1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MBFIWrapper.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
58 #define DEBUG_TYPE "if-converter"
60 // Hidden options for help debugging.
61 static cl::opt
<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden
);
62 static cl::opt
<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden
);
63 static cl::opt
<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden
);
64 static cl::opt
<bool> DisableSimple("disable-ifcvt-simple",
65 cl::init(false), cl::Hidden
);
66 static cl::opt
<bool> DisableSimpleF("disable-ifcvt-simple-false",
67 cl::init(false), cl::Hidden
);
68 static cl::opt
<bool> DisableTriangle("disable-ifcvt-triangle",
69 cl::init(false), cl::Hidden
);
70 static cl::opt
<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
71 cl::init(false), cl::Hidden
);
72 static cl::opt
<bool> DisableTriangleF("disable-ifcvt-triangle-false",
73 cl::init(false), cl::Hidden
);
74 static cl::opt
<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
75 cl::init(false), cl::Hidden
);
76 static cl::opt
<bool> DisableDiamond("disable-ifcvt-diamond",
77 cl::init(false), cl::Hidden
);
78 static cl::opt
<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
79 cl::init(false), cl::Hidden
);
80 static cl::opt
<bool> IfCvtBranchFold("ifcvt-branch-fold",
81 cl::init(true), cl::Hidden
);
83 STATISTIC(NumSimple
, "Number of simple if-conversions performed");
84 STATISTIC(NumSimpleFalse
, "Number of simple (F) if-conversions performed");
85 STATISTIC(NumTriangle
, "Number of triangle if-conversions performed");
86 STATISTIC(NumTriangleRev
, "Number of triangle (R) if-conversions performed");
87 STATISTIC(NumTriangleFalse
,"Number of triangle (F) if-conversions performed");
88 STATISTIC(NumTriangleFRev
, "Number of triangle (F/R) if-conversions performed");
89 STATISTIC(NumDiamonds
, "Number of diamond if-conversions performed");
90 STATISTIC(NumForkedDiamonds
, "Number of forked-diamond if-conversions performed");
91 STATISTIC(NumIfConvBBs
, "Number of if-converted blocks");
92 STATISTIC(NumDupBBs
, "Number of duplicated blocks");
93 STATISTIC(NumUnpred
, "Number of true blocks of diamonds unpredicated");
97 class IfConverter
: public MachineFunctionPass
{
99 ICNotClassfied
, // BB data valid, but not classified.
100 ICSimpleFalse
, // Same as ICSimple, but on the false path.
101 ICSimple
, // BB is entry of an one split, no rejoin sub-CFG.
102 ICTriangleFRev
, // Same as ICTriangleFalse, but false path rev condition.
103 ICTriangleRev
, // Same as ICTriangle, but true path rev condition.
104 ICTriangleFalse
, // Same as ICTriangle, but on the false path.
105 ICTriangle
, // BB is entry of a triangle sub-CFG.
106 ICDiamond
, // BB is entry of a diamond sub-CFG.
107 ICForkedDiamond
// BB is entry of an almost diamond sub-CFG, with a
108 // common tail that can be shared.
111 /// One per MachineBasicBlock, this is used to cache the result
112 /// if-conversion feasibility analysis. This includes results from
113 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
114 /// classification, and common tail block of its successors (if it's a
115 /// diamond shape), its size, whether it's predicable, and whether any
116 /// instruction can clobber the 'would-be' predicate.
118 /// IsDone - True if BB is not to be considered for ifcvt.
119 /// IsBeingAnalyzed - True if BB is currently being analyzed.
120 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
121 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
122 /// IsBrAnalyzable - True if analyzeBranch() returns false.
123 /// HasFallThrough - True if BB may fallthrough to the following BB.
124 /// IsUnpredicable - True if BB is known to be unpredicable.
125 /// ClobbersPred - True if BB could modify predicates (e.g. has
127 /// NonPredSize - Number of non-predicated instructions.
128 /// ExtraCost - Extra cost for multi-cycle instructions.
129 /// ExtraCost2 - Some instructions are slower when predicated
130 /// BB - Corresponding MachineBasicBlock.
131 /// TrueBB / FalseBB- See analyzeBranch().
132 /// BrCond - Conditions for end of block conditional branches.
133 /// Predicate - Predicate used in the BB.
136 bool IsBeingAnalyzed
: 1;
139 bool IsBrAnalyzable
: 1;
140 bool IsBrReversible
: 1;
141 bool HasFallThrough
: 1;
142 bool IsUnpredicable
: 1;
143 bool CannotBeCopied
: 1;
144 bool ClobbersPred
: 1;
145 unsigned NonPredSize
= 0;
146 unsigned ExtraCost
= 0;
147 unsigned ExtraCost2
= 0;
148 MachineBasicBlock
*BB
= nullptr;
149 MachineBasicBlock
*TrueBB
= nullptr;
150 MachineBasicBlock
*FalseBB
= nullptr;
151 SmallVector
<MachineOperand
, 4> BrCond
;
152 SmallVector
<MachineOperand
, 4> Predicate
;
154 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
155 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
156 IsBrReversible(false), HasFallThrough(false),
157 IsUnpredicable(false), CannotBeCopied(false),
158 ClobbersPred(false) {}
161 /// Record information about pending if-conversions to attempt:
162 /// BBI - Corresponding BBInfo.
163 /// Kind - Type of block. See IfcvtKind.
164 /// NeedSubsumption - True if the to-be-predicated BB has already been
166 /// NumDups - Number of instructions that would be duplicated due
167 /// to this if-conversion. (For diamonds, the number of
168 /// identical instructions at the beginnings of both
170 /// NumDups2 - For diamonds, the number of identical instructions
171 /// at the ends of both paths.
177 bool NeedSubsumption
: 1;
178 bool TClobbersPred
: 1;
179 bool FClobbersPred
: 1;
181 IfcvtToken(BBInfo
&b
, IfcvtKind k
, bool s
, unsigned d
, unsigned d2
= 0,
182 bool tc
= false, bool fc
= false)
183 : BBI(b
), Kind(k
), NumDups(d
), NumDups2(d2
), NeedSubsumption(s
),
184 TClobbersPred(tc
), FClobbersPred(fc
) {}
187 /// Results of if-conversion feasibility analysis indexed by basic block
189 std::vector
<BBInfo
> BBAnalysis
;
190 TargetSchedModel SchedModel
;
192 const TargetLoweringBase
*TLI
;
193 const TargetInstrInfo
*TII
;
194 const TargetRegisterInfo
*TRI
;
195 const MachineBranchProbabilityInfo
*MBPI
;
196 MachineRegisterInfo
*MRI
;
203 std::function
<bool(const MachineFunction
&)> PredicateFtor
;
208 IfConverter(std::function
<bool(const MachineFunction
&)> Ftor
= nullptr)
209 : MachineFunctionPass(ID
), PredicateFtor(std::move(Ftor
)) {
210 initializeIfConverterPass(*PassRegistry::getPassRegistry());
213 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
214 AU
.addRequired
<MachineBlockFrequencyInfo
>();
215 AU
.addRequired
<MachineBranchProbabilityInfo
>();
216 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
217 MachineFunctionPass::getAnalysisUsage(AU
);
220 bool runOnMachineFunction(MachineFunction
&MF
) override
;
222 MachineFunctionProperties
getRequiredProperties() const override
{
223 return MachineFunctionProperties().set(
224 MachineFunctionProperties::Property::NoVRegs
);
228 bool reverseBranchCondition(BBInfo
&BBI
) const;
229 bool ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
230 BranchProbability Prediction
) const;
231 bool ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
232 bool FalseBranch
, unsigned &Dups
,
233 BranchProbability Prediction
) const;
234 bool CountDuplicatedInstructions(
235 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
236 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
237 unsigned &Dups1
, unsigned &Dups2
,
238 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
239 bool SkipUnconditionalBranches
) const;
240 bool ValidDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
241 unsigned &Dups1
, unsigned &Dups2
,
242 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
243 bool ValidForkedDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
244 unsigned &Dups1
, unsigned &Dups2
,
245 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
246 void AnalyzeBranches(BBInfo
&BBI
);
247 void ScanInstructions(BBInfo
&BBI
,
248 MachineBasicBlock::iterator
&Begin
,
249 MachineBasicBlock::iterator
&End
,
250 bool BranchUnpredicable
= false) const;
251 bool RescanInstructions(
252 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
253 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
254 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const;
255 void AnalyzeBlock(MachineBasicBlock
&MBB
,
256 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
257 bool FeasibilityAnalysis(BBInfo
&BBI
, SmallVectorImpl
<MachineOperand
> &Pred
,
258 bool isTriangle
= false, bool RevBranch
= false,
259 bool hasCommonTail
= false);
260 void AnalyzeBlocks(MachineFunction
&MF
,
261 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
262 void InvalidatePreds(MachineBasicBlock
&MBB
);
263 bool IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
);
264 bool IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
);
265 bool IfConvertDiamondCommon(BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
266 unsigned NumDups1
, unsigned NumDups2
,
267 bool TClobbersPred
, bool FClobbersPred
,
268 bool RemoveBranch
, bool MergeAddEdges
);
269 bool IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
270 unsigned NumDups1
, unsigned NumDups2
,
271 bool TClobbers
, bool FClobbers
);
272 bool IfConvertForkedDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
273 unsigned NumDups1
, unsigned NumDups2
,
274 bool TClobbers
, bool FClobbers
);
275 void PredicateBlock(BBInfo
&BBI
,
276 MachineBasicBlock::iterator E
,
277 SmallVectorImpl
<MachineOperand
> &Cond
,
278 SmallSet
<MCPhysReg
, 4> *LaterRedefs
= nullptr);
279 void CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
280 SmallVectorImpl
<MachineOperand
> &Cond
,
281 bool IgnoreBr
= false);
282 void MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
= true);
284 bool MeetIfcvtSizeLimit(MachineBasicBlock
&BB
,
285 unsigned Cycle
, unsigned Extra
,
286 BranchProbability Prediction
) const {
287 return Cycle
> 0 && TII
->isProfitableToIfCvt(BB
, Cycle
, Extra
,
291 bool MeetIfcvtSizeLimit(BBInfo
&TBBInfo
, BBInfo
&FBBInfo
,
292 MachineBasicBlock
&CommBB
, unsigned Dups
,
293 BranchProbability Prediction
, bool Forked
) const {
294 const MachineFunction
&MF
= *TBBInfo
.BB
->getParent();
295 if (MF
.getFunction().hasMinSize()) {
296 MachineBasicBlock::iterator TIB
= TBBInfo
.BB
->begin();
297 MachineBasicBlock::iterator FIB
= FBBInfo
.BB
->begin();
298 MachineBasicBlock::iterator TIE
= TBBInfo
.BB
->end();
299 MachineBasicBlock::iterator FIE
= FBBInfo
.BB
->end();
301 unsigned Dups1
= 0, Dups2
= 0;
302 if (!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
303 *TBBInfo
.BB
, *FBBInfo
.BB
,
304 /*SkipUnconditionalBranches*/ true))
305 llvm_unreachable("should already have been checked by ValidDiamond");
307 unsigned BranchBytes
= 0;
308 unsigned CommonBytes
= 0;
310 // Count common instructions at the start of the true and false blocks.
