 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
230 BranchProbability Prediction) const;
231 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
232 bool FalseBranch, unsigned &Dups,
233 BranchProbability Prediction) const;
234 bool CountDuplicatedInstructions(
235 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
236 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
237 unsigned &Dups1, unsigned &Dups2,
238 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
239 bool SkipUnconditionalBranches) const;
240 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
241 unsigned &Dups1, unsigned &Dups2,
242 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
243 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
244 unsigned &Dups1, unsigned &Dups2,
245 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
246 void AnalyzeBranches(BBInfo &BBI);
247 void ScanInstructions(BBInfo &BBI,
248 MachineBasicBlock::iterator &Begin,
249 MachineBasicBlock::iterator &End,
250 bool BranchUnpredicable = false) const;
251 bool RescanInstructions(
252 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
253 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
254 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
255 void AnalyzeBlock(MachineBasicBlock &MBB,
256 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
257 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
258 bool isTriangle = false, bool RevBranch = false,
259 bool hasCommonTail = false);
260 void AnalyzeBlocks(MachineFunction &MF,
261 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
262 void InvalidatePreds(MachineBasicBlock &MBB);
263 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
264 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
265 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
266 unsigned NumDups1, unsigned NumDups2,
267 bool TClobbersPred, bool FClobbersPred,
268 bool RemoveBranch, bool MergeAddEdges);
269 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
270 unsigned NumDups1, unsigned NumDups2,
271 bool TClobbers, bool FClobbers);
272 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
273 unsigned NumDups1, unsigned NumDups2,
274 bool TClobbers, bool FClobbers);
275 void PredicateBlock(BBInfo &BBI,
276 MachineBasicBlock::iterator E,
277 SmallVectorImpl<MachineOperand> &Cond,
278 SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr);
279 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
280 SmallVectorImpl<MachineOperand> &Cond,
281 bool IgnoreBr = false);
282 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
284 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
285 unsigned Cycle, unsigned Extra,
286 BranchProbability Prediction) const {
287 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
288 Prediction);
291 bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo,
292 MachineBasicBlock &CommBB, unsigned Dups,
293 BranchProbability Prediction, bool Forked) const {
294 const MachineFunction &MF = *TBBInfo.BB->getParent();
295 if (MF.getFunction().hasMinSize()) {
296 MachineBasicBlock::iterator TIB = TBBInfo.BB->begin();
297 MachineBasicBlock::iterator FIB = FBBInfo.BB->begin();
298 MachineBasicBlock::iterator TIE = TBBInfo.BB->end();
299 MachineBasicBlock::iterator FIE = FBBInfo.BB->end();
301 unsigned Dups1 = 0, Dups2 = 0;
302 if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
303 *TBBInfo.BB, *FBBInfo.BB,
304 /*SkipUnconditionalBranches*/ true))
305 llvm_unreachable("should already have been checked by ValidDiamond");
307 unsigned BranchBytes = 0;
308 unsigned CommonBytes = 0;
310 // Count common instructions at the start of the true and false blocks.
311 for (auto &I : make_range(TBBInfo.BB->begin(), TIB)) {
312 LLVM_DEBUG(dbgs() << "Common inst: " << I);
313 CommonBytes += TII->getInstSizeInBytes(I);
315 for (auto &I : make_range(FBBInfo.BB->begin(), FIB)) {
316 LLVM_DEBUG(dbgs() << "Common inst: " << I);
317 CommonBytes += TII->getInstSizeInBytes(I);
320 // Count instructions at the end of the true and false blocks, after
321 // the ones we plan to predicate. Analyzable branches will be removed
322 // (unless this is a forked diamond), and all other instructions are
323 // common between the two blocks.
324 for (auto &I : make_range(TIE, TBBInfo.BB->end())) {
325 if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) {
326 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
327 BranchBytes += TII->predictBranchSizeForIfCvt(I);
328 } else {
329 LLVM_DEBUG(dbgs() << "Common inst: " << I);
330 CommonBytes += TII->getInstSizeInBytes(I);
333 for (auto &I : make_range(FIE, FBBInfo.BB->end())) {
334 if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) {
335 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
336 BranchBytes += TII->predictBranchSizeForIfCvt(I);
337 } else {
338 LLVM_DEBUG(dbgs() << "Common inst: " << I);
339 CommonBytes += TII->getInstSizeInBytes(I);
342 for (auto &I : CommBB.terminators()) {
343 if (I.isBranch()) {
344 LLVM_DEBUG(dbgs() << "Saving branch: " << I);
345 BranchBytes += TII->predictBranchSizeForIfCvt(I);
349 // The common instructions in one branch will be eliminated, halving
350 // their code size.
351 CommonBytes /= 2;
353 // Count the instructions which we need to predicate.
354 unsigned NumPredicatedInstructions = 0;
355 for (auto &I : make_range(TIB, TIE)) {
356 if (!I.isDebugInstr()) {
357 LLVM_DEBUG(dbgs() << "Predicating: " << I);
358 NumPredicatedInstructions++;
361 for (auto &I : make_range(FIB, FIE)) {
362 if (!I.isDebugInstr()) {
363 LLVM_DEBUG(dbgs() << "Predicating: " << I);
364 NumPredicatedInstructions++;
368 // Even though we're optimising for size at the expense of performance,
369 // avoid creating really long predicated blocks.
370 if (NumPredicatedInstructions > 15)
371 return false;
373 // Some targets (e.g. Thumb2) need to insert extra instructions to
374 // start predicated blocks.
375 unsigned ExtraPredicateBytes = TII->extraSizeToPredicateInstructions(
376 MF, NumPredicatedInstructions);
378 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
379 << ", CommonBytes=" << CommonBytes
380 << ", NumPredicatedInstructions="
381 << NumPredicatedInstructions
382 << ", ExtraPredicateBytes=" << ExtraPredicateBytes
383 << ")\n");
384 return (BranchBytes + CommonBytes) > ExtraPredicateBytes;
385 } else {
386 unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups;
387 unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups;
388 bool Res = TCycle > 0 && FCycle > 0 &&
389 TII->isProfitableToIfCvt(
390 *TBBInfo.BB, TCycle, TBBInfo.ExtraCost2, *FBBInfo.BB,
391 FCycle, FBBInfo.ExtraCost2, Prediction);
392 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
393 << ", FCycle=" << FCycle
394 << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra="
395 << FBBInfo.ExtraCost2 << ") = " << Res << "\n");
396 return Res;
400 /// Returns true if Block ends without a terminator.
401 bool blockAlwaysFallThrough(BBInfo &BBI) const {
402 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
405 /// Used to sort if-conversion candidates.
406 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
407 const std::unique_ptr<IfcvtToken> &C2) {
408 int Incr1 = (C1->Kind == ICDiamond)
409 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
410 int Incr2 = (C2->Kind == ICDiamond)
411 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
412 if (Incr1 > Incr2)
413 return true;
414 else if (Incr1 == Incr2) {
415 // Favors subsumption.
416 if (!C1->NeedSubsumption && C2->NeedSubsumption)
417 return true;
418 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
419 // Favors diamond over triangle, etc.
420 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
421 return true;
422 else if (C1->Kind == C2->Kind)
423 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
426 return false;
430 } // end anonymous namespace
432 char IfConverter::ID = 0;
434 char &llvm::IfConverterID = IfConverter::ID;
436 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
437 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
438 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
439 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
441 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
442 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
443 return false;
445 const TargetSubtargetInfo &ST = MF.getSubtarget();
446 TLI = ST.getTargetLowering();
447 TII = ST.getInstrInfo();
448 TRI = ST.getRegisterInfo();
449 MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
450 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
451 ProfileSummaryInfo *PSI =
452 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
453 MRI = &MF.getRegInfo();
454 SchedModel.init(&ST);
456 if (!TII) return false;
458 PreRegAlloc = MRI->isSSA();
460 bool BFChange = false;
461 if (!PreRegAlloc) {
462 // Tail merge tend to expose more if-conversion opportunities.
463 BranchFolder BF(true, false, MBFI, *MBPI, PSI);
464 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo());
467 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
468 << MF.getName() << "\'");
470 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
471 LLVM_DEBUG(dbgs() << " skipped\n");
472 return false;
474 LLVM_DEBUG(dbgs() << "\n");
476 MF.RenumberBlocks();
477 BBAnalysis.resize(MF.getNumBlockIDs());
479 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
480 MadeChange = false;
481 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
482 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
483 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
484 // Do an initial analysis for each basic block and find all the potential
485 // candidates to perform if-conversion.
486 bool Change = false;
487 AnalyzeBlocks(MF, Tokens);
488 while (!Tokens.empty()) {
489 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
490 Tokens.pop_back();
491 BBInfo &BBI = Token->BBI;
492 IfcvtKind Kind = Token->Kind;
493 unsigned NumDups = Token->NumDups;
494 unsigned NumDups2 = Token->NumDups2;
496 // If the block has been evicted out of the queue or it has already been
497 // marked dead (due to it being predicated), then skip it.
498 if (BBI.IsDone)
499 BBI.IsEnqueued = false;
500 if (!BBI.IsEnqueued)
501 continue;
503 BBI.IsEnqueued = false;
505 bool RetVal = false;
506 switch (Kind) {
507 default: llvm_unreachable("Unexpected!");
508 case ICSimple:
509 case ICSimpleFalse: {
510 bool isFalse = Kind == ICSimpleFalse;
511 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
512 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
513 << (Kind == ICSimpleFalse ? " false" : "")
514 << "): " << printMBBReference(*BBI.BB) << " ("
515 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
516 : BBI.TrueBB->getNumber())
517 << ") ");
518 RetVal = IfConvertSimple(BBI, Kind);
519 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
520 if (RetVal) {
521 if (isFalse) ++NumSimpleFalse;
522 else ++NumSimple;
524 break;
526 case ICTriangle:
527 case ICTriangleRev:
528 case ICTriangleFalse:
529 case ICTriangleFRev: {
530 bool isFalse = Kind == ICTriangleFalse;
531 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
532 if (DisableTriangle && !isFalse && !isRev) break;
533 if (DisableTriangleR && !isFalse && isRev) break;
534 if (DisableTriangleF && isFalse && !isRev) break;
535 if (DisableTriangleFR && isFalse && isRev) break;
536 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
537 if (isFalse)
538 LLVM_DEBUG(dbgs() << " false");
539 if (isRev)
540 LLVM_DEBUG(dbgs() << " rev");
541 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
542 << " (T:" << BBI.TrueBB->getNumber()
543 << ",F:" << BBI.FalseBB->getNumber() << ") ");
544 RetVal = IfConvertTriangle(BBI, Kind);
545 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
546 if (RetVal) {
547 if (isFalse) {
548 if (isRev) ++NumTriangleFRev;
549 else ++NumTriangleFalse;
550 } else {
551 if (isRev) ++NumTriangleRev;
552 else ++NumTriangle;
555 break;
557 case ICDiamond:
558 if (DisableDiamond) break;
559 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
560 << " (T:" << BBI.TrueBB->getNumber()
561 << ",F:" << BBI.FalseBB->getNumber() << ") ");
562 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
563 Token->TClobbersPred,
564 Token->FClobbersPred);
565 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
566 if (RetVal) ++NumDiamonds;
567 break;
568 case ICForkedDiamond:
569 if (DisableForkedDiamond) break;
570 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
571 << printMBBReference(*BBI.BB)
572 << " (T:" << BBI.TrueBB->getNumber()
573 << ",F:" << BBI.FalseBB->getNumber() << ") ");
574 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
575 Token->TClobbersPred,
576 Token->FClobbersPred);
577 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
578 if (RetVal) ++NumForkedDiamonds;
579 break;
582 if (RetVal && MRI->tracksLiveness())
583 recomputeLivenessFlags(*BBI.BB);
585 Change |= RetVal;
587 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
588 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
589 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
590 break;
593 if (!Change)
594 break;
595 MadeChange |= Change;
598 Tokens.clear();
599 BBAnalysis.clear();
601 if (MadeChange && IfCvtBranchFold) {
602 BranchFolder BF(false, false, MBFI, *MBPI, PSI);
603 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo());
606 MadeChange |= BFChange;
607 return MadeChange;
610 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
611 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
612 MachineBasicBlock *TrueBB) {
613 for (MachineBasicBlock *SuccBB : BB->successors()) {
614 if (SuccBB != TrueBB)
615 return SuccBB;
617 return nullptr;
620 /// Reverse the condition of the end of the block branch. Swap block's 'true'
621 /// and 'false' successors.
622 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
623 DebugLoc dl; // FIXME: this is nowhere
624 if (!TII->reverseBranchCondition(BBI.BrCond)) {
625 TII->removeBranch(*BBI.BB);
626 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
627 std::swap(BBI.TrueBB, BBI.FalseBB);
628 return true;
630 return false;
633 /// Returns the next block in the function blocks ordering. If it is the end,
634 /// returns NULL.
635 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
636 MachineFunction::iterator I = MBB.getIterator();
637 MachineFunction::iterator E = MBB.getParent()->end();
638 if (++I == E)
639 return nullptr;
640 return &*I;
643 /// Returns true if the 'true' block (along with its predecessor) forms a valid
644 /// simple shape for ifcvt. It also returns the number of instructions that the
645 /// ifcvt would need to duplicate if performed in Dups.
646 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
647 BranchProbability Prediction) const {
648 Dups = 0;
649 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
650 return false;
652 if (TrueBBI.IsBrAnalyzable)
653 return false;
655 if (TrueBBI.BB->pred_size() > 1) {
656 if (TrueBBI.CannotBeCopied ||
657 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
658 Prediction))
659 return false;
660 Dups = TrueBBI.NonPredSize;
663 return true;
666 /// Returns true if the 'true' and 'false' blocks (along with their common
667 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
668 /// true, it checks if 'true' block's false branch branches to the 'false' block
669 /// rather than the other way around. It also returns the number of instructions
670 /// that the ifcvt would need to duplicate if performed in 'Dups'.
671 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
672 bool FalseBranch, unsigned &Dups,
673 BranchProbability Prediction) const {
674 Dups = 0;
675 if (TrueBBI.BB == FalseBBI.BB)
676 return false;
678 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
679 return false;
681 if (TrueBBI.BB->pred_size() > 1) {
682 if (TrueBBI.CannotBeCopied)
683 return false;
685 unsigned Size = TrueBBI.NonPredSize;
686 if (TrueBBI.IsBrAnalyzable) {
687 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
688 // Ends with an unconditional branch. It will be removed.
689 --Size;
690 else {
691 MachineBasicBlock *FExit = FalseBranch
692 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
693 if (FExit)
694 // Require a conditional branch
695 ++Size;
698 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
699 return false;
700 Dups = Size;
703 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
704 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
705 MachineFunction::iterator I = TrueBBI.BB->getIterator();
706 if (++I == TrueBBI.BB->getParent()->end())
707 return false;
708 TExit = &*I;
710 return TExit && TExit == FalseBBI.BB;
713 /// Count duplicated instructions and move the iterators to show where they
714 /// are.
715 /// @param TIB True Iterator Begin
716 /// @param FIB False Iterator Begin
717 /// These two iterators initially point to the first instruction of the two
718 /// blocks, and finally point to the first non-shared instruction.
719 /// @param TIE True Iterator End
720 /// @param FIE False Iterator End
721 /// These two iterators initially point to End() for the two blocks() and
722 /// finally point to the first shared instruction in the tail.
723 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
724 /// two blocks.
725 /// @param Dups1 count of duplicated instructions at the beginning of the 2
726 /// blocks.
727 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
728 /// @param SkipUnconditionalBranches if true, Don't make sure that
729 /// unconditional branches at the end of the blocks are the same. True is
730 /// passed when the blocks are analyzable to allow for fallthrough to be
731 /// handled.
732 /// @return false if the shared portion prevents if conversion.
733 bool IfConverter::CountDuplicatedInstructions(
734 MachineBasicBlock::iterator &TIB,
735 MachineBasicBlock::iterator &FIB,
736 MachineBasicBlock::iterator &TIE,
737 MachineBasicBlock::iterator &FIE,
738 unsigned &Dups1, unsigned &Dups2,
739 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
740 bool SkipUnconditionalBranches) const {
741 while (TIB != TIE && FIB != FIE) {
742 // Skip dbg_value instructions. These do not count.
743 TIB = skipDebugInstructionsForward(TIB, TIE, false);
744 FIB = skipDebugInstructionsForward(FIB, FIE, false);
745 if (TIB == TIE || FIB == FIE)
746 break;
747 if (!TIB->isIdenticalTo(*FIB))
748 break;
749 // A pred-clobbering instruction in the shared portion prevents
750 // if-conversion.
751 std::vector<MachineOperand> PredDefs;
752 if (TII->ClobbersPredicate(*TIB, PredDefs, false))
753 return false;
754 // If we get all the way to the branch instructions, don't count them.