311 for (auto &I
: make_range(TBBInfo
.BB
->begin(), TIB
)) {
312 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
313 CommonBytes
+= TII
->getInstSizeInBytes(I
);
315 for (auto &I
: make_range(FBBInfo
.BB
->begin(), FIB
)) {
316 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
317 CommonBytes
+= TII
->getInstSizeInBytes(I
);
320 // Count instructions at the end of the true and false blocks, after
321 // the ones we plan to predicate. Analyzable branches will be removed
322 // (unless this is a forked diamond), and all other instructions are
323 // common between the two blocks.
324 for (auto &I
: make_range(TIE
, TBBInfo
.BB
->end())) {
325 if (I
.isBranch() && TBBInfo
.IsBrAnalyzable
&& !Forked
) {
326 LLVM_DEBUG(dbgs() << "Saving branch: " << I
);
327 BranchBytes
+= TII
->predictBranchSizeForIfCvt(I
);
329 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
330 CommonBytes
+= TII
->getInstSizeInBytes(I
);
333 for (auto &I
: make_range(FIE
, FBBInfo
.BB
->end())) {
334 if (I
.isBranch() && FBBInfo
.IsBrAnalyzable
&& !Forked
) {
335 LLVM_DEBUG(dbgs() << "Saving branch: " << I
);
336 BranchBytes
+= TII
->predictBranchSizeForIfCvt(I
);
338 LLVM_DEBUG(dbgs() << "Common inst: " << I
);
339 CommonBytes
+= TII
->getInstSizeInBytes(I
);
342 for (auto &I
: CommBB
.terminators()) {
344 LLVM_DEBUG(dbgs() << "Saving branch: " << I
);
345 BranchBytes
+= TII
->predictBranchSizeForIfCvt(I
);
349 // The common instructions in one branch will be eliminated, halving
353 // Count the instructions which we need to predicate.
354 unsigned NumPredicatedInstructions
= 0;
355 for (auto &I
: make_range(TIB
, TIE
)) {
356 if (!I
.isDebugInstr()) {
357 LLVM_DEBUG(dbgs() << "Predicating: " << I
);
358 NumPredicatedInstructions
++;
361 for (auto &I
: make_range(FIB
, FIE
)) {
362 if (!I
.isDebugInstr()) {
363 LLVM_DEBUG(dbgs() << "Predicating: " << I
);
364 NumPredicatedInstructions
++;
368 // Even though we're optimising for size at the expense of performance,
369 // avoid creating really long predicated blocks.
370 if (NumPredicatedInstructions
> 15)
373 // Some targets (e.g. Thumb2) need to insert extra instructions to
374 // start predicated blocks.
375 unsigned ExtraPredicateBytes
= TII
->extraSizeToPredicateInstructions(
376 MF
, NumPredicatedInstructions
);
378 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes
379 << ", CommonBytes=" << CommonBytes
380 << ", NumPredicatedInstructions="
381 << NumPredicatedInstructions
382 << ", ExtraPredicateBytes=" << ExtraPredicateBytes
384 return (BranchBytes
+ CommonBytes
) > ExtraPredicateBytes
;
386 unsigned TCycle
= TBBInfo
.NonPredSize
+ TBBInfo
.ExtraCost
- Dups
;
387 unsigned FCycle
= FBBInfo
.NonPredSize
+ FBBInfo
.ExtraCost
- Dups
;
388 bool Res
= TCycle
> 0 && FCycle
> 0 &&
389 TII
->isProfitableToIfCvt(
390 *TBBInfo
.BB
, TCycle
, TBBInfo
.ExtraCost2
, *FBBInfo
.BB
,
391 FCycle
, FBBInfo
.ExtraCost2
, Prediction
);
392 LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle
393 << ", FCycle=" << FCycle
394 << ", TExtra=" << TBBInfo
.ExtraCost2
<< ", FExtra="
395 << FBBInfo
.ExtraCost2
<< ") = " << Res
<< "\n");
400 /// Returns true if Block ends without a terminator.
401 bool blockAlwaysFallThrough(BBInfo
&BBI
) const {
402 return BBI
.IsBrAnalyzable
&& BBI
.TrueBB
== nullptr;
405 /// Used to sort if-conversion candidates.
406 static bool IfcvtTokenCmp(const std::unique_ptr
<IfcvtToken
> &C1
,
407 const std::unique_ptr
<IfcvtToken
> &C2
) {
408 int Incr1
= (C1
->Kind
== ICDiamond
)
409 ? -(int)(C1
->NumDups
+ C1
->NumDups2
) : (int)C1
->NumDups
;
410 int Incr2
= (C2
->Kind
== ICDiamond
)
411 ? -(int)(C2
->NumDups
+ C2
->NumDups2
) : (int)C2
->NumDups
;
414 else if (Incr1
== Incr2
) {
415 // Favors subsumption.
416 if (!C1
->NeedSubsumption
&& C2
->NeedSubsumption
)
418 else if (C1
->NeedSubsumption
== C2
->NeedSubsumption
) {
419 // Favors diamond over triangle, etc.
420 if ((unsigned)C1
->Kind
< (unsigned)C2
->Kind
)
422 else if (C1
->Kind
== C2
->Kind
)
423 return C1
->BBI
.BB
->getNumber() < C2
->BBI
.BB
->getNumber();
430 } // end anonymous namespace
432 char IfConverter::ID
= 0;
434 char &llvm::IfConverterID
= IfConverter::ID
;
436 INITIALIZE_PASS_BEGIN(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
437 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
438 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
439 INITIALIZE_PASS_END(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
441 bool IfConverter::runOnMachineFunction(MachineFunction
&MF
) {
442 if (skipFunction(MF
.getFunction()) || (PredicateFtor
&& !PredicateFtor(MF
)))
445 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
446 TLI
= ST
.getTargetLowering();
447 TII
= ST
.getInstrInfo();
448 TRI
= ST
.getRegisterInfo();
449 MBFIWrapper
MBFI(getAnalysis
<MachineBlockFrequencyInfo
>());
450 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
451 ProfileSummaryInfo
*PSI
=
452 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
453 MRI
= &MF
.getRegInfo();
454 SchedModel
.init(&ST
);
456 if (!TII
) return false;
458 PreRegAlloc
= MRI
->isSSA();
460 bool BFChange
= false;
462 // Tail merge tend to expose more if-conversion opportunities.
463 BranchFolder
BF(true, false, MBFI
, *MBPI
, PSI
);
464 BFChange
= BF
.OptimizeFunction(MF
, TII
, ST
.getRegisterInfo());
467 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum
<< ") \'"
468 << MF
.getName() << "\'");
470 if (FnNum
< IfCvtFnStart
|| (IfCvtFnStop
!= -1 && FnNum
> IfCvtFnStop
)) {
471 LLVM_DEBUG(dbgs() << " skipped\n");
474 LLVM_DEBUG(dbgs() << "\n");
477 BBAnalysis
.resize(MF
.getNumBlockIDs());
479 std::vector
<std::unique_ptr
<IfcvtToken
>> Tokens
;
481 unsigned NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+
482 NumTriangleRev
+ NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
483 while (IfCvtLimit
== -1 || (int)NumIfCvts
< IfCvtLimit
) {
484 // Do an initial analysis for each basic block and find all the potential
485 // candidates to perform if-conversion.
487 AnalyzeBlocks(MF
, Tokens
);
488 while (!Tokens
.empty()) {
489 std::unique_ptr
<IfcvtToken
> Token
= std::move(Tokens
.back());
491 BBInfo
&BBI
= Token
->BBI
;
492 IfcvtKind Kind
= Token
->Kind
;
493 unsigned NumDups
= Token
->NumDups
;
494 unsigned NumDups2
= Token
->NumDups2
;
496 // If the block has been evicted out of the queue or it has already been
497 // marked dead (due to it being predicated), then skip it.
499 BBI
.IsEnqueued
= false;
503 BBI
.IsEnqueued
= false;
507 default: llvm_unreachable("Unexpected!");
509 case ICSimpleFalse
: {
510 bool isFalse
= Kind
== ICSimpleFalse
;
511 if ((isFalse
&& DisableSimpleF
) || (!isFalse
&& DisableSimple
)) break;
512 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
513 << (Kind
== ICSimpleFalse
? " false" : "")
514 << "): " << printMBBReference(*BBI
.BB
) << " ("
515 << ((Kind
== ICSimpleFalse
) ? BBI
.FalseBB
->getNumber()
516 : BBI
.TrueBB
->getNumber())
518 RetVal
= IfConvertSimple(BBI
, Kind
);
519 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
521 if (isFalse
) ++NumSimpleFalse
;
528 case ICTriangleFalse
:
529 case ICTriangleFRev
: {
530 bool isFalse
= Kind
== ICTriangleFalse
;
531 bool isRev
= (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
);
532 if (DisableTriangle
&& !isFalse
&& !isRev
) break;
533 if (DisableTriangleR
&& !isFalse
&& isRev
) break;
534 if (DisableTriangleF
&& isFalse
&& !isRev
) break;
535 if (DisableTriangleFR
&& isFalse
&& isRev
) break;
536 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
538 LLVM_DEBUG(dbgs() << " false");
540 LLVM_DEBUG(dbgs() << " rev");
541 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI
.BB
)
542 << " (T:" << BBI
.TrueBB
->getNumber()
543 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
544 RetVal
= IfConvertTriangle(BBI
, Kind
);
545 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
548 if (isRev
) ++NumTriangleFRev
;
549 else ++NumTriangleFalse
;
551 if (isRev
) ++NumTriangleRev
;
558 if (DisableDiamond
) break;
559 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI
.BB
)
560 << " (T:" << BBI
.TrueBB
->getNumber()
561 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
562 RetVal
= IfConvertDiamond(BBI
, Kind
, NumDups
, NumDups2
,
563 Token
->TClobbersPred
,
564 Token
->FClobbersPred
);
565 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
566 if (RetVal
) ++NumDiamonds
;
568 case ICForkedDiamond
:
569 if (DisableForkedDiamond
) break;
570 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
571 << printMBBReference(*BBI
.BB
)
572 << " (T:" << BBI
.TrueBB
->getNumber()
573 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
574 RetVal
= IfConvertForkedDiamond(BBI
, Kind
, NumDups
, NumDups2
,
575 Token
->TClobbersPred
,
576 Token
->FClobbersPred
);
577 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
578 if (RetVal
) ++NumForkedDiamonds
;
582 if (RetVal
&& MRI
->tracksLiveness())
583 recomputeLivenessFlags(*BBI
.BB
);
587 NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+ NumTriangleRev
+
588 NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
589 if (IfCvtLimit
!= -1 && (int)NumIfCvts
>= IfCvtLimit
)
595 MadeChange
|= Change
;
601 if (MadeChange
&& IfCvtBranchFold
) {
602 BranchFolder
BF(false, false, MBFI
, *MBPI
, PSI
);
603 BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo());
606 MadeChange
|= BFChange
;
610 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
611 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
612 MachineBasicBlock
*TrueBB
) {
613 for (MachineBasicBlock
*SuccBB
: BB
->successors()) {
614 if (SuccBB
!= TrueBB
)
620 /// Reverse the condition of the end of the block branch. Swap block's 'true'
621 /// and 'false' successors.
622 bool IfConverter::reverseBranchCondition(BBInfo
&BBI
) const {
623 DebugLoc dl
; // FIXME: this is nowhere
624 if (!TII
->reverseBranchCondition(BBI
.BrCond
)) {
625 TII
->removeBranch(*BBI
.BB
);
626 TII
->insertBranch(*BBI
.BB
, BBI
.FalseBB
, BBI
.TrueBB
, BBI
.BrCond
, dl
);
627 std::swap(BBI
.TrueBB
, BBI
.FalseBB
);
633 /// Returns the next block in the function blocks ordering. If it is the end,
635 static inline MachineBasicBlock
*getNextBlock(MachineBasicBlock
&MBB
) {
636 MachineFunction::iterator I
= MBB
.getIterator();
637 MachineFunction::iterator E
= MBB
.getParent()->end();
643 /// Returns true if the 'true' block (along with its predecessor) forms a valid
644 /// simple shape for ifcvt. It also returns the number of instructions that the
645 /// ifcvt would need to duplicate if performed in Dups.
646 bool IfConverter::ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
647 BranchProbability Prediction
) const {
649 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
652 if (TrueBBI
.IsBrAnalyzable
)
655 if (TrueBBI
.BB
->pred_size() > 1) {
656 if (TrueBBI
.CannotBeCopied
||
657 !TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, TrueBBI
.NonPredSize
,
660 Dups
= TrueBBI
.NonPredSize
;
666 /// Returns true if the 'true' and 'false' blocks (along with their common
667 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
668 /// true, it checks if 'true' block's false branch branches to the 'false' block
669 /// rather than the other way around. It also returns the number of instructions
670 /// that the ifcvt would need to duplicate if performed in 'Dups'.
671 bool IfConverter::ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
672 bool FalseBranch
, unsigned &Dups
,
673 BranchProbability Prediction
) const {
675 if (TrueBBI
.BB
== FalseBBI
.BB
)
678 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
681 if (TrueBBI
.BB
->pred_size() > 1) {
682 if (TrueBBI
.CannotBeCopied
)
685 unsigned Size
= TrueBBI
.NonPredSize
;
686 if (TrueBBI
.IsBrAnalyzable
) {
687 if (TrueBBI
.TrueBB
&& TrueBBI
.BrCond
.empty())
688 // Ends with an unconditional branch. It will be removed.
691 MachineBasicBlock
*FExit
= FalseBranch
692 ? TrueBBI
.TrueBB
: TrueBBI
.FalseBB
;
694 // Require a conditional branch
698 if (!TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, Size
, Prediction
))
703 MachineBasicBlock
*TExit
= FalseBranch
? TrueBBI
.FalseBB
: TrueBBI
.TrueBB
;
704 if (!TExit
&& blockAlwaysFallThrough(TrueBBI
)) {
705 MachineFunction::iterator I
= TrueBBI
.BB
->getIterator();
706 if (++I
== TrueBBI
.BB
->getParent()->end())
710 return TExit
&& TExit
== FalseBBI
.BB
;
713 /// Count duplicated instructions and move the iterators to show where they
715 /// @param TIB True Iterator Begin
716 /// @param FIB False Iterator Begin
717 /// These two iterators initially point to the first instruction of the two
718 /// blocks, and finally point to the first non-shared instruction.
719 /// @param TIE True Iterator End
720 /// @param FIE False Iterator End
721 /// These two iterators initially point to End() for the two blocks() and
722 /// finally point to the first shared instruction in the tail.
723 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
725 /// @param Dups1 count of duplicated instructions at the beginning of the 2
727 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
728 /// @param SkipUnconditionalBranches if true, Don't make sure that
729 /// unconditional branches at the end of the blocks are the same. True is
730 /// passed when the blocks are analyzable to allow for fallthrough to be
732 /// @return false if the shared portion prevents if conversion.
733 bool IfConverter::CountDuplicatedInstructions(
734 MachineBasicBlock::iterator
&TIB
,
735 MachineBasicBlock::iterator
&FIB
,
736 MachineBasicBlock::iterator
&TIE
,
737 MachineBasicBlock::iterator
&FIE
,
738 unsigned &Dups1
, unsigned &Dups2
,
739 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
740 bool SkipUnconditionalBranches
) const {
741 while (TIB
!= TIE
&& FIB
!= FIE
) {
742 // Skip dbg_value instructions. These do not count.
743 TIB
= skipDebugInstructionsForward(TIB
, TIE
, false);
744 FIB
= skipDebugInstructionsForward(FIB
, FIE
, false);
745 if (TIB
== TIE
|| FIB
== FIE
)
747 if (!TIB
->isIdenticalTo(*FIB
))
749 // A pred-clobbering instruction in the shared portion prevents
751 std::vector
<MachineOperand
> PredDefs
;
752 if (TII
->ClobbersPredicate(*TIB
, PredDefs
, false))
754 // If we get all the way to the branch instructions, don't count them.
755 if (!TIB
->isBranch())
761 // Check for already containing all of the block.
762 if (TIB
== TIE
|| FIB
== FIE
)
764 // Now, in preparation for counting duplicate instructions at the ends of the
765 // blocks, switch to reverse_iterators. Note that getReverse() returns an
766 // iterator that points to the same instruction, unlike std::reverse_iterator.
767 // We have to do our own shifting so that we get the same range.
768 MachineBasicBlock::reverse_iterator RTIE
= std::next(TIE
.getReverse());
769 MachineBasicBlock::reverse_iterator RFIE
= std::next(FIE
.getReverse());
770 const MachineBasicBlock::reverse_iterator RTIB
= std::next(TIB
.getReverse());
771 const MachineBasicBlock::reverse_iterator RFIB
= std::next(FIB
.getReverse());
773 if (!TBB
.succ_empty() || !FBB
.succ_empty()) {
774 if (SkipUnconditionalBranches
) {
775 while (RTIE
!= RTIB
&& RTIE
->isUnconditionalBranch())
777 while (RFIE
!= RFIB
&& RFIE
->isUnconditionalBranch())
782 // Count duplicate instructions at the ends of the blocks.
783 while (RTIE
!= RTIB
&& RFIE
!= RFIB
) {
784 // Skip dbg_value instructions. These do not count.
785 // Note that these are reverse iterators going forward.
786 RTIE
= skipDebugInstructionsForward(RTIE
, RTIB
, false);
787 RFIE
= skipDebugInstructionsForward(RFIE
, RFIB
, false);
788 if (RTIE
== RTIB
|| RFIE
== RFIB
)
790 if (!RTIE
->isIdenticalTo(*RFIE
))
792 // We have to verify that any branch instructions are the same, and then we
793 // don't count them toward the # of duplicate instructions.
794 if (!RTIE
->isBranch())
799 TIE
= std::next(RTIE
.getReverse());
800 FIE
= std::next(RFIE
.getReverse());
804 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
805 /// @param TIB - True Iterator Begin, points to first non-shared instruction
806 /// @param FIB - False Iterator Begin, points to first non-shared instruction
807 /// @param TIE - True Iterator End, points past last non-shared instruction
808 /// @param FIE - False Iterator End, points past last non-shared instruction
809 /// @param TrueBBI - BBInfo to update for the true block.
810 /// @param FalseBBI - BBInfo to update for the false block.
811 /// @returns - false if either block cannot be predicated or if both blocks end
812 /// with a predicate-clobbering instruction.
813 bool IfConverter::RescanInstructions(
814 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
815 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
816 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const {
817 bool BranchUnpredicable
= true;
818 TrueBBI
.IsUnpredicable
= FalseBBI
.IsUnpredicable
= false;
819 ScanInstructions(TrueBBI
, TIB
, TIE
, BranchUnpredicable
);
820 if (TrueBBI
.IsUnpredicable
)
822 ScanInstructions(FalseBBI
, FIB
, FIE
, BranchUnpredicable
);
823 if (FalseBBI
.IsUnpredicable
)
825 if (TrueBBI
.ClobbersPred
&& FalseBBI
.ClobbersPred
)
831 static void verifySameBranchInstructions(
832 MachineBasicBlock
*MBB1
,
833 MachineBasicBlock
*MBB2
) {
834 const MachineBasicBlock::reverse_iterator B1
= MBB1
->rend();
835 const MachineBasicBlock::reverse_iterator B2
= MBB2
->rend();
836 MachineBasicBlock::reverse_iterator E1
= MBB1
->rbegin();
837 MachineBasicBlock::reverse_iterator E2
= MBB2
->rbegin();
838 while (E1
!= B1
&& E2
!= B2
) {
839 skipDebugInstructionsForward(E1
, B1
, false);
840 skipDebugInstructionsForward(E2
, B2
, false);
841 if (E1
== B1
&& E2
== B2
)
845 assert(!E2
->isBranch() && "Branch mis-match, one block is empty.");
849 assert(!E1
->isBranch() && "Branch mis-match, one block is empty.");
853 if (E1
->isBranch() || E2
->isBranch())
854 assert(E1
->isIdenticalTo(*E2
) &&
855 "Branch mis-match, branch instructions don't match.");
864 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
865 /// with their common predecessor) form a diamond if a common tail block is
867 /// While not strictly a diamond, this pattern would form a diamond if
868 /// tail-merging had merged the shared tails.
874 /// FalseBB TrueBB FalseBB
875 /// Currently only handles analyzable branches.
876 /// Specifically excludes actual diamonds to avoid overlap.