755 if (!TIB->isBranch())
756 ++Dups1;
757 ++TIB;
758 ++FIB;
761 // Check for already containing all of the block.
762 if (TIB == TIE || FIB == FIE)
763 return true;
764 // Now, in preparation for counting duplicate instructions at the ends of the
765 // blocks, switch to reverse_iterators. Note that getReverse() returns an
766 // iterator that points to the same instruction, unlike std::reverse_iterator.
767 // We have to do our own shifting so that we get the same range.
768 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
769 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
770 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
771 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
773 if (!TBB.succ_empty() || !FBB.succ_empty()) {
774 if (SkipUnconditionalBranches) {
775 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
776 ++RTIE;
777 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
778 ++RFIE;
782 // Count duplicate instructions at the ends of the blocks.
783 while (RTIE != RTIB && RFIE != RFIB) {
784 // Skip dbg_value instructions. These do not count.
785 // Note that these are reverse iterators going forward.
786 RTIE = skipDebugInstructionsForward(RTIE, RTIB, false);
787 RFIE = skipDebugInstructionsForward(RFIE, RFIB, false);
788 if (RTIE == RTIB || RFIE == RFIB)
789 break;
790 if (!RTIE->isIdenticalTo(*RFIE))
791 break;
792 // We have to verify that any branch instructions are the same, and then we
793 // don't count them toward the # of duplicate instructions.
794 if (!RTIE->isBranch())
795 ++Dups2;
796 ++RTIE;
797 ++RFIE;
799 TIE = std::next(RTIE.getReverse());
800 FIE = std::next(RFIE.getReverse());
801 return true;
804 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
805 /// @param TIB - True Iterator Begin, points to first non-shared instruction
806 /// @param FIB - False Iterator Begin, points to first non-shared instruction
807 /// @param TIE - True Iterator End, points past last non-shared instruction
808 /// @param FIE - False Iterator End, points past last non-shared instruction
809 /// @param TrueBBI - BBInfo to update for the true block.
810 /// @param FalseBBI - BBInfo to update for the false block.
811 /// @returns - false if either block cannot be predicated or if both blocks end
812 /// with a predicate-clobbering instruction.
813 bool IfConverter::RescanInstructions(
814 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
815 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
816 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
817 bool BranchUnpredicable = true;
818 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
819 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
820 if (TrueBBI.IsUnpredicable)
821 return false;
822 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
823 if (FalseBBI.IsUnpredicable)
824 return false;
825 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
826 return false;
827 return true;
830 #ifndef NDEBUG
831 static void verifySameBranchInstructions(
832 MachineBasicBlock *MBB1,
833 MachineBasicBlock *MBB2) {
834 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
835 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
836 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
837 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
838 while (E1 != B1 && E2 != B2) {
839 skipDebugInstructionsForward(E1, B1, false);
840 skipDebugInstructionsForward(E2, B2, false);
841 if (E1 == B1 && E2 == B2)
842 break;
844 if (E1 == B1) {
845 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
846 break;
848 if (E2 == B2) {
849 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
850 break;
853 if (E1->isBranch() || E2->isBranch())
854 assert(E1->isIdenticalTo(*E2) &&
855 "Branch mis-match, branch instructions don't match.");
856 else
857 break;
858 ++E1;
859 ++E2;
862 #endif
864 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
865 /// with their common predecessor) form a diamond if a common tail block is
866 /// extracted.
867 /// While not strictly a diamond, this pattern would form a diamond if
868 /// tail-merging had merged the shared tails.
869 /// EBB
870 /// _/ \_
871 /// | |
872 /// TBB FBB
873 /// / \ / \
874 /// FalseBB TrueBB FalseBB
875 /// Currently only handles analyzable branches.
876 /// Specifically excludes actual diamonds to avoid overlap.
877 bool IfConverter::ValidForkedDiamond(
878 BBInfo &TrueBBI, BBInfo &FalseBBI,
879 unsigned &Dups1, unsigned &Dups2,
880 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
881 Dups1 = Dups2 = 0;
882 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
883 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
884 return false;
886 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
887 return false;
888 // Don't IfConvert blocks that can't be folded into their predecessor.
889 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
890 return false;
892 // This function is specifically looking for conditional tails, as
893 // unconditional tails are already handled by the standard diamond case.
894 if (TrueBBI.BrCond.size() == 0 ||
895 FalseBBI.BrCond.size() == 0)
896 return false;
898 MachineBasicBlock *TT = TrueBBI.TrueBB;
899 MachineBasicBlock *TF = TrueBBI.FalseBB;
900 MachineBasicBlock *FT = FalseBBI.TrueBB;
901 MachineBasicBlock *FF = FalseBBI.FalseBB;
903 if (!TT)
904 TT = getNextBlock(*TrueBBI.BB);
905 if (!TF)
906 TF = getNextBlock(*TrueBBI.BB);
907 if (!FT)
908 FT = getNextBlock(*FalseBBI.BB);
909 if (!FF)
910 FF = getNextBlock(*FalseBBI.BB);
912 if (!TT || !TF)
913 return false;
915 // Check successors. If they don't match, bail.
916 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
917 return false;
919 bool FalseReversed = false;
920 if (TF == FT && TT == FF) {
921 // If the branches are opposing, but we can't reverse, don't do it.
922 if (!FalseBBI.IsBrReversible)
923 return false;
924 FalseReversed = true;
925 reverseBranchCondition(FalseBBI);
927 auto UnReverseOnExit = make_scope_exit([&]() {
928 if (FalseReversed)
929 reverseBranchCondition(FalseBBI);
932 // Count duplicate instructions at the beginning of the true and false blocks.
933 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
934 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
935 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
936 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
937 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
938 *TrueBBI.BB, *FalseBBI.BB,
939 /* SkipUnconditionalBranches */ true))
940 return false;
942 TrueBBICalc.BB = TrueBBI.BB;
943 FalseBBICalc.BB = FalseBBI.BB;
944 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
945 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
946 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
947 return false;
949 // The size is used to decide whether to if-convert, and the shared portions
950 // are subtracted off. Because of the subtraction, we just use the size that
951 // was calculated by the original ScanInstructions, as it is correct.
952 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
953 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
954 return true;
957 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
958 /// with their common predecessor) forms a valid diamond shape for ifcvt.
959 bool IfConverter::ValidDiamond(
960 BBInfo &TrueBBI, BBInfo &FalseBBI,
961 unsigned &Dups1, unsigned &Dups2,
962 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
963 Dups1 = Dups2 = 0;
964 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
965 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
966 return false;
968 // If the True and False BBs are equal we're dealing with a degenerate case
969 // that we don't treat as a diamond.
970 if (TrueBBI.BB == FalseBBI.BB)
971 return false;
973 MachineBasicBlock *TT = TrueBBI.TrueBB;
974 MachineBasicBlock *FT = FalseBBI.TrueBB;
976 if (!TT && blockAlwaysFallThrough(TrueBBI))
977 TT = getNextBlock(*TrueBBI.BB);
978 if (!FT && blockAlwaysFallThrough(FalseBBI))
979 FT = getNextBlock(*FalseBBI.BB);
980 if (TT != FT)
981 return false;
982 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
983 return false;
984 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
985 return false;
987 // FIXME: Allow true block to have an early exit?
988 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
989 return false;
991 // Count duplicate instructions at the beginning and end of the true and
992 // false blocks.
993 // Skip unconditional branches only if we are considering an analyzable
994 // diamond. Otherwise the branches must be the same.
995 bool SkipUnconditionalBranches =
996 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
997 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
998 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
999 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
1000 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
1001 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
1002 *TrueBBI.BB, *FalseBBI.BB,
1003 SkipUnconditionalBranches))
1004 return false;
1006 TrueBBICalc.BB = TrueBBI.BB;
1007 FalseBBICalc.BB = FalseBBI.BB;
1008 TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable;
1009 FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable;
1010 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
1011 return false;
1012 // The size is used to decide whether to if-convert, and the shared portions
1013 // are subtracted off. Because of the subtraction, we just use the size that
1014 // was calculated by the original ScanInstructions, as it is correct.
1015 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
1016 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
1017 return true;
1020 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1021 /// the block is predicable.
1022 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
1023 if (BBI.IsDone)
1024 return;
1026 BBI.TrueBB = BBI.FalseBB = nullptr;
1027 BBI.BrCond.clear();
1028 BBI.IsBrAnalyzable =
1029 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
1030 if (!BBI.IsBrAnalyzable) {
1031 BBI.TrueBB = nullptr;
1032 BBI.FalseBB = nullptr;
1033 BBI.BrCond.clear();
1036 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1037 BBI.IsBrReversible = (RevCond.size() == 0) ||
1038 !TII->reverseBranchCondition(RevCond);
1039 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
1041 if (BBI.BrCond.size()) {
1042 // No false branch. This BB must end with a conditional branch and a
1043 // fallthrough.
1044 if (!BBI.FalseBB)
1045 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
1046 if (!BBI.FalseBB) {
1047 // Malformed bcc? True and false blocks are the same?
1048 BBI.IsUnpredicable = true;
1053 /// ScanInstructions - Scan all the instructions in the block to determine if
1054 /// the block is predicable. In most cases, that means all the instructions
1055 /// in the block are isPredicable(). Also checks if the block contains any
1056 /// instruction which can clobber a predicate (e.g. condition code register).
1057 /// If so, the block is not predicable unless it's the last instruction.
1058 void IfConverter::ScanInstructions(BBInfo &BBI,
1059 MachineBasicBlock::iterator &Begin,
1060 MachineBasicBlock::iterator &End,
1061 bool BranchUnpredicable) const {
1062 if (BBI.IsDone || BBI.IsUnpredicable)
1063 return;
1065 bool AlreadyPredicated = !BBI.Predicate.empty();
1067 BBI.NonPredSize = 0;
1068 BBI.ExtraCost = 0;
1069 BBI.ExtraCost2 = 0;
1070 BBI.ClobbersPred = false;
1071 for (MachineInstr &MI : make_range(Begin, End)) {
1072 if (MI.isDebugInstr())
1073 continue;
1075 // It's unsafe to duplicate convergent instructions in this context, so set
1076 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
1077 // following CFG, which is subject to our "simple" transformation.
1079 // BB0 // if (c1) goto BB1; else goto BB2;
1080 // / \
1081 // BB1 |
1082 // | BB2 // if (c2) goto TBB; else goto FBB;
1083 // | / |
1084 // | / |
1085 // TBB |
1086 // | |
1087 // | FBB
1088 // |
1089 // exit
1091 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1092 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1093 // TBB contains a convergent instruction. This is safe iff doing so does
1094 // not add a control-flow dependency to the convergent instruction -- i.e.,
1095 // it's safe iff the set of control flows that leads us to the convergent
1096 // instruction does not get smaller after the transformation.
1098 // Originally we executed TBB if c1 || c2. After the transformation, there
1099 // are two copies of TBB's instructions. We get to the first if c1, and we
1100 // get to the second if !c1 && c2.
1102 // There are clearly fewer ways to satisfy the condition "c1" than
1103 // "c1 || c2". Since we've shrunk the set of control flows which lead to
1104 // our convergent instruction, the transformation is unsafe.
1105 if (MI.isNotDuplicable() || MI.isConvergent())
1106 BBI.CannotBeCopied = true;
1108 bool isPredicated = TII->isPredicated(MI);
1109 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
1111 if (BranchUnpredicable && MI.isBranch()) {
1112 BBI.IsUnpredicable = true;
1113 return;
1116 // A conditional branch is not predicable, but it may be eliminated.
1117 if (isCondBr)
1118 continue;
1120 if (!isPredicated) {
1121 BBI.NonPredSize++;
1122 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1123 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1124 if (NumCycles > 1)
1125 BBI.ExtraCost += NumCycles-1;
1126 BBI.ExtraCost2 += ExtraPredCost;
1127 } else if (!AlreadyPredicated) {
1128 // FIXME: This instruction is already predicated before the
1129 // if-conversion pass. It's probably something like a conditional move.
1130 // Mark this block unpredicable for now.
1131 BBI.IsUnpredicable = true;
1132 return;
1135 if (BBI.ClobbersPred && !isPredicated) {
1136 // Predicate modification instruction should end the block (except for
1137 // already predicated instructions and end of block branches).
1138 // Predicate may have been modified, the subsequent (currently)
1139 // unpredicated instructions cannot be correctly predicated.
1140 BBI.IsUnpredicable = true;
1141 return;
1144 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1145 // still potentially predicable.
1146 std::vector<MachineOperand> PredDefs;
1147 if (TII->ClobbersPredicate(MI, PredDefs, true))
1148 BBI.ClobbersPred = true;
1150 if (!TII->isPredicable(MI)) {
1151 BBI.IsUnpredicable = true;
1152 return;
1157 /// Determine if the block is a suitable candidate to be predicated by the
1158 /// specified predicate.
1159 /// @param BBI BBInfo for the block to check
1160 /// @param Pred Predicate array for the branch that leads to BBI
1161 /// @param isTriangle true if the Analysis is for a triangle
1162 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1163 /// case
1164 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1165 /// contains any instruction that would make the block unpredicable.
1166 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1167 SmallVectorImpl<MachineOperand> &Pred,
1168 bool isTriangle, bool RevBranch,
1169 bool hasCommonTail) {
1170 // If the block is dead or unpredicable, then it cannot be predicated.
1171 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1172 // them from being if-converted. The non-shared portion is assumed to have
1173 // been checked
1174 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1175 return false;
1177 // If it is already predicated but we couldn't analyze its terminator, the
1178 // latter might fallthrough, but we can't determine where to.
1179 // Conservatively avoid if-converting again.
1180 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1181 return false;
1183 // If it is already predicated, check if the new predicate subsumes
1184 // its predicate.
1185 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1186 return false;
1188 if (!hasCommonTail && BBI.BrCond.size()) {
1189 if (!isTriangle)
1190 return false;
1192 // Test predicate subsumption.
1193 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1194 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1195 if (RevBranch) {
1196 if (TII->reverseBranchCondition(Cond))
1197 return false;
1199 if (TII->reverseBranchCondition(RevPred) ||
1200 !TII->SubsumesPredicate(Cond, RevPred))
1201 return false;
1204 return true;
1207 /// Analyze the structure of the sub-CFG starting from the specified block.
1208 /// Record its successors and whether it looks like an if-conversion candidate.
1209 void IfConverter::AnalyzeBlock(
1210 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1211 struct BBState {
1212 BBState(MachineBasicBlock &MBB) : MBB(&MBB) {}
1213 MachineBasicBlock *MBB;
1215 /// This flag is true if MBB's successors have been analyzed.
1216 bool SuccsAnalyzed = false;
1219 // Push MBB to the stack.
1220 SmallVector<BBState, 16> BBStack(1, MBB);
1222 while (!BBStack.empty()) {
1223 BBState &State = BBStack.back();
1224 MachineBasicBlock *BB = State.MBB;
1225 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1227 if (!State.SuccsAnalyzed) {
1228 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1229 BBStack.pop_back();
1230 continue;
1233 BBI.BB = BB;
1234 BBI.IsBeingAnalyzed = true;
1236 AnalyzeBranches(BBI);
1237 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1238 MachineBasicBlock::iterator End = BBI.BB->end();
1239 ScanInstructions(BBI, Begin, End);
1241 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1242 // not considered for ifcvt anymore.
1243 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1244 BBI.IsBeingAnalyzed = false;
1245 BBI.IsAnalyzed = true;
1246 BBStack.pop_back();
1247 continue;
1250 // Do not ifcvt if either path is a back edge to the entry block.
1251 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1252 BBI.IsBeingAnalyzed = false;
1253 BBI.IsAnalyzed = true;
1254 BBStack.pop_back();
1255 continue;
1258 // Do not ifcvt if true and false fallthrough blocks are the same.
1259 if (!BBI.FalseBB) {
1260 BBI.IsBeingAnalyzed = false;
1261 BBI.IsAnalyzed = true;
1262 BBStack.pop_back();
1263 continue;
1266 // Push the False and True blocks to the stack.
1267 State.SuccsAnalyzed = true;
1268 BBStack.push_back(*BBI.FalseBB);
1269 BBStack.push_back(*BBI.TrueBB);
1270 continue;
1273 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1274 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1276 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1277 BBI.IsBeingAnalyzed = false;
1278 BBI.IsAnalyzed = true;
1279 BBStack.pop_back();
1280 continue;
1283 SmallVector<MachineOperand, 4>
1284 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1285 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1287 unsigned Dups = 0;
1288 unsigned Dups2 = 0;
1289 bool TNeedSub = !TrueBBI.Predicate.empty();
1290 bool FNeedSub = !FalseBBI.Predicate.empty();
1291 bool Enqueued = false;
1293 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1295 if (CanRevCond) {
1296 BBInfo TrueBBICalc, FalseBBICalc;
1297 auto feasibleDiamond = [&](bool Forked) {
1298 bool MeetsSize = MeetIfcvtSizeLimit(TrueBBICalc, FalseBBICalc, *BB,
1299 Dups + Dups2, Prediction, Forked);
1300 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1301 /* IsTriangle */ false, /* RevCond */ false,
1302 /* hasCommonTail */ true);
1303 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1304 /* IsTriangle */ false, /* RevCond */ false,
1305 /* hasCommonTail */ true);
1306 return MeetsSize && TrueFeasible && FalseFeasible;
1309 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1310 TrueBBICalc, FalseBBICalc)) {
1311 if (feasibleDiamond(false)) {
1312 // Diamond:
1313 // EBB
1314 // / \_
1315 // | |
1316 // TBB FBB
1317 // \ /
1318 // TailBB
1319 // Note TailBB can be empty.