877 bool IfConverter::ValidForkedDiamond(
878 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
879 unsigned &Dups1
, unsigned &Dups2
,
880 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
882 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
883 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
886 if (!TrueBBI
.IsBrAnalyzable
|| !FalseBBI
.IsBrAnalyzable
)
888 // Don't IfConvert blocks that can't be folded into their predecessor.
889 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
892 // This function is specifically looking for conditional tails, as
893 // unconditional tails are already handled by the standard diamond case.
894 if (TrueBBI
.BrCond
.size() == 0 ||
895 FalseBBI
.BrCond
.size() == 0)
898 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
899 MachineBasicBlock
*TF
= TrueBBI
.FalseBB
;
900 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
901 MachineBasicBlock
*FF
= FalseBBI
.FalseBB
;
904 TT
= getNextBlock(*TrueBBI
.BB
);
906 TF
= getNextBlock(*TrueBBI
.BB
);
908 FT
= getNextBlock(*FalseBBI
.BB
);
910 FF
= getNextBlock(*FalseBBI
.BB
);
915 // Check successors. If they don't match, bail.
916 if (!((TT
== FT
&& TF
== FF
) || (TF
== FT
&& TT
== FF
)))
919 bool FalseReversed
= false;
920 if (TF
== FT
&& TT
== FF
) {
921 // If the branches are opposing, but we can't reverse, don't do it.
922 if (!FalseBBI
.IsBrReversible
)
924 FalseReversed
= true;
925 reverseBranchCondition(FalseBBI
);
927 auto UnReverseOnExit
= make_scope_exit([&]() {
929 reverseBranchCondition(FalseBBI
);
932 // Count duplicate instructions at the beginning of the true and false blocks.
933 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
934 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
935 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
936 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
937 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
938 *TrueBBI
.BB
, *FalseBBI
.BB
,
939 /* SkipUnconditionalBranches */ true))
942 TrueBBICalc
.BB
= TrueBBI
.BB
;
943 FalseBBICalc
.BB
= FalseBBI
.BB
;
944 TrueBBICalc
.IsBrAnalyzable
= TrueBBI
.IsBrAnalyzable
;
945 FalseBBICalc
.IsBrAnalyzable
= FalseBBI
.IsBrAnalyzable
;
946 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
949 // The size is used to decide whether to if-convert, and the shared portions
950 // are subtracted off. Because of the subtraction, we just use the size that
951 // was calculated by the original ScanInstructions, as it is correct.
952 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
953 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
957 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
958 /// with their common predecessor) forms a valid diamond shape for ifcvt.
959 bool IfConverter::ValidDiamond(
960 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
961 unsigned &Dups1
, unsigned &Dups2
,
962 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
964 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
965 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
968 // If the True and False BBs are equal we're dealing with a degenerate case
969 // that we don't treat as a diamond.
970 if (TrueBBI
.BB
== FalseBBI
.BB
)
973 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
974 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
976 if (!TT
&& blockAlwaysFallThrough(TrueBBI
))
977 TT
= getNextBlock(*TrueBBI
.BB
);
978 if (!FT
&& blockAlwaysFallThrough(FalseBBI
))
979 FT
= getNextBlock(*FalseBBI
.BB
);
982 if (!TT
&& (TrueBBI
.IsBrAnalyzable
|| FalseBBI
.IsBrAnalyzable
))
984 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
987 // FIXME: Allow true block to have an early exit?
988 if (TrueBBI
.FalseBB
|| FalseBBI
.FalseBB
)
991 // Count duplicate instructions at the beginning and end of the true and
993 // Skip unconditional branches only if we are considering an analyzable
994 // diamond. Otherwise the branches must be the same.
995 bool SkipUnconditionalBranches
=
996 TrueBBI
.IsBrAnalyzable
&& FalseBBI
.IsBrAnalyzable
;
997 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
998 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
999 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
1000 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
1001 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
1002 *TrueBBI
.BB
, *FalseBBI
.BB
,
1003 SkipUnconditionalBranches
))
1006 TrueBBICalc
.BB
= TrueBBI
.BB
;
1007 FalseBBICalc
.BB
= FalseBBI
.BB
;
1008 TrueBBICalc
.IsBrAnalyzable
= TrueBBI
.IsBrAnalyzable
;
1009 FalseBBICalc
.IsBrAnalyzable
= FalseBBI
.IsBrAnalyzable
;
1010 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
1012 // The size is used to decide whether to if-convert, and the shared portions
1013 // are subtracted off. Because of the subtraction, we just use the size that
1014 // was calculated by the original ScanInstructions, as it is correct.
1015 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
1016 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
1020 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
1021 /// the block is predicable.
1022 void IfConverter::AnalyzeBranches(BBInfo
&BBI
) {
1026 BBI
.TrueBB
= BBI
.FalseBB
= nullptr;
1028 BBI
.IsBrAnalyzable
=
1029 !TII
->analyzeBranch(*BBI
.BB
, BBI
.TrueBB
, BBI
.FalseBB
, BBI
.BrCond
);
1030 if (!BBI
.IsBrAnalyzable
) {
1031 BBI
.TrueBB
= nullptr;
1032 BBI
.FalseBB
= nullptr;
1036 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1037 BBI
.IsBrReversible
= (RevCond
.size() == 0) ||
1038 !TII
->reverseBranchCondition(RevCond
);
1039 BBI
.HasFallThrough
= BBI
.IsBrAnalyzable
&& BBI
.FalseBB
== nullptr;
1041 if (BBI
.BrCond
.size()) {
1042 // No false branch. This BB must end with a conditional branch and a
1045 BBI
.FalseBB
= findFalseBlock(BBI
.BB
, BBI
.TrueBB
);
1047 // Malformed bcc? True and false blocks are the same?
1048 BBI
.IsUnpredicable
= true;
1053 /// ScanInstructions - Scan all the instructions in the block to determine if
1054 /// the block is predicable. In most cases, that means all the instructions
1055 /// in the block are isPredicable(). Also checks if the block contains any
1056 /// instruction which can clobber a predicate (e.g. condition code register).
1057 /// If so, the block is not predicable unless it's the last instruction.
1058 void IfConverter::ScanInstructions(BBInfo
&BBI
,
1059 MachineBasicBlock::iterator
&Begin
,
1060 MachineBasicBlock::iterator
&End
,
1061 bool BranchUnpredicable
) const {
1062 if (BBI
.IsDone
|| BBI
.IsUnpredicable
)
1065 bool AlreadyPredicated
= !BBI
.Predicate
.empty();
1067 BBI
.NonPredSize
= 0;
1070 BBI
.ClobbersPred
= false;
1071 for (MachineInstr
&MI
: make_range(Begin
, End
)) {
1072 if (MI
.isDebugInstr())
1075 // It's unsafe to duplicate convergent instructions in this context, so set
1076 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
1077 // following CFG, which is subject to our "simple" transformation.
1079 // BB0 // if (c1) goto BB1; else goto BB2;
1082 // | BB2 // if (c2) goto TBB; else goto FBB;
1091 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
1092 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
1093 // TBB contains a convergent instruction. This is safe iff doing so does
1094 // not add a control-flow dependency to the convergent instruction -- i.e.,
1095 // it's safe iff the set of control flows that leads us to the convergent
1096 // instruction does not get smaller after the transformation.
1098 // Originally we executed TBB if c1 || c2. After the transformation, there
1099 // are two copies of TBB's instructions. We get to the first if c1, and we
1100 // get to the second if !c1 && c2.
1102 // There are clearly fewer ways to satisfy the condition "c1" than
1103 // "c1 || c2". Since we've shrunk the set of control flows which lead to
1104 // our convergent instruction, the transformation is unsafe.
1105 if (MI
.isNotDuplicable() || MI
.isConvergent())
1106 BBI
.CannotBeCopied
= true;
1108 bool isPredicated
= TII
->isPredicated(MI
);
1109 bool isCondBr
= BBI
.IsBrAnalyzable
&& MI
.isConditionalBranch();
1111 if (BranchUnpredicable
&& MI
.isBranch()) {
1112 BBI
.IsUnpredicable
= true;
1116 // A conditional branch is not predicable, but it may be eliminated.
1120 if (!isPredicated
) {
1122 unsigned ExtraPredCost
= TII
->getPredicationCost(MI
);
1123 unsigned NumCycles
= SchedModel
.computeInstrLatency(&MI
, false);
1125 BBI
.ExtraCost
+= NumCycles
-1;
1126 BBI
.ExtraCost2
+= ExtraPredCost
;
1127 } else if (!AlreadyPredicated
) {
1128 // FIXME: This instruction is already predicated before the
1129 // if-conversion pass. It's probably something like a conditional move.
1130 // Mark this block unpredicable for now.
1131 BBI
.IsUnpredicable
= true;
1135 if (BBI
.ClobbersPred
&& !isPredicated
) {
1136 // Predicate modification instruction should end the block (except for
1137 // already predicated instructions and end of block branches).
1138 // Predicate may have been modified, the subsequent (currently)
1139 // unpredicated instructions cannot be correctly predicated.
1140 BBI
.IsUnpredicable
= true;
1144 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1145 // still potentially predicable.
1146 std::vector
<MachineOperand
> PredDefs
;
1147 if (TII
->ClobbersPredicate(MI
, PredDefs
, true))
1148 BBI
.ClobbersPred
= true;
1150 if (!TII
->isPredicable(MI
)) {
1151 BBI
.IsUnpredicable
= true;
1157 /// Determine if the block is a suitable candidate to be predicated by the
1158 /// specified predicate.
1159 /// @param BBI BBInfo for the block to check
1160 /// @param Pred Predicate array for the branch that leads to BBI
1161 /// @param isTriangle true if the Analysis is for a triangle
1162 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1164 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1165 /// contains any instruction that would make the block unpredicable.
1166 bool IfConverter::FeasibilityAnalysis(BBInfo
&BBI
,
1167 SmallVectorImpl
<MachineOperand
> &Pred
,
1168 bool isTriangle
, bool RevBranch
,
1169 bool hasCommonTail
) {
1170 // If the block is dead or unpredicable, then it cannot be predicated.
1171 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1172 // them from being if-converted. The non-shared portion is assumed to have
1174 if (BBI
.IsDone
|| (BBI
.IsUnpredicable
&& !hasCommonTail
))
1177 // If it is already predicated but we couldn't analyze its terminator, the
1178 // latter might fallthrough, but we can't determine where to.
1179 // Conservatively avoid if-converting again.
1180 if (BBI
.Predicate
.size() && !BBI
.IsBrAnalyzable
)
1183 // If it is already predicated, check if the new predicate subsumes
1185 if (BBI
.Predicate
.size() && !TII
->SubsumesPredicate(Pred
, BBI
.Predicate
))
1188 if (!hasCommonTail
&& BBI
.BrCond
.size()) {
1192 // Test predicate subsumption.
1193 SmallVector
<MachineOperand
, 4> RevPred(Pred
.begin(), Pred
.end());
1194 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1196 if (TII
->reverseBranchCondition(Cond
))
1199 if (TII
->reverseBranchCondition(RevPred
) ||
1200 !TII
->SubsumesPredicate(Cond
, RevPred
))
1207 /// Analyze the structure of the sub-CFG starting from the specified block.
1208 /// Record its successors and whether it looks like an if-conversion candidate.
1209 void IfConverter::AnalyzeBlock(
1210 MachineBasicBlock
&MBB
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1212 BBState(MachineBasicBlock
&MBB
) : MBB(&MBB
) {}
1213 MachineBasicBlock
*MBB
;
1215 /// This flag is true if MBB's successors have been analyzed.
1216 bool SuccsAnalyzed
= false;
1219 // Push MBB to the stack.
1220 SmallVector
<BBState
, 16> BBStack(1, MBB
);
1222 while (!BBStack
.empty()) {
1223 BBState
&State
= BBStack
.back();
1224 MachineBasicBlock
*BB
= State
.MBB
;
1225 BBInfo
&BBI
= BBAnalysis
[BB
->getNumber()];
1227 if (!State
.SuccsAnalyzed
) {
1228 if (BBI
.IsAnalyzed
|| BBI
.IsBeingAnalyzed
) {
1234 BBI
.IsBeingAnalyzed
= true;
1236 AnalyzeBranches(BBI
);
1237 MachineBasicBlock::iterator Begin
= BBI
.BB
->begin();
1238 MachineBasicBlock::iterator End
= BBI
.BB
->end();
1239 ScanInstructions(BBI
, Begin
, End
);
1241 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1242 // not considered for ifcvt anymore.
1243 if (!BBI
.IsBrAnalyzable
|| BBI
.BrCond
.empty() || BBI
.IsDone
) {
1244 BBI
.IsBeingAnalyzed
= false;
1245 BBI
.IsAnalyzed
= true;
1250 // Do not ifcvt if either path is a back edge to the entry block.
1251 if (BBI
.TrueBB
== BB
|| BBI
.FalseBB
== BB
) {
1252 BBI
.IsBeingAnalyzed
= false;
1253 BBI
.IsAnalyzed
= true;
1258 // Do not ifcvt if true and false fallthrough blocks are the same.
1260 BBI
.IsBeingAnalyzed
= false;
1261 BBI
.IsAnalyzed
= true;
1266 // Push the False and True blocks to the stack.
1267 State
.SuccsAnalyzed
= true;
1268 BBStack
.push_back(*BBI
.FalseBB
);
1269 BBStack
.push_back(*BBI
.TrueBB
);
1273 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1274 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1276 if (TrueBBI
.IsDone
&& FalseBBI
.IsDone
) {
1277 BBI
.IsBeingAnalyzed
= false;
1278 BBI
.IsAnalyzed
= true;
1283 SmallVector
<MachineOperand
, 4>
1284 RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1285 bool CanRevCond
= !TII
->reverseBranchCondition(RevCond
);
1289 bool TNeedSub
= !TrueBBI
.Predicate
.empty();
1290 bool FNeedSub
= !FalseBBI
.Predicate
.empty();
1291 bool Enqueued
= false;
1293 BranchProbability Prediction
= MBPI
->getEdgeProbability(BB
, TrueBBI
.BB
);
1296 BBInfo TrueBBICalc
, FalseBBICalc
;
1297 auto feasibleDiamond
= [&](bool Forked
) {
1298 bool MeetsSize
= MeetIfcvtSizeLimit(TrueBBICalc
, FalseBBICalc
, *BB
,
1299 Dups
+ Dups2
, Prediction
, Forked
);
1300 bool TrueFeasible
= FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
,
1301 /* IsTriangle */ false, /* RevCond */ false,
1302 /* hasCommonTail */ true);
1303 bool FalseFeasible
= FeasibilityAnalysis(FalseBBI
, RevCond
,
1304 /* IsTriangle */ false, /* RevCond */ false,
1305 /* hasCommonTail */ true);
1306 return MeetsSize
&& TrueFeasible
&& FalseFeasible
;
1309 if (ValidDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1310 TrueBBICalc
, FalseBBICalc
)) {
1311 if (feasibleDiamond(false)) {
1319 // Note TailBB can be empty.
1320 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1321 BBI
, ICDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1322 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1325 } else if (ValidForkedDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1326 TrueBBICalc
, FalseBBICalc
)) {
1327 if (feasibleDiamond(true)) {
1329 // if TBB and FBB have a common tail that includes their conditional
1330 // branch instructions, then we can If Convert this pattern.
1336 // FalseBB TrueBB FalseBB
1338 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1339 BBI
, ICForkedDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1340 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1346 if (ValidTriangle(TrueBBI
, FalseBBI
, false, Dups
, Prediction
) &&
1347 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1348 TrueBBI
.ExtraCost2
, Prediction
) &&
1349 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true)) {
1358 std::make_unique
<IfcvtToken
>(BBI
, ICTriangle
, TNeedSub
, Dups
));
1362 if (ValidTriangle(TrueBBI
, FalseBBI
, true, Dups
, Prediction
) &&
1363 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1364 TrueBBI
.ExtraCost2
, Prediction
) &&
1365 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true, true)) {
1367 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleRev
, TNeedSub
, Dups
));
1371 if (ValidSimple(TrueBBI
, Dups
, Prediction
) &&
1372 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1373 TrueBBI
.ExtraCost2
, Prediction
) &&
1374 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
)) {
1375 // Simple (split, no rejoin):
1383 std::make_unique
<IfcvtToken
>(BBI
, ICSimple
, TNeedSub
, Dups
));
1388 // Try the other path...
1389 if (ValidTriangle(FalseBBI
, TrueBBI
, false, Dups
,
1390 Prediction
.getCompl()) &&
1391 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1392 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1393 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1394 FeasibilityAnalysis(FalseBBI
, RevCond
, true)) {
1395 Tokens
.push_back(std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFalse
,
1400 if (ValidTriangle(FalseBBI
, TrueBBI
, true, Dups
,
1401 Prediction
.getCompl()) &&
1402 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1403 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1404 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1405 FeasibilityAnalysis(FalseBBI
, RevCond
, true, true)) {
1407 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFRev
, FNeedSub
, Dups
));
1411 if (ValidSimple(FalseBBI
, Dups
, Prediction
.getCompl()) &&
1412 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1413 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1414 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1415 FeasibilityAnalysis(FalseBBI
, RevCond
)) {
1417 std::make_unique
<IfcvtToken
>(BBI
, ICSimpleFalse
, FNeedSub
, Dups
));
1422 BBI
.IsEnqueued
= Enqueued
;
1423 BBI
.IsBeingAnalyzed
= false;
1424 BBI
.IsAnalyzed
= true;
1429 /// Analyze all blocks and find entries for all if-conversion candidates.
1430 void IfConverter::AnalyzeBlocks(
1431 MachineFunction
&MF
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1432 for (MachineBasicBlock
&MBB
: MF
)
1433 AnalyzeBlock(MBB
, Tokens
);
1435 // Sort to favor more complex ifcvt scheme.
1436 llvm::stable_sort(Tokens
, IfcvtTokenCmp
);
1439 /// Returns true either if ToMBB is the next block after MBB or that all the
1440 /// intervening blocks are empty (given MBB can fall through to its next block).
1441 static bool canFallThroughTo(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
) {
1442 MachineFunction::iterator PI
= MBB
.getIterator();
1443 MachineFunction::iterator I
= std::next(PI
);
1444 MachineFunction::iterator TI
= ToMBB
.getIterator();
1445 MachineFunction::iterator E
= MBB
.getParent()->end();
1447 // Check isSuccessor to avoid case where the next block is empty, but
1448 // it's not a successor.
1449 if (I
== E
|| !I
->empty() || !PI
->isSuccessor(&*I
))
1453 // Finally see if the last I is indeed a successor to PI.
1454 return PI
->isSuccessor(&*I
);
1457 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1458 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1459 void IfConverter::InvalidatePreds(MachineBasicBlock
&MBB
) {
1460 for (const MachineBasicBlock
*Predecessor
: MBB
.predecessors()) {
1461 BBInfo
&PBBI
= BBAnalysis
[Predecessor
->getNumber()];
1462 if (PBBI
.IsDone
|| PBBI
.BB
== &MBB
)
1464 PBBI
.IsAnalyzed
= false;
1465 PBBI
.IsEnqueued
= false;
1469 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1470 static void InsertUncondBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
,
1471 const TargetInstrInfo
*TII
) {
1472 DebugLoc dl
; // FIXME: this is nowhere
1473 SmallVector
<MachineOperand
, 0> NoCond
;
1474 TII
->insertBranch(MBB
, &ToMBB
, nullptr, NoCond
, dl
);
1477 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1478 /// values defined in MI which are also live/used by MI.
1479 static void UpdatePredRedefs(MachineInstr
&MI
, LivePhysRegs
&Redefs
) {
1480 const TargetRegisterInfo
*TRI
= MI
.getMF()->getSubtarget().getRegisterInfo();
1482 // Before stepping forward past MI, remember which regs were live
1483 // before MI. This is needed to set the Undef flag only when reg is
1485 SparseSet
<MCPhysReg
, identity
<MCPhysReg
>> LiveBeforeMI
;
1486 LiveBeforeMI
.setUniverse(TRI
->getNumRegs());
1487 for (unsigned Reg
: Redefs
)
1488 LiveBeforeMI
.insert(Reg
);
1490 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Clobbers
;
1491 Redefs
.stepForward(MI
, Clobbers
);
1493 // Now add the implicit uses for each of the clobbered values.
1494 for (auto Clobber
: Clobbers
) {
1495 // FIXME: Const cast here is nasty, but better than making StepForward
1496 // take a mutable instruction instead of const.
1497 unsigned Reg
= Clobber
.first
;
1498 MachineOperand
&Op
= const_cast<MachineOperand
&>(*Clobber
.second
);
1499 MachineInstr
*OpMI
= Op
.getParent();
1500 MachineInstrBuilder
MIB(*OpMI
->getMF(), OpMI
);
1501 if (Op
.isRegMask()) {
1502 // First handle regmasks. They clobber any entries in the mask which
1503 // means that we need a def for those registers.