1320 Tokens.push_back(std::make_unique<IfcvtToken>(
1321 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1322 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1323 Enqueued = true;
1325 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1326 TrueBBICalc, FalseBBICalc)) {
1327 if (feasibleDiamond(true)) {
1328 // ForkedDiamond:
1329 // if TBB and FBB have a common tail that includes their conditional
1330 // branch instructions, then we can If Convert this pattern.
1331 // EBB
1332 // _/ \_
1333 // | |
1334 // TBB FBB
1335 // / \ / \
1336 // FalseBB TrueBB FalseBB
1338 Tokens.push_back(std::make_unique<IfcvtToken>(
1339 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1340 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1341 Enqueued = true;
1346 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1347 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1348 TrueBBI.ExtraCost2, Prediction) &&
1349 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1350 // Triangle:
1351 // EBB
1352 // | \_
1353 // | |
1354 // | TBB
1355 // | /
1356 // FBB
1357 Tokens.push_back(
1358 std::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1359 Enqueued = true;
1362 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1363 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1364 TrueBBI.ExtraCost2, Prediction) &&
1365 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1366 Tokens.push_back(
1367 std::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1368 Enqueued = true;
1371 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1372 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1373 TrueBBI.ExtraCost2, Prediction) &&
1374 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1375 // Simple (split, no rejoin):
1376 // EBB
1377 // | \_
1378 // | |
1379 // | TBB---> exit
1380 // |
1381 // FBB
1382 Tokens.push_back(
1383 std::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1384 Enqueued = true;
1387 if (CanRevCond) {
1388 // Try the other path...
1389 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1390 Prediction.getCompl()) &&
1391 MeetIfcvtSizeLimit(*FalseBBI.BB,
1392 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1393 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1394 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1395 Tokens.push_back(std::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1396 FNeedSub, Dups));
1397 Enqueued = true;
1400 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1401 Prediction.getCompl()) &&
1402 MeetIfcvtSizeLimit(*FalseBBI.BB,
1403 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1404 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1405 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1406 Tokens.push_back(
1407 std::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1408 Enqueued = true;
1411 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1412 MeetIfcvtSizeLimit(*FalseBBI.BB,
1413 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1414 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1415 FeasibilityAnalysis(FalseBBI, RevCond)) {
1416 Tokens.push_back(
1417 std::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1418 Enqueued = true;
1422 BBI.IsEnqueued = Enqueued;
1423 BBI.IsBeingAnalyzed = false;
1424 BBI.IsAnalyzed = true;
1425 BBStack.pop_back();
1429 /// Analyze all blocks and find entries for all if-conversion candidates.
1430 void IfConverter::AnalyzeBlocks(
1431 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1432 for (MachineBasicBlock &MBB : MF)
1433 AnalyzeBlock(MBB, Tokens);
1435 // Sort to favor more complex ifcvt scheme.
1436 llvm::stable_sort(Tokens, IfcvtTokenCmp);
1439 /// Returns true either if ToMBB is the next block after MBB or that all the
1440 /// intervening blocks are empty (given MBB can fall through to its next block).
1441 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1442 MachineFunction::iterator PI = MBB.getIterator();
1443 MachineFunction::iterator I = std::next(PI);
1444 MachineFunction::iterator TI = ToMBB.getIterator();
1445 MachineFunction::iterator E = MBB.getParent()->end();
1446 while (I != TI) {
1447 // Check isSuccessor to avoid case where the next block is empty, but
1448 // it's not a successor.
1449 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1450 return false;
1451 PI = I++;
1453 // Finally see if the last I is indeed a successor to PI.
1454 return PI->isSuccessor(&*I);
1457 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1458 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1459 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1460 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1461 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1462 if (PBBI.IsDone || PBBI.BB == &MBB)
1463 continue;
1464 PBBI.IsAnalyzed = false;
1465 PBBI.IsEnqueued = false;
1469 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1470 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1471 const TargetInstrInfo *TII) {
1472 DebugLoc dl; // FIXME: this is nowhere
1473 SmallVector<MachineOperand, 0> NoCond;
1474 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1477 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1478 /// values defined in MI which are also live/used by MI.
1479 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1480 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1482 // Before stepping forward past MI, remember which regs were live
1483 // before MI. This is needed to set the Undef flag only when reg is
1484 // dead.
1485 SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI;
1486 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1487 for (unsigned Reg : Redefs)
1488 LiveBeforeMI.insert(Reg);
1490 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers;
1491 Redefs.stepForward(MI, Clobbers);
1493 // Now add the implicit uses for each of the clobbered values.
1494 for (auto Clobber : Clobbers) {
1495 // FIXME: Const cast here is nasty, but better than making StepForward
1496 // take a mutable instruction instead of const.
1497 unsigned Reg = Clobber.first;
1498 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1499 MachineInstr *OpMI = Op.getParent();
1500 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1501 if (Op.isRegMask()) {
1502 // First handle regmasks. They clobber any entries in the mask which
1503 // means that we need a def for those registers.
1504 if (LiveBeforeMI.count(Reg))
1505 MIB.addReg(Reg, RegState::Implicit);
1507 // We also need to add an implicit def of this register for the later
1508 // use to read from.
1509 // For the register allocator to have allocated a register clobbered
1510 // by the call which is used later, it must be the case that
1511 // the call doesn't return.
1512 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1513 continue;
1515 if (LiveBeforeMI.count(Reg))
1516 MIB.addReg(Reg, RegState::Implicit);
1517 else {
1518 bool HasLiveSubReg = false;
1519 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1520 if (!LiveBeforeMI.count(*S))
1521 continue;
1522 HasLiveSubReg = true;
1523 break;
1525 if (HasLiveSubReg)
1526 MIB.addReg(Reg, RegState::Implicit);
1531 /// If convert a simple (split, no rejoin) sub-CFG.
1532 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1533 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1534 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1535 BBInfo *CvtBBI = &TrueBBI;
1536 BBInfo *NextBBI = &FalseBBI;
1538 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1539 if (Kind == ICSimpleFalse)
1540 std::swap(CvtBBI, NextBBI);
1542 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1543 MachineBasicBlock &NextMBB = *NextBBI->BB;
1544 if (CvtBBI->IsDone ||
1545 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1546 // Something has changed. It's no longer safe to predicate this block.
1547 BBI.IsAnalyzed = false;
1548 CvtBBI->IsAnalyzed = false;
1549 return false;
1552 if (CvtMBB.hasAddressTaken())
1553 // Conservatively abort if-conversion if BB's address is taken.
1554 return false;
1556 if (Kind == ICSimpleFalse)
1557 if (TII->reverseBranchCondition(Cond))
1558 llvm_unreachable("Unable to reverse branch condition!");
1560 Redefs.init(*TRI);
1562 if (MRI->tracksLiveness()) {
1563 // Initialize liveins to the first BB. These are potentially redefined by
1564 // predicated instructions.
1565 Redefs.addLiveInsNoPristines(CvtMBB);
1566 Redefs.addLiveInsNoPristines(NextMBB);
1569 // Remove the branches from the entry so we can add the contents of the true
1570 // block to it.
1571 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1573 if (CvtMBB.pred_size() > 1) {
1574 // Copy instructions in the true block, predicate them, and add them to
1575 // the entry block.
1576 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1578 // Keep the CFG updated.
1579 BBI.BB->removeSuccessor(&CvtMBB, true);
1580 } else {
1581 // Predicate the instructions in the true block.
1582 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1584 // Merge converted block into entry block. The BB to Cvt edge is removed
1585 // by MergeBlocks.
1586 MergeBlocks(BBI, *CvtBBI);
1589 bool IterIfcvt = true;
1590 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1591 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1592 BBI.HasFallThrough = false;
1593 // Now ifcvt'd block will look like this:
1594 // BB:
1595 // ...
1596 // t, f = cmp
1597 // if t op
1598 // b BBf
1600 // We cannot further ifcvt this block because the unconditional branch
1601 // will have to be predicated on the new condition, that will not be
1602 // available if cmp executes.
1603 IterIfcvt = false;
1606 // Update block info. BB can be iteratively if-converted.
1607 if (!IterIfcvt)
1608 BBI.IsDone = true;
1609 InvalidatePreds(*BBI.BB);
1610 CvtBBI->IsDone = true;
1612 // FIXME: Must maintain LiveIns.
1613 return true;
1616 /// If convert a triangle sub-CFG.
1617 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1618 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1619 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1620 BBInfo *CvtBBI = &TrueBBI;
1621 BBInfo *NextBBI = &FalseBBI;
1622 DebugLoc dl; // FIXME: this is nowhere
1624 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1625 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1626 std::swap(CvtBBI, NextBBI);
1628 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1629 MachineBasicBlock &NextMBB = *NextBBI->BB;
1630 if (CvtBBI->IsDone ||
1631 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1632 // Something has changed. It's no longer safe to predicate this block.
1633 BBI.IsAnalyzed = false;
1634 CvtBBI->IsAnalyzed = false;
1635 return false;
1638 if (CvtMBB.hasAddressTaken())
1639 // Conservatively abort if-conversion if BB's address is taken.
1640 return false;
1642 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1643 if (TII->reverseBranchCondition(Cond))
1644 llvm_unreachable("Unable to reverse branch condition!");
1646 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1647 if (reverseBranchCondition(*CvtBBI)) {
1648 // BB has been changed, modify its predecessors (except for this
1649 // one) so they don't get ifcvt'ed based on bad intel.
1650 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1651 if (PBB == BBI.BB)
1652 continue;
1653 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1654 if (PBBI.IsEnqueued) {
1655 PBBI.IsAnalyzed = false;
1656 PBBI.IsEnqueued = false;
1662 // Initialize liveins to the first BB. These are potentially redefined by
1663 // predicated instructions.
1664 Redefs.init(*TRI);
1665 if (MRI->tracksLiveness()) {
1666 Redefs.addLiveInsNoPristines(CvtMBB);
1667 Redefs.addLiveInsNoPristines(NextMBB);
1670 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1671 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1673 if (HasEarlyExit) {
1674 // Get probabilities before modifying CvtMBB and BBI.BB.
1675 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1676 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1677 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1678 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1681 // Remove the branches from the entry so we can add the contents of the true
1682 // block to it.
1683 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1685 if (CvtMBB.pred_size() > 1) {
1686 // Copy instructions in the true block, predicate them, and add them to
1687 // the entry block.
1688 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1689 } else {
1690 // Predicate the 'true' block after removing its branch.
1691 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1692 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1694 // Now merge the entry of the triangle with the true block.
1695 MergeBlocks(BBI, *CvtBBI, false);
1698 // Keep the CFG updated.
1699 BBI.BB->removeSuccessor(&CvtMBB, true);
1701 // If 'true' block has a 'false' successor, add an exit branch to it.
1702 if (HasEarlyExit) {
1703 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1704 CvtBBI->BrCond.end());
1705 if (TII->reverseBranchCondition(RevCond))
1706 llvm_unreachable("Unable to reverse branch condition!");
1708 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1709 // NewNext = New_Prob(BBI.BB, NextMBB) =
1710 // Prob(BBI.BB, NextMBB) +
1711 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1712 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1713 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1714 auto NewTrueBB = getNextBlock(*BBI.BB);
1715 auto NewNext = BBNext + BBCvt * CvtNext;
1716 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1717 if (NewTrueBBIter != BBI.BB->succ_end())
1718 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1720 auto NewFalse = BBCvt * CvtFalse;
1721 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1722 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1725 // Merge in the 'false' block if the 'false' block has no other
1726 // predecessors. Otherwise, add an unconditional branch to 'false'.
1727 bool FalseBBDead = false;
1728 bool IterIfcvt = true;
1729 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1730 if (!isFallThrough) {
1731 // Only merge them if the true block does not fallthrough to the false
1732 // block. By not merging them, we make it possible to iteratively
1733 // ifcvt the blocks.
1734 if (!HasEarlyExit &&
1735 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1736 !NextMBB.hasAddressTaken()) {
1737 MergeBlocks(BBI, *NextBBI);
1738 FalseBBDead = true;
1739 } else {
1740 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1741 BBI.HasFallThrough = false;
1743 // Mixed predicated and unpredicated code. This cannot be iteratively
1744 // predicated.
1745 IterIfcvt = false;
1748 // Update block info. BB can be iteratively if-converted.
1749 if (!IterIfcvt)
1750 BBI.IsDone = true;
1751 InvalidatePreds(*BBI.BB);
1752 CvtBBI->IsDone = true;
1753 if (FalseBBDead)
1754 NextBBI->IsDone = true;
1756 // FIXME: Must maintain LiveIns.
1757 return true;
1760 /// Common code shared between diamond conversions.
1761 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1762 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1763 /// and FalseBBI
1764 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1765 /// and \p FalseBBI
1766 /// \p RemoveBranch - Remove the common branch of the two blocks before
1767 /// predicating. Only false for unanalyzable fallthrough
1768 /// cases. The caller will replace the branch if necessary.
1769 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1770 /// unanalyzable fallthrough
1771 bool IfConverter::IfConvertDiamondCommon(
1772 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1773 unsigned NumDups1, unsigned NumDups2,
1774 bool TClobbersPred, bool FClobbersPred,
1775 bool RemoveBranch, bool MergeAddEdges) {
1777 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1778 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1779 // Something has changed. It's no longer safe to predicate these blocks.
1780 BBI.IsAnalyzed = false;
1781 TrueBBI.IsAnalyzed = false;
1782 FalseBBI.IsAnalyzed = false;
1783 return false;
1786 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1787 // Conservatively abort if-conversion if either BB has its address taken.
1788 return false;
1790 // Put the predicated instructions from the 'true' block before the
1791 // instructions from the 'false' block, unless the true block would clobber
1792 // the predicate, in which case, do the opposite.
1793 BBInfo *BBI1 = &TrueBBI;
1794 BBInfo *BBI2 = &FalseBBI;
1795 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1796 if (TII->reverseBranchCondition(RevCond))
1797 llvm_unreachable("Unable to reverse branch condition!");
1798 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1799 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1801 // Figure out the more profitable ordering.
1802 bool DoSwap = false;
1803 if (TClobbersPred && !FClobbersPred)
1804 DoSwap = true;
1805 else if (!TClobbersPred && !FClobbersPred) {
1806 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1807 DoSwap = true;
1808 } else if (TClobbersPred && FClobbersPred)
1809 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1810 if (DoSwap) {
1811 std::swap(BBI1, BBI2);
1812 std::swap(Cond1, Cond2);
1815 // Remove the conditional branch from entry to the blocks.
1816 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1818 MachineBasicBlock &MBB1 = *BBI1->BB;
1819 MachineBasicBlock &MBB2 = *BBI2->BB;
1821 // Initialize the Redefs:
1822 // - BB2 live-in regs need implicit uses before being redefined by BB1
1823 // instructions.
1824 // - BB1 live-out regs need implicit uses before being redefined by BB2
1825 // instructions. We start with BB1 live-ins so we have the live-out regs
1826 // after tracking the BB1 instructions.
1827 Redefs.init(*TRI);
1828 if (MRI->tracksLiveness()) {
1829 Redefs.addLiveInsNoPristines(MBB1);
1830 Redefs.addLiveInsNoPristines(MBB2);
1833 // Remove the duplicated instructions at the beginnings of both paths.
1834 // Skip dbg_value instructions.
1835 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(false);
1836 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(false);
1837 BBI1->NonPredSize -= NumDups1;
1838 BBI2->NonPredSize -= NumDups1;
1840 // Skip past the dups on each side separately since there may be
1841 // differing dbg_value entries. NumDups1 can include a "return"
1842 // instruction, if it's not marked as "branch".
1843 for (unsigned i = 0; i < NumDups1; ++DI1) {
1844 if (DI1 == MBB1.end())
1845 break;
1846 if (!DI1->isDebugInstr())
1847 ++i;
1849 while (NumDups1 != 0) {
1850 // Since this instruction is going to be deleted, update call
1851 // site info state if the instruction is call instruction.