1504 if (LiveBeforeMI
.count(Reg
))
1505 MIB
.addReg(Reg
, RegState::Implicit
);
1507 // We also need to add an implicit def of this register for the later
1508 // use to read from.
1509 // For the register allocator to have allocated a register clobbered
1510 // by the call which is used later, it must be the case that
1511 // the call doesn't return.
1512 MIB
.addReg(Reg
, RegState::Implicit
| RegState::Define
);
1515 if (LiveBeforeMI
.count(Reg
))
1516 MIB
.addReg(Reg
, RegState::Implicit
);
1518 bool HasLiveSubReg
= false;
1519 for (MCSubRegIterator
S(Reg
, TRI
); S
.isValid(); ++S
) {
1520 if (!LiveBeforeMI
.count(*S
))
1522 HasLiveSubReg
= true;
1526 MIB
.addReg(Reg
, RegState::Implicit
);
1531 /// If convert a simple (split, no rejoin) sub-CFG.
1532 bool IfConverter::IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
) {
1533 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1534 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1535 BBInfo
*CvtBBI
= &TrueBBI
;
1536 BBInfo
*NextBBI
= &FalseBBI
;
1538 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1539 if (Kind
== ICSimpleFalse
)
1540 std::swap(CvtBBI
, NextBBI
);
1542 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1543 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1544 if (CvtBBI
->IsDone
||
1545 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1546 // Something has changed. It's no longer safe to predicate this block.
1547 BBI
.IsAnalyzed
= false;
1548 CvtBBI
->IsAnalyzed
= false;
1552 if (CvtMBB
.hasAddressTaken())
1553 // Conservatively abort if-conversion if BB's address is taken.
1556 if (Kind
== ICSimpleFalse
)
1557 if (TII
->reverseBranchCondition(Cond
))
1558 llvm_unreachable("Unable to reverse branch condition!");
1562 if (MRI
->tracksLiveness()) {
1563 // Initialize liveins to the first BB. These are potentially redefined by
1564 // predicated instructions.
1565 Redefs
.addLiveInsNoPristines(CvtMBB
);
1566 Redefs
.addLiveInsNoPristines(NextMBB
);
1569 // Remove the branches from the entry so we can add the contents of the true
1571 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1573 if (CvtMBB
.pred_size() > 1) {
1574 // Copy instructions in the true block, predicate them, and add them to
1576 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
);
1578 // Keep the CFG updated.
1579 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1581 // Predicate the instructions in the true block.
1582 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1584 // Merge converted block into entry block. The BB to Cvt edge is removed
1586 MergeBlocks(BBI
, *CvtBBI
);
1589 bool IterIfcvt
= true;
1590 if (!canFallThroughTo(*BBI
.BB
, NextMBB
)) {
1591 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1592 BBI
.HasFallThrough
= false;
1593 // Now ifcvt'd block will look like this:
1600 // We cannot further ifcvt this block because the unconditional branch
1601 // will have to be predicated on the new condition, that will not be
1602 // available if cmp executes.
1606 // Update block info. BB can be iteratively if-converted.
1609 InvalidatePreds(*BBI
.BB
);
1610 CvtBBI
->IsDone
= true;
1612 // FIXME: Must maintain LiveIns.
1616 /// If convert a triangle sub-CFG.
1617 bool IfConverter::IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
) {
1618 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1619 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1620 BBInfo
*CvtBBI
= &TrueBBI
;
1621 BBInfo
*NextBBI
= &FalseBBI
;
1622 DebugLoc dl
; // FIXME: this is nowhere
1624 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1625 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1626 std::swap(CvtBBI
, NextBBI
);
1628 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1629 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1630 if (CvtBBI
->IsDone
||
1631 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1632 // Something has changed. It's no longer safe to predicate this block.
1633 BBI
.IsAnalyzed
= false;
1634 CvtBBI
->IsAnalyzed
= false;
1638 if (CvtMBB
.hasAddressTaken())
1639 // Conservatively abort if-conversion if BB's address is taken.
1642 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1643 if (TII
->reverseBranchCondition(Cond
))
1644 llvm_unreachable("Unable to reverse branch condition!");
1646 if (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
) {
1647 if (reverseBranchCondition(*CvtBBI
)) {
1648 // BB has been changed, modify its predecessors (except for this
1649 // one) so they don't get ifcvt'ed based on bad intel.
1650 for (MachineBasicBlock
*PBB
: CvtMBB
.predecessors()) {
1653 BBInfo
&PBBI
= BBAnalysis
[PBB
->getNumber()];
1654 if (PBBI
.IsEnqueued
) {
1655 PBBI
.IsAnalyzed
= false;
1656 PBBI
.IsEnqueued
= false;
1662 // Initialize liveins to the first BB. These are potentially redefined by
1663 // predicated instructions.
1665 if (MRI
->tracksLiveness()) {
1666 Redefs
.addLiveInsNoPristines(CvtMBB
);
1667 Redefs
.addLiveInsNoPristines(NextMBB
);
1670 bool HasEarlyExit
= CvtBBI
->FalseBB
!= nullptr;
1671 BranchProbability CvtNext
, CvtFalse
, BBNext
, BBCvt
;
1674 // Get probabilities before modifying CvtMBB and BBI.BB.
1675 CvtNext
= MBPI
->getEdgeProbability(&CvtMBB
, &NextMBB
);
1676 CvtFalse
= MBPI
->getEdgeProbability(&CvtMBB
, CvtBBI
->FalseBB
);
1677 BBNext
= MBPI
->getEdgeProbability(BBI
.BB
, &NextMBB
);
1678 BBCvt
= MBPI
->getEdgeProbability(BBI
.BB
, &CvtMBB
);
1681 // Remove the branches from the entry so we can add the contents of the true
1683 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1685 if (CvtMBB
.pred_size() > 1) {
1686 // Copy instructions in the true block, predicate them, and add them to
1688 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
, true);
1690 // Predicate the 'true' block after removing its branch.
1691 CvtBBI
->NonPredSize
-= TII
->removeBranch(CvtMBB
);
1692 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1694 // Now merge the entry of the triangle with the true block.
1695 MergeBlocks(BBI
, *CvtBBI
, false);
1698 // Keep the CFG updated.
1699 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1701 // If 'true' block has a 'false' successor, add an exit branch to it.
1703 SmallVector
<MachineOperand
, 4> RevCond(CvtBBI
->BrCond
.begin(),
1704 CvtBBI
->BrCond
.end());
1705 if (TII
->reverseBranchCondition(RevCond
))
1706 llvm_unreachable("Unable to reverse branch condition!");
1708 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1709 // NewNext = New_Prob(BBI.BB, NextMBB) =
1710 // Prob(BBI.BB, NextMBB) +
1711 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1712 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1713 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1714 auto NewTrueBB
= getNextBlock(*BBI
.BB
);
1715 auto NewNext
= BBNext
+ BBCvt
* CvtNext
;
1716 auto NewTrueBBIter
= find(BBI
.BB
->successors(), NewTrueBB
);
1717 if (NewTrueBBIter
!= BBI
.BB
->succ_end())
1718 BBI
.BB
->setSuccProbability(NewTrueBBIter
, NewNext
);
1720 auto NewFalse
= BBCvt
* CvtFalse
;
1721 TII
->insertBranch(*BBI
.BB
, CvtBBI
->FalseBB
, nullptr, RevCond
, dl
);
1722 BBI
.BB
->addSuccessor(CvtBBI
->FalseBB
, NewFalse
);
1725 // Merge in the 'false' block if the 'false' block has no other
1726 // predecessors. Otherwise, add an unconditional branch to 'false'.
1727 bool FalseBBDead
= false;
1728 bool IterIfcvt
= true;
1729 bool isFallThrough
= canFallThroughTo(*BBI
.BB
, NextMBB
);
1730 if (!isFallThrough
) {
1731 // Only merge them if the true block does not fallthrough to the false
1732 // block. By not merging them, we make it possible to iteratively
1733 // ifcvt the blocks.
1734 if (!HasEarlyExit
&&
1735 NextMBB
.pred_size() == 1 && !NextBBI
->HasFallThrough
&&
1736 !NextMBB
.hasAddressTaken()) {
1737 MergeBlocks(BBI
, *NextBBI
);
1740 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1741 BBI
.HasFallThrough
= false;
1743 // Mixed predicated and unpredicated code. This cannot be iteratively
1748 // Update block info. BB can be iteratively if-converted.
1751 InvalidatePreds(*BBI
.BB
);
1752 CvtBBI
->IsDone
= true;
1754 NextBBI
->IsDone
= true;
1756 // FIXME: Must maintain LiveIns.
1760 /// Common code shared between diamond conversions.
1761 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1762 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1764 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1766 /// \p RemoveBranch - Remove the common branch of the two blocks before
1767 /// predicating. Only false for unanalyzable fallthrough
1768 /// cases. The caller will replace the branch if necessary.
1769 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1770 /// unanalyzable fallthrough
1771 bool IfConverter::IfConvertDiamondCommon(
1772 BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
1773 unsigned NumDups1
, unsigned NumDups2
,
1774 bool TClobbersPred
, bool FClobbersPred
,
1775 bool RemoveBranch
, bool MergeAddEdges
) {
1777 if (TrueBBI
.IsDone
|| FalseBBI
.IsDone
||
1778 TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1) {
1779 // Something has changed. It's no longer safe to predicate these blocks.
1780 BBI
.IsAnalyzed
= false;
1781 TrueBBI
.IsAnalyzed
= false;
1782 FalseBBI
.IsAnalyzed
= false;
1786 if (TrueBBI
.BB
->hasAddressTaken() || FalseBBI
.BB
->hasAddressTaken())
1787 // Conservatively abort if-conversion if either BB has its address taken.
1790 // Put the predicated instructions from the 'true' block before the
1791 // instructions from the 'false' block, unless the true block would clobber
1792 // the predicate, in which case, do the opposite.
1793 BBInfo
*BBI1
= &TrueBBI
;
1794 BBInfo
*BBI2
= &FalseBBI
;
1795 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1796 if (TII
->reverseBranchCondition(RevCond
))
1797 llvm_unreachable("Unable to reverse branch condition!");
1798 SmallVector
<MachineOperand
, 4> *Cond1
= &BBI
.BrCond
;
1799 SmallVector
<MachineOperand
, 4> *Cond2
= &RevCond
;
1801 // Figure out the more profitable ordering.
1802 bool DoSwap
= false;
1803 if (TClobbersPred
&& !FClobbersPred
)
1805 else if (!TClobbersPred
&& !FClobbersPred
) {
1806 if (TrueBBI
.NonPredSize
> FalseBBI
.NonPredSize
)
1808 } else if (TClobbersPred
&& FClobbersPred
)
1809 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1811 std::swap(BBI1
, BBI2
);
1812 std::swap(Cond1
, Cond2
);
1815 // Remove the conditional branch from entry to the blocks.