1852 if (DI2->shouldUpdateCallSiteInfo())
1853 MBB2.getParent()->eraseCallSiteInfo(&*DI2);
1855 ++DI2;
1856 if (DI2 == MBB2.end())
1857 break;
1858 if (!DI2->isDebugInstr())
1859 --NumDups1;
1862 if (MRI->tracksLiveness()) {
1863 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1864 SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy;
1865 Redefs.stepForward(MI, Dummy);
1869 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1870 MBB2.erase(MBB2.begin(), DI2);
1872 // The branches have been checked to match, so it is safe to remove the
1873 // branch in BB1 and rely on the copy in BB2. The complication is that
1874 // the blocks may end with a return instruction, which may or may not
1875 // be marked as "branch". If it's not, then it could be included in
1876 // "dups1", leaving the blocks potentially empty after moving the common
1877 // duplicates.
1878 #ifndef NDEBUG
1879 // Unanalyzable branches must match exactly. Check that now.
1880 if (!BBI1->IsBrAnalyzable)
1881 verifySameBranchInstructions(&MBB1, &MBB2);
1882 #endif
1883 // Remove duplicated instructions from the tail of MBB1: any branch
1884 // instructions, and the common instructions counted by NumDups2.
1885 DI1 = MBB1.end();
1886 while (DI1 != MBB1.begin()) {
1887 MachineBasicBlock::iterator Prev = std::prev(DI1);
1888 if (!Prev->isBranch() && !Prev->isDebugInstr())
1889 break;
1890 DI1 = Prev;
1892 for (unsigned i = 0; i != NumDups2; ) {
1893 // NumDups2 only counted non-dbg_value instructions, so this won't
1894 // run off the head of the list.
1895 assert(DI1 != MBB1.begin());
1897 --DI1;
1899 // Since this instruction is going to be deleted, update call
1900 // site info state if the instruction is call instruction.
1901 if (DI1->shouldUpdateCallSiteInfo())
1902 MBB1.getParent()->eraseCallSiteInfo(&*DI1);
1904 // skip dbg_value instructions
1905 if (!DI1->isDebugInstr())
1906 ++i;
1908 MBB1.erase(DI1, MBB1.end());
1910 DI2 = BBI2->BB->end();
1911 // The branches have been checked to match. Skip over the branch in the false
1912 // block so that we don't try to predicate it.
1913 if (RemoveBranch)
1914 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1915 else {
1916 // Make DI2 point to the end of the range where the common "tail"
1917 // instructions could be found.
1918 while (DI2 != MBB2.begin()) {
1919 MachineBasicBlock::iterator Prev = std::prev(DI2);
1920 if (!Prev->isBranch() && !Prev->isDebugInstr())
1921 break;
1922 DI2 = Prev;
1925 while (NumDups2 != 0) {
1926 // NumDups2 only counted non-dbg_value instructions, so this won't
1927 // run off the head of the list.
1928 assert(DI2 != MBB2.begin());
1929 --DI2;
1930 // skip dbg_value instructions
1931 if (!DI2->isDebugInstr())
1932 --NumDups2;
1935 // Remember which registers would later be defined by the false block.
1936 // This allows us not to predicate instructions in the true block that would
1937 // later be re-defined. That is, rather than
1938 // subeq r0, r1, #1
1939 // addne r0, r1, #1
1940 // generate:
1941 // sub r0, r1, #1
1942 // addne r0, r1, #1
1943 SmallSet<MCPhysReg, 4> RedefsByFalse;
1944 SmallSet<MCPhysReg, 4> ExtUses;
1945 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1946 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1947 if (FI.isDebugInstr())
1948 continue;
1949 SmallVector<MCPhysReg, 4> Defs;
1950 for (const MachineOperand &MO : FI.operands()) {
1951 if (!MO.isReg())
1952 continue;
1953 Register Reg = MO.getReg();
1954 if (!Reg)
1955 continue;
1956 if (MO.isDef()) {
1957 Defs.push_back(Reg);
1958 } else if (!RedefsByFalse.count(Reg)) {
1959 // These are defined before ctrl flow reach the 'false' instructions.
1960 // They cannot be modified by the 'true' instructions.
1961 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1962 SubRegs.isValid(); ++SubRegs)
1963 ExtUses.insert(*SubRegs);
1967 for (MCPhysReg Reg : Defs) {
1968 if (!ExtUses.count(Reg)) {
1969 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1970 SubRegs.isValid(); ++SubRegs)
1971 RedefsByFalse.insert(*SubRegs);
1977 // Predicate the 'true' block.
1978 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1980 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1981 // a non-predicated in BBI2, then we don't want to predicate the one from
1982 // BBI2. The reason is that if we merged these blocks, we would end up with
1983 // two predicated terminators in the same block.
1984 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1985 // predicate them either. They were checked to be identical, and so the
1986 // same branch would happen regardless of which path was taken.
1987 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1988 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1989 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1990 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1991 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1992 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1993 --DI2;
1996 // Predicate the 'false' block.
1997 PredicateBlock(*BBI2, DI2, *Cond2);
1999 // Merge the true block into the entry of the diamond.
2000 MergeBlocks(BBI, *BBI1, MergeAddEdges);
2001 MergeBlocks(BBI, *BBI2, MergeAddEdges);
2002 return true;
2005 /// If convert an almost-diamond sub-CFG where the true
2006 /// and false blocks share a common tail.
2007 bool IfConverter::IfConvertForkedDiamond(
2008 BBInfo &BBI, IfcvtKind Kind,
2009 unsigned NumDups1, unsigned NumDups2,
2010 bool TClobbersPred, bool FClobbersPred) {
2011 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2012 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2014 // Save the debug location for later.
2015 DebugLoc dl;
2016 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
2017 if (TIE != TrueBBI.BB->end())
2018 dl = TIE->getDebugLoc();
2019 // Removing branches from both blocks is safe, because we have already
2020 // determined that both blocks have the same branch instructions. The branch
2021 // will be added back at the end, unpredicated.
2022 if (!IfConvertDiamondCommon(
2023 BBI, TrueBBI, FalseBBI,
2024 NumDups1, NumDups2,
2025 TClobbersPred, FClobbersPred,
2026 /* RemoveBranch */ true, /* MergeAddEdges */ true))
2027 return false;
2029 // Add back the branch.
2030 // Debug location saved above when removing the branch from BBI2
2031 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
2032 TrueBBI.BrCond, dl);
2034 // Update block info.
2035 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2036 InvalidatePreds(*BBI.BB);
2038 // FIXME: Must maintain LiveIns.
2039 return true;
2042 /// If convert a diamond sub-CFG.
2043 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
2044 unsigned NumDups1, unsigned NumDups2,
2045 bool TClobbersPred, bool FClobbersPred) {
2046 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
2047 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
2048 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
2050 // True block must fall through or end with an unanalyzable terminator.
2051 if (!TailBB) {
2052 if (blockAlwaysFallThrough(TrueBBI))
2053 TailBB = FalseBBI.TrueBB;
2054 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
2057 if (!IfConvertDiamondCommon(
2058 BBI, TrueBBI, FalseBBI,
2059 NumDups1, NumDups2,
2060 TClobbersPred, FClobbersPred,
2061 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
2062 /* MergeAddEdges */ TailBB == nullptr))
2063 return false;
2065 // If the if-converted block falls through or unconditionally branches into
2066 // the tail block, and the tail block does not have other predecessors, then
2067 // fold the tail block in as well. Otherwise, unless it falls through to the
2068 // tail, add a unconditional branch to it.
2069 if (TailBB) {
2070 // We need to remove the edges to the true and false blocks manually since
2071 // we didn't let IfConvertDiamondCommon update the CFG.
2072 BBI.BB->removeSuccessor(TrueBBI.BB);
2073 BBI.BB->removeSuccessor(FalseBBI.BB, true);
2075 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
2076 bool CanMergeTail = !TailBBI.HasFallThrough &&
2077 !TailBBI.BB->hasAddressTaken();
2078 // The if-converted block can still have a predicated terminator
2079 // (e.g. a predicated return). If that is the case, we cannot merge
2080 // it with the tail block.
2081 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
2082 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
2083 CanMergeTail = false;
2084 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2085 // check if there are any other predecessors besides those.
2086 unsigned NumPreds = TailBB->pred_size();
2087 if (NumPreds > 1)
2088 CanMergeTail = false;
2089 else if (NumPreds == 1 && CanMergeTail) {
2090 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
2091 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
2092 CanMergeTail = false;
2094 if (CanMergeTail) {
2095 MergeBlocks(BBI, TailBBI);
2096 TailBBI.IsDone = true;
2097 } else {
2098 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
2099 InsertUncondBranch(*BBI.BB, *TailBB, TII);
2100 BBI.HasFallThrough = false;
2104 // Update block info.
2105 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
2106 InvalidatePreds(*BBI.BB);
2108 // FIXME: Must maintain LiveIns.
2109 return true;
2112 static bool MaySpeculate(const MachineInstr &MI,
2113 SmallSet<MCPhysReg, 4> &LaterRedefs) {
2114 bool SawStore = true;
2115 if (!MI.isSafeToMove(nullptr, SawStore))
2116 return false;
2118 for (const MachineOperand &MO : MI.operands()) {
2119 if (!MO.isReg())
2120 continue;
2121 Register Reg = MO.getReg();
2122 if (!Reg)
2123 continue;
2124 if (MO.isDef() && !LaterRedefs.count(Reg))
2125 return false;
2128 return true;
2131 /// Predicate instructions from the start of the block to the specified end with
2132 /// the specified condition.
2133 void IfConverter::PredicateBlock(BBInfo &BBI,
2134 MachineBasicBlock::iterator E,
2135 SmallVectorImpl<MachineOperand> &Cond,
2136 SmallSet<MCPhysReg, 4> *LaterRedefs) {
2137 bool AnyUnpred = false;
2138 bool MaySpec = LaterRedefs != nullptr;
2139 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2140 if (I.isDebugInstr() || TII->isPredicated(I))
2141 continue;
2142 // It may be possible not to predicate an instruction if it's the 'true'
2143 // side of a diamond and the 'false' side may re-define the instruction's
2144 // defs.
2145 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2146 AnyUnpred = true;
2147 continue;
2149 // If any instruction is predicated, then every instruction after it must
2150 // be predicated.
2151 MaySpec = false;
2152 if (!TII->PredicateInstruction(I, Cond)) {
2153 #ifndef NDEBUG
2154 dbgs() << "Unable to predicate " << I << "!\n";
2155 #endif
2156 llvm_unreachable(nullptr);
2159 // If the predicated instruction now redefines a register as the result of
2160 // if-conversion, add an implicit kill.
2161 UpdatePredRedefs(I, Redefs);
2164 BBI.Predicate.append(Cond.begin(), Cond.end());
2166 BBI.IsAnalyzed = false;
2167 BBI.NonPredSize = 0;
2169 ++NumIfConvBBs;
2170 if (AnyUnpred)
2171 ++NumUnpred;
2174 /// Copy and predicate instructions from source BB to the destination block.
2175 /// Skip end of block branches if IgnoreBr is true.
2176 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2177 SmallVectorImpl<MachineOperand> &Cond,
2178 bool IgnoreBr) {
2179 MachineFunction &MF = *ToBBI.BB->getParent();
2181 MachineBasicBlock &FromMBB = *FromBBI.BB;
2182 for (MachineInstr &I : FromMBB) {
2183 // Do not copy the end of the block branches.
2184 if (IgnoreBr && I.isBranch())
2185 break;
2187 MachineInstr *MI = MF.CloneMachineInstr(&I);
2188 // Make a copy of the call site info.
2189 if (I.isCandidateForCallSiteEntry())
2190 MF.copyCallSiteInfo(&I, MI);
2192 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2193 ToBBI.NonPredSize++;
2194 unsigned ExtraPredCost = TII->getPredicationCost(I);
2195 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2196 if (NumCycles > 1)
2197 ToBBI.ExtraCost += NumCycles-1;
2198 ToBBI.ExtraCost2 += ExtraPredCost;
2200 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2201 if (!TII->PredicateInstruction(*MI, Cond)) {
2202 #ifndef NDEBUG
2203 dbgs() << "Unable to predicate " << I << "!\n";
2204 #endif
2205 llvm_unreachable(nullptr);
2209 // If the predicated instruction now redefines a register as the result of
2210 // if-conversion, add an implicit kill.
2211 UpdatePredRedefs(*MI, Redefs);
2214 if (!IgnoreBr) {
2215 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2216 FromMBB.succ_end());
2217 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2218 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2220 for (MachineBasicBlock *Succ : Succs) {
2221 // Fallthrough edge can't be transferred.
2222 if (Succ == FallThrough)
2223 continue;
2224 ToBBI.BB->addSuccessor(Succ);
2228 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2229 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2231 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2232 ToBBI.IsAnalyzed = false;
2234 ++NumDupBBs;
2237 /// Move all instructions from FromBB to the end of ToBB. This will leave
2238 /// FromBB as an empty block, so remove all of its successor edges and move it
2239 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's
2240 /// branch is being moved, add those successor edges to ToBBI and remove the old
2241 /// edge from ToBBI to FromBBI.
2242 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2243 MachineBasicBlock &FromMBB = *FromBBI.BB;
2244 assert(!FromMBB.hasAddressTaken() &&
2245 "Removing a BB whose address is taken!");
2247 // In case FromMBB contains terminators (e.g. return instruction),
2248 // first move the non-terminator instructions, then the terminators.
2249 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2250 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2251 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2253 // If FromBB has non-predicated terminator we should copy it at the end.
2254 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2255 ToTI = ToBBI.BB->end();
2256 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2258 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2259 // unknown probabilities into known ones.
2260 // FIXME: This usage is too tricky and in the future we would like to
2261 // eliminate all unknown probabilities in MBB.
2262 if (ToBBI.IsBrAnalyzable)
2263 ToBBI.BB->normalizeSuccProbs();
2265 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors());
2266 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2267 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2268 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2269 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2270 auto To2FromProb = BranchProbability::getZero();
2271 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2272 // Remove the old edge but remember the edge probability so we can calculate
2273 // the correct weights on the new edges being added further down.
2274 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2275 ToBBI.BB->removeSuccessor(&FromMBB);
2278 for (MachineBasicBlock *Succ : FromSuccs) {
2279 // Fallthrough edge can't be transferred.
2280 if (Succ == FallThrough) {
2281 FromMBB.removeSuccessor(Succ);
2282 continue;
2285 auto NewProb = BranchProbability::getZero();
2286 if (AddEdges) {
2287 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2288 // which is a portion of the edge probability from FromMBB to Succ. The
2289 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2290 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2291 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2293 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2294 // only happens when if-converting a diamond CFG and FromMBB is the
2295 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2296 // could just use the probabilities on FromMBB's out-edges when adding
2297 // new successors.
2298 if (!To2FromProb.isZero())
2299 NewProb *= To2FromProb;
2302 FromMBB.removeSuccessor(Succ);
2304 if (AddEdges) {
2305 // If the edge from ToBBI.BB to Succ already exists, update the
2306 // probability of this edge by adding NewProb to it. An example is shown
2307 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2308 // don't have to set C as A's successor as it already is. We only need to
2309 // update the edge probability on A->C. Note that B will not be
2310 // immediately removed from A's successors. It is possible that B->D is
2311 // not removed either if D is a fallthrough of B. Later the edge A->D
2312 // (generated here) and B->D will be combined into one edge. To maintain
2313 // correct edge probability of this combined edge, we need to set the edge
2314 // probability of A->B to zero, which is already done above. The edge
2315 // probability on A->D is calculated by scaling the original probability
2316 // on A->B by the probability of B->D.
2318 // Before ifcvt: After ifcvt (assume B->D is kept):
2320 // A A
2321 // /| /|\
2322 // / B / B|
2323 // | /| | ||
2324 // |/ | | |/
2325 // C D C D
2327 if (ToBBI.BB->isSuccessor(Succ))
2328 ToBBI.BB->setSuccProbability(
2329 find(ToBBI.BB->successors(), Succ),
2330 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2331 else
2332 ToBBI.BB->addSuccessor(Succ, NewProb);
2336 // Move the now empty FromMBB out of the way to the end of the function so
2337 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2338 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2339 if (Last != &FromMBB)
2340 FromMBB.moveAfter(Last);
2342 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2343 // we've done above.
2344 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2345 ToBBI.BB->normalizeSuccProbs();
2347 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2348 FromBBI.Predicate.clear();
2350 ToBBI.NonPredSize += FromBBI.NonPredSize;
2351 ToBBI.ExtraCost += FromBBI.ExtraCost;
2352 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2353 FromBBI.NonPredSize = 0;
2354 FromBBI.ExtraCost = 0;
2355 FromBBI.ExtraCost2 = 0;
2357 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2358 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2359 ToBBI.IsAnalyzed = false;
2360 FromBBI.IsAnalyzed = false;
2363 FunctionPass *
2364 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2365 return new IfConverter(std::move(Ftor));