1816 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1818 MachineBasicBlock
&MBB1
= *BBI1
->BB
;
1819 MachineBasicBlock
&MBB2
= *BBI2
->BB
;
1821 // Initialize the Redefs:
1822 // - BB2 live-in regs need implicit uses before being redefined by BB1
1824 // - BB1 live-out regs need implicit uses before being redefined by BB2
1825 // instructions. We start with BB1 live-ins so we have the live-out regs
1826 // after tracking the BB1 instructions.
1828 if (MRI
->tracksLiveness()) {
1829 Redefs
.addLiveInsNoPristines(MBB1
);
1830 Redefs
.addLiveInsNoPristines(MBB2
);
1833 // Remove the duplicated instructions at the beginnings of both paths.
1834 // Skip dbg_value instructions.
1835 MachineBasicBlock::iterator DI1
= MBB1
.getFirstNonDebugInstr(false);
1836 MachineBasicBlock::iterator DI2
= MBB2
.getFirstNonDebugInstr(false);
1837 BBI1
->NonPredSize
-= NumDups1
;
1838 BBI2
->NonPredSize
-= NumDups1
;
1840 // Skip past the dups on each side separately since there may be
1841 // differing dbg_value entries. NumDups1 can include a "return"
1842 // instruction, if it's not marked as "branch".
1843 for (unsigned i
= 0; i
< NumDups1
; ++DI1
) {
1844 if (DI1
== MBB1
.end())
1846 if (!DI1
->isDebugInstr())
1849 while (NumDups1
!= 0) {
1850 // Since this instruction is going to be deleted, update call
1851 // site info state if the instruction is call instruction.
1852 if (DI2
->shouldUpdateCallSiteInfo())
1853 MBB2
.getParent()->eraseCallSiteInfo(&*DI2
);
1856 if (DI2
== MBB2
.end())
1858 if (!DI2
->isDebugInstr())
1862 if (MRI
->tracksLiveness()) {
1863 for (const MachineInstr
&MI
: make_range(MBB1
.begin(), DI1
)) {
1864 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Dummy
;
1865 Redefs
.stepForward(MI
, Dummy
);
1869 BBI
.BB
->splice(BBI
.BB
->end(), &MBB1
, MBB1
.begin(), DI1
);
1870 MBB2
.erase(MBB2
.begin(), DI2
);
1872 // The branches have been checked to match, so it is safe to remove the
1873 // branch in BB1 and rely on the copy in BB2. The complication is that
1874 // the blocks may end with a return instruction, which may or may not
1875 // be marked as "branch". If it's not, then it could be included in
1876 // "dups1", leaving the blocks potentially empty after moving the common
1879 // Unanalyzable branches must match exactly. Check that now.
1880 if (!BBI1
->IsBrAnalyzable
)
1881 verifySameBranchInstructions(&MBB1
, &MBB2
);
1883 // Remove duplicated instructions from the tail of MBB1: any branch
1884 // instructions, and the common instructions counted by NumDups2.
1886 while (DI1
!= MBB1
.begin()) {
1887 MachineBasicBlock::iterator Prev
= std::prev(DI1
);
1888 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1892 for (unsigned i
= 0; i
!= NumDups2
; ) {
1893 // NumDups2 only counted non-dbg_value instructions, so this won't
1894 // run off the head of the list.
1895 assert(DI1
!= MBB1
.begin());
1899 // Since this instruction is going to be deleted, update call
1900 // site info state if the instruction is call instruction.
1901 if (DI1
->shouldUpdateCallSiteInfo())
1902 MBB1
.getParent()->eraseCallSiteInfo(&*DI1
);
1904 // skip dbg_value instructions
1905 if (!DI1
->isDebugInstr())
1908 MBB1
.erase(DI1
, MBB1
.end());
1910 DI2
= BBI2
->BB
->end();
1911 // The branches have been checked to match. Skip over the branch in the false
1912 // block so that we don't try to predicate it.
1914 BBI2
->NonPredSize
-= TII
->removeBranch(*BBI2
->BB
);
1916 // Make DI2 point to the end of the range where the common "tail"
1917 // instructions could be found.
1918 while (DI2
!= MBB2
.begin()) {
1919 MachineBasicBlock::iterator Prev
= std::prev(DI2
);
1920 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1925 while (NumDups2
!= 0) {
1926 // NumDups2 only counted non-dbg_value instructions, so this won't
1927 // run off the head of the list.
1928 assert(DI2
!= MBB2
.begin());
1930 // skip dbg_value instructions
1931 if (!DI2
->isDebugInstr())
1935 // Remember which registers would later be defined by the false block.
1936 // This allows us not to predicate instructions in the true block that would
1937 // later be re-defined. That is, rather than
1943 SmallSet
<MCPhysReg
, 4> RedefsByFalse
;
1944 SmallSet
<MCPhysReg
, 4> ExtUses
;
1945 if (TII
->isProfitableToUnpredicate(MBB1
, MBB2
)) {
1946 for (const MachineInstr
&FI
: make_range(MBB2
.begin(), DI2
)) {
1947 if (FI
.isDebugInstr())
1949 SmallVector
<MCPhysReg
, 4> Defs
;
1950 for (const MachineOperand
&MO
: FI
.operands()) {
1953 Register Reg
= MO
.getReg();
1957 Defs
.push_back(Reg
);
1958 } else if (!RedefsByFalse
.count(Reg
)) {
1959 // These are defined before ctrl flow reach the 'false' instructions.
1960 // They cannot be modified by the 'true' instructions.
1961 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1962 SubRegs
.isValid(); ++SubRegs
)
1963 ExtUses
.insert(*SubRegs
);
1967 for (MCPhysReg Reg
: Defs
) {
1968 if (!ExtUses
.count(Reg
)) {
1969 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1970 SubRegs
.isValid(); ++SubRegs
)
1971 RedefsByFalse
.insert(*SubRegs
);
1977 // Predicate the 'true' block.
1978 PredicateBlock(*BBI1
, MBB1
.end(), *Cond1
, &RedefsByFalse
);
1980 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1981 // a non-predicated in BBI2, then we don't want to predicate the one from
1982 // BBI2. The reason is that if we merged these blocks, we would end up with
1983 // two predicated terminators in the same block.
1984 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1985 // predicate them either. They were checked to be identical, and so the
1986 // same branch would happen regardless of which path was taken.
1987 if (!MBB2
.empty() && (DI2
== MBB2
.end())) {
1988 MachineBasicBlock::iterator BBI1T
= MBB1
.getFirstTerminator();
1989 MachineBasicBlock::iterator BBI2T
= MBB2
.getFirstTerminator();
1990 bool BB1Predicated
= BBI1T
!= MBB1
.end() && TII
->isPredicated(*BBI1T
);
1991 bool BB2NonPredicated
= BBI2T
!= MBB2
.end() && !TII
->isPredicated(*BBI2T
);
1992 if (BB2NonPredicated
&& (BB1Predicated
|| !BBI2
->IsBrAnalyzable
))
1996 // Predicate the 'false' block.
1997 PredicateBlock(*BBI2
, DI2
, *Cond2
);
1999 // Merge the true block into the entry of the diamond.
2000 MergeBlocks(BBI
, *BBI1
, MergeAddEdges
);
2001 MergeBlocks(BBI
, *BBI2
, MergeAddEdges
);
2005 /// If convert an almost-diamond sub-CFG where the true
2006 /// and false blocks share a common tail.
2007 bool IfConverter::IfConvertForkedDiamond(
2008 BBInfo
&BBI
, IfcvtKind Kind
,
2009 unsigned NumDups1
, unsigned NumDups2
,
2010 bool TClobbersPred
, bool FClobbersPred
) {
2011 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
2012 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
2014 // Save the debug location for later.
2016 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->getFirstTerminator();
2017 if (TIE
!= TrueBBI
.BB
->end())
2018 dl
= TIE
->getDebugLoc();
2019 // Removing branches from both blocks is safe, because we have already
2020 // determined that both blocks have the same branch instructions. The branch
2021 // will be added back at the end, unpredicated.
2022 if (!IfConvertDiamondCommon(
2023 BBI
, TrueBBI
, FalseBBI
,
2025 TClobbersPred
, FClobbersPred
,
2026 /* RemoveBranch */ true, /* MergeAddEdges */ true))
2029 // Add back the branch.
2030 // Debug location saved above when removing the branch from BBI2
2031 TII
->insertBranch(*BBI
.BB
, TrueBBI
.TrueBB
, TrueBBI
.FalseBB
,
2032 TrueBBI
.BrCond
, dl
);
2034 // Update block info.
2035 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
2036 InvalidatePreds(*BBI
.BB
);
2038 // FIXME: Must maintain LiveIns.
2042 /// If convert a diamond sub-CFG.
2043 bool IfConverter::IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
2044 unsigned NumDups1
, unsigned NumDups2
,
2045 bool TClobbersPred
, bool FClobbersPred
) {
2046 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
2047 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
2048 MachineBasicBlock
*TailBB
= TrueBBI
.TrueBB
;
2050 // True block must fall through or end with an unanalyzable terminator.
2052 if (blockAlwaysFallThrough(TrueBBI
))
2053 TailBB
= FalseBBI
.TrueBB
;
2054 assert((TailBB
|| !TrueBBI
.IsBrAnalyzable
) && "Unexpected!");
2057 if (!IfConvertDiamondCommon(
2058 BBI
, TrueBBI
, FalseBBI
,
2060 TClobbersPred
, FClobbersPred
,
2061 /* RemoveBranch */ TrueBBI
.IsBrAnalyzable
,
2062 /* MergeAddEdges */ TailBB
== nullptr))
2065 // If the if-converted block falls through or unconditionally branches into
2066 // the tail block, and the tail block does not have other predecessors, then
2067 // fold the tail block in as well. Otherwise, unless it falls through to the
2068 // tail, add a unconditional branch to it.
2070 // We need to remove the edges to the true and false blocks manually since
2071 // we didn't let IfConvertDiamondCommon update the CFG.
2072 BBI
.BB
->removeSuccessor(TrueBBI
.BB
);
2073 BBI
.BB
->removeSuccessor(FalseBBI
.BB
, true);
2075 BBInfo
&TailBBI
= BBAnalysis
[TailBB
->getNumber()];
2076 bool CanMergeTail
= !TailBBI
.HasFallThrough
&&
2077 !TailBBI
.BB
->hasAddressTaken();
2078 // The if-converted block can still have a predicated terminator
2079 // (e.g. a predicated return). If that is the case, we cannot merge
2080 // it with the tail block.
2081 MachineBasicBlock::const_iterator TI
= BBI
.BB
->getFirstTerminator();
2082 if (TI
!= BBI
.BB
->end() && TII
->isPredicated(*TI
))
2083 CanMergeTail
= false;
2084 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
2085 // check if there are any other predecessors besides those.
2086 unsigned NumPreds
= TailBB
->pred_size();
2088 CanMergeTail
= false;
2089 else if (NumPreds
== 1 && CanMergeTail
) {
2090 MachineBasicBlock::pred_iterator PI
= TailBB
->pred_begin();
2091 if (*PI
!= TrueBBI
.BB
&& *PI
!= FalseBBI
.BB
)
2092 CanMergeTail
= false;
2095 MergeBlocks(BBI
, TailBBI
);
2096 TailBBI
.IsDone
= true;
2098 BBI
.BB
->addSuccessor(TailBB
, BranchProbability::getOne());
2099 InsertUncondBranch(*BBI
.BB
, *TailBB
, TII
);
2100 BBI
.HasFallThrough
= false;
2104 // Update block info.
2105 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
2106 InvalidatePreds(*BBI
.BB
);
2108 // FIXME: Must maintain LiveIns.
2112 static bool MaySpeculate(const MachineInstr
&MI
,
2113 SmallSet
<MCPhysReg
, 4> &LaterRedefs
) {
2114 bool SawStore
= true;
2115 if (!MI
.isSafeToMove(nullptr, SawStore
))
2118 for (const MachineOperand
&MO
: MI
.operands()) {
2121 Register Reg
= MO
.getReg();
2124 if (MO
.isDef() && !LaterRedefs
.count(Reg
))
2131 /// Predicate instructions from the start of the block to the specified end with
2132 /// the specified condition.
2133 void IfConverter::PredicateBlock(BBInfo
&BBI
,
2134 MachineBasicBlock::iterator E
,
2135 SmallVectorImpl
<MachineOperand
> &Cond
,
2136 SmallSet
<MCPhysReg
, 4> *LaterRedefs
) {
2137 bool AnyUnpred
= false;
2138 bool MaySpec
= LaterRedefs
!= nullptr;
2139 for (MachineInstr
&I
: make_range(BBI
.BB
->begin(), E
)) {
2140 if (I
.isDebugInstr() || TII
->isPredicated(I
))
2142 // It may be possible not to predicate an instruction if it's the 'true'
2143 // side of a diamond and the 'false' side may re-define the instruction's
2145 if (MaySpec
&& MaySpeculate(I
, *LaterRedefs
)) {
2149 // If any instruction is predicated, then every instruction after it must
2152 if (!TII
->PredicateInstruction(I
, Cond
)) {
2154 dbgs() << "Unable to predicate " << I
<< "!\n";
2156 llvm_unreachable(nullptr);
2159 // If the predicated instruction now redefines a register as the result of
2160 // if-conversion, add an implicit kill.
2161 UpdatePredRedefs(I
, Redefs
);
2164 BBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2166 BBI
.IsAnalyzed
= false;
2167 BBI
.NonPredSize
= 0;
2174 /// Copy and predicate instructions from source BB to the destination block.
2175 /// Skip end of block branches if IgnoreBr is true.
2176 void IfConverter::CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
2177 SmallVectorImpl
<MachineOperand
> &Cond
,
2179 MachineFunction
&MF
= *ToBBI
.BB
->getParent();
2181 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2182 for (MachineInstr
&I
: FromMBB
) {
2183 // Do not copy the end of the block branches.
2184 if (IgnoreBr
&& I
.isBranch())
2187 MachineInstr
*MI
= MF
.CloneMachineInstr(&I
);
2188 // Make a copy of the call site info.
2189 if (I
.isCandidateForCallSiteEntry())
2190 MF
.copyCallSiteInfo(&I
, MI
);
2192 ToBBI
.BB
->insert(ToBBI
.BB
->end(), MI
);
2193 ToBBI
.NonPredSize
++;
2194 unsigned ExtraPredCost
= TII
->getPredicationCost(I
);
2195 unsigned NumCycles
= SchedModel
.computeInstrLatency(&I
, false);
2197 ToBBI
.ExtraCost
+= NumCycles
-1;
2198 ToBBI
.ExtraCost2
+= ExtraPredCost
;
2200 if (!TII
->isPredicated(I
) && !MI
->isDebugInstr()) {
2201 if (!TII
->PredicateInstruction(*MI
, Cond
)) {
2203 dbgs() << "Unable to predicate " << I
<< "!\n";
2205 llvm_unreachable(nullptr);
2209 // If the predicated instruction now redefines a register as the result of
2210 // if-conversion, add an implicit kill.
2211 UpdatePredRedefs(*MI
, Redefs
);
2215 std::vector
<MachineBasicBlock
*> Succs(FromMBB
.succ_begin(),
2216 FromMBB
.succ_end());
2217 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2218 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2220 for (MachineBasicBlock
*Succ
: Succs
) {
2221 // Fallthrough edge can't be transferred.
2222 if (Succ
== FallThrough
)
2224 ToBBI
.BB
->addSuccessor(Succ
);
2228 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2229 ToBBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2231 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2232 ToBBI
.IsAnalyzed
= false;
2237 /// Move all instructions from FromBB to the end of ToBB. This will leave
2238 /// FromBB as an empty block, so remove all of its successor edges and move it
2239 /// to the end of the function. If AddEdges is true, i.e., when FromBBI's
2240 /// branch is being moved, add those successor edges to ToBBI and remove the old
2241 /// edge from ToBBI to FromBBI.
2242 void IfConverter::MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
) {
2243 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2244 assert(!FromMBB
.hasAddressTaken() &&
2245 "Removing a BB whose address is taken!");
2247 // In case FromMBB contains terminators (e.g. return instruction),
2248 // first move the non-terminator instructions, then the terminators.
2249 MachineBasicBlock::iterator FromTI
= FromMBB
.getFirstTerminator();
2250 MachineBasicBlock::iterator ToTI
= ToBBI
.BB
->getFirstTerminator();
2251 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromMBB
.begin(), FromTI
);
2253 // If FromBB has non-predicated terminator we should copy it at the end.
2254 if (FromTI
!= FromMBB
.end() && !TII
->isPredicated(*FromTI
))
2255 ToTI
= ToBBI
.BB
->end();
2256 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromTI
, FromMBB
.end());
2258 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2259 // unknown probabilities into known ones.
2260 // FIXME: This usage is too tricky and in the future we would like to
2261 // eliminate all unknown probabilities in MBB.
2262 if (ToBBI
.IsBrAnalyzable
)
2263 ToBBI
.BB
->normalizeSuccProbs();
2265 SmallVector
<MachineBasicBlock
*, 4> FromSuccs(FromMBB
.successors());
2266 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2267 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2268 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2269 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2270 auto To2FromProb
= BranchProbability::getZero();
2271 if (AddEdges
&& ToBBI
.BB
->isSuccessor(&FromMBB
)) {
2272 // Remove the old edge but remember the edge probability so we can calculate
2273 // the correct weights on the new edges being added further down.
2274 To2FromProb
= MBPI
->getEdgeProbability(ToBBI
.BB
, &FromMBB
);
2275 ToBBI
.BB
->removeSuccessor(&FromMBB
);
2278 for (MachineBasicBlock
*Succ
: FromSuccs
) {
2279 // Fallthrough edge can't be transferred.
2280 if (Succ
== FallThrough
) {
2281 FromMBB
.removeSuccessor(Succ
);
2285 auto NewProb
= BranchProbability::getZero();
2287 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2288 // which is a portion of the edge probability from FromMBB to Succ. The
2289 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2290 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2291 NewProb
= MBPI
->getEdgeProbability(&FromMBB
, Succ
);
2293 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2294 // only happens when if-converting a diamond CFG and FromMBB is the
2295 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2296 // could just use the probabilities on FromMBB's out-edges when adding
2298 if (!To2FromProb
.isZero())
2299 NewProb
*= To2FromProb
;
2302 FromMBB
.removeSuccessor(Succ
);
2305 // If the edge from ToBBI.BB to Succ already exists, update the
2306 // probability of this edge by adding NewProb to it. An example is shown
2307 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2308 // don't have to set C as A's successor as it already is. We only need to
2309 // update the edge probability on A->C. Note that B will not be
2310 // immediately removed from A's successors. It is possible that B->D is
2311 // not removed either if D is a fallthrough of B. Later the edge A->D
2312 // (generated here) and B->D will be combined into one edge. To maintain
2313 // correct edge probability of this combined edge, we need to set the edge
2314 // probability of A->B to zero, which is already done above. The edge
2315 // probability on A->D is calculated by scaling the original probability
2316 // on A->B by the probability of B->D.
2318 // Before ifcvt: After ifcvt (assume B->D is kept):
2327 if (ToBBI
.BB
->isSuccessor(Succ
))
2328 ToBBI
.BB
->setSuccProbability(
2329 find(ToBBI
.BB
->successors(), Succ
),
2330 MBPI
->getEdgeProbability(ToBBI
.BB
, Succ
) + NewProb
);
2332 ToBBI
.BB
->addSuccessor(Succ
, NewProb
);
2336 // Move the now empty FromMBB out of the way to the end of the function so
2337 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2338 MachineBasicBlock
*Last
= &*FromMBB
.getParent()->rbegin();
2339 if (Last
!= &FromMBB
)
2340 FromMBB
.moveAfter(Last
);
2342 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2343 // we've done above.
2344 if (ToBBI
.IsBrAnalyzable
&& FromBBI
.IsBrAnalyzable
)
2345 ToBBI
.BB
->normalizeSuccProbs();
2347 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2348 FromBBI
.Predicate
.clear();
2350 ToBBI
.NonPredSize
+= FromBBI
.NonPredSize
;
2351 ToBBI
.ExtraCost
+= FromBBI
.ExtraCost
;
2352 ToBBI
.ExtraCost2
+= FromBBI
.ExtraCost2
;
2353 FromBBI
.NonPredSize
= 0;
2354 FromBBI
.ExtraCost
= 0;
2355 FromBBI
.ExtraCost2
= 0;
2357 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2358 ToBBI
.HasFallThrough
= FromBBI
.HasFallThrough
;
2359 ToBBI
.IsAnalyzed
= false;
2360 FromBBI
.IsAnalyzed
= false;
2364 llvm::createIfConverter(std::function
<bool(const MachineFunction
&)> Ftor
) {
2365 return new IfConverter(std::move(Ftor
));